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Abstract— In this paper we present generic distributed al-
gorithms for assembling and repairing shapes using modular
self-reconfiguring robots. The algorithms work in the sliding
cube model. Each module independently evaluates a set of
local rules using different evaluation models. Two methods are
used to determine the correctness of the algorithms—a graph
analysis technique which can prove the rule set is correct for
specific instances of the algorithm, and a statistical technique
which can produce arbitrary bounds on the likelihood that
the rule set functions correctly. An extension of the assembly
algorithm can be used to produce arbitrary non-cantilevered
convex shapes without holes. The algorithms have been
implemented and evaluated in simulation.

I. I NTRODUCTION

Current research in self-reconfiguring robots is focused
on designing and building hardware, and developing algo-
rithms coupled to specific hardware. We are interested in
developing architecture-independent control and planning
algorithms for such systems. In our previous work [2]–
[4] we describe distributed controllers for two tasks for
self-reconfiguring robots: compliant locomotion gaits and
splitting a large robot with a given behavior into smaller
robots with the same behavior. We demonstrate a method-
ology for doing this work using the sliding cube model, in
which modules are represented as cubes. Each module can
translate on a substrate of identical cubes and make convex
and concave transitions on the substrate. The resulting
algorithms are provably correct and can be instantiated
easily to a wide range of physical platforms such as the
Molecule and Crystal robots built in our lab [4] as well as
other robot systems [8], [14], [15].

Deriving algorithms in this fashion has several advan-
tages: (1) the algorithms are simpler in this abstract model;
(2) the algorithms are easier to analyze in the abstract
model; (3) the same basic algorithm can be instantiated for
many different hardware types, thus providing a rigorous
framework in which to compare different algorithms and
hardware systems; (4) the analyses and correctness proofs
will be inherited by the instantiated algorithms; and (5) ulti-
mately this framework will lead to a better understanding of
the computational problems that arise in self-reconfiguring
robot research.

In this paper we extend our previous work by demon-
strating distributed control algorithms for synthesizing
shapes and repairing holes in them. Our approach is based
on four ideas:

• Use the simplest abstraction for the robot module that
fits with existing robot systems (both in shape and
actuation)

• Develop distributed algorithms in the form of rules
that only require local information

• Prove correctness of these algorithms with respect to
the task

• Instantiate these algorithms onto real systems in a way
that preserves the algorithmic properties

The use of local rules for compliant locomotion is
straightforward, since locomotion does not require precise
global shape control. However, it was unclear whether
the exclusive use of local rules would be appropriate for
assembly tasks in which a specific goal shape is required.
Although each module is provided with the goal descrip-
tion, the possible moves are restricted to those permitted by
the rule set—the goal description is only used to determine
the proximity to the goal shape. As our assembly results
demonstrate, it is possible to construct shapes using only
local rules for a certain class of configurations. Our hole
repair rule set also uses local rules to fill voids in a multi-
layer configuration of modules. This is accomplished by
modules moving into the void and recruiting neighbor
modules to follow them. Local state in the modules sim-
ulates message passing to neighbor modules which causes
them to move toward the hole. For both the assembly and
repair algorithms simulation is used to verify algorithmic
correctness, either by graph analysis or by generating a
statistical bound on the possible number of erroneous
sequences of rule applications.

II. RELATED WORK

Self-reconfiguring robots were first proposed in [5].
In this planar system modules were heterogeneous and
semi-autonomous. Other research focused on homogeneous
systems with non-autonomous modules in two dimensions
[8], [13], [15], [16] and three dimensions [11], [14], [17],
[18], [21], [22]. In this type of system the modules are
not capable of acting independently, and thus must remain
connected. [20] is an example of a bipartite system with
non-autonomous modules. Control algorithms exist for
all the above implementations, although they are usually
hardware specific.

Distributed control algorithms are best suited to self-
reconfiguring systems, since they are more likely to scale as



the module count increases. Algorithms which require only
local information are optimal, since they will require fewer
communication resources. The cellular automata paradigm
is well-suited for self-reconfiguring robot control, since it
is an inherently distributed algorithm which uses only local
information. Cellular automata has been an ongoing field
of research in computer science since the early work of
Stanislas Ulam who, in the 1940’s, investigated the evo-
lution of graphic constructions generated by simple rules
[7]. The cellular automata paradigm has been the basis for
several control methodologies [1]–[4], [6], [8], [10]. The
concept and theory for a Cellular Robotic System (CRS)
was proposed in [1], [6]. CRS is based on the concept
of cellular automata, modified in such a way as to apply
to robotic systems [1]. The individual units (modules) are
simple, autonomous units. They are restricted to operating
within a cellular lattice although they are not necessarily
connected together to form a fixed structure. [6] describes
applications and engineering problems related to cellular
robotic systems.

