REPO		Form Approved				
Public reporting burden for this gathering and maintaining the collection of information, inclus Reports (0704-0188), 1215 Je shall be subject to any penalty FORM TO THE ABOVE ADD	s collection of information is esti data needed, and completing a ding suggestions for reducing th fferson Davis Highway, Suite 12 for failing to comply with a colle RESS.	mated to average 1 hour per re nd reviewing this collection of ir is burden to Department of Def 204, Arlington, VA 22202-4302 action of information if it does n	sponse, including the time for r formation. Send comments re ense, Washington Headquarte Respondents should be awar ot display a currently valid OME	eviewing instructions, seard garding this burden estimat rs Services, Directorate for re that notwithstanding any 3 control number. PLEASE	ching existing data sources, e or any other aspect of this Information Operations and other provision of law, no person DO NOT RETURN YOUR	
1. REPORT DATE (DL	D-MM-YYYY)	2. REPORT TYPE		3. DATES COVER	ED (From - To)	
4. TITLE AND SUBTIT	LE	Briefing Charts		28 June 2016 – 1 5a. CONTRACT N	UMBER	
Conservative Bin-to-Bin Fractional Collisions					•	
				5b. GRANT NUME	BER	
				5c. PROGRAM EL	EMENT NUMBER	
6. AUTHOR(S) Robert S. Martin				5d. PROJECT NU	MBER	
				5e. TASK NUMBE	R	
				5f. WORK UNIT NUMBER		
				Q1AM		
7. PERFORMING ORG	GANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING	ORGANIZATION	
Air Force Research	Laboratory (AFMC)					
AFRL/RQRS						
Edwards AFB, CA	93524-7013					
9. SPONSORING / MC		NAME(S) AND ADDRE	SS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research	Laboratory (AFMC)			44. CDONCOD/MC		
AFRL/RQR				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
Edwards AFB. CA	93524-7048			AFRL-RO-ED-VG-2016-175		
12. DISTRIBUTION / A Approved for Public to use, modify, repro	VAILABILITY STATE c Release; Distribution oduce, release, perfor	MENT on Unlimited. The U rm, display, or disclo	.S. Government is jo se the work.	int author of the w	ork and has the right	
For presentation at 3 Columbia, Canada (PA Case Number: #	30th International Sys 15 July 2016) 16326; Clearance Da	mposium on Rarefied tte: 7/12/16	l Gas Dynamics; Un	iversity of Victori	a, Victoria, British	
14. ABSTRACT Viewgraph/Briefing	Charts					
15. SUBJECT TERMS N/A	i					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON J. Koo	
a. REPORT	b. ABSTRACT	c. THIS PAGE	1	70	19b. TELEPHONE NO	
Unclassified	Unclassified	Unclassified	SAR		(include area code) N/A	
	1	1		1	Standard Form	

CONSERVATIVE BIN-TO-BIN FRACTIONAL COLLISIONS

Robert Martin

ERC Inc., Spacecraft Propulsion Branch Air Force Research Laboratory Edwards Air Force Base, CA USA

U.S. AIR FORCE

30th International Symposium on Rarefied Gas Dynamics Distribution A: Approved for Public Release; Distribution Unlimited; PA #16326

ROBERT MARTIN (AFRL/RQRS)

4 CONCLUSION

ROBERT MARTIN (AFRL/RQRS)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326

→ ∃ → <</p>

IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

- Discharge and Breakdown in FRC
- Collisional Radiative Cooling/Ionization
- Combustion Chemistry

Common Features in Spacecraft Collisions:

- Relevant Densities Spanning Many Orders of Magnitude — 6+
- Transitions from Collisional to Collisionless
- Tiny Early *e*⁻ or Radical Populations Critical to Induction Delay
- Many types of Inelastic Collisions with Unknown Effects on Distribution Shapes

Shock Ionization

IMPORTANCE OF COLLISION PHYSICS

Important Collisions in Spacecraft Propulsion:

- Discharge and Breakdown in FRC
- Collisional Radiative Cooling/Ionization
- Combustion Chemistry

Common Features in Spacecraft Collisions:

- Relevant Densities Spanning Many Orders of Magnitude — 6+
- Transitions from Collisional to Collisionless
- Tiny Early *e*⁻ or Radical Populations Critical to Induction Delay
- Many types of Inelastic Collisions with Unknown Effects on Distribution Shapes

Need Low Noise & High Dynamic Range Collision Algorithms

Shock Ionization

ROBERT MARTIN (AFRL/RQRS)

