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a b s t r a c t

Performance of the adjoint and adjoint-free 4-dimensional variational (4dVar) data assimilation techniques

is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic

Sea in 2006. Assimilating the data into the Navy Coastal Ocean Model (NCOM) has shown that both methods

deliver similar reduction of the cost function and demonstrate comparable forecast skill at approximately the

same computational expense. The obtained optimal states were, however, significantly different in terms of

distance from the background state: application of the adjoint method resulted in a 30–40% larger departure,

mostly due to the excessive level of ageostrophic motions in the southern basin of the Sea that was not

covered by observations.

Published by Elsevier Ltd.
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. Introduction

In recent years the ensemble approach to data assimilation has

eveloped rapidly due the growth of computer power made available

hrough massive parallelization. An attractive feature of the ensemble

echnique is its ability to probe the structure of a dynamical system

nd assess the sensitivity of its outputs (e.g., measured quantities) to

ariations in poorly known inputs (e.g., initial conditions) without us-

ng the adjoint code. In particular, feasibility of the ensemble method

o the estimation of sensitivities was demonstrated in meteorological

Ancell and Hakim, 2007; Torn and Hakim, 2008) and oceanographic

Yaremchuk and Martin, 2014) applications.

Another important advantage of the ensemble approach is the

pportunity it offers to treat the numerical model as a black box,

hus avoiding the burden of the development and maintenance of the

angent linear and adjoint codes required by the variational meth-

ds (e.g., Le Dimet and Tlagrand, 1986). Employing this property,

nderson et al. (2009) and Hoteit et al. (2013) developed the data as-

imilation research testbed (DART) system on the basis of the widely

sed ensemble Kalman filter (EnKF).

Recently, significant progress also has been made in extending

he EnKF technique into the particle filtering framework (e.g., Hoteit

t al., 2012) and in coupling EnKF techniques with 3d and 4d vari-

tional methods (e.g., Zupanski, 2005; Liu et al., 2008; Zhang et al.,

009). Of particular interest in the present context has been the
∗ Corresponding author. Tel.: +1 2286885259.
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evelopment of the Maximum Likelihood Ensemble Filter (Zupanski,

005) based on the explicit computation of the square root of the

essian matrix in the subspace spanned by the ensemble members.

Merging ensemble approaches with variational techniques has

eveloped along two lines: 1) improvement of the background error

ovariances (BECs) through introduction of the ensemble-based esti-

ates and/or their hybrid generalizations (Clayton et al., 2013; Kuhl

t al., 2013) and 2) searching for the optimal solution within the sub-

paces spanned by the leading error modes of the BECs, a technique

ursued by many authors in the last decade (e.g., Liu et al., 2008;

hang et al., 2009; Zhang and Zhang, 2012; Trevisan et al., 2010).

his assumption implicitly assumes that the BEC structure is well de-

cribed by these (possibly localized) modes. More recently, perfor-

ance the adjoint-free family of methods (4dEnVar) based on the for-

ulation by Liu et al. (2008) has been compared with the 4dVar tech-

ique in the framework of idealized experiments with the Lorenz-05

odel (Fairbairn et al., 2014). The results show a significantly better

erformance of the 4dEnvar for moderate-length assimilation win-

ows with low-density observations. Desroziers et al. (2014) demon-

trated a close relationship between the 4dEnVar and 4dVar state

pace formulations and compared various implementations of 4dEn-

ar with 4dVar in an idealized setting.

The above cited developments mostly deal with meteorological

pplications, where the ensembles are supported by significantly

enser data than are available in the ocean. High data density al-

ows one to obtain reasonably good estimates of the BECs from the

nsemble using truncated representation of the localization matrices

nd to efficiently compute the cost function gradient on the model

http://dx.doi.org/10.1016/j.ocemod.2015.10.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2015.10.010&domain=pdf
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130 M. Yaremchuk et al. / Ocean Modelling 97 (2016) 129–140

c

J

i

∇

t

H

w

2

o

a

w

p

t

(

T

R

a

t

d

m

s

s

p

p

m

t

g

w

o

i

i

2

n

l

M

W

s

i

t

e

s

a

grid directly from ensemble perturbations (Liu et al., 2009; Tian and

Xie, 2012). A significant advantage of such an approach is the ab-

sence of the necessity to develop and maintain tangent linear and

adjoint codes and its flexibility in adaptation to various dynamical

constraints.

In the ocean, the ensemble-based BEC estimates tend to be less

accurate, and one has to rely on ad hoc BEC representations (e.g.,

Mirouze and Weaver, 2010; Yaremchuk and Sentchev, 2012). De-

velopment of an efficient adjoint-free assimilation method also be-

comes more problematic as one has to select a few reliable pertur-

bations with more care. Early attempts to develop practical a4dVar

algorithms in oceanography were limited to predetermined low-

dimensional subspaces spanned either by the reduced-order approx-

imations of the model Green’s functions (Stammer and Wunsch,

1996; Menemenlis and Wunsch, 1997), or by the dominant princi-

pal component vectors (EOFs) associated with the model statistics

(e.g., Robert et al., 2005; Qui et al., 2007; Hoteit, 2008). In fact, the

4dEnVar technique pursues a similar, but more general approach, pa-

rameterizing the search subspace by Schur products of the ensemble

members with the eigenvectors of the reduced-order representation

of the localization matrix.

In the present paper, the a4dVar approach of Yaremchuk et al.

(2009) is tested against the observation space 4dVar. Both algo-

rithms are dynamically constrained by the Navy Coastal Ocean Model

(NCOM) and applied to the real observations collected in the Adriatic

Sea in August, 2006. A specific feature of the a4dVar method tested

here is that it employs an iterative search over a sequence of low-

dimensional subspaces to find the cost function minimum.

The paper is organized as follows. In the next section we briefly

describe the 4dVar methodology, outline the a4dVar method to be

tested, and provide a detailed description of the experimental set-

ting. In Section 3 performance of the 4dVar and a4dVar methods is

compared in terms of the convergence rate, forecast skill, computa-

tional expense, and particular properties of the optimized solutions.

Conclusions and discussion of the results are presented in Section 4.

2. Methodology

2.1. 4dVar assimilation

For the sake of clarity, consider the 4dVar method as the following

linear discrete least-squares problem constrained by model dynamics

in a small vicinity of the model’s background trajectory xn
b
:

J = 1

2

[
x0TB−1x0 +

N∑
n=0

(Hnx
n − dn)TR−1

n (Hnx
n − dn)

]
→ min

x0
. (1)

where n enumerates observation times, B is the background error co-

variance matrix of x0
b

which describes the (Gaussian) error statistics

of the model state at n = 0, Hn is the model-data projection opera-

tor, dn is the misfit yo
n − Hnx

n
b

between observations yo
n and the cor-

responding background model values, Rn is the observation error co-

variance, and T denotes transposition. Further below we denote the

dimension of the discretized model state vector x by M and the total

number of observations by K.

