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ABSTRACT 

This report describes the deflection and supporting force analysis of a static pressure pipe 
that is to be used in the Defence Science and Technology Group Transonic Wind Tunnel 
test facility. The static pressure pipe was modelled as a slender propped cantilever beam 
(fixed at one end and roller-supported at the other) that is subjected to combined 
transverse and tensile axial loading. An analytical solution to this problem has been 
derived from first principles using Euler-Bernoulli beam theory, and a closed-form 
expression for the beam deflection as a function of the axial tension force is provided. The 
analytical solution was checked by performing a separate nonlinear finite element analysis 
using beam elements. The value of the peak deflection and its position along the beam axis 
was determined as a function of the applied axial tension force by solving a nonlinear 
equation using the bisection method. The analytical functions and numerical solution 
methods described in this report have been implemented for general use in a spreadsheet, 
and the source code for these is provided. They can be used to study other slender beam 
configurations that may be of interest. A modal finite element analysis of a further 
idealised beam configuration was also conducted to provide estimates of the natural 
frequencies and associated mode shapes for the beam. 
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Deflection and Supporting Force Analysis of a 
Slender Beam under Combined Transverse and 

Tensile Axial Loads 

Executive Summary 

Aerospace Division has been deeply involved in the development and application of 
technologies that help to ensure the safety and enhance the availability of aircraft in 
service with the Royal Australian Air Force. The Flight and Fluid Dynamics Group in the 
Aircraft Performance and Survivability Branch undertakes research into steady and 
unsteady fluid dynamics in incompressible, subsonic, transonic, supersonic and 
hypersonic flow. This is applied to studies involving fixed wing flight vehicles, 
submarines and surface vessels, aeroelastic and structural dynamic behaviour, flight 
dynamic behaviour and performance, as well as weapon aerodynamics and integration. 

This report details the deflection and supporting force analysis relating to the design of a 
static pressure pipe that is to be used in the Defence Science and Technology Group 
Transonic Wind Tunnel test facility. The static pressure pipe analysed herein was 
modelled as a slender propped cantilever beam (fixed at one end and roller-supported at 
the other) that is subjected to combined transverse and tensile axial loading. Although an 
analytical solution to this beam problem is available for the limiting case of zero axial 
tension force, a published solution for the case of general non-zero tension loading could 
not be found, even though a number of engineering handbooks were consulted. 

For the present problem, that of a slender propped cantilever beam subjected to combined 
transverse and tensile axial loading, the work documented in this report has resulted in 
the derivation of a new analytical solution that is applicable to this particular beam 
geometry and loading. The solution is based on the application of the well-known Euler-
Bernoulli beam theory to this problem. The key result is a compact closed-form expression 
for the beam deflection as a function of the axial tension force. The value of the peak 
deflection and its position along the beam axis were also determined as a function of the 
applied axial tension force, by solving a nonlinear equation using the bisection method. 
The analytical functions and numerical solution methods described in this report have 
been implemented for general use in a spreadsheet, and the associated source code is 
provided. A modal analysis of an idealised version of the beam to determine its natural 
frequencies and mode shapes has also been conducted in order to gain some insight into 
the flexural vibration characteristics of this structure. 
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Nomenclature 
𝑎, 𝑏, 𝑐, 𝑑 coefficients in nonlinear beam deflection equation 
𝐴 cross-sectional area 
𝑑𝑑/𝑑𝑑 first derivative of beam displacement with respect to 𝑥 
𝑑2𝑣/𝑑𝑥2 second derivative of beam displacement with respect to 𝑥 
𝐸 Young’s modulus 

𝑓𝑛 𝑛th natural frequency of flexural transverse vibration 

𝑓𝑐𝑐 𝑛th natural frequency cable transverse vibration 
𝑔 acceleration due to gravity 
𝐼 second moment of area about centroid 

𝑘 �𝑇
𝐸𝐸

 

𝐿 length of beam 
𝑚 total mass of pipe or beam 
𝑀(𝑥) bending moment 
𝑀𝑒 reaction moment at encastre end of beam 
𝑛 order of natural vibration mode 
𝑞(𝑥) transverse loading 
𝑅𝑒 vertical reaction force at encastre end of beam 
𝑅𝑝 vertical reaction force at propped end of beam 
𝑡 wall thickness of static pressure pipe 
𝑇 applied axial tension force 
𝑇𝑐 applied cable tension force 
𝑣(𝑥) transverse deflection of beam 
𝑉(𝑥) shear force 
𝑊 weight per unit length 
𝑥 distance along horizontal axis 
𝑥𝛿𝛿𝛿𝛿 position of point of maximum deflection of beam 
𝑦 distance along vertical axis 
𝛼𝑛, 𝛽𝑛 parameters in vibration mode shape equation 
𝛿𝑚𝑚𝑚 maximum deflection of beam 
𝜉𝑛 parameter in natural frequency equation 
𝜅 curvature 
∅𝑖 internal diameter of pipe 
∅𝑜  external diameter of pipe 

𝜓𝑛 𝑛th characteristic mode shape 
𝜃𝑝 angle of rotation of propped end of beam 
Υ volume 
𝜌 density 
𝜇𝑐 mass per unit length of cable 
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1. Introduction 
This report documents an analysis of a slender beam under combined transverse and 
tensile axial loads. The analysis was primarily performed to determine the maximum static 
deflection of a static pressure pipe that is to be used during aerodynamic testing work 
conducted in the Defence Science and Technology Group Transonic Wind Tunnel facility. 
A layout diagram of the static pressure pipe installation is shown in Figure 1 (as supplied 
by the Aerodynamics and Aeroelasticity Group). 

For the purpose of the analysis, the static pressure pipe was modelled as a slender 
propped cantilever beam, fixed at one end and roller-supported at the other, as shown in 
Figure 2. The transverse load 𝑞(𝑥) is the uniform self-weight loading distributed along the 
length of the beam, and 𝑇 is the axial tension force. The analysis was performed to provide 
solutions to: 

(i) the maximum deflection of the beam, 

(ii) the position of the maximum deflection, and 

(iii) the value of the supporting force 𝑅𝑝 at the propped end of the beam. 

The forces 𝑇 and 𝑅𝑝 represent the horizontal and vertical components of the vector 
summation of the cable pulling forces applied at the right-hand side of the beam as 
depicted in Figure 1. 

It is noted here that the solutions as mentioned above for tensile forces 𝑇 > 0 are not 
available in textbooks or handbooks. Nor can they be obtained using linear finite element 
analysis (FEA), a general-purpose computational tool whose reliability in performing such 
analyses is known to the Structural and Damage Mechanics Group in Aerospace Division. 
As such, in the present study, an analytical solution for the 𝑇 > 0 case was derived from 
first principles based on Euler-Bernoulli beam theory [1]. Then, a nonlinear FEA using 
beam elements was performed for the purpose of checking the deflection computed using 
the analytical equation. A modal analysis of the beam has also been conducted to 
determine its natural frequencies and associated mode shapes in order to gain some 
insight into the flexural vibration characteristics of this structure. 

Section 2 describes the general beam geometry and defines the material properties used in 
the analysis work. The analytical and nonlinear FEA solutions for the static deflection of a 
propped cantilever beam problem for axial tension forces 𝑇 ≥ 0 are presented in Section 3. 
The results of a dynamic nonlinear FEA modal response analysis for 𝑇 ≥ 0 are presented in 
Section 4, together with an analytical solution for the 𝑇 = 0 case. Finally, the conclusions 
are provided in Section 5. 