Previous Collision Methods:

- Monte Carlo Collisions (MCC)
 - Particles Collide with Background "Fluid"
 - Often Used in Plasma/PIC Simulation
 - Ion- e^- Collisions Assume Stationary Ions
 - No Conservation/Detailed Balance
- Direct Simulation Monte Carlo Collisions (DSMC)
 - Most Modern Versions use No-Time Counter (NTC) Method
 - Conservative/Reversible Collision
 - Satisfies Detailed Balance
 - Subset of Possible Collisions Sampled
 - Random Selection vs Z_{ij} for All/Nothing Collision

All Random Flip vs Number of Collisions: $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle dt$

• Many Particles $\xrightarrow{\sim}$ Continuous Distribution

VARIABLE WEIGHTS FOR DYNAMIC RANGE

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions?

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions?

- Many Particles $\xrightarrow{\sim}$ Continuous Distribution
- Discretized VDF Yields Vlasov But Collision Integral Still a Problem
- Particle Methods VDF to Delta Function Set
- Collisions between Discrete Velocities
- But Poorly Resolved Tail (Tail Critical to Inelastic Collisions)
- Variable Weights Permit Extra DOF in Tails

Variable Weight "All-or-Nothing" Collisions? Physically Inconsistent! (Mixing Violates Momentum/Energy Conservation)

NTC Collisions:

• (Collision Rate Volume):(Cell Volume)

Fractional-NTC Collisions:

$$Z_{ij} = \frac{n_i n_j}{2} \left\langle \sigma v \right\rangle_{ij} dt = \frac{w_i w_j}{2V_{cell}^2} \left\langle \sigma v \right\rangle_{ij} dt$$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible

Fractional-NTC Collisions:

$$Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} dt = \frac{w_i w_j}{2V_{cell}^2} \langle \sigma v \rangle_{ij} dt$$
$$P_{ij} = w \langle \sigma v \rangle_{ij} dt/V_{cell}$$
$$P_{max} = w \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$
$$N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt/V_{cell}$$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes

Fractional-NTC Collisions:

 $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} \, \mathrm{dt} = \frac{w_i w_j}{2 V_{ij}^2} \langle \sigma v \rangle_{ij} \, \mathrm{dt}$ $P_{ij} = w \langle \sigma v \rangle_{ii} dt / V_{cell}$ $P_{max} = w \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ $N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ Collide if: $\text{Rand}(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{max}}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

 $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} \, \mathrm{dt} = \frac{w_i w_j}{2 V_{ij}^2} \langle \sigma v \rangle_{ij} \, \mathrm{dt}$ $P_{ij} = w \langle \sigma v \rangle_{ii} dt / V_{cell}$ $P_{max} = w \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ $N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$ Collide if: Rand(1) < $\frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{max}}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

• Select *f* by Cost/Accuracy Tradeoff

 $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} \, \mathrm{dt} = \frac{w_i w_j}{2 V_{ij}^2} \langle \sigma v \rangle_{ij} \, \mathrm{dt}$ $P_{ii} = w \langle \sigma v \rangle_{ii} \, \mathrm{dt} / V_{cell}$ $P_{max} = w \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ $N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$ Collide if: $\operatorname{Rand}(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{\cdots}^{max}}$ $N_{select} = f N_n$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select *f* by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped

 $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} \, \mathrm{dt} = \frac{w_i w_j}{2 V_{ij}^2} \langle \sigma v \rangle_{ij} \, \mathrm{dt}$ $P_{ij} = w \langle \sigma v \rangle_{ii} dt / V_{cell}$ $P_{max} = w \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ $N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ij}^{max} dt / V_{cell}$ Collide if: $\operatorname{Rand}(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{\cdots}^{max}}$ $N_{select} = f N_n$ $\Delta w_{ii} = \frac{N_p^2/2}{N} Z_{ii}$

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select *f* by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped
- Add Particles & Original Reduced

 $Z_{ij} = \frac{n_i n_j}{2} \langle \sigma v \rangle_{ij} dt = \frac{w_i w_j}{2V^2} \langle \sigma v \rangle_{ij} dt$ $P_{ij} = w \langle \sigma v \rangle_{ii} \, \mathrm{dt} / V_{cell}$ $P_{max} = w \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ $N_{select} = \frac{N_p^2}{2} F_n \langle \sigma v \rangle_{ii}^{max} dt / V_{cell}$ Collide if: $\operatorname{Rand}(1) < \frac{N_{collide}}{N_{select}} = \frac{P_{ij}}{P_{max}} = \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle_{\cdots}^{max}}$ $N_{select} = f N_n$ $\Delta w_{ii} = \frac{N_p^2/2}{N_{ei}} Z_{ii}$ $w_i = w_i - \Delta w_{ii} \& w_i = w_i - \Delta w_{ii}$ $w_{(N_p+1)} = \Delta w_{ij} \& w_{(N_p+2)} = \Delta w_{ij}$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NTC Collisions:

