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As the nation faces a growing concern 

regarding asymmetrical threats, such as 

terrorist attacks using chemical and bio-

logical (CB) weapons, the diversity of envi-

ronments requiring protection is on the rise. CB sensor 

systems, once reserved for military battlefield deploy-

ments, are now appearing in civilian structures such as 

public transportation systems and office buildings [1]. 

This expanding range of sensing environments and oper-

ating conditions is forcing the requirements for protec-

tive sensor systems to evolve. Not only do future detection 

systems have to satisfy traditional requirements such as 

sensitivity, response time, probability of detection, and 

false-alarm rates, but they must also satisfy other con-

straining factors such as cost, power consumption, and 

maintainability [2]. Ultimately, operators seek low-cost 

detection systems with flexible deployment capabilities 

that do not sacrifice overall detection performance.

To address these evolving CB detection requirements, 

Lincoln Laboratory is developing a CB sensing frame-

work, consisting of high-density networks of inexpen-

sive point sensors. Not only does this sensing framework 

address the evolving detection requirements, but it also 

has the potential to provide many advanced capabilities, 

such as threat tracking, mapping, and prediction, which 

are not readily feasible with many traditional frameworks. 

Throughout our development efforts, we viewed high-

density sensor networks as an interdependent system of 

sensors, network detection algorithms, and deployment 

infrastructure technologies. Viewing this new frame-

work as a system of technologies is critical because the 

key technical challenges exist within the system’s inter-

A new sensing architecture is being developed 
for plume-based chemical and biological (CB) 
threat detection, mapping, and prediction. This 
effort seeks to provide a novel, affordable, and 
effective solution to spatially distributed CB 
detection by working in four key areas. These 
four areas include the analysis of performance 
gains offered by distributed sensing; the 
development of detection algorithms; the 
construction of an inexpensive sensor prototype; 
and experimentation with inexpensive, low-power 
deployment infrastructures. This multipronged 
approach to inexpensive spatially distributed 
sensing has led to the creation of a robust CB 
sensing architecture that offers many significant 
advantages over traditional approaches.
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dependencies. For example, as more sensors are added 

to the network, the need arises to establish agile deploy-

ment mechanisms such as wireless communication links. 

Dealing with wireless communications, especially in the 

low-power domain, introduces bandwidth constraints on 

data transfers within the network, thereby restricting the 

amount of data available to the network detection algo-

rithms and ultimately influencing the overall detection 

performance. To maintain a systems-based approach, 

our development efforts focused on four key areas: the 

performance analysis of high-density sensor networks, 

the development of inexpensive sensor technologies, the 

development of network detection algorithms, and the 

use of agile deployment technologies.

Chemical and biological Threats
Fundamentally, the majority of large-scale outdoor CB 

attacks fall within two categories, line and point. These 

two categories refer to the style of release. Line releases, 

as shown in Figure 1, consist of a moving release point 

that disseminates a low concentration of threat material 

over a wide area. Sensing CB threats from line releases 

requires a few high-fidelity sensors capable of detecting 

very small quantities of threat material. Sparse deploy-

ments of high-fidelity sensors are suitable for detecting 

line releases because low concentrations of threat mate-

rial permeate a wide area and have a high probability of 

encountering a sensor.

Conversely, a point release, shown in Figure 2, con-

sists of a stationary release point that disseminates a high 

concentration of threat material either as a burst or as a 

continuous release. Point releases generally target spe-

cific areas, but can affect large areas, depending on the 

atmospheric conditions. Unlike with line releases, sparse 

sensor deployments are not well suited for detecting CB 

threats from point releases because individual CB threat 

plumes from point sources consist of distinct unmixed 

regions of both high and low concentrations [3]. Indi-

vidual plumes do not have Gaussian concentration dis-

tributions or smooth gradients between regions of high 

and low concentrations, which are seen in the average of 

many plumes or in plume ensembles. As shown in Fig-

ure 3, such plumes can meander and exhibit unpredict-

able concentration distributions, making single-sensor 

placement for threat detection a difficult task. Even an 

exquisitely sensitive sensor will never detect threats that 

do not interact with it.

On the basis of the understanding of the behavior of 

individual plumes, high-density sensor networks are an 

ideal choice for detecting CB threats from point releases. 

High-density sensor networks work well because the 

increased sensor density offers increased sensor coverage 

within the spatial domain, thus increasing the probability 

that the plume will interact with at least a few sensors. 

Because, in most cases, predicting whether an adver-

sary may use a point or line style of attack is impossible, 

it may make sense to always use high-density networks of 

high-fidelity sensors. In theory, this approach is ideal for 

addressing the entire threat space, but is greatly hindered 

by practical considerations. Currently, the high-fidelity 
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figuRe 1. Line releases usually consist of low concen-
trations of material distributed across a wide area, thus 
making sparse deployments of high-fidelity sensors bet-
ter suited for detection. 

figuRe 2. In a point-release scenario, high-density 
deployments of low-cost sensors have a higher probability 
of encountering the chemical-biological (CB) plume than 
the single high-fidelity sensor. 
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sensors that are capable of detecting ultralow concentra-

tions of threat material can cost upwards of $50K per sen-

sor. Building high-density networks of hundreds of sensors 

is immediately prohibited by the involved sensor costs.

