
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR 
FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
27 July 2016 

2. REPORT TYPE
Conference Paper

3. DATES COVERED (From - To) 
30 June 2016 - 27 July 2016 

4. TITLE AND SUBTITLE 
Multi-Fidelity Framework for Modeling Combustion Instability 

5a. CONTRACT NUMBER 
 

 5b. GRANT NUMBER 

 5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Huang, C., Anderson, W., Merkle, C. and Sankaran, V. 

5d. PROJECT NUMBER 
 

 5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER 
Q12J 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NO.

Air Force Research Laboratory (AFMC) 
AFRL/RQR 
5 Pollux Drive 
Edwards AFB, CA 93524-7048 

 
 
 
 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
 
Air Force Research Laboratory (AFMC) 
AFRL/RQR 11. SPONSOR/MONITOR’S REPORT 

5 Pollux Drive       NUMBER(S)

Edwards AFB, CA 93524-7048 AFRL-RQ-ED-AB-2016-198 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited.  PA Clearance Number:  16327 Clearance Date:  7/12/2016 
13. SUPPLEMENTARY NOTES  
For presentation at AIAA Propulsion and Energy Conference 2016; Salt Lake City, UT July 25-27, 2016 

14. ABSTRACT 

A multi-fidelity framework for combustion instability modeling is established by integrating a reduced-
order model (ROM) for combustion response into the linearized Euler equations. The ROM is developed 
from CFD simulations of periodic forcing on a reduced domain using Galerkin’s method to reduce the 
high-order PDEs to a lower-order ODE system via POD eigen-bases generated from the reduced-domain 
dataset. Evaluations of the framework are performed based on simplified test problems for a model rocket 
combustor showing distinguishable instability behaviors. The coupling between the ROM and the Euler 
equations requires two-way information transfer between the two systems. Results show that the fraction 
of the complete domain represented by the ROM can be chosen to simplify the interaction between the 
two levels of solution. The multi-fidelity model is capable of capturing the overall instability trends 
although some discrepancies due to unstable generic responses arising from the reduced-domain 
simulations. 
15. SUBJECT TERMS 
N/A 
16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF 
RESPONSIBLE PERSON 

V. Sankaran 

a. REPORT 
 
Unclassified 

b. ABSTRACT 
 
Unclassified 

c. THIS PAGE
 
Unclassified 

SAR 
21 19b. TELEPHONE NO 

(include area code) 

N/A 
 Standard Form 

298 (Rev. 8-98) 
Prescribed by ANSI 
Std. 239.18 

 



1 

Multi-Fidelity Framework for Modeling Combustion 

Instability 

Cheng Huang*, William E. Anderson†, Charles L. Merkle‡ 

Purdue University, West Lafayette, IN, 47907 

and 

Venkateswaran Sankaran§ 

Air Force Research Laboratory (AFRL), Edwards AFB, CA, 93524 

A multi-fidelity framework for combustion instability modeling is established by 

integrating a reduced-order model (ROM) for combustion response into the linearized Euler 

equations. The ROM is developed from CFD simulations of periodic forcing on a reduced 

domain using Galerkin’s method to reduce the high-order PDEs to a lower-order ODE 

system via POD eigen-bases generated from the reduced-domain dataset.  Evaluations of the 

framework are performed based on simplified test problems for a model rocket combustor 

showing distinguishable instability behaviors. The coupling between the ROM and the Euler 

equations requires two-way information transfer between the two systems. Results show that 

the fraction of the complete domain represented by the ROM can be chosen to simplify the 

interaction between the two levels of solution. The multi-fidelity model is capable of 

capturing the overall instability trends although some discrepancies due to unstable generic 

responses arising from the reduced-domain simulations.  

I. Introduction 

ombustion instabilities arising from organized pressure oscillations driven by hydrodynamic coupling to the heat 

release often occur in practical combustors.  Problem complexity is enhanced by the intense, but distributed, 

nature of the heat release, the complex chemical reactions and companion large numbers of molecular species 

produced by combustion of realistic propellants, highly complicated geometries and multiple inlet ports. Though 

modern computational capability offers the potential for moving beyond the empirically-based design analyses of 
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the past, simulations of full-scale geometries for engineering analysis are still far out of reach. High fidelity 

simulations of smaller domains can, however, be potentially used to derive reduced order models of the unsteady 

combustion response that can in turn provide generic descriptions of the complex couplings and thereby predict the 

combustion stability of full-scale configurations. 

Research efforts in combustion response function development can be categorized into physics-based and 

mathematics-based efforts. Physics-based approaches generally adopt a reduced fidelity model such as a wave 

equation in combination with combustion response functions that are derived through physical intuition. Usually this 

means that the unsteady heat release is expressed in terms of the fluctuations of the local pressure and velocity field. 