2. Beam geometry and material properties 
The beam that is being analysed here has a length of 𝐿 = 4500 mm. It consists of a uniform 
circular pipe with a wall thickness 𝑡 = 3.0 mm, whose outside diameter is ∅𝑜 = 38.1 mm 
and the inside diameter is ∅𝑖 = 32.1 mm. The cross-sectional area of the pipe is then 
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calculated to be 𝐴 = 𝜋�∅𝑜2 − ∅𝑖2� 4⁄  = 330.81 mm2, and the total volume of the beam is Υ = 
𝐿𝐿 = 1.4886×106 mm3. The second moment of area of the beam about the horizontal axis 
passing through the centroid of the cross-section is 𝐼 = 𝜋�∅𝑜4 − ∅𝑖4� 64⁄  = 51317 mm4. 

The pipe is manufactured from a steel material, whose Young’s modulus is assumed to be 
𝐸 = 200×103 N/mm2. The density of the steel is assumed to be 𝜌 = 7.850×10–6 kg/mm3. 
Thus the total mass of the beam is 𝑚 = 𝜌Υ = 11.686 kg. The weight of the beam per unit 
length is calculated to be 𝑊 = 𝑚𝑚/𝐿= 2.5468×10–2 N/mm, where the acceleration due to 
gravity is taken to be 𝑔 = 9.807 m/s2. It is noted here that the mass contribution of the 
pressure measurement tubing that will be installed inside the pipe has not been included. 

 

3. Static analysis 
Referring to Figure 2, the beam that represents the static pressure pipe has an encastre 
support (also commonly referred to as a fixed or clamped support) at the left-hand end, 
and it can neither translate nor rotate. At the propped end, the beam is free to rotate (roller 
support) as well as translate in the 𝑥-direction, but it is restrained from motion in the 𝑦-
direction. 

In determining the static deflection, it will be assumed that classical Euler-Bernoulli beam 
theory applies [1]. Here this means that it is assumed that: (i) the beam cross-section does 
not deform in its plane or warp out of its plane, and that this cross-sectional plane remains 
normal to the beam axis; and (ii) the deformation of the beam is dominated by bending. 
These assumptions are applicable to slender beams, a category to which the present beam 
belongs, as its cross-sectional diameter is much smaller than its length (∅𝑜/𝐿 = 0.0085 ≅ 0). 

3.1 Analytical solution for tension force T = 0 case (textbook) 

Amongst many other example problems, Gere and Timoshenko [2] have analysed the 
statically-indeterminate propped cantilever beam shown in Figure 2 for the case of zero 
tension force, 𝑇 = 0, and a uniform transverse loading of intensity 𝑞(𝑥) = 𝑊. They have 
described the solution in their Example 10-1 found in [2]. There they have derived closed-
form equations for the shear force distribution 𝑉(𝑥), the bending moment distribution 
𝑀(𝑥), the deflection shape 𝑣(𝑥), the slope along the beam 𝑑𝑑/𝑑𝑑, the curvature along the 
beam 𝑑2𝑣/𝑑𝑥2, the maximum deflection 𝛿𝑚𝑚𝑚 of the beam, the 𝑥-location of the maximum 
deflection 𝑥𝛿𝛿𝛿𝛿, the angle of rotation at the propped end of the beam 𝜃𝑝, the vertical 
reaction force at the propped end 𝑅𝑝, the vertical reaction force at the encastre end 𝑅𝑒, and 
the reaction moment at the encastre end 𝑀𝑒. The relevant formulae are provided in 
Equations (1)–(10) below. 

 𝑉(𝑥) = 1
8

(5𝐿 − 8𝑥)𝑊 (1) 

 𝑀(𝑥) = 1
8

(−𝐿2 + 5𝐿𝐿 − 4𝐿𝑥2) 𝑊 (2) 

 𝑣(𝑥) = − 1
48𝐸𝐸

(3𝐿2𝑥2 − 5𝐿𝑥3 + 2𝑥4) 𝑊 (3) 
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 𝑑𝑑
𝑑𝑑

= − 1
48𝐸𝐸

(6𝐿2𝑥 − 15𝐿𝑥2 + 8𝑥3) 𝑊 (4) 

 𝑑2𝑣
𝑑𝑥2

= − 1
48𝐸𝐸

(6𝐿2 − 30𝐿𝐿 + 24𝑥2) 𝑊 (5) 

 𝛿𝑚𝑚𝑚 = −(𝑣)𝑥=𝑥𝛿𝛿𝛿𝛿 = �39+55√33 �
65536 𝐸𝐸

 𝑊𝐿4   at   𝑥𝛿𝛿𝛿𝛿 = 15−√33
16

𝐿 (6) 

 𝜃𝑝 = �𝑑𝑑
𝑑𝑑
�
𝑥=𝐿

= atan � 1
48𝐸𝐸

𝑊𝐿3� (7) 

 𝑅𝑝 =  3
8
𝑊𝑊 (8) 

 𝑅𝑒 =  5
8
𝑊𝑊 (9) 

 𝑀𝑒 =  1
8
𝑊𝐿2 (10) 

3.2 Analytical solution for tension force T > 0 case (this study) 

Consider an infinitesimally small segment of the beam of length 𝑑𝑑, as shown in Figure 3. 
The tension force, 𝑇, is assumed to be applied at the centroid of the cross-section and it acts 
in such a manner as to reduce the peak deflection of the beam. The deflection 𝑣 is the 
displacement in the 𝑦-direction of any point on the axis of the beam. Here upwards forces 
and counterclockwise moments are taken as positive. 

Equilibrium of forces in the vertical direction gives: 

 ∑𝐹𝑣𝑣𝑣𝑣 = 0             𝑉 − 𝑞𝑞𝑞 − (𝑉 + 𝑑𝑑) = 0 

After simplification, this results in the following differential equation: 

 𝑑𝑑
𝑑𝑑

= −𝑞 (11) 

Consider now the equilibrium of moments for the beam element about an axis at the left-
hand side of the beam segment, where the axis is perpendicular to the plane of the figure. 
We obtain: 

 ∑𝑀 = 0             − 𝑀 − 𝑞 𝑑𝑑 �𝑑𝑑
2
� − (𝑉 + 𝑑𝑑)𝑑𝑑 + (𝑀 + 𝑑𝑑) − 𝑇 𝑑𝑑 = 0 

Discarding second-order terms that involve products of differentials (𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑) 
because they are negligible in size compared to the other terms, after simplification this 
results in the following differential equation: 

 𝑑𝑑
𝑑𝑑

= 𝑉 + 𝑇 𝑑𝑑
𝑑𝑑

 (12) 

Assuming that the strains are small, and in keeping with the inherent assumptions of 
classical Euler-Bernoulli beam theory (i.e. plane sections remain plane and normal to the 
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deflected neutral axis) [1], the bending moment 𝑀 is proportional to the curvature 𝜅 of the 
beam: 

 𝑀 =  𝐸𝐸𝐸,     𝜅 =  
𝑑2𝑣
𝑑𝑥2

�1+�𝑑𝑑𝑑𝑑�
2
�
3/2  (13) 

For a long and slender beam, the slope anywhere along the beam will be small, so that 

�𝑑𝑑
𝑑𝑑
�
2
≪ 1, which leads to the following equation for the bending moment: 

 𝑀 =  𝐸𝐸 𝑑
2𝑣

𝑑𝑥2
 (14) 

By taking a derivative operation of the left-hand and right-hand sides of Equation (12), 
and considering Equations (11) and (14), the differential form of the beam equilibrium 
equation can be written as: 

 𝑑2

𝑑𝑥2
�𝐸𝐸 𝑑

2𝑣
𝑑𝑥2

� − 𝑇 𝑑2𝑣
𝑑𝑥2

= −𝑞(𝑥) (15) 

For the present beam problem, considering that 𝐸𝐸 and 𝑞(𝑥) = 𝑊 remain constant for 
0 ≤ 𝑥 ≤ 𝐿, Equation (15) can be rewritten as: 