Self-organizing collective robots which support planar
self-reconfiguration are described in [8]. The modules
are cubical, with four sides of the cube being used for
connection between modules, and the pair of opposing
sides normal to the plane of motion used for actuation.
The control strategy for self-organizing collective robots is
based on the cellular automata paradigm, where the local
neighborhood determines module motion based on a set
of rules in each module. Two reconfiguration algorithms
are presented, the formation of a stair-like structure from a
linear structure and the reverse. The use of module internal
state information to prevent deadlock is described in the
latter algorithm. Simulation of the system is done using the
standard two-stage synchronous methodology for cellular
automata: an evaluation stage followed by an activation
stage.

Our previous work in developing generic, distributed
control algorithms for self-reconfiguring robots is also
inspired by cellular automata [2]–[4], [10]. Our approach is
based on an abstract module instead of actual hardware in
order to simplify algorithm design and analysis. We also
develop proofs for the correctness of our algorithms, as
well as create instantiations of the algorithms to actual
hardware platforms. Instantiations allow the benefits of
our provably correct algorithms to be applied to other
self-reconfiguring systems, without making them system
dependent. [2] presents algorithms for locomotion both
with and without obstacles. [4] extends these algorithms
to support climbing, turning, tunnelling, and splitting of
module groups. Assembly and repair algorithms are pre-
sented in [10].

Although not based on the cellular automata paradigm,
some other self-reconfiguring robot algorithms use local
rules [12], [17], [19]. The 2-D Fractum reconfiguration
method of [19] uses rules which specify local connection
arrangements. Modules gradually accrete to the developing
structure when they satisfy the connection type specified in
the goal description. [12] utilizes local rules together with

special messages called “scents” that decay as they propa-
gate through the structure. Using this method, a simulation
of a navigation task through an environment with obstacles
is presented, including a system reconfiguration in order to
pass through a narrow opening. A detailed discussion of
the local rules required to accomplish the task is presented.
One concern is the presence of local minima, which can
prevent the task from being completed. Local rules are used
to generate various locomotion gates in [17].

III. A PPROACH

Our generic distributed approach to developing algo-
rithms for self-reconfiguring robots has previously been de-
scribed in [2], [4], [10]. The goal is to develop architecture-
independent self-reconfiguring algorithms that can be in-
stantiated to many different self-reconfiguring systems. Our
approach is based on four principles:

a) Work with the simplest possible abstract module,
both in shape and actuation modalities

b) Develop functional algorithms based on the ab-
stract module

c) Prove the correctness of the algorithms
d) Instantiate the algorithms onto real self-

reconfiguring systems

We have chosen to use the conceptual model of cel-
lular automata (CA), although our system deviates from
the classical CA approach in several ways. The tangible
contribution of cellular automata research to our work is the
use of local rules to produce global behavior. Other features
of traditional cellular automata, such as non-conservation
of matter and the simultaneous-update evaluation model
are not appropriate for self-reconfiguring systems.

Fig. 1. The basic motions of the abstract module are translation (top),
concave transition (center), and convex transition (bottom). The concave
transition is not indicated by module motion, rather it is a connection
swap indicated by the arrows (the initial connection is to the horizontal
surface—after the concave transition the connection is to the vertical
surface). The center step in the convex transition may appear to be a
difficult pose to emulate in hardware since the cubes only have edge
contact. However, hardware systems have been built which support this
pose, although only in two dimensions [8], [15].
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Fig. 2. Partial rule set for building a cube from a flat sheet of modules, where the sheet and the cube have the samey dimension. Only the east rules
are shown—all rules other than Rule 7 are duplicated in the west direction, with corresponding changes to the directions and operators in the individual
cells of the rules, resulting in a total of 19 rules. Cell variable “A” is the direction state variable which can assume the values{N, E, S, W, O, X},
whereN is north,E is east,S is south,W is west,O indicates any of{N, E, S, W} andX indicates no direction, i.e. the cell is not moving. Cell
variable “B” denotes the comparison operator applied to thex component of the cell location variable and the cube extents and can assume the values
{<, =, >}. Cell variable “C” indicates which cubex extent is being compared and can assume the values{−, +,−′, +′}, where− is the minimum
x extent of the cube,+ is the maximumx extent of the cube,−′ is the minimumx extent minus one, and+′ is the maximumx extent plus one.
For example, the preconditions for the current cell in rule 8 are that its direction state is east, and that itsx location be greater than the minimumx
extent of the cube minus 1. This rule set uses theD∞ evaluation model.