The optimal correction vector xn is governed by the recursive re-

lationship xn = Mnx
n−1, where Mn is the dynamical operator of the

model linearized in the vicinity of the background trajectory xn
b

at the

time interval (tn−1, tn), so that

xn = MnMn−1 . . .M2M1x
0. (2)

Introducing new notation c = x0 for the control vector, Mn ≡
Mn . . .M2M1 for the aggregated n-step propagator, Hn = R

−1/2
n Hn,

d
n = R

−1/2
n dn, omitting over-bars, and taking (2) into account, the

minimization problem (1) can be rewritten in terms of the optimal
orrection c to the initial state:

= 1

2

[
cTB−1c +

N∑
n=0

(HnM
nc − dn)T(HnM

nc − dn)

]
→ min

c
. (3)

A 4dVar data assimilation method finds the minimum of J by solv-

ng the normal equation:

cJ = B−1c +
∑

n

MnTHT
n (HnM

nc − dn) = 0, (4)

To simplify further treatment, introduce the following notation for

he Hessian matrix H̃ and the right-hand side b,

˜ = B−1 +
∑

n

MnTHT
n HnM

n; b =
∑

n

MnTHT
n dn, (5)

hich define the solution of the normal equation H̃c − b = 0.

.1.1. Adjoint techniques

There are two major approaches to 4dVar assimilation. The first

ne (the so-called “state space approach”) typically solves (4) iter-

tively through a conjugate gradient descent or related algorithm,

hich requires on every iteration the formation of a matrix-vector

roduct using the Hessian, H̃, or an equivalent process, which in ei-

her case involves application of the non-linear model operator, MT

the “adjoint model”) and (in many cases) the linearized model M.

he method is widely used in a number of community OGCMs (MIT,

OMS), and in operational meteorology (ECMWF).

Such iterative solution approaches generate a sequence of residu-

ls ri = H̃ci − b, which is the cost function gradient (4) evaluated at

he current solution iterate, ci. However, knowledge of the steepest

escent direction for the cost function requires access to the adjoint

odel, MT; note that it enters the expressions (5) for both the Hes-

ian and the right-hand side of the normal system.

Numerically, the procedure of calculating ri involves two major

teps:

(1) Sequential calculation of xn
i

= Mnci (forward run of the tan-

gent linear model) supplemented by additional calculation of

the model-data misfits

qn
i = HT

n (Hnx
n
i − dn). (6)

(2) Summation of the products MnTqn
i

conveniently performed in

reverse-time order, because MnT = (Mn . . .M1)
T = MT

1. . .MT
n .

This corresponds to backward-in-time integration of the ad-

joint model forced by qn
i
.

The second approach to 4dVar (“observation space method”) ap-

ears to be more rigorous in that it can include more easily ex-

licit treatment of the model errors en = xn − Mn−1x
n−1. In this for-

ulation, the cost function (1) is augmented with an additional

erm
∑

n enTB−1
n en involving model errors. In other words, the back-

round error is explicitly separated into the components associated

ith the uncertainty B0 of the initial state, and the uncertainty Bn

f the model equations/forcing. The normal equation in this case

s more complicated than (4), and can be solved numerically us-

ng the representer method (e.g., Bennett, 2002; Rosmond and Xu,

006). The latter is closely related to the optimal interpolation tech-

ique as it seeks a solution of the normal equation in the form of a

inear mapping of the model-data misfits, dn on the control space.

athematically, the approach employs the Sherman-Morrison-

oodbury formula to transform the Hessian inverse from the state

pace to the observational space, which has a smaller dimension

n oceanographic applications. On the other hand, minimization of

he (non-linear) cost function in the observation space contains two

mbedded loops, and involves multiple convolutions with the non-

parse matrix B, making the method sometimes more computation-

lly expensive. It has been implemented in ROMS (Moore et al., 2011)
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s an optional feature, and in the Naval Research Laboratory for both

tmospheric (Xu and Rosmond, 2004; Xu et al., 2005) and oceanic

Ngodock and Carrier, 2014) data assimilation systems.

.1.2. Adjoint-free methods

With the ongoing trend toward parallelization in computer tech-

ologies, directly perturbing a large number of control variables be-

omes computationally feasible, allowing the replacement of tangent

inear and adjoint codes by the finite differences of perturbed numer-

cal models (”ensemble members”) that may be run in parallel. For

xample, the fast-developing 4dEnVar method (e.g., Liu et al., 2009;

uehner et al, 2010; Desroziers et al., 2014) restricts the search for

n optimal increment to a pre-determined subspace spanned by the

igenvectors of a localized ensemble covariance matrix.

When skillful ensembles are unavailable, a similar search could

e performed using the leading eigenvectors of an ad hoc model of

, provided that search directions (SDs) are kept orthogonal with

espect to the inner product associated with the Hessian matrix

Appendix B). The adjoint-free (a4dVar) method considered here fol-

ows this approach through iterative minimization of the cost func-

ion in a sequence of subspaces spanned by the SDs

n :=
[
B−1 + HT

n Hn

]−1
qn = B

[
I + HT

n HnB
]−1

qn; n = 0, .., N, (7)

here I is the identity operator in state space.

Compared to the search directions defined by the leading eigen-

ectors of B, the a4dVar subspaces spanned by {sn} contain extra in-

ormation on the structure of the Hessian (through the observation

perators Hn) and on the magnitudes of model-data misfits qn at the

urrent iteration. The overall a4dVar strategy is to replace the single

D obtained by projecting model-data misfits qn on the initial condi-

ion with the adjoint model by parallel searches in multiple directions

7). Although these directions are unlikely to include the direction of

ocal steepest descent, they implicitly accumulate information on the

essian structure through the H̃-orthogonalization process and may

herefore be competitive in efficiency with the adjoint method in a

ypical oceanographic application.

Feasibility of the presented a4dVar approach is also motivated by

he following considerations:

(1) the search subspaces can be easily H̃-orthogonalized to each

other to avoid redundant “nearly parallel” searches in the di-

rections that have been largely explored, and, therefore, bring

only minor reduction of the cost function;

(2) search subspaces spanned by {sn} are unlikely to be strictly

H̃-orthogonal to the cost function gradient and may provide

a larger overall projection on the direction towards the cost

function minimum than the direction of steepest descent;

(3) adjoint and tangent linear codes for the state-of-the art GCMs

are never exact and require several times more computational

resources compared to direct model runs, providing an incen-

tive to avoid full-adjoint model evaluation and to take advan-

tage of the parallelism afforded by the multiple direct model

runs used by a4dVar.