In order for high-density networks to serve as a 

practical solution, they must utilize inexpensive sensors. 

With CB sensors, there is a very strong inverse correla-

tion between sensor cost and sensor performance. In gen-

eral, as the sensor costs decline, the sensor’s sensitivity 

diminishes and its false-alarm rate increases. Much of the 

recent sensor development from the CB community has 

focused on the development of sensors with ultralow sen-

sitivities and false-alarm rates, but at an ever-increasing 

sensor cost.

It is our belief that when used intelligently in net-

works, inexpensive lower-performing sensors will serve 

as an effective solution for detecting threats from point 

releases. Through our research, we have determined this 

to be true for two fundamental reasons. First, for releases 

within or near the sensor network, some of the sensors 

are bound to be located near the threat source, which 

is typically a region of high concentration of material —

thereby reducing the sensor’s performance requirements. 

Second, by searching for spatially correlated sensor alarm 

activity within the spatial network, the network false-

alarm rate is reduced by rejecting uncorrelated alarms 

from individual sensors. In essence, spatial networks of 

low-performance, inexpensive sensors can perform just 

as well as, if not better, than a single high-performance, 

expensive sensor by leveraging both the proximity of sen-

sors to the threat source and the spatial correlations of 

sensor readings. Furthermore, sensor networks can be 

designed to be more tolerant of single-node failures and 

more forgiving of exact sensor placement. Much of the 

work discussed in this report demonstrates these con-

cepts under realistic conditions. 

modeling and Analysis
When assessing the performance of CB sensing systems, 

many researchers traditionally use modeling and simula-

tion tools, such as the Defense Threat Reduction Agency’s 

(DTRA) Hazard Prediction and Assessment Capability 

tool or the Navy’s Vapor, Liquid, and Solids Tracking tool 

[4, 5]. However, these modeling tools rely upon the Sec-

ond-order Closure Integrated Puff (SCIPUFF) model to 

simulate the atmospheric dispersion of vapor and aerosol 

materials. SCIPUFF is a Lagrangian puff dispersion model 

that represents material dispersions as distributions of the 

probability of encountering a specific concentration at a 

specific time and location. In essence, these probability 

distributions represent an ensemble of plumes rather 

than an individual plume. The difference between plume 

figuRe 3. A photograph comparison reveals the difference between an individual plume (top) and an 
averaged set of plumes (bottom) [3]. Individual plumes do not have Gaussian concentration distribu-
tions or smooth gradients between regions of high and low concentrations, which are seen in the aver-
age of many plumes or in plume ensembles.
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ensembles and an individual plume is shown graphically 

in Figure 3. While ensemble plume models are useful for 

studying the full range of probable plumes under specific 

atmospheric and release conditions, they are not, nor were 

they intended to be, the best tool for studying individual 

plume realizations.

This is an important consideration because high-

density CB sensor networks exploit the unmixed nature 

of individual plumes. To correctly assess the performance 

of high-density CB sensor networks, we needed a disper-

sion model capable of generating individual plume real-

izations. Currently, computational fluid dynamics (CFD) 

models are one of the most accurate methods for creating 

high-fidelity models of individual plumes, but are typically 

complex and computationally expensive and are usually 

built for very specific modeling tasks. These characteris-

tics can make the development of CFD models difficult 

and time-consuming. Fortunately, we were able to work 

with Computational Fluid Dynamics Research Corpora-

tion (CFDRC) to develop a version of their “Urban Areas” 

model to simulate multiple instances of individual plumes 

[6]. CFDRC’s Urban Areas framework uses CFD calcula-

tions to simulate the transport and dispersion of chemical, 

biological, radiological, nuclear, and explosive (CBRN/E) 

materials within three-dimensional urban environments. 

The Urban Areas simulation framework can generate 

plumes that closely approximate individual, realistic 

plumes and has undergone an extensive validation pro-

cess using real field measurements. CFDRC validated the 

underlying models in the Urban Areas framework using 

data recorded from the Joint Urban 2003 (JU2003) field 

test, which took place in Oklahoma City in July 2003 [7]. 

JU2003 was sponsored by the Department of Homeland 

Security, DTRA, and the U.S. Department of Energy, and 

was designed to study the atmospheric transport of mate-

rials by conducing multiple releases of inert tracer gases 

within Oklahoma City’s urban environment [8].

figuRe 4. This visualization depicts the 3D virtual urban area within the computational fluid dynamics (CFD) model and the 
sarin release points. The urban area is derived from geographical information system data on Oklahoma City’s central business 
district. We released 0.18, 1.8, and 18 kg each at ten different locations within the simulated environment to constitute the thirty 
different plumes. The staggered release times, plus the varying winds, helped increase variance among plumes.

figuRe 5. A sarin release is visualized within the CFD 
model. The color of the plume indicates the instantaneous 
sarin concentration.
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By using this simulation framework, we were able 

to simulate thirty outdoor releases of sarin within Okla-

homa City’s central business district. We selected sarin as 

a release material because it is a chemical warfare agent 

that is lethal in small doses and has been used to attack 

urban environments in the past [9]. We extracted hypo-

thetical sensor data from the CFD model’s wind and con-

centration fields by using a custom-built post-processor 

that outputs time-series data from any coordinate within 

the model’s virtual environment. This capability allowed 

us to build networks of hypothetical CB sensors and ane-

mometers anywhere within the model. The thirty different 

plume dispersions along with the post-processing tools 

formed a highly capable test platform on which we could 

assess the detection performance of high-density sensor 

networks. Figure 4 displays the three-dimensional simu-

lation environment and the ten unique release points. A 

simulated sarin release is shown in Figure 5. 