- (Collision Rate Volume):(Cell Volume)
- Select Fraction of $\frac{1}{2}N^2$ Possible
- Probability of Event Ratio of Volumes
- Correct Non-Equilibrium Frequency

Fractional-NTC Collisions:

- Select *f* by Cost/Accuracy Tradeoff
- Collision Δw Scaled for Skipped
- Add Particles & Original Reduced
- +2 Particles/Collision! \rightarrow Must Merge

• Developed by Rjasanow & Wagner

 $\nu = f(2\bar{w} - w_{min})N_n(N_n - 1) \langle \sigma v \rangle^{max} dt$ Select Pair (i,j) if: Rand $< \frac{w_i + w_j - w_{min}}{N_n(N_n - 1)(2\bar{w} - w_{min})}$ -or-Rand < $\frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})}$ Collide If: Rand < $\frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w + w_j - w_j}$ Perform Standard VHS Collisions Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_i)/f$ Update $\langle \sigma v \rangle^{max}$

Attempted Collisions/Cell:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF

 $\nu = f(2\bar{w} - w_{min})N_n(N_n - 1) \langle \sigma v \rangle^{max} dt$ Select Pair (i,j) if: Rand $< \frac{w_i + w_j - w_{min}}{N_n (N_n - 1)(2\bar{w} - w_{min})}$ -or-Rand $< \frac{w_i + w_j - w_{min}}{(2w_{mm} - w_{min})}$ Collide If: Rand < $\frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_j}$ Perform Standard VHS Collisions Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_i)/f$ Update $\langle \sigma v \rangle^{max}$

Attempted Collisions/Cell:

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$

Attempted Collisions/Cell: $\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$

 $\begin{array}{l} \textbf{Select Pair (i,j) if:} \\ \textbf{Rand} < \frac{w_i + w_j - w_{min}}{N_p (N_p - 1)(2\overline{w} - w_{min})} \\ \textbf{-or-} \\ \textbf{Rand} < \frac{w_i + w_j - w_{min}}{(2w_{max} - w_{min})} \end{array}$

Collide If: Rand $< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$

Perform Standard VHS Collisions

Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_j)/f$

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const

Attempted Collisions/Cell: $\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$

Select Pair (i,j) if: Rand $< \frac{w_l+w_j-w_{min}}{N_p(N_p-1)(2\bar{w}-w_{min})}$ -or-Rand $< \frac{w_l+w_j-w_{min}}{(2w_{max}-w_{min})}$

Collide If: Rand $< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$

Perform Standard VHS Collisions

Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_j)/f$

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for $\Delta w = \min(w_i, w_j)$

Attempted Collisions/Cell: $\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$

Select Pair (i,j) if: Rand $< \frac{w_l+w_j-w_{min}}{N_p(N_p-1)(2\bar{w}-w_{min})}$ -or-Rand $< \frac{w_l+w_j-w_{min}}{(2w_{max}-w_{min})}$

Collide If: Rand $< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$

Perform Standard VHS Collisions

Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_j)/f$

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for Δw = min(w_i, w_j)
- Adds 2-particles/collision for $\Delta w = \min(w_i, w_j)/f$

Attempted Collisions/Cell: $\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$

Select Pair (i,j) if: Rand $< \frac{w_l+w_j-w_{min}}{N_p(N_p-1)(2\bar{w}-w_{min})}$ -or-Rand $< \frac{w_l+w_j-w_{min}}{(2w_{max}-w_{min})}$

Collide If: Rand $< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$

Perform Standard VHS Collisions

Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_j)/f$

- Developed by Rjasanow & Wagner
- Adapted as Modified NTC/MCF
- Assures Post-Collision $w_i \ge 0$
- Converges to NTC for w_i=const
- Only Adds 1-particle/collision for Δw = min(w_i, w_j)
- Adds 2-particles/collision for $\Delta w = \min(w_i, w_j)/f$
- Still Requires Merge $w_i \neq \text{const}$

Attempted Collisions/Cell: $\nu = f(2\bar{w} - w_{min})N_p(N_p - 1) \langle \sigma v \rangle^{max} dt$

