
UNCLASSIFIED

UNCLASSIFIED

Conversion of DST Group Shape
Optimisation Software for Increased

Portability across Computing Platforms

Robert Kaye and Witold Waldman

Aerospace Division
Defence Science and Technology Group

DST-Group-TR-3251

ABSTRACT
The DST Group shape optimisation methodology is well established with several successful
implementations to ADF aircraft involving repairs to crack-prone locations. The process
involves adaptive reshaping of locally-concave boundaries so as to minimise a stress
concentration by spreading the stress more evenly over a longer region of the boundary. DST
Group in-house software is used in conjunction with a commercial finite element solver in an
iterative manner to achieve this outcome. The prior DST Group software had been found to
be dependent on the version of the commercial graphical user interface being used and the
software was not readily adaptable to newer versions. The work reported here involves
replacing some of the prior code so that the graphical user interface is not used in the
process. This document includes a number of 2D and 3D example problems that were used
to demonstrate the successful operation of the converted code. The main benefit of the new
code is that the software can be ported to other computer hardware without any interaction
with the installed graphical user interface, but it also enables a reduction in the use of
commercial licenses and provides faster run times.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED

Published by

Aerospace Division
Defence Science and Technology Group
506 Lorimer Street
Fishermans Bend, Victoria 3207, Australia

Telephone: 1300 333 362
Fax: (03) 9626 7999

© Commonwealth of Australia 2016
AR-016-589
May 2016

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Conversion of DST Group Shape Optimisation
Software for Increased Portability across

Computing Platforms

Executive Summary

Over the past sixteen years, the Aerospace Division of DST Group has developed and
implemented a technology of computer-based reshaping of aircraft structural details that
alleviates stress concentrations and provides much improved fatigue life. This reshaping can
include the removal of an existing fatigue crack if necessary. Notable implementations have
increased the fatigue life of the F-111 wing pivot fitting structure and more recently the
F/A-18 LAU-7 missile launcher guide rail. The methodology involves a combination of DST
Group in-house shape optimisation software and commercial finite element analysis
software used under license. As newer versions of the commercial software have come into
use, a variety of compatibility problems with the DST Group software have become
apparent. As a result of such issues, it is now necessary to make modifications to the process
so that it is less reliant on the commercial software, while at the same time eliminating the
compatibility problems.

The modifications presented in this document change the way that stress data is input to the
core part of the in-house reshaping routines. Changes have also been made to the way the
new shape is output. The prior code made use of a commercial package scripting language
for performing these functions and the use of this language was the source of compatibility
problems. These input and output functions have been rewritten using a generic
programming language that is in widespread use across scientific computer hardware. A
number of 2D and 3D example problems involving stress concentrations of various types
have been optimised in order to demonstrate the successful operation of the converted code.
These range in complexity from open-boundary fillets and closed-boundary holes, to a more
complex case involving interacting holes. All of these test cases have been successfully
solved, indicating that the converted shape optimisation code is operating correctly.

The Defence outcome of this work is that the DST Group shape optimisation capability can
be maintained well into the future for further application to Australian Defence Force (ADF)
aircraft. These implementations will help manage ageing aircraft structures with attendant
benefits of reduced cost and increased availability. The technology is also well suited to the
design of new aircraft and this research done by DST Group makes a significant contribution
to the body of knowledge that may be used by designers of new aircraft.

UNCLASSIFIED

UNCLASSIFIED

Authors
Robert Kaye
Aerospace Division

Mr Robert Kaye joined what was then the Structures Division of the
Aeronautical Research Laboratory in 1990 as a structural engineer with a
background in full-scale testing. The first three years at DSTO were
spent in evaluation of bonded repairs primarily using finite element
methods. Included in that was the analysis of repairs to fuselage skin lap-
joints, wing skin planks and bulkhead frames. More recently, he has been
involved with structural and mechanical aspects of full-scale fatigue test
installations. In particular, he played a key role in the development of a
low-stiffness air-spring for the application of static load to a vibrating
airframe. This work was followed by a period of several years doing
research and development into the alleviation of stress concentrations by
way of adaptive shape optimisation. This has been applied to concave
metallic free boundaries and to the adhesive layer and end tapering of
boron patches bonded to metallic structure. Upon his retirement, he is
now a DST Honorary Fellow in Aerospace Division.

____________________ ___

Witold Waldman
Aerospace Division

Mr Witold Waldman completed a BEng (with distinction) in
Aeronautical Engineering at the Royal Melbourne Institute of
Technology in 1981. He commenced work in Structures Division in 1982
at what was then the Aeronautical Research Laboratory. He has
published a number of papers and reports, and his experience has
focussed on stress analysis using finite element and boundary element
methods, structural mechanics, fracture mechanics, computational
unsteady aerodynamics, structural dynamics testing, digital filtering of
flight test data, nonlinear optimisation, and spectral analysis. His recent
work has been in the areas of structural shape optimisation and the
computation of stress intensity factors. He is currently a Senior Research
Engineer in the Structural and Damage Mechanics Group in the
Airframe Technology and Safety Branch of Aerospace Division within
the Defence Science and Technology Group, Department of Defence.

____________________ ___

UNCLASSIFIED
DST-Group-TR-3251

UNCLASSIFIED

Contents
1. INTRODUCTION .. 1

2. COMPARISON OF THE PATRAN/NASTRAN IMPLEMENTATION WITH THE
FORTRAN/ABAQUS IMPLEMENTATION .. 2

3. INITIAL STEPS TO SET UP 2D PROBLEMS .. 2

4. SOLUTION PROCEDURE FOR 2D PROBLEMS.. 3

5. SOLUTION PROCEDURE FOR 3D PROBLEMS.. 5

6. EXAMPLE PROBLEMS ... 6
6.1 2D model of circular hole near stress concentration .. 6
6.2 2D model of circular hole near stress concentration using multiple load cases 7
6.3 3D model of circular hole using multiple load cases ... 7
6.4 2D model of axially-loaded notched fatigue test coupon.. 7
6.5 3D model of axially-loaded notched fatigue test coupon.. 8

7. CONCLUSION ... 8

8. REFERENCES ... 9

APPENDIX A: FULL LISTING OF OPSCRIPT.SH SHELL SCRIPT 29

APPENDIX B: DETAILS OF INPUT DATA CONTAINED IN FILE
PARAMETERS.DAT ... 31

APPENDIX C: INSTRUCTIONS FOR RUNNING 2D PROBLEMS 35

APPENDIX D: INSTRUCTIONS FOR RUNNING 3D PROBLEMS 38

APPENDIX E: SOURCE CODE LISTINGS OF FORTRAN AND C PROGRAMS
AND SHELL SCRIPTS .. 42

UNCLASSIFIED
DST-Group-TR-3251

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DST-Group-TR-3251

1
UNCLASSIFIED

1. Introduction
Since 1997, research has been conducted within the Aerospace Division of DST Group
relating to the use of adaptive shape optimisation to minimise stress concentrations in
aircraft structures. At the core of the method is the removal of material in the vicinity of a
stress concentration to produce a region of boundary having minimised and constant hoop
stress. All forms of the method have involved an iterative procedure consisting of a finite
element solution and some code to change the boundary shape based on the boundary hoop
stresses. General details of the method and some of the early implementations, including
repairs to the wing pivot fittings of F-111 aircraft that were previously in service with the
RAAF, are described by Heller et al. [1] and McDonald and Heller [2]. A more recent
successful application was the design of a rework repair to the F/A-18 LAU-7 missile
launcher guide rail, described by Heller et al. [3].

The original version of the shape optimisation method used the PAFEC finite element solver
and was a basic single stress peak method [4]. This minimal version was upgraded with the
inclusion of a capability to solve problems that involve multiple stress peaks, but still using
the PAFEC solver, as described in more detail in [5], [6] and [7]. Further developments
included the treatment of multiple load cases and the addition of a capability for enforcing a
minimum radius of curvature constraint on the optimised geometry. A Patran/Nastran
version of the method that includes these developments is described by Braemar [8], and it
has been successfully used for several years to solve a number of practical problems, such as
the one reported by Heller et al. [3].

Recently, a limitation of the Patran/Nastran version of the method has become more
significant and has led to the requirement for the work that is described in this document.
The Patran part of the Patran/Nastran method uses scripting code, which is written in
Patran Command Language (PCL), to extract the stresses from the Nastran solution and to
build the modified Nastran input deck for the next iteration, including the recreated finite
element mesh [8]. This PCL code was written for the 2003 version of Patran, and it was found
to be incompatible with later versions of Patran. The present report describes the
replacement of the PCL part of the shape optimisation code with a number of FORTRAN
routines. The part of the code that calculates the new boundary nodal positions was written
in the C programming language, and it has been retained with minimal modifications. At
this stage, the new FORTRAN program code interfaces with the Abaqus finite element
solver, but it is entirely amenable to modification for use with Nastran as well.

Apart from not being dependent on the version of Patran that is in use, this
FORTRAN/Abaqus implementation does not use Patran at all, so a Patran licence is not
required during run-time. The new FORTRAN source code, as well as the pre-existing C
source code, is expected to be highly portable across Linux platforms, and also to Windows
platforms should the need arise.

Described in this document is the development of the code to the point where a number of
successful solutions to closed-boundary and open-boundary problems have been achieved.
Three examples of closed-boundary problems are presented, as well as two examples of
open-boundary problems. These examples included multiple stress peak and multiple load
case (robustness) type problems, as well as 2D and 2.5D type problems.

UNCLASSIFIED
DST-Group-TR-3251

2
UNCLASSIFIED

2. Comparison of the Patran/Nastran implementation with
the FORTRAN/Abaqus implementation

The prior Patran/Nastran implementation is summarised in the flow chart shown in Figure
1. The entire process sits within a PCL program with the C program that calculates new
boundary node positions being called from within that PCL program [8]. The use of PCL
allowed for easy access to the Patran meshing functions, and so it was convenient to recreate
the mesh and the geometry at each iteration. This provided for a high level of control of
various mesh characteristics, such as the mesh density and the variation in density with
distance from the boundary. By generating a new mesh at each iteration the possibility of
mesh distortion was much reduced. The use of PCL also enabled the use of the Patran report
writing functions for convenient output of the stress results to a text file.

A primary difference of the Patran/Nastran implementation with the FORTRAN/Abaqus
implementation introduced here is that the movable part of the mesh is retained between
iterations, with just the nodal coordinates being edited by small amounts to allow for the
shape change. The characteristics of the updated mesh are therefore determined by the initial
mesh and that pattern is retained throughout the optimisation process. This approach, which
is shown in Figure 2, is more direct and provides some savings in execution time.

Another difference with the proposed implementation is that the stresses from the finite
element solution are extracted directly from the Abaqus output files using a FORTRAN user
subroutine that runs in conjunction with the Abaqus solver.

Neither method has the capacity to deal with mid-side nodes, so the movable part of the
mesh is limited to 4-noded 2D elements or 8-noded 3D elements.

3. Initial steps to set up 2D problems
The finite element model should be constructed so that all the movable nodes lie in the x-y
plane. The location of the origin is not important. The movable boundary nodes should have
matching stationary nodes (partner nodes) at the edge of the region to be remeshed (movable
mesh region). Intermediate nodes should lie on straight lines between their nearest boundary
node and partner node, as shown in Figure 3. After the finite element model is solved to
obtain the stress distribution, new nodal coordinates will be calculated for the type 1
boundary nodes. Again, the intermediate type 3 nodes will be positioned on a straight line
between the newly located boundary node and its matching partner node (type 2). These
intermediate nodes retain their relative position along the straight line as determined from
the initial mesh, i.e. the ratio of the distance along the line to the line length is calculated
from the initial mesh and stored for use in positioning the intermediate nodes.

The initial Abaqus input deck needs to be created in Patran with the name patstart.inp.
Multiple load cases can be included if necessary and Abaqus output should be directed to
the .fil file in binary format. User defined output requests are not required, as all output
requests are later overwritten with a single request for computing principal stresses at nodes
in the Abaqus input file.

UNCLASSIFIED
DST-Group-TR-3251

3
UNCLASSIFIED

The type 1 boundary nodes and their matching type 2 partner nodes need to be defined in
two text files, one called nodes.ini and the other called pnodes.dat. The format for these
two files is identical. The number of nodes is given on the first line, followed by lines
containing the node id and the xyz coordinates of that node, one node per line, with the
nodes provided in anticlockwise path order.

The easiest way to obtain the xyz coordinates of the nodes is to use the show/node/location
function in Patran. Assuming that the region has been automeshed, the node numbers will
be sequential within each automeshed surface, and a sequential node list can be entered
using the standard Patran shorthand format, for example:

node 251:242:-1, 464:473, 585:593, 231:221:-1

Running the executable file addz will put zero values in for z nodal coordinates where they
have been omitted in the Abaqus input deck. This routine reads from patstart.inp and
writes the new version of the file to allzstart.inp.

Running the executable file binid will write the file start.inp while reading from the file
allzstart.inp. All nodes will have a comment line added after the node data line that
includes the node type as an integer, the node pair associated with the node (also an integer)
and a real value called posnode for type 3 nodes. The value of posnode indicates the distance
of the type 3 node along the line between its associated boundary node and partner node
expressed as a proportion of the total distance outwards from the boundary node. This
routine counts the type 3 nodes that have been found so that the user can check that the
number is correct. A tolerance value type3tol can be edited in the source code binid.f if
the number is incorrect. One option to recompile is ./compall.sh. The program binid will
also remove all output requests written into the file by Patran and put in a single request for
computation of the principal stresses at the nodes.

4. Solution procedure for 2D problems
Documentation for the existing Patran/Nastran implementation is provided in [8] and is
mostly still relevant to this implementation. The part of the present process that calculates
the new positions of the boundary nodes at each iteration is nearly the same as the C code
from optim_func_v41.c [8]. No changes have been made that affect the calculation of the
new nodal coordinates. The changes are related to integrating the C code with the new
FORTRAN routines as opposed to the old PCL routines. The new version is named
optim4.c for the source code and optim4 for the executable equivalent.

The solution procedure for this proposed implementation is controlled by a simple Linux
shell script called opscript.sh, which is summarised below and is listed in full in Appendix
A.

Summarised listing of opscript.sh

#!/bin/sh

cp nodes.ini nodes.dat
cp start.inp opjob.inp

UNCLASSIFIED
DST-Group-TR-3251

4
UNCLASSIFIED

rm -f convergence.dat
rm -f znodes???.dat

maxitns=200

for ((i = 1; i <= maxitns; i++))
do
 mv opjob.inp temp.inp
 rm -f opjob.*
 mv temp.inp opjob.inp

 abaqus job=opjob user=getsigq_ww cpus=1 interactive

 ./fsig # Formats and collates stress???.dat files
 ./rednf # Reduces format of nodes.dat and puts in nodes.opt
 ./optim4 # No mods have been done that affect function
 ./expnf # Expands format of nodes.opt and puts into nodes.dat

 cp opjob.inp opjob.temp
 ./bdeckq # Builds new Abaqus input deck using new nodes.dat
 rm -f opjob.temp

 ./wrconv # Writes peak hoop stress. Adds one line each iteration
 ./wrshape # Stores nodes.dat for each iteration in znodes???.dat
done

The first line of this script identifies the file as being a shell script to Linux. The next two lines
copy initialisation files nodes.ini and start.inp to their run-time versions nodes.dat and
opjob.inp. The file nodes.dat varies with each iteration and contains the updated positions
of the movable boundary nodes. The file opjob.inp also varies with each iteration with new
nodal positions based on the file nodes.dat. The next two lines remove files from previous
runs.

The first three lines inside the for loop remove Abaqus files from the previous iteration so
that Abaqus does not stop the script and ask the user whether to remove these files. The next
line is the Abaqus command line. The interactive option directs Abaqus to run in the
foreground and prevents execution from proceeding to the next step in the shell script before
the Abaqus run has finished. The user=getsig option compiles and runs a user defined
subroutine getsig.f in conjunction with the Abaqus job. This routine extracts and averages
the nodal principal stresses for the list of movable boundary nodes contained in nodes.dat.
This routine runs at the end of each load case and puts the stresses in files (one file per load
case) having names of the form stress??.txt, i.e. stress01.txt, stress02.txt, etc. The
next line in the shell script is the fsig program which collates the above stress files into a
single stress file called stress.rpt. This file is also formatted by fsig to be compatible with
the optim4 shape change program.

The program rednf removes the first line and the first column from nodes.dat. It also adds
a column after the x, y and z coordinates that can be used for constraining the movement of
individual nodes. These constraints are not normally used, and this column is filled with
zeros at this stage. rednf writes the reduced version of nodes.dat to the file nodes.opt
which is read by optim4.

UNCLASSIFIED
DST-Group-TR-3251

5
UNCLASSIFIED

One key input to optim4 is the file parameters.dat, which contains a number of option
settings. Many are not used by optim4.c as they relate to the use of the Patran PCL code that
has now been replaced. Details relating to parameters.dat are given in Appendix B. With
the exception of editing the path of the current directory, it is recommended that this file be
left unchanged in the first instance.

The program expnf reformats the movable boundary nodes from nodes.opt back into the
original format and writes to nodes.dat noting that the x and y coordinates will have been
modified slightly by optim4. It should also be noted that the format of nodes.opt is
modified by optim4.c as well as the nodal positions. The inclusion of rednf and expnf
either side of optim4 in the shell script ensures that the format of nodes.dat is consistent
throughout the run.

The program bdeck reads the current Abaqus input deck from opjob.temp and writes a new
version to opjob.inp containing the updated boundary shape from nodes.dat. The
intermediate mesh is also updated based on the mesh data comment lines in the Abaqus
input deck start.inp, i.e. the type 3 nodes are relocated on the line between their associated
pair of boundary node (new location) and partner node at a position along the line based on
the value of posnode (also from the mesh data comment line). Having the mesh data
comment lines in the Abaqus input deck greatly reduces the amount and complexity of the
source code of bdeck.

The programs wrconv and wrshape create a record of the job for use during run time and
after completion. wrconv writes out the peak tensile hoop stress as an appended line to the
file convergence.dat at each iteration. Viewing this file during run time is useful for
assessing whether the job is progressing as expected and consequently deciding whether to
terminate the job prematurely if necessary. wrshape stores the current version of nodes.dat
in files with names znodes???.dat, i.e. znodes001.dat, znodes002.dat, etc. Any of these
files can be used as the input file for a stand-alone run of bdeck to create an Abaqus input
deck for the chosen intermediate shape of a completed job. To do this, it is of course
necessary to edit the file names in bdeck.f and recompile.

