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Attached are also three Matlab codes:





1. Three_input_waves_versus_z.m: This file produces |E_k|^2 in dB versus z/L, and Phase(E_k) versus z/L. In agreement with 
Fig. 1 of the paper.





2. PSA_gain_versus_phi_s.m: This file produces signal gain in dB versus signal relative phase phi_s. In agreement with Fig. 3 
of the paper.





3. PSA_NF_estimate.m: This file produces noise figure in dB versus signal relative phase phi_s.











ABSTRACT


We present a model for multi-wavelength mixing in semiconductor optical amplifiers (SOAs) based on coupled-mode equations. 
The proposed model applies to all kinds of SOA structures, takes into account the longitudinal dependence of carrier density 
caused by saturation, it accommodates an arbitrary functional dependencies of the material gain and carrier recombination rate 
on the local value of carrier density, and is computationally more efficient by orders of magnitude as compared with the 
standard full model based on space-time equations. We apply the coupled-mode equations model to a recently demonstrated 
phase-sensitive amplifier based on an integrated SOA and prove its results to be consistent with the experimental data. The 
accuracy of the proposed model is certified by means of a meticulous comparison with the results obtained by integrating the 
space-time equations.





INTRODUCTION/PROBLEM STATEMENT


Semiconductor optical amplifiers (SOAs) have been in the spotlight for many years, attracting ever growing interest in multiple 
areas of applications. These include all-optical signal processing in fiber-optic communication networks, cost-effective local area 
transmission, and, more recently, integrated silicon photonics, where SOAs are the building blocks for the implementation of 
large-scale integrated photonic circuits. Many of these applications rely on the mixing of the wavelength components of the 
propagating electric field, and their theoretical study can be performed by numerically integrating the coupled nonlinear 
equations describing the evolution of the electric field envelope in the longitudinal direction along the SOA, and the temporal 
carrier dynamics [1,2]. Obviously, this approach is not suitable for the efficient design of an SOA, owing to the intensive 
computational effort that it involves. The search for computationally efficient and analytically tractable models has yield the 
formulation of what is sometimes referred to as a “reduced model” for the nonlinear SOA response [3], where the space-time 
equations reduce to a single ordinary differential equation [3], suitable for the analytic study of multi-wave mixing (see e.g. [3-
5]). The formulation of a reduced model hinges upon two major assumptions. The first is that the spontaneous carrier 
recombination rate is proportional to the carrier spatial density, and the second is that the material gain also depends linearly on 
the carrier density. These assumptions emanate from early studies of semiconductor lasers. Indeed, in lasers the carrier density 
dynamics is characterized by small deviations from a steady state value which is set by the threshold condition of gain equalling 
the cavity loss. The small deviations around this value are only caused by amplified spontaneous emission (ASE) and by some 
spatial hole burning, which is however of little significance because in most structures the intra-cavity optical intensity is only 
moderately inhomogeneous. Consequently, in laser structures, gain and spontaneous emission rate can be accurately 
described by a linearized expression around the steady state carrier density. Early studies on SOA structures also used linear 
expressions for gain and carrier recombination, and in this case the linearization, albeit less accurate, found its ground on its 
simplicity and, more importantly, on the limited gain of legacy SOAs, which implied a limited longitudinal inhomogeneity of the 
optical field in the optical waveguide.





Unfortunately, these assumptions do not reflect the characteristics of modern SOAs, as is clarified in what follows.  Modern 
SOAs may have linear gain in excess to 40dB, implying a pronounced longitudinal inhomogeneity of the field intensity and 
hence of gain saturation. This may cause, in some cases, that the gain is only slightly saturated at the waveguide input, 
whereas it is almost zero at the waveguide output, where saturation is so high that the carrier density approaches its 
transparency value. When this is the case, a linear expression for the gain is reasonably accurate only if the gain does not 
deviate significantly from the linear expansion around the transparency carrier density over a range of values.





The nowadays widely accepted forms for the dependence of the material gain on carrier density do not meet this requirement, 
because  over such wide range of carrier density values the nonlinearity cannot be neglected, especially in quantum-well (QW) 
SOAs devices [6]. This makes the use of linear forms for the gain not an option for an accurate and quantitative description of 
the SOA dynamics.  In addition, advances in material fabrication have made in modern devices the contribution of defect-
induced carrier recombination, which is proportional to the carrier density N, negligible, with the consequence that spontaneous 
carrier recombination is dominated primarily by radiative recombination, whose rate is proportional to N^2, and secondarily by 



Auger recombination, whose rate is proportional to N^3 [6].  This reality makes the linearization of the spontaneous 
recombination rate also a questionable approximation. All these arguments together suggest that the accuracy of models of the 
nonlinear SOA response based on linearization of the carrier recombination rate and gain may be, in state-of-the-art devices, 
highly inaccurate.





A natural approach to the study of wave mixing in SOAs, which closely reminds coupled-mode theories, is the one based on the 
derivation of evolution equations for the complex amplitudes of the field frequency components.  Somewhat surprisingly, studies 
of wave mixing in modern SOAs (that is, SOAs characterized by a nonlinear dependence of the recombination rate and material 
gain on carrier density) based on this approach seem to be absent in the literature. In a couple of recent papers [7,8], the 
authors assume a linear gain and a polynomial recombination rate, as it would be appropriate for bulk SOAs. However, they 
express the recombination rate as R(N) = N/\tau_c(N), where \tau_c(N) = N/R(N) has the meaning of an equivalent 
spontaneous carrier lifetime and, in the derivation of the coupled-mode equations,  they replace tau_c(N) with some time- and 
space-independent value. This makes, again, the assumed carrier recombination rate linear.