Select Pair (i,j) if: Rand $< \frac{w_l+w_j-w_{min}}{N_p(N_p-1)(2\bar{w}-w_{min})}$ -or-Rand $< \frac{w_l+w_j-w_{min}}{(2w_{max}-w_{min})}$

Collide If: Rand $< \frac{\langle \sigma v \rangle_{ij}}{\langle \sigma v \rangle^{max}} \frac{f \min(w_i, w_j)}{w_i + w_j - w_{min}}$

Perform Standard VHS Collisions

Generate/Modify Particles with: $\pm \Delta w/f = \pm \min(w_i, w_j)/f$

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass, Momentum, and Kinetic Energy Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

$$w_{cell} = \sum_{i}^{(n+2)} w_i$$
$$\overline{\vec{v}} = \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \vec{v}_i$$
$$\overline{V^2} = \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \left(\vec{v}_i - \overline{\vec{v}}\right)^2$$
$$w_{(a/b)} = w_m/2$$
$$\vec{v}_{(a/b)} = \overline{\vec{v}} \pm \hat{\mathcal{R}} \sqrt{\overline{V^2}}$$
$$\text{Similarly: } \vec{x}_{(a/b)} = \overline{\vec{x}} \pm \hat{\mathcal{R}} \sqrt{\overline{X^2}}$$

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass, Momentum, and Kinetic Energy Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

Selection of Near Neighbors in VDF Limits Thermalization

(\approx Near Neighbor Pairs in 2:1 Merges that Limit Numerical Cooling)

$$w_{cell} = \sum_{i}^{(n+2)} w_i$$

$$\overline{\vec{v}} = \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \overline{\vec{v}}_i$$

$$\overline{V^2} = \frac{1}{w_{cell}} \sum_{i}^{(n+2)} w_i \left(\overline{\vec{v}}_i - \overline{\vec{v}}\right)^2$$

$$w_{(a/b)} = w_m/2$$

$$\vec{v}_{(a/b)} = \overline{\vec{v}} \pm \hat{\mathcal{R}} \sqrt{V^2}$$
Similarly: $\overline{\vec{v}}_{c(a/b)} = \overline{\vec{v}} \pm \hat{\mathcal{R}} \sqrt{\lambda^2}$

Merge to Pair \rightarrow DOF for Conservation:

- (n+2):2 yields Exact Mass, Momentum, and Kinetic Energy Conservation
- Applied Spatially also Shown to Conserve Electrostatic Energy
- Though Energy Conserving, Still Thermalizes VDF

Selection of Near Neighbors in VDF Limits Thermalization

(\approx Near Neighbor Pairs in 2:1 Merges that Limit Numerical Cooling)

Octree Velocity Bins

Efficient Neighbor Selection

Bi-Maxwellian Thermalization Results

Comparison of 10x Runs from Same Initial Distribution

ROBERT MARTIN (AFRL/RQRS)

Bi-Maxwellian Thermalization Results

Mean and RMS Fluctuation of Sample Runs Fluctuations Level Tuneable with *f* Independent of Particles Count

ROBERT MARTIN (AFRL/RQRS)

Bi-Maxwellian Thermalization Results

Fluctuations Level Tuneable with f Independent of Particles Count

ROBERT MARTIN (AFRL/RQRS)

Collisional Beams in Potential Well

• NTC Collisions Results in Beam Thermalization

COLLISIONAL BEAMS IN POTENTIAL WELL

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior

Collisional Beams in Potential Well

- Initial Bi-Maxwellian Distribution in Potential Well
- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different

イロト (行) (き) (き)

- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different
- Fringe Extends to Lower Densities with Variable Weights

- NTC Collisions Results in Beam Thermalization
- Fractional-NTC Collisions Produce Same Behavior
- Particles/Cell Dramatically Different
- Fringe Extends to Lower Densities with Variable Weights
- Relative 'Error' Unknown without Analytical Solution or High Fidelity Simulation

1D Normal Argon Shock Test

- Simple Verification vs. DS1V
- Initial Conditions:
 - $T_0 = 293$ K, $n_0 = 1$ E22/m³, $v_0 = 637.4$ (m/s)
- Initial Jump to Post-Shock at 1cm
- VHS Collisions:

 T_{ref} =273K, d_{ref} =4.17Å, ω_{VHS} =0.81

TURF - SWPM+Octree

ROBERT MARTIN (AFRL/RQRS)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326