a) Abstract module:The use of an abstract mod-
ule allows us to decouple the salient features of a self-
reconfiguring module from the implementation dependent
features that tend to complicate algorithm design and
analysis. We generally represent the module shape as a
cube, although our proposed abstraction can be replaced
by any geometric structure that supports the formation
of lattices. The actuation modalities for the module are
the basic motions needed for motion: linear translation,
concave transition, and convex transition (see Fig. 1).
While no existing three-dimensional module can perform
all these motions exactly as our abstract module does, most
modules can perform a subset of these motions alone and,
with the assistance of other modules, can perform all of
them. Module interconnection is face-to-face, e.g. modules
can connect when their faces are adjacent and aligned.
However, connections are not explicitly simulated—we
assume that any face-to-face modules are connected as long
as both modules are stationary.

b) Algorithms: Each algorithm employs a set of local
rules we implement as a type of cellular automaton. Each
rule requires a set of preconditions on the neighborhood of
the cell and when activated, causes a change in the system
state. The rules are written in the form of productions, with
the precondition state on the left and the resulting state, or
postcondition, on the right (see Fig. 2). The postcondition
is often the movement of a module, but in some cases it is
only a change in the internal state in the module. Simple
algorithms may not require any internal state, while more
complex algorithms may have several local variables for
each module. The algorithms presented in this paper were
created manually, however we are exploring automated
algorithm development.

An important consideration for our algorithms (and

our proofs) is the evaluation model used to process the
modules. Traditional cellular automata simulators evaluate
all cells using their current local states and then update the
entire cell array simultaneously. Although it is possible to
implement a global clock to synchronize module updates
[9], we have chosen to use multiple evaluation models
which reflect the expected level of actuation delay in a
real system [4].1 It is worth noting that different evaluation
models affect the algorithm rule complexity—more delay
generally requires more complex rules. The rule sets pre-
sented in this paper use theD1 andD∞ evaluation models.
The D1 model allows a delay value of one and theD∞
model allows arbitrary delay.

c) Correctness:Proof of correctness is an important
principle of our approach. Our proofs take the form of
logical arguments regarding the possible configurations
of module groups [2], [4], and of automated proofs of
correctness based on an evaluation of the properties of a
constructed graph representing all possible sequences of
rule actuations an algorithm for a given initial configuration
[10]. In this sense, an initial configuration and a rule set
can be viewed as a finite automaton whose graph indicates
various properties about the algorithm.

Furthermore we show that simulation results can be com-
bined with machine learning theory to produce a statistical
bound on the likelihood that an algorithm is correct. This
is done by performing multiple simulations using a fixed
rule set and initial configuration, while evaluating modules
randomly in each simulation. A specific evaluation order
in which rules are executed is referred to as an “activation
sequence”. The result of many random simulations is an

1The amount of actuation delay indicates the level of non-synchronous
behavior with regard to rule evaluation time. However, module movement
time is instantaneous which eliminates asynchrony due to actuation time.



Fig. 3. Four snapshots from a simulation of the cube building rule set in Fig. 2. The initial structure is a25 x 1 x 5 sheet of modules (thez axis is
perpendicular to the page). As the simulation proceeds, modules at the east and west ends of the sheet move toward the center to form a cube. In this
example the cube is formed at the center of thex dimension of the sheet, but the rule set functions correctly for anyx value of the goal position of
the cube along the sheet (thez extents of the cube and the sheet must be aligned).

exploration of the set of all possible activation sequences,
which can be used to bound the expected size of the set
of erroneous activation sequences.

