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Abstract. Graph partitioning problems have a wide range of applications in machine learning.
This work analyzes convergence conditions for a class of diffuse interface algorithm [A.L. Bertozzi
and A. Flenner, Multiscale Modeling & Simulation, 10(3):1090 1118, 2012] for binary and multi-
class partitioning. Using techniques from numerical PDE and convex optimization, convergence
and monotonicity are shown for a class of schemes under a graph-independent timestep restriction.
We also analyze the effects of spectral truncation, a common technique used to save computational
cost. Convergence of the scheme with spectral truncation is also proved under a timestep restriction
inversely proportional to the size of the graph. Moreover, this restriction is shown to be sharp in
a worst case. Various numerical experiments are done to compare theoretical results with practical
performance.
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1. Introduction. Graph cut methods have been widely used in data clustering
and image segmentation [9,11,15]. Recently, the reformulation of graph cut problems
in graph total variation (TV) minimization has lead to various fast approximations
for the optimization [7,8]. In particular, a method inspired by diffuse interface models
in PDE was proposed [5]. This approach has been applied to various applications in
clustering, image segmentation, and image inpainting [21,23,28].

Classical diffuse interface models are built around the Ginzburg-Landau func-
tional in Euclidean space, defined as

(1.1) GL(u) =
ε

2

∫
|∇u|2 +

1

ε

∫
W (u(x))dx.

W is the double-well potential W (u) = 1
4 (u2 − 1)2, with minimizers 1 and −1. The

first term is the H1 semi-norm of the function u, which penalizes non-smoothness of
u. The parameter ε controls the scale of the diffuse interface, namely, the sharpness
of the transition between two phases. The Ginzburg-Landau functional and TV is
related through the notion of gamma-convergence [30]:

lim
ε→0

GLε(u)→γ CTV (u).

Evolution by the Ginzburg-Landau functional has been used to model dynamics of
two phases in material science [14,16]. The most common of which is the Allen-Cahn
equation, the L2 gradient flow on the Ginzburg-Landau functional. Under suitable
rescaling, the Allen-Cahn equation has been shown to converge to motion by mean
curvature [25,36], and thus fast numerical solvers for motion by mean curvature such
as the MBO scheme [29] could be utilized to further approximate the Allen-Cahn
equation.

The class of methods that we study here are graph analogues of these classical
PDE models. Graph Laplacian and graph TV are used in the place of their classical
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counterparts, and a comprehensive list of these correspondences could be found in [36].
Graph TV minimization and the discrete graph cut problem have been shown to be
equivalent in [27]. Moreover, gamma-convergence of graph Ginzburg-Landau to graph
TV is proved in [35], justifying its use to approximate the graph cut energy. This
paper will focus on the graph Allen-Cahn equation, the L2 gradient flow of the graph
Ginzburg-Landau functional.

Graph Laplacians are themselves of great interest, and have been used in classical
machine learning algorithms such as PageRank [12] and spectral clustering [38]. They
share many similar characteristics with the continuous Laplacians and can be shown
to converge to continuum limits under suitable assumptions [35, 39]. Since they are
central to this paper, we introduce below some basics about them below.

Consider a weighted undirected graph G with vertices ordered {1, 2, . . . , n}. Each
pair of vertices (i, j) is assigned a proximity measure wij . The weights wij form a
weight matrix or adjacency matrix of the graph G. Given a weight matrix W , one
can construct three different types of graph Laplacians, namely,

Lu = D −W Unormalized Laplacian,(1.2)

Ls = I −D−1/2WD−1/2 Symmetric Laplacian,(1.3)

Lrw = I −D−1W Random Walk Laplacian,(1.4)

where D is the diagonal matrix dii =
∑
i wij . The unnormalized graph Laplacian

Lu has the following nice formula for its Dirichlet energy, analogous to that of the
continuum Laplacian:

(1.5)
1

2
〈u, Luu〉 =

1

2

∑
ij

wij(ui − uj)2.

The random walk Laplacian Lrw has probabilistic interpretations, and can deal with
outliers nicely [22]. The symmetric Laplacian Ls shares the same eigenvalues with
Lrw, but is easier to deal with computationally due to its symmetry. In particular, the
unnormalized Laplacian and the normalized Laplacian have very distinct eigenvectors,
as can be seen from the visualization in Fig.1.1. The visualization is a plot of the
third eigenvector for the nonlocal means graph formed from neighborhood patches of
each pixel (see [5] for details). For notational convenience, we omit the superscript
for L if the situation applies to all versions of the Laplacians. We discuss all three
Laplacians whenever there is a distinction to be made.

In this paper, the only restrictions imposed on the weight matrix W are symmetry
and non-negativity. In particular, we do not require triangle inequality. Under this
assumption, a useful characterization of an unnormalized Laplacian is given by:

Proposition 1.1 (Characterization of the Unnormalized Graph Laplacian). Given
a matrix Lu, there exists a weight matrix W such that Lu is the corresponding un-
normalized graph Laplacian if and only if

Luij = Luji,

Luij ≤ 0, i 6= j,

Luii = −
∑
j 6=i

Luij .
(1.6)

Proof. See definition of Lu and D.
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(a) Original Image (b) Symmmetric Laplacian (c) Unnormalized Laplacian

Fig. 1.1: Comparison of Third Eigenvector of Graph Laplacians

We define the Ginzburg-Landau energy on graphs by replacing the spatial Lapla-
cian with the graph Laplacian L.

(1.7) GL(u) =
ε

2
〈u, Lu〉+

1

ε

∑
i

W (ui).

Note from here on L could be one of three versions of the graph Laplacian . The Allen-
Cahn equation on graphs is defined as the gradient flow of the graph Ginzburg-Landau
energy

(1.8) ut = −∇GL(u) = −εLu− 1

ε
W ′(u).

In [5], a semi-implicit numerical scheme was used to counter the ill-conditioning
of the graph Laplacian

uk+1 − uk

dt
= −εLuk+1 − 1

ε
W ′(uk).(1.9)

Moreover, a convex penalty c
2u

2 can be used to form a “convex-concave” split,
this gives us the actual scheme in [5]

uk+1 − uk

dt
= −εLuk+1 − cuk+1 + cuk − 1

ε
W ′(uk).(1.10)

Convex-concave splitting originated in an unpublished paper by Eyre [17], and has
been used to resolve long-time solutions of the Cahn-Hilliard equation in [4,37]. These
Cahn-Hilliard equations were meant to resolve the time dynamics whereas here we
are simply trying to find the equilibrium point. Therefore, for the particular scheme
(1.10), we show in the next proposition that it is equivalent with (1.9) and thus we
henceforth only analyze the scheme without convex splitting (1.9).

Lemma 1.2 (Rescaled Timestep). The scheme (1.10) is the same as

(1.11) uk+1 − uk = − dt

1 + cdt
εLuk+1 − dt

1 + cdt

1

ε
W ′(uk).

