

The Airborne Electronic Attack Integrated Product Team (AEA IPT)

Point Mugu, California

AEA IPT Process Improvement April 2009

- Introduction of AEA IPT
- Process Improvement Objectives for FY09
- Customizing processMax[®]
 - processMax[®] overview
 - Customize for System and Software Development Project
 - Customize for Data Base Development Project (EWDS)
 - Customize to integrate Lean Six Sigma (LSS) and CMMI high maturity level practices
- Integrate NAVAIR Lean Six Sigma into AEA
 IPT critical processes
 - Quantitative Defect Management (QDM)
 - Quantitative Requirements Management (QRM)
 - Causal Analysis and Resolution (CAR)

AEA IPT

UNCLASSIFIED // FOR PUBLIC RELEASE

UNCLASSIFIED // FOR PUBLIC RELEASE

- Electronic Warfare Database Support (EWDS)
 - EOB product to all Navy Aircraft using JMPS
 - ➢ EA-6B, EA-18G, F/A-18C/D, F/A-18E/F, MH-60, E-2C, AV-8B, …
 - > ETIRMS & EWDS to Navy, Air Force, NSA, JSF, MMA and other customers

AEA Mission Planning

- EW Tactical Information and Report Management System (ETIRMS) Unique Planning Component (UPC) for EA-6B & EA-18G
- EA-18G AEA UPC
- EA-6B Mission Planning Environment (MPE) + MH-60/E-2C HAWK Tool
- AEA Jammer Techniques Optimization (JATO)
- EA-6B ICAP II and ICAP III Block & GWOT Upgrades
 - Software Maintenance, Integration, and Test (including Aircrew Trainers)
 - Block System Upgrade Design, Development, Integration and Test
- EA-18G AEA Block Upgrades
 - Including AEA Systems Engineering + Integrated Test & Evaluation
- Intrepid Tiger Pod Software Support Activity

AEA IPT Team Composition

130+ Direct Funded Government Employees 2 Military Officers (Excluding 1 vacancy)

Personnel with AEA Expertise:

- Over 85% Engineers
- AEA On-site System Engineering Expertise is Still Largest in Nation
- Depth of AEA Experience averages over 10 years per individual

Improve Performance by implementing Continuous Process Improvement (CPI) NAVAIR Lean Six Sigma (LSS) per DoD Directive 5010.42

- Strengthen joint operational Combatant Command and Military Department capabilities including making improvements in:
 - (1) Productivity
 - (2) Performance against mission (availability, reliability, cycle time, investment, and operating costs)
 - (3) Safety Flexibility to meet DoD mission needs Energy efficiency
- CPI/LSS programs shall be used to help meet organizational objectives
 - CPI/LSS methods, terminology, training plans, and other program elements may be adapted as required
 - Given diverse operational requirements, the DoD Components shall have full flexibility to identify CPI/LSS focus areas and training plans and may adapt other CPI/LSS program elements for their use

AEA IPT Strategy to Implement DoDD 5012.42 (1)

Responsible Parties

- AEA IPT Management Team and Competency Aligned Organization (CAO)
- Product Leads, Project Managers and Team Members
- Process Management Team
- Define and align AEA IPT Performance Objectives with NSPS
 - For each product release:
 - Improve Cost by X%
 - ➤ Improve Schedule by X%
 - ➤ Improve Quality by X%

AEA IPT Strategy to Implement DoDD 5012.42 (2)

Ensure consistent Organizational performance

- Customize processMax[®] to integrate Lean Six Sigma (LSS) tool sets and to support non-software products (EWDS, JATO)
- Integrate LSS Tool Sets into Critical Process Activities
 - > Quantitative Defect Management (QDM)
 - Quantitative Requirements Management (QRM)
 - Earned Value Management (EVM)
 - ➤ Causal Analysis and Resolution (CAR)

Integrate AIRSpeed LSS Methodology into AEA IPT Culture

- Conduct Lessons Learned to evaluate past performance, identify improvement opportunities and implement Organizational Change Requests (OCRs) using LSS projects:
 - ➢ Black Belt, Green Belt, etc.

Customizing processMax®

- A web-based project management software tool used for project and organization personnel to follow a defined process.
 - Includes all processes, procedures, guidelines, criteria, templates, and forms used by the organization
 - Serves as a document repository for project and organizational work products
 - Provides configuration management capabilities that include version control, change control, and process history
 - Supports project management activities such as project planning, tracking of Actions/Issues, Decisions, Risks, Role Assignments, Defects, Training status, etc.
 - Provides the structure to ensure that a standard project process is followed by all projects and allows for the tailoring of those processes as needed

- A Decision Analysis and Resolution (DAR) process activity supported the decision to customize the existing CMM processMax[®] tool
 - Critical factors in this decision included:
 - Pragma Systems delay in releasing a completed CMMI Level 3 version of processMax[®]
 - Concerns that the new release might not align with AEA IPT best practices
 - Costly manual transfer of project data to the new version
 - Modifications could be made quickly by AEA Process Management Team to existing processMax[®] interface to rapidly deploy CMMI across the Organization
 - Projects Team would not have to learn a new tool
 - Training efforts could be concentrated on the new CMMI Process Activities

