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Abstract—In this paper we present generic distributed al-
gorithms for assembling and repairing shapes using modular
self-reconfiguring robots. The algorithms work in the sliding
cube model. Each module independently evaluates a set of
local rules using different evaluation models. Two methods are
used to determine the correctness of the algorithms—a graph
analysis technique which can prove the rule set is correct for
specific instances of the algorithm, and a statistical technique

Use the simplest abstraction for the robot module that
fits with existing robot systems (both in shape and
actuation)

Develop distributed algorithms in the form of rules
that only require local information

Prove correctness of these algorithms with respect to
the task

which can produce arbitrary bounds on the likelihood that
the rule set functions correctly. An extension of the assembly
algorithm can be used to produce arbitrary non-cantilevered
convex shapes without holes. The algorithms have been
implemented and evaluated in simulation.

« Instantiate these algorithms onto real systems in a way
that preserves the algorithmic properties

The use of local rules for compliant locomotion is
straightforward, since locomotion does not require precise
global shape control. However, it was unclear whether
the exclusive use of local rules would be appropriate for

Current research in self-reconfiguring robots is fOCUSEdssembb/ tasks in which a Speciﬁc goa| Shape is required_
on designing and building hardware, and developing algoajthough each module is provided with the goal descrip-
rithms coupled to specific hardware. We are interested ifjon, the possible moves are restricted to those permitted by
developing architecture-independent control and planninge ryle set—the goal description is only used to determine
algorithms for such systems. In our previous work [2]—the proximity to the goal shape. As our assembly results
[4] we describe distributed controllers for two tasks fordemonstrate, it is possib|e to construct Shapes using On|y
self-reconfiguring robots: compliant locomotion gaits andocal rules for a certain class of configurations. Our hole
splitting a large robot with a given behavior into smallerrepair rule set also uses local rules to fill voids in a multi-
robots with the same behavior. We demonstrate a metho%yer Configuration of modules. This is accomp"shed by
ology for doing this work using the sliding cube model, inmodules moving into the void and recruiting neighbor
which modules are represented as cubes. Each module Gadules to follow them. Local state in the modules sim-
translate on a substrate of identical cubes and make convgigtes message passing to neighbor modules which causes
and concave transitions on the substrate. The reSUltirtgem to move toward the hole. For both the assemb]y and
algorithms are provably correct and can be instantiategbpair algorithms simulation is used to verify algorithmic
easily to a wide range of physical platforms such as thgorrectness, either by graph analysis or by generating a
Molecule and Crystal robots built in our lab [4] as well asstatistical bound on the possible number of erroneous

other robot systems [8], [14], [15]. sequences of rule applications.
Deriving algorithms in this fashion has several advan-

tages: (1) the algorithms are simpler in this abstract model; Il. RELATED WORK
(2) the algorithms are easier to analyze in the abstract Self-reconfiguring robots were first proposed in [5].
model; (3) the same basic algorithm can be instantiated fon this planar system modules were heterogeneous and
many different hardware types, thus providing a rigorousemi-autonomous. Other research focused on homogeneous
framework in which to compare different algorithms andsystems with non-autonomous modules in two dimensions
hardware systems; (4) the analyses and correctness prof8$ [13], [15], [16] and three dimensions [11], [14], [17],
will be inherited by the instantiated algorithms; and (5) ulti-[18], [21], [22]. In this type of system the modules are
mately this framework will lead to a better understanding ofiot capable of acting independently, and thus must remain
the computational problems that arise in self-reconfiguringonnected. [20] is an example of a bipartite system with
robot research. non-autonomous modules. Control algorithms exist for
In this paper we extend our previous work by demonall the above implementations, although they are usually
strating distributed control algorithms for synthesizinghardware specific.
shapes and repairing holes in them. Our approach is basedDistributed control algorithms are best suited to self-
on four ideas: reconfiguring systems, since they are more likely to scale as

|. INTRODUCTION



the module count increases. Algorithms which require onlgpecial messages called “scents” that decay as they propa-
local information are optimal, since they will require fewergate through the structure. Using this method, a simulation
communication resources. The cellular automata paradigof a navigation task through an environment with obstacles
is well-suited for self-reconfiguring robot control, since itis presented, including a system reconfiguration in order to
is an inherently distributed algorithm which uses only locapass through a narrow opening. A detailed discussion of
information. Cellular automata has been an ongoing fielthe local rules required to accomplish the task is presented.
of research in computer science since the early work ddne concern is the presence of local minima, which can
Stanislas Ulam who, in the 1940’s, investigated the evoprevent the task from being completed. Local rules are used
lution of graphic constructions generated by simple ruleto generate various locomotion gates in [17].

