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Abstract—In this work, a general information fusion problem is
formulated as an optimisation protocol in the space of probability
measures (i.e. the so-called Wasserstein metric space). The high-
level idea is to consider the data fusion result as the probability
measure that is closest to a given collection of input measures in
the sense that it will minimise the (weighted) Wasserstein distance
between itself and the inputs. After formulating the general
information fusion protocol, we consider the explicit computation
of the fusion result for two special scenarios that occur frequently
in practical applications. Firstly, we show how one can compute
the general outcome explicitly with two Gaussian input measures
(ignoring any correlation). We then examine the consistency of
this result for the scenario in which the two Gaussian inputs
have an unknown (but possibly non-zero) correlation. Secondly,
we show how one can compute the general fusion result explicitly
given two randomly sampled (discrete) empirical measures which
typically have no common underlying support. Data fusion with
empirical measures as input has wide applicability in applications
involving Monte Carlo estimation etc.

I. INTRODUCTION

In this work, a general information fusion problem is for-
mulated as an optimisation protocol in the space of probability
measures (i.e. the so-called Wasserstein metric space [1]). The
high-level idea is to consider the data fusion outcome as the
probability measure that is closest to a given collection of
input measures in the sense that it will minimise the (weighted)
Wasserstein distance between itself and the inputs.

The classical way to combine continuous conditional mea-
sures is to use Bayes rule, which (roughly) involves mul-
tiplying the measures together and then normalizing via an
integral operation. Alternatively, one may find the weighted
average of all the individual probability measures (i.e. sum
the weighted measures (with the weights summing to 1) and
take this as the combined belief); i.e. this is just a probability
mixture (often referred to a linear opinion pool). Separate
again, one may take the weighted average of the logarithm of
the individual measures and then take the common belief to be
the exponentiation of this weighted average (often referred to
as a log-linear opinion pool). See [2]–[5] for a survey of these
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three well-studied solutions and variations. Other variations
are discussed in [6], [7].

Other non-probabilistic (or generalised) approaches to infor-
mation fusion and inference such as interval calculus, fuzzy
logic, Dempster-Shafer etc. [6], [7] are not discussed here.
Probability measures as arising in topics like random-set
theory etc. [6] are also not discussed but presumably can be
accommodated via the proposed framework for information
fusion.

One novelty of the proposed general information fusion
protocol is that it draws on a very general formulation
in which input measures of a general type can be natu-
rally accommodated; e.g. we will show how one can deal
straightforwardly with empirical (discrete, randomly sampled)
measures. Moreover, the formulation introduced appears to
be a mathematically intuitive approach to information fusion
drawing on the rigorous foundation of the Wasserstein metric
[1]. The general algorithm introduced here for information
fusion also lends itself neatly to distributed computation as
outlined in separate work [8].

A. Direct Information Fusion of Empirical Measures

Note that one downside of existing probabilistic methods
[2]–[5] for combining probability measures is that they do
not naturally allow one to consider the direct combination of
randomly sampled (discrete) measures [9] and/or non-standard
probability measures. This limitation follows because these
methods inherently act on measures as if they are ‘functions’
with common support. This assumption of a common support
is extremely limiting. For example, the multiplication required
by Bayes rule is simply impossible to do (directly) when
dealing with empirical measures.

Traditionally, fusion of empirical measures typically in-
volves temporarily transforming the empirical measure back to
a continuous measure using a so-called Kernel method [10] at
which point classical fusion results [2], [6], [7], [11] apply. The
Kernel-based approaches typically scale poorly (without some
form of clustering of the components) and may also perform
poorly when the underlying sampled measures do not ‘overlap’
sufficiently well. Its worth noting the computationally efficient



approximations for sampling the output of the product of input
measures, e.g. typically two Gaussian mixture inputs, which do
not require an explicit computation of the product itself [12],
[13]. Such methods naturally approximate the Kernel method
approach to fusion with empirical inputs.