 𝐸𝐸 𝑑
4𝑣

𝑑𝑥4
− 𝑇 𝑑2𝑣

𝑑𝑥2
= −𝑊 (16) 

Considering that 𝑇 > 0, and letting 𝑘2 = 𝑇
𝐸𝐸

, Equation (16) can be further rewritten as: 

 𝑑4𝑣
𝑑𝑥4

− 𝑘2 𝑑
2𝑣

𝑑𝑥2
= −𝑊

𝐸𝐸
 (17) 

The general solution to the differential equation in Equation (17) is: 

 𝑣(𝑥) = 𝑎𝑒𝑘𝑘 + 𝑏𝑒−𝑘𝑘 + 𝑐𝑐 + 𝑑 + 𝑊
2𝑇
𝑥2 (18) 

The first and second derivatives of 𝑣(𝑥) are: 

 𝑑𝑑
𝑑𝑑

= 𝑎𝑎𝑒𝑘𝑘 − 𝑏𝑏𝑒−𝑘𝑘 + 𝑐 + 𝑊
𝑇
𝑥 (19) 

 𝑑2𝑣
𝑑𝑥2

= 𝑎𝑎2𝑒𝑘𝑘 + 𝑏𝑏2𝑒−𝑘𝑘 + 𝑊
𝑇

 (20) 

Accordingly, the distribution of the shear force 𝑉(𝑥) is solved based on Equation (12) as 
follows: 

 𝑉(𝑥) = −𝑊𝑊 − 𝑐𝑐 (21) 

The boundary conditions corresponding to the deflections, slopes and curvatures of the 
beam can be deduced from Figure 2, and they are as follows: 
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 At 𝑥 = 0, 𝑣 = 0 and 𝑑𝑑
𝑑𝑑

= 0 

 At 𝑥 = 𝐿, 𝑣 = 0 and 𝑑
2𝑣

𝑑𝑥2
= 0 

Using the above four boundary conditions, the four coefficients 𝑎, 𝑏, 𝑐, and 𝑑 in the 
expession for the beam deflection can be solved analytically using Equation (22): 

 

⎣
⎢
⎢
⎢
⎡

1 1 0 1

𝑘 −𝑘 1 0

𝑒𝐿𝐿 𝑒−𝐿𝐿 𝐿 1

𝑘2𝑒𝐿𝐿 𝑘2𝑒−𝐿𝐿 0 0⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑎

𝑏

𝑐

𝑑⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

0

0

− 𝑊
2𝑇
𝐿2

−𝑊
𝑇 ⎦
⎥
⎥
⎥
⎥
⎤

 (22) 

The analytical solution to the above system of simultaneous equations was obtained using 
SymPy, which is a Python-based library for symbolic mathematics. The SymPy commands 
that were used to obtain the solution are described in Appendix A, and the solution that 
was obtained is presented below: 

 

⎣
⎢
⎢
⎢
⎡
𝑎

𝑏

𝑐

𝑑⎦
⎥
⎥
⎥
⎤

= −𝑊
𝑇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ − 𝐿2𝑘2−2𝐿𝐿𝑒𝐿𝐿+2𝑒𝐿𝐿−2

2𝑘2(𝐿𝐿𝑒2𝐿𝐿+𝐿𝐿−𝑒2𝐿𝐿+1)
�𝐿2𝑘2𝑒𝐿𝐿+2𝐿𝐿−2𝑒𝐿𝐿+2�𝑒𝐿𝐿

2𝑘2(𝐿𝐿𝑒2𝐿𝐿+𝐿𝐿−𝑒2𝐿𝐿+1)
𝐿2𝑘2𝑒2𝐿𝐿+𝐿2𝑘2−2𝑒2𝐿𝐿+4𝑒𝐿𝐿−2

2𝑘(𝐿𝐿𝑒2𝐿𝐿+𝐿𝐿−𝑒2𝐿𝐿+1)
−𝐿2𝑘2�𝑒2𝐿𝐿−1�−4𝐿𝐿𝑒𝐿𝐿+2𝑒2𝐿𝐿−2

2𝑘2(𝐿𝐿𝑒2𝐿𝐿+𝐿𝐿−𝑒2𝐿𝐿+1) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (23) 

The supporting force, 𝑅𝑝, at the propped end of the beam can be obtained by substituting 
𝑥 = 𝐿 into Equation (21), noting that the “+” direction of 𝑅𝑝 is upwards, 𝑅𝑝 =  −𝑉 |𝑥=𝐿. 

In order to determine the maximum deflection of the beam, 𝛿𝑚𝑚𝑚, the slope 𝑑𝑑 𝑑𝑑⁄  in 
Equation (19) is set equal to zero: 

 𝑎𝑎𝑒𝑘𝑘 − 𝑏𝑏𝑒−𝑘𝑘 + 𝑐 + 𝑊
𝑇
𝑥 = 0 (24) 

and we then solve for the distance 𝑥 = 𝑥𝛿𝛿𝛿𝛿 to the point of maximum deflection. 

Equation (24) is highly nonlinear, so a simple closed-form analytical solution probably 
does not exist. However, it is possible to obtain a solution using numerical techniques. One 
such numerical method is the bisection method [3], which is also relatively easy to 
program. When using the bisection method to obtain a solution to Equation (24), 
convergence was rapid, with a solution that is accurate to 5 significant figures typically 
being obtained in a few tens of iterations. 

Once the value of 𝑥𝛿𝛿𝛿𝛿 has been calculated, the maximum deflection is determined as: 

 𝛿𝑚𝑚𝑚 = −𝑣(𝑥𝛿𝛿𝛿𝛿) (25) 
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The negative sign in the above equation takes into account that the deflection is 
downwards. 

The tip deflection of an encastre cantilever beam under uniform transverse load 𝑊 whose 
tip is free of restraint is given using the following formula [2]: 

 𝛿𝑡𝑡𝑡 = 𝑊𝐿4

8𝐸𝐸
 (26) 

3.3 Nonlinear FEA solution for tension force T ≥ 0 case 

The Abaqus 6.14-2 finite element analysis code was used to solve the nonlinear beam 
problem depicted in Figure 2 for a range of values of the tension force, 𝑇. One end of the 
beam was modelled as being encastre, while the opposite end where the cable tension 
force is being applied was restrained using a roller-type constraint, which permitted axial 
movement but no vertical movement. The encastre end of the beam therefore has both 
horizontal and vertical reaction force components, as well as sustaining a bending 
moment. The roller-type constraint at the opposite end of the beam produces a vertical 
reaction force. 

The beam of length 𝐿 = 4500 mm was subdivided into 4500 elements of equal length, 
although many fewer elements could easily have been used to obtain an accurate enough 
solution. It was decided to use a 1-mm element length in order to avoid the task of having 
to interpolate the deflected shape in order to accurately determine the peak deflection and 
its location along the span of the beam. 

The Abaqus beam element type B23 was used, which corresponds to a 2-noded beam 
element that uses cubic interpolation. The cross-sectional dimensions of the beam were 
input using the pipe profile option that automatically handles circular cross-sections. The 
formulation chosen to be used was the thick-walled option. 

Two load steps were used during the analysis. The first consisted of 10 load increments 
that were used to ramp up the distributed load from a starting value of zero to its final 
value of 𝑊. Once the full amplitude of the distributed loading was reached, the second 
ananlysis step was used to apply the tension force using 50 load increments, covering the 
load range 0 N ≤ 𝑇 ≤ 25000 N in steps of 500 N. 

The total CPU time that was required in order to obtain a solution was about 70 seconds or 
so on a Hewlett-Packard Z800 Workstation that was fitted with Intel Xeon X5690 3.47 GHz 
processors. A converged solution at each load increment was obtained during the first 
iteration for all but two of the load increments. 