[7]. The cellular automata paradigm has been the basis for

several control methodologies [1]-[4], [6], [8], [10]. The Il. A PPROACH

concept and theory for a Cellular Robotic System (CRS) Our generic distributed approach to developing algo-
was proposed in [1], [6]. CRS is based on the concepithms for self-reconfiguring robots has previously been de-
of cellular automata, modified in such a way as to applgcribed in [2], [4], [10]. The goal is to develop architecture-
to robotic systems [1]. The individual units (modules) areéndependent self-reconfiguring algorithms that can be in-
simple, autonomous units. They are restricted to operatingtantiated to many different self-reconfiguring systems. Our
within a cellular lattice although they are not necessarilyapproach is based on four principles:

connected together to form a fixed structure. [6] describes 4 Work with the simplest possible abstract module

applications and engineering problems related to cellular both in shape and actuation modalities

robotic systems. _ _ b)  Develop functional algorithms based on the ab-
Self-organizing collective robots which support planar stract module

self-reconfiguration are described in [8]. The modules Prove the correctness of the algorithms

are cubical, with four sides of the cube being used for d) Instantiate the algorithms onto real self-

connection between modules, and the pair of opposing reconfiguring systems

sides normal to the plane of motion used for actuation.
The control strategy for self-organizing collective robots iﬁ lar automata (CA), although our system deviates from
based on the cellular automata paradigm, where the local '

; . ; e classical CA approach in several ways. The tangible
neighborhood determines module motion based on a set . =~ .
. : . . contribution of cellular automata research to our work is the
of rules in each module. Two reconfiguration algorithms .
. - use of local rules to produce global behavior. Other features
are presented, the formation of a stair-like structure from a o .
! . of traditional cellular automata, such as non-conservation
linear structure and the reverse. The use of module interna . :
: . . . . of matter and the simultaneous-update evaluation model
state information to prevent deadlock is described in thgre not aporopriate for self-reconfiauring svstems
latter algorithm. Simulation of the system is done using the pprop guring sy '
standard two-stage synchronous methodology for cellular
automata: an evaluation stage followed by an activation
stage.
Our previous work in developing generic, distributed
control algorithms for self-reconfiguring robots is also
inspired by cellular automata [2]—[4], [10]. Our approach is
based on an abstract module instead of actual hardware in
order to simplify algorithm design and analysis. We also
develop proofs for the correctness of our algorithms, as
well as create instantiations of the algorithms to actual
hardware platforms. Instantiations allow the benefits of
our provably correct algorithms to be applied to other

self-reconfiguring systems, without making them system
dependent. [2] presents algorithms for locomotion both .j
with and without obstacles. [4] extends these algorithms

to support climbing, turning, tunnelling, and splitting of

module groups. Assembly and repair algorithms are pre-
sented in [10]. Fig. 1. The basic motions of the abstract module are translation (top),

. oncave transition (center), and convex transition (bottom). The concave
AIthOUgh not based on the cellular automata paradlgrrﬁ'ansition is not indicated by module motion, rather it is a connection

some other self-reconfiguring robot algorithms use locadwap indicated by the arrows (the initial connection is to the horizontal
rules [12], [17], [19]. The 2-D Fractum reconfiguration surface—after the concave transition the connection is to the vertical

. . . surface). The center step in the convex transition may appear to be a
method of [19] uses rules which specify local Conne(:tlorgifﬁcult pose to emulate in hardware since the cubes only have edge

arrangements. Modules gradually accrete to the developirgntact. However, hardware systems have been built which support this
structure when they satisfy the connection type specified ippse. although only in two dimensions [8], [15].
the goal description. [12] utilizes local rules together with