Note that the number of SDs is not restricted to the number of ob-

ervation times. In principle, a simultaneous search can be performed

n all the directions corresponding to every single observation within

he assimilation window. However, care should be taken to exclude

nearly parallel” SDs from consideration. This can be accomplished

y extracting the leading eigenvectors from the given set of search

irections. In the reported experiments, we assigned a SD to all ob-

ervations collected at an observation time.

Plausible forms of SD generation are not restricted to (7). For in-

tance, search subspaces could be built using the leading modes of

he model trajectory at subsequent iterations provided the SDs are
˜ -orthogonal and have sizable projections on the local gradient. This
trategy has been widely used in the early versions of ensemble-

dVar techniques (Qui et al., 2007; Hoteit, 2008) and proved to be

ather effective in a number of applications including the tested

4dVar method (Yaremchuk et al., 2009; Panteleev et al., 2015).

As an alternative option, one can simply use eigenvectors of B in

he descending order of their eigenvalues to build the search sub-

paces. In the latter case, the convergence rate for the respective

4dVar algorithm can be estimated (more details on the subject can

e found in Appendix A). However, this approach demonstrated a sig-

ificantly slower convergence in the realistic application considered

elow. We partly attribute this behavior to the above mentioned ab-

ence of information on the (unevenly distributed) observational lo-

ations in the subspaces spanned by the eigenvectors of B.

The primary purpose of the present study is to test the perfor-

ance of the a4dVar algorithm in application to a realistic oceano-

raphic data set constrained by a state-of-the-art numerical model

nd compare its performance with a standard 4dVar approach. The

ethod is based on (7) and outlined as follows:

0. Specify the dimension ms of the search subspaces, their num-

ber k to be kept in memory for H̃-orthogonalization, the maxi-

mum number of iterations I, the perturbation magnitude ε and

the background model trajectory xn
b
. Set the iteration number i

to zero, c0 = 0, and compute d
n
.

1. Compute xn
i
, Ji, Yi = H̃

1/2
ci and the search directions sn

i
Eq. (7).

2. Extract the ms leading EOFs pm
i

, m = 1, . . . , ms of the search di-

rections to form the basis in the search subspace.

3. Perturb the initial conditions ci → ci + εpm
i

and run (in paral-

lel) the ensemble of ms perturbed models, computing the re-

spective perturbed values of Jm
i

and Ym
i .

3. H̃-orthogonalize the search basis {pm
i
} with respect to at most

k basis vectors obtained on the previous iterations and com-

pute optimal corrections δci (see Appendix B).

4. Set ci+1 = ci + δci.

5. If i = I exit. Otherwise set i ← i + 1, then go to 1.

The above listed algorithm was configured for the purpose of com-

arison with 4dVar both in terms of accuracy and computational ex-

ense. For this reason the value of I was set by the total CPU time re-

uired for convergence of the 4dVar algorithm. Parameters ms, k, and

were selected by experimentation. The H̃-orthogonalization proce-

ure and computation of δci are based on the technique proposed by

upanski (2005), with more details given in Appendix B.

Comparison of 4dVar and a4dVar is done by constraining NCOM

ith observations collected in the Adriatic Sea in August, 2006. De-

cription of the model, data, and parameters of the assimilation algo-

ithms are given below.

.2. Model and data

.2.1. The model

The NCOM is a free-surface primitive-equation hydrostatic ocean

odel with σ coordinates in the upper layers and, optionally, fixed

epths below a user-specified distance from the surface. Algorithms

hat comprise a NCOM computational kernel are described in de-

ail by Martin (2000) and with some improvements by Morey et al.

2003) and Barron et al. (2006). The vertical mixing model utilized is

he Mellor-Yamada level 2 closure scheme (Mellor and Yamada, 1974)

nd the equation of state of Mellor (1991) is used. Biharmonic hor-

zontal diffusion is prescribed implicitly via third-order upwind ad-

ection (Holland et al., 1998).

The model was configured at 3 km resolution on an 85 × 294 hor-

zontal grid (Fig. 1) with 32 levels in the vertical. The top 22 σ levels

ollow the bathymetry, stretching from the surface to a fixed depth of

91 m, and 10 fixed-depth levels are used below 291 m.

Initial and open boundary conditions for the sea surface height ζ ,

emperature T, salinity S, and horizontal velocities u, v were provided
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from the global NCOM (Barron et al., 2004) solution for the region.

Tidal forcing is not used. The model was forced by the river runoff and

atmospheric fields derived from the regional ALADIN atmospheric

model with 8 km horizontal resolution (Ivatek-Sahdan and Tudor,

2004).

In the described assimilation experiments, initial conditions were

used as control variables, i.e., the vector c comprised all the grid point

values of ζ , T, S, u, v at n = 0. With the given 3-dimensional grid and

bathymetry, the inverse problem has M=1,493,570 unknowns.

The first guess (background) values of c were taken from the

NCOM simulation described by Martin et al. (2009) and then adjusted

to suppress temperature and salinity biases during the assimilation

time interval (0.00 UTC on 08/14 to 0.00 UTC on 08/29/2006). After

the adjustment, the horizontal-and-time average misfits between the

background solutions and TS observations did not exceed 0.02 °C and

0.005 psu, respectively.

Vertical profiles of the NCOM standard deviations (Fig. 2) demon-

strate quantitative similarity between the variability of the first guess

model solution and the mean variability at the observation points.

However, the root-mean square (rms) model-data misfits were found

to be of the same order of magnitude as the observed variability, indi-

cating that the model has limited simulation skill of the smaller-scale

features without further adjustment of the poorly known parameters

(e.g., initial conditions) provided by data assimilation.

It is also noteworthy, that the obtained background solution pro-

vides a rather challenging environment for variational assimilation,

as it contains a large number of transient mesoscale features induced

by in wind forcing events and instabilities of the coastal boundary

currents (see, for example, Figs. 7 and 8 in Burrage et al., 2009). In

particular, in the upper 150 m (sampled by 90% of observations) the
atio of the time-averaged magnitudes of non-linear to linear terms

n the momentum equation was close to 0.3, indicating a consider-

ble degree of dependence of the tangent linear and adjoint models

n the background solution.

.2.2. DART06 experiment

The data used in this research were acquired in the course of a

ollaborative field experiment in the central Adriatic, the Dynamics

f the Adriatic in Real Time (DART) (Martin et al., 2009; Burrage et al.,

009). In the present study, ADCP and CTD observations from August

4 to August 29, 2006 are used (Fig. 1).