11/18

TURF - SWPM+Octree

0.020

0.015

STREET, STREET,

0.015

0.010 X (m)

0.020

Mach 8 Argon Bow Shock

2D Argon Shock Test

- Initial Conditions like M=2 Except:
 v₀ = 2550m/s
- Specular: x=5-5.04 mm with $y=\pm 2$ mm
- Half Domain Modeled: 80µm × 80µm Cells

Mach 8 Argon Bow Shock

2D Argon Shock Test

- Initial Conditions like M=2 Except:
 v₀ = 2550m/s
- Specular: x=5-5.04 mm with $y=\pm 2$ mm
- Half Domain Modeled: 80µm × 80µm Cells
- Time Average: \bar{n} from t $\in [80, 100)\mu$ s
- SWPM Similar to Standard DSMC

Mach 8 Argon Bow Shock

4.e+22 3.e + 22((mm) 2.e+22 1.e + 22X (mm) TURF: n - SWPM+Octree TURF Np/Cell - Standard DSMC (mm) / 5 15 X (mm) TURF Np/Cell - SWPM+Octree

2D Argon Shock Test

- Initial Conditions like M=2 Except:
 v₀ = 2550m/s
- Specular: x=5-5.04 mm with $y=\pm 2$ mm
- Half Domain Modeled: 80µm × 80µm Cells
- Time Average: \bar{n} from t $\in [80, 100)\mu$ s
- SWPM Similar to Standard DSMC
- Despite Different Np/Cell

• Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1+2f)N_{max}$

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1+2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1 + 2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10) + ?$

ISSUE WITH COLLIDE THEN MERGE

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1 + 2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10) + ?$
- Merge Contracts back to $O(N_{max})$ Particles
- Merge Immediately after Collide per Spatial Cell?..
- Sort for Merge still $\propto (1+2f) \log(1+2f)$?

13/18

- Larger $N_{select} \rightarrow$ Better Approx. of Collision Integral
- f-NTC Produces 2x-Particles per $N_{select} = f N_p$
- Particle Memory Requires $\propto N_{max} \rightarrow (1 + 2f)N_{max}$
- For DSMC-like Results, $f \approx O(1)$
- Time Accurate or Dense Simulations, $f \approx O(10) + ?$
- Merge Contracts back to $O(N_{max})$ Particles
- Merge Immediately after Collide per Spatial Cell?..
- Sort for Merge still $\propto (1+2f) \log(1+2f)$?
- Combine Collision and Merge in Single Step?

• Fractional Collision as Rate Equation

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs

w_i $\begin{array}{c} -\Delta w_{ij} \\ -\Delta w_{ij} \\ \Delta w_{ij} \end{array}$. Wi $\dot{W}_{i'}$ $\dot{W}_{i'}$ Δw_{ii} $(wv)_i$ $-\Delta w_{ij}v_i \\ -\Delta w_{ij}v_j \\ \Delta w_{ij}v_{i'}$ N_{select} $(wv)_i$ $\sum_{k=1}^{k}$ $(wv)_{i'}$ $\Delta w_{ij} v_{j'}$ $(WV)_{i'}$ $-\Delta w_{ij} v_i^2 \\ -\Delta w_{ij} v_i^2$ 'wv² wv^2 $\Delta w_{ii}v$ Δw_{ii} (wv^2)

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{j'})$

 \dot{w}_i $-\Delta w_{ij}$ $-\Delta w_{ij}$ \dot{w}_i $\dot{W}_{i'}$ Δw_{ii} ŵ_i Δw_{ii} $(wv)_i$ $-\Delta w_{ii}v_i$ Nselect $(wv)_i$ $-\Delta w_{ij}v_j$ $(wv)_{i'}$ $\Delta w_{ij} v_{i'}$ $\Delta w_{ij} v_{j'}$ $(WV)_{i'}$ $-\Delta w_{ii}v_i^2$ wv^2 $-\Delta w_{ii}v$ $\Delta w_{ii}v$ $\Delta w_{ii} v_{ii}^2$

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{j'})$
- Octree to Find *i*' and *j*' Bins
 8^L → Few Levels to Search

ŵi $-\Delta w_{ii}$ \dot{w}_i $-\Delta w_{ij}$ $\dot{W}_{i'}$ Δw_{ii} ŵ_i Δw_{ii} $(wv)_{i}$ $-\Delta w_{ij}v_i$ Nselect $(wv)_i$ $-\Delta w_{ii}v_i$ $(wv)_{ii}$ $\Delta w_{ij} v_{i'}$ $(wv)_{i}$ $\Delta w_{ii}v_{i'}$ $\Delta w_{ii}v_{i}^{2}$ WV^2 $-\Delta w_{ii}$ Δw_{ii}