We have chosen to use the conceptual model of cel-
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Fig. 2. Partial rule set for building a cube from a flat sheet of modules, where the sheet and the cube have ghdirs@mgion. Only the east rules

are shown—all rules other than Rule 7 are duplicated in the west direction, with corresponding changes to the directions and operators in the individual
cells of the rules, resulting in a total of 19 rules. Cell variable “A’ is the direction state variable which can assume thg Malfiess, W, O, X },

where N is north, E is east,S is south,IW is west,O indicates any of N, E, S, W} and X indicates no direction, i.e. the cell is not moving. Cell
variable “B” denotes the comparison operator applied tostlt®mponent of the cell location variable and the cube extents and can assume the values
{<,=,>}. Cell variable “C” indicates which cube extent is being compared and can assume the vdlses-, —', +'}, where— is the minimum

z extent of the cubeyt is the maximumz extent of the cuber-’ is the minimumz extent minus one, and-’ is the maximumz extent plus one.

For example, the preconditions for the current cell in rule 8 are that its direction state is east, andatHataison be greater than the minimum

extent of the cube minus 1. This rule set useshg evaluation model.

a) Abstract module:The use of an abstract mod- our proofs) is the evaluation model used to process the
ule allows us to decouple the salient features of a selinodules. Traditional cellular automata simulators evaluate
reconfiguring module from the implementation dependerll cells using their current local states and then update the
features that tend to complicate algorithm design andntire cell array simultaneously. Although it is possible to
analysis. We generally represent the module shape asimplement a global clock to synchronize module updates
cube, although our proposed abstraction can be replacid], we have chosen to use multiple evaluation models
by any geometric structure that supports the formatiomhich reflect the expected level of actuation delay in a
of lattices. The actuation modalities for the module areeal system [4}. It is worth noting that different evaluation
the basic motions needed for motion: linear translationmodels affect the algorithm rule complexity—more delay
concave transition, and convex transition (see Fig. lpenerally requires more complex rules. The rule sets pre-
While no existing three-dimensional module can perfornsented in this paper use tlisy and D, evaluation models.
all these motions exactly as our abstract module does, mobhe D; model allows a delay value of one and the,
modules can perform a subset of these motions alone andpdel allows arbitrary delay.
with the assistance of other modules, can perform all of c) Correctness:Proof of correctness is an important
them. Module interconnection is face-to-face, e.g. modulegrinciple of our approach. Our proofs take the form of
can connect when their faces are adjacent and aligneidgical arguments regarding the possible configurations
However, connections are not explicitly simulated—weof module groups [2], [4], and of automated proofs of
assume that any face-to-face modules are connected as Iafiffrectness based on an evaluation of the properties of a
as both modules are stationary. constructed graph representing all possible sequences of

b) Algorithms: Each algorithm employs a set of local rule actuations an algorithm for a given initial configuration

rules we implement as a type of cellular automaton. Eachm]'bIn th|s sotlanse, ?n' initial conﬂgurart]lon and a:}r'ulg{ set
rule requires a set of preconditions on the neighborhood &An be viewed as a finite automaton whose graph indicates

the cell and when activated, causes a change in the systé(ﬁ{ ious properties about the a}lgorlthm.

state. The rules are written in the form of productions, with Furthermore we show that simulation results can be com-
the precondition state on the left and the resulting state, &ined with machine learning theory to produce a statistical
postcondition, on the right (see Fig. 2). The postconditiof?®Und on the likelihood that an algorithm is correct. This

is often the movement of a module, but in some cases it i§ done by performing multiple simulations using a fixed

only a change in the internal state in the module. SimpIéU|e set and initial configuration, while evaluating modules
algorithms may not require any internal state, while moré@ndomly in each simulation. A specific evaluat‘l‘on order
complex algorithms may have several local variables fol? Which r,L’JIes are executed is referred to as an “activation
each module. The algorithms presented in this paper weRgduence”. The result of many random simulations is an

created manually, however we are exploring automated
algorithm de\/elopment_ 1The amount of actuation delay indicates the level of non-synchronous
behavior with regard to rule evaluation time. However, module movement
An important consideration for our algorithms (andtime is instantaneous which eliminates asynchrony due to actuation time.



Fig. 3. Four snapshots from a simulation of the cube building rule set in Fig. 2. The initial structu® i & x 5 sheet of modules (the axis is
perpendicular to the page). As the simulation proceeds, modules at the east and west ends of the sheet move toward the center to form a cube. In this
example the cube is formed at the center of thdimension of the sheet, but the rule set functions correctly foraamglue of the goal position of

the cube along the sheet (tkeextents of the cube and the sheet must be aligned).

exploration of the set of all possible activation sequences, IV. ALGORITHMS
which can be used to bound the expected size of the sgt
of erroneous activation sequences.