Current velocities u, v were measured by 19 moored ADCPs at lo-

ations shown by triangles in Fig. 1. Due to the inaccuracy of ADCP

easurements in proximity to the surface and bottom, the data

panned the depth range from 15 to 150 m. All the velocity data were

etided and averaged over 29, 12 h intervals centered at the assimila-

ion times tn of 0 and 12 UTC. The average duration of an ADCP time

eries employed in the data assimilation experiments was 12.7 days.

Temperature T and salinity S were measured at 219 CTD stations

ccupied in the northern and central parts of the basin. As it can be

een from Fig. 1, most of the CTD soundings (216) were shallower

han 280 m, with only a three casts taken at deeper locations. The

otal number of TS observations used in the assimilation is 9650. With

he total number of the observed velocities 13,856 the dimension of

he observation space was K = 23,506.

.3. Assimilation parameters

In the course of the experiments described in the next section, we

ried to keep the parameters of the tested 4dVar and a4dVar systems

s close as possible to each other. However, due to the different for-

ulations (observation space for 4dVar and state space for a4dVar),

ertain discrepancies remained in the shape of the background error

ovariance B. In both algorithms B is represented by the product VCV

here V is the diagonal matrix of the background error rms variances

nd C is the respective correlation matrix.

In the 4dVar algorithm, C is represented implicitly by the kernel

f the heat transfer equation

� exp

(
1

2
a2�

)
, (8)

here a is the decorrelation length scale and � is the discretized 2d

aplacian operator. Numerically, the action of C on a state vector is

omputed by integrating the heat transfer equation (e.g., Weaver and

ourtier, 2001). In the vertical, the decorrelation scale was set to zero.

he correlation matrix (8) is rank-deficient, so the 4dVar solution is

btained in the range of B.
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The a4dVar algorithm is formulated in the state space and requires

definition of C−1 which was explicitly specified as the inverse of the

econd-order approximation of the exponent in (8)

−1
a =

[
I − 1

2
b2�

]2

. (9)

here I is the identity operator in state space, and b =
√

8/πa to pre-

erve the value of the integral decorrelation scale specified in 4dVar

e.g., Yaremchuk and Smith, 2011).

Although the respective correlation functions are somewhat dif-

erent in shape (Fig. 3), we assume that this difference has minor ef-

ects on the overall results of the assimilation compared to the effect

f non-linearity.

The rest of the assimilation parameters were identical for both the

dVar and a4dVar assimilation systems. The value of a was chosen to

e 9 km, consistent with typical estimates of the baroclinic deforma-

ion radius in the region (e.g., Cushman-Roisin and Korotenko, 2007).

he background error rms variances (diagonal elements of V) were

ssumed to be proportional to the rms variability of the respective

COM fields from the first guess solution with the typical errors of

°C, 0.1 psu, and 10 cm/s near the surface. Observation errors were

ssumed to be spatially uncorrelated with the rms variances (diago-

al elements of R1/2) dependent only on depth in the manner shown

y the solid profiles in Fig. 2). Actual vertical distributions of the ob-

ervational rms error variances were specified by multiplying these

urves by 0.33 for temperature and salinity, and by 0.5 for velocity.

The a4dVar EOF analysis was performed with respect to the diag-

nal metric specified by the inverse background error variances V−2.

The stopping criteria for the iterative processes were selected as

ollows: for the 4dVar system the solution of the system for the rep-

esenter coefficients was terminated after nt=7 iterations, when the

ccuracy of the conjugate gradient (CG) solver was, as a rule, below

0−3. Experiments with the larger number of CG iterations (inner

oops) have shown only minor effects on the final optimal solution,

hereas reduction of nt resulted in amplification of the effects related

o the instabilities of the tangent linear model and/or its adjoint, caus-

ng a sharp increase of the cost function after 3–4 outer loops. With

he value of nt=7, 8–10 outer loops were executed before the values

f J started to increase.

For the a4dVar system, the minimization was terminated when

he total CPU time reached the value used by the respective 4dVar

xperiment. The number of ensemble members was kept constant at

s = 9 through all the experiments.

An important technical issue in a4dVar was the choice of the per-

urbation magnitude ε. Ideally, this value should be as small as pos-

ible to keep the perturbed system linear. In practice, values of ε sig-

ificantly below 10−2 were ineffective due to the loss of accuracy in

alculating the perturbations of Yi, especially in the course of 14 days

f model integration. For that reason, on each iteration, the value of

was selected in a way that only one field among all the ms pertur-

ations pi could reach its critical magnitude at one point of the do-

ain. The respective critical values of the temperature, salinity, and
elocity perturbations were set to 4 °C, 2 psu, and 0.5 m/s, respec-

ively. This strategy allowed fast convergence while avoiding devel-

pment of instabilities within the perturbed model runs.

Preliminary experiments were also performed to tune the number

f search subspaces k to be kept in memory along with the vectors Yi

eeded for H̃-orthogonalization. The large number of elements in Y

ade the orthogonalization process rather time-consuming for k >

0. Besides, H̃-orthogonality was quickly lost with iterations due to

trong non-linearity of the model and the above mentioned inaccu-

acy in estimating the perturbations of Y due to the finite value of ε.

fter some experimentation, it was found that k = 3 with the above

entioned strategy of selecting ε provided the fastest convergence

or the a4dVar algorithm.

The EOF reduction of the search subspace (step 2 in the lay-

ut of Section 2.1.2) may seem to be redundant for a linear system,

ut appears to be important in the considered a4dVar application:

irst, performing the search along the few principal modes extracted

rom the time sequence {rn} tends to keep the minimization process

ithin the most persistent (geostrophically and hydrostatically bal-

nced) manifold, thus avoiding searches over initial states that tend

o generate excessive ageostrophic (i.e.,smaller-scale) motions. Sec-

nd, rescaling the EOF metric V proved to be useful in restarting the
˜ -orthogonalization: rescaling was done every time when the rela-

ive reduction γ = δJ/J of the cost function at the start of the new

rthogonalization cycle was ten times smaller than the mean value

f γ on the previous cycle. In the event γ < 0.1γ , salinity entries of

were inflated by the factor of 5 and then restored to their original

alues on the next occurrence of the event.

. Results

In the reported experiments we varied the length of the assimila-

ion window from short (4 days, N = 9) to moderate (8 days, N = 17)

nd long (14 days, N=29) duration. Performance of the assimilation

lgorithms was evaluated in three categories: the forecast skill at the

nd of the assimilation window (for N = 917), the rate of conver-

ence, and by qualitative inspection of the optimal model trajectories.

.1. Convergence rates and computational expense

To assess the rates of convergence, one has to have an ability to

ompare the reduction of the cost function with iterations, which is

ot straightforward for two reasons.