Required Sensitivity versus Sensor Density. Central 

to the application of high-density sensor networks is the 

notion that as the sensor density increases, the required 

sensitivity for the individual sensors can be reduced while 

maintaining a fixed detection performance. This reduction 

in required sensitivity permits the use of lower-cost sen-

sors, as illustrated in Figure 6. As more sensors are added 

to the network, increasing the sensor density, the sensitiv-

ity requirements for the individual sensors are significantly 

reduced. Note that the values on the axes in Figure 6 are 

specific to the modeled environment, but the relationship 

between sensor density and required sensitivity holds true 

for the general scenario of point-release detection.

Application-Specific Performance Gains. The 

flexibility of the CFD simulation framework allowed us 

to analyze specific questions regarding the application 

of high-density sensor networks. A pertinent applica-

tion of high-density CB sensing is for fixed-site or facility 

protection. When it comes to this type of application, 

a commonly asked question is: With my fixed budget, 

should I deploy a small number of higher-cost, higher-

performing sensors or a large number of lower-cost, 

lower-performing sensors? This question is not easily 

addressed because of the wide variety of threats that may 

be of concern, but for defense against point attacks, the 

cost-benefit analysis (summarized in Figure 7) shows 

that having more low-cost sensors is preferable to fewer 

higher-cost sensors.

Sensor Placement. In addition to the choice between 

few high-fidelity sensors and many inexpensive sensors, 

the question of sensor placement is an important consid-

eration when deploying sensors. If you only have a few 

sensors, you had better place them in the right locations; 

otherwise, you may miss threats completely. The most 

convenient approach to sensor placement is a random, 

or ad hoc, placement of sensors rather than an optimized 

sensor configuration. An optimized sensor configura-

tion requires an in-depth analysis of all potential threats, 

which is expensive and time-consuming. Conversely, an 

ad hoc configuration can be deployed quickly and with-

out prior knowledge of quirks of the local environment. 

Figure 8 shows that increasing the sensors’ spatial den-

sity diminishes the required sensor sensitivity between an 

optimal and an ad hoc sensor configuration. The ability to 

rely upon an ad hoc sensor configuration greatly reduces 

the risk and effort involved in sensor placement.

field Tests
When testing the performance of CB sensor systems on 

individual plumes, there is no substitute for field tests. 

Field tests enable experimentation with real plumes and 

ambient backgrounds influenced by real atmospheric con-

ditions. Obtaining approval to release large quantities of 

materials into the atmosphere within urban environments 

for scientific experiment is a difficult process, so we chose 

figuRe 6. The addition of more sensors reduces the 
required sensitivity to detect 100% of all releases. The sen-
sor networks were generated by randomly deploying n sen-
sors across the CFD model’s virtual environment at a fixed 
height of 3 m above ground level.
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to conduct releases of tracer 

material in a large open field 

away from urban structures. 

In addition, we selected water-

based smoke as the tracer com-

pound because it is relatively 

safe and its dispersion is visually 

observable. Figure 9 displays 

our test grid and sensor nodes. 

We also note that out of the 

twenty-five sensors, some failed 

to report readings for at least 

part of the trials. Since there 

is usually a non-negligible risk 

of sensor failure in real fielded 

systems, distributed deploy-

ments offer the advantage of 

fault tolerance (in the sense 

that they are less susceptible 

to information blackout than  

single-node deployments). 

Making the Field Data 

More Realistic. Because the 

smoke releases consisted of particle concentrations 

that were significantly higher than the particle counts 

observed within the ambient background, we devised 

a method for suppressing the signal strength of each 

release, so that we could experiment with more challeng-

ing concentrations while retaining fully realistic plume 

behavior. We controlled the signal strength by adjusting 

the particle counts to amplify or suppress the evidence 

of contaminant presence. To do this, we used ground 

truth about the smoke releases to estimate the number 

of counted particles that originated from the release 

and not from interferents. Then we adjusted the data by 

including only a specified fraction of the smoke particles 

in the total particle counts. Figure 10 shows a time series 

of particle counts at several different signal strengths for 

a sample node and contaminant release.
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figuRe 8. Comparison of optimal versus an ad hoc sen-
sor placement identifies the necessary sensor sensitivity 
for each network configuration to achieve a probability of 
detection (PD) of 1. The y-axis is the difference between this 
required sensitivity for the optimal and ad hoc networks. 
The optimal configuration is the best possible sensor place-
ment if one had complete knowledge of the plume’s future 
trajectory—information that is unattainable in real scenar-
ios. For networks consisting of few sensors, the optimized 
placement requires the individual sensors to be two to three 
orders of magnitude more sensitive than the sensors within 
the optimal configuration. As the sensor density increases, 
the required sensor sensitivity for the ad hoc configuration 
approaches that of the optimal sensor configuration, making 
an ad hoc configuration achievable.

figuRe 7. This cost benefit analysis shows the probability of detection for sensor net-
work compositions for three different procurement budgets. Each data point represents 
a sensor network configuration consisting of a mixture of two commercially available 
chemical sensors, one high cost and one low cost with corresponding performance. For 
every budget, the networks consisting solely of low-cost sensors achieve the highest 
overall probability of detection.
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Network False-Alarm Rate Reduction. In addition 

to supporting our CFD analysis, the recorded field-test 

data could also be used to study the false-alarm rates 

of high-density networks of CB sensors. Generally, it is 

thought that as more sensors are added to a network, the 

overall probability of false alarms of the whole network 

will increase. This is true, in the absence of further data 

processing, but even the application of simple rules can 

mitigate unnecessary false alarms while maintaining a 

constant probability of detection.