Hence (1.10) is equivalent to (1.9) under a rescaling of stepsize.
In practice, a fidelity term f(φ(u), u) is often added. Since the Ginzburg-Landau

functional is a smoothed version of TV, this model is reminiscent of the classical ROF
model [31] used in imaging when the fidelity term is quadratic. In the next sections,
we analyze the scheme (1.9) without fidelity first, and later incorporate the fidelity
term in the analysis.
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2. Maximum Principle-L∞ Estimates. The main result for this section is
the following:

Proposition 2.1 (A Priori Boundeness). Define uk by

(2.1) uk = [(1 +
dt

ε
Lu)]−1(uk−1 − 1

ε
W ′(uk−1)),

derived from (1.9), and Lu is the unnormalized graph Laplacian Assume ‖u0‖∞ ≤ 1.
If dt ≤ 0.5ε, then ∀k, ‖uk‖∞ ≤ 1.

Details of the proposition will be covered in the next two sections. What is notable
is that the timestep restriction is independent of the graph, i.e., this universal bound
is guaranteed to work for any graph of any size. The constant .5ε is analogous to
the ODE stiffness condition(see [33]). To prove the result, we need the maximum
principle on graphs.

2.1. Maximum Principle. The classical maximum principle argument relies
on the fact that ∆u(x0) ≥ 0 for x0 a local minimizer. This fact is also true for graphs.

Proposition 2.2 (Second Order Condition on Graphs). Let u be a function
defined on a graph, and Lu be the unnormalized graph Laplacian . Suppose u achieves
a local minimum at a vertex i, then Luu|i ≤ 0, where a local minimizer i is defined
as ui ≤ uj , ∀wij > 0.

Proof. Let i be a local minimizer. Then

Luu|i = diui −
∑
j 6=i

wijuj

=
∑
j 6=i

wij(ui − uj) ≤ 0. �
(2.2)

Next, we prove a discrete analogue of the continuous time maximum principle, which
states that the implicitly discretized scheme for the heat equation on graphs is de-
creasing in the L∞ norm. This line of thought is inspired by the maximum principle
for finite difference operators [13].

Proposition 2.3 (Maximum Principle for Discrete Time). For any dt ≥ 0, let
u be a solution to

(2.3) u = −dt ∗ (Lu) + v,

then we have ‖u‖∞ ≤ ‖v‖∞.
Proof. Suppose i is a maximum of u. Then since u(i) = dt ∗ (−Lu)(i) + v(i)

and (−Lu)(i) ≤ 0, we have maxu = u(i) ≤ v(i) ≤ maxv. Arguing similarly with the
minimum, we have that ‖u‖∞ ≤ ‖v‖∞.

Remark: The condition Lij ≤ 0, i 6= j is crucial for the above analysis to hold.
If L is replaced by a general positive-semidefinite matrix, we still have an L2 version
of the proposition, namely, ‖u‖2 ≤ ‖v‖2, but the L∞ version is not true.

2.2. Proof of Proposition 2.1. We use the maximum principle to prove that
the sequence {uk} is uniformly bounded under a suitable initial condition. Consider
splitting the one-line scheme (1.9) into two parts. vk = uk − dt ∗ 1

ε
W ′(uk),

uk+1 = −dt ∗ (εLuuk+1) + vk.
(2.4)
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Note that by the maximum principle, ‖uk+1‖∞ ≤ ‖vk‖∞. We need the lemma
below to control the L∞ norm of the first line in (2.4).

Lemma 2.4. Define the map

(2.5) Fdt(x) = x− dtW ′(x) = x− dtx(x2 − 1).

If dt < 0.5, Fdt maps [−1, 1] to itself.
Proof. Note Fdt(±1) = ±1,∀dt, thus Fdt maps endpoints to endpoints. Fdt maps

the entire interval to itself if it is monotone on the interval. Computing the roots ri

of F ′dt(r) = 0, ri = ±
√

1
3 ( 1
dt + 1). Since Fdt is qubic, it is easy to see that Fdt is

monotone on [−1, 1] iff |ri| > 1, i.e., dt < 0.5.
Note that Fdt(x) here is the component-wise map of the first line in (2.4) and is

the source of the stepsize restriction. Since estimates for other forward steps Fdt(x)
follows the same idea as above and involves only elementary calculations, we omit
some of the details later. Next, we prove our main conclusion below:

Proof. [Proposition 2.1] We prove by induction. Suppose ‖uk‖∞ ≤ 1. Then for
each vertex i, we have vk(i) = uk(i) − dt

ε W
′(uk(i)) = Fdt/ε(uk(i)). By Lemma 2.4,

|vk(i)| < 1,∀i, given that dt
ε < 0.5. Hence ‖vk‖∞ ≤ 1. Then by Proposition 2.3,

‖uk+1‖∞ ≤ ‖vk‖∞ ≤ 1.
If we are not so keen on keeping uk(i) in [−1, 1] for each iteration, but merely

care about whether the scheme is bounded or not, then we may relax the interval a
bit to get a larger range of dt, as the next lemma shows.

Proposition 2.5. For dt < 2.1, Fdt maps [−1.4, 1.4] to itself. Hence if ‖u0‖∞ <
1.4, then {uk} is bounded for dt < 2.1ε.

Derivation of the constants: Define φ(c) to be the maximum dt for which Fdt
maps [−c, c] to itself. Since Fdt is qubic, φ is continuous. The exact constants are
then found by using a computer program to brute force maximize φ.

For future reference, the 0.5ε bound will be called the “tight bound” where the
2.1ε bound will be called the “loose bound”. Again, we must emphasis that the exact
constants here do not matter so much as the fact that they are independent of the
graph.

2.3. Generalizations of the scheme. In this section, we prove boundedness
results for other versions of the scheme.

Proposition 2.6 (Random walk graph Laplacian). Let ‖u0‖∞ ≤ 1. If dt < 0.5ε,
the scheme (1.9) with L = Lrw satisfies ‖uk‖∞ ≤ 1,∀k.

Proof. The proof follows similarly from that of Proposition 2.1 by noting that the
second order condition (2.2) holds also for random walk Laplacian Lrw.

The case on symmetric graph Laplacian is a little different, and a uniformity
condition on the graph must be added.

Proposition 2.7 (Symmetric graph laplacian). Define the uniformity constant
ρ as

(2.6) ρ =
maxi di
mini di

.

If ρ ≤ 2, ‖u0‖∞ ≤ 1√
2

, dt ≤ 0.5ε, then the sequence {uk} is bounded.