Such approaches include the Flame Transfer Function (FTF) and the Flame Describing Function (FDF) methods [1], 

widely used in premixed combustion for gas turbine engine application [2-5]. You et al. [6] developed an analytical 

model based on a level-set flamelet model to obtain the combustion response of turbulent premixed flames to 

acoustic oscillations. However, the generality of such approaches are not well established especially in the context 

of the large amplitude oscillations that are characteristic rocket combustors. More recently, Popov and Sirignano [7] 

successfully demonstrated the modeling of transverse combustion instability in a rectangular rocket combustor [8] 

using a reduced-fidelity simulation approach. However, there are several ad-hoc simplifications in the model and 

their general applicability to other rocket configurations is not established.  

In this paper, we focus on the mathematics-based approach based on formal model reduction techniques [10-12] 

that couple model decomposition (e.g. Proper Orthogonal Decomposition) and projection (e.g. Galerkin) methods. 

Such model reduction techniques have been proven to be efficient for reducing the higher-order partial differential 

equations (PDE) to ordinary differential equations (ODE) and the resulting reduced order models (ROM) have been 

applied to non-reacting flow problems including flow control [13-15] and unsteady aeroelasticity [16, 17]. Recent 

studies have extended ROMs to combustion problems [18, 19]. Preliminary explorations of the POD/Galerkin 

technique have been carried out by the present authors for both a model scalar equation [20], and the Euler system of 

equations [21, 22]]. These studies have established a basic approach for ROM construction and its characteristics for 

frequency-dependent problems. The present work seeks to extend the ROM approach to a multi-fidelity framework 

for the solution of representative combustion stability problems. 

The main objective of the current paper is to demonstrate a multi-fidelity framework for modeling combustion 

instability problems. The underlying idea of our approach involves two distinct stages: the first stage is to construct 

the ROM through suitable training for a representative class of reduced-domain problems, and the second stage is to 

embed the ROM within a linearized Euler equation solution in order to predict combustion instability occurrence for 

the real full-domain configuration. In the latter stage, the ROM provides the combustion response source terms in 

the Euler equations and, in that sense, it resembles the FTF/FDF approaches discussed earlier. However, the 

difference lies in the use of the ROM to define the combustion response terms.  

A related secondary objective of this study is to examine the accuracy of using different reduced problems in the 

ROM construction phase. Specifically, we use a representative longitudinal mode experimental combustor [9] that 

demonstrates both stable and unstable operation depending upon the length of the injector post. In the ROM 
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construction stage, we employ different reduced-domains involving just the injector section in order to train the 

ROM. We examine the effects of introducing different boundary condition perturbations in order to represent the 

response of the injector to self-excited oscillations in the full combustor. In each case, the resulting ROM is 

subsequently embedded within the full-domain injector-combustor configuration and the accuracy of the predictions 

is evaluated.  

The computational savings of this multi-fidelity approach comes from the fact that the expensive simulations are 

restricted to the reduced domain problem during the ROM training process (i.e., the first stage). In contrast, the full-

domain problem is solved very efficiently (in the second stage) using the previously constructed ROM. In general, 

the first stage would involve high-fidelity simulations such as large eddy simulation (LES) or detached eddy 

simulations (DES), while the second stage utilizes the ROM embedded within a reduced fidelity solution such as the 

Euler equations. We note that, for the purposes of this initial demonstration, we utilize one-dimensional Euler 

solutions in both stages. This not only allows for more efficient calculations of the first stage, but it also has the 

further advantage of providing benchmark-quality solutions that facilitate detailed accuracy assessments of the 

proposed procedure.   

The remainder of the paper is organized as follows. In Section II, we present the governing Euler equations with a 

modeled combustion source term and the forcing function and boundary conditions used. In addition, we also 

present the Galerkin formulation and the POD techniques for deriving the ROM for the linearized version of the 

Euler equations. In Section III, we describe the multi-fidelity framework approach including a definition of the test 

problem, the training processes of the POD-based ROM and the overall method for inserting the constructed ROM 

into the linearized-Euler framework. In Section IV, we present the computational results of our studies. We explore 

the effects of using different reduced-domain geometries for training the ROMs and, in particular, deduce the 

number of ROM solutions required to fully capture the acoustic wave response of the injector. We also consider the 

case where the reduced-domain includes the full injector post and contrast those results with the previous reduced-

domain studies. In each case, we compare the predictions of the proposed multi-fidelity framework with those 

obtained from the baseline governing equations to establish the ROM performance. In the final section, we provide 

concluding remarks and suggest directions for continued research. 