3.4 Computed analytical and nonlinear FEA results 

The collection of analytical equations for the Euler-Bernoulli beam solutions obtained for 
the cases 𝑇 = 0 and 𝑇 > 0 were programmed as VBA functions in a Microsoft Excel 
spreadsheet. A listing of the source code for the various functions is provided in Appendix 
B. 
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The analytical solutions were computed for a range of values of the tension force 𝑇 = 0 N, 
2500 N, 5000 N, 10000 N, 15000 N, 20000 N and 25000 N. The analytical results are 
compared to the values obtained from the Abaqus nonlinear finite element beam analysis 
in Table 1. The results presented here include 𝛿𝑚𝑚𝑚, 𝑥𝛿𝛿𝛿𝛿, 𝑅𝑝, 𝑅𝑒, 𝑀𝑒, and 𝜃𝑝. It is clear 
that there is excellent agreement between the two sets of results, with the maximum 
difference between the solutions being only a very small 0.052%. 

For an axial tension force of 𝑇 = 0 N, the maximum deflection is 𝛿𝑚𝑚𝑚= 5.51 mm, while for 
𝑇 = 25000 N it has reduced to 𝛿𝑚𝑚𝑚 = 1.64 mm. This is a significant reduction of about 70%. 
In addition, it is to be noted that the rotation angle of the beam at the propped end is very 
small (𝜃𝑝 = 0.27° for 𝑇 = 0 N), which is in keeping with the previously mentioned 
assumptions of Euler-Bernoulli beam theory for long and slender beams. For an equivalent 
encastre cantilever beam whose tip is free of restraint, for the case without any axial 
tension force the tip deflection is calculated using Equation (26) to be 𝛿𝑡𝑡𝑡 = 127.2 mm. As 
expected, this is much greater than the maximum deflection experienced by the propped 
cantilever beam. 

Figure 4 shows the computed deflection shapes 𝑣(𝑥) of the propped cantilever beam for 
various values of applied tension force 𝑇 that were obtained from the analytical and 
nonlinear FEA solutions. The agreement between the two sets of results is excellent. 

The relationship between the maximum deflection 𝛿𝑚𝑚𝑚 and the applied tension force 𝑇 is 
shown in Figure 5. It is seen that the maximum deflection decreases nonlinearly with 
increasing tension force, but the rate of decrease tapers off. The agreement between the 
analytical and the nonlinear FEA results is once again excellent. 

The relationship between the supporting force 𝑅𝑝 at the propped end of the cantilever 
beam and the applied tension force 𝑇 is shown in Figure 6. It is seen that the supporting 
force increases slowly with increasing tension force. The agreement between the analytical 
and the nonlinear FEA results is excellent. 

The relationship between the 𝑥-position 𝑥𝛿𝛿𝛿𝛿 of the maximum beam deflection 𝛿𝑚𝑚𝑚 and 
the applied tension force 𝑇 is shown in Figure 7. It is seen that the location of the point of 
peak deflection moves slowly towards the encastre end of the beam with increasing 
tension force. The agreement between the analytical and the nonlinear FEA results is 
excellent. 

Figure 8 shows the variation in the values of the reaction force 𝑅𝑒 and reaction moment 𝑀𝑒 
at the encastre end of the beam as a function of the applied tension force 𝑇. The supporting 
force 𝑅𝑝 is also shown for completeness and ease of comparison. Once again, the 
agreement between the analytical and the nonlinear FEA results is excellent. 

Figure 9 shows the computed shear force diagrams 𝑉(𝑥) for various values of applied 
tension force 𝑇. It is evident that the levels of tension force that are considered here have a 
relatively small effect on the shear force distribution along the length of the beam. For the 
case 𝑇 = 0, the shear force diagram presented here corresponds to the one published by 
Gere and Timoshenko [2] for their propped cantilever example in Figure 10-7. For the case 
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𝑇 = 0, the zero crossing is located at 𝑥 = 0.625𝐿, and it progressively moves towards the 
encastre end of the beam as the tension force is increased. 

Figure 10 shows the computed bending moment diagrams 𝑀(𝑥) for various values of the 
applied tension force 𝑇. It is evident that the levels of tension force that are considered 
here have a significant effect on the bending moment distribution along the length of the 
beam. For the case 𝑇 = 0, the bending moment diagram presented here corresponds to the 
one published by Gere and Timoshenko [2] in their propped cantilever example in Figure 
10-7. For the case 𝑇 = 0, the zero crossing in the bending moment occurs at 𝑥 = 0.250𝐿, 
while the point of inflection is at 𝑥 = 0.625𝐿. As the tension force increases, both the zero 
crossing and the point of inflection in the 𝑀(𝑥) curve move towards the encastre end of the 
beam. 

4. Dynamic analysis 
In the preceding section, the static deflection responses of the static pressure pipe were 
computed. For the purpose of that analysis, the pipe was idealised as a slender propped 
cantilever beam, fixed at one end and roller-supported at the other, with a horizontal 
tension force applied at the roller-supported end, as depicted in Figure 2. This 
configuration was considered to be a sufficiently accurate idealisation of the actual 
structural configuration shown in Figure 1, whereby the tension loads that exist in the 
multiple supporting cables have been resolved into a single horizontally-applied net 
tension force 𝑇. 

It is considered here that the slender propped cantilever beam idealisation described in the 
previous paragraph is equally applicable to a dynamic analysis of the modal response of 
the static pressure pipe. It is recognised that the system of supporting tension cables has an 
attendant mass and compliance. However, the magnitude of any displacement of the 
propped end of the beam is expected to be altogether negligible in comparison with the 
amplitude of transverse vibration when the beam is vibrating at its first natural frequency. 
As a consequence, it may be expected that any dynamic coupling between the response of 
the beam and the cable support system will be small and will therefore have a second-
order effect on the dynamic response of the beam, especially at the lowest natural 
frequency, which is the one of greatest interest. 

4.1 Analytical modal solution for tension force T = 0 case (textbook) 

It is possible for a beam to vibrate laterally at an infinite number of natural frequencies. At 
each natural frequency of vibration, the shape of the beam will take on a particular 
characteristic shape. Each of these shapes is called a normal mode of vibration, and is the 
deflected shape of the beam when it is vibrating harmonically. 

Young and Felgar [4] have computed equations and tables of characteristic functions 
representing the undamped normal modes of transverse vibration of uniform beams for a 
range of different specified end conditions. One of the cases that they studied included 
that of a propped cantilever beam (which they termed a clamped-supported beam). 
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The undamped natural frequency 𝑓𝑛 in hertz of the 𝑛th mode of vibration of a propped 
cantilever beam in the absence of any axial tension force is given by the following 
equation: 

 𝑓𝑛 = 1
2𝜋
𝛽𝑛2�

𝐸𝐸
(𝑚 𝐿⁄ )

 (27) 

where 𝑚 is the mass of the beam. The characteristic shape of the 𝑛th mode of vibration of a 
propped cantilever beam in the absence of any axial tension force is given by the following 
equation: 

 𝜓𝑛 = cosh𝛽𝑛𝑥 − cos𝛽𝑛𝑥−𝛼𝑛(sinh𝛽𝑛𝑥 − sin𝛽𝑛𝑥) (28) 

The values of 𝛽𝑛𝐿 and 𝛼𝑛 for the first 8 modes of vibration for a propped cantilever beam 
are presented in Table 2 [4, 5, 6], and the values of 𝛽𝑛𝐿 correspond to solutions of a 
transcendental equation of the form tan(𝜆) = tanh(𝜆) [6]. Young and Felgar [4] have 
provided the numerical values of 𝛽𝑛𝐿 and 𝛼𝑛 for the first 5 modes, and then offered the 
following equations for 𝑛 > 5: 

 𝛽𝑛𝐿 ≅
𝜋
4

(4𝑛 + 1) (29) 

 𝛼𝑛 ≅ 1 (30) 

Inspection of the values presented in Table 2 shows that Equations (29) and (30) are also 
quite accurate for 1 ≤ 𝑛 ≤ 5. 