Some further detail with regard to the instructions is provided in Appendix C.

5. Solution procedure for 3D problems
Although some solutions are applied to 3D models, the computed shape change is always 2D
in nature, as shown in Figure 4. In these cases, the peak stress through the thickness of the
component is used to determine the shape change, and this results in slightly different
shapes compared to the 2D solutions.

For solutions applied to 3D models, some additional steps are required so that the correct
stress value is used as the basis for calculating the new nodal positions, and so that nodes
having the same x and y positions move together in the x and y directions.

When setting up the 3D problem, the three programs binid1q, binid2q and binid3q are
run in place of the binid program. The program binid1q finds and labels the type 1, 2 and 3
nodes, reading from allzstart.inp and writing to type123.inp. The program binid2q
finds and labels the type 4, 5 and 6 nodes where the type 4 nodes have the same x and y

UNCLASSIFIED
DST-Group-TR-3251

6
UNCLASSIFIED

values as the type 1 nodes, and similarly for type 5 and type 2 nodes and type 6 and type 3
nodes. The program binid3q writes the boundary node ids in groups having the same x and
y coordinates to a file called bndall.nds. This file is read by a modified version of the
getsig routine, which is called getsigq, that finds the maximum stress through the
thickness for each group of boundary nodes. A modified version of the program bdeck,
called bdeckq, is used to edit the nodal positions of the 3D mesh. FORTRAN programs that
have been modified for use with 3D problems have had the letter q added to their file names.
Programs with names that do not end with a q are the same for both 2D and 3D problems.

Some further details relating to running 3D problems is provided in Appendix D. Source
code listings of the various FORTRAN and C programs are provided in Appendix E.

6. Example problems
Five example problems have been solved with the purpose of demonstrating that the stress
data is being correctly input to the C-language part of the code (optim4), and that at each
iteration the new Abaqus input deck has the nodal positions edited as expected within the
movable mesh region. As the original functionality of optim4 remains unchanged, the
numerous features and options that are fully internal to optim4 are not entirely
demonstrated by these example problems.

The various files that are associated with the solution of these example problems are located
in Objective folder fAV1044425.

6.1 2D model of circular hole near stress concentration

In this section we proceed to optimise the shape of a small circular hole that is in the
presence of a larger circular hole. This is a new problem that has not been analysed
previously, and it was chosen in order to demonstrate the correct operation of the present
implementation in solving closed-boundary problems. The problem definition is given in
Figures 5 and 6 and it consists of a one-quarter model of a large square plate with a centrally-
located circular hole and a smaller circular hole located nearby. The smaller hole is the
subject shape that is to be optimised. Four-noded quadrilateral elements were used in the
region of the small hole. Three-noded triangular elements were used elsewhere. The radius
of curvature in the optimised smaller hole was constrained to be greater than ¼ of the hole
radius. The smaller hole has two regions of tensile stress and two regions of compressive
stress around its circumference. The shape changes generated by optim4 concurrently
minimise the peak stress in each of the four regions. It is common for holes in a 2D stress
field to have these four regions.

The results of the shape optimisation are given in Figures 7–9. Figure 7 shows that the re-
meshing that is applied between iterations is clearly working as intended, with all the
intermediate (type 3) nodes maintaining their relative positions in the mesh. Figure 8 shows
the stress contours of maximum principal stress for the optimal subject hole that is located
near the circular stress concentration. Figure 9 compares major principal stress contour plots
of the initial circular shape (left) and the optimal solution shape (right), plotted using the
same stress contour scale. Figure 10 provides a comparison of the hoop stress around the
boundary for the initial and the final optimal hole shapes. There has been an overall
reduction in the peak stress of 21.54%. The results presented in Figures 9 and 10 indicate that

UNCLASSIFIED
DST-Group-TR-3251

7
UNCLASSIFIED

the stresses have been correctly provided to the C-language part of the code that performs
the shape optimisation.

6.2 2D model of circular hole near stress concentration using multiple load
cases

This problem is a repeat of the previous problem with five load cases applied, four of which
serve to perturb the stress distribution around the hole by small angular amounts. This
problem has been included to showcase that the proposed implementation is able to handle
multiple load cases, and that it therefore can create robust solutions, i.e. the resulting shape
provides the same stress reduction for local stresses that are orientated within a predefined
tolerance.

A small rotation of the stress distribution in the region of the hole has been obtained by
applying a small amount of shear stress in the region of the hole. In order to accomplish this,
the nodal forces were applied around the hole region as shown in Figure 11. The addition of
a shear stress whose magnitude was 1% of the applied longitudinal stress was found to
rotate the local stress distribution by about 1° degree. The problem was set up with load
cases with the stress distribution rotated anti-clockwise by 6° and 3°, and clockwise by 3° and
6°. The load case with zero stress rotation was also included, making up a total of five load
cases. Plots of stress contours for two of the load cases are shown in Figure 12.

The final hole shape that was obtained after 200 iterations gave a stress reduction of 16.6%,
and is shown in Figure 13. As expected, it has a slightly more rounded shape than the result
for the single load case solution. The boundary hoop stresses for all load cases are plotted in
Figure 14, and they show that this implementation of the method is clearly working as
expected for this robust, multiple load case problem.

6.3 3D model of circular hole using multiple load cases

This example is similar to demonstrator problem 2, except that the process has been
performed on a 3D model as shown in Figures 15, 16 and 17. Once again, five load cases have
been used with varying amounts of applied shear stress, as depicted in Figure 15 and using
the values given in Table 1. The hoop stresses obtained for the final shape are plotted in
Figure 18. A larger version of the subroutine getsig, called getsigq, has been used, which
finds the largest of the principal stress values through the thickness of the plate on the hole
boundary. As described earlier in Section 3, before starting the iteration loop, programs
binid1q, binid2q and binid3q have been run mainly for the purpose of labelling the nodes
contained in the Abaqus input deck start.inp. The labelling of the nodes allows the
program bdeckq to move through thickness groups of nodes in tandem, i.e. nodes with the
same x and y coordinates are moved by the same amount.

6.4 2D model of axially-loaded notched fatigue test coupon

In order to demonstrate the use of this FORTRAN/Abaqus implementation to solve an open-
boundary problem, the arrangement shown in Figure 19 was modelled. It consists of a one-
sided axial load test coupon comprised of a rectangular plate with a notch consisting of a
shallow radius scalloped out of the left-hand side. The length of the notch is Ln and its depth
is Ln/20. The total length of the coupon is 5Ln/3 and its width is Ln/3. A uniform axial load is
applied at each end. The plots of the initial and the final meshes that are shown in Figure 20
serve to demonstrate that the re-meshing code is working correctly. Figure 21 shows the

UNCLASSIFIED
DST-Group-TR-3251

8
UNCLASSIFIED

stress contours of the major principal stress that were obtained for the initial (left) and the
final optimal (right) notch shapes. As would be expected for this initial notch shape, only a
small amount of stress reduction was possible.

A comparison of the normalised boundary hoop stress for the initial notch shape and the
final optimal notch shape is shown in Figure 22, where a 2.63% reduction in the peak stress
has been achieved. Here the normalised distance along the notch boundary is defined by ξ =
(x+Ln/2)/Ln. As is to be expected for an optimal shape, there is now an extensive region of
uniform stress, comprising over 90% of the notch boundary.

Taken together, the results that have been presented in Figures 20, 21 and 22 all serve to
indicate that the input data to the C-language part of the shape optimisation code is correct.

6.5 3D model of axially-loaded notched fatigue test coupon

An open boundary problem modelled in 3D has been solved in a similar manner to the
previous example. Even though the final shape looks similar to the 2D version, the use of a
3D model does affect the shape slightly. Again, the level of stress reduction achieved is small
due to the starting shape being near optimal. The general arrangement and x-y coordinate
system are shown in Figure 23. The width of the coupon test article is one-quarter of its
length. An initial centrally-located circular notch on both sides has a length of Ln = 7L/16 and
a depth of Dn = L/16. The uniaxial loading has been applied as a uniform traction load that
has been applied by a nodal force at each node that is in contact with the testing machine
grip.

The finite element model is semi-symmetric in nature, and models the left-hand side of the
coupon. Figure 24 shows a plan view of the initial finite element mesh (left picture) and the
final finite element mesh corresponding to the optimised fillet boundary (right picture). The
movable mesh region is as indicated. Figure 25 shows an isometric view of the mesh
corresponding to the optimal solution shape (semi-symmetric half model). Figure 26 shows
the distribution of the normalised major principal stress along surface of the notch
(maximum value through the thickness) for the initial and the optimal notch shapes. Here
the normalised distance along the notch boundary is defined by ξ = (x+Ln/2)/Ln. For the
optimal shape, there is an extensive region of uniform stress along approximately 65% of the
length of the notch boundary. The optimised shape produces a reduction in the peak stress
of 6.65%. Taken together, these results serve to further confirm that the extraction of stresses
and nodal movements is working correctly.

As reported elsewhere, in recent times the present code has also been successfully applied to
the design of a novel constant-stress fatigue test coupon [9] using the 3D shape optimisation
capability described in the present report.

7. Conclusion
The PCL part of the previous Patran/Nastran implementation of the DST Group shape
optimisation code has been successfully replaced with some FORTRAN code and a Linux
shell script. The new implementation is portable to any computer that possesses FORTRAN
and C compilers and a shell scripting capability.

UNCLASSIFIED
DST-Group-TR-3251

9
UNCLASSIFIED

The results of the example problems that have been presented here have successfully
demonstrated that the shape optimisation process can be implemented without the use of
Patran. This outcome has reduced complexity and eliminated problems of the code being
dependent on the Patran version that is in use.

Five example problems have been presented in detail in Section 6, which encompass both 2D
and 3D test cases involving closed-boundary and open-boundary cases. The results that were
obtained show that the present implementation gives solutions that are consistent with the
prior implementation.

This new implementation is at stage where the first correct solutions have been obtained. As
such, it would benefit from additional future development to make the implementation more
user friendly, with fewer files, fewer routines and less preparation required for the setting up
of problems that are to be shape optimised.

In the course of doing this work, the shape-change part of the code has been isolated and it
can now be run in a stand-alone manner. This may be beneficial for users who need to use
just this part of the code and manage the extraction of stresses and nodal movements in some
other manner.

8. References
[1] M Heller, M Burchill, R Wescott, W Waldman, R Kaye, R Evans, M McDonald. Airframe

Life Extension by Optimised Shape Reworking – Overview of DSTO Developments. 25th ICAF
Symposium, Rotterdam, 27–29 May 2009.

[2] M McDonald, M Heller. Robust shape optimization of notches for fatigue-life extension.
Structural and Multidisciplinary Optimization, Vol. 28, pp. 55–68, 2004.

[3] M Heller, J Calero, S Barter, RJ Wescott, J Choi. Fatigue life extension program for LAU-7
missile launcher housings using rework shape optimisation. DSTO Technical Report DSTO-
TR-2662, February 2012.

[4] M Heller, R Kaye, LRF Rose. A gradientless procedure for shape optimisation. Journal of
Strain Analysis and Engineering Design, Vol. 34, No. 5, pp. 323–336, 1999.

[5] W Waldman, M Heller. Shape optimisation of two closely-spaced holes for fatigue life
extension. DSTO-RR-0253, DSTO, 2003.

[6] W Waldman, M Heller. Shape optimisation of holes for multipeak stress minimisation.
Australian Journal of Mechanical Engineering, Vol. 3, No. 1, pp. 61–71, 2006.

[7] W Waldman, M Heller. Shape optimisation of holes in loaded plates by minimisation of
multiple stress peaks. DSTO Research Report DSTO-RR-0412, April 2015.

[8] R Braemar. Code enhancements for the PATRAN/NASTRAN structural optimisation. DSTO
Internal Minute to M Heller, 20 May 2005.

[9] W Waldman, R Kaye, X Yu. A modified constant-stress coupon for enhanced natural crack
start during fatigue testing. DST Group Technical Report, 2016.

UNCLASSIFIED
DST-Group-TR-3251

10
UNCLASSIFIED

Table 1: Load cases applied to 3D hole example problem

Load case Applied shear stress
6° clockwise +σyy/315
3° clockwise +σyy/630

0° 0
3° anti-clockwise –σyy/630
6° anti-clockwise –σyy/315

UNCLASSIFIED
DST-Group-TR-3251

11
UNCLASSIFIED

Figure 1: Flow chart describing prior Patran/Nastran implementation of the shape optimisation
algorithm

Create Patran geometry surfaces in region of
movable mesh using positions of movable

boundary nodes

Mesh each surface with 4-noded elements
and remove duplicate nodes

From Patran write Nastran input file and run
Nastran job

Read results into Patran and write boundary
principal stresses to stress.rpt file

Call C code that uses stress.rpt to calculate
new positions of movable boundary nodes

Delete mesh and surfaces from movable
mesh region in Patran

Stop

Is this the last
iteration?

No

Yes

Start

UNCLASSIFIED
DST-Group-TR-3251

12
UNCLASSIFIED

Figure 2: Flow chart describing the FORTRAN/Abaqus implementation of
the shape optimisation algorithm

Run optim4 to calculate next
shape

Re-format shape data for
commonality

Build next Abaqus input file with
edited nodal positions

Initialise boundary shape file and
Abaqus input file

Remove run-time shape & stress
files from previous run if present

Remove Abaqus files from
previous iteration

Run Abaqus job

Format stress output for optim4

Format shape data for optim4

Store peak boundary stress and
boundary shape for this iteration

Is this the last
iteration?

No

Yes

Stop

Start

UNCLASSIFIED
DST-Group-TR-3251

13
UNCLASSIFIED

Figure 3: Some details relating to the movable mesh region

Partner node
(fixed position)
i.e. type 2 node

Intermediate nodes
(movable along line)

i.e. type 3 nodes

Movable
mesh region

Boundary node
(movable)

 i.e. type 1 node

UNCLASSIFIED
DST-Group-TR-3251

14
UNCLASSIFIED

Figure 4: 2D shape optimisation applied to a 3D model

Figure 5: Geometry and loading arrangement for example problems 1 and 2 (not to scale)

Region of
quarter model

Symmetry constraint

Sy
m

m
et

ry
 c

on
st

ra
in

t

UNCLASSIFIED
DST-Group-TR-3251

15
UNCLASSIFIED

Figure 6: Geometric relationship between subject hole and large hole

Figure 7: Solution shape for step size = 0.01r and iteration number = 200

R 2R

30°

Subject hole
Radius r = R/5

UNCLASSIFIED
DST-Group-TR-3251

16
UNCLASSIFIED

Figure 8: Stress contours of maximum principal stress for the optimised subject hole located near the
circular stress concentration

Figure 9: Comparison of major principal stress contour plots of the initial circular shape (left)
 and solution optimal shape (right), plotted using the same stress contour scale

UNCLASSIFIED
DST-Group-TR-3251

17
UNCLASSIFIED

Figure 10: Comparison of boundary hoop stress for initial and final hole shapes showing the overall
stress reduction of 21.54%

Figure 11: Arrangement of forces used to apply a small amount of shear stress to the region where the
subject hole is being optimised

Nodal forces used to
apply a small amount of

shear stress to hole region

UNCLASSIFIED
DST-Group-TR-3251

18
UNCLASSIFIED

(a) (b)

Figure 12: Stress distributions rotated by (a) 6° anti-clockwise, and (b) 6° clockwise, plotted using the

same stress contour scale

Figure 13: Solution shape at iteration 200 for hole near stress concentration with ±6° of robustness
obtained using a step size of 0.01r

UNCLASSIFIED
DST-Group-TR-3251

19
UNCLASSIFIED

Figure 14: Comparison of boundary hoop stresses for initial and final hole shapes with multiple load
cases showing stress reduction of 16.6%

Figure 15: Geometry and loading arrangement

x

y

σyy

σyy

10r

Hole radius = r
Plate thickness = r/2

UNCLASSIFIED
DST-Group-TR-3251

20
UNCLASSIFIED

Figure 16: Plan view of the final shape of the finite element mesh

Movable
mesh region

UNCLASSIFIED
DST-Group-TR-3251

21
UNCLASSIFIED

Figure 17: Isometric view of finite element mesh and contours of the major
principal stress in hole region for the 0° load case (for final shape)

Figure 18: Comparison of boundary hoop stresses for the initial hole shape and the final hole shape
with multiple load cases

UNCLASSIFIED
DST-Group-TR-3251

22
UNCLASSIFIED

Figure 19: Loading and general arrangement for open-boundary problem

Ln/20

Ln

Ln/3

5Ln/3 y

x

UNCLASSIFIED
DST-Group-TR-3251

23
UNCLASSIFIED

Figure 20: Initial mesh and shape (left) and final mesh and shape (right) for the

 open-boundary problem

Movable
mesh
region

UNCLASSIFIED
DST-Group-TR-3251

24
UNCLASSIFIED

Figure 21: Stress contours of the major principal stress for the open-boundary problem obtained for the
initial (left) and the final (right) fillet shapes

UNCLASSIFIED
DST-Group-TR-3251

25
UNCLASSIFIED

Figure 22: Comparison of the normalised boundary hoop stress for the initial notch shape and the final
optimal notch shape

UNCLASSIFIED
DST-Group-TR-3251

26
UNCLASSIFIED

Figure 23: Geometry and loading arrangement for axial load test article modelled in 3D

L/4

Ln =7L/16

L/4

L L/8

Region of half model
L/4

Grip
area

Grip
area

y

x

UNCLASSIFIED
DST-Group-TR-3251

27
UNCLASSIFIED

Figure 24: Plan view of initial (left) and final (right) finite element mesh

patterns (semi-symmetric half model)

Movable
mesh
region

UNCLASSIFIED
DST-Group-TR-3251

28
UNCLASSIFIED

Figure 25: Isometric view of solution shape mesh (semi-symmetric half model)

Figure 26: Normalised major principal stress along the surface of the notch (maximum value through
the thickness)

UNCLASSIFIED
DST-Group-TR-3251

29
UNCLASSIFIED

Appendix A: Full listing of opscript.sh shell script

#!/bin/sh

echo ""
echo "=="
echo " SHELL SCRIPT FOR RUNNING SHAPE OPTIMISATION JOBS"
echo "=="

time0=$(date +"%T")" "$(date +"%Y-%m-%d")
secs0=$(date +"%s")

echo ""
echo "Job start time: $time0"

Run the installed Intel-supplied ifortvar.sh shell script
to create the required environment variables for running the
Intel FORTRAN compiler. The location of the shell script will
depend on the specific version of the compiler.