An advantage of the proposed method for information fusion
is that it completely avoids the multiplication or summation
of measures, a task that is impossible to do when dealing
with randomly sampled measures. Instead, we specialise the
general information fusion protocol proposed in this work
and provide a directly computable protocol for the direct
information fusion of two empirical (discrete) measures. This
protocol works by finding a discrete measure that is closest in
the sense of the Wasserstein metric [14] to the two empirical
input measures. The real novelty of this presentation lies in
the potential applications of such fusion in fields like Monte
Carlo estimation [9] etc.

B. Gaussian Information Fusion in the Presence of Unknown
Correlation

In classical Gaussian information fusion the optimal solu-
tion (in terms of minimising the variance of the fusion result)
is straightforwardly computed when the correlation between
the input measures is known [7]. In the case in which the
correlation is unknown one may employ an algorithm such
as covariance intersection (CI) [15], [16] which ensures the
output is consistent in the sense that its variance estimate is
never less than the actual variance that would arise if one
knew the correlation (i.e. the fusion result is never over-
confident but rather typically conservative with respect to the
variance). The log-linear opinion pool [5] described previously
is a generalisation of covariance intersection to arbitrary input
measures. Other approaches to Guassian information fusion
exist that consider the case in which the correlation between
the input measures is unknown [17]–[21].

We specialise the general information fusion protocol pro-
posed in this work and provide a directly computable protocol
for the information fusion of two Gaussian input measures.
This result produces a Gaussian fusion output that is the
closest Gaussian measure in the (weighted) Wasserstein metric
to the two input measures. The computation of this output
does not take into account any dependence between the inputs
and any such dependence, if it exists, does not appear in the
computation. We then study the consistency of this fusion
result, in the spirit of covariance intersection [15], when the
inputs may or may not be independent.

C. Organisation

In the next section a general information fusion problem
is formulated as an optimisation problem in the space of
probability measures (i.e. the so-called Wasserstein metric
space [1]). The high-level idea is to consider the data fusion
outcome as the probability measure that is closest to the
given collection of input measures in the sense that it will
minimise the (weighted) Wasserstein distance between itself
and the collection of inputs. In the subsequent two sections

we consider the explicit computation of the data fusion result
for two special scenarios that occur frequently in practical
applications. Firstly, in Section III the general information
fusion solution is computed explicitly for two Gaussian input
measures (ignoring any correlation) and then the consistency
of this result is examined for the scenario in which the two
Gaussian inputs have an unknown (but possibly non-zero)
correlation. Then in Section IV the general fusion problem
is reduced to one involving two randomly sampled (discrete)
empirical measures which typically have no common under-
lying support. A conclusion is given in Section V.

II. INFORMATION FUSION VIA THE WASSERSTEIN
BARRYCENTER

Consider a collection, i ∈ V = {1, . . . , n} of Radon
probability measures µi defined on the Borel sets of (Rm, d)
with 0 < m < ∞ where d : Rm × Rm → R is the usual
Euclidean distance. Define the space of all such measures on
(Rm, d) by U(Rm) and the subset of all such measures with
bounded, finite, pth moment by Up(Rm) for some suitably
small 1 ≤ p <∞. That is, Up is the collection of probability
measures on the Borel sets of (Rm, d) such that∫

Rm

d(x,x0)p dµi(x) <∞ (1)

for all bounded x ∈ Rm and a given x0 ∈ Rm.
One can then associate with the space Up a metric `p :

Up × Up → R defined by

`p(µi, µj)
p = inf

γ∈Γ(µi,µj)

∫
Rm×Rm

d(xi,xj)
p dγ(xi,xj) (2)

where Γ(µi, µj) denotes the collection of all measures on
Rm × Rm with marginals µi and µj on the first and second
factors respectively.