First, in the 4dVar algorithm considered here, the regularization

erm of the cost function can be evaluated only within the range of

he correlation matrix defined by (9). To avoid the burden of restrict-

ng Ca to the range of C, we compared only the observational parts of

he 4dVar and a4dVar cost functions (second term in Eq. (3)).

Second, the number of iterations required for convergence cannot

e considered as an objective criterion because 4dVar and a4dVar it-

rations are different in nature. Due to the non-linearity of the prob-

em, an iteration (either 4dVar or a4dVar) performs minimization in

he vicinity of the current (suboptimal) state, but 4dVar does that in

he range of B, whereas a4dVar minimizes in the subspace of a much

maller dimension spanned by pm. For that reason, iterations require

uite different computational resources and should be compared in

erms of CPU time.

Fig. 4 shows such a comparison by rescaling the horizontal axis

ith the total CPU time τ a required by one a4dVar iteration. The

alue of τ a was 11 times larger than the CPU time τm of a direct

COM model run for a given experiment, i.e. τ a � 11τm. The major

ontribution to τ a is given by the ensemble run (9τm, p.3 in the lay-

ut of Section 2.1.2), while the master NCOM run (p.1) and operations

isted in pp.2 and 4 require τm and 0.8τm, respectively. Overall, con-

ergence was achieved at an expense of 60–70 iterations (650–800

COM runs).
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Fig. 4. Relative reduction η of the cost function with iterations (marked by circles) for

different assimilation periods. The horizontal axis is scaled by the CPU time required

for the a4dVar iteration. Squares label the 4dVar outer loops.
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As may be seen in Fig. 4, a single 4dVar iteration was approxi-

mately equivalent to 6–7 a4dVar iterations, or 70–80 direct model

runs. This computational expense arises because sequential execu-

tion of the adjoint and tangent linear codes (inner loops of the CG

solver) required around 11τm, whereas one 4dVar outer loop in-

cluded seven inner loops to solve the system of linear equations for

the representer coefficients. In a series of experiments, it was found

that executing seven inner loops provided a 103-fold reduction of the

system’s residual and was optimal with regard to the total CPU time

of the 4dVar algorithm.

Fig. 4 shows that, in general, the tested a4dVar method is com-

putationally comparable to the observation space 4dVar. Although

the total CPU time required for reduction of J by the factor of 0.4
attained after the first outer loop of the 4dVar) appears to be similar

or the 4dVar and a4dVar methods, the a4dVar minimization notice-

bly slows down at subsequent iterations, especially for longer assim-

lation windows (τ=8,14 days). This could be partly explained by the

act that, with longer windows, operators Mn tend to depart farther

way from the identity and it becomes increasingly more difficult for

he a4dVar algorithm to find the minimum without the additional

nformation on the structure of H̃ provided by the adjoint code in

dVar.

Fig. 5 demonstrates the time evolution of the quantities

f n
q =

〈[
(Hnx

n
q − dn

q)
T(Hnx

n
q − dn

q)/nq

]1/2
〉

(10)

haracterizing the daily averaged 〈〉 model-data misfits of the vari-

us state vector components before (black lines) and after (gray lines)

ptimization with a 14-day assimilation window (i.e., using all the

vailable data). The subscript q takes the values of the labels in the

id-bottom parts of Fig. 5 which indicate the observed variables

temperature, salinity and velocity vector) for which the statistics fq

ere computed, whereas nq stands for the total number of respective

bservations taken at a given day.

Comparison of the model-data differences for the background

orecast (thick black lines in Fig. 5) with those computed for persis-

ence (thin lines) shows their approximate similarity, especially for

T and fS. This similarity can be partly explained by small biases in

he temperature and salinity fields of the background solution and

arge discrepancies in representation of the mesoscale structures by

he background solution. As a consequence, persistence assumption

ppears to be much less valid for the velocity field (Fig. 5, lower panel)

hich provides the major contribution to the combined behavior of

q shown in the upper panel.

The upper panel in Fig. 5 also shows a remarkable similarity in the

ime evolution of the combined model-data misfit for the 4dVar- and

4dVar-optimized NCOM states. The a4dVar algorithm has, however,

noticeable tendency to provide a better fit at the beginning of the

ssimilation window, clearly visible in the lower panels for fS and fv.

his can be explained by the above mentioned property of a4dVar to

etter retrieve optimal states at shorter integration times.

When separated into different components, behavior of f n
T
, f n

S
,

nd f n
v reveals more differences. In particular, the 4dVar method pro-

ides a much better fit to the temperature data after August 20 (in

he second half of the assimilation window), but appears to be 10–

3% worse than a4dVar with respect to salinity and velocity data.

A large contribution to a better salinity fit is given by the first two

ays of the a4dVar model trajectory (third panel in Fig. 5). However,

ertain gains relative to 4dVar are also observed at the end of the

ssimilation, which is quite opposite to the difference in the values of

T. We attribute the better salinity fit to the variable EOF metric used

uring generation of the a4dVar search directions (Section 2.3).

Compared to fT and fS, the overall improvement of the model-data

isfit is the smallest for velocity (bottom panel in Fig. 5), which was

haracterized by the observation errors of R1/2 ∼ 7–10 cm/s in the

ost function. Several assimilation runs were made with significantly

maller (3–5 cm/s) errors, but they were found to be inconsistent

ith a posteriori statistics of the model-data misfits as the optimal

ost function values in these cases were much larger than those ob-

ained in the reported experiments. The a4dVar-optimized value of fv
s persistently smaller during the entire assimilation period providing

he 13% better value (as compared to 4dVar) in the 14-day average.

his advantage could be partly attributed to the fact that the a4dVar

earch directions are derived from the most persistent patterns of

he model-data misfits and therefore tend to be closer to the slowly

volving (geostrophically and hydrostatically balanced) modes of the

ow. This property was also reflected in the better velocity forecast

kill of the a4dVar solutions.
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Fig. 5. Evolution of the root-mean-square model-data misfits fq characterizing the

background (BG, thick black lines), 4dVar-optimized (4d, thin dashed gray lines) and

a4dVar-optimized (a4d) solutions. Thick dash-dotted line shows the misfit with the

background fields at t = 0 (persistence). The values of fq are shown on the right axis of

each panel. The left axis quantifies the number of the data points for each day in thou-

sands (shown by gray shaded rectangles). The ratio of the mean values of fq averaged

over the assimilation window for the 4dVar and a4dVar methods is given.
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.2. Forecast skill

The quality of the assimilated solutions was assessed for 4- and

-day experiments using comparison with observations outside the

espective assimilation windows. Evolution of the quantities fn for the

ackground and optimized solutions is shown in Fig. 6 for the 4-day

ssimilation experiment.