Our PAC (Probably Approximately Correct) approach
can be used(to boun)c/j thre)zpsize of th)é error re)géomth are described in [2]. The cellular automata approach is well

a confidence of for a given number of correct, random suited to locomotion algorithms, since these algorithms
simulations as follows. Assume that the size of the erro‘?}[e hnot fgndaTrrrl]entallr)]/ corr:cern_ed fw'th thg g:jobal S.haﬁe
region for a given rule set is. Then, the probability of of the robot. us, the shape Is ree to be dynamically
runningn random correct simulations {4 — ¢)". We want altered at the local module level, using local rules. In fact,

to bound this probability by, resulting in the following !ocal conformity of the shape.to unknown, .rough tefra'”
equation is an advantage for locomotion. Locomotion algorithm

extensions, such as climbing tall obstacles and moving
through tunnels, are presented in [4].

Locomotion
Algorithms for locomotion with and without obstacles

(I—¢)" <.
B. Assembly
Solving forn yields Although our generic distributed approach is well-suited
1 1 to locomotion tasks, we are interested in exploring whether
n>—-—In(<) (2) the cellular automata approach can be used for non-

In(t—) ¢

in the range (0,1) the result can be

locomotion algorithms such as building specific shapes.
Here, the algorithm must be able to control shape formation

H 1
and, since; > using only local rules. As our results demonstrate, it is

1
()

simplified to possible to achieve global shape control using only local
rules for some shapes.
n> lln(l). ©) A key component of our assembly algorithm is that
€ 0 modules know the goal shape, the location of goal shape,

This provides an estimate on the number of randorﬁnd their |Ocati0ﬁ. Module location is not difficult to
correct simulations necessary to bound the error region faintain, assuming modules know their location in the
size ofe with a confidence of. Thus, if a value 0f.0001 initial configuration, since modules move in integral lattice
is chosen for bothy and ¢, the number of simulations coordinates and can easily update their location as they

required to be99.99% confident that the size of the error move. One can imagine a specific module broadcasting

region is no more thar).01% of the total number of the command to build a cube around itself, including the
possible activation sequences is,> ﬁl"(ﬁ) ~ =z, Yy, andz extents of the cube in the message based on
92104. ’ ’ its current location. As the message is received by other

d) Instantiation: Instantiation refers to the applica- Mmodules, they can compare their location with the cube

tion of generic algorithms to specific hardware systemsextents and determine the direction in which they need to
This can be done by using meta-modules—groups of re&i0Ve. Their only motivation would be to place themselves
modules which together can perform the basic motio#Side the extents of the cube.

primitives of our abstract module—or by creating “na- A rule set for this algorithm can be seen in Fig. 2. The
tive” module motion sequences which implement the basititial configuration for this algorithm is a planar sheet of
motions. The value of instantiation is that the proof of?” X n Modules whose extents are equal to theextents
correctness is inherited from the abstract system, and SUCQMO dules in each layenty plane) need only know the goal shape for

pfo‘?fs may not exist for _the Sy_St(?m using native mOdUI@wat layer, since the assembly algorithm does not move modules out of
motions. Refer to [4] for instantiation examples. their initial layer.
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Fig. 4. Partial rule set for dynamic hole repair. Rules are shown for the east direction only—Rules 1, 6, 7, 8, and 9 are duplicated for the west, up,
and down directions. Rules 1 and 6 are composite rules—each consisting of 8 individual rules, implementing the constraint that any cell adjacent to
the current cell must not be moving south. Fig. 5 illustrates the individual rules for Rule 6. Up and down corresgendotat of the page) and

—z (into the page) directions, respectively. Cell variadles the direction state variable which can assume the valRes®, S, W, U, D, O, X, T},

where O indicates one of N, E, S, W, U, D}, i.e. the cell is moving;X indicates none of N, E, S, W, U, D}, i.e. the cell is not moving; and’

indicates one of N, E, W, U, D}, i.e. the cell is moving but not south. If cell variahleis in the lower left corner of the cell representation it means