Note that these environment variables will remain local to
the present shell as a result of using the "source" command.

echo ""
echo "Setting up Intel FORTRAN compiler environment to enable usage"
echo "of an Abaqus user subroutine with the shape optimisation job."

source /opt/intel/Compiler/11.1/069/bin/ifortvars.sh intel64

Configure the files for performing the shape optimisation,
as well as performing a cleanup.

cp nodes.ini nodes.dat
cp start.inp opjob.inp

rm -f convergence.dat
rm -f znodes???.dat
rm -f stress???.dat

Perform the required number of iterations of the shape
optimisation code.

maxitns=200

for ((i = 1; i <= maxitns; i++))
do
 echo ""
 echo "====================================="
 echo "Starting iteration $i of $maxitns"
 echo "====================================="
 echo ""
 time1=$(date +"%T")" "$(date +"%Y-%m-%d")
 secs1=$(date +"%s")
 mv opjob.inp temp.inp
 rm -f opjob.*

UNCLASSIFIED
DST-Group-TR-3251

30
UNCLASSIFIED

 mv temp.inp opjob.inp
 abaqus job=opjob user=getsigq_ww cpus=1 interactive
 ./fsig # Formats and collates stress???.dat files into stress.rpt
 ./rednf # Reduces format of nodes.dat and puts in nodes.opt for optim4
 ./optim4 # Shape change C code. No mods have been done that affect function
 ./expnf # Expands format of nodes.opt and puts into nodes.dat
 cp opjob.inp opjob.temp
 ./bdeckq # Builds new Abaqus input deck using nodes.dat
 rm -f opjob.temp
 ./wrconv # Writes peak hoop stress. Adds one line each iteration
 ./wrshape # Stores nodes.dat for each iteration in znodes???.dat
 time2=$(date +"%T")" "$(date +"%Y-%m-%d")
 secs2=$(date +"%s")
 etime=$(echo "scale=2;($secs2-$secs1)/60.0" | bc)
 echo ""
 echo "Iteration start time : $time1"
 echo "Iteration finish time : $time2"
 echo "Iteration elapsed time: $etime minutes"
done

time3=$(date +"%T")" "$(date +"%Y-%m-%d")
secs3=$(date +"%s")
etime=$(echo "scale=3;($secs3-$secs0)/3600.0" | bc)

echo ""
echo "Job iterations : $maxitns"
echo "Job start time : $time0"
echo "Job finish time : $time3"
echo "Job elapsed time: $etime hours"
echo ""
echo "Shape optimisation job completed."
echo ""

UNCLASSIFIED
DST-Group-TR-3251

31
UNCLASSIFIED

Appendix B: Details of input data contained in file
parameters.dat

Node File: must now be set to nodes.ini.

Surface File: Not used in this implementation.

Solid File: Not used in this implementation.

DB Name: Not used in this implementation.

Directory: path to working directory.

Length Mesh Seed: Not used in this implementation.

Through Mesh Seed: Not used in this implementation.

Equal Space File: Not used in this implementation.

Load Case File: Must be set to load.dat. Only the first line of the file is read.

Option 1: Multi-peak analysis.
Only works if set to true for both multi peak and single peak problems. optim4 will fail if set
to false.
Demonstrated by examples 1, 2 and 3.

Option 2: Read length mesh seed from file.
Not used in this implementation.

Option 3: Nodes defined in clockwise direction.
Only false option has been tested at this stage.
Demonstrated by examples 1, 2 and 3.

Option 4: Quasi-3D analysis.
Not used in this implementation.

Option 5: Apply equal spacing to boundary.
Must be set to true, demonstrated by examples 1, 2 and 3.

Option 6: Apply given through thickness 3D bias.
Not used in this implementation.

Option 7: Non-constant thickness 3D analysis.
Not used in this implementation.

Option 8: Apply multiple load cases – robust analysis.
Demonstrated by examples 1, 2 and 3.

UNCLASSIFIED
DST-Group-TR-3251

32
UNCLASSIFIED

Option 9: Spawn NASTRAN analysis independently – don’t use analysis manager.
Not used in this implementation.

Option 10: Base input deck on entire model – otherwise only used current active group.
Not used in this implementation.

Option 11: Update LBCs – updates z constraints (TRUE) – only used for 3D analysis.
Not used in this implementation.

Option 12: Maintain integrity of initial shape – actively prevents boundary from crossing that
of the initial profile.
Probably still works but not tested at this stage.

Option 13: Apply robust: perturbed analysis.
Demonstrated by example 2.

Option 14: Apply robust: independent analysis.
Demonstrated by example 2.

Option 15: Analysis is a restart – applies equal spacing on first iteration.
Not used in this implementation.

Option 16: Analysis has been started from command line – option to open database.
Not used in this implementation.

Option 17: Create mesh only – will only generate mesh, no analysis performed.
Not used in this implementation.

Option 18: Closed boundary problem.
Demonstrated by examples 1, 2 and 3.

Direction 1 min:
Direction 1 max:
Direction 2 min:
Direction 2 max:
These values probably still work as before. Not tested at this stage.

Property Set: Name of the property set to which the elements can be assigned.
Not used in this implementation.

Material: The material defined within PATRAN and associated with the property set defined
above.
Not used in this implementation.

Thickness: Thickness of the model at the analysis point. This must be defined for both 2D and
3D analyses.
Not used in this implementation.

No Elem Through: Defined the number of elements through the thickness of the optimisation
region.
Not used in this implementation.

UNCLASSIFIED
DST-Group-TR-3251

33
UNCLASSIFIED

Width Mesh Seed: The number of elements to be created across the defined surface. This
currently set to 1 for most of the code.
Not used in this implementation.

Length Mesh Seed: This needs to be defined if the user does not supply a mesh seed in the
‘mesh seed file’ option. This defines the number of elements to be created along the length of
the surface.
Not used in this implementation.

L2/L1: This defines the mesh seed bias through the thickness for a quasi-3D analysis.
Not used in this implementation.

Analysis Load Case: For models where there is more than 1 load case in the database, the load
case to be used for the analysis is defined here.
Not used in this implementation.

1st Elem in Prop Region: As described above under property set, this is the first of the
sequential elements in the property set to be updated.
Not used in this implementation.

Equiv Tolerance: Sets the equivalence tolerance for the mesh creation. Should typically be
around 0.005–0.010.
Not used in this implementation.

Optim Threshold: This allows the user to define the method by which the stress threshold (σth)
is determined.

The options are:

1.0 = peak stress in region
2.0 = average stress in region
3.0 = stress at the middle node in the region

These options probably still work as before, but remain untested at this stage.

Max Iter: Defines the maximum number of iterations to be used for the analysis.
This value is ignored. Number of iterations is determined by value in the Linux shell script.

Step Size: Defines the magnitude of the optimisation steps.
Demonstrated by examples 1, 2 and 3.

Min Rad: Defines the minimum radius of curvature for the analysis.
Demonstrated by examples 1, 2 and 3.

Analysis Plane: Defines the principal plane for the optimisation analysis. The options are
“xy”, “xz” and “yz” depending on the orientation of the model.
The movable mesh region of the model must be in the xy plane

Results Name: Defines the base name for the results file.
Not used in this implementation.

UNCLASSIFIED
DST-Group-TR-3251

34
UNCLASSIFIED

Delete Increment: Defines the frequency with which the results files will be retained.
Not used in this implementation.

Direction 1 centre: Centre of initial profile in direction 1 – used to check violation of initial
shapes.
This value probably still works as before, but remains untested at this stage.

Direction 2 centre: Centre of initial profile in direction 2 – used to check violation of initial
shapes.
This value probably still works as before, but remains untested at this stage.

UNCLASSIFIED
DST-Group-TR-3251

35
UNCLASSIFIED

Appendix C: Instructions for running 2D problems

This section constitutes interim documentation for the FORTRAN/Abaqus version of the
shape optimisation code (2D).

This information applies as at 28 August 2014.

At this time, sample file sets, including all software, were located on the following Linux
machine:

goated at /home/StructDamMech/ShapeOpt/FtnAbaqus/...

Files contained in the directories below the directory that is listed above (.../fillet2d and
.../hole2d) are sample sets to use as a starting point to do an open-boundary problem (i.e.
fillet) or a closed-boundary problem (i.e. hole). So the first step is to copy the appropriate
entire directory to a working directory in your area. Set the permissions of all files to execute.

The term 3D is used throughout to indicate what has been called 2.5D or quasi-3D where the
shape is 2D although the model is 3D (takes into account stress variation through-thickness).

Filenames are generally not variable. It may be good to leave it like this for clarity, i.e. for
someone to take over a job from someone else.

The file sets include a sample problem relevant for that set. To create a problem different to
the example problem the following steps are necessary:

1. Construct the model in a Patran file called start.db. The movable boundary must
have a matching outer boundary with the same number of nodes. The mesh in
between the inner and outer boundaries must be made up of regular 4-noded
elements. The movable nodes include the intermediate nodes and must be on the x-y
plane. Origin and other nodes can be anywhere.

2. In Patran create a ‘node location report file’ with the movable boundary nodes listed
in path order (anticlockwise or from lower to upper). Remove text from top and put
number of nodes on first line. Rename as nodes.ini.

3. Create a matching file of partner nodes which create a boundary for the movable
mesh region, one partner node per movable node listed in the same path order. Call
this file pnodes.dat.

4. Make sure all intermediate movable nodes (between movable boundary nodes and
partner nodes lie on straight lines between their nearest boundary node and partner
node.

5. Use Patran to write Abaqus input deck patstart.inp. Multiple linear static load
cases can be written or just one as required. Output requests will later get over-
written by binid.f.

6. Run ./addz. This will put zeros in for the z nodal coordinates if no z values are
present. Reads from patstart.inp. Writes to allzstart.inp.

7. Run ./binid.

UNCLASSIFIED
DST-Group-TR-3251

36
UNCLASSIFIED

This routine will write from allzstart.inp to start.inp with a comment line after
all nodes. This comment line has an integer value called nodetype, another integer
value called nodepair and a third value (real) between 0 and 1 called posnode.

nodetype = 0 indicates the node lies outside the movable mesh region.

nodetype = 1 indicates the node on the line above is on the movable boundary.

nodetype = 2 indicates the node above is a partner node (i.e. in pnodes.dat).

nodetype = 3 indicates the node above lies between a boundary node and partner
node.

Running the program ./counttype will show how many nodes of each type are in
start.inp for checking purposes.

nodepair indicates which pair of boundary node and partner node applies to the
node above. This is the place in the list (not the node id). For example, nodepair=5
indicates that the 5th pair of boundary and partner nodes in nodes.ini and
pnodes.dat are the relevant pair for the node on the line above.

posnode only applies to type 3 nodes and gives the position of the node along the line
between its associated pair (as a fraction from the movable boundary outwards)

The program binid also deletes all output requests written by Patran and puts in a
single request for principal stresses at nodes.

NB: Other more compact methods of handling posnode allowed for small errors to
accumulate with each iteration, eventually creating mesh distortion. Keeping
posnode fixed throughout the run was found to be helpful. Writing out the extra
comment lines at each iteration did not significantly affect run time.

8. Edit the full path of the current directory (no spaces) in the file parameters.dat (line
5). The other data in this file is defined in the documentation for the PCL version
created by Braemar [8]. This file can be mostly left unchanged. Some of this data is
used by the program optim4.c. Some was used by the PCL code. The program
optim4.c reads it all so it has been left unchanged at this stage.

9. Edit the path of the current directory (no spaces) to getsig.f line near the top that
reads path='...

This file is compiled when Abaqus runs so there is no need to compile separately.

10. Edit the number of boundary nodes and the number of load cases in the main routine
of optim4.c Main routine is near the top of listing. Compile using ./compall.sh. This
shell script compiles and links all the FORTRAN routines and the single C routine.

11. Edit the number of load cases to the first line of load.dat.

12. Edit opscript.sh as required. That is, set the number of iterations in the for loop (it
may be best to use 1 at first in order to see if the job runs as expected).

13. Run the job, i.e. ./opscript.sh.

UNCLASSIFIED
DST-Group-TR-3251

37
UNCLASSIFIED

14. Open the file convergence.dat while the job is running to check on its progress. Use
Ctrl-z to stop the job if necessary. You may have to wait for Abaqus to finish as it will
continue to run a job that is running.

15. Create a new Patran database and read in opjob.inp to check the optimised shape.

Note:

All of the FORTRAN routines are the same for 2D fillet problems and 2D hole problems,
except for editing the directory path contained in getsig.f. (3D versions of the code, where
they differ from their 2D versions, have a q added at the end of the file name.)

Use compall.sh to compile and link all FORTRAN routines and the C routine. (This script
can be used any time that the source code is changed.)

The program optim4.c is also the same for all 4 types of problems (2D and 3D) except for
editing the number of movable boundary nodes and the number of load cases in its main
routine at the near the top of the listing. It actually gets the number of movable nodes from
elsewhere but still needs the number of load cases to be edited into the C source code at this
stage.

UNCLASSIFIED
DST-Group-TR-3251

38
UNCLASSIFIED

Appendix D: Instructions for running 3D problems

This section constitutes interim documentation for the FORTRAN/Abaqus version of the
shape optimisation code (3D).

This information applies as at 28 August 2014.

At this time sample file sets, including all software was located on the following Linux
machine:

goated at /home/StructDamMech/ShapeOpt/FtnAbaqus/...

Files contained in the directories below the directory that is listed above (.../fillet3d and
.../hole3d) are sample sets to use as a starting point to do an open-boundary problem (e.g.
a fillet) or a closed-boundary problem (e.g. a hole). Copy the entire directory to a working
directory on the Linux machine. Set permissions of all the executable files to execute. Maybe
run a sample problem using ./opscriptq.sh.

Filenames are generally not variable. It may be good to leave it like this for clarity, i.e. to
enable someone to take over a job from someone else.

To create a problem that is different to the example problem, the following steps are
necessary:

Note 1: The process is similar to the 2D cases. The FORTRAN routines with names
ending with a q have been edited to cope with the additional nodes through the
thickness. FORTRAN routines with names not ending in a q are the same as the 2D
routines

Note 2: The master nodes are in the x-y plane at z = 0 (e.g. from 2D model used as a
starting point). Slave nodes have the same x and y coordinates but vary in the z direction,
i.e. several slave nodes for each master node depending on number of layers of nodes.

1. Construct the finite element model in the Patran database file start.db. The movable
master nodes for the initial 2D model must be in the x-y plane at z = 0. Create the 3D
model by extruding the 2D elements in the z direction to make 3D elements. Delete
the 2D elements.

2. In Patran, create a ‘node location report file’ with the master movable boundary
nodes listed in path order (anticlockwise or from lower to upper). Remove text from
top and put number of master movable boundary nodes on the first line. Rename the
file as nodes.ini (these are type 1 nodes).

3. Create a matching file of partner nodes which create a boundary for the movable
mesh region, one partner node per master movable boundary node listed in the same
path order. Call this file pnodes.dat (these are type 2 nodes).

4. Make sure all intermediate movable nodes (between movable boundary nodes and
partner nodes lie on straight lines between their nearest boundary node and partner
node.

UNCLASSIFIED
DST-Group-TR-3251

39
UNCLASSIFIED

5. Use Patran to write the Abaqus input deck patstart.inp. Multiple linear static load
cases can be written or just one as required. Output requests will later get over-
written by binid1q.f.

6. Run ./addz. This will put zeros in for the z nodal coordinates if no z values are
present. Reads from patstart.inp. Writes to allzstart.inp.

7. Run ./binid1q.

This routine will read from allzstart.inp and write to type123.inp inserting a
comment line after all node lines. This comment line has an integer value called
nodetype, another integer value called nodepair and a third value (real) between 0
and 1 called posnode.

nodetype = 1 indicates that the node on the line above is on the master movable
boundary.

nodetype = 2 indicates that the node above is a master partner node (i.e. in
pnodes.dat).

nodetype = 3 indicates that the node above lies between a master boundary node and
a master partner node

nodetype = 0 indicates that the node is outside the movable mesh region (and could
also be a slave node at this stage).

nodepair indicates which pair of master boundary node and master partner node
applies to the node above. This is the place in the list (not the node id). For example,
nodepair=5 indicates that the 5th pair of boundary and partner nodes in nodes.ini
and pnodes.dat are the relevant pair for the node on the line above.

posnode only applies to type 3 master nodes and gives the position of the node along
the line between its associated pair (as a fraction from the movable boundary
outwards).

The program binid1q also deletes all output requests written by Patran and puts in a
single request for principal stresses to be computed at the nodes.

8. Run ./binid2q. This routine will give an integer value node type to the slave nodes
reading from type123.inp and writing to start.inp. It can take several minutes to
run depending on model size. It will also give type 6 nodes the same posnode value
as their matching type 3 node.

nodetype = 4 indicates the node above is a slave to a type 1 node.

nodetype = 5 indicates the node above is a slave to a type 2 node.

nodetype = 6 indicates the node above is a slave to a type 3 node.

The program ./counttype can be run in order to count nodes by type for checking
purposes.

UNCLASSIFIED
DST-Group-TR-3251

40
UNCLASSIFIED

9. Run ./binid3q. It reads from start.inp and writes groups of node ids to
bndall.nid. There is one group for each type1 node consisting of the type 1 node id
followed by the ids of its slave nodes (type 4).

The file bndall.nid is required by the getsigq routine that extracts the stresses
from the Abaqus results.

10. Edit the full path of the current directory (no spaces) in the file parameters.dat (line
5). The other data in this file is defined in the documentation for the PCL version
produced by Braemar [8]. This file should be left unchanged other than the path entry
and the step size entry. Some of this data is used by optim4.c. Some was used by the
PCL code. The program optim4.c reads it all so it has been left unchanged at this
stage to avoid making modifications to optim4.c.