Another distinctive assumption of all existing coupled-mode approaches to multi-wave mixing in SOAs is that the carrier density 
modulation induced by the mixing is characterized by a single harmonic component [8]. This is a reasonable assumption when 
a single frequency component is dominant over the others, like for instance, in four-wave mixing (FWM) experiments where a 
single pump and a frequency-detuned weak signal are injected into the SOA. On the contrary, this assumption is not satisfied 
when multiple frequency components, detuned by a few gigahertz, have comparable intensities. This configuration 
characterizes for instance experiments where two strong pumps are injected at frequencies -\Omega+\omega_0 and \Omega + 
\omega_0, and one is interested in the amplification of a weak signal injected at the central frequency \omega_0. In this case, 
the strongest carrier modulation occurs at the beat frequency 2 \Omega between the two strong pumps, but the signal 
amplification is mainly affected by the, possibly weaker, carrier modulation at frequency \Omega. This configuration recently 
became of great interest because it describes the operation of a relevant class of SOA-based phase sensitive amplifiers (PSAs) 
[9-13].





In this paper, we derive coupled-mode equations describing multi-wavelength mixing in SOAs characterized by arbitrary 
functional dependencies of the recombination rate and material gain on carrier density. These include both QW and bulk SOAs. 
The proposed model, which in what follows we refer to as the “couple-mode model,” takes into account the frequency 
dependence of the material gain, as well as all orders of the waveguide dispersion, and accommodates input optical waveforms 
consisting of arbitrary combinations of multiple frequency components (We consider here only the nonlinearity that comes from 
carrier modulation, neglecting ultrafast nonlinearity arising from carrier heating, two photon absorption and spectral hole 
burning. This choice has been motivated to keep the analysis simple, and also because we are interested to cases where 
nonlinearity is large enough to be used in all-optical processing applications or to be an issue in applications where linearity is 
sought for. In these cases, the frequency detuning does not exceed a few tens of gigahertz, and in this detuning range the 
nonlinear modulation is mostly caused by carriers. The inclusion of ultrafast processes, however, does not pose any conceptual 
difficulties, and can be done along the lines of ref. [14] assuming that the gain depends on quantities other than carrier density, 
like e.g. the carrier temperature for carrier heating, or the energy-resolved population of carriers for spectral hole burning, and 
assuming a linear decay process of these quantities towards their steady state values. The effect of carrier capture and escape 
processes in QW structures can be similarly taken into account by considering two distinct carrier densities, one for the 
confinement region and one for the QW. Also these processes, however, become of relevance for a pump-probe frequency 
detuning of the order of one hundred of GHz  [15], much higher than the range of values considered here.). The implementation 
of the model is illustrated in detail in the case of a QW SOA characterized by a logarithmic dependence of the optical gain on 
the carrier density N, and by a cubic-polynomial carrier recombination rate R(N). The accuracy of the coupled-mode model is 
successfully tested (unlike in previous related studies) by means of a meticulous comparison with the results obtained by 
integrating the space-time equations of the SOA full model. Remarkably, owing to their inherent simplicity, the coupled-mode 
equations imply computational costs by orders of magnitude smaller than those required by the space-time equations, thus 
enabling the efficient characterization of multi-wave mixing in SOA structures, which would be otherwise highly impractical. We 
then apply the derived coupled-mode equations to studying the operation of a recently demonstrated dual-pumped PSA based 
on an integrated QW SOA [11]. We prove the results to be consistent with the experimental data, and confirm the excellent 
agreement with the results obtained by using the full SOA model.





CONCLUSION


To conclude, we derived a couple-mode model for multi-wave mixing in SOAs characterized by arbitrary functional 
dependencies of the recombination rate and material gain on carrier density. The model takes into account the frequency 
dependence of the material gain, as well as all orders of the waveguide dispersion, and accommodates input fields consisting of 
arbitrary combinations of multiple frequency components. We showed that the conventional approach assuming a limited 
number of generated four-wave mixing components gives inaccurate results when two waveforms of similar intensities are 
injected into the SOA. In this case, our model gives highly accurate results if a sufficient number of generated components are 
taken into account, as we showed by direct comparison with full time-domain simulations. We applied the coupled-mode model 
to studying the operation of a recently demonstrated dual-pumped PSA based on an integrated QW SOA [11-13], and showed 
that the outcome of the model is consistent with the experimental results.
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Efficient and Accurate Modeling of Multiwavelength
Propagation in SOAs: A Generalized

Coupled-Mode Approach
Cristian Antonelli, Antonio Mecozzi, Fellow, IEEE, Fellow, OSA, Wangzhe Li,

and Larry A. Coldren, Life Fellow, IEEE, Fellow, OSA

Abstract—We present a model for multiwavelength mixing in
semiconductor optical amplifiers (SOAs) based on coupled-mode
equations. The proposed model applies to all kinds of SOA struc-
tures, takes into account the longitudinal dependence of carrier
density caused by saturation, it accommodates an arbitrary func-
tional dependencies of the material gain and carrier recombina-
tion rate on the local value of carrier density, and is computation-
ally more efficient by orders of magnitude as compared with the
standard full model based on space-time equations. We apply the
coupled-mode equations model to a recently demonstrated phase-
sensitive amplifier based on an integrated SOA and prove its results
to be consistent with the experimental data. The accuracy of the
proposed model is certified by means of a meticulous comparison
with the results obtained by integrating the space-time equations.