—A, i.e. any direction other thad will match the direction variable. Cell variablg is the direction request variable which is used by other cells to
request a direction change in a neighbor cell. It can assume the same values as cell Margatulef it is in the lower right corner it meansB. The

label under the production arrow for rules 1 and 6 indicates a direction request by the moving cell, speéificalliR,, R2, Rz denotes that any

neighbor cells in theR,, Rz, R3 directions have their direction request state variable sét.t@his rule set uses th®; activation model.

of the cube (see Fig. 3). The goal configuration is cube of Although the above assembly algorithm is correct, it is
modules, withn modules in each dimension. Because tha bit cumbersome to apply it to different shapes. We have
sheet and the cube are aligned in thelimension, noz  simplified the algorithm to use a simple shape function
displacement of modules is necessary—all module movavhich indicates whether a given location is inside or
ment will be in thex and y dimensions. This restriction outside the goal shape. The rule set has also been slightly
allows the use of local module location information only.modified to allow it to build any filled non-cantilevered

If modules were not restricted to their initial layers localconvex configuration of modules within each layery
information would be insufficient determine proper layerplane)® Because each layer is essentially independent, a
placement. different three-dimensional convex shape can be built in

o . each layer as long as the layers remain connected, resulting
An examination of the rule set reveals that some mternqh a large class of feasible goal shapes

state is used in the modules, specifically the current loca-

tion of the module, the extents of the cube, and a directio€. Repair
variable which indicates in which direction the module is
attempting to move. For example, the north rules (Rul(?I

1 and Rule 2) can only be executed when the module; reated that would redistribute module locations so as to

v l;’ catjrohr: |smon?1 lefr‘? :[[ha:‘: the tr\?vln:;numm\?l);ten:nogtTe maintain a continuous membrane of modules. The structure
cube S means that an eastwa oving module cafl, 14 pe multilayered, with the layers parallel to the
only move north along the west face of the cube. Thi

Burface of the structure. Such a structure would be self-

:;est;[gcuor?cﬁri\ée?ésrgoﬂqlne?ozonT Q]Ov:enrgcg?gz 'gﬁ;d?n;hneﬁealing—any holes that developed in the structure would
ube, whi u it uch verti velop e sealed by the reconfiguration of the modules, with the

ronft\r/]e shaﬁ)e.rAs it tlﬁ eats t;/xairg-mtcr)]vmg ?Oduﬁsnianvx]il ultiple layers of the structure providing the necessary
ove €ast or souiheast inside he cube extents odule redundancy to allow holes to be filled (with a

that th soheast move (Rule 6 s resticted focationg . 2511ing reduction in the number of layers over tme),
( ) A self-sealing structure would be useful in a hazardous

strictly tless than tthe (Tax'”"!“m extgnlt O‘; the cube_. This tenvwonment for example as the walls of a space station
prevents an eastward-moving modulé rom moving onte, ;e ¢qyiq dynamically seal any holes due to collisions

theb ea)s(: LatceA?tfhthe hC;b? Xv(?:(r:: l\lNoutlg f)enout3|(dtsv trh ith foreign bodies, preventing the venting of air. Another
ﬁ:’ v?ne ri (Sj ! V\S;ILIJQ ‘ u en . '?“rfs tha arlny ?ris a ossibility is the development of adaptive armor for mil-
oving module Stop on reaching the maximum itary vehicles. Currently, a projectile can damage armor

extent of the cube, due to random rule evaluation it i
n a specific location such that a second hit in that area
possible that Rule 6 might be evaluated before Rule 10, P

requiring that_ Rule 6 have It.S own movement restriction. sp «gjeq layer means the layer has no holes, i.e. there are no empty
Refer to Section V for experimental results. module locations within the module perimeter.

The ability of cellular automata algorithms to emulate
owing fluids suggests that a dynamic structure could be
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Fig. 5. Individual rules for Fig. 4, Rule 6. These rules enforce the constraint that no cell adjacent to the current cell can be moving south. Because the

current rule language does not permit the OR-ing of rule preconditions, eight separate rules are required to test all combinations of the three adjacent
cells of the current cell. A similar set of eight rules is used for Rule 1.

will penetrate the vehicle. Adaptive armor composed ofoward the hole location. Adding extra rules may permit
self-reconfiguring modules would dynamically redistributethe motion to be stopped sooner, but again, it may be
the module locations in order to repair the damage frondifficult to precisely determine whether the hole is filled

a previous impact, thus increasing survivability for theusing only local knowledge. If the modules surrounding the
occupants. hole could communicate to determine the size of the hole