11. Edit the number of boundary nodes and the number of load cases in the main routine
of optim4.c. The main routine is near the top of the listing. Compile the program by
using the shell script ./compallq.sh.

12. Write the number of load cases to the first line of load.dat.

13. Write the full path of the current directory (no spaces) to getsigq.f. This routine
averages the nodal principal stresses and finds the maximum stress through the
thickness.

This file is compiled and run when Abaqus runs, so there is no need to compile it
separately.

14. Edit opscriptq.sh as required. That is, set the number of iterations in the for loop,
where it is best to use 1 at first to see if it runs. As a rough guide if step size is
adjusted so that peak stress reduction at second iteration is about 0.1% problem
usually converges in about 200 iterations. If additional iterations are required a restart
can be executed by running just the loop and the statements within in opscriptq.sh.

15. Run the job by executing the shell script ./opscriptq.sh. Watch the file
convergence.dat for a while to see if the peak stress is coming down at a reasonable
rate. It is possible to look at the mesh during run time by copying opjob.inp to a file
with another name and reading it into a new Patran database.

16. Open the file convergence.dat while the job is running to check progress. Use Ctrl-z
to stop job if necessary. You may have to wait for abaqus to finish running a job that
was in progress.

17. Create a new Abaqus Patran data base and read in opjob.inp to check shape.

Notes:

All of the FORTRAN routines are the same for fillet problems and hole problems, except for
editing the directory path contained in getsigq.f.

All the routines can be compiled using the shell script ./compallq.sh, which needs to be
done even if only a minor change is made to just one of the routines.

UNCLASSIFIED
DST-Group-TR-3251

41
UNCLASSIFIED

The program optim4.c is also the same for both types of problems, except for editing the
number of movable boundary nodes and the number of load cases.

UNCLASSIFIED
DST-Group-TR-3251

42
UNCLASSIFIED

Appendix E: Source code listings of FORTRAN and C
programs and shell scripts

Shell script compallq.sh

#!/bin/sh

echo ""
echo "==="
echo "Compiling and linking programs needed for shape optimisation job."
echo "==="
echo ""
echo "* indicates a program called from the shape optimisation script."
echo ""
echo "Setting up Intel Fortran compiler environment..."
source /opt/intel/Compiler/11.1/069/bin/ifortvars.sh intel64
echo ""

echo "Creating addz..."
ifort addz.f -o addz
echo "Creating * bdeckq..."
ifort bdeckq.f -o bdeckq
echo "Creating binid1q..."
ifort binid1q.f -o binid1q
echo "Creating binid2q..."
ifort binid2q.f -o binid2q
echo "Creating binid3q..."
ifort binid3q.f -o binid3q
echo "Creating counttype..."
ifort counttype.f -o counttype
echo "Creating * expnf..."
ifort expnf.f -o expnf
echo "Creating * fsig..."
ifort fsig.f -o fsig
echo "Creating gethoop..."
ifort gethoop.f -o gethoop
echo "Creating * rednf..."
ifort rednf.f -o rednf
echo "Creating * wrconv..."
ifort wrconv.f -o wrconv
echo "Creating * wrshape..."
ifort wrshape.f -o wrshape
echo "Creating * optim4..."
gcc -Wall optim4.c -lm -o optim4

echo ""
echo "Finished compiling and linking Fortran and C programs."
echo ""

Program addz.f

!===

 program addz

! Puts zeros in for z-coordinate in Abaqus input deck if they are not
! already present in the data.

UNCLASSIFIED
DST-Group-TR-3251

43
UNCLASSIFIED

!
! Use double precision for (x,y,z) to ensure that we write out exactly
! what was read in (other than for z, which is set to zero).

 character aline*80,inpfile*80,outfile*80
 integer nid
 real*8 x,y,z

 inpfile='patstart.inp'
 outfile='allzstart.inp'

 open(unit=20,file=inpfile)
 open(unit=30,file=outfile)

 write(*,*) 'Putting zeros in for z-coordinates...'
 write(*,*) 'Input file = '//inpfile(1:len_trim(inpfile))
 write(*,*) 'Output file = '//outfile(1:len_trim(outfile))

 do
 read(20,100) aline
 100 format(a)
 write(30,100) aline
 if (aline(1:5).eq.'*NODE') go to 210
 end do

 210 continue

 do
 read(20,100)aline
 if (aline(1:2).eq.'**') then
 write(30,100) aline
 go to 220
 end if
 read(aline,*,iostat=ier) nid,x,y,z
 if (ier.ne.0) z=0.0d0
 write(30,500) nid,x,y,z
 500 format(i10,',',2x,g20.12,',',2x,g20.12,',',2x,g20.12)
 end do

 220 continue

 do
 read(20,100,iostat=ier)aline
 if (ier.ne.0) go to 200
 write(30,100)aline
 end do

 200 continue

 close(20)
 close(30)

 write(*,*) 'Finished addz.'

 stop
 end

UNCLASSIFIED
DST-Group-TR-3251

44
UNCLASSIFIED

Program bdeckq.f

!===

 program bdeckq

! Builds a new Abaqus input deck with edited node locations based on
! nodes.dat.

 character aline*80,line1*80,line2*80
 dimension xnew(1000),ynew(1000)
 dimension px(1000),py(1000)

 open(unit=10,file='nodes.dat')
 open(unit=17,file='pnodes.dat')
 read(10,*) numnodes
 read(17,*)
 do i=1,numnodes
 read(10,*) nid,xnew(i),ynew(i)
 read(17,*) nid,px(i),py(i)
 end do
 close(10)
 close(17)

 open(unit=20,file='opjob.temp')
 open(unit=30,file='opjob.inp')

 do
 read(20,100) aline
 write(30,100) aline
 100 format(a)
 if (aline(1:5).eq.'*NODE') exit
 end do

 do
 read(20,100) line1
 read(20,100) line2
 if (line1(1:14).eq.'**end_of_nodes') then
 write(30,100) line1
 write(30,100) line2
 go to 210
 end if
 read(line1,500) n id,x,y,z
 500 format(i8,',',2x,g20.12,',',2x,g20.12,',',2x,g20.12)
 read(line2,501) nodetype,nodepair,posnode
 501 format('**mesh_data',2x,i5,2x,i5,g20.12)
 if (nodetype.eq.1 .or. nodetype.eq.4) then
 x=xnew(nodepair)
 y=ynew(nodepair)
 write(30,500) nid,x,y,z
 write(30,100) line2
 end if
 if (nodetype.eq.3 .or. nodetype.eq.6) then
 dpx=px(nodepair)-xnew(nodepair)
 dpy=py(nodepair)-ynew(nodepair)
 x=xnew(nodepair)+posnode*dpx
 y=ynew(nodepair)+posnode*dpy
 write(30,500) nid,x,y,z
 write(30,100) line2

UNCLASSIFIED
DST-Group-TR-3251

45
UNCLASSIFIED

 end if
 if (nodetype.eq.0 .or. nodetype.eq.2 .or. nodetype.eq.5) then
 write(30,500) nid,x,y,z
 write(30,100) line2
 end if
 end do

 210 continue

 do
 read(20,100,iostat=ier) aline
 if (ier.ne.0) exit
 write(30,100) aline
 end do

 close(20)
 close(30)

 write(*,*) 'Finished bdeck.'

 stop
 end

Program binid1q.f

!===

 program binid1q

! Writes mesh data lines into the Abaqus input deck for type 1, 2 and
! 3 nodes. Also writes type 1, 2 and 3 nodes to file master.nodes.

 implicit none

 character aline*80
 real nidbnd(1000),nidpar(1000)
 real xbnd(1000),ybnd(1000),xpar(1000),ypar(1000)
 real type3tol,posnode,x,y,z,dbnd,dpar,dtotal,derror
 integer i,ier,icount,nid,nodetype,nodepair,numnodes

 ! This value can be adjusted so as to get a correct set of
 ! type 3 nodes.

 type3tol=0.0001

 write(*,*) 'Determining type 1, 2, and 3 nodes...'

 ! Read boundary nodes and partner nodes into arrays.

 write(*,*) 'Input file = ','nodes.ini'
 write(*,*) 'Input file = ','pnodes.dat'

 open(unit=10,file='nodes.ini')
 open(unit=15,file='pnodes.dat')

 read(10,*) numnodes
 read(15,*)
 do i=1,numnodes
 read(10,*) nidbnd(i),xbnd(i),ybnd(i)

UNCLASSIFIED
DST-Group-TR-3251

46
UNCLASSIFIED

 read(15,*) nidpar(i),xpar(i),ypar(i)
 end do

 close(10)
 close(15)

 ! Start reading through Abaqus input deck.

 write(*,*) 'Input file = ','allzstart.inp'
 write(*,*) 'Output file = ','type123.inp'
 write(*,*) 'Output file = ','master.nodes'

 open(unit=20,file='allzstart.inp')
 open(unit=30,file='type123.inp')
 open(unit=40,file='master.nodes')

 ! Read through first part of file until start of nodes.

 do
 read(20,100) aline
 100 format(a)
 write(30,100) aline
 if (aline(1:5).eq.'*NODE') go to 200
 end do

 200 continue

 ! Start of reading through nodes.

 icount=0

 do
 read(20,*,iostat=ier) nid,x,y,z
 if (ier.ne.0) then
 write(30,110)
 110 format('**end_of_nodes')
 go to 210
 end if

 ! For each node, check against boundary nodes and partner
 ! nodes to determine the node type, to find pair association
 ! and to calculate posnode.

 nodetype=0
 nodepair=0
 posnode=0.0
 do i=1,numnodes
 if (nid.eq.nidbnd(i)) then
 nodetype=1
 nodepair=i
 goto 212
 end if
 if (nid.eq.nidpar(i)) then
 nodetype=2
 nodepair=i
 goto 212
 end if
 ! dbnd is distance between current node and boundary node.
 dbnd=sqrt((x-xbnd(i))**2+(y-ybnd(i))**2)

UNCLASSIFIED
DST-Group-TR-3251

47
UNCLASSIFIED

 ! dpar is distance between current node and partner node.
 dpar=sqrt((x-xpar(i))**2+(y-ypar(i))**2)
 ! dtotal is distance between boundary node and partner node.
 dtotal=sqrt((xbnd(i)-xpar(i))**2+(ybnd(i)-ypar(i))**2)
 ! derror will be close to zero if current node lies between
 ! boundary node and partner node.
 derror=abs((dbnd+dpar-dtotal)/dtotal)
 if (derror.le.type3tol .and. z.eq.0.0) then
 nodetype=3
 nodepair=i
 posnode=dbnd/dtotal
 icount=icount+1
 end if
 end do

 212 continue

 ! Write nodes and mesh data to new Abaqus input deck.
 ! Count number of typed nodes (ie type 1 2 or 3).
 ! Write typed nodes to master.nodes file.

 if (nodetype.ne.0) then
 write(40,500) nid,x,y,z
 500 format(i8,',',2x,g20.12,',',2x,g20.12,',',2x,g20.12)
 write(40,501) nodetype,nodepair,posnode
 501 format('**mesh_data',2x,i5,2x,i5,g20.12)
 end if
 write(30,500) nid,x,y,z
 write(30,501) nodetype,nodepair,posnode

 end do
 ! End of reading and writing nodes.

 210 continue

 ! Keep going through rest of input deck.

 do
 read(20,100,iostat=ier)aline
 if (ier.ne.0) go to 220
 ! Put in output request for principal stresses at nodes.
 if (aline(1:12).eq.'*TEMPERATURE') then
 write(30,100) aline
 write(30,100) '*EL FILE, DIR=YES, POS=NODES, FREQ=1'
 write(30,100) 'SP'
 do
 read(20,100)aline
 if (aline(1:9).eq.'*END STEP') go to 230
 end do
 end if
 ! End of output requests.
 230 continue
 write(30,100) aline
 end do

 220 continue

 close(20)
 close(30)

UNCLASSIFIED
DST-Group-TR-3251

48
UNCLASSIFIED

 close(40)

 ! Write number of typed nodes to screen so user can check.

 write(*,520) icount
 520 format(' Number of type 3 nodes found = ',i10)
 write(*,*)
 & 'If this number is incorrect, edit type3tol in binid1q.f.'
 write(*,*)
 & 'Typical effective range for type3tol is 0.1-0.00001.'
 write(*,*) 'Finished binid1q.'

 stop
 end

Program binid2q.f

!===

 program binid2q

! Write mesh data lines in Abaqus input deck for type 4, 5 and 6 nodes.

 character aline*80
 integer inode

 open(unit=10,file='type123.inp')
 open(unit=20,file='master.nodes')
 open(unit=30,file='start.inp')

 write(*,*) 'Writing mesh lines for type 4, 5 and 6 nodes...'
 write(*,*) 'This routine may take a while to run.'

 write(*,*) 'Input file = ','type123.inp'
 write(*,*) 'Input file = ','master.nodes'
 write(*,*) 'Output file = ','start.inp'

 do
 read(10,100) aline
 write(30,100) aline
 100 format(a)
 if (aline(1:5).eq.'*NODE') exit
 end do

 slavetol=0.1
 numslaves=0
 inode=0

 do
 read(10,*,iostat=ier) nid,x,y,z
 if (ier.ne.0) goto 210
 inode=inode+1
 read(10,501) nodetype,nodepair,posnode
 501 format('**mesh_data',2x,i5,2x,i5,g20.12)
 if (nodetype.eq.0) then
 do
 read(20,*,iostat=ier) nidm,xm,ym,zm
 if (ier.ne.0) goto 205
 read(20,501) mntype,mnpair,posmn

UNCLASSIFIED
DST-Group-TR-3251

49
UNCLASSIFIED

 xtol=slavetol
 ytol=slavetol
 if (x.gt.xm-xtol .and. x.lt.xm+xtol) then
 if (y.gt.ym-ytol .and. y.lt.ym+ytol) then
 nodetype=mntype+3
 nodepair=mnpair
 posnode=posmn
 numslaves=numslaves+1
 goto 205
 end if
 end if
 end do
 end if
 205 continue
 rewind(20)
 write(30,500) nid,x,y,z
 500 format(i8,',',2x,g20.12,',',2x,g20.12,',',2x,g20.12)
 write(30,501) nodetype,nodepair,posnode
 if (mod(inode,5000).eq.0 .and. inode.ge.5000) then
 write(*,*) 'Done nodes = ',inode
 end if
 end do

 210 continue
 write(*,*) 'Done nodes = ',inode
 write(30,520)
 520 format('**end_of_nodes')

 do
 read(10,100,iostat=ier) aline
 if (ier.ne.0) exit
 write(30,100) aline
 end do

 close(10)
 close(20)
 close(30)

 write(*,*) 'Number of slave nodes found = ',numslaves
 write(*,*) 'If this number is incorrect, '//
 & 'adjust slavetol in binid2q.f.'
 write(*,*) 'Finished binid2q.'

 stop
 end

Program binid3q.f

!===

 program binid3q

! Write groups of node ids to bndall.nid, one group per type 1 node,
! all nodes through thickness (with same x and y coordinates).

 character aline*80
 dimension nidbnd(400,20)

 write(*,*) 'Writing groups of node ids...'

UNCLASSIFIED
DST-Group-TR-3251

50
UNCLASSIFIED

 write(*,*) 'Input file = ','nodes.ini'
 write(*,*) 'Input file = ','start.inp'
 write(*,*) 'Output file = ','bndall.nid'

 open(unit=10,file='nodes.ini')
 open(unit=20,file='start.inp')
 open(unit=30,file='bndall.nid')

 do i=1,400
 do j=1,20
 nidbnd(i,j)=0
 end do
 end do

 read(10,*) numnodes
 do i=1,numnodes
 read(10,*) nidbnd(i,1)
 end do
 close(10)

 do
 read(20,100) aline
 100 format(a)
 if (aline(1:5).eq.'*NODE') go to 200
 end do

 200 continue

 do
 read(20,*,iostat=ier) nid,x,y,z
 if (ier.ne.0) goto 210
 read(20,501) nodetype,nodepair,posnode
 501 format('**mesh_data',2x,i5,2x,i5,g20.12)
 if (nodetype.eq.4) then
 do j=2,20
 if (nidbnd(nodepair,j).eq.0) then
 nidbnd(nodepair,j)=nid
 goto 205
 end if
 end do
 end if
 205 continue
 end do

 210 continue

 do i=1,numnodes
 do j=1,20
 if (nidbnd(i,j).ne.0) write(30,*) nidbnd(i,j)
 end do
 write(30,510)
 510 format('end_of_group')
 end do

 close(20)
 close(30)

 write(*,*) 'Finished binid3q.'