The general behavior of f is consistent with the one obtained in the

4-day experiment, showing persistently better 4dVar forecasts in
emperature and the advantage of a4dVar in the salinity and velocity

orecasts. The upper panel in Fig. 6 summarizes the forecast skill and

ndicates that 4dVar slightly (4–5%) outperforms a4dVar, mostly be-

ause of the better temperature forecasts (second panel from above).

n the other hand, the 4dVar-optimized salinity is characterized by

ery low forecast skill, especially during August 21–25, when it was

ven farther away from the observations than the background fore-

ast.

The 4dVar-optimized velocities show only small improvements

ompared to the background solution (bottom panel in Fig. 6). In con-

rast, the a4dVar-optimized velocities demonstrate 10–30% reduction
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of the model-data misfit within the assimilation window, which per-

sists for up to three days (August 18–21) of the free model run. Af-

ter August 21, the velocity mismatch of the background, a4dVar and

4dVar-optimized solutions are nearly identical. Qualitatively similar

behavior of the forecast skill and its distribution among the state vec-

tor components was observed in the results of the 8-day assimilation

experiment.

In interpreting the forecast skill assessment, it is necessary to take

into account that the temperature and salinity observations after Au-

gust 21 are much less numerous than those taken between the 18

and 21 of August (cf. gray rectangles of the second and third panels in

Fig. 5), whereas the velocity data cover a rather limited area shown

by the triangles in Fig. 1.

In general, the overall forecast skill provided by the a4dVar

method appears to be comparable with that of the 4dVar (upper

panel in Fig. 6), and in some aspects (such as short-term velocity

forecast), the a4dVar technique provides noticeably better results.

It should be noted that available observations could effectively con-

strain only a small part K/M =23,506/1,493,570 ∼ 1.5% of the model’s

degrees of freedom, so one should expect substantial differences in

the small-scale structure of the optimal solutions obtained by two

different methods.

3.3. Comparison of the optimal solutions

Temperature and velocity increments for the optimal states of the

14-day assimilation experiment are shown in Fig. 7. A certain coher-

ence between the larger scale corrections to the background temper-

ature field are clearly seen in the northern part of the model domain

that is well covered by observations (cf. Fig. 1). The time-mean corre-

lation coefficients ρ between the low-pass filtered temperature and

salinity increments of the 4dVar and a4dVar solutions are 0.61 and

0.45, respectively if averaging is performed in the upper 200 m over

the northern part of the domain. In the data-free region south of the

340 km mark, the correlations are substantially lower (respectively,

0.26 and 0.32) and lie below the 95% confidence level of nonzero cor-

relation (0.36). Similar values of ρ (0.59 and 0.32 in the northern and

southern subregions, respectively) were obtained for the sea surface

height field.

Velocity increments appear to have the lowest correlations among

the model fields with time-averaged values of ρv =0.36, 0.27 for the

northern and southern subregions, respectively. The lowest corre-

lations (ρv = 0.09, ρT = 0.21, and ρS = 0.12) were observed in the

data-free southern subregion during the first 4 days (8/14–8/18 ) of

the assimilation. Such incoherence between the increments is caused

by excessive ageostrophic activity (left panel in Fig. 7) of the 4dVar

solution at the beginning of the assimilation window. Ageostrophic

nature of this disturbances is quantified by 4 times larger magni-

tude of the divergence field as compared to the rest of the domain.

The ageostrophic mode disappears at the later times and does not

affect the cost function because the southern subregion is virtually

data-free, whereas smoothness constraints are imposed on the model

fields only at the initial time.

The problem could be solved, apparently, by introducing balance

constraints (e.g., Weaver et al., 2005) into the definition of the back-

ground error covariance at n = 0, which may not be necessary if the

NCOM 4dVar were run in the weakly constrained mode, i.e., if back-

ground errors were prescribed throughout the entire assimilation

window. For comparison purposes we ran the 4dVar system in the

strongly constrained mode and the effect became visible after several

outer loops. It is remarkable that the a4dVar algorithm appears to be

much less susceptible to excitation of the ageostrophic modes (right

panel in Fig. 7), possibly because the EOF-derived descent directions

span subspaces characterized by slower time variation of the model

trajectory and, therefore, tend to be closer to geostrophic and hydro-

static balance. The null-space nature of the ageostrophic features at
he beginning of the 4dVar-optimized model trajectory can be also

raced by looking at the evolution with iterations of the distances δx
etween the background and (sub)optimal model trajectories (Fig. 8):

δx| = 1

N + 1

N∑
n=0

xnTV−1xn. (11)
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As can be seen, the largest (60–70%) a4dVar correction of the back-

round trajectory occurs at the first few iterations, whereas 4dVar at

he first iteration makes a significantly smaller correction and subse-

uently produces larger updates that are characterized by a relatively

mall reduction of the cost function (cf. Fig. 4). Such a behavior is

ypical for a null space search which appears to be inhibited in the

4dVar case. Introduction of the balance constraints into B will cer-

ainly improve the performance of both algorithms with a potentially

arger benefit for the 4dVar case.

. Discussion and conclusions

The major goal of the present study was to show the feasibility

f the a4dVar technique (Yaremchuk et al., 2009) in a realistic ap-

lication and compare its performance with the 4dVar method. We

ave found that the adjoint-free approach is capable of producing op-

imized solutions of similar quality to 4dVar with comparable com-

utational expense. It was also found that the a4dVar technique is

ess susceptible to excitation of ageostrophic modes in the data-free

egions if balance constraints are not imposed on the background er-

or covariances.

A distinctive feature of the a4dVar technique presented here is the

terative approach to minimization of the cost function. The adjoint-

ree methods of Qui et al. (2007) and Liu et al. (2008) employ mini-

ization in a predetermined subspace derived from the background

rror statistics (with or without localization of the background er-

or covariance). The tested a4dVar method follows the same princi-

le as the model-data misfits are projected on the range of B (Eq. (7)),

onetheless convergence to xopt cannot generally be guaranteed since

he process may be subject to breakdown (situations when new

earch directions are linearly dependent on previous ones). In future

pplications, the issue could possibly be resolved using the meth-

ds already developed for the GMRES-type algorithms (e.g., Reichel

nd Ye, 2005), which are not immune to breakdowns, similar to the

4dVar minimization technique. Experiments reported here do show,

owever, that the observed rate of convergence of the a4dVar mini-

ization process may slow down relative to what is seen with 4dVar

nd this effect may be exacerbated with increasing size of assimi-

ation window (Fig. 4).Nonetheless, a4dVar tends to produce better

esults at the earlier stages of assimilation than 4dVar and in general

ts performance could still be viewed as satisfactory.