Suppose one wants to compute

ν = inf
z∈Up

∑
i∈V

wi`p(z, µi)
p (3)

where wi ∈ (0, 1) and
∑
j∈V wj = 1. We neglect the trivial

case in which wi(t) = 1 for one i.
This operation is a form of information fusion in the sense

that we are trying to find a measure that is the ‘closest’
measure to a collection of given input measures (in this
case in the sense of the weighted Wasserstein distance). This
formulation lends itself naturally to distributed implementation
and the distributed fusion version of this algorithm along with
convergence results are introduced in [8].

The Wasserstein metric captures the error in the expected
value of a class of functions due to the approximation of one
measure by another [22]. Thus, the fusion result can be viewed
as a measure with an expected value (for a class of function)
that is minimally different (simultaneously) from the same
expectation of each input measure (in a weighted sense).

In the remainder, we consider the computation of (3) for
two important (application heavy) special cases.



III. GENERAL LINEAR INFORMATION FUSION OF TWO
GAUSSIAN ESTIMATES

We consider two (random variable) estimates a ∼
N (c∗, P̃aa) and b ∼ N (c∗, P̃bb) of some fixed parameter
c∗ ∈ Rm, 0 < m < ∞. The estimation error of a and b are
defined by the random variables

ã = a− c∗ , b̃ = b− c∗ (4)

where, in this case,

E[ã] = 0 , P̃aa = E[ãã>] > 0 (5)
E[b̃] = 0 , P̃bb = E[b̃b̃>] > 0 (6)

Although the true values P̃aa and P̃bb may not be known,
consistent approximations Paa and Pbb are assumed available
where 1

Paa ≥ P̃aa , Pbb ≥ P̃bb (7)

The cross-correlation matrix between the two estimates is
denoted by P̃ab and is defined by

P̃ab = E[(a− c∗)(b− c∗)>] = E[ãb̃>] (8)

This matrix may be known or unknown and may even be zero
in some applications.

Let c ∼ N (c∗, P̃cc) denote a third estimate of c∗ obtained
via a linear combination of a and b. That is

c = K1a + K2b (9)

where a,b ∈ Rn and K1,K2 ∈ Rn×n. The error in this
estimate is

c̃ = c− c∗ (10)

and obeys E[c̃] = 0 when K1 + K2 = I.
The true covariance P̃cc = E[c̃c̃>] is calculated by

P̃cc = K1P̃aaK
>
1 + K2P̃bbK

>
2

+K1P̃abK
>
2 + K2P̃baK

>
1 (11)

and calculation of this term requires P̃ab = P̃>ba be known
(when it is non-zero).

We are mainly interested in the construction of an estimator
c defined by some K1 and K2 and also an estimate Pcc of P̃cc

when the cross-correlation P̃ab is non-zero but unknown. We
are further interested in certain properties of the resulting Pcc.
In particular, we are interested in the property of consistency

Pcc ≥ P̃cc (12)

where P̃cc is given by (11) which depends on the cross-
correlation P̃ab or some estimation thereof which we assume
unavailable.

Definition 1. Suppose P̃aa and P̃bb are given along with
P̃ab = P̃>ba. Suppose P̃ab = P̃>ba is non-zero. Suppose an
estimator c for c∗ is given in the form (9). The true covariance
of c is denoted by P̃cc. An estimate Pcc of P̃cc is said to be

1This inequality is in the sense of matrix positive definiteness.

consistent if
Pcc ≥ P̃cc (13)

where P̃cc is defined by (11).

It is often true that ignoring the correlation P̃ab when fusing
a and b can lead to overly confident results; i.e. the resulting
estimate of Pcc will be inconsistent as per Definition 1. Some
algorithms, such as covariance intersection (CI), see [15], [16],
on the other hand are designed to generate consistent estimates
when the cross-correlation is unknown. In many cases, the
resulting estimators are considerably conservative.