UNCLASSIFIED
DST-Group-TR-3251

51
UNCLASSIFIED

 stop
 end

Program countsn.f

!===

 program countsn

! Counts nodes by type for checking purposes.

 character aline*80

 open(unit=10,file='start.inp')

 num0=0
 num1=0
 num2=0
 num3=0
 num4=0
 num5=0
 num6=0

 do
 read(10,100,iostat=ier) aline
 100 format(a)
 if (ier.ne.0) goto 200
 if (aline(1:11).eq.'**mesh_data') then
 read(aline,500) nodetype
 500 format(11x,i7)
 if (nodetype.eq.0) num0=num0+1
 if (nodetype.eq.1) num1=num1+1
 if (nodetype.eq.2) num2=num2+1
 if (nodetype.eq.3) num3=num3+1
 if (nodetype.eq.4) num4=num4+1
 if (nodetype.eq.5) num5=num5+1
 if (nodetype.eq.6) num6=num6+1
 end if
 end do

 200 continue

 write(6,505) num0
 505 format('Number of type 0 nodes found = ',i10)
 write(6,510) num1
 510 format('Number of type 1 nodes found = ',i10)
 write(6,520) num2
 520 format('Number of type 2 nodes found = ',i10)
 write(6,530) num3
 530 format('Number of type 3 nodes found = ',i10)
 write(6,540) num4
 540 format('Number of type 4 nodes found = ',i10)
 write(6,550) num5
 550 format('Number of type 5 nodes found = ',i10)
 write(6,560) num6
 560 format('Number of type 6 nodes found = ',i10)

 close(10)

UNCLASSIFIED
DST-Group-TR-3251

52
UNCLASSIFIED

 stop
 end

Program cpxy.f

!===

 program cpxy

C Puts first line and first column back in to nodes.dat

 open(unit=10,file='znodes400.dat')
 open(unit=20,file='deepercutv2.xyz')

 read(10,*) numnodes
 do i=1,numnodes
 read(10,*) nid,x,y,z
 xnew=y-80
 ynew=20-x
 write(20,500) xnew,ynew
 500 format(f20.7,f20.7)
 end do

 stop
 end

Program expnf.f

!===

 program expnf

! Puts first line and first column back into nodes.dat.

 integer nid(10000)

 ! Read in all of node numbers in preparation for writing them out.

 open(unit=10,file='nodes.dat')
 read(10,*) numnodes
 do i=1,numnodes
 read(10,*) nid(i)
 end do
 close(10)

 ! Read in the shape coordinates obtained from the current iteration,
 ! and write them out together with the node numbers.

 open(unit=10,file='nodes.dat')
 open(unit=20,file='nodes.opt')

 read(20,*) numnodes
 write(10,'(i8)') numnodes
 do i=1,numnodes
 read(20,*) j,x,y,z
 write(10,'(i8,4f12.6)') nid(i),x,y,z
 end do

 close(10)

UNCLASSIFIED
DST-Group-TR-3251

53
UNCLASSIFIED

 close(20)

 write(6,*) 'Finished expnf.'

 stop
 end

Program fsig.f

!===

 program fsig

! Collates stress files from getsig (1 per load case) into one file
! called stress.rpt. Formats data for use by the optim4 program.

 character fname*12, loadstr*2

 open(unit=10,file='load.dat')
 read(10,*)numloads
 close(10)

 do i=1,numloads
 write(loadstr,500) i
 500 format(i2)
 if (loadstr(1:1).eq.' ') loadstr(1:1)='0'
 fname(1:6)='stress'
 fname(7:8)=loadstr
 fname(9:12)='.txt'
 open(unit=i+10,file=fname,status='OLD')
 end do

 open(unit=9,file='stress.rpt')

 do
 do i=1,numloads
 read(i+10,*,iostat=ier) nodeid,s11,s22
 if (ier.ne.0) go to 600
 write(9,510) i,nodeid,s11,s22
 510 format(i2,2x,i8,2x,g20.12,2x,g20.12)
 end do
 end do

 600 continue

 do i=1,numloads
 close(i+10)
 end do

 close(9)

 write(6,*) 'Finished fsig.'

 stop
 end

UNCLASSIFIED
DST-Group-TR-3251

54
UNCLASSIFIED

Program gethoop.f

!===

 program gethoop

! Gets hoop stress from stress??.txt file and puts in single column for
! plotting.

 open(unit=10,file='stress03.txt')
 open(unit=20,file='zero.hoop')

 i=0
 do
 i=i+1
 read(10,*,iostat=ier) nid,s11,s22
 if (ier.ne.0) go to 200
 hoop=s11
 if (abs(s22).ge.s11) hoop=s22
 write(20,*) i,hoop
 end do

 200 continue

 close(10)
 close(20)

 stop
 end

Subroutine urdfil.f

!===

 subroutine urdfil(lstop,lovrwrt,kstep,kinc,dtime,time)

! Abaqus user-defined subroutine to get principal stresses at nodes
! from the .fil results file. Averages all stress values given for
! each boundary node and finds the maximum value through the
! thickness (z direction).
!
! This file is compiled and run by Abaqus.

 include 'ABA_PARAM.INC'

 dimension array(513),jrray(nprecd,513),time(2)
 dimension nidbnd(300,10)
 dimension s11(300,10,10),s22(300,10,10),numsigs(300,10)
 dimension totals11(300,10),totals22(300,100)
 dimension avs11(300,10),avs22(300,10)
 dimension avmaxs11(300),avmaxs22(300)
 character stepstr*2,fname*12,flocn*80,path*68,aline*80

 equivalence (array(1),jrray(1,1))

 call posfil(kstep,kinc,array,jrcd)

! open(unit=2500,file='/home/waldmanw/abaqus/abopt/fillet3dmod/debug.txt')

UNCLASSIFIED
DST-Group-TR-3251

55
UNCLASSIFIED

 path='/home/waldmanw/abaqus/abopt/fillet3dmod/'
 lenpath=len_trim(path)

 ! i is number of boundary node.
 ! j is layer number through thickness, and j=1 indicates
 ! boundary master nodes.
 ! k is number of s11 values found in results file for node
 ! nidbnd(i,j).

 ! Count number of layers of nodes.

 open(unit=2120,file=path(1:lenpath) // 'bndall.nid')
 n=0
 do
 n=n+1
 read(2120,*,iostat=ier) nidtemp
 if (ier.ne.0) then
 nlayers=n-1
 go to 118
 end if
 end do
 118 continue
 rewind(2120)

 ! Read boundary node nids into array nidbnd, columns 1 - nlayers.

 i=0
 do
 i=i+1
 do j=1,nlayers
 read(2120,*,iostat=ier) nidbnd(i,j)
 if (ier.ne.0) goto 135
 end do
 read(2120,*)
 end do
 135 continue
 numnodes=i-1
 close(2120)

 ! Open file of form stress??.txt, where ?? is the loadcase (step)
 ! number in the range 01-99.

 write(stepstr,500) kstep
 500 format(i2)
 if (stepstr(1:1).eq.' ') stepstr(1:1)='0'
 fname(1:6)='stress'
 fname(7:8)=stepstr
 fname(9:12)='.txt'
 flocn=path(1:lenpath)//fname

 open(unit=2130,file=flocn)

 ! Initialise numsigs with zeros. Numsigs is an array of counters
 ! that count s11 values.

 do i=1,numnodes
 do j=1,nlayers
 numsigs(i,j)=0
 end do

UNCLASSIFIED
DST-Group-TR-3251

56
UNCLASSIFIED

 end do

 ! Read through all records in the Abaqus results file.

 do
 call dbfile(0,array,jrcd)
 if (jrcd.ne.0) go to 110
 key=jrray(1,2)
 if (key.eq.1) then
 lemid=jrray(5,1)
 nodeid=jrray(7,1)
 end if
 if (key.eq.401) then
 sig11=array(5)
 sig22=array(3)
 end if
 if (key.eq.401) then
 do i=1,numnodes
 do j=1,nlayers
 if (nodeid.eq.nidbnd(i,j)) then
 numsigs(i,j)=numsigs(i,j)+1
 s11(i,j,numsigs(i,j))=sig11
 s22(i,j,numsigs(i,j))=sig22
 end if
 end do
 end do
 end if
 end do

 110 continue

! do i=1,numnodes
! do j=1,nlayers
! do k=1,numsigs(i,j)
! write(2500,*) nidbnd(i,j),i,j,k
! write(2500,*) s11(i,j,k),s22(i,j,k)
! write(2500,*)
! end do
! end do
! end do

 do i=1,numnodes
 do j=1,nlayers
 totals11(i,j)=0.0
 totals22(i,j)=0.0
 do k=1,numsigs(i,j)
 totals11(i,j)=totals11(i,j)+s11(i,j,k)
 totals22(i,j)=totals22(i,j)+s22(i,j,k)
 end do
 avs11(i,j)=totals11(i,j)/numsigs(i,j)
 avs22(i,j)=totals22(i,j)/numsigs(i,j)
 end do
 end do

 do i=1,numnodes
 avmaxs11(i)=0.0
 avmaxs22(i)=0.0
 do j=1,nlayers
 if (abs(avs11(i,j)).gt.abs(avmaxs11(i))) then

UNCLASSIFIED
DST-Group-TR-3251

57
UNCLASSIFIED

 avmaxs11(i)=avs11(i,j)
 end if
 if (abs(avs22(i,j)).gt.abs(avmaxs22(i))) then
 avmaxs22(i)=avs22(i,j)
 end if
 end do
 write(2130,510) nidbnd(i,1),avmaxs11(i),avmaxs22(i)
 510 format(i6,2x,g20.12,2x,g20.12)
 end do

 125 continue

 close(2130)

! close(2500)

 return
 end

Program rednf.f

!===

 program rednf

! Removes first line and first column from nodes.dat. Puts data in
! nodes.opt for optim4 program.

 open(unit=10,file='nodes.dat')
 open(unit=20,file='nodes.opt')

 read(10,*) numnodes
 do i=1,numnodes
 read(10,*) nid,x,y,z
 c=0.0
 write(20,'(4f12.6)') x,y,z,c
 end do

 close(10)
 close(20)

 write(*,*) 'Finished rednf.'

 stop
 end

Program wrconv.f

!===

 program wrconv

! Write peak boundary hoop stress in convergence.dat, which can be
! viewed during run time to monitor job. After job is finished this
! file can used to create convergence plot.

 open(unit=10,file='stress.rpt')
 s11max=0.0
 do

UNCLASSIFIED
DST-Group-TR-3251

58
UNCLASSIFIED

 read(10,*,iostat=ier) lc,nid,s11,s22
 if (ier.ne.0) exit
 if (s11.gt.s11max) s11max=s11
 end do
 close(10)

 open(unit=20,file='convergence.dat',access='append')
 write(20,110) s11max
 110 format('Peak tensile hoop stress = ',g20.12)
 close(20)

 write(*,*) 'Finished wrconv.'

 stop
 end

Program wrshape.f

!===

 program wrshape

! Stores nodes.dat at each iteration in znodes???.dat so that the
! shape at any iteration can be retrieved.

 character aline*80, stri*3, fname*13

 open(unit=10,file='convergence.dat')

 i=0
 do
 i=i+1
 read(10,100,iostat=ier) aline
 100 format(a)
 if (ier.ne.0) then
 itnum=i-1
 goto 200
 end if
 end do

 200 continue
 close(10)

 open(unit=11,file='nodes.dat')
 open(unit=12,file='stress01.txt')

 write(stri,110) itnum
 110 format(i3)
 if (stri(1:1).eq.' ') stri(1:1)='0'
 if (stri(2:2).eq.' ') stri(2:2)='0'

 fname(1:6)='znodes'
 fname(7:9)=stri
 fname(10:13)='.dat'
 open(unit=20,file=fname)

 fname(1:6)='stress'
 fname(7:9)=stri
 fname(10:13)='.dat'

UNCLASSIFIED
DST-Group-TR-3251

59
UNCLASSIFIED

 open(unit=21,file=fname)

 read(11,*) numnodes
 write(20,*) numnodes
 do i=1,numnodes
 read(11,100) aline
 write(20,100) aline
 end do

 do
 read(12,100,iostat=ier) aline
 if (ier.ne.0) goto 210
 write(21,100) aline
 end do

 210 continue

 close(11)
 close(12)
 close(20)
 close(21)

 write(6,*) 'Finished wrshape.'

 stop
 end

Program optim4.c

/*

Shape Optimisation Functions
============================

Written by R Braemar 06/12/2005.

Performs the optimisation portion of the DSTO/MSC Shape Optimisation
functions.

Reads stress and node data and calculates and applies node movements
accordingly.

Modified by R Kaye in 2013 to run on Linux machine.

Modifications do not affect functioning of the program.

Modified by W Waldman in 2014.

*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 3.14159265358979323846
#define angle_mod 57.2957795130823208768

FILE *file_open(char *);

struct node_data

UNCLASSIFIED
DST-Group-TR-3251

60
UNCLASSIFIED

{
 double x; /* x coordinate */
 double y; /* y coordinate */
 double z; /* z coordinate */
 double n_x; /* previous x coordinate */
 double n_y; /* previous y coordinate */
 double n_z; /* previous z coordinate */
 double x_0; /* original x */
 double y_0; /* original y */
 double z_0; /* original z */
 double con; /* constraint */
 double normal; /* angle of normal */
 double det; /* determinant */
 double rad; /* radius */
 double space_r; /* node_spacing ratio */
 double mp1; /* modification parameter for given node */
 double thresh; /* thresholh stress for node */
 double d; /* optimisation factor d */
 int x_over; /* 1 indicates a multipeak cross over point */
};

struct ana_options
{
 int num_node; /* number of nodes on optimisation boundary */
 double min_rad; /* minimum radius of curvature constraint */
 int x_y_z; /* analysis plane */
 double step_size; /* step size parameter s */
 int options[19]; /* flags options for analysis */
 double centroid[2]; /* centre point of initial shape, used for boundary calcs
*/
 double constraints[4]; /* the geometry constraints in the 2D plane, ie min x,
max x, min y, max y */
 double mesh_param[5]; /* thickness, no. elem through thickness, width mesh
seed, length mesh seed, opt threshold */
 int num_loadcase;
 char initial_filename[128];
};

struct stress
{
 double s1;
 double s2;
};

int main()
{
 FILE *node_data_file;
 FILE *stress_data_file;
 FILE *parameter_data_file;
 FILE *initial_data_file;
 FILE *node_ini_file;
 struct node_data *data;
 struct ana_options *parameter;
 int iteration;
 char fname_ini[] ="nodes.ini";
 char fname_nodes[] ="nodes.opt";
 char fname_stress[] ="stress.rpt";
 char fname_parameters[]="parameters.dat";

UNCLASSIFIED
DST-Group-TR-3251

61
UNCLASSIFIED

 int read_data(FILE *, FILE *, FILE *, struct node_data *, struct ana_options *);
 void read_parameters(FILE *, struct ana_options *);
 void do_optimise_move(struct node_data *, struct ana_options *);
 void do_bound_mods(struct node_data *, struct ana_options *);
 void output_results(struct node_data *, struct ana_options *);
 void modify_z(struct node_data *data, struct ana_options *parameter);

 iteration = 1;

 /* read in geometry and stress data for each node */

 printf("Starting analysis.\n");

 /* open data files */

 node_data_file = fopen(fname_nodes,"r");
 stress_data_file = fopen(fname_stress,"r");
 parameter_data_file = fopen(fname_parameters,"r");

 if (parameter_data_file == NULL)
 {
 printf("Can't open parameter file: %s\n", fname_parameters);
 exit(1);
 }
 else if (node_data_file == NULL)
 {
 printf("Can't open node data file: %s\n", fname_nodes);
 exit(1);
 }
 else if (stress_data_file == NULL)
 {
 printf("Can't open stress data file: %s\n", fname_stress);
 exit(1);
 }

 printf("Reading optimisation analysis parameters from file.\n");
 printf("Parameters data file is: %s\n", fname_parameters);

 parameter = (struct ana_options *) calloc(1, sizeof(struct ana_options));

 /* read analysis parameters. 31 parameters to be read, contained in parameter
data file*/

 read_parameters(parameter_data_file, parameter);

 // Switch off smoothing of optimisation displacements at cross over region.

 parameter[0].options[18] = 1;

 initial_data_file = fopen(parameter[0].initial_filename,"r");
 if (initial_data_file == NULL)
 {
 printf("Can't open initial data file: %s\n", parameter[0].initial_filename);
 exit(1);
 }

 parameter[0].num_loadcase = 1;
 parameter[0].num_node = 81;

UNCLASSIFIED
DST-Group-TR-3251

62
UNCLASSIFIED

 node_ini_file = fopen(fname_ini,"r");
 if (node_ini_file == NULL)
 {
 printf("Can't open initial node file: %s\n", fname_ini);
 exit(1);
 }
 else
 {
 printf("Reading number of nodes from initial node file: %s\n",fname_ini);
 fscanf(node_ini_file, "%i\n", ¶meter[0].num_node);
 fclose(node_ini_file);
 printf("Number of nodes to be processed = %d\n", parameter[0].num_node);
 }

 /* allocate struct size for data storage */

 data = (struct node_data *) calloc(parameter[0].num_node + 1, sizeof(struct
node_data));

 /* read remaining data */

 printf("Reading data and determining optimisation factors.\n");

 read_data(node_data_file, stress_data_file, initial_data_file, data, parameter);

 printf("All data read and optimisation factors determined.\n");

 /* close input files */

 fclose(parameter_data_file);
 fclose(node_data_file);
 fclose(stress_data_file);
 fclose(initial_data_file);

 /* do optimisation movements */

 do_optimise_move(data, parameter);

 /* perform radius calculations */

 do_bound_mods(data, parameter);

 printf("Finished boundary constraint modifications.\n");

 /* perform z modifications if required */

 if (parameter[0].options[6] == 1)
 modify_z(data, parameter);

 /* write output file */

 printf("Starting to write data.\n");

 output_results(data, parameter);

 /* clear memory */

 free(data);
 free(parameter);

UNCLASSIFIED
DST-Group-TR-3251

63
UNCLASSIFIED

 /* printf("Optimisation analysis complete for iteration %d.\n", iteration); */

 return 0;
}

/*

*/

void read_parameters(FILE *fp, struct ana_options *parameter)
{
 /* read in analysis parameters from file
 Parameters are stored in the specified struct.
 */

 int i, j;
 char *fgets(), temp_val_1[256], temp_val_2[256], temp_val_3[256];
 char logical[] = "TRUE", xy[] = "xy", xz[] = "xz", yz[] = "yz";

 for (j = 0; j < 4; j++)
 {
 if (j == 0)
 {
 for (i = 0; i < 9; i++)
 {
 if (i == 0)
 fscanf(fp, "%s %s %s\n", temp_val_1, temp_val_2,
parameter[0].initial_filename);
 else
 fgets(temp_val_1, 256, fp);
 }
 }
 else if (j == 1)
 {
 for (i = 0; i < 18; i++)
 {
 fscanf(fp, "%s %s %s\n", temp_val_1, temp_val_2, temp_val_3);
 if (*temp_val_3 == *logical)
 parameter[0].options[i] = 1;
 else
 parameter[0].options[i] = 0;
 printf("Option %02d: %d\n", i+1,parameter[0].options[i]);
 }
 }
 else if (j == 2)
 {
 for (i = 0; i < 4; i++)
 {
 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].constraints[i]);
 }
 }
 else if (j == 3)
 {
 fgets(temp_val_1,256,fp);
 fgets(temp_val_1,256,fp);

 fscanf(fp, "%s %lf\n", temp_val_1, ¶meter[0].mesh_param[0]);

UNCLASSIFIED
DST-Group-TR-3251

64
UNCLASSIFIED

 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].mesh_param[1]);
 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].mesh_param[2]);
 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].mesh_param[3]);

 fgets(temp_val_1,256,fp);
 fgets(temp_val_1,256,fp);
 fgets(temp_val_1,256,fp);
 fgets(temp_val_1,256,fp);

 fscanf(fp, "%s %s %lf\n", temp_val_1, temp_val_2,
¶meter[0].mesh_param[4]);

 for (i = 0; i < 5; i++)
 printf("Mesh Parameter %d: %lf \n", i+1,parameter[0].mesh_param[i]);

 fgets(temp_val_1,256,fp);

 fscanf(fp, "%s %s %lf\n", temp_val_1, temp_val_2,
¶meter[0].step_size);
 fscanf(fp, "%s %s %lf\n", temp_val_1, temp_val_2,
¶meter[0].min_rad);
 fscanf(fp, "%s %s %s\n", temp_val_1, temp_val_2, temp_val_3);

 if (*temp_val_3 == *xy)
 parameter[0].x_y_z = 1;
 else if (*temp_val_3 == *xz)
 parameter[0].x_y_z = 2;
 else if (*temp_val_3 == *yz)
 parameter[0].x_y_z = 3;

 printf("Step size: %lf, Min Rad: %lf, Ana Plane: %d\n",
parameter[0].step_size, parameter[0].min_rad, parameter[0].x_y_z);

 fgets(temp_val_1,256,fp);
 fgets(temp_val_1,256,fp);

 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].centroid[0]);
 fscanf(fp, "%s %s %s %lf\n", temp_val_1, temp_val_2, temp_val_3,
¶meter[0].centroid[1]);

 printf("Centre points: %lf, %lf\n", parameter[0].centroid[0],
parameter[0].centroid[1]);
 }
 };
 printf("Parameters read.\n");
}

/*
**
*/

int read_data(FILE *fp1, FILE *fp2, FILE *fp3, struct node_data *data,
 struct ana_options *parameter)
{
 /*

UNCLASSIFIED
DST-Group-TR-3251

65
UNCLASSIFIED

 read_data is programmed to read the information contained in two output
 files generated by the optimisation process.