Index Terms—Nonlinear optics, semiconductor optical ampli-
fiers, wave mixing.

I. INTRODUCTION

S EMICONDUCTOR optical amplifiers (SOAs) have been
in the spotlight for many years, attracting ever growing in-

terest in multiple areas of applications. These include all-optical
signal processing in fiber-optic communication networks, cost-
effective local area transmission, and, more recently, integrated
silicon photonics, where SOAs are the building blocks for
the implementation of large-scale integrated photonic circuits.
Many of these applications rely on the mixing of the wave-
length components of the propagating electric field, and their
theoretical study can be performed by numerically integrating
the coupled nonlinear equations describing the evolution of the
electric field envelope in the longitudinal direction along the
SOA, and the temporal carrier dynamics [1], [2]. Obviously,
this approach is not suitable for the efficient design of an SOA,
owing to the intensive computational effort that it involves. The
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search for computationally efficient and analytically tractable
models has yield the formulation of what is sometimes referred
to as a reduced model for the nonlinear SOA response [3], where
the space-time equations reduce to a single ordinary differen-
tial equation [3], suitable for the analytic study of multi-wave
mixing (see, e.g., [3]–[5]). The formulation of a reduced model
hinges upon two major assumptions. The first is that the spon-
taneous carrier recombination rate is proportional to the carrier
spatial density, and the second is that the material gain also de-
pends linearly on the carrier density. These assumptions emanate
from early studies of semiconductor lasers. Indeed, in lasers the
carrier density dynamics is characterized by small deviations
from a steady state value which is set by the threshold condition
of gain equalling the cavity loss. The small deviations around
this value are only caused by amplified spontaneous emission
(ASE) and by some spatial hole burning, which is however of
little significance because in most structures the intra-cavity
optical intensity is only moderately inhomogeneous. Conse-
quently, in laser structures, gain and spontaneous emission rate
can be accurately described by a linearized expression around
the steady state carrier density. Early studies on SOA structures
also used linear expressions for gain and carrier recombination,
and in this case the linearization, albeit less accurate, found
its ground on its simplicity and, more importantly, on the lim-
ited gain of legacy SOAs, which implied a limited longitudinal
inhomogeneity of the optical field in the optical waveguide.

Unfortunately, these assumptions do not reflect the character-
istics of modern SOAs, as is clarified in what follows. Modern
SOAs may have linear gain in excess to 40 dB, implying a pro-
nounced longitudinal inhomogeneity of the field intensity and
hence of gain saturation. This may cause, in some cases, that the
gain is only slightly saturated at the waveguide input, whereas
it is almost zero at the waveguide output, where saturation is so
high that the carrier density approaches its transparency value.
When this is the case, a linear expression for the gain is rea-
sonably accurate only if the gain does not deviate significantly
from the linear expansion around the transparency carrier den-
sity over a range of values. The nowadays widely accepted forms
for the dependence of the material gain on carrier density do not
meet this requirement, because over such wide range of carrier
density values the nonlinearity cannot be neglected, especially
in quantum-well (QW) SOAs devices [6]. This makes the use
of linear forms for the gain not an option for an accurate and
quantitative description of the SOA dynamics. In addition, ad-
vances in material fabrication have made in modern devices the

0733-8724 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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contribution of defect-induced carrier recombination, which is
proportional to the carrier density N , negligible, with the con-
sequence that spontaneous carrier recombination is dominated
primarily by radiative recombination, whose rate is proportional
to N 2 , and secondarily by Auger recombination, whose rate is
proportional to N 3 [6]. This reality makes the linearization of
the spontaneous recombination rate also a questionable approx-
imation. All these arguments together suggest that the accuracy
of models of the nonlinear SOA response based on linearization
of the carrier recombination rate and gain may be, in state-of-
the-art devices, highly inaccurate.

A natural approach to the study of wave mixing in SOAs,
which closely reminds coupled-mode theories, is the one based
on the derivation of evolution equations for the complex am-
plitudes of the field frequency components. Somewhat surpris-
ingly, studies of wave mixing in modern SOAs (that is, SOAs
characterized by a nonlinear dependence of the recombination
rate and material gain on carrier density) based on this ap-
proach seem to be absent in the literature. In a couple of re-
cent papers [7], [8], the authors assume a linear gain and a
polynomial recombination rate, as it would be appropriate for
bulk SOAs. However, they express the recombination rate as
R(N) = N/τc(N), where τc(N) = N/R(N) has the meaning
of an equivalent spontaneous carrier lifetime and, in the deriva-
tion of the coupled-mode equations, they replace τc(N) with
some time- and space-independent value. This makes, again,
the assumed carrier recombination rate linear.

Another distinctive assumption of all existing coupled-mode
approaches to multi-wave mixing in SOAs is that the carrier
density modulation induced by the mixing is characterized by a
single harmonic component [8]. This is a reasonable assumption
when a single frequency component is dominant over the oth-
ers, like for instance, in four-wave mixing (FWM) experiments
where a single pump and a frequency-detuned weak signal are
injected into the SOA. On the contrary, this assumption is not
satisfied when multiple frequency components, detuned by a
few gigahertz, have comparable intensities. This configuration
characterizes for instance experiments where two strong pumps
are injected at frequencies −Ω + ω0 and Ω + ω0 , and one is
interested in the amplification of a weak signal injected at the
central frequency ω0 . In this case, the strongest carrier modu-
lation occurs at the beat frequency 2Ω between the two strong
pumps, but the signal amplification is mainly affected by the,
possibly weaker, carrier modulation at frequency Ω. This con-
figuration recently became of great interest because it describes
the operation of a relevant class of SOA-based phase sensitive
amplifiers (PSAs) [9]–[13].