 

II. Formulation 

A. Governing equations 

The governing equations are the quasi-one-dimensional unsteady Euler equations with a single-step chemical 

reaction and a specified reaction distribution, 

 f qt x
∂ ∂

+ = + +
∂ ∂
Q E

H H H  (1) 

where, 
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Here x and t are the space and time variables, ρ is the density, u is the velocity, e is the total energy, p is the 

pressure, Yox is the oxidizer mass fraction and A = A(x) is the cross-section area of the geometry. The effects of fuel 

addition are accounted through steady source term Hf, where /f f O oxCω ω=   with constant /f OC  representing fuel-to-

oxidizer ratio and a sinusoidal spatial distribution is used to model the oxidizer reaction, 

1 sin 2
2

s
ox f ox

f s

x l
k Y

l l
πω ρ π

  −
 = + − +   −  

 ,  (  s fl x l∀ < < ), where sl  and fl  are the axial locations of the beginning 

and end of the combustion zone. The reaction constant fk  is selected to ensure that the oxidizer is consumed within 

the specified combustion zone. The unsteady combustion response is accounted in the source term, Hq, using the n-τ 

model [23], ( ) ( ) ( ) ( ) ( )( ), ,q n x p x t n x p x t p xα τ α τ′′′ ′= ⋅ ⋅ − = ⋅ ⋅ − − , which relates the unsteady heat release to the 

pressure oscillations through an index, n and a time lag constant, τ. Here ( )xα  is a scaling function following a 

normal distribution, ( ) ( )2

2

1
exp

22

x
x

µ
α

σσ π

 −
 = −
 
 

.  This model was previously used [24] to simulate combustion 

instability in a longitudinal rocket combustor, 

For simplicity, the linearized version of Eq. (1) is used for the studies in ROM development, 

 
p p p

p p p

A
D

t x
′ ′∂ ∂

′Γ + =
∂ ∂

Q Q
Q  (2), 

where ( )T

p oxp u T Y′ ′ ′ ′ ′=Q , p
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∂
Q

Q

Q
, p

p
p

A ∂
=
∂

Q

E

Q
 and 

q
p

p p
p

D
 ∂∂

= +  ∂ ∂  Q

HH

Q Q
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B. Construction of POD eigen-bases for vector equations 

POD eigen-bases are calculated based on the CFD solutions, ( ),p x t′Q  obtained from Eq. (2) using the vector-

valued method, 
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∑ ∑ ∑Q Φ  (3), 

where σn is the singular value of the nth POD mode (scalar), an(t) is the nth POD temporal mode (scalar), and the nth 

eigen-mode, Φn(x), is an orthonormal vector function, 

 ( ) ( ) { }T 1,  if 
,  0

0,  otherwisen n
X

k n
x x dx X x L

=
= = ≤ ≤


∫Φ Φ  (4). 

It should be noted that, unlike in the scalar equation case, to obtain reasonably scaled POD eigen-bases for the 

vector variables, a normalization matrix P(x) must be used before calculating the POD eigen-bases. Here, in this 

abstract, we use the maximum of the fluctuating quantities for the normalization of all four variables,  

 ( )
max max max ,max

1 1 1 1
, , ,

ox

P x diag
p u T Y

 
=   ′ ′ ′ ′ 

 (5), 

where ( ){ }max Max ,p p x t′ ′= ,  0 x L∀ ≤ ≤ and t so that the variations in each variable can be taken into account in 

relative to their maximum amplitude. To reconstruct the CFD solutions using the POD eigen-bases, the matrix P(x) 

again needs to be included, 

 ( ) ( ) ( )

( )
( )
( )
( )

,

,1

1 ,

,

,

p n
N p

u n
p n

n T n

Y nox

x
x

x t P x a t
x
x

φ
φ
φ
φ

−

=

 
 
 ′ ≈  
  
 

∑Q  (6). 

 

C. Model reduction of Euler equations 

The application of the POD-Galerkin method to the linearized Euler equations (Eq. (2)) is briefly introduced here. 

Additional details can be found in Ref [20]. Upon obtaining the eigen-bases as in Eq. (3), the target governing 

equation is projected onto the kth eigen-mode, Φk(x), throughout the whole computational domain. Before the 

projection the governing equation needs to be normalized by pre-multiplying by the matrix P(x), 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T 1 T 1
, ,

,p p p
k p k p p p

X X

x t A x x t
x P x x dx x P x x D x x t dx

t x
− −

′ ′ ∂ ∂
′+ Γ = Γ  ∂ ∂ 

∫ ∫
Q Q

Φ Φ Q  (7), 

Substituting the POD expansion, Eq. (6) into Eq. (7) and using a numerical quadrature to approximate the integrals, 
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 (8). 