 The first contains the geometry and parameter data for the current
 iteration, the second is the stress results file.

 Information from each file is read into the appropriate structure with
 the stress data being modified initially to return required information
 specific to the type of analysis being performed.

 The data points for the initial shape are also read and stored in the
 data struct.

 */

 struct stress *temp;

 void manipulate_stress(struct node_data *, struct ana_options *, struct stress
*, int, int);
 void calc_fatigue(struct node_data *, struct ana_options *, struct stress *,
int, int);

 int i = 0, j = 0, counter = 0;
 int count_param, node_parameter, random_no, stress_param, temp_store_1;
 double temp_store_2;

 char *fgets();

 /* read geometry data first */

 while(i == 0)
 {
 fscanf(fp3, "%d\n", &temp_store_1);
 for (j = 0; j < parameter[0].num_node; j++)
 {
 fscanf(fp1, "%lf %lf %lf %lf\n", &data[j].x, &data[j].y, &data[j].z,
&data[j].con);
 fscanf(fp3, "%d %lf %lf %lf %lf\n", &temp_store_1, &data[j].x_0,
&data[j].y_0, &data[j].z_0, &temp_store_2);

 data[j].n_x = data[j].x;
 data[j].n_y = data[j].y;
 data[j].n_z = data[j].z;

 if (j == parameter[0].num_node - 1)
 i++;
 };
 }

 printf("Geometry data read.\n");

 /* change num_node to only represent the first layer for a non-constant t
analysis */

 if (parameter[0].options[6] == 1)
 parameter[0].num_node = parameter[0].num_node/2;

 /* read stress data, note that the number of nodes to be read is dependant on

UNCLASSIFIED
DST-Group-TR-3251

66
UNCLASSIFIED

the
 analysis type */

 /* through thickness analyses require more points initially */

 if (parameter[0].options[6] == 1)
 count_param = 3;
 else if (parameter[0].options[3] == 1)
 count_param = 2;
 else
 count_param = 1;

 if (parameter[0].options[7] == 1)
 node_parameter = parameter[0].num_node * parameter[0].num_loadcase;
 else
 node_parameter = parameter[0].num_node;

 if (count_param > 1)
 stress_param = node_parameter * (count_param + parameter[0].mesh_param[1]);
 else
 stress_param = node_parameter;

 temp = (struct stress *) calloc(2 * stress_param, sizeof(struct stress));

 /* read through white space and header at start of file */

 /* read stress values into temporary array */

 while(i==1)
 {
 for (j = 0; j < stress_param; j++)
 {
 fscanf(fp2, "%d %d %lf %lf\n", &random_no, &counter, &temp[j].s1,
&temp[j].s2);
 if (j == stress_param - 1)
 i++;
 };
 }

 /*
 manipulate stress data depending on analysis type
 for a basic stress analysis the peak stress at each node is assigned as the
modification parameter
 for a quasi 3d stress analysis the peak stress through the thickness (based
on the assigned node ids)
 is used as the modification parameter
 for a fatigue analysis the peak stress is determined at each node for each
loadcase. This is then used for
 a fatigue life calculation, the sum at each node is used as the modification
parameter
 */

 manipulate_stress(data, parameter, temp, node_parameter, count_param);

 free(temp);

 return 0;
}

UNCLASSIFIED
DST-Group-TR-3251

67
UNCLASSIFIED

/*

*/

void manipulate_stress(struct node_data *data, struct ana_options *parameter,
 struct stress *temp, int node_param, int count_param)
{
 int i, j, k, start, end, num_loop = 0, node_start, node_end;
 int node_mod, *multipeak;
 double *stress_store, stress_state, threshold, weight_factor;

 stress_store = (double *) calloc(2 * node_param, sizeof(double));

 /* determine peak stress and assign to node modification parameter for each
node*/

 printf("Starting stress manipulations and optimisation parameter
calculations.\n");

 /* consolidate max stress for each combination of node and loadcase */

 for (i = 0; i < node_param; i++)
 {
 stress_store[i] = temp[i].s1;

 if (count_param == 1)
 {
 for(j = 0; j < (parameter[0].mesh_param[1]); j++)
 {
 if(fabs(temp[i + j * node_param].s1) > fabs(temp[i + j *
node_param].s2))
 {
 if(fabs(temp[i + j * node_param].s1) > stress_store[i])
 stress_store[i] = temp[i + j * node_param].s1;
 }
 else if(fabs(temp[i + j * node_param].s2) > stress_store[i])
 stress_store[i] = temp[i + j * node_param].s2;
 }
 }
 else
 {
 /* consolidate for quasi 3d through thickness nodes */

 for(j = 0; j < (parameter[0].mesh_param[1] + count_param); j++)
 {
 if ((j == 2) && (count_param == 3)){
 /* do nothing */
 }
 else if ((j==1) && (count_param == 2))
 {
 /* do nothing */
 }
 else {
 if(fabs(temp[i + j * node_param].s1) > fabs(temp[i + j *
node_param].s2))
 {
 if(fabs(temp[i + j * node_param].s1) > stress_store[i])
 stress_store[i] = temp[i + j * node_param].s1;
 }

UNCLASSIFIED
DST-Group-TR-3251

68
UNCLASSIFIED

 else if(fabs(temp[i + j * node_param].s2) > stress_store[i])
 {
 stress_store[i] = temp[i + j * node_param].s2;
 }
 }
 }
 }
 }

 for (j = 0; j < parameter[0].num_loadcase; j++)
 {
 /* loop through for each loadcase */

 /* store peak stress in struct */

 for (i = 0; i < parameter[0].num_node; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if (j > 0)
 {
 if (fabs(stress_store[node_mod]) > fabs(data[i].mp1))
 data[i].mp1 = stress_store[node_mod];
 }
 else
 data[i].mp1 = stress_store[node_mod];
 }
 }

 if ((parameter[0].options[12] == 1)||(parameter[0].options[7] == 0))
 {
 /* assign combined stress back to stress_store */

 for (i = 0; i < parameter[0].num_node; i++)
 stress_store[i] = data[i].mp1;

 /* assign number of loadcase to show only a combined case remains */
 parameter[0].num_loadcase = 1;
 }

 /* calculate crossover stress if multipeak analysis and flag cross over nodes */

 printf("Determining multipeak cross overs.\n");

 for (j = 0; j < parameter[0].num_loadcase; j++)
 {
 /* loop through for each loadcase */

 /* clear current cross_over points */
 if (j > 0)
 {
 num_loop = 0;
 for (i = 0; i < parameter[0].num_node; i++)
 data[i].x_over = 0;
 }

 if(parameter[0].options[0] == 1)
 {
 stress_state = stress_store[j];
 for (i = 0; i < parameter[0].num_node; i++)

UNCLASSIFIED
DST-Group-TR-3251

69
UNCLASSIFIED

 {
 node_mod = j + i * parameter[0].num_loadcase;
 if (((stress_state > 0.0) && (stress_store[node_mod] <
0.0))||((stress_state < 0.0) && (stress_store[node_mod] > 0.0)))
 {
 stress_state = stress_store[node_mod];
 data[i].x_over = 1;
 num_loop++;
 }
 if (i == parameter[0].num_node - 1)
 {
 if (((stress_store[node_mod] > 0.0) && (stress_store[j] <
0.0))||((stress_store[node_mod] < 0.0) && (stress_store[j] > 0.0)))
 data[0].x_over = 1;
 }
 }
 if (num_loop < 1)
 num_loop = 1;
 /* account for open profile (requires extra loop) */
 if (parameter[0].options[17] == 0)
 num_loop++;
 }
 else
 /* 1 loop if single peak analysis */
 num_loop = 1;

 /* calculate stress threshold */
 if (num_loop > 1)
 {
 multipeak = (int *) calloc(4 * num_loop, sizeof(int));
 k = 0;
 for (i = 0; i < parameter[0].num_node; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if (data[i].x_over == 1)
 {
 multipeak[k] = i;
 k++;
 }
 data[i].thresh = stress_store[node_mod];
 }

 for(k = 0; k < num_loop; k++)
 {
 if (parameter[0].options[17] == 1)
 {
 /* closed profile */
 if(k == 0)
 {
 start = multipeak[num_loop - 1];
 end = multipeak[k] - 1;
 }
 else
 {
 start = multipeak[k - 1];
 end = multipeak[k] - 1;
 }
 }
 else

UNCLASSIFIED
DST-Group-TR-3251

70
UNCLASSIFIED

 {
 /* open profile */
 if (k == 0)
 {
 start = 1;
 end = multipeak[k] - 1;
 }
 else if (k == num_loop - 1)
 {
 start = multipeak[k-1];
 end = parameter[0].num_node;
 }
 else
 {
 start = multipeak[k - 1];
 end = multipeak[k] - 1;
 }
 }

 /* determine threshold stress for each region */

 if (end < start)
 {
 threshold = stress_store[start + 1 + j];
 for (i = start; i < parameter[0].num_node; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if(fabs(stress_store[node_mod]) > threshold)
 threshold = fabs(stress_store[node_mod]);
 }
 for (i = 0; i < end + 1; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if(fabs(stress_store[node_mod]) > threshold)
 threshold = fabs(stress_store[node_mod]);
 }
 }
 else
 {
 threshold = stress_store[start + 1 + j];
 for(i = start; i < end + 1; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if(fabs(stress_store[node_mod]) > threshold)
 threshold = fabs(stress_store[node_mod]);
 }
 }

 /* assign threshold to each node */
 if (end < start)
 {
 for (i = start; i < parameter[0].num_node; i++)
 data[i].thresh = threshold;
 for (i = 0; i < end + 1; i++)
 data[i].thresh = threshold;
 }
 else
 {
 for(i = start; i < end + 1; i++)

UNCLASSIFIED
DST-Group-TR-3251

71
UNCLASSIFIED

 data[i].thresh = threshold;
 }
 }
 }
 else
 {
 /* calculate threshold stress for single peak*/
 threshold = stress_store[j];
 for (i = 0; i < parameter[0].num_node; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if (fabs(stress_store[node_mod])> threshold)
 threshold = fabs(stress_store[node_mod]);
 }
 for (i = 0; i < parameter[0].num_node; i++)
 data[i].thresh = threshold;
 }

 /* calculate optimisation parameter d */

 if (parameter[0].options[0] == 1)
 {
 node_start = 0;
 node_end = parameter[0].num_node;
 }
 else
 {
 if (parameter[0].options[17] == 1)
 {
 node_start = 0;
 node_end = parameter[0].num_node;
 }
 else
 {
 node_start = 1;
 node_end = parameter[0].num_node - 1;
 data[0].d = 0;
 data[parameter[0].num_node].d = 0;
 }
 }

 for (i = node_start; i < node_end; i++)
 {
 if (parameter[0].options[13] == 1)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 stress_store[node_mod] = ((fabs(stress_store[node_mod]) -
data[i].thresh)/data[i].thresh) * parameter[0].step_size;
 }
 else if ((parameter[0].options[12] == 1)||(parameter[0].options[7]==0))
 {
 node_mod = j + i * parameter[0].num_loadcase;
 stress_store[node_mod] = ((fabs(data[i].mp1) -
data[i].thresh)/data[i].thresh) * parameter[0].step_size;
 }
 }

 free(multipeak);
 }

UNCLASSIFIED
DST-Group-TR-3251

72
UNCLASSIFIED

 if ((parameter[0].options[7] == 1)&&(parameter[0].options[13] == 1))
 {
 for (j = 0; j < parameter[0].num_loadcase; j++)
 {
 for (i = node_start; i < node_end; i++)
 {
 node_mod = j + i * parameter[0].num_loadcase;
 if (j==0)
 data[i].d = stress_store[node_mod];
 else if (fabs(stress_store[node_mod]) < fabs(data[i].d))
 data[i].d = stress_store[node_mod];
 }
 }
 }
 else
 {
 for (i = node_start; i < node_end; i++)
 data[i].d = stress_store[i];
 }

 /*
 smooth modification factor at cross over points
 done by averaging the two nodes on either side of the cross over
 */

 if (parameter[0].options[13] == 0 && parameter[0].options[18] == 0)
 {
 printf("This point shouldn't matter.\n");
 printf(" num_loop=%d\n",num_loop);
 if (num_loop > 1)
 {
 for (j = 0; j < num_loop; j++)
 {
 weight_factor = data[multipeak[j]].d/data[multipeak[j]-1].d;
 printf(" j =%d\n",j);
 printf(" weight_factor =%f\n",weight_factor);
 printf(" multipeak[j] =%d\n",multipeak[j]);
 printf(" data[multipeak[j]].d=%f\n",data[multipeak[j]].d);
 printf(" data[multipeak[j]-1].d=%f\n",data[multipeak[j]-1].d);
 if (weight_factor > 1)
 weight_factor = 1/weight_factor;
 printf(" weight_factor=%f\n",weight_factor);
 data[multipeak[j]].d = (data[multipeak[j]].d + data[multipeak[j]-
1].d)/2;
 if (data[multipeak[j]-1].d < data[multipeak[j]].d)
 {
 data[multipeak[j]-1].d = data[multipeak[j]].d;
 data[multipeak[j]].d = data[multipeak[j]].d * weight_factor;
 }
 else
 data[multipeak[j]-1].d = data[multipeak[j]].d * weight_factor;
 weight_factor = data[multipeak[j]+1].d/data[multipeak[j]-2].d;
 if (weight_factor > 1)
 weight_factor = 1/weight_factor;
 data[multipeak[j]+1].d = (data[multipeak[j]+1].d +
data[multipeak[j]-2].d)/2;
 if (data[multipeak[j]-2].d < data[multipeak[j]+1].d)
 {

UNCLASSIFIED
DST-Group-TR-3251

73
UNCLASSIFIED

 data[multipeak[j]-2].d = data[multipeak[j]+1].d;
 data[multipeak[j]+1].d = data[multipeak[j]+1].d * weight_factor;
 }
 else
 data[multipeak[j]-2].d = data[multipeak[j]+1].d * weight_factor;
 }
 }
 }
 printf("Finished manipulating stress and determining optimisation factors.\n");
 free(stress_store);
}

/*
**
*/

void calc_fatigue(struct node_data *data, struct ana_options *parameter,
 struct stress *temp, int node_param, int count_param)
{
 int i, j, k;
 double load_dist[parameter[0].num_loadcase];
 double Su, S3, S6, life, a, b;

 /*
 Determine peak stress and assign to temporary storage (first elements of temp
array).
 Only positive stresses contribute to the fatigue at this stage so only +ve
stresses stored.
 */

 for (i = 0; i < node_param; i++)
 {
 if (count_param == 1)
 {
 {
 if(temp[i].s1 < temp[i].s2)
 temp[i].s1 = temp[i].s2;
 }
 }
 else
 {
 for(j = 0; j <= (parameter[0].mesh_param[2] + count_param); j++)
 {
 if((temp[i].s1 < temp[i].s2)&&(j==0))
 temp[i].s1 = temp[i].s2;
 else if((temp[i].s1 < temp[i + j * node_param].s1)||(temp[i].s1 <
temp[i + j * node_param].s2))
 {
 if (temp[i + j * node_param].s1 < temp[i + j * node_param].s2)
 temp[i].s1 = temp[i + j * node_param].s2;
 else
 temp[i].s1 = temp[i + j * node_param].s1;
 }
 }
 }
 if (temp[i].s1 < 0)
 temp[i].s1 = 0;
 }

UNCLASSIFIED
DST-Group-TR-3251

74
UNCLASSIFIED

 /* once stresses for each load case are determined calculate fatigue life index
for each node based on loadcase distribution */

 /* determine distribution constant, normal or */
 if (parameter[0].options[19] == 1)
 {
 for (i = 0; i < parameter[0].num_loadcase; i++)
 {
 load_dist[i] = 1.0/parameter[0].num_loadcase;
 }
 }
 else if (parameter[0].options[19] == 0)
 {
 for (i = 0; i < parameter[0].num_loadcase; i++)
 load_dist[i] = 1/sqrt(2*3.141)*exp(-0.5*(i-1-
pow((parameter[0].num_loadcase-1)/2, 2)));
 }

 /* calculate fatigue damage rate based on material S-N curve */

 Su = 60000;
 S3 = 0.9 * Su;
 S6 = 0.5 * Su;
 a = (log10(S3) - log10(S6))/(log10(1000)-log10(1000000));
 b = log10(S3) - a * log10(1000);

 k = 0;

 for (i = 0; i < node_param; i = i + parameter[0].num_loadcase)
 {
 data[k].mp1 = 0;
 for (j = 0; j < parameter[0].num_loadcase; j++)
 {
 if (temp[i + j].s1 > S6)
 {
 life = pow(10, (log10(temp[i + j].s1) - b)/a);
 data[k].mp1 = data[k].mp1 + load_dist[j]/life;
 }
 }
 k++;
 }
}