We ran experiments to examine how detection per-

formance varies with the number of sensors included in 

the network. In order to measure performance, we set 

the alarm threshold low enough to achieve a specified 

benchmark for successful detections, then counted the 

false alarms triggered at that same threshold. We defined 

the false-alarm ratio as the number of false alarms divided 

by the total number of background data samples. Figure 

11 shows the false-alarm ratio of the sensor network as a 

function of the number of available sensors. The curves 

for all three benchmarks exhibit the same general trend: 

we see a false-alarm reduction in the range of 2 to 3 orders 

of magnitude as the number of distributed sensors is 

increased from 1 to 23 (the maximum number of func-

tioning particle counters for which data were collected). We evaluated detection performance in terms of both 

successful detections and false alarms. We declared a 

successful detection of a contaminant release if the con-

taminant score exceeded an alarm threshold at least once 

during that release. Correspondingly, we declared a false 

alarm every time the contaminant score exceeded the 

same threshold during periods of background data col-

lection. Note that either event depends upon the alarm 

threshold. In the ideal case, there exists a threshold that 

yields successful detection of all releases while triggering 

no false alarms. In fact, we can achieve this ideal perfor-

mance on the original, unadjusted data by using a detec-

tion algorithm that fuses information gathered from the 

entire sensor network. The data facilitate good detection 

performance in part because the smoke was released from 

within the sensor network, creating a relatively strong con-

taminant presence. Therefore, in our analysis, we evaluate 

detection performance in the more difficult case when the 

contaminant signal is suppressed by a factor of 20. The 

suppressed data simulate sensors with reduced discrimi-

nation between contaminant and background—a more 

realistic model of common low-cost CB sensors.
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figuRe 10. The graph shows the particle count time series 
for several different contaminant signal strengths, ranging 
from the original signal strength (factor 1) to low strength 
(factor 1/20). The number of particles due to background 
noise remains the same.
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figuRe 9. The outdoor field tests consisted of 25 sensor 
nodes arranged on a square grid, spaced 50 m apart. Each 
node consisted of one battery-powered, tripod-mounted 
particle counter (either a TSI AeroTrack 8220 or MetOne 
HHPC-6 EX) and one anemometer (Davis 7911). Wind 
speed and direction measurements were transmitted in 
real-time from every sensor node to a base station by using 
low-power mesh radios (Crossbow Mica2). Sonic anemom-
eters were placed in two locations on the grid for high-fidel-
ity wind data to compare to the Davis 7911 anemometer 
readings. During the test, 36 smoke candles that produced 
40,000 ft3 of water-based smoke in 30 s were activated. In 
addition to the concentrations and spread of the 36 smoke 
releases, measurements of the ambient background were 
collected periodically throughout the test.
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Network detection Algorithms
With a spatially distributed sensor network in place, 

one might enhance the network’s overall detection per-

formance by applying detection algorithms that operate 

across the entire network. These detection algorithms are 

able to identify spatial and temporal correlations that may 

help discriminate plume-like activity from random frac-

tionations in the individual sensor readings. To explore 

the capabilities of network detection algorithms, we evalu-

ated several algorithms on suppressed-signal field data. 

Such data present more of a detection challenge than do 

the original data. It is important to note that the field data 

exhibit several properties that require data preprocessing. 

The level of background noise drifts significantly through-

out the time period of data collection because of varying 

particle concentrations in the ambient backgrounds. To 

deal with this noise drift, we apply two different forms of 

data normalization that extract more meaningful informa-

tion from the particle counts, as described below: 

Normalization method #1. At each time step during 

data collection, we take all particle counts reported any-

where in the network within a 30-minute window preced-

ing that point in time. We compute the sample mean and 

standard deviation of the set of readings, then express the 

particle count at the current time step in units of standard 

deviations above or below the mean. 

Normalization method #2. This method is similar to 

method #1, except that the set of preceding particle counts 

is specific to each sensor node. As a result, the readings 

are normalized by using sample means and standard devi-

ations that are local in space as well as time. In addition 

to normalization, we also apply a simple anomaly detector 

to help screen out extreme particle counts that are due to 

sensor malfunction or short bursts of noise. 

We considered several types of centralized contami-

nant detection algorithms. The simplest is the “max algo-

rithm,” which takes the maximum reading reported by any 

sensor node within a particular time frame as the indica-

tor of contaminant presence (also called the “contaminant 

score”). The max algorithm, when applied to normalized 

sensor readings, performs well on most of the field data 

samples; however, when any one of the sensors experi-

ences high levels of interferent noise, the contaminant 

score is inflated, causing false alarms. A better approach 

is to base the detection algorithm on a collection of net-

work-wide features that better characterize the sensed 

phenomenon. Figure 12 shows an example of one such 

useful cue: spatial entropy, which measures the distribu-

tion of the particulate across the network. 