Figures 4 and 5 show the rule set for hole repair. Th@rior to moving, it might be possible to limit the number

idea behind the rule set is that modules without neighbor@f modules set in motion and to stop module motion after
will move into empty space in order to fill it (see Fig. 6). the hole is sealed. Of course, such communication would
Specifically, any module in layer without neighbors in be outside the scope of the cellular automata paradigm,
some directionl in both layeri and layeri—1, and with no  but it could be implemented as a preprocessing step which
module above it, will perform a convex transition in tié ~ Sets some internal state in the modules which is then used
direction (Rule 1) and continue to move south (Rule 5) untiPy the cellular automata algorithm. See Section V for
an obstacle or another module is encountered (Rule 10 agj§perimental results of hole repair simulations.

Rule 11). For simulation purposes the layers are parallel
to the “floor,” which is an implicit obstacle. Unlike the
assembly algorithm described above, there is no specific This section describes the experiments used to demon-
goal shape for this algorithm other than to fill the holes astrate correctness for the assembly and repair rule sets.
completely as possible. In this sense the repair algorithrhh€ graph analysis experiments use a special mode in

is similar to the locomotion algorithms described in [2],0Ur simulator that constructs graphs which represent the
[4]. finite automaton defined by the rule set and the initial

Rules 1 and 6 are composite rules, composed of eigm)nﬁguration of modules. PAC analysis experiments are
separate rules which guarantee that no neighbor of tk%mulations of rule set activation on a given initial module
current cell is moving south. This is required to prevenPonf'gurat'oT' MO_St experiments were pe_rformv;d on a
module disconnection. Fig. 5 shows the eight individuaf-#GHz Intel Pentium 4 computer running Linux, however
rules which comprise Rule 6. Rules 1, 6, 7, 8, and dn some cases experiments were performed on other ma-
are also duplicated in the west, up, and down directionsc.,h'_nes' The elgpsed times for these experiments h_ave been
resulting in a total of 83 rules. A feature of Rules 1adjusted to estimate the value for a 2.4GHz machine.

and 6 is that the moving module submits a directiory  Assembly
request to its neighbors. If the proper conditions are met

(Rules 2 and 3 are not satisfied), then Rule 4 transferFaI 1)2(?radph iarr:aéyfISI;TiT; asst()a mbr:y rqu? fnet ]:%lhtowr? "t1 f
the direction from the direction request variable to the 9. < IS designed o bulld a cUbe shape Irom a fiat sSneet o

_ . . modules. Actually, it can build any rectilinear shape, since a
direction variable. As these modules then begin to movgin le layer can build any rectangle and multiple layers can
the direction requests cascade to their neighbors in tur[[')l, 9 y y 9 bie lay

resulting in a mass module movement toward the holere stacked to achieve arbitrary width in thedimension.

This is necessary because the size of the hole cannot R?'S rule set uses th®, activation model, and therefore

determined using local knowledge alone, and therefore a9 graph analysis method can be em ployed to prove the
: orrectness of the rule set for specific instarfc@able |
many modules as possible must be moved toward the ho . .
. B . ._shows the results of several graph analysis experiments.
in order to be sure of filling it. A consequence of this is : .
These results are for a single layer of modules. Since the

extraneous module movement after the hole is filled, as
rule set does not reference other layers the results can be

moving modules continue their motion until they can no
longer move in that direction. This is illustrated in Fig. 6 4The current implementation of the simulator only permits graph

(d) where all the modules in the top layer have migratednalysis ofD rule sets.

V. EXPERIMENTS



(d)

Fig. 6. Four snapshots from a simulation of the hole repair rule set in Figures 4 and 5. The modules are arranged(x thoelayers, with a4
x 4 module hole. The perimeter of the cell array is composed of "obstacle” cubes used to contain the group. As the simulation proceeds, the hole is
gradually filled by modules surrounding the hole. Note that the experiments described in Section V-B2Lxus2 module layers.