/*
**
*/

void extract_xyz(struct ana_options *parameter, double *xyz, int i, struct
node_data *data)
{
 /* extracts the relevant values of x, y or z depending on the analysis type and
plane */

 if(parameter[0].options[17] == 1)
 {
 if (parameter[0].x_y_z == 1)
 {
 if (i == 0)

UNCLASSIFIED
DST-Group-TR-3251

75
UNCLASSIFIED

 {
 xyz[0] = data[parameter[0].num_node - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[parameter[0].num_node - 1].y;
 xyz[4] = data[i].y;
 xyz[5] = data[i + 1].y;
 }
 else if(i == parameter[0].num_node - 1)
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[0].x;
 xyz[3] = data[i - 1].y;
 xyz[4] = data[i].y;
 xyz[5] = data[0].y;
 }
 else
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[i - 1].y;
 xyz[4] = data[i].y;
 xyz[5] = data[i + 1].y;
 };
 }
 else if (parameter[0].x_y_z == 2)
 {
 if (i == 0)
 {
 xyz[0] = data[parameter[0].num_node - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[parameter[0].num_node - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 }
 else if(i == parameter[0].num_node - 1)
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[0].x;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[0].z;
 }
 else
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 };
 }
 else if (parameter[0].x_y_z == 3)
 {

UNCLASSIFIED
DST-Group-TR-3251

76
UNCLASSIFIED

 if (i == 0)
 {
 xyz[0] = data[parameter[0].num_node - 1].y;
 xyz[1] = data[i].y;
 xyz[2] = data[i + 1].y;
 xyz[3] = data[parameter[0].num_node - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 }
 else if(i == parameter[0].num_node - 1)
 {
 xyz[0] = data[i - 1].y;
 xyz[1] = data[i].y;
 xyz[2] = data[0].y;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[0].z;
 }
 else
 {
 xyz[0] = data[i - 1].y;
 xyz[1] = data[i].y;
 xyz[2] = data[i + 1].y;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 };
 }
 }
 else
 {
 if (parameter[0].x_y_z == 1)
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[i - 1].y;
 xyz[4] = data[i].y;
 xyz[5] = data[i + 1].y;
 }
 else if (parameter[0].x_y_z == 2)
 {
 xyz[0] = data[i - 1].x;
 xyz[1] = data[i].x;
 xyz[2] = data[i + 1].x;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 }
 else if (parameter[0].x_y_z == 3)
 {
 xyz[0] = data[i - 1].y;
 xyz[1] = data[i].y;
 xyz[2] = data[i + 1].y;
 xyz[3] = data[i - 1].z;
 xyz[4] = data[i].z;
 xyz[5] = data[i + 1].z;
 }
 }

UNCLASSIFIED
DST-Group-TR-3251

77
UNCLASSIFIED

}

/*
**
*/

void calculate_normal(struct ana_options *parameter, double *xyz,
 int i, struct node_data *data)
{
 double diff1, diff2, result_angle;

 diff1 = xyz[2] - xyz[0];
 diff2 = xyz[5] - xyz[3];

 result_angle = atan2(diff2, diff1);
 data[i].normal = (result_angle * angle_mod + 90.0);

 if(data[i].normal > 180)
 data[i].normal = data[i].normal - 360;

 if ((parameter[0].options[2] == 0) && (data[i].normal < 0))
 data[i].normal = data[i].normal + 180;
 else if ((parameter[0].options[2] == 0) && (data[i].normal > 0))
 data[i].normal = data[i].normal - 180;
}

/*
**
*/

void do_node_move(struct node_data *data, struct ana_options *parameter, int i)
{
 int clock_dir = -1;

 /* perform movement to new coords */

 printf("node = %4d, d = %12.6f, normal = %.6f\n", i, data[i].d, data[i].normal);

 if(data[i].con == 0.0)
 { /* free in both directions */
 if(parameter[0].x_y_z == 1.0)
 {
 data[i].x = data[i].x + data[i].d*cos(data[i].normal / angle_mod) *
clock_dir;
 data[i].y = data[i].y + data[i].d*sin(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 2.0)
 {
 data[i].x = data[i].x + data[i].d* cos(data[i].normal / angle_mod) *
clock_dir;
 data[i].z = data[i].z + data[i].d* sin(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 3.0)
 {
 data[i].y = data[i].y + data[i].d * cos(data[i].normal / angle_mod) *
clock_dir;
 data[i].z = data[i].z + data[i].d * sin(data[i].normal / angle_mod) *

UNCLASSIFIED
DST-Group-TR-3251

78
UNCLASSIFIED

clock_dir;
 }
 }
 else if(data[i].con == 1.0)
 { /* fixed in second dimension */
 if(parameter[0].x_y_z == 1.0)
 {
 data[i].y = data[i].y + data[i].d * sin(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 2.0)
 {
 data[i].z = data[i].z + data[i].d * sin(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 3.0)
 {
 data[i].z = data[i].z + data[i].d * sin(data[i].normal / angle_mod) *
clock_dir;
 }
 }
 else if(data[i].con == 2.0)
 { /* fixed in first dimension */
 if(parameter[0].x_y_z == 1.0)
 {
 data[i].x = data[i].x + data[i].d * cos(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 2.0)
 {
 data[i].x = data[i].x + data[i].d * cos(data[i].normal / angle_mod) *
clock_dir;
 }
 else if(parameter[0].x_y_z == 3.0)
 {
 data[i].y = data[i].y + data[i].d * cos(data[i].normal / angle_mod) *
clock_dir;
 }
 }
 else if(data[i].con == 3.0)
 { /* fixed in both directions */
 if(parameter[0].x_y_z == 1.0)
 {
 data[i].x = data[i].x;
 data[i].y = data[i].y;
 }
 else if(parameter[0].x_y_z == 2.0)
 {
 data[i].x = data[i].x;
 data[i].z = data[i].z;
 }
 else if(parameter[0].x_y_z == 3.0)
 {
 data[i].y = data[i].y;
 data[i].z = data[i].z;
 }
 }
}

UNCLASSIFIED
DST-Group-TR-3251

79
UNCLASSIFIED

/*
**
*/

void do_optimise_move(struct node_data *data, struct ana_options *parameter)
{

 /* performs nodal movement based on parameters determined in optimisation
calculations */

 int i, node_start, node_end;
 double xyz[6], dd, ff;

 if (parameter[0].options[17] == 1)
 {
 node_start = 0;
 node_end = parameter[0].num_node;
 }
 else
 {
 node_start = 1;
 node_end = parameter[0].num_node - 1;
 }

 printf("Node start = %d\n", node_start);
 printf("Node end = %d\n", node_end-1);

 for (i = node_start; i < node_end; i++)
 {
 /* calculate normal direction for each node (based on 3 point analysis) */

 extract_xyz(parameter, xyz, i, data);

 calculate_normal(parameter, xyz, i, data);

 /* calculations necessary for space ratio */

 dd = sqrt(pow((xyz[2] - xyz[0]),2) + pow((xyz[5] - xyz[3]),2));
 ff = sqrt(pow((xyz[1] - xyz[0]),2) + pow((xyz[4] - xyz[3]),2));

 /* node_space_ratio */

 data[i].space_r = ff/dd;
 }

 for (i = node_start; i < node_end; i++)
 {
 /* perform nodal movement */
 do_node_move(data, parameter, i);
 }
 printf("Finished node movement.\n");
}

/*
**
*/

void apply_bound_constraint(struct ana_options *parameter, struct node_data *data)
{

UNCLASSIFIED
DST-Group-TR-3251

80
UNCLASSIFIED

 /* check boundary constraints and move nodes if outside the bounding box */

 int i, node_start, node_end;

 if (parameter[0].options[17] == 1)
 {
 node_start = 0;
 node_end = parameter[0].num_node;
 }
 else
 {
 node_start = 1;
 node_end = parameter[0].num_node - 1;
 }

 if(parameter[0].x_y_z == 1.0)
 {
 for(i = node_start; i < node_end; i++)
 {
 if(data[i].x < parameter[0].constraints[0])
 {
 data[i].x = parameter[0].constraints[0];
 printf("Boundary x constraint enforced node: %d\n", i+1);
 }
 else if (data[i].x > parameter[0].constraints[1])
 {
 data[i].x = parameter[0].constraints[1];
 printf("Boundary x constraint enforced node: %d\n", i+1);
 }
 if(data[i].y < parameter[0].constraints[2])
 {
 data[i].y = parameter[0].constraints[2];
 printf("Boundary y constraint enforced node: %d\n", i+1);
 }
 else if(data[i].y > parameter[0].constraints[3])
 {
 data[i].y = parameter[0].constraints[3];
 printf("Boundary y constraint enforced node: %d\n", i+1);
 }
 }
 }
 else if(parameter[0].x_y_z == 2.0)
 {
 for(i = node_start; i < node_end; i++)
 {
 if(data[i].x < parameter[0].constraints[0])
 data[i].x = parameter[0].constraints[0];
 else if (data[i].x > parameter[0].constraints[1])
 data[i].x = parameter[0].constraints[1];

 if(data[i].z < parameter[0].constraints[2])
 data[i].z = parameter[0].constraints[2];
 else if(data[i].z > parameter[0].constraints[3])
 data[i].z = parameter[0].constraints[3];
 }
 }
 else if(parameter[0].x_y_z == 3.0)
 {
 for(i = node_start; i < node_end; i++)

UNCLASSIFIED
DST-Group-TR-3251

81
UNCLASSIFIED

 {
 if(data[i].y < parameter[0].constraints[0])
 data[i].y = parameter[0].constraints[0];
 else if (data[i].y > parameter[0].constraints[1])
 data[i].y = parameter[0].constraints[1];

 if(data[i].z < parameter[0].constraints[2])
 data[i].z = parameter[0].constraints[2];
 else if(data[i].z > parameter[0].constraints[3])
 data[i].z = parameter[0].constraints[3];
 }
 }
}

/*
**
*/

void output_results(struct node_data *data, struct ana_options *parameter)
{
 /* output results of data analysis to file */

 FILE *output_file;
 FILE *sum_file;
 int j;

 output_file = fopen("nodes.opt","w");

 fprintf(output_file, "%d\n",parameter[0].num_node);

 for (j = 0; j < parameter[0].num_node; j++)
 {
 fprintf(output_file, "%6d %13.6lf %13.6lf %13.6lf %13.6lf\n", j+1,
 data[j].x, data[j].y, data[j].z, data[j].con);
 };

 fclose(output_file);

 sum_file = fopen("summary_file.dat","w");

 for (j = 0; j < parameter[0].num_node; j++)
 {
 fprintf(sum_file, "%5d %13.6lf %13.6lf %13.6lf %13.6lf %13.6lf %16.6lf
%13.6lf %13.6lf %13.6lf\n",
 j+1,
 data[j].x, data[j].y, data[j].z, data[j].space_r, data[j].normal,
 data[j].rad, data[j].d, data[j].mp1, data[j].thresh);
 };

 fclose(sum_file);
}

/*
**
*/

void do_bound_mods(struct node_data *data, struct ana_options *parameter)
{
 void apply_bound_constraint(struct ana_options *, struct node_data *);

UNCLASSIFIED
DST-Group-TR-3251

82
UNCLASSIFIED

 void rad_calc(struct ana_options *, double *, int, struct node_data *);
 void rad_mod_check(struct node_data *data, int i, struct ana_options
*parameter);
 void modify_angle(int, struct node_data *, double *, struct ana_options *,
double *);

 int i, j, iterate = 1, count = 1, det_flag, node_start, node_end, mod_done;
 double xyz[6];
 double alpha[1], gamma[1], theta[1], dd, ee, ff;
 double current_min, con_factor;

 if (parameter[0].options[17] == 1)
 {
 node_start = 0;
 node_end = parameter[0].num_node;
 }
 else
 {
 node_start = 1;
 node_end = parameter[0].num_node - 1;
 }

 while (iterate == 1)
 {
 /* check bounding box first and adjust nodes accordingly */

 apply_bound_constraint(parameter, data);

 /* perform minimum radius calculations */

 current_min = parameter[0].min_rad;

 for(i = node_start; i < node_end; i++)
 {
 rad_calc(parameter, xyz, i, data);
 }

 /* check and adjust radius */

 for(i = node_start; i < node_end; i++)
 {
 extract_xyz(parameter, xyz, i, data);
 calculate_normal(parameter, xyz, i, data);

 dd = sqrt(pow((xyz[2] - xyz[0]),2) + pow((xyz[5] - xyz[3]),2));

 if (parameter[0].options[2] == 1)
 ee = sqrt((pow(parameter[0].min_rad,2)) - (pow((dd/2.0),2)));
 else
 ee = sqrt((pow(parameter[0].min_rad,2)) - (pow((dd/2.0),2)));

 if ((data[i].rad == 0.0)||(parameter[0].min_rad == 0.0))
 {
 /* if convex or on straight line move to straight line (determinant
<= 0.0) */
 if (parameter[0].x_y_z == 1)
 {
 if (data[i].con == 0)
 {

UNCLASSIFIED
DST-Group-TR-3251

83
UNCLASSIFIED

 data[i].x = xyz[0] * (1 - data[i].space_r) + xyz[2] *
data[i].space_r;
 data[i].y = xyz[3] * (1 - data[i].space_r) + xyz[5] *
data[i].space_r;
 }
 else if (data[i].con == 1)
 {
 data[i].y = (data[i].y + xyz[3] * (1 - data[i].space_r) +
xyz[5] * data[i].space_r)/2;
 }
 else if (data[i].con == 2)
 {
 data[i].x = (data[i].x + xyz[2] * (1 - data[i].space_r) +
xyz[0] * data[i].space_r)/2;
 }
 }
 else if (parameter[0].x_y_z == 2)
 {
 if (data[i].con == 0)
 {
 data[i].x = xyz[0] * (1 - data[i].space_r) + xyz[2] *
data[i].space_r;
 data[i].z = xyz[3] * (1 - data[i].space_r) + xyz[5] *
data[i].space_r;
 }
 else if (data[i].con == 1)
 {
 data[i].z = (data[i].z + xyz[3] * (1 - data[i].space_r) +
xyz[5] * data[i].space_r)/2;
 }
 else if (data[i].con == 2)
 {
 data[i].x = (data[i].x + xyz[0] * (1 - data[i].space_r) +
xyz[2] * data[i].space_r)/2;
 }
 }
 else if (parameter[0].x_y_z == 3)
 {
 if (data[i].con == 0)
 {
 data[i].y = xyz[0] * (1 - data[i].space_r) + xyz[2] *
data[i].space_r;
 data[i].z = xyz[3] * (1 - data[i].space_r) + xyz[5] *
data[i].space_r;
 }
 else if (data[i].con == 1)
 {
 data[i].z = (data[i].z + xyz[3] * (1 - data[i].space_r) +
xyz[5] * data[i].space_r)/2;
 }
 else if (data[i].con == 2)
 {
 data[i].y = (data[i].y + xyz[0] * (1 - data[i].space_r) +
xyz[2] * data[i].space_r)/2;
 }
 }
 }
 else if (data[i].rad < parameter[0].min_rad)
 {

UNCLASSIFIED
DST-Group-TR-3251

84
UNCLASSIFIED

 /*
 ron's method
 determine position of point necessary to meet min radius
 and adjust position accordingly
 */

 if ((i == 0)||(i == 36))
 printf("node: %d, rad: %lf, x1: %lf, y1: %lf, x2: %lf, y2: %lf,
x3: %lf, y3: %lf\n", i + 1, data[i].rad, xyz[0], xyz[3], xyz[1], xyz[4], xyz[2],
xyz[5]);

 theta[0] = atan((parameter[0].min_rad-ee)/(dd/2));

 ff = sqrt(pow((parameter[0].min_rad - ee),2) + pow((dd/2),2));
 alpha[0] = atan((xyz[5] - xyz[3])/(xyz[2]-xyz[0]));

 if (parameter[0].options[2] == 1)
 gamma[0] = (alpha[0] + theta[0]) * angle_mod;
 else
 gamma[0] = (alpha[0] - theta[0]) * angle_mod;

 /* modify application angle (gamma[0]) based on normals) */

 modify_angle(i, data, gamma, parameter, xyz);

 if (data[i].con > 0.0)
 {
 if ((data[i].space_r > 0.51)||(data[i].space_r < 0.49))
 {
 if (data[i].con == 1.0)
 con_factor = (xyz[0]-xyz[1])/(ff*cos(gamma[0]/angle_mod));
 else if (data[i].con == 2.0)
 con_factor = (xyz[3]-xyz[4])/(ff*sin(gamma[0]/angle_mod));
 if (parameter[0].options[2] == 0.0)
 con_factor = -con_factor;
 printf("node id: %d, con factor: %lf\n", i + 1, con_factor);
 }
 }
 else
 con_factor = 1.0;

 if (data[i].con == 0.0)
 {
 if (parameter[0].x_y_z == 1)
 {
 data[i].x = xyz[0] + ff * cos(gamma[0] / angle_mod);
 data[i].y = xyz[3] + ff * sin(gamma[0] / angle_mod);
 }
 else if (parameter[0].x_y_z == 2)
 {
 data[i].x = xyz[0] + ff * cos(gamma[0] / angle_mod);
 data[i].z = xyz[3] + ff * sin(gamma[0] / angle_mod);
 }
 else if (parameter[0].x_y_z == 3)
 {
 data[i].y = xyz[0] + ff * cos(gamma[0] / angle_mod);
 data[i].z = xyz[3] + ff * sin(gamma[0] / angle_mod);
 }
 }