Proof. We note that while Lsij is no longer negative (thus losing the maximum

principle), we still have the relation Ls = D1/2LrwD
−1/2. Thus line 2 of (2.4) becomes

(2.7) D−1/2uk+1 = −dt ∗ LrwD−1/2uk+1 +D−1/2vk.
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By the maximum principle, ‖D−1/2uk+1‖∞ ≤ ‖D−1/2vk‖∞. We rescale uk as ũk =√
mini di×D−1/2uk+1,and ṽk =

√
mini di×D−1/2vk+1. The first line of (2.4) becomes

ṽk(i) =
1

ci
Fdt/ε(ciũk(i)),

where ci = ( di
minj dj

)1/2. Note that by uniformity condition (2.6), ci ∈ [1,
√

2],∀i.
Next, we prove ‖ũk‖∞ ≤ 1 by induction. This is clearly true for k = 0 since

‖ũ0‖∞ ≤
√
ρ‖u0‖∞ ≤ 1. For general k, define Φi(x) = 1

ci
Fdt/ε(cix) to be a rescaled

version of the forward step. We claim Φi maps [−1, 1] to itself for all i. This follows
easily from the following lemma:

Lemma 2.8 (Uniform scaling). For any dt < 0.5, Fdt as defined in (2.5) maps
[−c, c] to itself for any c ∈ [1,

√
2].

The proof of the Lemma 2.8 can be done using brute force calculation similar to
that of Lemma 2.4. Thus we get ṽk(i) ∈ [−1, 1]. Applying the maximum principle
and equation (2.7), we finally get ‖ũk+1‖∞ ≤ 1 and complete the induction argument.

In the context of semi-supervised learning [5,21], a quadratic fidelity term appears
in the scheme. We show boundedness of the graph Allen-Cahn scheme with this added
fidelity. Restating from [5] the scheme with fidelity:

 vk =uk − dt ∗ (
1

ε
W ′(uk) + ηΛ(uk − φ0)),

uk+1 =− dt ∗ (εLuk+1) + vk,
(2.8)

where φ0(i) ∈ {1,−1}, for i belonging to a fidelity set Λ.
Proposition 2.9 (Graph Allen-Cahn with fidelity). The graph Allen-Cahn

scheme with fidelity (2.8) is bounded by 2 for dt < 1
2+η ε, where η is the fidelity

strength and ε is the diffuse parameter.
Proof. Define the modified forward step Φdt(u) = u−dt[(u2−1)u+η(u−1)]. By

the same argument as in Lemma 2.4 by noting Φ is qubic, the limit stepsize is given
by Φ′dt(1) = 0. Thus dt = 1

2+η ε.

2.4. Uniform Convergence to ODE. As an interesting corollary of the Max-
imum Principle, we prove that the discrete scheme uk converges to the ODE equation
in a graph independent way.

Proposition 2.10 (Convergence to ODE). Let U be the continuous time solution
of (1.8) defined on a fixed interval [0, T ], where L is either the unnormalized Laplacian
or random walk Laplacian. Assume ‖U(., 0)‖∞ ≤ 1. Then the semi-implicit scheme
in (1.9) has first order converges uniformly to the continuous time solution U with
respect to L.

Proof. Set Uk = U(., kdt) Define ek = uk − Uk to be the global error. Then we
have to show ‖ek‖ ≤Mdt, where M is independent of dt and the graph Laplacian L.

By assumption, ‖u0‖∞ ≤ 1. Therefore by Proposition 2.1 we have that the
sequence {uk} is uniformly bounded. Since U is a gradient flow, GL(U(., t)) is de-
creasing in time and thus U is also bounded. Therefore, we may assume W ′′ to be
bounded (by a graph-free constant). In the following notation, M and the constant
for big O is graph-independent. We first compute the local truncation error:

Lemma 2.11. Define the local truncation error τk as below:

(2.9)
Uk+1 − Uk

dt
= −LUk+1 −W ′(Uk) + τk.

6



Then ‖τk‖∞ ≤Mdt Subtract (2.9) from the discrete scheme, and we get an evolution
equation for the error term

(2.10)
ek+1 − ek

dt
= Lek+1 − (W ′(uk)−W ′(Uk)) + τk.

By using Taylor expansion on W ′, we have

ek+1 = −dtLek+1 − dtW ′′(ξ)ek + ek + τk.(2.11)

Here W ′′ is the diagonal matrix W ′′jj = W ′′(ξj). By applying the maximum principle,
taking L∞ norm gives us

(2.12) ‖ek+1‖∞ ≤ ‖ − dtW ′′(ξ)ek + ek + τk‖∞ ≤ (1 +Mdt)‖ek‖∞,

for some graph independent constant M .
Hence by iterating the equation above, we get

‖ek‖∞ ≤ (MeMT )dt = O(dt). �

3. Energy method-L2 estimates. In this section, we derive estimates in terms
of the L2 norm, commonly used to prove convergence of finite difference schemes of
parabolic PDEs. Our goal is to prove convergence to stationary point for the full
scheme and also convergence of scheme with spectral truncation. Our proof is loosely
motivated by the analysis on convex-concave splitting in [17,40]. For example in [17],
Eyre proved:

Proposition 3.1 (Eyre). Let E = E1 + E2 be a splitting with E1 convex and
E2 concave. Then for any dt, the semi-implicit scheme uk+1 = uk − dt∇E1(uk+1)−
dt∇E2(uk) is monotone in E, namely,

E(uk+1) ≤ E(uk), ∀k ≥ 0.

The semi-implicit scheme in fact coincides with the notion of proximal gradient
method for minimizing the splitting E = E1 + E2. Recall that proximal gradient
iteration is given as [6]

(3.1) uk+1 = ProxdtE1(uk − dt∇E2(uk)),

where the Prox operator is defined as

Proxγf (x) = argminu{f(u) +
1

2γ
‖u− x‖2}.

The Prox operator is defined for all proper convex functions taking extended real
values, and its connection to the semi-implicit scheme is clear from its implicit gradient
interpretation. Namely, if y = Proxγf (x),

(3.2) y = x− γ∂f(y).

∂f is the subgradient of f , which coincides with the gradient if f is differentiable.
Classical results for convergence of proximal gradient method can be found in [6],which
requires both E1, E2 to be convex (instead of E2 concave as in Eyre), and ∇E2 be
Lipschitz continuous.
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In our case, E = GL(u), E1 = ε
2 〈u, Lu〉 and E2 = 1

4ε

∑
iW (ui). However, our E2

is neither concave nor convex. Instead of using a quadratic penalty to force convex-
concavity (which is shown to be a rescaling of time in (1.2)) we follow the analysis for
done for non-convex proximal gradient method. The estimate below is a simplified
version of the proof in [32], and is analogous to that in [17]. General discussions of
non-convex proximal gradients are found in [2].

Proposition 3.2 (Energy Estimate). Let E = E1 +E2. Define xk+1 by xk+1 ∈
xk−dt∂E1(xk+1)−dt∇E2(xk). Suppose E1 is convex, E2 smooth and ∇E2 Lipschitz
continuous with Lipschitz constant M , we have

(3.3) E(xk)− E(xk+1) ≥ (
1

dt
− M

2
)‖xk+1 − xk‖2.

Proof.