Following the model reduction procedure in Ref [20] and using a consistent discretization scheme (a 2nd-order 

upwind scheme is used in both CFD and ROM) to approximate the gradient term in Eq. (8), an ODE system can be 

obtained with the contributions from boundary conditions appearing as a source term on the right-hand-side,  

 ( )( )
( )

d t L t t
dt

− =
a

a h  (9), 

where ( ) ( ) ( ) ( )
p

T

1 k Nt a t a t a t =  a   ,  

            ( ) ( ) ( ) ( )
p

T

1 k Nt h t h t h t =  h    with contributions from boundary conditions, ( ) ( ){ }m mh t h tφ′= , 

        L is the stiffness matrix which describes the dynamics of the reduced ODE system. 

 

D. ROM stabilization through artificial dissipation 

It has been shown in previous studies that a simple treatment like including additional artificial dissipation in 

building the ROM can useful to eliminate the non-physical unstable modes [12]. Here the method of including the 

artificial dissipation is briefly introduced starting with the discretized form of the linearized model equation, Eq. (2), 

 ( ) ( ),
, 1/2 1/2 , ,1/2 1/2

0p i
p i i p p i p p i p i p i ii i

x A area A area D x
t + −+ −

′∂
′ ′ ′Γ ∆ + − − ∆ =

∂

Q
Q Q Q  (10), 

where ix∆  is the size of the ith cell and 1/2iarea +  is the left/right faces area of the ith cell. The artificial dissipation is 

added at the cell faces, 

 

( ) ( ) ( ){ } ( ) ( ){ }
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p p p p p p p p pi iii i i

A A A A

A A A A

β

β

+ +++ + +

− −−− − −

′ ′ ′ ′ ′= + − −

′ ′ ′ ′ ′= + − −

Q Q Q Q Q

Q Q Q Q Q



 

 (11). 

It should be noted that the artificial dissipation already exists in the original CFD solutions since we are using a 2nd-

order upwind discretization scheme (with β = 1), based upon which the POD eigen-basis is calculated. To increase 

the stabilizing influence of the ROM, different β values (>1) are used during the Galerkin projection step. By 

systematically varying the value of the β parameter, we can estimate how much extra artificial dissipation is needed 

to stabilize the ROMs. 
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III. Multi-Fidelity Framework 

A. Overview of Test Problem 

A well-documented benchmark laboratory single-element rocket combustor [9, 25, 26] is selected as the baseline 

test problem to assess the capability of POD/Galerkin techniques in developing a combustion response function for 

predictions of combustion instabilities. The combustor is designed with closed acoustic boundary conditions both 

upstream and downstream to generate sustainable self-excited pressure oscillations. In this paper, the computations 

are performed using the simplified geometry with the one-dimensional linearized Euler equation (Eq. (2)), the 

representative geometry setup of which is shown in Fig. 1 with three major components: oxidizer-post (variable 

lengths, Lox), combustion chamber (variable lengths, Lchamber) and nozzle at the end. The mean flow conditions are 

configured the same as given in Ref [9] with chamber pressure approximately 1.47MPa. The unsteady combustion 

response is accounted through the n-τ model ( q′′′  in Eq. (1)) specified at the highlighted location in Fig. 1. For 

simplicity, τ value is set to zero and six different n values (0.605×103, 0.805×103, 1.05×103, 1.205×103, 1.305×103 

and 1.405×103 1/s) are used to perform the computation to obtain distinguishable instability behaviors. In addition, 

both the lengths of oxidizer post and combustion chamber are varied for model evaluations. 

 

 

Figure 1. Overview of one-dimensional test problem using linearized Euler equations. 

 

B. Training Process  

 A reduced domain is setup for the POD-based ROM development as shown in Fig. 2, containing a portion of the 

oxidizer post and combustion chamber in Fig. 1, covering the combustion region and expected to capture the generic 

combustion response. The mean flow conditions of the reduced domain are configured to be consistent with the test 

problem. For a typical computation, the steady state numerical solutions of Eq. (1) are computed first with a constant 

boundary conditions both upstream and downstream. Then the unsteady CFD solutions inside the computational 

domain are obtained by specifying periodic oscillations of target quantities ( ( )tφ′ ), which can be inlet mass flow 

rate ( ( )m t′ ), stagnation temperature ( 0T ) and back pressure ( backp′ ), about its mean value ( 0φ ), 
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 ( ) ( )( )0 0
1

sin 2
N f

kf

t f f t
N
εφ φ π

=

′ = + ∆∑  (12), 

where f0 is the initial frequency; ∆f represents the fundamental frequency increment and Nf is the total number of 

frequencies included in the forcing function. The fundamental period Tp is determined by f∆  such that Tp =1/∆f. 