UNCLASSIFIED
DST-Group-TR-3251

85
UNCLASSIFIED

 else if (data[i].con == 1.0)
 {
 if ((parameter[0].x_y_z == 3)||(parameter[0].x_y_z == 2))
 {
 data[i].z = xyz[3] + ff * con_factor * sin(gamma[0] /
angle_mod);
 }
 else if (parameter[0].x_y_z == 1)
 {
 data[i].y = xyz[3] + ff * con_factor * sin(gamma[0] /
angle_mod);
 }
 }
 else if (data[i].con == 2.0)
 {
 if (parameter[0].x_y_z == 3)
 {
 data[i].y = xyz[0] + ff * con_factor * cos(gamma[0] /
angle_mod);
 }
 else if ((parameter[0].x_y_z == 1)||(parameter[0].x_y_z == 2))
 {
 data[i].x = xyz[0] + ff * con_factor * cos(gamma[0] /
angle_mod);
 }
 }
 if ((i == 0)||(i == 36))
 printf("node: %d, rad: %lf, new x: %lf, new y: %lf\n", i + 1,
data[i].rad, data[i].x, data[i].y);

 mod_done = 1;
 }

 calculate_normal(parameter, xyz, i, data);

 /* ensure new shape does not cross boundary of initial profile. */
 if (parameter[0].options[11] == 1)
 rad_mod_check(data, i, parameter);

 /*
 update radius after node movement
 */
 if (i == node_end)
 {
 rad_calc(parameter, xyz, i, data);
 if (parameter[0].options[17] == 1)
 rad_calc(parameter, xyz, node_start, data);
 }
 else
 {
 rad_calc(parameter, xyz, i, data);
 rad_calc(parameter, xyz, i + 1, data);
 }

 if ((i == 0)||(i == 36))
 printf("node: %d, rad: %lf, new x am: %lf, new y am: %lf, gamma: %lf,
ff: %lf\n", i + 1, data[i].rad, data[i].x, data[i].y, gamma[0], ff);

 if (mod_done == 1)

UNCLASSIFIED
DST-Group-TR-3251

86
UNCLASSIFIED

 {
 mod_done = 0;
 }
 }

 /* check for minimum radius constraints */

 for (j = node_start; j < node_end; j++)
 {
 rad_calc(parameter, xyz, j, data);

 if ((data[j].rad < current_min) && (current_min != 0.0) && (data[j].rad
!= 0.0))
 current_min = data[j].rad;
 else if (current_min == 0.0)
 current_min = parameter[0].min_rad;

 if (((parameter[0].options[2] == 0) && (data[i].det <
0))||((parameter[0].options[2] == 1) && (data[i].det > 0)))
 det_flag = 1;
 }

 if (count > 100)
 iterate = 0;
 else if (current_min >= parameter[0].min_rad)
 iterate = 0;
 else
 {
 det_flag = 0;
 count++;
 }
 }

 printf("%d radius iterations were performed.\n", count);
}

/*
**
*/

void rad_mod_check(struct node_data *data, int i, struct ana_options *parameter)
{
 /* check that the radius modification constraint has not moved inside original
shape */

 int node_modified = 0;
 double dir_1_diff, dir_2_diff, current_dis, previous_dis;

 if (parameter[0].x_y_z == 1)
 {
 dir_1_diff = data[i].x - data[i].n_x;
 dir_2_diff = data[i].y - data[i].n_y;
 current_dis = sqrt(pow(data[i].x - parameter[0].centroid[0], 2) +
pow(data[i].y - parameter[0].centroid[1], 2));
 previous_dis = sqrt(pow(data[i].n_x - parameter[0].centroid[0], 2) +
pow(data[i].n_y - parameter[0].centroid[1], 2));
 }
 else if (parameter[0].x_y_z == 2)
 {

UNCLASSIFIED
DST-Group-TR-3251

87
UNCLASSIFIED

 dir_1_diff = data[i].x - data[i].n_x;
 dir_2_diff = data[i].z - data[i].n_z;
 current_dis = sqrt(pow(data[i].x - parameter[0].centroid[0], 2) +
pow(data[i].z - parameter[0].centroid[1], 2));
 previous_dis = sqrt(pow(data[i].n_x - parameter[0].centroid[0], 2) +
pow(data[i].n_z - parameter[0].centroid[1], 2));
 }
 else if (parameter[0].x_y_z == 3)
 {
 dir_1_diff = data[i].y - data[i].n_y;
 dir_2_diff = data[i].z - data[i].n_z;
 current_dis = sqrt(pow(data[i].y - parameter[0].centroid[0], 2) +
pow(data[i].z - parameter[0].centroid[1], 2));
 previous_dis = sqrt(pow(data[i].n_y - parameter[0].centroid[0], 2) +
pow(data[i].n_z - parameter[0].centroid[1], 2));
 }

 if ((data[i].normal >= -180) && (data[i].normal < -90))
 {
 if ((dir_1_diff > 0.0001)||(dir_2_diff > 0.0001))
 {
 if (current_dis < previous_dis)
 {
 if (parameter[0].x_y_z == 1)
 {
 data[i].x = data[i].n_x;
 data[i].y = data[i].n_y;
 }
 if (parameter[0].x_y_z == 2)
 {
 data[i].x = data[i].n_x;
 data[i].z = data[i].n_z;
 }
 if (parameter[0].x_y_z == 3)
 {
 data[i].y = data[i].n_y;
 data[i].z = data[i].n_z;
 }
 node_modified = 2;
 }
 }
 }
 else if ((data[i].normal >= -90) && (data[i].normal < 0))
 {
 if ((dir_1_diff < -0.0001)||(dir_2_diff > 0.0001))
 {
 if (current_dis < previous_dis)
 {
 if (parameter[0].x_y_z == 1)
 {
 data[i].x = data[i].n_x;
 data[i].y = data[i].n_y;
 }
 if (parameter[0].x_y_z == 2)
 {
 data[i].x = data[i].n_x;
 data[i].z = data[i].n_z;
 }
 if (parameter[0].x_y_z == 3)

UNCLASSIFIED
DST-Group-TR-3251

88
UNCLASSIFIED

 {
 data[i].y = data[i].n_y;
 data[i].z = data[i].n_z;
 }
 node_modified = 2;
 }
 }
 }
 else if ((data[i].normal >= 0) && (data[i].normal < 90))
 {
 if ((dir_1_diff < -0.0001)||(dir_2_diff < -0.0001))
 {
 if (current_dis < previous_dis)
 {
 if (parameter[0].x_y_z == 1)
 {
 data[i].x = data[i].n_x;
 data[i].y = data[i].n_y;
 }
 if (parameter[0].x_y_z == 2)
 {
 data[i].x = data[i].n_x;
 data[i].z = data[i].n_z;
 }
 if (parameter[0].x_y_z == 3)
 {
 data[i].y = data[i].n_y;
 data[i].z = data[i].n_z;
 }
 node_modified = 2;
 }
 }
 }
 else if ((data[i].normal >= 90) && (data[i].normal < 180))
 {
 if ((dir_1_diff > 0.0001)||(dir_2_diff < -0.0001))
 {
 if (current_dis < previous_dis)
 {
 if (parameter[0].x_y_z == 1)
 {
 data[i].x = data[i].n_x;
 data[i].y = data[i].n_y;
 }
 if (parameter[0].x_y_z == 2)
 {
 data[i].x = data[i].n_x;
 data[i].z = data[i].n_z;
 }
 if (parameter[0].x_y_z == 3)
 {
 data[i].y = data[i].n_y;
 data[i].z = data[i].n_z;
 }
 node_modified = 2;
 }
 }
 }
}

UNCLASSIFIED
DST-Group-TR-3251

89
UNCLASSIFIED

/*
**
*/

void rad_calc(struct ana_options *parameter, double *xyz, int i, struct node_data
*data)
{
 double a1, a2, b1, b2, c1, c2, xc, yc, a12, a22;

 extract_xyz(parameter, xyz, i, data);

 /* calculate determinant */

 a1 = 2 * (xyz[1]-xyz[0]);
 a2 = 2 * (xyz[2]-xyz[1]);
 b1 = 2 * (xyz[4]-xyz[3]);
 b2 = 2 * (xyz[5]-xyz[4]);
 c1 = pow(xyz[1], 2) + pow(xyz[4], 2) - pow(xyz[0], 2) - pow(xyz[3], 2);
 c2 = pow(xyz[2], 2) + pow(xyz[5], 2) - pow(xyz[1], 2) - pow(xyz[4], 2);

 data[i].det = a1*b2-b1*a2;

 if (fabs(data[i].det) < 0.0000001)
 data[i].det = 0;

 /* calculate radius */

 if (((parameter[0].options[2] == 0) && (data[i].det >
0))||((parameter[0].options[2] == 1) && (data[i].det < 0)))
 {
 xc = (c1 * b2 - b1 * c2) / data[i].det;
 yc = (a1 * c2 - c1 * a2) / data[i].det;

 a12 = xc - xyz[0];
 a22 = yc - xyz[3];

 data[i].rad = sqrt(pow(a12,2) + pow(a22,2));
 }
 else
 data[i].rad = 0.0;
}

/*
**
*/

void modify_angle(int i, struct node_data *data, double *angle,
 struct ana_options *parameter, double *xyz)
{
 /* modifies application angles in radius calcs to match by quadrant,
 option 1 indicates a segment angle modification, options 2
 indicates a gamma angle modification
 uses the pointer to the required angle
 */

 int mod_param;

 calculate_normal(parameter, xyz, i, data);

UNCLASSIFIED
DST-Group-TR-3251

90
UNCLASSIFIED

 if (parameter[0].options[2] == 1)
 mod_param = 180;
 else if (parameter[0].options[2] == 0)
 mod_param = 0;

 if ((data[i].normal >= -180) && (data[i].normal <= -90))
 {
 if ((angle[0] >= -180) && (angle[0] < -90))
 angle[0] = angle[0] + 90 + mod_param;
 else if ((angle[0] >= -90) && (angle[0] < 0))
 angle[0] = angle[0] + mod_param;
 else if ((angle[0] >= 0) && (angle[0] < 90))
 angle[0] = angle[0] - 90 + mod_param;
 else if ((angle[0] >= 90) && (angle[0] < 180))
 angle[0] = angle[0] - 180 + mod_param;
 }
 else if ((data[i].normal >= -90) && (data[i].normal <= 0))
 {
 if ((angle[0] >= -180) && (angle[0] < -90))
 angle[0] = angle[0] + 180 - mod_param;
 else if ((angle[0] >= -90) && (angle[0] < 0))
 angle[0] = angle[0] + 90 - mod_param;
 else if ((angle[0] >= 0) && (angle[0] < 90))
 angle[0] = angle[0] - mod_param;
 else if ((angle[0] >= 90) && (angle[0] < 180))
 angle[0] = angle[0] - 90 - mod_param;
 }
 else if ((data[i].normal >= 0) && (data[i].normal <= 90))
 {
 if ((angle[0] >= -180) && (angle[0] < -90))
 angle[0] = angle[0] + 270 - mod_param;
 else if ((angle[0] >= -90) && (angle[0] < 0))
 angle[0] = angle[0] + 180 - mod_param;
 else if ((angle[0] >= 0) && (angle[0] < 90))
 angle[0] = angle[0] + 90 - mod_param;
 else if ((angle[0] >= 90) && (angle[0] < 180))
 angle[0] = angle[0] - mod_param;
 }
 else if ((data[i].normal >= 90) && (data[i].normal <= 180))
 {
 if ((angle[0] >= -180) && (angle[0] < -90))
 angle[0] = angle[0] + mod_param;
 else if ((angle[0] >= -90) && (angle[0] < 0))
 angle[0] = angle[0] - 90 + mod_param;
 else if ((angle[0] >= 0) && (angle[0] < 90))
 angle[0] = angle[0] - 180 + mod_param;
 else if ((angle[0] >= 90) && (angle[0] < 180))
 angle[0] = angle[0] - 270 + mod_param;
 }
}

/*
**
*/

void modify_z(struct node_data *data, struct ana_options *parameter)
{

UNCLASSIFIED
DST-Group-TR-3251

91
UNCLASSIFIED

 int i;
 double hole_rad, flange_rad, flange_dist, y_mod, root_val;

 printf("Starting layer 2 modification.\n");

 /* re-initialise num_node for 2 layers */
 parameter[0].num_node = parameter[0].num_node * 2;

 /* calculate z value for second layer */

 /* defined constants for analysis */

 hole_rad = 3.937;
 flange_rad = 1.524;
 flange_dist = hole_rad + 0.508 - flange_rad;
 y_mod = 6.562446;

 /*
 calculate values, formula supplied by R. Evans for P3 analysis
 algorithm checks if z needs to be modified, ie lies on flange and
 adjusts accordingly
 */

 for (i = parameter[0].num_node/2; i < parameter[0].num_node; i++)
 {
 if ((data[i].y - y_mod <= -flange_dist) & (data[i].y - y_mod >= -(hole_rad +
0.508)))
 {
 root_val = pow(flange_rad, 2) - pow(data[i].y - y_mod + flange_dist, 2);
 data[i].z = parameter[0].mesh_param[0] + flange_rad - sqrt(root_val);
 }
 else
 {
 data[i].z = parameter[0].mesh_param[0];
 }
 }
}

/*
**
*/

Shell script optscriptq.sh

#!/bin/sh

echo ""
echo "=="
echo " SHELL SCRIPT FOR RUNNING SHAPE OPTIMISATION JOBS"
echo "=="

time0=$(date +"%T")" "$(date +"%Y-%m-%d")
secs0=$(date +"%s")

echo ""
echo "Job start time: $time0"

Run the installed Intel-supplied ifortvar.sh shell script
to create the required environment variables for running the

UNCLASSIFIED
DST-Group-TR-3251

92
UNCLASSIFIED

Intel Fortran compiler. The location of the shell script will
depend on the specific version of the compiler.

Note that these environment variables will remain local to
the present shell as a result of using the "source" command.

echo ""
echo "Setting up Intel Fortran compiler environment to enable usage"
echo "of an Abaqus user subroutine with the shape optimisation job."

source /opt/intel/Compiler/11.1/069/bin/ifortvars.sh intel64

Configure the files for performing the shape optimisation,
as well as performing a cleanup.

cp nodes.ini nodes.dat
cp start.inp opjob.inp

rm -f convergence.dat
rm -f znodes???.dat
rm -f zstress???.dat

Perform the required number of iterations of the shape
optimisation code.

maxitns=1

for ((i = 1; i <= maxitns; i++))
do
 echo ""
 echo "====================================="
 echo "Starting iteration $i of $maxitns"
 echo "====================================="
 echo ""
 time1=$(date +"%T")" "$(date +"%Y-%m-%d")
 secs1=$(date +"%s")
 mv opjob.inp temp.inp
 rm -f opjob.*
 mv temp.inp opjob.inp
 abaqus job=opjob user=getsigq cpus=1 interactive
 ./fsig # Formats and collates stress???.dat files into stress.rpt
 ./rednf # Reduces format of nodes.dat and puts in nodes.opt for optim4
 ./optim4 # Ron Braemar's C code. No mods have been done that affect function
 ./expnf # Expands format of nodes.opt and puts into nodes.dat
 cp opjob.inp opjob.temp
 ./bdeckq # Builds new Abaqus input deck using nodes.dat
 rm -f opjob.temp
 ./wrconv # Writes peak hoop stress. Adds one line each iteration
 ./wrshape # Stores nodes.dat for each iteration in znodes???.dat
 time2=$(date +"%T")" "$(date +"%Y-%m-%d")
 secs2=$(date +"%s")
 etime=$(echo "scale=2;($secs2-$secs1)/60.0" | bc)
 echo ""
 echo "Iteration start time : $time1"
 echo "Iteration finish time : $time2"
 echo "Iteration elapsed time: $etime minutes"
done

time3=$(date +"%T")" "$(date +"%Y-%m-%d")

UNCLASSIFIED
DST-Group-TR-3251

93
UNCLASSIFIED

secs3=$(date +"%s")
etime=$(echo "scale=3;($secs3-$secs0)/3600.0" | bc)

echo ""
echo "Job iterations : $maxitns"
echo "Job start time : $time0"
echo "Job finish time : $time3"
echo "Job elapsed time: $etime hours"
echo ""
echo "Shape optimisation job completed."
echo ""

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP

DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Conversion of DST Group Shape Optimisation Software for
Increased Portability across Computing Platforms

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document: (U)
 Title: (U)
 Abstract: (U)

4. AUTHOR(S)

Robert Kaye and Witold Waldman

5. CORPORATE AUTHOR

Defence Science and Technology Group
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DST GROUP NUMBER

DST-Group-TR-3251

6b. AR NUMBER

AR-016-589

6c. TYPE OF REPORT

Technical Report

7. DOCUMENT DATE

May 2016

8. OBJECTIVE FOLDER ID

fAV1044425

9. TASK NUMBER

AIR 07/283

10. TASK SPONSOR

OIC-ASI-DGTA

11. NO. OF PAGES

93

12. NO. OF REFERENCES

9

13. DST GROUP PUBLICATIONS REPOSITORY

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Aerospace Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

Yes

18. RESEARCH LIBRARY THESAURUS

Finite element analysis, Shape optimisation, Stress concentration

19. ABSTRACT

The DST Group shape optimisation methodology is well established with several successful implementations to ADF aircraft
involving repairs to crack-prone locations. The process involves adaptive reshaping of locally-concave boundaries so as to
minimise a stress concentration by spreading the stress more evenly over a longer region of the boundary. DST Group in-house
software is used in conjunction with a commercial finite element solver in an iterative manner to achieve this outcome. The prior
DST Group software had been found to be dependent on the version of the commercial graphical user interface being used and
the software was not readily adaptable to newer versions. The work reported here involves replacing some of the prior code so
that the graphical user interface is not used in the process. This document includes a number of 2D and 3D example problems
that were used to demonstrate the successful operation of the converted code. The main benefit of the new code is that the
software can be ported to other computer hardware without any interaction with the installed graphical user interface, but it also
enables a reduction in the use of commercial licenses and provides faster run times.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Authors
	Contents
	1. Introduction
	2. Comparison of the Patran/Nastran implementation with the FORTRAN/Abaqus implementation
	3. Initial steps to set up 2D problems
	4. Solution procedure for 2D problems
	5. Solution procedure for 3D problems
	6. Example problems
	6.1 2D model of circular hole near stress concentration
	6.2 2D model of circular hole near stress concentration using multiple load cases
	6.3 3D model of circular hole using multiple load cases
	6.4 2D model of axially-loaded notched fatigue test coupon
	6.5 3D model of axially-loaded notched fatigue test coupon

	7. Conclusion
	8. References
	Appendix A

	Appendix B
	Appendix C
	Appendix D
	Appendix E
	DOCUMENT CONTROL DATA