E(xk)− E(xk+1) = E1(xk)− E1(xk+1) + E2(xk)− E2(xk+1)

≥ 〈∂E1(xk+1), xk − xk+1〉+ E2(xk)− E2(xk+1)

=
1

dt
‖xk+1 − xk‖2 + 〈∇E2(xk), xk − xk+1〉+ E2(xk)− E2(xk+1)

≥ 1

dt
‖xk+1 − xk‖2 − M

2
‖xk+1 − xk‖2.

The second line is by convexity of E1, the third by plugging in the the definition of
xk+1, the fourth by simple Taylor expansion of the function E2.

Even though the proof is simple, we have the freedom of choosing E1 to be a
general non-smooth convex function. In particular, we later set E1(u) = IV (u) +
ε
2 〈u, Lu〉, where I is the indicator function and V an eigenspace.

3.1. Convergence of Scheme. In this section, we use the estimate (3.2) to
extend our result of boundedness to convergence under the same stepsize restriction.

Proposition 3.3 (Convergence of Graph Allen-Cahn). Let ‖u0‖∞ ≤ 1. Under
the strict bound dt < 0.5ε, the scheme (1.9) is monotone in the Ginzburg-Landau
energy GL(u) = ε

2 〈u, Lu〉+ 1
ε

∑
iW (ui) and converges to a stationary point of GL.

Proof. From Proposition 2.1, dt < 0.5ε, implies ‖uk‖∞ ≤ 1,∀k. We set E1 =
ε
2 〈u, Lu〉, E2 = 1

ε

∑
iW (ui), and apply Proposition (3.2). Since the L∞ ball in Rn

is convex, all points ξ that lie in the line segment from uk to uk+1 satisfy ‖ξ‖∞ ≤
1. Thus we can WLOG assume the Lipschitz constant M of ∇E2 to satisfy M ≤
1
ε max|x|∞≤1 |W ′′(x)| = 2

ε . Since dt < 0.5ε < 2
M , by Proposition 3.2, we have:

(3.4) GL(un)−GL(un+1) ≥ (
1

dt
− M

2
)‖uk+1 − uk‖2,

where 1
dt −

M
2 > 0 by our assumption on dt. Hence uk is monotone in GL. Summing

both sides of (3.4) we obtain

(3.5) GL(u0)−GL(un) ≥ (
1

dt
− M

2
)
∑
i≤n

‖ui − ui−1‖2.

Since GL(un) ≥ 0 and 1
dt −

M
2 > 0, the sequence {ui − ui−1} is square summable,

thus lim
i→∞

‖ui − ui−1‖ = 0. Since {ui} is bounded, there exists a limit point u∗ for
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the sequence, and u∗ is unique by the condition lim
i→∞

‖ui − ui−1‖ = 0. Hence {ui}
converges to u∗. By continuity, u∗ is a stationary point, i.e., ∇GL(u∗) = 0.

Remark: The argument does not work for the “loose bound” dt < 2.1ε, since
the Lipschitz restriction 2

M is no longer greater than 2.1ε. There indeed exists cases
where the sequence {uk} is bounded but does not converge. However, in practice the
scheme tends to converge under larger timestep than the tight bound 0.5ε.

Following the same line of proof, above and using results in Section 2, we obtain
a general convergence result for the graph Allen-Cahn scheme.

Theorem 3.4 (Main Convergence Result). Let uk be defined by a form of the
Ginzburg-Landau scheme as below:

(3.6) uk+1 = uk − dt ∗ (εL∗uk+1 +
1

ε
W ′(uk) + ηΛ(uk − φ0)),

L∗ being either the unnormalized or random walk Laplacian. Then if ‖u0‖∞ ≤ 1,
then ∃c independent of L such that ∀dt < c, we have lim

k→∞
uk = u∗, where u∗ is a

stationary point of the Ginzburg-Landau functional. The result holds for symmetric
Laplacians if we add an additional uniformity condition (2.6) on the graph.

3.2. Convergence Results for General Semi-Definite L. In this section, we
study the scheme (1.9) where L is replaced by an arbitrary symmetric semi-positive
definite matrix. We desire to prove similar convergence results but without the max-
imum principle. Instead, we rely solely on the energy estimates itself.

There are two reasons for generalizing L to an arbitrary semi-positive definite
matrix. First, this serves as a baseline convergence result if we are to study symmetric
perturbations made on the original L, such as in the case of using the Nystrom
Extension. The second reason is that the proof here can be carried over to show
convergence of (1.9) under spectral truncation. Our main result is below:

Theorem 3.5. Let L be an arbitrary symmetric and semi-positive definite matrix
such that ρL ≤ C for some C independent of N , where ρL = maxi |λi|. Define uk by
the scheme (1.9) with ε = 1, i.e.,{

vk = uk − dt ∗W ′(uk),

uk+1 = −dt ∗ (Luk+1) + vk.
(3.7)

Suppose ‖u0‖∞ ≤ 1, then the scheme is monotone in the Ginzburg-Landau energy for
timestep dt = O(N−1), where N is the size of the system, i.e., number of vertices in
the graph.

Since the result is an analysis on dt vs N , we allow the constants to depend on ε,
and WLOG set ε = 1 in the proof.

Our strategy here is to choose dt so small and apply Proposition 3.2 to force mono-
tonicity in the Ginzburg-Landau functional GL. Since GL(u) = O(‖u‖4), bounded-
ness in function value implies boundedness in the variable u. For our purpose, we
need a more refined version of the bound on GL(u).

Lemma 3.6 (Inverse Bound). Let M be any positive constant. If GL(u) ≤ M ,
then ‖u‖22 ≤ N +

√
NM , where N is the dimension of u.

Proof. By assumption on GL(u) =
∑
i(u

2
i − 1)2 + 〈u, Lu〉,

∑
i(u

2
i − 1)2 ≤ M .

Then from the Cauchy-Schwarz inequality,
∑
i(u

2
i − 1) ≤

√
NM , hence our lemma.

To prove the theorem, we need a direct estimate on the norm of uk+1 from uk.
The proof of the lemma is an application of norm conversions in Lemma 8.1 in the
Appendix.
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Lemma 3.7. Let uk and uk+1 be successive iterates defined in (3.7). Then their
function value satisfies the inequality below:

(3.8) ‖uk+1‖2 ≤ (1 + dt)‖uk‖2 + dt‖uk‖32.

Proof. Since L is symmetric semi-positive definite, we have ‖uk+1‖2 ≤ ‖vk‖2.
Then since vk(i) = uk(i) − dt ∗ [uk(i)(uk(i)2 − 1)], we have ‖vk‖2 ≤ (1 + dt)‖uk‖2 +
dt‖uk‖36 ≤ (1 + dt)‖uk‖2 + dt‖uk‖32

We can now prove the main conclusion:

Proof. [Proposition 3.5.] Since ‖u0‖∞ ≤ 1, we have ‖u0‖2 ≤
√
N . Moreover,

GL(u0) ≤ ρL‖u0‖22+
∑
i≤N 1 ≤ C1N . By Lemma 3.6, for any v s.t. GL(v) ≤ GL(u0),

we have ‖v‖ ≤ C2

√
N , for some C2 ≥ 1.