Note that if ∆f = f0, Eq. (12) represents a standard Fourier series although herein we generally take ∆f < f0 so that Eq. 

(12) differs from a Fourier series. 

 The solutions are tabulated and stored periodically (i.e., at several time-levels within a forcing period) thereby 

generating a rectangular matrix that can be used a data base for fitting eigen-bases by means of the POD procedure 

detailed below. The POD eigen-bases are then applied to the governing linear or non-linear PDE to derive the 

reduced-order ODE formulation (or ROM) following the procedure in section II. 

 

 

Figure 2. Training process of POD-based ROM using reduced-domain simulations. 

  

The ROMs developed in this paper are developed by including nine frequencies (f0 = 500Hz, = 250Hz and Nf = 

9) in the boundary forcing function defined in Eq. (12). The resulting ROM characteristics is examined by the eigen-

values (σ+j2πf) of the ODE stiffness matrix L in Eq. (9) and representative ROM spectra (trained by inlet mass flow 

rate perturbation with n = 1.305×103 1/s) are shown in Fig. 3 by including different amount of artificial dissipations. 

It should be noted that by not including any additional dissipations (β = 1), spurious unstable eigen-mode can be 

observed (σ > 0) near 6500Hz and when the amount of dissipations is increased up to 1.8 times, the unstable mode is 

dragged back to the left-hand plane and ROM becomes numerically stable. All the ROMs used in this paper are 

stabilized following the same procedure.  
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Figure 3. Eigen-value spectrum of ROM stiffness matrix by including different amounts of artificial 

dissipation (n = 1.305×103 1/s, ROM is trained by perturbing inlet mass flow rate). 

 

 

C. Multi-fidelity Solution Methodology 

 The multi-fidelity framework that integrates the ROMs with the Euler solver to simulate the test problem (Fig. 1) 

is introduced in this section. After generating the ROMs following the training process in part B, the ROMs are then 

used to replace the n-τ model to describe the unsteady combustion responses within the domain bounded by the 

dashed line in Fig. 4.  

 

Figure 4. Overview of one-dimensional test problem using linearized Euler equations. 

 

The overall procedures are summarized as below and it should be noted that the ROM/Euler solver integration can 

include multiple ROMs trained by different perturbations, 
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Step 1. Calculate the initial conditions, ( )0k t =a , for the kth individual ROM ODE (e.g. each ROM can trained 

with different perturbations) using initial CFD solutions, ( ), 0p L Rx x x t′ ≤ ≤ =Q  within the region covered by the 

reduced-domain, 

 ( ) ( ) ( ) ( )

( )
( )
( )
( )

( )

( )
( )
( )
( )

, ,

, ,
, , ,

, ,ROM

, ,

, 0

, 0 , 0
,  where  and , 0

, 0

, 0

p k m

xR u k mpT
k m k m k m pxL T k m

Y k m oxox

x p x t
xx t u x t

a t x dx x x t
x T x tN
x Y x t

φ
φ
φ
φ

′   = 
   ′ ′= =   ′= = = =   ′ =
      ′ =  

∫
Q

Φ Φ Q  (13), 

where m  is the mode number of POD eigen-bases, the  ROMN  is the total number of ROMs to be integrated with the 

Euler solver and ( ),k m xΦ  is the mth pre-calculated POD eigen-basis for the kth individual ROM using Eq. (3). 

Step 2. As shown in Fig. 5, obtain the fluctuating quantities at the upstream or downstream locations in the test 

problem, which correspond to the boundaries of the reduced-domain (Fig. 2). The fluctuating quantities should 

be consistent with the ones being perturbed for ROM generation (e.g. if the ROM is trained by perturbing the 

downstream pressure in reduced domain, p’ at location xR needs to be extracted from the test problem as an 

input for the ROM ODE). Then feed the obtained fluctuating quantities, ( )k tφ′ , as an input to the ROM 

following Eq. (9). 

 

Figure 5. Schematics of integration procedure to obtain inputs for ROM ODEs. 

 

Step 3. Solve the kth ROM ODE for temporal coefficients, ( )k ta , and obtain the corresponding solution variables, 

( ), ,ROM ,p k x t′Q , using the pre-calculated POD eigen-basis, ( ),k m xΦ , 
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Step 4. Combine all the solution variables, ( ), ,ROM ,p k x t′Q , from each ROM to obtain the total variable solutions, 

( ),ROM ,p x t′Q , 

 ( ) ( )
ROM

,ROM , ,ROM
1

, ,
N

p p k
k

x t x t
=

′ ′= ∑Q Q  (15), 

Step 5. Obtain the unsteady combustion response (input to Euler solver as the source term in energy equation) 

using the q′′′  expression in Eq. (1) form the total variable solutions, ( ),ROM ,p x t′Q , 