We computed the following features for six instances, 

on the basis of readings reported during 16-second time 

frames: max readings of normalization methods #1 and 

#2, mean readings of normalization methods #1 and #2, 

spatial entropy of normalization method #2, and largest 

temporal gradient of normalization method #2. We used 

two different methods to derive a contaminant score from 

these six features. The first method builds Gaussian mix-

ture models (GMM) [10] to characterize the distributions 

of both the contaminant data and the background data 

in the six-dimensional feature space. New data points are 

assigned a contaminant score by computing the ratio of the 

contaminant GMM value to the background GMM value. 

The second method computes the contaminant score of 

a data point by taking a weighted linear combination of 

its feature values. The weights of this linear discriminant 

(LD) are derived via iterative optimization so that con-

taminant data points yield high scores and background 

data points yield low scores [11]. The weight values, in 
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figuRe 11. Increasing the number of sensors lowers the 
incidence of false alarms. Each curve plots the false-alarm 
ratios corresponding to a particular detection requirement 
for the 36 releases. The top curve plots the false-alarm 
ratio corresponding to a benchmark of perfect detection, 
while the lower two curves plot the false-alarm ratio cor-
responding to relaxed benchmarks of 33-out-of-36 and 
30-out-of-36 successful detections, respectively. Since the 
placement of the sensors affects the experimental results, 
we averaged each curve across 200 trials, with randomly 
selected sensor locations for each trial.
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combination with an alarm threshold, define a hyperplane 

that partitions the feature space into a contaminant region 

and a background region, as illustrated in Figure 13.

Table 1 summarizes detection results for the algo-

rithms described above on adjusted field data, for which 

the contaminant signal strength has been suppressed by 

a factor of 20 (see Figure 10). The “baseline” algorithm, 

which employs no preprocessing or feature extraction, 

exhibits the poorest performance and clearly shows the 

need for some form of particle-count normalization. In 

addition, we get significant improvement by building 

classifiers in a feature space that better characterizes 

the joint information from multiple sensors, as dem-

onstrated by the results of algorithms 3 and 4. We note 

that the detection methods in algorithms 3 and 4 each 

requires learning a small set of parameters; therefore, 

we evaluated these algorithms by averaging the results 

across two-fold cross-validation trials [12]. Figure 14 

shows the algorithm performances graphically in the 

form of receiver-operator-characteristic curves. From 

these results, we conclude that merely establishing a 

distributed sensor network with good coverage does not 

guarantee significantly improved performance, especially 

when dealing with relatively weak contaminant signa-

tures. As demonstrated in Table 1, the network’s perfor-

mance is critically dependent upon the algorithm used to 

fuse the information from the individual sensors. 

Background instance Contaminant instance

figuRe 12. Particle count readings are shown, as reported by the 5-by-5 fielded sensor network within two different time 
frames. The green channel inside each circle is set proportional to the log of the normalized particle count for that sensor. 
left: a noisy background instance with high maximum and low spatial entropy. Right: a contaminant release instance with 
lower maximum but higher spatial entropy.

figuRe 13. This visualization of the feature space used to 
characterize the sensor network data shows three out of six 
feature dimensions. A sample set of the field data is plot-
ted, with each point representing the feature values mea-
sured within a single time frame. Red points indicate data 
collected during contaminant release periods of a field test; 
blue points indicate data collected during background peri-
ods. The algorithm learned to use a linear discriminant, 
shown as the plane in the figure, to separate the contami-
nant and background data.
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Communications infrastructure
To pursue our vision of widely distributed, low-cost sen-

sors for CB threats, we sought a communication infra-

structure that was inexpensive and highly flexible. The 

possibilities offered by sensing based on “smart dust,” 

more commonly known as “motes,” were promising [13]. 

By employing motes within our sensing architecture, we 

were able to build a self-forming 

and adaptive wireless network 

while maintaining our low 

power consumption and low 

cost requirements.

Distributed Sensing and 

Wireless Communications. 

The vision of tiny cooperative 

sensors, so small as to be ubiq-

uitous, is at least thirty years 

old (older if you include science 

fiction). However, it took more 

than twenty years of technol-

ogy improvements before truly 

tiny, low-power sensors became 

an approachable target, and in 

order to have sensors cooperate, 

they must have communication 

elements as well. Advances in 

microelectromechanical sys-

tems (MEMS) and lower-cost 

manufacturing have brought 

many new devices and radios to 

a price and size/weight/power point appropriate for large-

scale, long-term sensing deployments. It was for these 

reasons that we became interested in using an emerging 

communication platform, termed motes, for our data col-

lection campaigns.