In this paper, we derive coupled-mode equations describing
multi-wavelength mixing in SOAs characterized by arbitrary
functional dependencies of the recombination rate and material
gain on carrier density. These include both QW and bulk SOAs.
The proposed model, which in what follows we refer to as the
couple-mode model, takes into account the frequency depen-
dence of the material gain, as well as all orders of the wave-
guide dispersion, and accommodates input optical waveforms
consisting of arbitrary combinations of multiple frequency

components.1 The implementation of the model is illustrated
in detail in the case of a QW SOA characterized by a log-
arithmic dependence of the optical gain on the carrier den-
sity N , and by a cubic-polynomial carrier recombination rate
R(N). The accuracy of the coupled-mode model is success-
fully tested (unlike in previous related studies) by means of a
meticulous comparison with the results obtained by integrating
the space-time equations of the SOA full model. Remarkably,
owing to their inherent simplicity, the coupled-mode equations
imply computational costs by orders of magnitude smaller that
those required by the space-time equations, thus enabling the
efficient characterization of multi-wave mixing in SOA struc-
tures, which would be otherwise highly impractical. We then
apply the derived coupled-mode equations to studying the oper-
ation of a recently demonstrated dual-pumped PSA based on an
integrated QW SOA [11]. We prove the results to be consistent
with the experimental data, and confirm the excellent agreement
with the results obtained by using the full SOA model.

II. COUPLED-MODE EQUATIONS FOR MULTI-WAVELENGTH

PROPAGATION IN SOAS

We denote by E(z, t) the slowly-varying complex envelope
of the electric field propagating in the SOA in the temporal
reference frame that accommodates the field group velocity vg ,
corresponding to the real field

E(z, t) = Re
[
E

(
z, t − z

vg

)
e−i[ω0 t−β (ω0 )z ]

]
, (1)

with ω0 being the optical frequency. The field envelope E is
normalized so that that |E|2 is the optical power flowing through
the transverse waveguide section. It is related to the photon flux
P in photons per unit time and area through the relation

|E|2 = �ω0SmodP, (2)

where Smod = S/Γ is the modal area of the waveguide, with S
denoting the effective SOA area and Γ the optical confinement
factor. The evolution of E(z, t) along the SOA is governed by
the familiar equation

∂E

∂z
=

1
2

[(1 − iα)Γĝ − αint ] E + iβ̂E + rsp , (3)

1We consider here only the nonlinearity that comes from carrier modulation,
neglecting ultrafast nonlinearity arising from carrier heating, two photon ab-
sorption and spectral hole burning. This choice has been motivated to keep the
analysis simple, and also because we are interested to cases where nonlinearity
is large enough to be used in all-optical processing applications or to be an
issue in applications where linearity is sought for. In these cases, the frequency
detuning does not exceed a few tens of gigahertz, and in this detuning range the
nonlinear modulation is mostly caused by carriers. The inclusion of ultrafast
processes, however, does not pose any conceptual difficulties, and can be done
along the lines of ref. [14] assuming that the gain depends on quantities other
than carrier density, like, e.g., the carrier temperature for carrier heating, or the
energy-resolved population of carriers for spectral hole burning, and assuming
a linear decay process of these quantities towards their steady state values. The
effect of carrier capture and escape processes in QW structures can be similarly
taken into account by considering two distinct carrier densities, one for the con-
finement region and one for the QW. Also these processes, however, become of
relevance for a pump-probe frequency detuning of the order of 100 GHz [15],
much higher than the range of values considered here.
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where α is the Henry factor, αint is the SOA internal loss co-
efficient, and rsp is the spontaneous emission noise term. By ĝ

and β̂ we denote the material gain operator and the wavenum-
ber operator. The operator formalism allows us to conveniently
accommodate the frequency dependence of the gain as well as
the waveguide dispersion to any order. Within this formalism
the two operators can be expressed as

ĝ =
∞∑

m=0

1
n!

∂ng(N,ω0)
∂ωn

0

(
i
∂

∂t

)n

(4)

β̂ =
∞∑

m=2

1
n!

dnβ(ω0)
dωn

0

(
i
∂

∂t

)n

, (5)

where g(N,ω) is the gain coefficient expressed as a function of
the carrier density N and the optical frequency ω, and β(ω) is
the frequency-dependent field propagation constant. The expres-
sions for ĝ and β̂ in Eqs. (4) and (5) are obtained by expanding
g(N,ω) and β(ω) around the carrier frequency ω0 . The fact
that the sum in Eq. (5) starts from n = 2 is consistent with the
definition of E(z, t) in Eq. (1), which already accounts for the
effect of β(ω0) and dβ(ω0)/dω0 = 1/vg .

The spontaneous emission noise term rsp is modeled as a
zero-mean, complex phase independent random process. It de-
pends explicitly on the carrier density, besides time and space,
i.e., rsp = rsp(N, t; z). Its correlation function is [16]

E
[
r∗sp(N, t; z)rsp(N, t′; z′)

]
= �ω0Rsp(N, t − t′)δ(z − z′),

(6)
where by the symbol E we denote ensemble averaging. Here the
term δ(z − z′) accounts for the fact that different longitudinal
waveguide sections provide statistically independent contribu-
tions to the noise term, and [6]

Rsp(N, t′ − t) =
∫

e−i(ω−ω0 )(t ′−t)nsp(N,ω)Γg(N,ω)
dω

2π
,

(7)
is the spontaneous emission rate into the waveguide mode and in
the field propagation direction, with nsp denoting the population
inversion factor [6]. Spontaneous emission is a small perturba-
tion of the propagating field, so that we may safely replace N
with its temporal average, thus neglecting the effect of its small
fluctuations around this value. Within this approximation the
process of spontaneous emission can be modeled as a stationary
process in time.