A. Information Fusion in the Wasserstein Space of Gaussian
Probability Measures

Consider two Gaussian probability measures µi, i ∈ {a, b}
defined on the Borel sets of (Rm, d) and suppose that µa
and µb admit Gaussian densities of the form N (c∗, P̃aa) and
N (c∗, P̃bb) given some fixed parameter c∗. Define the space
of all such measures on (Rm, d) with bounded second moment
by G2(Rm) ⊂ U2(Rm).

Suppose one wants to compute

µc = inf
z∈Gp

w1`p(z, µa)p + w2`p(z, µb)
p (14)

where wi ∈ (0, 1) and (w1 + w2) = 1. This operation is
clearly a special case of (3) where p = 2, |V| = 2 and we
restrict ourselves to the space G2(Rm) ⊂ U2(Rm). Note that
this operation does not consider any dependence between the
inputs.

Theorem 1 ( [14], [23]). Suppose that µa and µb admit
Gaussian probability densities of the form N (c∗, P̃aa) and
N (c∗, P̃bb) given some fixed parameter c∗. Then µc defined
as the solution to

µc = inf
z∈G2

(1− w)`2(z, µa)2 + w`2(z, µb)
2 (15)

with w ∈ (0, 1) exists and is unique. Moreover, µc is in G2

and admits a Gaussian density of the form N (ĉ, P̂cc) where

ĉ = (1− w)c∗ + wc∗ = c∗ (16)

P̂cc =
(

(1− w)I + wΠ̂
)

P̃aa

(
(1− w)I + wΠ̂

)
(17)

where Π̂ = P̃
1/2
bb (P̃

1/2
bb P̃aaP̃

1/2
bb )−

1
2 P̃

1/2
bb .

We now have the following information fusion estimate
(termed the Wasserstein-Gaussian Information Fusion Al-
gorithm):

c = (1− w)a + wb
Pcc = ((1− w)I + wΠ) Paa ((1− w)I + wΠ)

Π = P
1/2
bb (P

1/2
bb PaaP

1/2
bb )−

1
2 P

1/2
bb , w ∈ (0, 1)

This algorithm is motivated by the fact that it defines
the best approximation to the measure that is closest in the
weighted Wasserstein sense to two input measures defined
exactly by the distributions of a and b. The output measure is
thus a kind of weighted average between two input measures



in the sense of a probabilistically justified and intuitive metric
(i.e. the Wasserstein metric). It is appealing since finding a
measure that is close to two input measures in this sense does
not depend on the correlation P̃ab which is often assumed
unknown (but possibly non-zero).

Practically, this estimation algorithm is taking two Gaussian
(random variable) inputs a and b and producing a third
(random variable) output c = (1−w)a+wb which has mean
c∗ and true covariance

P̃cc = (1− w)2P̃aa + w2P̃bb

+w(1− w)P̃ab + w(1− w)P̃ba (18)

from (11). Of course, given c = (1 − w)a + wb (or any
other estimator of the form (9)) it is not possible to compute
the true covariance (or use (11) at all; say with estimates
Paa ≥ P̃aa etc.) when P̃ab is unknown and non-zero. Hence
the construction of Pcc as a sole function of Paa and Pbb.
Of course, we want Pcc to be a good representation of P̃cc

but further it is often accepted that one also wants consistency
Pcc ≥ P̃cc so that the estimator is not over-confident.

We now have the following main result.

Proposition 1. Let w ∈ (0, 1) and suppose an estimator c for
c∗ is given by the Wasserstein-Gaussian Information Fusion
Algorithm along with the associated covariance matrix Pcc.
Computation of Pcc uses Paa ≥ P̃aa and Pbb ≥ P̃bb which
are guaranteed consistent. Then

Pcc ≥ P̃cc (19)

is guaranteed if and only if

(P̃aaP̃bb)
1/2 + (P̃bbP̃aa)1/2 ≥ P̃ab + P̃ba (20)

where P̃cc is the true covariance of c given by (18).

Before proceeding to the proof we need the following
lemmas.