Blevins [6] has noted that, since the longitudinal displacement of straight beams during 
transverse vibration is of second order, the presence or absence of longitudinal 
displacement constraints does not affect the natural frequencies presented in Table 2. 

4.2 Computed nonlinear FEA results for tension force T ≥ 0 case (this 
study) 

For the case of zero axial load (𝑇 = 0), Table 3 presents a comparison of the undamped 
natural frequencies 𝑓𝑛 (in hertz) of the first eight transverse vibration modes of the static 
pressure pipe, modelled as a propped cantilever beam, computed analytically and using 
finite element beam analysis. It is evident that there is excellent agreement between the 
two sets of results. The analytically-computed lowest natural frequency is 𝑓1 = 7.618 Hz, 
which is within 0.33% of the frequency that was computed using nonlinear FEA. 

For a cantilever beam with a free end, the value of 𝛽𝑛𝐿 for the first natural mode of 
vibration is 𝛽1𝐿 = 1.8751 [4]. For the present static pressure pipe, if the support at the 
propped end is removed, the first undamped natural frequency is calculated to be 𝑓1 = 
1.737 Hz. This is only 22.8% of the first natural frequency for the pipe when its end is 
propped, so it is evident that the addition of the propping support greatly increases the 
first natural frequency of the beam. 
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The natural frequencies 𝑓𝑛 of the transverse natural vibration modes of the static pressure 
pipe were also computed using nonlinear finite element beam analysis for various values 
of axial tension force 𝑇. Figure 11 shows the variation of the frequency of the first natural 
vibration mode 𝑓1 as a function of the applied tension force 𝑇, where 𝑓1 = 7.593 Hz for 𝑇 = 
0 N and 𝑓1 = 13.878 Hz for 𝑇 = 25000 N. 

A comparison of the natural frequencies for the first eight natural modes is shown in Table 
4. Each natural frequency that was computed for a non-zero value of 𝑇, denoted here as 
𝑓𝑛|𝑇=⋯, was normalised by the corresponding natural frequency of that mode obtained for 
zero axial tension force, 𝑓𝑛|𝑇=0. As expected, the results show that the natural frequencies 
of the static pressure pipe increase with increasing axial tension force. For a given axial 
tension force, it is noted that the percentage increase in frequency of each of the natural 
frequencies progressively reduces with the increasing order of the natural mode. For 
example, the first natural frequency is increased by 82.7% when 𝑇 = 25000 N, while the 
frequency of the second natural mode has only increased by 36.2%. 

The nondimensional characteristic mode shapes of the first three natural modes of the 
propped cantilever beam for axial tension loadings of 𝑇 = 0 N and 𝑇 = 25000 N are shown 
in Figure 12. The mode shape for the first natural mode is shown in the top picture, that 
for the second mode is shown in the middle picture, and that for the third mode is shown 
in the bottom picture. The first natural mode has one peak between the supports (which 
are located at 𝑥 = 0 mm and 𝑥 = 4500 mm), the second natural mode has two peaks, and so 
on. It is apparent that the effect of the axial tension force on the shape of the first mode is 
noticeable but relatively small, and the effect of axial tension on the mode shape becomes 
progressively less the higher the order of the mode. 

For comparison purposes, the top picture in Figure 12 also includes the normalised static 
deflection shape of the propped cantilever beam under the action of the uniform 
distributed loading 𝑊 for the 𝑇 = 0 N case (the green dotted line). It is apparent that the 
static deflection shape, which can be computed using Equation (3), is in fact very similar to 
the characteristic shape of the transverse flexural vibration mode corresponding to the first 
natural frequency of vibration. 

4.3 Empirical formula for calculation of beam natural frequency for 
tension force T ≥ 0 case (this study) 

When an axial tensile force 𝑇 acts on a beam, the natural frequencies of the beam will be 
higher than those for the same beam in the absence of such a load. Harris and Piersol [5] 
have noted that, for a simple cantilever beam with a constant axial force 𝑇 applied at the 
free end, the fundamental natural frequency has been derived by Timoshenko [7] to be: 

 𝑓1|𝑇 = 𝑓1|𝑇=0 �1 + 5
14

(𝑇𝐿2/𝐸𝐸) (31) 

where 𝑓1|𝑇=0 is the frequency of the fundamental natural mode obtained for the case of 
zero tension force (𝑇 = 0). 
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Taking the above approach, it has been found here that the following empirical equation 
can be used to compute the natural frequency 𝑓𝑛|𝑇 of the 𝑛th mode of vibration of the 
propped cantilever beam as a function of the tension force 𝑇: 

 𝑓𝑛|𝑇 = 𝑓𝑛|𝑇=0 �1 + 𝜉𝑛𝑇𝐿2/𝐸𝐸 (32) 

where 𝑓𝑛|𝑇=0 is the frequency of the 𝑛th natural mode obtained for the case of zero tension 
force (𝑇 = 0), which can be obtained from an FEA or by using Equation (27). 

The values of 𝜉𝑛𝑛2 for the first eight natural modes are presented in Table 5. Here the 
values of 𝜉𝑛 have been multiplied by 𝑛2 as the resulting values of 𝜉𝑛𝑛2 are of a similar 
order of magnitude, and the asymptotic behaviour of 𝜉𝑛𝑛2 for higher values of 𝑛 becomes 
apparent.  

The values of 𝜉𝑛𝑛2 shown in Table 5 were determined by using the the Equation (33) and 
substituting the appropriate natural frequency values obtained from the nonlinear FEA for 
levels of tension force of 𝑇 = 0 N and 𝑇 = 25000 N: 

 𝑛2𝜉𝑛 = 𝑛2 ��𝑓𝑛|𝑇=25000
𝑓𝑛|𝑇=0

�
2
− 1� 𝐸𝐸

25000𝐿2
 (33) 

For the first natural mode, the accuracy of Equation (32) is better than 0.48% with respect 
to the results from the nonlinear FEA. The accuracy is seen to improve further as the order 
of the mode under consideration is increased. As they are based on the results from the 
nonlinear FEA, the values of 𝜉𝑛𝑛2 are known to be valid for values of tension force in the 
range 0 N ≤ 𝑇 ≤ 25000 N. 

The results produced by Equation (32) for the first three natural modes have been plotted 
in Figure 13 (red dotted lines), where it can be seen that there is excellent agreement with 
the results from the nonlinear FEA (solid black lines). 

4.4 Calculation of cable natural frequency for T ≥ 0 case (textbook) 

It is also instructive to determine estimates of the natural frequencies of the four 
symmetrically-arranged steel tension cable restraints. These cables are approximately 2.5 
mm in diameter and they each have a length of 𝐿𝑐 = 2.3 metres. The estimated mass per 
unit length of the cables is approximately 𝜇𝑐 = 0.0384 kg/m. 

For the geometric layout depicted in the side view shown in Figure 1, the tension 𝑇𝑐 in 
each of the four cables is given by the following equation: 

 𝑇𝑐 = √3
4
𝑇 (34) 

For a simply-supported flexible cable of length 𝐿𝑐 being stretched under the action of a 
tension force 𝑇𝑐, Blevins [6] gives the following equation for the 𝑛th natural frequency of 
the cable: 
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 𝑓𝑐𝑐 = 𝑛
2𝐿𝑐

�2𝑇𝑐 
𝜇𝑐

      𝑛 = 1, 2, 3, …  (35) 

where 𝜇𝑐 is the mass per unit length of the cable. 