The equation for the carrier density is

∂N

∂t
= RJ − Rrad − Rnr , (8)

where the meaning of each of the terms at the right-hand side
of the equation is discussed in what follows. The term

RJ =
JwaL

V
=

J

ed
, (9)

is the carrier injection rate into the active volume V = SL =
wadL, where wa is the active region width, L is the active
region length, and d is the active region thickness. The term
Rrad = Rin + Rout is the radiative recombination rate related to

processes in which the recombination of one carrier is associated
to the generation of one photon. The term Rin refers to processes
in which emission occurs into the guided mode. By definition,
this implies that Rin(N) is related to the flux of photons flowing
in the waveguide P through the balance relation

RinSdz = Smod [P (z + dz) − P (z)] , (10)

which yields

Rin =
1
Γ

∂P

∂z
. (11)

The processes accounted for by Rin includes stimulated emis-
sion and spontaneous emission within the waveguide mode
(which is only a fraction of the overall spontaneous emission).
The term Rout(N) is the rate of recombinations accompanied by
spontaneous emission of photons outside the waveguide mode
and it can be expressed as Rout = BN 2 − Rsp,in , where the
term BN 2 is known to be an excellent approximation of the
total rate of recombinations associated with spontaneous emis-
sion (inside and outside the waveguide mode) [6], and Rsp,in
accounts for the rate of recombinations that produce sponta-
neous emission in the waveguide mode, namely it accounts for
the contribution to the carrier recombination rate of the noise
term rsp that appears in Eq. (3). Finally, the term Rnr is the
recombination rate of non-radiative processes, which we ex-
press as Rnr = AN + CN 3 , where the linear contribution AN
is mostly due to defect-induced recombination, and the cubic
contribution CN 3 to Auger recombination.2 By combining the
various mechanisms, Eq. (8) becomes

∂N

∂t
= −R(N) +

J

ed
+ Rsp,in − 1

�ω0S

∂|E|2
∂z

, (12)

where by R(N) we denote the familiar recombination rate3

R(N) = AN + BN 2 + CN 3 . (13)

By expanding the derivative ∂|E|2/∂z and using Eq. (3),
Eq. (12) assumes the form

∂N

∂t
= −R(N) +

J

ed
− 1

�ω0S
Re [E∗(1 − iα)ΓĝE] , (14)

where we used the fact that β̂ is a Hermitian operator, and hence
it does not contribute to ∂|E|2/∂z. The last term at the right-
hand side of Eq. (14) reduces to the familiar form Γg|E|2/�ω0S
if the gain coefficient is assumed to be frequency independent.
Note that in Eq. (14), the term Rsp,in disappears because it

2We note that, while the resulting cubic polynomial expression AN +
BN 2 + CN 3 has been shown to fit very well the experimental data in most
cases [6], the one-to-one correspondence between the three terms of the poly-
nomial and the three recombination mechanisms is not always as definite as is
illustrated in the main text. For instance, in the case of non-parabolic bands (the
normal case), radiative recombination is also non-parabolic and is best modeled
with a bit of linear component; carrier leakage (due to finite QW barriers) has an
exponential dependence and requires a polynomial fit, affecting the numerical
values of A, B , and C .

3This expression of R(N ) is widely established and is given here for consis-
tency with previous studies. We stress, however, that the analysis that follows
does not make use of it explicitly, and rather applies to arbitrary expressions of
R(N ).
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cancels with an opposite term that—by definition—comes from
∂|E|2/∂z.

We note that Eqs. (3) and (14) can be generalized so as to
include the field polarization in the analysis. While this task
is rather straightforward and does not involve any conceptual
challenge, we intentionally ignore polarization-related issues in
order to keep the focus on the main objective of this work, which
is the study of multi-wavelength propagation.

We express the multi-wavelength electric field and the carrier
density as follows,

E(z, t) =
∑

k

Ek (z)e−ikΩt , (15)

N(z, t) = N0(z) +
∑

k

ΔNk (z)e−ikΩt , (16)

where the coefficients ΔNk must satisfy the equality
ΔN−k (z) = ΔN ∗

k (z) for N(z, t) to be real. The term N0(z) +
ΔN0(z) is the z-dependent time-independent value of the car-
rier density that characterizes the system when it achieves its
stationary state, and N0(z) is defined as the solution of

J

ed
= R(N0) +

Γ
�ω0S

∑
k

g(N0 , ωk )|Ek |2 . (17)

For values of the frequency spacing Ω/2π that exceed the SOA
modulation bandwidth, the temporal fluctuations of N(z, t)
around its stationary value are filtered by the carrier dynamics
and hence they can be treated within a perturbation approach.
A consequence of this situation is that the deviation ΔN0(z)
of the stationary carrier density value from N0(z) is also a per-
turbation, and is small compared to N0(z). In this framework,
all carrier-density dependent quantities that appear in Eqs. (3)
and (14) can thus be expanded to first order with respect to
ΔN = N − N0 , namely