 ( ) ( )ROM ROM ,q n x p x tα′′′ ′= ⋅ ⋅  (16), 

 

IV. Results 

In this section, the multi-fidelity model framework is validated and evaluated against the baseline CFD results of 

the test problem (Fig. 1). Before proceeding to the detailed investigations of the reduced-order modeling approach, 

the key question that needs to be answered is how the ROMs should be trained and integrated with the Euler solver 

to get the correct instability predictions. For the initial study, a reduced-domain with Lox = 2.5’’ and Lchamber = 7.5’’ 

is selected for the development of POD-based ROMs by applying periodic perturbations of quantities at upstream 

and downstream boundaries. (Note that the upstream boundary conditions are mass flow rate and stagnation 

temperature, while the downstream boundary condition is specified pressure.) Each boundary condition perturbation 

corresponds to an individual ROM and so, for the general case, there would be three ROMs for the one-dimensional 

test problem.  It is interesting to see what the predictions would be if only one of the ROMs is used in constructing 

the combustion response. The geometry chosen for this study has Lox = 5.5’’ and Lchamber = 15.0’’ for two different n 

values (n = 1.205×103 and 1.305×103 1/s). As shown in Fig. 6, amplitude decay (stable) and growth (unstable) can 

be seen in the predicted pressure fluctuations from baseline CFD solutions for the lower and higher n values 

respectively. 



12 
 

  
n = 1.205×103 1/s n = 1.305×103 1/s 

Figure 6. Comparisons of the predicted pressure fluctuations from baseline CFD and Multi-fidelity models 

using individual and combined ROMs corresponding to two different n values (Lox = 5.5’’ and Lchamber = 15’’). 

 

Two sets of ROM-based multi-fidelity solutions are also shown in Fig. 6. First, only the individual ROM trained 

by perturbing the inlet mass flow rate is integrated with the Euler solver following the framework procedures in 

Section III.C to predict the instability behaviors for a test problem (Fig. 1) However, the corresponding predicted 

solutions are highly unstable for both cases. Second, the complete set of ROMs (i.e., all three trained by perturbing 

different quantities at boundaries) are combined and integrated with the Euler solver for the model evaluations. It 

can be readily seen that the resulting predictions are able to match the baseline solution. We further note that ROMs 

trained by perturbing different boundary conditions either individually or in combinations of two (in other words, 

with an incomplete set of ROMs) does not yield the correct predictions.  Good predictions are obtained only when  

the complete set of ROMs are used to represent the unsteady combustion response. The observation indicates the 

importance of developing comprehensive ROM combinations, which can provide the flame response for the 

corresponding input perturbation, so that the self-excited combustion instability can be captured correctly. 

 

A. Reduced-domain ROM characteristics 

The baseline test problems used for multi-fidelity framework evaluations are simulated to obtain distinguishable 

stability behaviors with the geometric and condition setup in Fig. 1  by varying the lengths of the post from 3.5’’ to 

11.5’’ and applying different n values (from 0.605×103 to 1.405×103 1/s) in the n-τ model. The growth rates of the 

predicted pressure signals are computed for each case and the resulting baseline stability map is shown in Fig. 7 with 

positive growth rate representing unstable and negative representing stable combustion responses. A zero growth-

rate solid black line is calculated to indicate the stability transition for the test problems. It can be seen that the cases 
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remain stable for all simulated n values at the two shortest post lengths (3.5’’ and 4.5’’) while the stability transition 

points shift toward lower n values as the post lengths increase.  

 

Figure 7. Stability map of baseline test problem simulations (positive growth rate (+): unstable and negative 

growth rate (-): stable). 

 

Three reduced-domain geometries are simulated at consistent n values as the test problems (Fig. 7) to generate 

comprehensive sets of ROMs by perturbing either the upstream or downstream boundary conditions as concluded 

from Fig. 6. The geometries are setup as in Fig. 2 with Lox = 2.5’’ and different chamber lengths (Lchamber = 5.5’’, 

7.5’’ and 9.5’’).  