Figure 14 shows the variation in the natural frequency of the cables for the first three 
natural modes. For a moderate value of axial tension load of 𝑇 = 5000 N, the first natural 
frequency of the cable is 𝑓𝑐1 = 73.0 Hz. This frequency is 7.94 times greater than the first 
natural frequency of the propped cantilever beam. When the axial tension force is 
increased to 𝑇 = 25000 N, the first natural frequency of the cable increases to 𝑓𝑐1 = 163.2 
Hz. This frequency is 11.76 times greater than the first natural frequency of the propped 
cantilever beam. It is evident that, for potential working values of cable tension in the 
range 5000 N ≤ 𝑇 ≤ 25000 N, the first natural frequency of the cable will be well separated 
from the first natural frequency of the propped cantilever beam. 

5. Conclusions 
The general analytical solution for the deflection and supporting force of a slender 
propped cantilever beam has been derived using Euler-Bernoulli beam theory for a 
combined system of lateral and tensile axial loads. The validity of the analytical solution 
(static) was independently confirmed by cross-checking the results against those obtained 
from a nonlinear finite element analysis. The analytical solution (static) has been 
implemented in a Microsoft Excel spreadsheet, and it can easily be utilised for other beam 
geometries (e.g. a beam of a different length). 

The computed results for the static pressure pipe from the static analysis show that: 

1. As 𝑇 increases from 0 N to 25000 N, the maxium deflection of the beam reduces 
from 5.52 mm to 1.64 mm. 

2. The effect of 𝑇 on reducing the maximum deflection is nonlinear, and the law of 
“diminishing returns” begins to apply at higher levels of 𝑇. 

3. As 𝑇 increases from 0 N to 25000 N, the reaction force 𝑅𝑝 at the propped end of the 
beam increases from 43.0 N to 50.5 N. This indicates that 𝑅𝑝 has a weak 
dependence on the tension force. 

The results from the dynamic analysis of the static pressure pipe show that: 

1. The frequency of the first natural mode of the beam is 7.6 Hz for the case of zero 
axial tension force. This increases to 13.9 Hz when the axial tension force is 𝑇 = 
25000 N, an increase of almost 83%. The frequencies of the higher-order natural 
modes of the beam are progressively less affected by the application of the axial 
tension force. 

2. An empirical formula has been developed for the calculation of the natural 
frequencies 𝑓𝑛|𝑇 of the beam for 𝑇 ≥ 0. 
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3. The frequency of the first natural mode of the cable is 𝑓𝑐1 = 73.0 Hz for 𝑇 = 5000 N, 
and increases to 𝑓𝑐1 = 163.2 Hz when 𝑇 = 25000 N. 

4. The frequency of the first natural mode of the cable is 7.94 times greater than the 
first natural frequency of the propped cantilever beam when 𝑇 = 5000 N. 
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Table 1: Maximum beam deflection and its location, reaction forces and moments, and angle of 
rotation of the propped end of the beam, as obtained from the analytical and finite element solutions 
for various tension loads 𝑇. 

𝑇 
(N) Result Type 

𝛿𝑚𝑚𝑚 
(mm) 

𝑥𝛿𝛿𝛿𝛿 
(mm) 

𝑅𝑝 
(N) 

𝑅𝑒 
(N) 

𝑀𝑒 
(N mm) 

𝜃𝑝 
(degrees) 

0 
Analytical 5.51110 2603.1 42.9773 71.6288 64466 0.26991 

FEA 5.51108 2603.0 42.9778 71.6287 64466 0.26991 

2500 
Analytical 4.44231 2586.1 44.8975 69.7085 55825 0.21653 

FEA 4.44166 2586.0 44.9031 69.7073 55821 0.21650 

5000 
Analytical 3.72340 2571.1 46.2285 68.3775 49835 0.18081 

FEA 3.72354 2571.0 46.2281 68.3778 49841 0.18082 

10000 
Analytical 2.81683 2545.9 47.9794 66.6266 41956 0.13610 

FEA 2.81701 2546.0 47.9790 66.6270 41964 0.13611 

15000 
Analytical 2.26805 2525.4 49.1014 65.5046 36907 0.10926 

FEA 2.26834 2525.0 49.1009 65.5053 36919 0.10927 

20000 
Analytical 1.89982 2508.4 49.8951 64.7109 33335 0.09137 

FEA 1.90018 2508.5 49.8945 64.7117 33349 0.09138 

25000 
Analytical 1.63544 2493.9 50.4937 64.1123 30642 0.07859 

FEA 1.63586 2494.0 50.4926 64.1133 30658 0.07861 

Table 2: Values of 𝛽𝑛𝐿 and 𝛼𝑛 for the first eight 
natural modes of a propped cantilever beam [4]. 

𝑛 𝛽𝑛𝐿 𝛼𝑛 

1 3.9266 1.00078 

2 7.0686 1.00000 

3 10.2102 1.00000 

4 13.3518 1.00000 

5 16.4934 1.00000 

6 19.6350 1.00000 

7 22.7765 1.00000 

8 25.9181 1.00000 
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Table 3: Comparison of the natural frequencies of the transverse vibration modes 
of the static pressure pipe computed analytically and using finite element beam 
analysis, for the case of zero axial force. 

𝑛 
𝑓𝑛 

Analytical 
 (Hz) 

𝑓𝑛 
FEA 
 (Hz) 

Difference 

1 7.618 7.593 –0.33% 
2 24.69 24.63 –0.24% 
3 51.51 51.45 –0.12% 
4 88.08 88.02 –0.07% 
5 134.4 134.4 –0.04% 
6 190.5 190.4 –0.03% 
7 256.3 256.3 0.00% 
8 331.9 331.9 0.00% 

Table 4: Comparison of the natural frequencies 𝑓𝑛 of the transverse natural vibration modes of the 
static pressure pipe computed using finite element beam analysis for various values of axial tension 
force 𝑇 (N). 

𝑛 
𝑓𝑛|𝑇=0 
(Hz) 

𝑓𝑛|𝑇=2500 
𝑓𝑛|𝑇=0

 
𝑓𝑛|𝑇=5000 
𝑓𝑛|𝑇=0

 
𝑓𝑛|𝑇=10000 
𝑓𝑛|𝑇=0

 
𝑓𝑛|𝑇=15000 
𝑓𝑛|𝑇=0

 
𝑓𝑛|𝑇=20000 
𝑓𝑛|𝑇=0

 
𝑓𝑛|𝑇=25000 
𝑓𝑛|𝑇=0

 

1 7.593 1.116 1.217 1.397 1.555 1.698 1.828 
2 24.63 1.043 1.083 1.159 1.230 1.297 1.361 
3 51.45 1.022 1.043 1.083 1.122 1.159 1.196 
4 88.02 1.013 1.026 1.050 1.075 1.098 1.121 
5 134.4 1.009 1.017 1.034 1.050 1.066 1.082 
6 190.4 1.006 1.012 1.024 1.036 1.048 1.059 
7 256.3 1.005 1.009 1.018 1.027 1.036 1.045 
8 331.9 1.004 1.007 1.014 1.021 1.028 1.035 
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Table 5: Values of 𝜉𝑛𝑛2 for the first eight natural 
modes of a propped cantilever beam with an axial 
tension force. 

𝑛 𝜉𝑛𝑛2 Maximum error of 
Equation (32) 

1 0.04746 0.48% 
2 0.06910 0.11% 
3 0.07834 0.05% 
4 0.08348 0.03% 
5 0.08680 0.02% 
6 0.08911 0.01% 
7 0.09084 0.01% 
8 0.09205 0.01% 
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Figure 1: Layout diagram of the static pressure pipe installed in the DST Group Transonic Wind 
Tunnel aerodynamic testing facility. 