For our purposes, a mote is a computing and commu-

nication platform hosting one or more sensors [14, 15]. 

figuRe 14. Receiver-operator-characteristic curves compare the performance of  
various detection algorithms. The baseline algorithm is displayed in black; the colored 
curves represent the algorithms performing detection by using the network’s spatial  
and temporal features.
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  PREPROCESSInG DETECTIOn PROBABILITy OF
 LABEL METHOD METHOD FALSE ALARM

Baseline None Max algorithm 66.14%

Algorithm 1 Normalization method #1 Max algorithm 2.60%

Algorithm 2 Normalization method #2 Max algorithm 0.53%

Algorithm 3 Network-wide features Gaussian mixture models 0.07%

Algorithm 4 Network-wide features Linear discriminant 0.04%

TAble 1. A comparison of the detection algorithm’s probability of false alarm (for PD = 1) on field data with suppressed con-
taminant signal strength shows the need for some form of particle-count normalization. The performance of the baseline 
algorithm, which employs no preprocessing or feature extraction, is unacceptable. Significant improvement is obtained from 
classifiers that better characterize the joint information from multiple sensors, as shown by the results of algorithms 3 and 4.
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nodes may need to be moved (increasing time) or added 

to the network (increasing cost, and sometimes sampling 

density). “Mesh” networks have more strongly connected 

graphs; in these networks, motes maintain information 

about several possible paths for data transmission and 

share sensor data with several of their neighbors. Recon-

figuration happens more quickly when it is needed, and 

distributed algorithms requiring cooperation among 

sensors are more naturally supported. Finally, the hub-

spoke, tree, and mesh topologies can be combined into 

“tiered” or “clustered” networks in which data is trans-

mitted among local neighborhoods of nodes before being 

analyzed and passed up to a higher-level network or 

algorithm.

Because radio communication is a significant power 

consumer in the mote architecture, recent research has 

focused on ways to transmit data efficiently, such as syn-

chronized duty-cycling of the radios, improved multi-hop 

routing protocols, and distributed detection algorithms 

(so that nodes don’t need to pass as much raw data back 

to the base station). There is no silver-bullet architec-

ture for distributed sensing: different deployments have 

different constraints and data-sharing requirements. 

We decided not to design a perfectly optimized network 

architecture for our system because we wanted to get a 

prototype sensor out in the field and learn what would 

work at a basic level.

Spatially distributed sensing applications require that 

some extra thought be given to data storage and com-

munication. If each sensor’s data can be stored locally 

and then collected after the deployment, then storage at 

each node will be adequate. However, if the data is to be 

observed in real time, or if data recorded at one location 

may be useful to observations made at another location, 

then the application requires a network capability.

Traditional wired networks do address this need and 

are often used for long-term fixed-site installations, but 

they have drawbacks. Because wiring increases the cost 

and effort of sensor emplacement, it is seldom practical 

for ad hoc deployments and never practical for mobile 

systems. A wireless networking scheme is more appropri-

ate and is especially useful if it can adapt to a changing 

environment and changing sensor population without 

human intervention. The RF environment may change 

with the presence of interfering signals or reflective or 

absorbing materials, and hardware can fault or lose power. 

Mobile sensors, especially, may move in and out of range 

of their neighbors. When a single node is asked to trans-

mit at a data rate that exceeds its capability, a bottleneck 

occurs and data may be dropped or delayed, thus degrad-

ing the performance of the detection algorithms. There-

fore, designers of sensor networks must understand the 

capabilities and limits of the network architecture they 

employ. The following provides a brief overview of some 

typical mote network architectures.

Most sensing networks behave as local-area net-

works, with at least one base station or “gateway,” which 

is a more provisioned node that provides a path for data 

exfiltration and command injection. Networks are typi-

cally described in terms of a connected graph, as shown 

in Figure 15. Simple scenarios, in which all nodes push 

data to (or receive commands or updates from) a base or 

master node, are common and easy to set up. When all 

nodes can communicate with the base station, the graph 

is often a simple “hub-spoke” configuration. Bottlenecks 

at the hub may be a concern, but the base station is often 

more fully provisioned (with a higher-power radio and 

deeper network stack) to prevent this. When not all 

nodes can maintain radio connectivity with the base, the 

structure becomes a “tree,” wherein some nodes forward 

packets to and from outliers. In this case, bottlenecks 

may occur at the forwarding nodes, and link availability 

becomes an important concern during deployment, as 

figuRe 15. Connected graphs symbolize different network 
topologies: hub and spoke, tree, and mesh. The green nodes 
represent the base stations, which aggregate data.
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Experimenting with Motes. In order to gain famil-

iarity with motes and identify the capabilities of the 

technology, we conducted a series of experiments with 

various mote deployments. The general goal of these 

deployments was to determine the implications of using 

motes as a communication backbone for our distributed 

CB sensor networks.

During the experiments, we deployed two different 

commercially available platforms. The first was the Mica2 

by Crossbow, Inc., which was equipped with a 433 MHz 

radio capable of 38.4 kbps and a maximum outdoor range 

of 300 m. The second was the M2135 by Dust Networks, 

which was equipped with a 2.4 GHz radio capable of 

250 kbps with a maximum outdoor range of 400 m. When 

deployed, each mote platform automatically formed a 

mesh network, but the M2135 also used a proprietary 

time-synchronization protocol that significantly reduced 

the number of dropped data packets. During our experi-

ments, we deployed test networks ranging in size from 20 

to 90 mote nodes. We also used a network of twenty-five 

Mica2 motes to serve as the real-time communications 

network for our field tests. These experiments provided us 

with a good sense of the capabilities of modern low-power 

meshes. We learned that, in particular, power consump-

tion, data latency, and network data convergence can 

have significant implications for high-density distributed 

CB sensing. Network data convergence strongly affects 

the overall detection performance of the sensor network. 