- Fractional Collision as Rate Equation
- Bin Moments needed for Particle Pairs
- Particle Pairs (i,j) Picked Randomly
- DSMC-like Collision (VHS,VSS,etc.) Random $\chi, \theta \rightarrow (v_{i'}, v_{j'})$
- Octree to Find *i*' and *j*' Bins
 8^L → Few Levels to Search

Conserve Mass, Momentum, and Energy Memory Constant Independent of N^{select}

ŵi $-\Delta w_{ii}$ \dot{w}_i $-\Delta w_{ii}$ $\dot{W}_{i'}$ Δw_{ii} ŵ_i Δw_{ii} $(wv)_{i}$ $-\Delta w_{ij}v_i$ $(wv)_i$ Nselect $-\Delta w_{ii}v_i$ $(wv)_{ii}$ $\Delta w_{ii} v_{i'}$ $(wv)_{i}$ $\Delta w_{ii}v_{i'}$ $-\Delta w_{ii}v_{i}^{2}$ wv^2 $-\Delta w_{ii}$ Δw_{ii}

MACH 2 ARGON SHOCK - B2B

MACH 2 ARGON SHOCK - B2B

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar

TURF - Octree

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target *Np/Cell* Still Error Control (Target N/Cell Quadrupled per Line)

TURF - Octree

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target *Np/Cell* Still Error Control (Target N/Cell Quadrupled per Line)
- Collision Core $\approx 3x$ Slower
- Non-Ideal: Dynamic Range Low

TURF - Octree

- Mach 2 Case Repeated
- Bin-to-Bin Collsions Results Similar
- Target *Np/Cell* Still Error Control (Target N/Cell Quadrupled per Line)
- Collision Core $\approx 3x$ Slower
- Non-Ideal: Dynamic Range Low
- Proof-of-Concept with Real X-Section
- Expansion/Plume will be Better Case

🥳 🛛 Mach 8 Argon Bow Shock

2D Argon Shock Test

Mach 8 Case Also Repeated

TURF: n - Standard DSMC

ROBERT MARTIN (AFRL/RQRS)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326

16/18

🖌 Mach 8 Argon Bow Shock

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar

TURF: n - Standard DSMC

MACH 8 ARGON BOW SHOCK

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control

TURF: Np/Cell - Standard DSMC

🥳 Mach 8 Argon Bow Shock

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control
- B2B Run with *f*=4x Collisions (Note: SWPM+Octree *f*=1x)

	Standard - Collisions	548.9s	1x
	Standard - Total Run	7945.3s	100%
• [SWPM+Octree - Collisions	2719.6s	4.95x
	SWPM+Octree - Total Run	9542.4s	120%
	Bin-to-Bin - Collisions	13163.6s	24.0x
	Bin-to-Bin - Total Run	18860.5s	237%

TURF: Np/Cell - Standard DSMC

🖌 Mach 8 Argon Bow Shock

2D Argon Shock Test

- Mach 8 Case Also Repeated
- Bin-to-Bin Collsions Results Similar
- Target Np/Cell Still Error Control
- B2B Run with *f*=4x Collisions (Note: SWPM+Octree *f*=1x)

Standard - Collisions	548.9s	1x
Standard - Total Run	7945.3s	100%
SWPM+Octree - Collisions	2719.6s	4.95x
SWPM+Octree - Total Run	9542.4s	120%
Bin-to-Bin - Collisions	13163.6s	24.0x
Bin-to-Bin - Total Run	18860.5s	237%

- Some Cost Compensated by Lower Np
- Too much Fill for Better Wake
- Significant Optimizations Still Needed (i.e. Data Structures, Sort->Sums, v-Bounds, Morton curve)

TURF: Np/Cell - Standard DSMC

ROBERT MARTIN (AFRL/RQRS)

- Standard Collision Incompatible with Variable Weight
- SWPM+Octree Option for Variable Weight Collision
- Bin-To-Bin Potentially Alleviates Memory Constraints
- Initial Verification vs. Standard Shock Cases Positive
- Limited Utility in Standard Shock Cases
- Performance with Strong Expansion/Plume Needed
- SWPM/Bin-to-Bin more Useful for Trace Species?

Thank You

Questions?

ROBERT MARTIN (AFRL/RQRS)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #16326

18/18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >