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IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

Discharge and Breakdown in FRC

Collisional Radiative Cooling/Ionization

Combustion Chemistry

Common Features in Spacecraft Collisions:
Relevant Densities Spanning
Many Orders of Magnitude — 6+

Transitions from Collisional to Collisionless

Tiny Early e− or Radical Populations Critical
to Induction Delay

Many types of Inelastic Collisions with
Unknown Effects on Distribution Shapes

Shock Ionization

Kapper & Cambier, J. Appl. Phys. 109, (2011)
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Many Orders of Magnitude — 6+

Transitions from Collisional to Collisionless

Tiny Early e− or Radical Populations Critical
to Induction Delay

Many types of Inelastic Collisions with
Unknown Effects on Distribution Shapes

Need Low Noise & High Dynamic Range
Collision Algorithms

Shock Ionization

Kapper & Cambier, J. Appl. Phys. 109, (2011)
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STANDARD COLLISION MODELS

Previous Collision Methods:

Monte Carlo Collisions (MCC)
- Particles Collide with Background “Fluid”
- Often Used in Plasma/PIC Simulation
- Ion-e− Collisions Assume Stationary Ions
- No Conservation/Detailed Balance

Direct Simulation Monte Carlo Collisions (DSMC)
- Most Modern Versions use No-Time Counter (NTC) Method
- Conservative/Reversible Collision
- Satisfies Detailed Balance
- Subset of Possible Collisions Sampled
- Random Selection vs Zij for All/Nothing Collision

All Random Flip vs Number of Collisions: Zij =
ninj

2 〈σv〉 dt
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VARIABLE WEIGHTS FOR DYNAMIC RANGE

Continuum to Discrete Representation:

Many Particles →̃ Continuous Distribution
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Continuum to Discrete Representation:

Many Particles →̃ Continuous Distribution

Discretized VDF Yields Vlasov
But Collision Integral Still a Problem

Particle Methods VDF to Delta Function Set

Collisions between Discrete Velocities

But Poorly Resolved Tail
(Tail Critical to Inelastic Collisions)

Variable Weights Permit Extra DOF in Tails

Variable Weight “All-or-Nothing” Collisions?
Physically Inconsistent!

(Mixing Violates Momentum/Energy Conservation)
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REVIEW OF FRACTIONAL COLLISIONS

NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Fractional-NTC Collisions:

Zij =
ninj

2 〈σv〉ij dt = wiwj

2V2
cell

〈σv〉ij dt
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REVIEW OF FRACTIONAL COLLISIONS

NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Select Fraction of 1
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Probability of Event Ratio of Volumes
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2 Fn 〈σv〉
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= Pij

Pmax
=
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ij

〈σv〉max
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REVIEW OF FRACTIONAL COLLISIONS

NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Select Fraction of 1
2 N2 Possible

Probability of Event Ratio of Volumes

Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

Select f by Cost/Accuracy Tradeoff
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NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Select Fraction of 1
2 N2 Possible

Probability of Event Ratio of Volumes

Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

Select f by Cost/Accuracy Tradeoff
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NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Select Fraction of 1
2 N2 Possible

Probability of Event Ratio of Volumes

Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

Select f by Cost/Accuracy Tradeoff

Collision ∆w Scaled for Skipped
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REVIEW OF FRACTIONAL COLLISIONS

NTC Collisions:

(Collision Rate Volume):(Cell Volume)

Select Fraction of 1
2 N2 Possible

Probability of Event Ratio of Volumes

Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

Select f by Cost/Accuracy Tradeoff

Collision ∆w Scaled for Skipped

Add Particles & Original Reduced

+2 Particles/Collision! → Must Merge

Zij =
ninj

2 〈σv〉ij dt = wiwj

2V2
cell

〈σv〉ij dt

wi=wi −∆wij & wj=wj −∆wij

w(Np+1)=∆wij & w(Np+2)=∆wij
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SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Converges to NTC for wi=const

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Converges to NTC for wi=const

Only Adds 1-particle/collision for
∆w = min(wi,wj)

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Converges to NTC for wi=const