Taking advantage of the trend toward massive parallelization in

omputer technologies, the adjoint-free variational methods esti-

ate the cost function gradient with a “brute force” approach that

mploys finite difference approximations along predetermined direc-

ions in state space. Selection of the most effective directions (search

ubspaces Si) based on this sampling becomes an issue of primary

mportance. Experience shows that there exists a considerable free-

om in generating search directions (Yaremchuk et al., 2009; Pan-

eleev et al., 2015) as long as they are kept being spatially smooth and
˜ -orthogonal. In particular, building Si on the eigenvectors of B in

he descending order of their eigenvalues may also work reasonably

ell, as shown in Appendix A. In the reported experiments, we inves-

igated a number of methodologies in building Si and found Eq. (7) to

e the most effective computationally. This methodology can be de-

eloped further by introducing balance constraints into B−1. In this

ase the inverse background error covariance should be replaced by

he composite matrix

−1
bal

=
[

B−1
1

+ LTB−1
2

L −LTB−1
2

−B−1
2

L B−1
2

]
, (12)

here B−1
1

and B−1
2

are the inverse covariances of the unbalanced

omponents of the state vector (e.g., defined by (9)) and L is the bal-

nce operator. Further improvements can be made by replacing the

iffusion operator in Eq. (9) with a more general expression (e.g.,

eaver and Mirouze, 2012; Yaremchuk and Nechaev, 2013).
An important issue with the a4dVar technique is its extension to

ptimization of other sets of variables that may control the model

rajectory, such as surface forcing fields. One of the possible solu-

ions in this case augments the search subspaces (ocean model states)

y the leading EOFs of the surface forcing error fields. This will re-

uire a better knowledge of error statistics of the atmospheric model

sed to force the ocean in a particular application. In view of recent

apid development of the observational systems and data acquizition

echniques in the atmosphere, the issue of accessibility to the above

entioned statistics seems likely to be resolvable in the near term.

oreover, the a4dVar technique appears to be even more suitable

or coupled ocean-atmosphere systems, where external forcing er-

ors tend to play a lesser role at the time scale of a typical assimilation

indow.

In terms of the computational expense, the a4dVar technique ap-

ears roughly comparable to 4dVar, mostly because of the excessive

omputational cost of tangent linear and adjoint codes that were, on

verage, several times more expensive than a direct run of the non-

inear NCOM model (a typical situation with state-of-the-art OGCMs,

.g., Oldenborgh et al., 1999 and Heimbach et al., 2005). On massively

arallel machines, the advantage of a4dVar will be more noticeable

ue to the limited parallel scalability of an OGCM code, be it original,

djoint, or tangent linear.

A much larger computational advantage is evident when consider-

ng the wall time in a massively parallel environment, which formally

llows a4dVar to search over multiple directions at a fraction of the

all time used by 4dVar to generate a steepest descent direction. In

act, in the reported experiments with NCOM model, one a4dVar run

as executed almost five times faster if all the ensemble members

ere run on separate nodes. This property of the a4dVar approach

ives good prospects for its further development in sync with and

ther types of ensemble data assimilation techniques that are based

n relaxed communication requirements between processors.
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ppendix A. 4dVar/a4dVar comparison in the linear case

To compare the performance of 4dVar and a4dVar techniques in

simple environment, consider the problem of retrieving the initial

eld of tracer concentration η(x, 0) from observations at some dis-

ant time T. The tracer evolution is governed by

tη + u∇η − μ�η = f (x, t) (A.1)

n a closed rectangular 49 × 91 domain 
 with the boundary con-

ition η(∂
, t) = 0. Eq. (A.1) is discretized on a regular grid using

rst-order RK time-stepping, upwind advection, and a standard 5-

oint stencil for the Laplacian with unit steps in temporal and spatial

irections. Velocity u = (u, v) at any space-time location was defined

y u = −0.2 + 0.01ν; v = −0.1 + 0.01ν, where ν is the white noise on

nit interval. The forcing f was generated by setting f (x, t) = .001ν in

very point of the space-time grid. The coefficient μ was set to 10−5,

o that diffusion was largely determined by the numerics.

The simulated data comparison experiment was set as follows.

iven the initial tracer distribution η̂ = η(x, 0) = exp[−(x − x0)
2/9]

ith x = (70, 35) (bell-shaped disturbance in Fig. A1a), the model
0
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Fig. A1. Reconstruction of the initial condition of the tracer field by 4dVar (b) and

a4dVar (c,d) techniques. Composite map of the reconstructed tracer field evolution is

shown in the upper panel. (a): Initial position of the reconstructed feature (Gaussian

eddy at x = 70, y = 35 km) is superimposed on the tracer field (contours) at the ob-

servation time t = 200 when the eddy diplaced to x = 25, y = 15 km. Circles denote

observation points. The errors in approximation of the true field at t = 0 are shown in

the left corners of the panels b–d, showing the initial field, reconstructed by various

methods.
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Fig. A2. Reduction of the cost function against CPU time for 4dVar and a4dVar tech-

niques. The 4dVar CPU time is multiplied by five to mimic larger CPU requirements

of the state-of-the-art adjoint models. Inset: Convergence of the a4dVar-B solution

(Fig. A1d) to the exact solution. Dashed line shows the convergence rate given by (A.5).
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was integrated for T = 200 time steps to obtain the final distribu-

tion η(x, T) shown by contours in the same panel. The initial dis-

turbance almost completely dispersed and migrated to xT ∼ (25, 15)
(see contours in the same panel). After that, η(x, T) was sampled at

200 points shown in Fig. A1a, and obtained numbers were used to re-

construct η̂ by minimizing the cost function (3) under the dynamical

constraint (A.1) with the background error covariance defined by (9).

Optimal approximations η̃–η̂ obtained by 4dVar and a4dVar tech-

niques are shown in Fig. A1b and Fig. A1c, respectively). To specify

search directions in the a4dVar method, 200 observations were split

into ms = 10 equal groups so an observation operator for each search

direction in (7) had 20 observation locations.

The quality of reconstruction was assessed by the parameter

e =
√

〈(η̃ − η̂)2〉/〈η̂2〉 (A.2)

where angular brackets denotes averaging over small rectangles in

Fig. A1. Comparison of Fig. A1b and c suggests that the a4dVar

method is capable of providing a solution of the same quality with

4dVar.

Fig. A1d illustrates another a4dVar solution, using search sub-

spaces specified by the eigenvectors of B in the decreasing order of

their eigenvalues (in this case, sines with decreasing wavelengths in

both directions). The result obtained is of similar quality, suggesting

that the general a4dVar strategy of minimizing J over a sequence of
mooth H̃-orthogonal SDs may work well with various methods of

enerating search directions.