@)

applied to systems with more than one layer without lossule set we can determine that 99.99% of the total number
of correctness as long as there is no layer shelne actuation sequences should be correct with a confidence
number of nodes in each graph is slightly less tR&n of 99.99% (7000 runs provides a 99.9% confidence that
wheren is the number of modules. Because the numbe®9.9% of the actuation sequences are correct).

of nodes is exponential in, the tractable node count is

limited. However, even though larger systems cannot be TABLE I

ana|yzed USing thIS methOd, the reSUltS for Sma”er SystemEXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS
provide some confidence that that the algorithm will extend OF THE ASSEMBLY RULE SET USING THEPAC ANALYSIS METHOD.

to systems with more modules.

Size Iterations | Avg. Activation Elapsed
TABLE | Sequence Length Time
EXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS 3x3 100000 | 25.3 0.93 hours
OF THE ASSEMBLY RULE SET USING THE GRAPH ANALYSIS METHOD ax4 100000 | 76.1 1.06 hours
5x5 100000 181.8 1.66 hours
6x6 100000 | 372.5 6.93 hours
Size | Nodes | Edges Activation | Elapsed X7 100000 | 682.4 12.03 hours
Sequences| Time 8 x8 100000 1153.3 38.35 hours
2% 2 13 16 6 < 1 second 9x9 7000 1831.3 8.19 hours
33X 2 66 104 160 < 1 second 10 x 10 | 7000 2773.0 19.22 hours
2x3 | 69 117 1220 < 1 second
3 x 3 | 609 1372 409925334 | 1 second
4x3 | 3756 10159 ? 37 seconds
3 x4 | 3460 9215 ? 33 seconds B. Repair
4x4 | 31920 | 103938 | ? 1031 seconds
5x 4 | 279464 | 1081364 | ? 110520 seconds 1) PAC analysis:The hole repair rule set, as shown in

Figures 4 and 5, is designed to fill holes in the structure

Sj h bl | h defini d with modules from the upper layers of the structure (here
Ince the assembly rule set has a de inite_end sta e layers are in thg dimension instead of thedimension
Fhe graph must not_ have any cycles since a cycle WOUIQS in the other rule sets). Since this rule set usesithe

imply that the algorithm may never terminate. Also, the.r%ctivation model, graph analysis cannot be performed, as

must be aILs_mgIe leaf, the deilred end state of thehbu'ld' aph analysis currently only works for rule sets that use
process. Itis easy to verify these properties, as the gra e D, activation model. Therefore, only PAC analysis

can be examined for the presence of b‘."‘Ck edges W_h' periments were performed. Table Ill gives the results
imply cycleg and for the existence of a single leaf Wh'Chfor various locations of a x 4 hole in structures with
has the desired s_hape. ) . three to five layers. The initial module array i x y X

_ 2) PAC analy5|s:The_ PAC analysis method, descrlbedlz, wherey is the number of layers. The hole size4s

in Section 1ll, was applied to the assembly rule set. Herg, 4 Al holes have vertical sides. Each experiment
the_ running time is polynomial in the number of modules,qngisted of 7000 iterations, and all activation sequences
which permits larger module counts. The results are Sho"‘Were unique. “Hole Offset” is the offset of the hole from
in Table II. All iterations were successful and the acClihe center of the structure. The values listed under the
vation sequences were unigue. “Avg. AcFiva'Fion Seq“encﬁeading “Successes” are given for the minimum layer not
Length” is the average length of the activation sequences,mpietely filled. For example, a listing of “2: 31” indicates

over all iterations. These results are for a single layer 0% gjmylations completed without error (disconnection)
modules. Fort00000 unique, correct runs of the assembly ;.4 the 2nd layer was not completely filled. For these

experiments, the number of iterations was reduced to due to

SLayer shear is caused by multiple layers moving at different speed . d simulati . ded f he | b
such that the layers become disconnected [10]. Layer shear is not possi Increased simulation time needed for the large number

in this assembly task. of modules. By the PAC equation (3))00 unique, correct
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TABLE Il

EXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS
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Layers | Hole Successed Avg. Actuation Elapsed Instrumentation 1987.
Offset Sequence Length Time [6] S. Hackwood and J. Wang, Application and Engineering of Cellular
- Robotic SystemsProc. of Symposium on Intelligent Contrdl988.
3 0,0,0) | 3: 7000 566.0 752 h . o .
3 El 0 1% 37000 8950 1207 E(L;Ls;s [7] J. Heudin,La Vie Artificielle Herms, Paris, 1994.
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