Lemma 1. Let Π = P
1/2
bb (P

1/2
bb PaaP

1/2
bb )−

1
2 P

1/2
bb . The fol-

lowing statements hold:

1) Π = P
−1/2
aa (P

1/2
aa PbbP

1/2
aa )

1
2 P
−1/2
aa

2) ΠPaaΠ = Pbb

Proof: Matrices in the form of Π are well studied and
actually correspond to the matrix geometric mean of Pbb and
P−1
aa . The identities are found in [24].

Lemma 2. Let Π = P
−1/2
aa (P

1/2
aa PbbP

1/2
aa )

1
2 P
−1/2
aa . The

following statements hold:
1) ΠPaa = (PbbPaa)1/2

2) PaaΠ = (PaaPbb)
1/2

Proof: With Π as defined we use the following identities
Π = (PbbPaa)1/2P−1

aa = P−1
aa (PaaPbb)

1/2 as found in [24].

We now proceed to the proof of the main proposition.
of Proposition 1: For the remainder of the proof let

Π = P
1/2
bb (P

1/2
bb PaaP

1/2
bb )−

1
2 P

1/2
bb . Now by expanding the

quadratic form of Pcc we get

Pcc − P̃cc = w2ΠPaaΠ + (1− w)2Paa

+w(1− w) [ΠPaa + PaaΠ]

−w(1− w)
[
P̃ab + P̃ba

]
−w2P̃bb − (1− w)2P̃aa (21)

From Lemma 1 we have ΠPaaΠ = Pbb and thus

Pcc − P̃cc ≥ w(1− w) [ΠPaa + PaaΠ]

−w(1− w)
[
P̃ab + P̃ba

]
= w(1− w)

[
ΠPaa + PaaΠ− P̃ab − P̃ba

]
(22)

using the relations Paa ≥ P̃aa and Pbb ≥ P̃bb.
It then follows that Pcc − P̃cc ≥ 0 if and only if

ΠPaa + PaaΠ− P̃ab − P̃ba ≥ 0 (23)

Applying Lemma 2 it follows that Pcc− P̃cc ≥ 0 if and only
if

(PaaPbb)
1/2 + (PbbPaa)1/2 − P̃ab − P̃ba ≥ 0 (24)

and to guarantee consistency for all possible Paa ≥ P̃aa and
Pbb ≥ P̃bb we set Paa = P̃aa and Pbb = P̃bb and the proof
is complete.

One may question whether the inequality

(P̃aaP̃bb)
1/2 + (P̃bbP̃aa)1/2 − P̃ab − P̃ba ≥ 0 (25)

required by the proposition is automatically satisfied. Indeed,
the authors initially suspected this may be the case. We explore
this idea further now. We note the following lemma.

Lemma 3. Let Paa > 0, Pbb > 0 and Pab be defined as
before and given and then define

M =

[
Paa Pab

Pba Pbb

]
(26)

noting M > 0. Then there exists a contractive matrix S
defined to obey I − SS> ≥ 0 such that Pab + Pba =
P

1/2
aa SP

1/2
bb + P

1/2
bb S>P

1/2
aa .

Proof: See [24].
This lemma may be used to generalise the notion of a

correlation coefficient found in the scalar case.

Corollary 1. Let w ∈ (0, 1) and suppose a scalar estimator c
for c∗ ∈ R is given by the Wasserstein-Gaussian Information
Fusion Algorithm along with the associated variance pcc.
Computation of pcc uses the scalars paa ≥ p̃aa and pbb ≥ p̃bb
which are guaranteed consistent. Then it always holds that

pcc ≥ p̃cc (27)

where p̃cc is the true covariance of c given by (18).

Proof: We need

(p̃aap̃bb)
1/2 + (p̃bbp̃aa)1/2 − p̃ab − p̃ba ≥ 0 (28)



and from Lemma 3 note p̃ab = p̃ba = s(p̃bbp̃aa)1/2 for some
s ∈ [−1, 1].