We claim that there exists a constant δ independent of N such that ∀dt ≤ δN−1,
(3.9) holds for all k. Note that C1 and C2 are independent of both N and the interation
number k.

GL(uk) ≤GL(u0) ≤ C1N,

‖uk‖2 ≤C2

√
N.

(3.9)

We argue by induction. The case k = 0 has been proved above. Suppose this
is valid for k, then we have ‖uk‖ ≤ C2

√
N . By Lemma 3.7, we have ‖uk+1‖ ≤

A1

2 (1 +dt)N1/2 + A1

2 dtN
3/2, where A1 depends on C1, C2 but not k or N . Therefore,

we can choose dt ≤ δN−1, such that ‖uk+1‖ ≤ A1N
1/2. Again, δ is not dependent on

k or N .

The crux of the proof is applying the energy estimate (3.2) to uk+1. Note the
estimate (3.2) is valid with constant M ≤ max‖ξ‖∞≤A1

√
N ‖∇2W (ξ)‖. Plugging in

the explicit formula W (u) = 1
4 (u2 − 1)2, we have M ≤ A2N for some A2. Thus by

further shrinking δ if necessary, we have for dt < δN−1, 1
dt −

M
2 > 0. Hence applying

(3.2), we have. GL(uk+1) ≤ GL(uk) ≤ GL(u0). However, this would mean that
GL(uk+1) ≤ C1N , and thus by the inverse bound Lemma 3.6, ‖uk+1‖2 ≤ C2

√
N .

This completes the induction step.

Remark: The convergence stepsize is graph-size dependent. However, we show in
the next section that the dependence in unavoidable if we are dealing with arbitrary
L.

4. Analysis on Spectral Truncation. In many applications, the number of
nodes N on a graph is huge, and it is infeasible to invert L every iteration in (1.9).
In [5, 28], a strategy proposed was to project u onto the first m eigenvectors. This
approach is called spectral truncation. In practice, spectral truncation gives accurate
segmentation results but is computationally much cheaper. There are several methods
for precomputing the eigenvectors including Nystrom method [18] which is a random
sampling method, and the Raleigh-Chebyshev method [1] for sparse matrices.

4.1. Convergence Results for Spectral Truncation. Let us formally define
the spectral truncated version of scheme (1.9). Define Vm = span{φ1, φ2, . . . , φm} to
be space spanned by the m eigenvectors of L with the smallest eigenvalues. Define
Pm to be the projection operator onto the space Vm. Then the spectral truncated

10



scheme is defined as  vk = uk − dt ∗ 1

ε
W ′(uk),

uk+1 = Pm[−dt ∗ (εLuk+1) + vk].
(4.1)

Just as in the previous analysis, we first show boundedness.

Proposition 4.1 (Boundedness of Spectral Truncation). Let the graph Laplacian
satisfy ρL ≤ C for some C independent of N . Define uk by the scheme (4.1). Suppose
‖u0‖∞ ≤ 1, then the scheme is monotone in the Ginzburg-Landau energy for timestep
dt = O(N−1), where N is the size of the system.

The key to the proof is the following observation, which links spectral truncation
to the proximal gradient method.

Lemma 4.2 (Reformulation of Spectral Truncation). If u0 ∈ Vm, the spectral
truncated scheme (4.1) is equivalent to the proximal gradient scheme (3.1) with E1 =
ε
2 〈u, Lu〉 + IVm , E2 = 1

4ε

∑
iW (ui), where IVm is the indicator function of the m-th

eigenspace which is 0 inside Vm and +∞ outside.

Proof. Since the forward step, i.e., line 1 of (4.1) is the same between the two
schemes, we only have to show the following: Define u, u′ as

u =argmin
y

ε

2
〈y, Ly〉+

1

dt
‖y − v‖2,

u′ =argmin
y

ε

2
〈y, Ly〉+ IVk(y) +

1

dt
‖y − v‖2.

We want to show that u, u′ satisfy the relation Pm(u) = u′. Project onto eigenvectors

and we have u =
N∑
i=1

ciφ
i, u′ =

N∑
i=1

c′iφ
i. Since u′ ∈ Vm, we have c′i = 0,∀i > m.

Moreover, letting di = 〈v, φi〉,

ε

2
〈u, Lu〉+

1

dt
‖u− v‖2 =

N∑
i=1

(
ε

2
λic

2
i + (ci − di)2).

Thus the minimization is done component-wise in ci, and it is easy to see that ci =
c′i,∀i ≤ m. Thus Pm(u) = u.

We may now prove our main result:

Proof. [Proposition 4.1] The proof is almost identical to that in Proposition 3.5.
We again argue inductively that (3.9) holds for dt ≤ δN−1. Suppose (3.9) is true
for k. Since the the projection operator Pk does not increase L2 norm, we still have
‖uk+1‖ ≤ (1 + dt)‖uk‖ + dt‖uk‖3, and thus ‖uk+1‖ ≤ C

√
N . By the equivalence

of spectral truncation with proximal gradient (4.2), we may use the energy estimate
(3.2), and argue that GL(uk+1) ≤ GL(uk) under dt < δN−1. This in turn forces
‖uk+1‖ ≤ C2

√
N , ending the induction.

Since we now know that ‖uk‖ is bounded by O(
√
N), we can WLOG assume the

Lipschitz constant M = O(N). Thus by following the proof of Proposition 3.3, we
have

Proposition 4.3 (Convergence Result). The truncated scheme is convergent
under the stepsize restriction dt ≤ δN−1.

11



4.2. A Counter Example for Graph-Independent Timestep Restriction.
In the previous subsection, we proved that the spectral truncated scheme is bounded
under stepsize restriction dt = O(N−1). One would hope to achieve a graph-free
stepsize rule as in the case of the full scheme (1.9). However, as we show in our
example below, uniform convergence stepsize over all graph Laplacian of all sizes is
not possible.

Proposition 4.4 (Optimality of Estimate 4.1). For any δ independent of N and
dt = δN−α, α < 1, we can always find a graph Laplacian LN×N with ρL ≤ 1, and
an initial condition ‖u0‖∞ = 1 such that the scheme in (4.1) with truncation level
m = 2 has lim

k→∞
‖uk‖∞ =∞. Hence our estimate for the stepsize restriction in (4.1)

is optimal.
We explicitly construct a graph and a graph Laplacian to attain the worst case

bound. Graph construction is as follows, which is illustrated in Fig 4.1.

Fig. 4.1: Illustration of Worst Case Graph with N = 7

Construction of Graph
1. Nodes: The nodes consists of two groups of “clusters” nodes (in circles) and

two outlier nodes (in x). Each cluster contains N − 1 nodes and thus the graph
contains a total of 2N nodes.