R(N) = R(N0) +
ΔN

τ(N0)
, (18)

g(N,ω) = g(N0 , ω) + gN (N0 , ω)ΔN, (19)

where by the subscript N we denote differentiation with respect
to N . The quantity

τ(N0) = RN (N0)−1 =

[
dR(N)

dN

∣∣∣∣
N =N0

]−1

, (20)

is the spontaneous carrier lifetime, and

gN (N0 , ω) =
∂g(N,ω)

∂N

∣∣∣∣
N =N0

, (21)

is the differential gain. We stress that these are z-dependent
quantities, owing to the fact that N0 = N0(z), and hence their
values evolve along the SOA. We also notice that the effective
carrier lifetime governing the dynamics of carrier modulation
around the steady state value is the differential carrier lifetime
τ(N0) given in Eq. (20) and also introduced in [17], and not
the total carrier lifetime τc(N0) = N0/R(N0) used in Refs. [7]

and [8]. The difference between these two quantities is approxi-
mately a factor of 2 when the radiative bimolecular recombina-
tion BN 2 is the dominant contribution to R(N), or 3 when the
Auger recombination CN 3 is dominant. By inserting Eqs. (18)
and (19) into Eq. (3) and Eq. (14) we obtain

∂E

∂z
=

1
2

[(1 − iα)Γ(ĝ0 + ΔNĝN ) − αint ] E + iβ̂E + r, (22)

and

∂ΔN

∂t
= − ΔN

τ(N0)
−

[
R(N0) −

J

ed

]

−Re [E∗(1 − iα)Γĝ0E]
�ω0S

−ΔN
Re [E∗(1 − iα)ΓĝN E]

�ω0S
, (23)

where the operators ĝ0 and ĝN are defined as in Eq. (4), pro-
vided that g(N,ω) is replaced with g(N0 , ω) and gN (N0 , ω),
respectively.

The evolution equation for the electric field coefficient Ek is
obtained by inserting the expression of the field (15) in Eq. (22)
and by equating the coefficient of the term exp(−ikΩt) at the
two sides of the resulting equation. As a result, one finds

dEk

dz
=

[
1
2
(1 − iα)Γg(N0 , ωk ) − αint + iβ(ωk )

]
Ek

+
1
2
(1 − iα)

∑
n

ΔNk−nΓgN (N0 , ωn )En + rk , (24)

where we used ĝ0E =
∑

k g(N0 , ωk )Ek exp(−ikΩt) and ĝN

E =
∑

k gN (N0 , ωk )Ek exp(−ikΩt), with ωk = ω0 + kΩ.
The noise term rk is defined by

rk (N ; z) =
∫

dteikΩtrsp(N, t; z), (25)

has zero mean 〈rk (N ; z)〉 = 0, and its variance follows from

〈r∗k (N ; z)rh (N ; z′)〉 = δ(z − z′)�ω0

×
∫

dt

∫
dt′ exp[iΩ(kt′ − ht)]Rsp(N, t′ − t). (26)

Using the stationarity of Rsp , we may express the above as

〈r∗k (N ; z)rh (N ; z′)〉 = δk,hδ(z − z′)�ω0

×nsp(N,ω0 + kΩ)Γg(N,ω0 + kΩ). (27)

The terms rk (N ; z′), k = 0, ±1, ±2, . . . are therefore a set of
phase-independent, spatially-uncorrelated noise terms, which
can be modeled as differentials of independent Wiener pro-
cesses. At this point we can recast Eq. (24) in the following
compact form

d 	E

dz
=

[
1
2
(1 − iα)Γ(G + H) − αintI + ib

]
	E + 	r, (28)

where 	E and 	r are column vectors constructed by stacking the
electric field coefficients Ek and the noise projections rk one on
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top of another, respectively, with E0 and r0 occupying the cen-
tral position, namely 	E = [. . . , E2 , E1 , E0 , E−1 , E−2 , . . .]t ,
and the same for 	r (the superscript t stands for “trans-
posed”). The vector 	E and 	r are of course infinite-dimensional,
and so are the square matrices G, H and b. Consistently
with the definition of 	E, we use positive and negative in-
dices to identify the elements of these matrices, with the
(0, 0) element occupying the central position. In particu-
lar, G and b are diagonal matrices whose (k, k) elements
are equal to Gk,k = g(N0 , ωk ) and bk,k = β(ωk ) − β(ω0) −
kΩdβ(ω0)/dω0 , respectively, whereas the (k, n) element of H
is Hk,n = ΔNk−ngN (N0 , ωn ). By I we denote the identity ma-
trix (regardless of its dimensions).

We now proceed to the extraction of the carrier density coeffi-
cients ΔNk by equating the terms proportional to exp(−ikΩt)
at the two sides of Eq. (23), when the expression of ΔN in
Eq. (16) is inserted in it. After some straightforward algebra,
involving the use of Eq. (17), one obtains

(1 − ikτΩ) ΔNk = −
∑

h

ΔNhpk,h + Nk , (29)

where

Nk = −τ(N0)R(N0)(1 − δk,0)

×
∑

n

[
(1 − iα)En+kE∗

n

Pstim (N0 , ωn+k )
+

(1 + iα)En+kE∗
n

Pstim (N0 , ωn )

]
, (30)

pk,h =
∑

n

[
(1 − iα)En+k−hE∗

n

Psat(N0 , ωn+k−h)
+

(1 + iα)En+k−hE∗
n

Psat(N0 , ωn )

]
.