AEA IPT processMax[®] Customization Examples (1)

Measurement & Analysis (M&A) Process Activity

Simplify pMax

- Helps projects by facilitating collaboration and collection of M&A artifacts
- M&A Artifact repository contains:
 - Meeting agenda, minutes and measurement indicators
 - Action item logs and decisions
 - Electronic approvals of M&A Plan

AEA IPT processMax[®] Customization Examples (2)

UNCLASSIFIED // FOR PUBLIC RELEASE

Incorporation of Lean Six Sigma (1)

processMax 5.0e - Dry Run - Update For Severity: *	m - Defect - 3 - Microsoft Internet Explorer provided b Set Se	Accurate defect data capture is critical for project performance using the LSS Measure and Analysis Phase				
Number of Actual Defects:*	1					
	Select Defe	ct Category Required Reading				
Requirement Defect Category: *	Hold the Control key down while using the mouse to Correctness Completeness Consistency	select or deselect items.				
Design Defect Category:*	Hold the Control key down while using the mouse to Logic Input Data Handling	select or deselect items.	Defect categories were redefined to			
Code Defect Category:*	Hold the Control key down while using the mouse to Logic Input Data Handling	select or deselect items.	accurately reflect			
	Select Quality	Characteristics Required Reading	and source of defects			
Quality Characteristics Affected: *	Hold the Control key down while using the mouse to Functionality Functionality Reliability Usability Efficiency Maintainability	select or deselect items.				
Discovered Via:*	Peer Review 💌					
Life Cycle Phase Originated:*	Planning					
Life Cycle Phase Discovered:*	Code and Unit Test		G			
LSS: I	DEFINE – <mark>Measure</mark>	E – ANALYZE – IMF	PROVE – CONTROL			

UNCLASSIFIED // FOR PUBLIC RELEASE

Incorporation of Lean Six Sigma (2)

LSS tool sets and procedures, like Fish Bone and Five Whys, are integrated into processMax[®] to guide users in performing cause and effect analysis

Incorporation of Lean Six Sigma (3)

Defect data can be extracted from processMax[®] into an Excel file to perform cause and effect analysis

Dhace Detected	Phase Originated					
Phase Detected	Requireme	Design	Coding	System	OT/DT	Total
Requirements	46					46
Design	5	19				24
Coding	1	18	66			85
Software Integration	0	0	0			0
System Testing	1	9	54			64
OT/DT	0	0	0			0
Total	53	46	120			219

Improve Performance with Quantitative Defect Management

Quality is never an accident, it is always the result of high intention, intelligent direction and skillful execution; it represents the wise choice of many alternatives." *William A. Foster*

"If we are busy doing rework for defects, we're not innovating AND we are costing the company lots of money." *Anonymous*

"Finding and fixing defects accounts for much of the cost of software development and maintenance." – Watts S. Humphrey

"It is much less expensive to prevent errors, than to rework, scrap, or service them." *Philip Crosby*

Facilitate gradual shift from "Fix-on-Failure" to Prevention

Table 1: Time to Fix Defect That Escapes Stage (in hours)

Requirement	Design Coding		Development Test	Acceptance Test	During Operation	
1	3-6	10	15-40	30-70	40-1,000	

24 CROSSTALK The Journal of Defense Software Engineering

Defect removal effort can increase by 10 times for each stage it goes undetected

AEA IPT Best Practices

- Test processes sufficiently robust to detect most defects
 - ➤ Quality of released product is consistently high across the AEA IPT

AEA IPT Improvement Opportunities

- Need to improve defect detection during Requirements, Design and Code phases
 - Consistency in counting defects, in capturing effort / size & in logging defects

Three AIRSpeed Black Belt Projects

- Three AIRSpeed Black Belt Projects Improved the Defect Removal Effectiveness (DRE) Process for Software Intensive Products:
 - Requirements Development Phase
 - Design Phase
 - Code & Unit Testing Phase
- Quantitative Defect Management Process Goals
 - Discover and remove more defects earlier in the development lifecycle to support 'On-time' delivery objectives
 - Reduce rework efforts to improve Cost and Schedule
 - Improve Quality Performance
 - Evolve Defect Detection Model

Improve and Maintain Defect Prevention Techniques

- Measure the Effectiveness of each Peer Review
- Statistically Analyze
 - ➢ Performance of each Peer Review
 - Defect removal effectiveness at the completion of each phase

Introduce Quantitative Defect Management Method

- Statistically Analyze Project performance against AEA IPT Performance baseline
- Predict Quality and Cost Performance using a Defect Detection Model (DDM)
- Introduce Causal Analysis and Resolution Process
 - Determine Root Causes, take Corrective Actions to improve quality and prevent reoccurrence

AEA IPT

Quantitative Defect Management (AEA IPT 7 Step Process)

Establish AEA IPT Performance Baselines

AEA IPT Quality & Process Performance Baseline

UNCLASSIFIED // FOR PUBLIC RELEASE

Establish Project Objectives

Establish Quality Control Target

Define Project Parameters & Estimates

Name of the Project Name of Project Manager AEA IPT PI Tuan Le Project Size Estimates