2. Edge Weights: Connect all nodes to each other within clusters and set edge
weights to 1 (black solid edges). Connect the inter cluster nodes in a pairwise fashion
and set weights to 0.1 (gray solid edges). Finally, connect the outlier node with the
clusters and set edge weights very close to 0.1

N (gray dashed edges), see Lemma 8.2 in
the Appendix for further explanation.

3. Indexing : Nodes on the left are indexed by odd numbers and nodes on the
right even. The first and the second node correspond to the two outlier nodes respec-
tively.

4. Graph Laplacian: The graph Laplacian is taken to be 1
ρL
L, where L is the

unnormalized graph Laplacian D −W .

We choose our initialization by thresholding the second eigenvector, namely, u0 =
Sign(φ2). The key property of the graph lies in its second eigenvector, the computa-
tion of which could be found in 8.2 in the Appendix :

Proposition 4.5. Under the setup above, the second eigenvector of the graph

12



Laplacian is

φ2 =

(
1

2
,−1

2
,

1

2
√
N
,− 1

2
√
N
, . . . ,

1

2
√
N
,− 1

2
√
N

)t
.

Moreover, projection of u0 onto the first two eigenvectors satisfies P2(u0) = C
√
Nφ2,

where C is approximately 0.5.

Next, we can simply use the formula for the second eigenvector to show that the
scheme diverges for dt = O(N−α). The idea is that after the first iteration, the values
of u1 on the outlier nodes are high enough such that the scheme diverges. Below is
an outline of the proof.

Proof. [Proposition 4.4] We run through the scheme with u0 = Sgn(φ2), dt =
δN−α.

(Step1) We compute u1. Since u0 is ±1 valued, v0 = u0. By boundedness
of eigenvalues, u1 = C0

√
Nφ2 = O(

√
N)φ2, since C0 is bounded from below with

respect to N .

(Step 2) We compute u2. Note since u1(1) = −u1(2) = O(
√
N), and dt ≤ N−α,

we have |v11 | = |(1−dt)u11+dt(u11)3| = O(
√
N)+O(N3/2/N−α) = O(Nθ/2), where θ >

1. Similarly, v1(j) = O(1) for j 6= 2. Moreover, by symmetry, u1(2k) = −u1(2k + 1),

and hence we have v1 = O(Nθ/2)φ2 +O(N
θ−1
2 ). By calculating projections onto φ2,

u2 = O(Nθ/2)φ2 +O(N
θ−1
2 ).

(Step 3) Inductively, we can show that uk = O(N
θk−1

2 )φ2 + O(N
θk−1−1

2 ). And
thus letting k →∞, uk →∞.

Whether the theoretical worst case bound is attained if we project to more than
two eigenvectors is not proved here and could be done in future work. However, due
to level of freedom in constructing such graphs, the thought is that there are more
complicated examples such that the bound is attained for truncation level m > 2.

4.3. Heuristic Explanation for Good Typical Behavior. Despite the patho-
logical behavior of the example given above, the timestep for spectral truncation does
not depend badly on the size N in practice. In this section, we attempt to give a
heuristic explanation of this from two viewpoints.

The first view is to analyze the projection operator Pm in the L∞ norm. The
reason why the maximum principle fails is because Pm is expansive in the L∞ norm.
Namely, for some vector ‖v‖∞ ≤ 1, we have ‖Pm(v)‖∞ = O(

√
N) in the worst case.

However, an easy analysis shows the probability of attaining such an O(
√
N) bound

decays exponentially as N grows large, as shown in a simplified analysis in Proposition
8.3 of the Appendix. Thus in practice, it is very rare that adding Pm would violate
the maximum principle “too much”.

The second view is to restrict our attention to data that come from a random
sample. Namely, we assume our data points xi are sampled i.i.d. from a probability
distribution p, and that the graph Laplacian is computed from the Euclidean distance
‖xi − xj‖. In [39], it is proven that under very general assumptions, the discrete
eigenfunctions, eigenvalues converges to continuous limits almost surely. Moreover,
the projection operators Pk converges compactly almost surely to their continuous
limits. Moreover, results for continuous limits of graph-cut problems can be found
in [34]. Under this set up, we can define the Allen-Cahn scheme on the continuous
domain and discuss its properties on suitable function spaces. The spectral truncated
scheme still would not satisfy the maximum principle, but at least it evolves in a
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sample-size independent fashion. Of course a rigorous proof would require heavy
functional analysis.

5. Results for Multiclass Classification. The previous analysis can be car-
ried over in a straight forward fashion to the multiclass Ginzburg-Landau.

Multiclass diffuse interface algorithm on graphs can be found in [20, 24, 28]. In
most of the algorithms, the labels are vectorized into separate coordinates. To be
more precise, given K the number of classes, and N the number of nodes on the
graph, we define an N ×K matrix u, where each entry uij stands for the “score” of
the ith node belonging to the jth class. Often one would project u onto the Gibbs
simplex G = {

∑
xi = 1|xi ≥ 0} [21] to make uij into a probability distribution.

The Ginzburg Landau functional for multiclass is defined as

(5.1) GL(u) =
ε

2
tr(uLu) +

1

2ε

N∑
i=1

W (ui).

Here, ui stands for the i-th row of u, and W should be a “multi-well” function that
is analogous to the double-well in the binary case. The function should have local
minima near the unit vectors ek = (0, 0, . . . , 1, . . . , 0)t, and grows fast when u is far
from the origin. We use the L2 double well, namely,

(5.2) W (ui) = (ΠK
k=1‖ui − ek‖22).

In [21], a different double well is used where L1 norms are taken instead of L2. The
paper claimed that L2 double well suffers from the problem that the function value
of W in the center of the Gibbs simplex is small. This problem could be alleviated
if we rescale distance by a suitable function ρ(x). Namely, replacing ‖ui − ek‖22 by
ρ(‖ui − ek‖22). Moreover, when k is reasonably small, even such adjustments are
unnecessary. However, choosing the L2 well comes with the bonus advantage that
the problem is smooth. This gives better convergence guarantees as well as makes
the problem easier to compute numerically. For example, the L2 double well does not
require projection onto the Gibbs simplex G in every iteration as in [21].

We minimize GL using the forward-backward method as in (2.4).
vk = uk − dt ∗ 1

2ε

∑
i

∇W (uk
i ),

uk+1 = −dt ∗ (εLuk+1) + vk.

(5.3)

Since the diffusion step is done columns-wise, the maximum principle carries over
naturally. Namely, we have

Proposition 5.1 (Maximum Principle Multiclass). Let u,v be K×N matrices.
Define

(5.4) u = −dt ∗ (εLu) + v,

then ‖uj‖∞ ≤ ‖vj‖∞, where uj , vj are the jth column of u, v respectively.
With the exact same reasoning as in the binary case, we need a range of stepsize

dt for which the forward gradient step Ft of the “multi-well” maps [−R,R]N×K onto
itself, as the next lemma shows.