 

Figure 2: A slender beam under combined uniform transverse load 𝑞(𝑥) and tensile axial force 𝑇. 
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Figure 3: A beam segment of infinitesimally small length 𝑑𝑑. 

 

Figure 4: Beam deflection shape 𝑣 for various values of applied tension force 𝑇. 

𝑀 + 𝑑𝑑 𝑉 + 𝑑𝑑 
V 𝑀 𝑇 

𝑞 

𝑇 
𝑑𝑑 

𝑑𝑑 
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Figure 5: Relationship between maximum deflection 𝛿𝑚𝑚𝑚 and applied tension force 𝑇. 

 

Figure 6: Relationship between supporting force 𝑅𝑝 and applied tension force 𝑇. 
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Figure 7: Variation in position of maximum deflection 𝑥𝛿𝛿𝛿𝛿 with applied tension force 𝑇. 

 

Figure 8: Variation of the reaction forces 𝑅𝑝 and 𝑅𝑒 and the reaction moment 𝑀𝑒 as a function of 
applied tension force 𝑇. 
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Figure 9: Shear force 𝑉 diagrams for various values of applied tension force 𝑇. 

 

Figure 10: Bending moment 𝑀 diagrams for various values of applied tension force 𝑇. 
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Figure 11: Variation of the frequency of the first natural vibration mode 𝑓1 as a function of applied 

tension force 𝑇. 
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Figure 12: Nondimensional mode shapes of the first three natural modes of the propped cantilever 
beam for axial tension loadings of 𝑇 = 0 N and 𝑇 = 25000 N. 
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Figure 13: Variation in natural frequency obtained from the nonlinear FEA results compared to the 
predictions obtained using Equation (32) for the first three modes of the propped cantilever beam. 

 
Figure 14: Variation in natural frequency of the first three natural modes of the cables as a function 

of the applied axial tension load in the beam. 

Nonlinear FEA 

Equation (32) 
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Appendix A:   
Listing of SymPy symbolic computations 

The SymPy package, which can be found at http://www.sympy.org, was used to perform 
the symbolic mathematical computations used to solve the system of simultaneous 
equations represented by Equation (22). The listing of the commands entered into SymPy 
(indicated by >>>) and the resulting output relating to the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 is 
presented below: 

>>> from __future__ import division 
>>> from sympy import * 
>>> 
>>> a,b,c,d = symbols('a b c d') 
>>> L,k,W,T = symbols('L k W T') 
>>> M = MatrixSymbol('M',4,4) 
>>> RHS = MatrixSymbol('RHS',4,1) 
>>> LHS = MatrixSymbol('LHS',4,1) 
>>> M = Matrix([[1,1,0,1],[k,-k,1,0],[exp(L*k),exp(-
L*k),L,1],[k**2*exp(L*k),k**2*exp(-L*k),0,0]]) 
>>> RHS = Matrix([[0],[0],[-W*L**2/(2*T)],[-W/T]]) 
>>> LHS = M**-1*RHS 
>>> LHS = simplify(LHS) 
>>> a = LHS[0] 
>>> b = LHS[1] 
>>> c = LHS[2] 
>>> d = LHS[3] 
>>> a 
W*(L**2*k**2 - 2*L*k*exp(L*k) + 2*exp(L*k) - 2)/(2*T*k**2*(L*k*exp(2*L*k) + L*k 
- exp(2*L*k) + 1)) 
>>> b 
-W*(L**2*k**2*exp(L*k) + 2*L*k - 2*exp(L*k) + 
2)*exp(L*k)/(2*T*k**2*(L*k*exp(2*L*k) + L*k - exp(2*L*k) + 1)) 
>>> c 
-W*(L**2*k**2*exp(2*L*k) + L**2*k**2 - 2*exp(2*L*k) + 4*exp(L*k) - 
2)/(2*T*k*(L*k*exp(2*L*k) + L*k - exp(2*L*k) + 1)) 
>>> d 
W*(L**2*k**2*(exp(2*L*k) - 1) + 4*L*k*exp(L*k) - 2*exp(2*L*k) + 
2)/(2*T*k**2*(L*k*exp(2*L*k) + L*k - exp(2*L*k) + 1)) 
>>> 

There is also a SymPy Live web page, which is located at http://live.sympy.org/, where a 
user can use an online version of SymPy. When the above SymPy commands were input, 
the same results as shown above were obtained, albeit with the expressions for the 
coefficients 𝑎, 𝑏, 𝑐, and 𝑑 presented in mathematically-typeset text. The output screen from 
SymPy Live is shown below: 
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Appendix B:  VBA functions for static solution of 
propped cantilever beam subjected to combined 

transverse and axial loading 

Listing of source code for VBA functions 

Option Explicit 
 
'=============================================================================== 
 
Function vx(T, W, E, I, L, x) As Double 
 
' Deflection shape of the statically-indeterminate propped cantilever beam. 
 
Dim k2, k, Lk, L2k2, Twok2, Twok, eLk, e2Lk As Double 
Dim LkFac, ekx, emkx, WonT As Double 
Dim a, b, c, d As Double 
 
If T = 0 Then 
  vx = -W / (48 * E * I) * (3 * L ^ 2 * x ^ 2 - 5 * L * x ^ 3 + 2 * x ^ 4) 
Else 
  WonT = W / T 
  k2 = T / (E * I) 
  k = Sqr(k2) 
  Lk = L * k 
  L2k2 = Lk * Lk 
  Twok2 = 2 * k2 
  Twok = 2 * k 
  eLk = Exp(Lk) 
  e2Lk = Exp(2 * Lk) 
  LkFac = Lk * e2Lk + Lk - e2Lk + 1 
  a = WonT * (L2k2 - 2 * Lk * eLk + 2 * eLk - 2) / (Twok2 * LkFac) 
  b = -WonT * (L2k2 * eLk + 2 * Lk - 2 * eLk + 2) * eLk / (Twok2 * LkFac) 
  c = -WonT * (L2k2 * e2Lk + L2k2 - 2 * e2Lk + 4 * eLk - 2) / (Twok * LkFac) 
  d = -WonT * (-L2k2 * (e2Lk - 1) - 4 * Lk * eLk + 2 * e2Lk - 2) / (Twok2 * 
LkFac) 
  ekx = Exp(k * x) 
  emkx = Exp(-k * x) 
  vx = a * ekx + b * emkx + c * x + d + WonT / 2 * x ^ 2 
End If 
 
End Function 
 
'=============================================================================== 
 
Function dvdx(T, W, E, I, L, x) As Double 
 
' First derivative of deflection shape with respect to x. 
 
Dim k2, k, Lk, L2k2, Twok2, Twok, eLk, e2Lk As Double 
Dim LkFac, ekx, emkx, WonT As Double 
Dim a, b, c, d As Double 
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If T = 0 Then 
  dvdx = -W / (48 * E * I) * (6 * L ^ 2 * x - 15 * L * x ^ 2 + 8 * x ^ 3) 
Else 
  WonT = W / T 
  k2 = T / (E * I) 
  k = Sqr(k2) 
  Lk = L * k 
  L2k2 = Lk * Lk 
  Twok2 = 2 * k2 
  Twok = 2 * k 
  eLk = Exp(Lk) 
  e2Lk = Exp(2 * Lk) 
  LkFac = Lk * e2Lk + Lk - e2Lk + 1 
  a = WonT * (L2k2 - 2 * Lk * eLk + 2 * eLk - 2) / (Twok2 * LkFac) 
  b = -WonT * (L2k2 * eLk + 2 * Lk - 2 * eLk + 2) * eLk / (Twok2 * LkFac) 
  c = -WonT * (L2k2 * e2Lk + L2k2 - 2 * e2Lk + 4 * eLk - 2) / (Twok * LkFac) 
  ekx = Exp(k * x) 
  emkx = Exp(-k * x) 
  dvdx = k * a * ekx - k * b * emkx + c + WonT * x 
End If 
 
End Function 
 
'=============================================================================== 
 
Function d2vdx2(T, W, E, I, L, x) As Double 
 
' Second derivative of deflection shape with respect to x. 
 