In the scalar case, it is interesting to note that pcc = p̃cc
when paa = p̃aa and pbb = p̃bb and the correlation coefficient
is s = 1. Indeed, the variance estimate becomes more
conservative compared to the underlying true variance as s
decreases from 1.

In any finite dimension the required condition for consis-
tency can be rewritten using Lemma 3 as

(P̃aaP̃bb)
1/2 + (P̃bbP̃aa)1/2

−P̃1/2
aa SP̃

1/2
bb − P̃

1/2
bb S>P̃1/2

aa ≥ 0 (29)

where S is a contractive matrix obeying I − SS> ≥ 0.
Unfortunately, in higher dimensional cases (beyond scalars)
the inequality required for consistency may fail to hold and
consistency is dependent on the relationship of the correla-
tion in the individual estimates to the underlying individual
estimation covariance estimates.

One further important note is that the relative difference
Pcc − P̃cc is independent of w ∈ (0, 1). This is not to say
that Pcc may not improve with w but rather that (Pcc− P̃cc)
does not vary.

Conjecture 1. Let S obey I− SS> ≥ 0 then

(P̃aaP̃bb)
1/2 + (P̃bbP̃aa)1/2

−P̃1/2
aa SP̃

1/2
bb − P̃

1/2
bb S>P̃1/2

aa 6< 0 (30)

for all P̃aa ≥ 0 and P̃bb ≥ 0.

This conjecture has been tested via numerous random
examples. The significance of this conjecture is that it imme-
diately implies that either the proposed estimator is consistent
(Pcc − P̃cc) ≥ 0 or that Pcc 6> P̃cc & P̃cc 6> Pcc. In other
words, the proposed estimated covariance may be consistent
but it will never be less (in the positive-semidefinite sense)
than the true variance of the estimate. That is, the conjecture
implies P̃cc 6> Pcc. This is a desirable property which implies
that the proposed covariance estimate is never overly confident.

Finally, we note that in practice one is not typically inter-
ested in the estimator for all values w ∈ (0, 1) but rather in
the estimator for a particular value of w. We now have the
following information fusion estimate (termed the Optimal
Wasserstein-Gaussian Information Fusion Algorithm):

c = (1− w)a + wb
Pcc = ((1− w)I + wΠ) Paa ((1− w)I + wΠ)

Π = P
1/2
bb (P

1/2
bb PaaP

1/2
bb )−

1
2 P

1/2
bb

w = argminw∈(0,1) tr Pcc|w=w

We do not explore the details of computing an optimal w
via a particular optimisation method here but note simply
that numerous protocols are applicable including a simple
line search algorithm. Other criterion beyond the trace could
also be substituted without difficulty. As noted previously the
particular value of w has no effect on the relative value of
(Pcc − P̃cc).

IV. DIRECT INFORMATION FUSION OF EMPIRICAL
MEASURES

Again let |V| = 2 and suppose that an arbitrary continuous
µi ∈ Up supported on Rm is approximated by some discrete
empirical measure µ̃Ni such that N → ∞ implies µ̃Ni → µi
implies `p(µ̃Ni , µi)→ 0 for all 1 ≤ p <∞ 2. Here

µ̃Ni =
1

N

∑N
j=1 δxi

j
(31)

where, for example, xij can be considered a realisation of a
random variable drawn independently from µi. Let Up ⊂ Up
denote the space of all such measures. We drop the superscript
N but note that each µ̃i, ∀i ∈ {1, 2} is defined by the same
N .

Let p = 2 going forward. Consider the finite set Ui =
{xi1, . . . , xiN} of sample points (indexed from 1 to N ). One
can write `2(µ̃i, µ̃j)

2 as

`2(µ̃i, µ̃j)
2 = min

σj
k, k∈{1,...,N}

1

N

∑N
k=1 ‖xik − x

j

σj
k

‖2 (32)

where the minimisation is taken over all permutations σj :
{1, . . . , N} → {1, . . . , N}.