Lemma 5.2. Define Ft : ui 7→ ui − dt ∗ 1
2ε∇W (ui). Then ∃R(K) and ∃c(R,K)

independent of N such that for dt < c(R,K), Ft([−R,R]K) ⊂ [−R,R]K .
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Proof. Since the double well W does not depend on N , the constants R and dt
are naturally independent of N if we prove its existence.

We define a new map φdt to be φdt(R) = sup{‖Fdt(u)‖∞, u ∈ ∂[−R,R]K}. It
can be shown that φdt is continuous. Since the double well W is nearly quadratic
when R is large, we have that ∃R1 such that ∇W |∂[−R2,R2]K points inward of the box

[−R2, R2]K , for all R2 ≥ R1. Thus we can find c dependent on R2 such that φdt(R2) ≤
R2,∀R2 ≥ R1, dt < c. Take R = maxφc([0, R1]), by shrinking c if necessary, we have
maxφc([0, R]) ≤ R, and thus Ft([−R,R]K) ⊂ [−R,R]K ,∀dt < c.

The proof works for any function that acts independently on each component ui

and has fast growth towards infinity. The estimates here are not as precise as the
0.5ε bound in the binary case, since an explicit calculation will be a rather compli-
cated formulae that involves K. However, in practice, the stepsize restriction is also
comparable to 0.5ε, at least when the number of clusters K is moderate.

Additional fidelity terms and alternative graph Laplacian could be handled the
same way as in the binary case. Hence we have,

Theorem 5.3 (Convergence). The multiclass graph Allen-Cahn scheme, with or
without fidelity, is convergent for stepsize dt < cε.

6. Numerical Results. In this section, we construct various numerical experi-
ments of increasingly larger scales. This helps demonstrate our theory, and also have
some implication on the real world performance of the schemes.

6.1. Two Moons. The two moons data was used by Buhler et al [10] in ex-
ploring spectral clustering with p-Laplacians. It is constructed from sampling from
two half circles of radius one on R2, centered at (0,0) and (1,0.5). Gaussian noise
of standard deviation 0.02 in R100 is then added to each of the points. The weight
matrix is constructed using Zelnik-Manor and Perona’s procedure [41]. Namely, set
wij = e−d(i,j)/

√
τiτj , where τi is the Mth closest distance to i. W is further sym-

metrized by taking the max between two symmetric entries.
Fig.6.1 is an illustration of the data set of three different sizes being segmented

perfectly under a uniform stepsize. A zero mass constraint is used instead of fidelity
points, and random initialization is chosen. The parameters for the experiment is
dt = 0.5, ε = 1, which is exactly the tight bound.

Fig. 6.1: Segmentation results under the same stepsize for Two Moons with sample sizes
1000, 2000, 3000 respectively.

To test the theory in a more rigours manner, we compute several “maximum
stepsizes” that ensures some criterion (e.g. bounded after 500 iterations, etc.), and
compare this with the stepsize predicted by the theory. Bisection with 1e-5 accuracy
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Fig. 6.2: Two Moons Segmentation Problem. Left: Maximum stepsize satisfying ‖uk‖∞ ≤ 1.
Right: Left: Maximum stepsize satisfying ‖uk‖∞ ≤ 10. N is the number of nodes.

is used to determine the maximum stepsize that satisfies the criterion given.
Fig 6.2 plots the maximum stepsize for the scheme (1.9) to be bounded by 1.0005,

10 respectively. Random −1, 1 initial conditions are chosen. No fidelity terms are
added and the diffuse parameter ε = 1. We also compute results for the random
walk Laplacian and the unnormalized Laplacian as comparison. The actual results
are independent of graph size, and also match the tight and loose bound nicely.

Since we are interested in convergence stepsize, we switch our criterion from
boundedness to convergence, namely, we compute the stepsizes for which the scheme
has iterative difference less than 1e-4 in 1000 iterations. ε is still chosen to be 1.

Fig.6.3 (left) plots the limit convergence stepsize for the scheme with the three
different Laplacians. As we can see, the typical limit stepsize is between the tight and
loose bound. Fig.6.3 (right) fixes N = 2000 and varies ε to plot the relation between
dt and ε. They are almost linear as predicted by the 0.5ε bound.

Fig. 6.3: Two Moons Segmentation Problem. Left: Maximum stepsize for convergence, fixing
ε = 1 varying N . Right: Maximum stepsize for convergence, fixing N = 2000 varying ε, ε is
the interface scale parameter. N is the number of nodes on the graph.

Fig.6.4 (left) plots the scheme with spectral truncation. The results are compared
with the full scheme, and are roughly in the same range. Fig.6.4 (right) plots the
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Fig. 6.4: Two Moons Segmentation Problem. Left: Maximum convergence stepsize comparing
spectral truncation vs full scheme. Right: Maximum convergence stepsize for scheme with
fidelity.N the number of nodes. c is the fidelity strength.

effects of adding a quadratic fidelity term with power c while keeping ε = 1 fixed. As
we can see from the result, the fidelity term does constitute an additional restriction
when c is large. However, stepsizes remain roughly the same for small c. It is hard to
analyze the exact effect when c and ε are comparable.

6.2. Worst Case Graph. Despite the good practical behavior of spectral trun-
cation, this experiment shown in Fig.6.5 is a realization of the worst case stepsize
restriction for spectral truncation. The plot in log-log axis shows the convergent dt
vs the size of the problem N . The scheme is initialized by thresholding the 2nd eigen-
vector. The slope of the descent matches the theoretical k = −1 line almost exactly,
proving the optimality of the theoretical result.

Fig. 6.5: Left: Cartoon figure of the worst case graph. Right: Log plot of maximum stepsize
for {uk} to be bounded. N the number of nodes on the graph.

6.3. Two Cows. The point of this experiment is to test the effects of Nystrom
sampling on the stepsize and overall performance of the algorithm. The images of
the two cows are from the Microsoft Database. For large dense graphs such as non-
local graphs from images, it is often impractical to compute the entire graph. Nystrom
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sampling is a technique used to approximate eigenvectors without explicitly computing
the graph Laplacian [3, 18,19].

From the original 312×280 image, we generate 10 images with successively lower
resolution of (312/k) × (280/k), k = 1, . . . 10. A non-local graph constructed from
feature windows of size 7 × 7 is used, and weights are constructed by the standard
Gaussian Kernel wij = e−dij/σ

2

. The eigenvectors are constructed by using Nystrom
extension, the details of which could be found in [5].

Nystrom extension produces an orthogonal set of vectors that approximates the
true eigenvectors by subsampling from the original graph. The following examples
show that this imprecision does not cause numerical instability.

Fig.6.6 illustrates three images with 1,1/2,1/5 times original resolution being seg-
mented under the uniform condition dt = 2, ε = 4. The blue and red box corresponds
to fidelity points of the two classes, the constant in front of the fidelity are c1 = 1 and
c2 = 0.4 for the cows and the background respectively.