Our PAC (Probably Approximately Correct) approach
can be used to bound the size of the error region,ε, with
a confidence ofδ for a given number of correct, random
simulations as follows. Assume that the size of the error
region for a given rule set isε. Then, the probability of
runningn random correct simulations is(1−ε)n. We want
to bound this probability byδ, resulting in the following
equation

(1− ε)n < δ. (1)

Solving for n yields

n >
1

ln( 1
1−ε )

ln(
1
δ
) (2)

and, since1
ε > 1

ln( 1
1−ε )

in the range (0,1) the result can be

simplified to

n >
1
ε
ln(

1
δ
). (3)

This provides an estimate on the number of random
correct simulations necessary to bound the error region to
size ofε with a confidence ofδ. Thus, if a value of0.0001
is chosen for bothδ and ε, the number of simulations
required to be99.99% confident that the size of the error
region is no more than0.01% of the total number of
possible activation sequences is,n > 1

0.0001 ln( 1
0.0001 ) ≈

92104.
d) Instantiation: Instantiation refers to the applica-

tion of generic algorithms to specific hardware systems.
This can be done by using meta-modules—groups of real
modules which together can perform the basic motion
primitives of our abstract module—or by creating “na-
tive” module motion sequences which implement the basic
motions. The value of instantiation is that the proof of
correctness is inherited from the abstract system, and such
proofs may not exist for the system using native module
motions. Refer to [4] for instantiation examples.

IV. A LGORITHMS

A. Locomotion

Algorithms for locomotion with and without obstacles
are described in [2]. The cellular automata approach is well
suited to locomotion algorithms, since these algorithms
are not fundamentally concerned with the global shape
of the robot. Thus, the shape is free to be dynamically
altered at the local module level, using local rules. In fact,
local conformity of the shape to unknown, rough terrain
is an advantage for locomotion. Locomotion algorithm
extensions, such as climbing tall obstacles and moving
through tunnels, are presented in [4].

B. Assembly

Although our generic distributed approach is well-suited
to locomotion tasks, we are interested in exploring whether
the cellular automata approach can be used for non-
locomotion algorithms such as building specific shapes.
Here, the algorithm must be able to control shape formation
using only local rules. As our results demonstrate, it is
possible to achieve global shape control using only local
rules for some shapes.

A key component of our assembly algorithm is that
modules know the goal shape, the location of goal shape,
and their location.2 Module location is not difficult to
maintain, assuming modules know their location in the
initial configuration, since modules move in integral lattice
coordinates and can easily update their location as they
move. One can imagine a specific module broadcasting
the command to build a cube around itself, including the
x, y, and z extents of the cube in the message based on
its current location. As the message is received by other
modules, they can compare their location with the cube
extents and determine the direction in which they need to
move. Their only motivation would be to place themselves
inside the extents of the cube.

A rule set for this algorithm can be seen in Fig. 2. The
initial configuration for this algorithm is a planar sheet of
n2 x n modules whosez extents are equal to thez extents

2Modules in each layer (x-y plane) need only know the goal shape for
that layer, since the assembly algorithm does not move modules out of
their initial layer.
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Fig. 4. Partial rule set for dynamic hole repair. Rules are shown for the east direction only—Rules 1, 6, 7, 8, and 9 are duplicated for the west, up,
and down directions. Rules 1 and 6 are composite rules—each consisting of 8 individual rules, implementing the constraint that any cell adjacent to
the current cell must not be moving south. Fig. 5 illustrates the individual rules for Rule 6. Up and down correspond to+z (out of the page) and
−z (into the page) directions, respectively. Cell variableA is the direction state variable which can assume the values{N, E, S, W, U, D, O, X, T},
whereO indicates one of{N, E, S, W, U, D}, i.e. the cell is moving;X indicates none of{N, E, S, W, U, D}, i.e. the cell is not moving; andT
indicates one of{N, E, W, U, D}, i.e. the cell is moving but not south. If cell variableA is in the lower left corner of the cell representation it means
¬A, i.e. any direction other thanA will match the direction variable. Cell variableB is the direction request variable which is used by other cells to
request a direction change in a neighbor cell. It can assume the same values as cell variableA, and if it is in the lower right corner it means¬B. The
label under the production arrow for rules 1 and 6 indicates a direction request by the moving cell, specificallyR → R1, R2, R3 denotes that any
neighbor cells in theR1, R2, R3 directions have their direction request state variable set toR. This rule set uses theD1 activation model.

of the cube (see Fig. 3). The goal configuration is cube of
modules, withn modules in each dimension. Because the
sheet and the cube are aligned in thez dimension, noz
displacement of modules is necessary—all module move-
ment will be in thex and y dimensions. This restriction
allows the use of local module location information only.
If modules were not restricted to their initial layers local
information would be insufficient determine proper layer
placement.