Only Adds 1-particle/collision for
∆w = min(wi,wj)

Adds 2-particles/collision for
∆w = min(wi,wj)/f

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



SWPM COLLISIONS

Stochastic Weighted Particle Method:

Developed by Rjasanow & Wagner

Adapted as Modified NTC/MCF

Assures Post-Collision wi ≥ 0

Converges to NTC for wi=const

Only Adds 1-particle/collision for
∆w = min(wi,wj)

Adds 2-particles/collision for
∆w = min(wi,wj)/f

Still Requires Merge wi 6= const

Attempted Collisions/Cell:
ν = f (2w̄−wmin)Np(Np − 1) 〈σv〉

max
dt

Select Pair (i,j) if:
Rand <

wi+wj−wmin

Np(Np−1)(2w̄−wmin)
-or-

Rand <
wi+wj−wmin

(2wmax−wmin)

Collide If:
Rand <

〈σv〉
ij

〈σv〉max

f min(wi,wj)
wi+wj−wmin

Perform Standard VHS Collisions

Generate/Modify Particles with:
±∆w/f = ±min(wi,wj)/f

Update 〈σv〉
max

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 7 / 18



REVIEW OF CONSERVATIVE MERGE

Merge to Pair → DOF for Conservation:

(n+2):2 yields Exact Mass,
Momentum, and Kinetic Energy
Conservation

Applied Spatially also Shown to
Conserve Electrostatic Energy

Though Energy Conserving,
Still Thermalizes VDF

wcell =
∑(n+2)

i wi

~v = 1
wcell

∑(n+2)
i wi~vi

V2 = 1
wcell

∑(n+2)
i wi

(
~vi −~v

)2

w(a/b) = wm/2

~v(a/b) = ~v ± R̂
√

V2

Similarly:~x(a/b) =~x ± R̂

√

X2
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Merge to Pair → DOF for Conservation:

(n+2):2 yields Exact Mass,
Momentum, and Kinetic Energy
Conservation

Applied Spatially also Shown to
Conserve Electrostatic Energy

Though Energy Conserving,
Still Thermalizes VDF

Selection of Near Neighbors in VDF
Limits Thermalization

(≈ Near Neighbor Pairs in 2:1 Merges that Limit Numerical Cooling)

Octree Velocity Bins

Efficient Neighbor Selection
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0D-THERMALIZATION

Bi-Maxwellian Thermalization Results
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COLLISIONAL BEAMS IN POTENTIAL WELL

Initial Bi-Maxwellian Distribution in
Potential Well
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NTC Collisions Results in Beam
Thermalization
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Same Behavior

Particles/Cell Dramatically Different

Fringe Extends to Lower Densities with
Variable Weights
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Analytical Solution or High Fidelity
Simulation

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Original−NTC

Position, (m)

T
im

e 
(m

s)

 

Number Density, log10( n )
16 18 20

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fractional−NTC

Position, (m)

T
im

e 
(m

s)

 

Number Density, log10( n )
16 18 20

ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326 10 / 18



MACH 2 ARGON SHOCK

1D Normal Argon Shock Test
Simple Verification vs. DS1V

Initial Conditions:
T0 = 293K, n0 = 1E22/m3, v0 = 637.4(m/s)

Initial Jump to Post-Shock at 1cm

VHS Collisions:
Tref =273K, dref =4.17Å, ωVHS=0.81
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T0 = 293K, n0 = 1E22/m3, v0 = 637.4(m/s)

Initial Jump to Post-Shock at 1cm

VHS Collisions:
Tref =273K, dref =4.17Å, ωVHS=0.81

Time Average:
n̄ from t∈ [80, 100)µs

Error (Normalized L1):
err=|n − n̄|/n̄

Error Controlled: err ∝
√

N/cell

TURF - SWPM+Octree

Target N/Cell Quadrupled per Line
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MACH 8 ARGON BOW SHOCK

2D Argon Shock Test
Initial Conditions like M=2 Except:
v0 = 2550m/s

Specular: x=5 − 5.04mm with y=±2mm

Half Domain Modeled:
80µm × 80µm Cells

TURF: n - Standard DSMC

TURF: n - SWPM+Octree
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2D Argon Shock Test
Initial Conditions like M=2 Except:
v0 = 2550m/s