It now follows that

ν̃ = inf
z∈U2

∑
i∈{1,2}

ωi`2(z, µ̃i)
2 =

1

N

∑N
i=1 δz∗i (33)

where Z∗ = {z∗1 , . . . , z∗N} is a finite set.
For a given Z∗ we can define a vector z∗ =[
z∗1
> . . . z∗N

>]> and

z∗ = argmin
zi∈Rm

[
ω1 min

σ1

1

N

∑N
k=1 ‖zk − x1

σ1
k
‖2

+ω2 min
σ2

1

N

∑N
k=1 ‖zk − x2

σ2
k
‖2
]

(34)

For some fixed permutation σj , ∀j, consider

z∗ = argmin
zi∈Rm

[
1
N

∑N
k=1

[
ω1‖zk − x1

σ1
k
‖2 + ω2‖zk − x2

σ2
k
‖2
]]

(35)
The solution to this optimisation problem is easily given by

zk∗ = ω1x
1
σ1
k

+ ω2x
2
σ2
k
, ∀k ∈ {1, . . . , N} (36)

with ωi ∈ (0, 1) and ω1 + ω2 = 1.
Now it then follows that

σ∗ = argmin
σj , j∈{1,2}

1

N

N∑
k=1

[
‖zk∗ − x1

σ1
k
‖2

+‖zk∗ − x2
σ2
k
‖2
]

(37)

= argmin
σj , j∈{1,2}

1

N

N∑
k=1

[
‖ω1(x1

σ1
k
− x2

σ2
k
)‖2

+‖ω2(x1
σ1
k
− x2

σ2
k
)‖2
]

(38)

2More generally, µ̃Ni as used here could be any discrete normalised
probability measure.



and then
z∗ = z∗

∣∣
σj=σj∗, j∈{1,2} (39)

where the arguments of the minimisation are the permutations
σj : {1, . . . , N} → {1, . . . , N}.

We then have the following main result.

Theorem 2. Let i ∈ {1, 2} and consider two measures

µ̃Ni = 1
N

∑N
j=1 δxi

j
(40)

along with the finite sets Ui = {xi1, . . . , xiN} of sample points.
Then the globally optimal solution to

ν̃ = inf
z∈U2

∑
i∈{1,2} ωi`2(z, µ̃i)

2 (41)

is given by
ν̃ = 1

N

∑N
k=1 δz∗k (42)

where
z∗k = ω1x

1
σ1∗
k

+ ω2x
2
σ2∗
k

(43)

and where σi∗k is given as the output of Algorithm 1.

Let ind(xij) = j. Then Algorithm 1 is a solution to the
optimisation problem in (38).

Algorithm 1 Solution to the Optimal Information Fusion Problem
with Randomly Sampled Empirical Measures

1: Ûi = Ui, ∀i ∈ {1, 2}
2: for k = 1 to N do
3: nearest =∞
4: for each element x1i in Û1 do
5: for each element x2j in Û2 do
6: if ‖x1i − x2j‖2 < nearest then
7: σ1∗

k = ind(x1i ), σ
2∗
k = ind(x2j )

8: nearest = ‖x1i − x2j‖2
9: end if

10: end for
11: end for
12: Ûi = Ûi \ {xiσi

k
}, ∀i ∈ {1, 2}

13: end for

Proof: Given the derivation to (39) it remains only to
show that Algorithm 1 solves the optimisation problem given
in (38). Algorithm 1 pairs points in U1 with points in U2 based
on the (squared) Euclidean distance between them, i.e. the
outcome implies x1

σ1∗
1

and x2
σ2∗
1

are the two closest points to
each other when picking disjointly from both U1 and U2. Then
x1
σ1∗
2

and x2
σ2∗
2

are the next two closest points and so on.
Consider the problem in (38) and note that the x1

σ1∗
1

and
x2
σ2∗
1

minimises the first k = 1 summation term over any
other possible pairing of points. Fixing these two points it
then follows that the pair x1

σ1∗
2

and x2
σ2∗
2

minimises the second
k = 2 summation term over any other possible pairing of
points and so on for all k. Because σi∗k only appears in one
summation term in (38) and of course the ordering in k is
unimportant it follows that this minimises the total summation.
This completes the proof.