An examination of the rule set reveals that some internal
state is used in the modules, specifically the current loca-
tion of the module, the extents of the cube, and a direction
variable which indicates in which direction the module is
attempting to move. For example, the north rules (Rule
1 and Rule 2) can only be executed when the module’s
x location is one less than the minimumx extent of the
cube. This means that an eastward-moving module can
only move north along the west face of the cube. This
restriction prevents modules from moving north inside the
cube, which could result in too much vertical development
of the shape. As it is, eastward-moving modules can only
move east or southeast inside the cube extents which
naturally fills horizontal layers one at a time. Note also
that the southeast move (Rule 6) is restricted tox locations
strictly less than the maximumx extent of the cube. This
prevents an eastward-moving module from moving onto
the east face of the cube, which would be outside the
cube extents. Although Rule 10 implies that any eastward-
moving module will stop on reaching the maximumx
extent of the cube, due to random rule evaluation it is
possible that Rule 6 might be evaluated before Rule 10,
requiring that Rule 6 have its own movement restriction.
Refer to Section V for experimental results.

Although the above assembly algorithm is correct, it is
a bit cumbersome to apply it to different shapes. We have
simplified the algorithm to use a simple shape function
which indicates whether a given location is inside or
outside the goal shape. The rule set has also been slightly
modified to allow it to build any filled non-cantilevered
convex configuration of modules within each layer (x-y
plane).3 Because each layer is essentially independent, a
different three-dimensional convex shape can be built in
each layer as long as the layers remain connected, resulting
in a large class of feasible goal shapes.

C. Repair

The ability of cellular automata algorithms to emulate
flowing fluids suggests that a dynamic structure could be
created that would redistribute module locations so as to
maintain a continuous membrane of modules. The structure
would be multilayered, with the layers parallel to the
surface of the structure. Such a structure would be self-
sealing—any holes that developed in the structure would
be sealed by the reconfiguration of the modules, with the
multiple layers of the structure providing the necessary
module redundancy to allow holes to be filled (with a
resulting reduction in the number of layers over time).
A self-sealing structure would be useful in a hazardous
environment, for example as the walls of a space station
which could dynamically seal any holes due to collisions
with foreign bodies, preventing the venting of air. Another
possibility is the development of adaptive armor for mil-
itary vehicles. Currently, a projectile can damage armor
in a specific location such that a second hit in that area

3A “filled” layer means the layer has no holes, i.e. there are no empty
module locations within the module perimeter.
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will penetrate the vehicle. Adaptive armor composed of
self-reconfiguring modules would dynamically redistribute
the module locations in order to repair the damage from
a previous impact, thus increasing survivability for the
occupants.

Figures 4 and 5 show the rule set for hole repair. The
idea behind the rule set is that modules without neighbors
will move into empty space in order to fill it (see Fig. 6).
Specifically, any module in layeri without neighbors in
some directiond in both layeri and layeri−1, and with no
module above it, will perform a convex transition in theSd
direction (Rule 1) and continue to move south (Rule 5) until
an obstacle or another module is encountered (Rule 10 and
Rule 11). For simulation purposes the layers are parallel
to the “floor,” which is an implicit obstacle. Unlike the
assembly algorithm described above, there is no specific
goal shape for this algorithm other than to fill the holes as
completely as possible. In this sense the repair algorithm
is similar to the locomotion algorithms described in [2],
[4].

Rules 1 and 6 are composite rules, composed of eight
separate rules which guarantee that no neighbor of the
current cell is moving south. This is required to prevent
module disconnection. Fig. 5 shows the eight individual
rules which comprise Rule 6. Rules 1, 6, 7, 8, and 9
are also duplicated in the west, up, and down directions,
resulting in a total of 83 rules. A feature of Rules 1
and 6 is that the moving module submits a direction
request to its neighbors. If the proper conditions are met
(Rules 2 and 3 are not satisfied), then Rule 4 transfers
the direction from the direction request variable to the
direction variable. As these modules then begin to move
the direction requests cascade to their neighbors in turn,
resulting in a mass module movement toward the hole.
This is necessary because the size of the hole cannot be
determined using local knowledge alone, and therefore as
many modules as possible must be moved toward the hole
in order to be sure of filling it. A consequence of this is
extraneous module movement after the hole is filled, as
moving modules continue their motion until they can no
longer move in that direction. This is illustrated in Fig. 6
(d) where all the modules in the top layer have migrated