As the bandwidth of a low-power radio link is relatively 

small, data may be lost when too many nodes are trying to 

forward information to an aggregator node. This bottle-

neck reduces the data available to the network detection 

algorithm, and, in turn, reduces the algorithm’s capability 

to suppress false alarms or identify threats.

inexpensive Sensor Technologies
The past decade has seen a surge in research and com-

mercialization of devices capable of sensing chemical and 

biological warfare agents. Most devices have been devel-

oped for military applications, such as force protection and 

facility defense. However, these systems have frequently 

been adapted and marketed for homeland security and 

first-responder markets as well. Typically, military sen-

sors are designed to issue rapid alerts in the presence of 

extremely low concentrations of specific agents of interest. 

In many instances, detection is limited to a small set of 

agents because of the requirement for high sensitivity while 

maintaining extremely low false-alarm rates. One specific 

defense application is the detection of a release of a threat 

agent at a military installation. This scenario entails the 

mobilization and positioning of complex sensors to achieve 

standoff sensing capabilities or, as standoff sensing is often 

impractical, the positioning of point sensors at very spe-

cific vulnerable locations. In both cases, the sensors require 

considerable amounts of manpower and training for accu-

rate operation, and are extremely expensive. Even the best 

instruments are subject to false alarms from a variety of 

man-made or environmental sources, and are insensitive 

to trace amounts of truly toxic substances. Ideally, devices 

can be paired or grouped to decrease the false-alarm rate 

and increase the agent coverage; however, because of the 

high cost of traditional sensors, this approach is rare and 

sensors are often sparsely positioned.

The problem of limited sensor coverage would be 

overcome easily if these devices could be made inexpen-

sively and with low power consumption. Ideally, they 

could be as widely deployed as commonly used smoke 

alarms. This approach would also permit the use of less 

sensitive sensors, as at least some of the sensors would be 

positioned at or near the agent source, where the threat 

would be sampled at much higher concentrations. Finally, 

if the threat could be tracked spatially as it moved across 

a grid of sensors, this correlated information could be 

Glass

Au Au

Polymer/CNT

R

figuRe 16. The polymer carbon nanotube (CnT) sensor is 
fabricated by patterning the hexafluoroisopropyl-substituted 
polythiophene (HFIP-PT) polymer on a glass substrate. 
Gold electrodes are bonded to the polymer/CnT layer to cre-
ate electrical contacts. As polymer interaction with nerve 
agents causes a change in the polymer’s electrical resistivity, 
we perform sensor readings by measuring the current flow 
through the polymer.
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utilized to decrease false-alarm rates, identify the release 

location, provide early warning to those in the threat path, 

and determine the extent of the contaminated area.

Architecture-Compatible Sensor Requirements. 

A widely deployed grid of sensors requires a different set 

of sensor characteristics from that of traditional sensors. 

The specific capabilities of each sensor type to be incorpo-

rated into the network should ultimately be determined by 

the particular applications and operational environment. 

Field tests to monitor air flows provide us with valuable 

information that will lead to the understanding of sensor 

sensitivities and response times. In addition, the sensor 

power requirements and data processing must be suitable 

for long-term field use, and compatible with the grid’s 

communication network. While few sensors have been 

designed specifically for field use under these guidelines, 

existing chemical and biological sensing constructs may 

address the requirements of low-to-moderate sensitivity, 

rapid response, discrimination at the threat class level, low 

maintenance, and low cost.

Candidate Biological Sensors. Traditional biologi-

cal sensors that enable real-time detection of threats are 

typically based on the interrogation of individual particles 

using specific wavelengths of light to produce a scatter 

and fluorescence signature. These devices have been too 

expensive for widespread deployment in a distributed 

sensor network, however, mainly because of their need for 

a laser to provide the incident light. But newly developed 

light-emitting diodes have enabled the same type of detec-

tion performance at a much lower cost. Bioaerosol sensor 

developers strive for both rapid bioparticle discrimination 

and minimal maintenance during field use. Sensors offer-

ing additional discrimination among biological materials 

generally require the collection of samples followed by the 

addition of reagents for processing and identification. For 

the applications discussed here, this process is not accept-

able because of the lengthened processing time (several 

minutes under ideal conditions), the additional reagents 

and implied maintenance, and the cost of the sample col-

lection and processing hardware.

Candidate Chemical Sensors. The technology that 

holds the most promise for chemical detection is poly-

mer-based sensing. Polymer sensors are inexpensive to 

fabricate and the polymer can be designed to specifically 

bind single compounds or classes of chemicals. The sen-

sor readout from a polymer platform can use a number 

of different transduction schemes, including surface 

acoustic wave, microcantilevers, and fluorescence, to 

name a few. The simplest candidate is the chemiresistor: 

a chemical sensor that exploits a measurable change in 

resistance in response to an analyte binding event, in this 

case chemical warfare agents. The simplicity and flexibil-

ity of this transduction mechanism conveys reasonable 

detection sensitivity and maintains the low power and 

cost requirements, so it suits a large deployment. One 

depiction of this sensing scheme is given in Figure 16, 

which shows the general layout of electrodes and bridg-

ing material. Many materials (e.g., metal oxides, organic 

semiconductors) are sensitive to analyte binding events; 

the recent focus of many researchers on developing con-

ductive polymer/carbon nanotube (CNT) films has pro-

duced promising materials.