Before proceeding to evaluate the multi-fidelity model capabilities, it is necessary to investigate the 

characteristics of the resulting ROMs trained using different reduced-domain geometries. Therefore, the eigen-

value spectra of the ROMs trained by perturbing the inlet mass flow rate are computed for further studies and are 

shown in Fig. 8 with a zoomed-in view of selected modes for each training reduced-domain and n values that have 

been simulated. The generic system responses originated from the geometric effects of the reduced-domains are 

highlighted in dash-dotted red circle, the growth rates of which increase with the values of n as expected (i.e. the 

system becomes more unstable as n value get higher). The sympathetic responses here include the acoustic 

dynamics in the chopped chamber and oxidizer post in Fig. 2 (e.g. highlighted modes in between 1000 and 

2000Hz represent chamber acoustics, the frequency of which decrease as the chamber lengths of reduced-domain 

get longer and the post acoustic modes can been seen in the spectrum of 5.5’’ length chamber in between 2000 

and 3000Hz) and injector responses driven by the post dynamics (e.g. high-frequency modes near 10kHz). More 

importantly, it should be noted that unstable modes (positive growth rate) can still be detected for high n values 

for each reduced-domain geometry even though an acoustically open boundary condition is applied (Fig. 2) to 

minimize the downstream wave reflections in the reduced chamber. These naturally unstable modes can be 

important in affecting the predictions from multi-fidelity model. 
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Lox = 2.5’’ and Lchamber = 5.5’’ Lox = 2.5’’ and Lchamber = 7.5’’ 

 
Lox = 2.5’’ and Lchamber = 9.5’’ 

Figure 8. Eigen-value spectrum of ROM stiffness matrix at different n values using various reduced-domain 

geometries (ROMs trained by perturbing the inlet mass flow rate). 

 

The predicted stability maps from the multi-fidelity framework approaches are shown in Fig. 9 with ROMs 

trained using different reduced-domain geometries. All three groups of ROMs are able to the overall trends of the 

stability transition with regards to different n values and post lengths. However, the multi-fidelity models with 

ROMs trained using reduced chamber of lengths 5.5’’ and 9.5’’ predict unstable behaviors at 4.5’’ post length while 

it is supposed to be stable in terms of the baseline results (Fig. 7). This can be mainly attributed to the influences 

from the unstable modes with high growth-rate (>100 1/s) observed in the ROM spectra (Fig. 8). Although unstable 

modes can also be seen for the 7.5’’ chamber reduced-domain ROM, the growth rates of the modes (~10 and 20kHz) 

are lower (<100 1/s) than the other two cases so that the multi-fidelity modeling of the test problem is able to 

provide sufficient damping for these modes to overcome the growth. Moreover, it is noted that the existence of 

unstable modes seem to affect more on predicting the stable behaviors of the test problems than the unstable 

behaviors.  
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Lox = 2.5’’ and Lchamber = 5.5’’ Lox = 2.5’’ and Lchamber = 7.5’’ 

 

Lox = 2.5’’ and Lchamber = 9.5’’ 

Figure 9. Stability maps of ROM-integrated multi-fidelity model simulations (positive growth rate (+): 

unstable and negative growth rate (-): stable, ROMs trained using different reduced-domain geometries). 

 

Overall, the multi-fidelity framework approach proves to be capable of capturing the instability behaviors of the 

test problems though some discrepancies exist by using different reduced-domain geometries for the POD-based 

ROMs’ training. A further issue that arises is the need to integrate multiple ROMs into the Euler solver, which 

involves a linear combination of the individual ROM results as described in Eq. (15). This creates some ambiguity 

in the formulation and, moreover, is likely to be valid only for linear problems. Therefore, to allow more flexibility 

and generality in the multi-fidelity framework, an alternative single-ROM approach based on utilizing the full 

injector configuration is considered next. 

 

B. Full-injector-based ROM characteristics 

In this section, we consider an alternate reduced-domain wherein the ROM is constructed for the entire injector post 

and only the length of the combustor is truncated. In this case, we note that a single-ROM can be constructed by 

perturbing only the downstream pressure boundary condition to represent the full injector response. The basic idea is 

as follows: 
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1. Instead of including a portion of the oxidizer post in the reduced-domain simulations for POD-based ROM 

training as in Fig. 2, the whole oxidizer post of the test problem is considered in the injector element for the 

reduced-domain simulations as shown in Fig. 10 with the same upstream boundary conditions as the test 

problem. 

 

Figure 10. Descriptions of single-ROM approach proposed for the multi-fidelity framework. 

 

2. Train the POD-based ROM by only perturbing the back pressure at downstream boundary and since the 

entire oxidizer post has been included in the reduced-domain simulations, the upstream dynamics in the 

oxidizer post is expected to respond correspondingly to the downstream perturbations, which enables the 

resulting ROM to provide the unsteady combustion responses coupling both upstream and downstream 

dynamics. 

For the rest of the section, the proposed single-ROM approach is assessed by configuring the test problems with 

two fixed oxidizer post lengths (Lox = 5.5’’ and 3.5’’) and four varying chamber lengths (Lchamber = 9’’, 11’’, 13’’ and 

15’’) using different values of n. The same forcing function in Eq. (12) (f0 = 500Hz, = 250Hz and Nf = 9) as above is 

used to perturb the downstream back pressure for the ROM training. 