Specular: x=5 − 5.04mm with y=±2mm

Half Domain Modeled:
80µm × 80µm Cells

Time Average:
n̄ from t∈ [80, 100)µs

SWPM Similar to Standard DSMC

Despite Different Np/Cell

TURF: n - Standard DSMC

TURF: n - SWPM+Octree
TURF Np/Cell - Standard DSMC

ROBERT MARTIN (AFRL/RQRS)

TURF Np/Cell - SWPM+Octree 
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ISSUE WITH COLLIDE THEN MERGE

Larger Nselect → Better Approx. of Collision Integral
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Larger Nselect → Better Approx. of Collision Integral

f-NTC Produces 2x-Particles per Nselect = f Np

Particle Memory Requires ∝ Nmax → (1 + 2f )Nmax

For DSMC-like Results, f ≈ O(1)

Time Accurate or Dense Simulations, f ≈ O(10)+?

Merge Contracts back to O(Nmax) Particles

Merge Immediately after Collide per Spatial Cell?..

Sort for Merge still ∝ (1 + 2f ) log(1 + 2f )?

Combine Collision and Merge in Single Step?
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COLLIDE TO BINS

Fractional Collision as Rate Equation



...
ẇi
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COLLIDE TO BINS

Fractional Collision as Rate Equation
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Bin Moments needed for Particle Pairs

Particle Pairs (i,j) Picked Randomly

DSMC-like Collision (VHS,VSS,etc.)
Random χ, θ → (vi′ , vj′ )

Octree to Find i′ and j′ Bins
8L → Few Levels to Search

Conserve Mass, Momentum, and Energy
Memory Constant Independent of Nselect
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MACH 2 ARGON SHOCK - B2B

1D Normal Argon Shock Test
Mach 2 Case Repeated

TURF - SWPM+Octree
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MACH 2 ARGON SHOCK - B2B

1D Normal Argon Shock Test
Mach 2 Case Repeated

Bin-to-Bin Collsions Results Similar

Target Np/Cell Still Error Control
(Target N/Cell Quadrupled per Line)

Collision Core ≈3x Slower

Non-Ideal: Dynamic Range Low

Proof-of-Concept with Real X-Section

Expansion/Plume will be Better Case

TURF - Octree

TURF - Bin to Bin
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MACH 8 ARGON BOW SHOCK

2D Argon Shock Test
Mach 8 Case Also Repeated

TURF: n - Standard DSMC

TURF: (n) SWPM+Octree
TURF: Np/Cell - Standard DSMC
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B2B Run with f =4x Collisions
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MACH 8 ARGON BOW SHOCK

2D Argon Shock Test
Mach 8 Case Also Repeated

Bin-to-Bin Collsions Results Similar

Target Np/Cell Still Error Control

B2B Run with f =4x Collisions
(Note: SWPM+Octree f =1x)

Standard - Collisions 548.9s 1x
Standard - Total Run 7945.3s 100%
SWPM+Octree - Collisions 2719.6s 4.95x
SWPM+Octree - Total Run 9542.4s 120%
Bin-to-Bin - Collisions 13163.6s 24.0x
Bin-to-Bin - Total Run 18860.5s 237%

Some Cost Compensated by Lower Np

Too much Fill for Better Wake

Significant Optimizations Still Needed
(i.e. Data Structures, Sort->Sums, v-Bounds,
Morton curve)

TURF: Np/Cell - Standard DSMC

TURF: (Np/Cell) SWPM+Octree
TURF: Np/Cell - Standard DSMC
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CONCLUSION

Standard Collision Incompatible with Variable Weight

SWPM+Octree Option for Variable Weight Collision

Bin-To-Bin Potentially Alleviates Memory Constraints

Initial Verification vs. Standard Shock Cases Positive

Limited Utility in Standard Shock Cases

Performance with Strong Expansion/Plume Needed

SWPM/Bin-to-Bin more Useful for Trace Species?
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END

Thank You

Questions?
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