Dim k2, k, Lk, L2k2, Twok2, Twok, eLk, e2Lk As Double 
Dim LkFac, ekx, emkx, WonT As Double 
Dim a, b, c, d As Double 
 
If T = 0 Then 
  d2vdx2 = -W / (48 * E * I) * (6 * L ^ 2 - 30 * L * x + 24 * x ^ 2) 
Else 
  WonT = W / T 
  k2 = T / (E * I) 
  k = Sqr(k2) 
  Lk = L * k 
  L2k2 = Lk * Lk 
  Twok2 = 2 * k2 
  Twok = 2 * k 
  eLk = Exp(Lk) 
  e2Lk = Exp(2 * Lk) 
  LkFac = Lk * e2Lk + Lk - e2Lk + 1 
  ekx = Exp(k * x) 
  emkx = Exp(-k * x) 
  a = WonT * (L2k2 - 2 * Lk * eLk + 2 * eLk - 2) / (Twok2 * LkFac) 
  b = -WonT * (L2k2 * eLk + 2 * Lk - 2 * eLk + 2) * eLk / (Twok2 * LkFac) 
  d2vdx2 = k2 * a * ekx + k2 * b * emkx + WonT 
End If 
 
End Function 
 
'=============================================================================== 
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Function ThetaDeg(T, W, E, I, L, x) As Double 
 
' Slope in degrees along the deflected shape of the beam. 
 
Dim pi As Double 
 
pi = 4# * Atn(1#) 
 
ThetaDeg = dvdx(T, W, E, I, L, x) * 180 / pi 
 
End Function 
 
'=============================================================================== 
 
Function Nx(T, W, E, I, L, x) As Double 
 
' Shear force distribution along beam. 
 
Dim k2, k, Lk, L2k2, Twok2, Twok, eLk, e2Lk As Double 
Dim LkFac, ekx, emkx, WonT As Double 
Dim c As Double 
 
If T = 0 Then 
  Nx = (5 * L / 8 - x) * W 
Else 
  WonT = W / T 
  k2 = T / (E * I) 
  k = Sqr(k2) 
  Lk = L * k 
  L2k2 = Lk * Lk 
  Twok2 = 2 * k2 
  Twok = 2 * k 
  eLk = Exp(Lk) 
  e2Lk = Exp(2 * Lk) 
  LkFac = Lk * e2Lk + Lk - e2Lk + 1 
  c = -WonT * (L2k2 * e2Lk + L2k2 - 2 * e2Lk + 4 * eLk - 2) / (Twok * LkFac) 
  Nx = -W * x - c * T 
End If 
 
End Function 
 
'=============================================================================== 
 
Function Mx(T, W, E, I, L, x As Double) As Double 
 
' Moment distribution along beam. 
 
Mx = E * I * d2vdx2(T, W, E, I, L, x) 
 
End Function 
 
'=============================================================================== 
 
Function xdvdx0_bisect(T, W, E, I, L) As Double 
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' Determine the location of the peak deflection using the bisection method. 
 
Dim tol, xo, x1, x2, xm, dvdxx1, dvdxxm As Double 
Dim n As Integer 
 
n = 0 
 
x1 = 0.01 * L 
x2 = 0.99 * L 
 
tol = L * 0.00000001 
xo = x1 
 
Do 
  n = n + 1 
  xm = (x1 + x2) / 2 
  If Abs(xm - xo) < tol Then 
    Exit Do 
  End If 
  xo = xm 
  dvdxx1 = dvdx(T, W, E, I, L, x1) 
  dvdxxm = dvdx(T, W, E, I, L, xm) 
  If dvdxx1 * dvdxxm > 0 Then 
    x1 = xm 
  Else 
    x2 = xm 
  End If 
Loop 
 
xdvdx0_bisect = xm 
 
End Function 
 
'=============================================================================== 
 
Function vxmax(T, W, E, I, L) As Double 
 
' Maximum deflection. 
 
Dim xvxmax As Double 
 
If T = 0 Then 
  vxmax = (39 + 55 * Sqr(33)) / (65536 * E * I) * W * L ^ 4 
Else 
  xvxmax = xdvdx0_bisect(T, W, E, I, L) 
  vxmax = -vx(T, W, E, I, L, xvxmax) 
End If 
 
End Function 
 
'=============================================================================== 
 
Function xvxmax(T, W, E, I, L) As Double 
 
' Location of the maximum deflection. 
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If T = 0 Then 
  xvxmax = (15 - Sqr(33)) / 16 * L 
Else 
  xvxmax = xdvdx0_bisect(T, W, E, I, L) 
End If 
 
End Function 
 
'=============================================================================== 
 
Function ReactionRp(T, W, E, I, L) As Double 
 
' Supporting reaction force at the propped end of the beam. 
 
If T = 0 Then 
  ReactionRp = 3 / 8 * W * L 
Else 
  ReactionRp = -Nx(T, W, E, I, L, L) 
End If 
 
End Function 
 
'=============================================================================== 
 
Function ReactionRe(T, W, E, I, L) As Double 
 
' Reaction force at the encastre end of the beam. 
 
If T = 0 Then 
  ReactionRe = 5 / 8 * W * L 
Else 
  ReactionRe = W * L - ReactionRp(T, W, E, I, L) 
End If 
 
End Function 
 
'=============================================================================== 
 
Function ReactionMe(T, W, E, I, L) As Double 
 
' Reaction moment at the encastre end of the beam. 
 
If T = 0 Then 
  ReactionMe = 1 / 8 * W * L ^ 2 
Else 
  ReactionMe = -Mx(T, W, E, I, L, 0) 
End If 
 
End Function 
 
'=============================================================================== 
 
Function xdvdx0_subst(T, W, E, I, L) As Double 
 
' Determine the location of the maximum deflection using substitution method. 
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Dim k2, k, Lk, L2k2, Twok2, Twok, eLk, e2Lk As Double 
Dim LkFac, ekx, emkx, WonT As Double 
Dim a, b, c, d As Double 
Dim xi, x, p As Double 
Dim n As Integer 
 
xi = L / 2           ' Initial guess 
p = 0.00000001 * L   ' Precision 
n = 0 
 
WonT = W / T 
k2 = T / (E * I) 
k = Sqr(k2) 
Lk = L * k 
L2k2 = Lk * Lk 
Twok2 = 2 * k2 
Twok = 2 * k 
eLk = Exp(Lk) 
e2Lk = Exp(2 * Lk) 
LkFac = Lk * e2Lk + Lk - e2Lk + 1 
 
a = -WonT * (L2k2 - 2 * Lk * eLk + 2 * eLk - 2) / (Twok2 * LkFac) 
b = WonT * (L2k2 * eLk + 2 * Lk - 2 * eLk + 2) * eLk / (Twok2 * LkFac) 
c = WonT * (L2k2 * e2Lk + L2k2 - 2 * e2Lk + 4 * eLk - 2) / (Twok * LkFac) 
 
Do 
  n = n + 1 
  x = xi 
  ekx = Exp(k * x) 
  emkx = Exp(-k * x) 
  xi = (k * a * ekx - k * b * emkx + c) / WonT 
Loop Until Abs(x - xi) < p 
 
xdvdx0_subst = xi 
 
End Function 
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