The stability map comparisons between baseline and multi-fidelity models are shown in Fig. 11 for the test 

problem with fixed post length of 5.5’’. The growth rates of the predicted pressure signals are computed for each n 

value and chamber length with a zero growth-rate solid black line indicating the stability transition. It can be readily 

seen that the predictions of the stability behaviors from multi-fidelity model can reach good agreement with the 

baseline, which proves the validity of the proposed single-ROM approach. 
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Baseline Multi-fidelity Model 

Figure 11. Stability maps comparisons between baseline and multi-fidelity simulations (fixed Lox = 5.5’’ and 

varying chamber lengths). 

 

 

  

Baseline Multi-fidelity Model 

Figure 12. Stability maps comparisons between baseline and multi-fidelity simulations (fixed Lox = 3.5’’ and 

varying chamber lengths). 

 

Similarly the stability map comparisons for test problem with the 3.5’’ post length are shown in Fig. 12. In this 

case, the predictions from the multi-fidelity model are able to capture the instability behaviors for shorter chamber 

lengths (9’’ and 11’’); however, distinct discrepancies show up for longer chamber lengths (13’’ and 15’’) at higher 

n values (1.205×103, 1.305×103, and 1.405×103), which can be attributed to the existence of sympathetic unstable 

modes in the reduced-domain simulations for high n values. This observation is consistent with Section IV.A and the 

sympathetic unstable modes seem to impact the model predictions more for test problems with stable behaviors, 

which is the major reason why the multi-fidelity model provides better stability predictions for the 5.5’’ post length 

than for the 3.5’’ case. 
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V. Conclusions 

A multi-fidelity framework for modeling combustion instability problems is established and assessed based on a 

linearized Euler solver. Simplified test problems for a model rocket combustor are simulated with the unsteady 

combustion response described by the n-τ model to provide benchmark solutions for evaluating the multi-fidelity 

framework’s capabilities. The test problems are simulated by changing n values, that correspond to different levels 

of combustion response. Also various lengths of oxidizer post and combustion chamber are simulated so that 

different stable and unstable behavior can be obtained. The test problem is used as the basis for ROM model 

construction as well as for the validation of the resulting multi-fidelity model.  

The overall procedure is as follows. A reduced-domain of the test problem involving only the main combustion 

region of the injector and combustor is utilized to train and construct suitable ROM’s. Different reduced domains are 

formulated to determine the effects of the domain and the associated boundary conditions on the ROM. The final 

multi-fidelity framework that is used for the stability predictions is comprised of a linearized Euler solver with the 

combustion response obtained by the constructed ROM. In practical implementation, the reduced-domain 

calculations used to construct the ROM would be carried out using a high-fidelity LES or DES model, while the 

second set of predictive calculations would use the combined Euler-ROM framework to rapidly predict stability 

characteristics of the full injector-combustor configuration.  In this paper, for demonstration purposes, both sets of 

calculations are carried out with the Euler equations.  

Two types of reduced domains are considered in this paper. In both cases, the reduced domain contains the entire 

combustion region so that the ROM can adequately capture the combustion response of the injector. In the first 

scenario, the reduced domain contains only sections of the injector post and the combustor. This means that 

individual ROMs can be constructed by perturbing the different upstream and downstream boundary conditions. It is 

demonstrated that the multi-fidelity model is not able to reproduce the baseline stability behavior by using only one 

individual ROM (e.g., trained by perturbing upstream mass flow rate). Only when a complete set of ROMs is 

included in the framework, the model predictions are able to match the baseline stability characteristics. In addition, 

the effects of reduced-domain geometries on the predictive capabilities are investigated by varying the lengths of the 

reduced chamber (Lchamber = 5.5’’, 7.5’’ and 9.5’’). Overall, the predictions of the stability behaviors from the multi-

fidelity model with all three ROMs show reasonable agreement with the baseline. However, some discrepancies are 

observed that can be attributed to unstable modes (growth rate > 0) originating from the generic system responses in 

the reduced-domain simulations.  

In the second scenario, the entire oxidizer post is included in the reduced-domain simulations. A single-ROM is 

then trained by perturbing the downstream back pressure, while the upstream oscillations become naturally coupled 

with the downstream perturbations. This single-ROM approach allows more flexibility for implementing the multi-

fidelity framework especially for nonlinear model problems. The single-ROM approach also shows that the multi-
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fidelity model is generally successful in matching the baseline stability behavior. However, some discrepancies are 

again observed, which can be attributed to the unstable modes in the underlying ROM construction. Future work 

will consider ways to mitigate these effects. Further plans include the extensions of the multi-fidelity framework for 

non-linear problems as well as for multi-dimensional simulations.  
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