In terms of computational expense, the 4dVar method pro-

ided approximately five times faster reduction of the cost function

Fig. A2) due to high efficiency of the adjoint model. In this simple

ase, an adjoint model run required the same amount of time as the

irect model run. In real applications, the tangent linear and adjoint

odes are several times more expensive to run and the a4dVar tech-

iques may prove to be more competitive, as shown in Section 3 of

he present study.

Finally, the known spectrum of B provides an opportunity to as-

ess the convergence rate of the ad4Var solution exposed in Fig. A1d.

ssume that after k a4dVar iterations m = kms H̃-orthogonal direc-

ions have been already searched and the kth approximation η̂k to

he optimal solution η̂ = H̃
−1

b have been found. Without loss of

enerality, the eigenvectors φi of B could be normalized to satisfy

iB
−1φi = 1, so that their (Euclidean) norm is equal to the associ-

ted eigenvalue σ i. The magnitude em of the approximation error

m = η̂ − η̂m with respect to the norm induced by the inverse covari-

nce can be assessed by projecting η̂ on the unexplored directions:

m = eT
mB−1em ≤

∞∑
k=m+1

|η̂TB−1φk|2 (A.3)

urthermore, since the optimal solution η̂ = H̃
−1

b allows represen-

ation in the (dual) form η̂ = Bξ (ξ is the optimal linear combination

f the representers), the upper bound of the terms under summation

n (A.3) can be assessed by

η̂TB−1φk| = |ξTφk| ≤ σk(ξ
TB−1ξ)1/2 (A.4)

ubstituting (A.4) into (A.3) yields the following upper bound on the

rror magnitude:

m ≤ ξTB−1ξ
∑
k>m

σk ∼ O(m−2) (A.5)

his estimate remains intact if we assess em with respect to the norm

nduced by the Hessian matrix. In the latter case, the right-hand side

f (A.5) will be multiplied by a scaling factor || H̃ ||/||B−1|| > 1.



M. Yaremchuk et al. / Ocean Modelling 97 (2016) 129–140 139

a

s

A

(

t

b

b

t

B

w

H

w

H

i

t

δ

a

t

s

δ

w

o

s

c

w

p

(

t

∑

(

∑

e

f

o

δ

v

a

p

∑

e

s

w

o

q

p

t

r

c

b

t

i

p

fl

c

a

r

o

t

t

t

R

A

A

B

B

B

B

B

C

C

D

F

Dependence of the distance between the 4dVar solution (Fig. A1b)

nd the consecutive approximations to the a4dVar solution (Fig. A1d)

hown in the inset to Fig. A2, confirms the above estimate.

ppendix B. H̃-orthogonalization and related issues

The a4dVar method utilizes the technique employed by Zupanski

2005) in the Maximum Likelihood Ensemble Filter, which is based on

he explicit inversion of the Hessian matrix in the subspace spanned

y the model perturbations. In view of the definition (9), B−1/2 can

e explicitly represented using the expression for the square root of

he inverse error covariance:

−1/2 = V−1(I − b2

2
�) (B.1)

hich allows a symmetric Hessian factorization

˜ = H̃
T/2

H̃
1/2

, (B.2)

here

˜ 1/2 =

⎡
⎢⎢⎢⎢⎣

B−1/2

H0

H1M
1

...

HNMN

⎤
⎥⎥⎥⎥⎦ (B.3)

s the Hessian square root.

For sufficiently small perturbations δcm = εpm, perturbations of

he auxiliary vector

Ym = H̃
1/2

δcm (B.4)

re linear in δcm, so that computation of the dot products between

he vectors δYm provides the inner product in the control space as-

ociated with the Hessian matrix

YT
1 δY2 = δcT

1 H̃δc2 = 〈δc1, δc2〉H̃, (B.5)

hich can be used for H̃-orthogonalization of the search subspaces

f the a4dVar algorithm.

We seek the optimal correction of the control variable c in the

earch subspace S spanned by pm:

← c +
ms∑
l=1

slpl,

here the coefficients sl satisfy for m = 1, 2, . . . , ms,

T
m

(
H̃
(
c +

ms∑
l=1

slpl

)
− b

)
= 0. (B.6)

This constitutes a Ritz–Galerkin projection of the normal system

4) to the search subspace, S. Rearranging, we obtain the linear sys-

em of ms equations in the ms unknowns s1, s2, . . . , sms :

ms

l=1

pT
mH̃ pl sl = pT

m(b − H̃c). (B.7)

Substituting pm = δcm/ε into (B.7), multiplying by ε2, and using

B.2) and (B.4) yields

ms

l=1

δYT
mδYl sl = εδcT

m(b − H̃c). (B.8)

The right-hand side of (B.8) cannot be computed directly because

valuation of b − H̃c requires the adjoint code (Eq. (5)). Nonetheless,
or each m, δcT
m(b − H̃c) can be calculated directly from the variations

f the cost function δJm = J(c + δcm) − J(c) induced by δcm:

Jm = 1

2
δcT

mH̃δcm + δcT
m

(
H̃c − b

)
= 1

2
δYT

mδYm − δcT
m

(
b − H̃c

)
. (B.9)

Thus, the coefficients for the optimal correction of the control

ariable c within the search subspace S are given as the solution to

linear system posed in terms of the quantities δJm and δYm com-

uted by the a4dVar algorithm:

ms

l=1

δYT
mδYl sl = ε

(
1

2
δYT

mδYm − δJm

)
. (B.10)

In the H̃-orthonormal coordinate system δYT
mδYm = ε2, and

quations (B.10) are simplified to

l =
∑

m

αlm

(
ε

2
− δJm

ε

)
, (B.11)

here αlm are the matrix elements of the linear transformation of the

riginal basis δcm that are obtained in the orthogonalization process.

For a differentiable numerical model and sufficiently small ε, the

uadratic term in the right hand side of (B.10) is negligible. In the re-

orted experiments we kept it in place since the value of ε was close

o 0.01 and could not be reduced any further without affecting the

ate of convergence. The relatively large limit on the value of ε was

aused by a number of factors deteriorating the linear dependence

etween the magnitude of the model perturbations and ε. These fac-

ors include rounding errors (especially for temperature and salinity

n the upper layers), non-differentiable operators in the model code,

articularly at the open boundary, and small-scale instabilities of the

ow developing at the mouth of the Po river and in the boundary

urrents, especially prominent in the experiments with the 14-day

ssimilation window.

The finite value of ε also affected the orthogonalization process,

esulting in non-zero (of the order of 3–10%) off-diagonal elements

bserved in the Hessian projection after orthogonalization of the per-

urbations. For that reason, the optimal coefficients sl were computed

hrough the direct solution of Eq. (B.10), which was not expensive due

o the low dimension of the system.
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