toward the hole location. Adding extra rules may permit
the motion to be stopped sooner, but again, it may be
difficult to precisely determine whether the hole is filled
using only local knowledge. If the modules surrounding the
hole could communicate to determine the size of the hole
prior to moving, it might be possible to limit the number
of modules set in motion and to stop module motion after
the hole is sealed. Of course, such communication would
be outside the scope of the cellular automata paradigm,
but it could be implemented as a preprocessing step which
sets some internal state in the modules which is then used
by the cellular automata algorithm. See Section V for
experimental results of hole repair simulations.

V. EXPERIMENTS

This section describes the experiments used to demon-
strate correctness for the assembly and repair rule sets.
The graph analysis experiments use a special mode in
our simulator that constructs graphs which represent the
finite automaton defined by the rule set and the initial
configuration of modules. PAC analysis experiments are
simulations of rule set activation on a given initial module
configuration. Most experiments were performed on a
2.4GHz Intel Pentium 4 computer running Linux, however
in some cases experiments were performed on other ma-
chines. The elapsed times for these experiments have been
adjusted to estimate the value for a 2.4GHz machine.

A. Assembly

1) Graph analysis: The assembly rule set shown in
Fig. 2 is designed to build a cube shape from a flat sheet of
modules. Actually, it can build any rectilinear shape, since a
single layer can build any rectangle and multiple layers can
be stacked to achieve arbitrary width in thez dimension.
This rule set uses theD∞ activation model, and therefore
the graph analysis method can be employed to prove the
correctness of the rule set for specific instances.4 Table I
shows the results of several graph analysis experiments.
These results are for a single layer of modules. Since the
rule set does not reference other layers the results can be

4The current implementation of the simulator only permits graph
analysis ofD∞ rule sets.



(a) (b) (c) (d)

Fig. 6. Four snapshots from a simulation of the hole repair rule set in Figures 4 and 5. The modules are arranged in three10 x 10 layers, with a4
x 4 module hole. The perimeter of the cell array is composed of ”obstacle” cubes used to contain the group. As the simulation proceeds, the hole is
gradually filled by modules surrounding the hole. Note that the experiments described in Section V-B.1 use12 x 12 module layers.

applied to systems with more than one layer without loss
of correctness as long as there is no layer shear.5 The
number of nodes in each graph is slightly less than2n,
wheren is the number of modules. Because the number
of nodes is exponential inn, the tractable node count is
limited. However, even though larger systems cannot be
analyzed using this method, the results for smaller systems
provide some confidence that that the algorithm will extend
to systems with more modules.

TABLE I

EXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS

OF THE ASSEMBLY RULE SET USING THE GRAPH ANALYSIS METHOD.

Size Nodes Edges Activation Elapsed
Sequences Time

2 x 2 13 16 6 < 1 second
3 x 2 66 104 160 < 1 second
2 x 3 69 117 1220 < 1 second
3 x 3 609 1372 409925334 1 second
4 x 3 3756 10159 ? 37 seconds
3 x 4 3460 9215 ? 33 seconds
4 x 4 31920 103938 ? 1031 seconds
5 x 4 279464 1081364 ? 110520 seconds

Since the assembly rule set has a definite end state,
the graph must not have any cycles since a cycle would
imply that the algorithm may never terminate. Also, there
must be a single leaf, the desired end state of the building
process. It is easy to verify these properties, as the graph
can be examined for the presence of back edges which
imply cycles and for the existence of a single leaf which
has the desired shape.

2) PAC analysis:The PAC analysis method, described
in Section III, was applied to the assembly rule set. Here,
the running time is polynomial in the number of modules
which permits larger module counts. The results are shown
in Table II. All iterations were successful and the acti-
vation sequences were unique. “Avg. Activation Sequence
Length” is the average length of the activation sequences
over all iterations. These results are for a single layer of
modules. For100000 unique, correct runs of the assembly

5Layer shear is caused by multiple layers moving at different speeds
such that the layers become disconnected [10]. Layer shear is not possible
in this assembly task.

rule set we can determine that 99.99% of the total number
actuation sequences should be correct with a confidence
of 99.99% (7000 runs provides a 99.9% confidence that
99.9% of the actuation sequences are correct).