The synthetic challenge for designing effective sen-

sors using chemiresistor technology is twofold. First, the 

designer must choose polymers that are responsive to the 

analytes of interest but not responsive to typical envi-

ronmental changes that cannot be controlled in a field 

setting. Second, the designer must maintain control of 

the signal conduction pathways so that a measurable sig-

nal can be observed with appropriate concentrations of 

analyte. A dispersion of single-walled CNTs in a conduc-

tive polymer film enables optimization of both of these 

requirements.

Inexpensive Sensor Development. In an ongoing 

collaboration with Prof. Timothy Swager at MIT, Lincoln 

Laboratory acquired a chemoresistive conducting poly-

mer/CNT film that used a high-molecular-weight hexaflu-

oroisopropanol-substituted polythiophene (HFIP-PT) as 

a dispersing medium for single-walled CNTs, see Figure 

figuRe 17. HFIP-PT, a chemoresistive-conducting poly-
mer, functions as a dispersing medium for carbon nano-
tubes. Lincoln Laboratory is incorporating this film into 
distributed sensor networks.
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17 [16, 17]. This polymer/CNT film is being incorporated 

into a fieldable sensor platform at Lincoln Laboratory 

for use in distributed sensor networks. Solution-casting 

this material created a noncontinuous, yet conductive, 

film wherein CNTs defined conduction pathways and the 

polythiophene provided conductive junctions. The initial 

choice of polythiophene was based on MIT’s extensive 

experience with the polymer, in addition to widespread 

knowledge of the polymer’s properties. The polythiophene 

backbone was then functionalized with HFIP to produce 

selective responses to the organophosphate-based nerve 

gases known as G-agents. HFIP was chosen because of 

its hydrogen bonding with phosphonate esters common 

to the G-agents and because of its minimal sensitivity to 

moisture levels in the air (a common background inter-

ferent that plagues many polymer-based sensors) and 

other common interferent classes of chemicals (e.g., aro-

matic hydrocarbons, alkanes, halogenated compounds, 

and alcohols). Preliminary examination of the polymer/

CNT film was completed at MIT with the sarin simulant 

dimethyl methylphosphonate (DMMP) and continued 

through the use of a testbed developed for controlled test-

ing against relevant environmental factors (temperature 

and humidity) and potential interferents. Figure 18 shows 

the polymer sensor’s response to varied concentrations of 

DMMP with increasing exposure times. Approximately 

50 ppb of DMMP is readily detected when the polymer is 

exposed to the vapor for 5 minutes. Sensor testing under 

environmental conditions and to examine sensor stability 

is currently under way.

To develop sensors appropriate for large-scale deploy-

ment, it is critical to establish a simple, reproducible 

fabrication process and incorporate sensor component 

hardware that does not inflate the overall sensor cost. 

Thus, we have refined the sensor packaging hardware and 

electronics in order to generate a robust fieldable sensor 

with optimal response characteristics.

Next Steps
High-density distributed sensing for CB defense is still in 

its infancy. Our experimentation and analysis efforts dis-

played the effectiveness of a distributed sensing framework 

and explored the initial development of network detection 

algorithms, low-power wireless communications, and low-

cost sensor technologies. To advance each of these fields, 

we are currently exploring the following topics:

• The development of advanced detection capa-

bilities such as the tracking, mapping, and pre-

diction of CB plumes

• Exploring the effect of network data conver-

gence and data loss on the sensor network’s over-

all detection performance

• The continued development of low-cost chemi-

cal sensors

The information retrieved from spatially distributed 

CB sensors enables operators to determine not only the 

presence of a threat, but also how the threat propagates 

through space. With proper analysis, we can use this 

spatial information to map contaminated areas, track 

the plume’s current location, and predict future hazard 

regions. These advanced detection capabilities will not 

only significantly enhance operators’ situational aware-

ness, but may also assist efforts of source attribution 

by enhancing other capabilities, such as plume source 

localization. To develop these capabilities, we are cur-

rently investigating the use of wind-induced correlations 

across sensor readings to derive tracking, mapping, and  

prediction capabilities. 

As we discovered in our experiments with low-power 

mesh networking radios, the transmission of sensor data 

throughout the sensor network can affect the network’s 
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figuRe 18. Polymer sensor responds to increasing con-
centrations of dimethyl methylphosphonate (DMMP). We 
exposed the polymer sensor to different levels of DMMP 
concentration for three different exposure times. These 
results show that the sensor is capable of responding to 
small analyte concentrations within a few minutes.
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overall detection performance. In-network processing or 

network intermittency may reduce the amount of sen-

sor data that reaches a central data processor. When this 

occurs, the network detection algorithm operates with 

less information and may reduce the overall detection 

performance. We are currently designing simulations to 

quantify the implications of data loss on detection perfor-

mance. We are also exploring the trade-offs involved with 

performing in-network computation versus running the 

detection algorithms from a centralized computer.

Prior CB sensor development has focused on building 

the next-generation high-fidelity sensor, but the advent of 

high-density distributed sensing enables the practical and 

effective use of low-cost sensors. Unlike the high-fidelity 

CB sensor class, this domain remains underdeveloped, with 

only a few representative sensors to meet a broad need. 

To address the requirements of other applications, we are 

pursuing the development of another low-cost chemical 

sensor, in addition to the discussed polymer sensor.
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