(31)

The quantity

Psat(N0 , ω) =
�ω0S

τ(N0)ΓgN (N0 , ω)
(32)

is the familiar saturation power, although its definition accounts
for the frequency dependence of the gain coefficient explicitly,
and

Pstim (N0 , ω) = R(N0)
�ω0S

Γg(N0 , ω)
(33)

is the power value above which carrier depletion is dominated
by stimulated emission. We hence refer to Pstim as to stimulated
power. Equation (29) can be conveniently recast in the following
compact form

(I − iτΩk + p)Δ 	N = 	N , (34)

where the (k, h) element of the matrix p is equal to pk,h , and k is
a diagonal matrix with diagonal elements κk,k = k. The column
vectors Δ 	N and 	N are constructed (like the field vector 	E) by
stacking the coefficients ΔNk and Nk one on top of another, re-
spectively, namely, Δ 	N = [. . . , ΔN1 , ΔN0 , ΔN−1 , . . .]t and
	N = [. . . , N1 , 0, N−1 , . . .]t . The coefficients N0 and ΔNk are
hence obtained for a given electric field state by solving Eqs. (17)
and (34). These are the most general coupled-mode equations
accounting for any functional dependence of the recombination

rate and material optical gain on carrier density, as well as for
the frequency dependence of the gain and waveguide dispersion.

III. IMPLEMENTATION OF THE COUPLED-MODE EQUATION

MODEL IN REALISTIC SOA STRUCTURES

As is customarily done in most studies of practical relevance,
where the waveguide dispersion and the frequency dependence
of the gain coefficient have been shown to play a minor role, in
this section we neglect chromatic dispersion, as well as higher-
order dispersion, and assume frequency-independent gain. With
this simplification the matrices G, H, and p become frequency-
independent and assume a very convenient form, as is shown
in what follows. We also neglect the presence of spontaneous
emission noise terms, whose implications on the SOA perfor-
mance, chiefly on the SOA noise figure, will be the subject of
future work.

The multi-wavelength propagation model introduced in the
previous section involves an infinite number of coefficients Ek

and ΔNk , a situation that is obviously incompatible with its
implementation in any numerical platform. However, as will
be shown in the next section, high-order coefficients (namely
Ek and ΔNk coefficients with large values of |k|) provide a
negligible contribution to the solution of Eqs. (17), (28), and
(34), and hence they can be omitted by truncating the vectors
	E and Δ 	N . The truncation of 	E and Δ 	N requires of course
that all matrices involved in Eqs. (28) and (34) be also truncated
accordingly. In what follows we provide explicit expressions for
those matrices and discuss the procedure that allows the efficient
computation of 	E and Δ 	N .

The truncation procedure of the infinite set of equations (28)
can be performed in a number of ways. One possible approach
is assuming that Ek (z) = 0 for |k| > M . Here M is an integer
number that can be determined self consistently by checking
that the integration of the equations for M → M + 1 yields in-
distinguishable results. This assumption implies ΔNk (z) = 0
for |k| > 2M , owing to the absence of beat terms at frequency
offsets larger than 2MΩ. A simpler yet equally accurate ap-
proach is to assume that the carrier density coefficients ΔNk (z)
are also zero at frequency offsets greater than MΩ. Here we
adopt the latter approach, within which Eqs. (15) and (16)
specialize to

E(z, t) =
M∑

k=−M

Ek (z)e−ikΩt , (35)

N(z, t) = N0(z) +
M∑

k=−M

ΔNk (z)e−ikΩt . (36)

Accordingly, the field vector 	E and carrier density modula-
tion vector Δ 	N , consist of (2M + 1) components. Matrices
G and H in Eq. (28) become (2M + 1) × (2M + 1) matri-
ces. In particular, owing to the assumption of frequency-flat
gain, one can readily verify the equalities G = g(N0)I, and
H = gN (N0)T(Δ 	N), where by T2M +1(ΔNk ) we denote a
Hermitian-symmetric Toeplitz matrix [18]. Below we give the
expression of T2M +1(ΔNk ) in the case M = 2 for illustration
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purposes,

T5(ΔNk ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔN0 ΔN1 ΔN2 0 0
ΔN ∗

1 ΔN0 ΔN1 ΔN2 0
ΔN ∗

2 ΔN ∗
1 ΔN0 ΔN1 ΔN2

0 ΔN ∗
2 ΔN ∗

1 ΔN0 ΔN1

0 0 ΔN ∗
2 ΔN ∗

1 ΔN0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (37)

The neglect of the waveguide dispersion yields b = 0, and hence
Eq. (28) simplifies to

d 	E

dz
=

[
(1 − iα)g(N0) − αint

2
I + T2M +1(ΔNk )

]
	E, (38)

where N0 is the solution of

J

ed
= R(N0)

[
1 +

| 	E|2
τPstim (N0)

]
, (39)

with

Pstim (N0) = R(N0)
�ω0S

Γg(N0)
. (40)

The expression for the carrier density modulation vector Δ 	N
simplifies to

Δ 	N = − τR(N0)
Pstim (N0)

[
I − τΩk +

T2M +1(Ck )
Psat(N0)

]−1
	C, (41)

where

Psat(N0) =
�ω0S

τ(N0)ΓgN (N0)
, (42)

and where Ck is the discrete autocorrelation function of 	E,
namely

Ck =
M∑

n=−M

En+kE∗
n , (43)

in which we assume En = 0 for |n| > M . The expression of 	C
in the case M = 2 is