9.50 KLOC

Defects Origination Estimates

Phase	Mean	UCL	LCL
Requirements	86	95	76
Design	86	91	80
Coding	154	159	149
Software Integration	10	13	7
System Testing	7	9	4
Total	342	368	316

Defect Detection - Target

Phase	Mean	UCL	LCL
Requirements	56	57	54
Design	72	74	69
Coding	113	118	110
Software Integration	10		
System Testing	57		
OT/DT	34.2		

Project Manager estimates the target number of defects originated & removed by phase to establish project objectives

Defect estimation model will be based on historical data and organizational performance baseline

AEA IPT

Statistically Manage Peer Review Performance

Design Phase - Peer Review

					Phase Originated							
Peer Rev Date	view	Total Hours	Total Size	Number of Defects Discovered	Requireme nt	Design	Code & UT	Sys Testing	Defects / Hour	Defects / Unit of Size	Hours / Unit of Size	
13-M	lay-08	7	8	5	0	5			0.71	0.63	0.88	Under
22-M	lay-08	9.25	93	5	0	5			0.54	0.05	0.10	<u>Under</u>
1-	Jul-08	6.5	12	3	3	0			0.46	0.25	0.54	Statistical
28-A	ug-08	6.75	44	1	1	0			0.15	0.02	0.15	<u>Control</u>
8-S	ep-08	7	65	3	1	2			0.43	0.05	0.11	
4-S	ep-08	6.25	53	2	0	2			0.32	0.04	0.12	
Project team members statistically manage peer reviews and take corrective actions as required									Gi sorin it saltan fil Milantyr Ver ga Al Bi Bi Di Di			

Sher Chart by Osember

31

101-9998 Restantifi LOL-2008

Statistically Manage Defect Removal Effectiveness Performance

Project team members statistically review project performance at the end of the phase and take corrective actions as required

Perform Cause and Effect Analysis (CAR)

ONE STOP SHOP FOR QUANTITATIVE DEFECT MANAGEMENT

34

AEA IPT DRE Dashboard

Navigator

UNCLASSIFIED // FOR PUBLIC RELEASE

Selected Lean Six Sigma Tools for Quantitative Defect Management Process

- Control Charts
- Pareto Chart
- Histogram
- Ishikawa ("Fish Bone")
- Five Whys
- Process Mapping

Together, Lean Six Sigma and CMMI help AEA IPT improve performance and achieve objectives faster

Improve Performance with Quantitative Requirements Management

DoD-NAVAIR Directed Continuous Process Improvement (CPI) by Integrating Lean Six Sigma in to AEA IPT critical processes

Optimal Process Model

Requirements Management Process Model

GAO Reported Acquisition Concerns

- Unsettled requirements in acquisition programs can create significant turbulence
- Sixty-three percent of the programs we received data from (72 programs) had requirement changes after system development began
- These programs encountered cost increases of 72 percent, while costs grew by 11 percent among those programs that did not change requirements

- Engineers tend to resist documenting traceable requirements
 - Inability to trace requirements back to customer's / sponsor's requirements
 - Requirements creep adding requirements not necessary to meet user's / customer's desires
- Lack of concurrence among the stakeholders of the requirements (collaboration)
 - Key contributor to requirements instability, which leads to cost and schedule problems
- Lack of requirements volatility measures (metrics)

- Tendency to begin preliminary design before requirements are verified and validated:
 - Can result in extensive rework
 - Impacts accuracy of cost and schedule estimates
- Resistance to having a Requirements Change
 Control Board early in the requirements phase
- Requirements too loose/broadly written, complicating requirements decomposition
- Insufficient time dedicated to Requirements Phase

AEA IPT Strategy to Manage Requirements Volatility

Stabilize Requirements Development Process

- Improve estimation of effort to develop SRS and ensure the SRS is completed and ready for design
- Control and Improve the Quality of Requirements Specification
- Stabilize Requirements Management Process
 - Institutionalize the Requirements Change process
- Develop Quantitative Requirements Management (QRM) Measures for a Requirement Volatility Index (RVI):
 - By using NAVAIR Lean Six Sigma initiatives
 - Provide a CMMI Level 4 and Level 5 Framework

Quality is never an accident, it is always the result of high intention, intelligent direction and skillful execution; it represents the wise choice of many alternatives."

William A. Foster

- AEA IPT LEAD
- AEA IPT CHIEF ENGINEER
- AEA IPT PROCESS IMPROVEMENT

Information Sources

- Improve Quality Performance
 - Raja Anantharaman, Applied Process Solution
- Defect Prevention
 - David LongStreet, Softwaremetrics.com
- Incorporating Quality Throughout the Lifecycle
 - Betty Schaar, BenchmarkQA
- Advancing Defect Containment to Quantitative Defect Management
 - Alison A. Frost and Michael J. Campo, Raytheon
- NAVAIR's Software Engineering Policies and Processes
 - Barbara Williams , NAVAIR