A more general discussion on the existence and uniqueness

of solutions to the general optimisation problem for computing
a measure in Up that is closest (in a weighted Wasserstein
sense) to a given set of (possibly more than 2) input measures
is found in [14]. For discrete input measures in U2 the
optimal solution is not necessarily unique (though it seems it
is generically unique). It is worth noting [25] where a similar
mathematical formalism is given for computing a discrete
measure that is closest (in the Wasserstein sense) to two
discrete input measures. No reference to empirical measures
is given in [25] and so the inputs may have common support.
The application considered in [25] is one of texture mixing
in computer vision and no relation to information fusion is
discussed. More efficient approximations (or relaxations) to
the underlying optimisation problem may also be considered
[26] to reduce the complexity.

Moreover, we note that the algorithm presented here is just
a direct approach for computing a specific case of the well-
known McCann interpolant measure (i.e. a measure that lies on
the geodesic connecting two input measures) when the input
measures are discrete [23].

The real novelty of this presentation lies in the connection
to information fusion of sampled probability measures and
the potential applications of such in fields like Monte-Carlo
estimation [9] etc.

A. Illustrative Examples

Two arbitrary Gaussian mixture densities are considered
each with 8 components. These mixtures are randomly sam-
pled at N = 1000 to generate µ̃i, ∀i ∈ {1, 2}. The individual
µi, ∀i ∈ {1, 2} along with the sample points Ui, ∀i ∈ {1, 2}
are shown in Figure 1.
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Fig. 1. The two continuous inputs µi, ∀i ∈ {1, 2} along with the sample
points Ui, ∀i ∈ {1, 2}. The samples are shown at a height of 0.1 for clarity.

The solution to the direct sampled fusion problem

ν̃ = inf
z∈U2

∑
i∈{1,2}

1
2`2(z, µ̃i)

2 (44)

is then computed according to Theorem 2. For visualization, a
Kernel method is applied to the fused sample points defining
ν̃ in order to obtain

ν = 1
Nh
√

2π

∑N
i=1 exp

[
− (x−z∗i )

2h2

]
(45)

with bandwidth h = ( 4γ5

3N )1/5 where γ is the sample standard
deviation [10]. Both ν and ν̃ are displayed in Figure 2.
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Fig. 2. The sampled information fusion solution ν̃ and a corresponding
Kernel-based density estimate ν. The sample points are plotted at a height of
0.1 for clarity. The sampled solution ν̃ (and thus the corresponding density
estimation ν) is computed using only the sets Ui, ∀i ∈ {1, 2} as input.

V. CONCLUDING REMARKS

This work introduced an information fusion protocol that
delivers a probability measure that is the ‘closest’ measure
to a collection of given input measures (in the sense of
the weighted Wasserstein metric on the space of probability
measures).

We considered the explicit computation of this information
fusion result for two important (application driven) special
cases. Firstly, we examined the case of two Gaussian input
measures which may or may not be independent and we
detailed the computation of the fusion result and explored
the consistency of this result. Secondly, we examined the
case of two empirical (randomly sampled) input measures and
we provided an information fusion computation that works
directly on the two discrete empirical samples.

In the Gaussian case, no comparison, either through sim-
ulation or analysis, with covariance intersection or log-linear
opinion pools [5], [15], [16] has been considered and such work
would be necessary before Wasserstein information fusion was
considered applicable. Comparison with other related work
[17]–[21] is also important and a potential topic for future work.

Similarly, in the case of empirical measures, further study
and analysis is required. Also, comparison with those com-
putationally efficient approximations for sampling the output
of the product of input measures [12], [13] among other
approaches is needed.
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