TABLE II

EXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS

OF THE ASSEMBLY RULE SET USING THEPAC ANALYSIS METHOD.

Size Iterations Avg. Activation Elapsed
Sequence Length Time

3 x 3 100000 25.3 0.93 hours
4 x 4 100000 76.1 1.06 hours
5 x 5 100000 181.8 1.66 hours
6 x 6 100000 372.5 6.93 hours
7 x 7 100000 682.4 12.03 hours
8 x 8 100000 1153.3 38.35 hours
9 x 9 7000 1831.3 8.19 hours
10 x 10 7000 2773.0 19.22 hours

B. Repair

1) PAC analysis:The hole repair rule set, as shown in
Figures 4 and 5, is designed to fill holes in the structure
with modules from the upper layers of the structure (here
the layers are in they dimension instead of thez dimension
as in the other rule sets). Since this rule set uses theD1

activation model, graph analysis cannot be performed, as
graph analysis currently only works for rule sets that use
the D∞ activation model. Therefore, only PAC analysis
experiments were performed. Table III gives the results
for various locations of a4 x 4 hole in structures with
three to five layers. The initial module array is12 x y x
12, wherey is the number of layers. The hole size is4
x y x 4. All holes have vertical sides. Each experiment
consisted of 7000 iterations, and all activation sequences
were unique. “Hole Offset” is the offset of the hole from
the center of the structure. The values listed under the
heading “Successes” are given for the minimum layer not
completely filled. For example, a listing of “2: 31” indicates
31 simulations completed without error (disconnection)
and the 2nd layer was not completely filled. For these
experiments, the number of iterations was reduced to due to
the increased simulation time needed for the large number
of modules. By the PAC equation (3),7000 unique, correct



iterations provides a 99.9% confidence that 99.9% of the
actuation sequences are correct.

The termination criteria for the hole repair rule set is
that there is at least one completely filled layer. Ideally,
the hole would be filled by only modules from the top
layer, guaranteeing that the resultant structure has as many
fully occupied layers as possible. However, as seen in
Table III, in some cases the hole is not completely filled.
For all experiments the hole is guaranteed to be sealed, but
perhaps only with a single layer of modules. Generally, the
hole filling is fairly complete with mostly single module
vacancies on the next-to-top layer, although in a few cases
there was a vacant location in a lower layer.

TABLE III

EXPERIMENTAL RESULTS FOR DEMONSTRATING THE CORRECTNESS

OF THE HOLE REPAIR RULE SET USING THEPAC ANALYSIS METHOD.

Layers Hole Successes Avg. Actuation Elapsed
Offset Sequence Length Time

3 (0,0,0) 3: 7000 566.0 7.52 hours
3 (1,0,1) 3: 7000 895.0 12.07 hours
3 (2,0,2) 3: 6969 956.1 12.71 hours

2: 31
3 (3,0,3) 3: 6993 905.4 12.07 hours

2: 7
3 (4,0,4) 3: 7000 860.7 11.51 hours

4 (0,0,0) 4: 6993 1529.1 34.24 hours
3: 7

4 (1,0,1) 4: 6989 1375.5 31.57 hours
3: 11

4 (2,0,2) 4: 5672 1592.1 37.05 hours
3: 1328

4 (3,0,3) 4: 7000 1058.1 24.16 hours
4 (4,0,4) 4: 4975 1859.3 43.45 hours

3: 2025

5 (0,0,0) 5: 5745 1982.5 68.61 hours
4: 1255

5 (1,0,1) 5: 6511 1937.2 68.57 hours
4: 489

5 (2,0,2) 5: 6944 1803.4 64.47 hours
4: 56

5 (3,0,3) 5: 6699 1902.6 67.48 hours
4: 301

5 (4,0,4) 5: 3700 2651.8 65.29 hours
4: 3297
3: 3

VI. CONCLUSION

This paper describes generic distributed algorithms for
assembly and repair tasks for modular self-reconfigurable
robots. Our approach is based on a cube-shaped abstract
module which simplifies algorithm design and analysis.
Algorithms for assembling a cube from a flat sheet of
modules and for hole repair in a multi-layer module
structure are presented. Algorithms are written as sets of
rules which only require local information, allowing the
algorithms to easily be distributed onto systems with large
numbers of modules. Our previous work describes how
these generic algorithms can be instantiated onto various
hardware systems. Finally, we describe our simulation ex-
periments which demonstrate that the algorithms function
correctly.
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