Fig.6.7 is a profile of N vs dt. To ensure segmentation quality, smaller epsilon
had to be chosen for images of lower resolution, and the final result is displayed in
terms of the dt/ε ratio.

(a) 256 × 256 (b) 128 × 128 (c) 51× 51

(d) Segmentation Result 1 (e) Segmentation Result 2 (f) Segmentation Result 3

Fig. 6.6: Images of different resolution segmented under the same stepsize

6.4. MNIST. This experiment is used to demonstrate the case of multiclass
clustering by the L2 multiclass Ginzburg-Landau functional.

The MNIST database [26] is a data set of 70000 28 × 28 images of handwritten
digits from 0-9. The graph is constructed by first doing a PCA dimension reduc-
tion and again using the same Zelnik-Manor and Perona’s procedure with 50 nearest
neighbors.

For our purpose, we focus on clusters of size three. Table 6.1 shows the limit step-
sizes of various tuples, and the error rate when segmented under a uniform stepsize.
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Fig. 6.7: Maximum Convergence Stepsize for Two Cows a Series of Different Resolution. N
is the number of nodes in the graph, which equals A × B with A,B the height and width of
an image.

5% fidelity points are used, and ε = 1. The scheme is projected onto the first 100
eigenvectors. It is shown here that they are still segmented around the same stepsize.

Tuples {4,6,7} {3,5,8} {1,0,9} {0,6,1} {2,7,1}
Max dt 0.5823 0.5914 0.5716 0.5701 0.5755

Correct (dt=0.5) 97.98% 97.58% 96.00% 96.36% 98.22%

Table 6.1: Clustering results of MNIST. For each digit, N ≈ 6000. First Row: triplets of
digits to be classified. Second Row: Maximum stepsize for convergence. Third Row: Error
rate with a fixed dt that is close to the maximum stepsize.

7. Discussion. In summary, we show that the semi-implicit scheme for solv-
ing the graph Allen-Cahn equation converges to a stationary point under a graph-
independent stepsize dt = 0.5ε. The proof combines ideas form classical numerical
analysis and also convex analysis. We then analyze the same convergence stepsize
problem for the scheme under spectral truncation. We show that unlike the previous
case, a graph-independent stepsize bound that works on all graphs is no longer pos-
sible. This is because maximum principle no longer holds under spectral truncation.
A new bound dt = O(N−1) is obtained and is shown to be sharp in the worst case.
Some heuristics were provided to explain the discrepancy between the worst case per-
formance and the good average case behavior when applying spectral truncation. We
then present a natural extension of the analysis to multi-class classification. We fi-
nally conduct a variety of numerical experiments on various datasets to demonstrate
how the theory matches practical performance.

There are still some very interesting problems left to be explored. One important
problem is why so few eigenvectors are needed during spectral truncation? Is this
unique for classification tasks, and how can this be quantified in a more theoretical
framework? Another problem is the relationship between the stepsize and final error
rate. As the problem is non-convex, converging to a sub-optimal stationary point is
a possibility. So far this analysis does not attempt to characterize the quality of the
final converged solution, but experiments have shown that the error rates do differ
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under different stepsize.

8. Appendix. Lemma 8.1 (Norm Conversions). Let 1 ≤ p < q ≤ +∞. Then
the formula below explicitly states the equivalence between norms:

‖u‖q ≤ ‖u‖p ≤ ‖u‖qN1/p−1/q.

Proof. The right hand side is by a generalization of Holder’s inequality. The left
hand side is by simple polynomial expansion.

Lemma 8.2 (Computation of Second Eigenvector of Graph 4.1). The second
eigenvector of the graph in Fig. 4.1 is

φ2 =

(
1

2
,−1

2
,

1

2
√
N
,− 1

2
√
N
, . . . ,

1

2
√
N
,− 1

2
√
N

)t
.

Proof. We set the gray solid edges have weights α, and the gray dashed edges
β/n. Recall the variational formulation of the second eigenvector

argmin
u

Dir(u) s.t. 〈u, e1〉 = 0, ‖u‖2 = 1.

Note that by symmetry, we can assume φ2 = (a,−a, b,−b, . . . , b,−b)t. Under this
parameterization, we have that the Dirichlet energy is

(8.1) Dir(α, β) =
α

n
(b− a)2 × n+ β(2b)2n.

Hence by computing the Lagrange multipliers, we have{
nkb =2γnb− (b− a),

ka =a− b,
(8.2)

where γ = β
α , and k is the lagrange multiplier. The equation for k is

(8.3) k2 − (
1

n
+ 2γ + 1)k + 2γ = 0.

Setting 2γ = 1+θ, and computing the roots k, we have k = 1−(
√

1
n − θ + ( 1

n + θ)2/4− θ2−
θ
2 −

1
2n ). Setting θ = 0 gives k = 1− 1√

n
− 1

2n . However, we need k = 1− 1√
n

to yield

our desired eigen-vector. This can be done by setting the correction term θ = o( 1
n ).

Proposition 8.3. Define the set

M = {u ∈ RN | ‖u‖∞ ≤ 1,max
Pm
‖Pmu‖∞ ≥ C

√
N },

where Pm is any projection operator onto a subspace, and 0 < C < 1. Then the
volume(with respect to the standard L2 metric in RN ) of the set M decreases expo-
nentially with respect to the number of dimensions N .

The proposition shows that if u were sampled uniformly from a unit cube, then
the probability of some projection Pm expanding the max norm by a factor of O(

√
N)

is exponentially decreasing in N .

20



Fig. 8.1: Illustration of Proposition 8.3. S is one of the “caps” that vn resides in. un and
vn have angle less than θ.

Proof. Let u ∈ M . Then by definition of the set M , ∃ some projection Pm such
that ‖Pmu‖∞ ≥ C

√
N . Define v := Pmu and vn := v

‖v‖2 . Define un := u
‖u‖2 . Since

vn is the projected direction of u, Pmu = 〈u, vn〉vn. Then we have

C
√
N ≤ ‖Pmu‖∞ = 〈u, vn〉‖vn‖∞ = ‖u‖2‖vn‖∞〈un, vn〉.

Since ‖u‖2 ≤
√
N , we have

(8.4) ‖vn‖∞〈un, vn〉 ≥ C.

Since 〈un, vn〉 ≤ 1, the projected direction vn must be in the set S = {v | ‖v‖2 =
1, ‖v‖∞ ≥ C}. However, the set S contains the N “caps” of a unit sphere (see Fig.8.1),
and hence is exponentially decreasing in volume with respect to the sphere. On the
other hand, since ‖vn‖∞ ≤ 1, by (8.4) we have 〈un, vn〉 ≥ C, and thus u lies in a cone
K(vn) with angle cos(θ) ≥ C. Hence u ∈ Kv + N , and since cones Kv have volume
exponentially decreasing with respect to N as well, we have V ol(M) is exponentially
decreasing with respect to N .
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