	C = [C2 , C1 , C0 , C
∗
1 , C

∗
2 ]

t , (44)

and that of T5(Ck ) is

T5(Ck ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C0 C1 C2 C3 C4

C∗
1 C0 C1 C2 C3

C∗
2 C∗

1 C0 C1 C2

C∗
3 C∗

2 C∗
1 C0 C1

C∗
4 C∗

3 C∗
2 C∗

1 C0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (45)

where we used C−k = C∗
k , as can be readily verified by inspect-

ing Eq. (43).
The numerical integration of the coupled-equations involves

a three-step procedure for the transition from z to z + Δz, given
the field vector 	E(z). These are:

1) Find the value of N0(z) by solving Eq. (39);
2) Extract the carrier density vector Δ 	N(z) as in Eq. (41);

TABLE I
SOA PARAMETERS

Description Value Units

Linear recombination coefficient A 106 s−1

Bimolecular recombination coefficient B 0.3 × 10−1 0 cm3 /s
Auger coefficient C 3.3 × 10−2 9 cm6 /s
Optical confinement factor Γ 9.7%
Linewidth enhancement factor α 5
Optical wavelength λ0 1561 nm
Group velocity vg 8.33× 109 cm/s
Active region width wa 2× 10−4 cm
Active region tickness d 65× 10−7 cm
Active region length L 0.1 cm
Gain coefficient g0 1800 cm−1

Transparency carrier density N t r 2× 101 8 cm−3

SOA internal loss α in t 5 cm−1

Injection current density J 3.4× 103 A/cm2

Frequency spacing Ω/2π 8.6 GHz

3) Evaluate the field vector 	E(z + Δz) by solving Eq. (38)
from z to z + Δz while using the values of N0 and ΔNk

obtained in steps 1 and 2, according to

	E(z + Δz) = exp
{

(1 − iα)g[N0(z)] − αint

2
Δz

}

exp {T2M +1[ΔNk (z)]Δz} 	E(z). (46)

A. Model Validation

In this section we test the accuracy of the proposed multi-
wavelength propagation model against the results obtained by
integrating the full model’ space-time equations (3) and (14). To
this end we consider a QW SOA, characterized by the following
logarithmic functional dependence of the gain coefficient on
carrier density [6]

g(N) = g0 log
(

N

Ntr

)
, (47)

where g0 is a gain parameter and Ntr is the carrier density
required for transparency.4 The expansion of the gain function
is in this case g(N) � g(N0) + gN (N0)ΔN , with

g(N0) = g0 log
(

N0

Ntr

)
, gN (N0) =

g0

N0
. (48)

The physical and operational parameters of the SOA are listed
in Table I (we note that the SOA is operated with the injection
current density J = 8.5Jtr , where Jtr = ed(ANtr + BN 2

tr +
CN 3

tr) is the injection current density required for transparency).
The SOA is injected with a three-wavelength optical signal char-
acterized by the complex envelope

Ein(t) =
√

W1 e−iΩt +
√

W0 +
√

W−1 eiΩt (49)

with W1 = W−1 = −2 dBm, and W0 = −7 dBm. For this set
of parameters we solved the coupled-mode equations (38), (40),
and (41) with the input field vector 	Ein = [· · · , 0,

√
W1 ,

√
W0 ,

4Of course, the use of different functional forms of g(N ), for instance the
more accurate three parameter expression g(N ) = g0 ln[(N + Ns )/(Ntr +
Ns )] also reported in [6], is fully equivalent in terms of model complexity.
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Fig. 1. Intensity (top panel) and phase (bottom panel) of the field components
Ek versus normalized propagation distance z/L for the displayed values of k
and for the SOA parameters’ values in Table I. Solid curves refer to the coupled-
mode model, while circles were obtained by solving the space-time equations
of the full model.

√
W−1 , 0, · · ·]t . We used M = 6 and checked that larger values

of M yield indistinguishable results. We then integrated the full
model’s equations (3) and (14) with the procedure described in
[19], and extracted the coefficients Ek (z) from the numerical
solution Enum(z, t) according to

Ek (z) ↔ Ω
2π

∫ 2π/Ω

t0

Enum(z, t)eikΩtdt, (50)

where by t0 we denote any time at which the system achieved
its stationary state. The results are shown in Fig. 1. In the top
panel we plot by solid curves the intensities of the coefficients
Ek (z) versus the normalized propagation distance z/L for val-
ues of k ranging between k = −4 and k = 4. By circles we plot
the results obtained with the full model. The excellent accu-
racy of the coupled-mode model is self-evident. Interestingly,
the figure shows that the coupled-mode model is accurate in
describing the formation of FWM components that eventually
(at the SOA output) exceed some of the input components. The
center panel of the same figure shows the corresponding phases

Fig. 2. Intensities of field components Ek at the SOA output |Ek (L)|2 , as
obtained by using the coupled-mode model, for increasing values of M . Each
curve corresponds to a specific value of k and hence it originates at |k| = M .
The top panel refers to the set of parameters listed in Table I and used in Fig. 1,
whereas in the bottom panel the optical confinement factor was increased from
10% to 20%.

of the field coefficients Ek (more precisely the solid curves are
the plot of Phase [Ek (z)] + kΩz/vg , where the second term
accounts for the fact that the coefficients Ek (z) characterize the
field envelope in the time reference delayed by z/vg ). The lower
panel provides a direct validation of the condition |ΔNk | � N0 ,
which was assumed in the perturbation analysis. The top circles
show the time-averaged carrier density (in a logarithmic scale)
extracted from the full model results. Although this quantity is
described in the coupled-mode model by N0 + ΔN0 , we com-
pare it with N0 , which is shown as a solid curve. The excellent
agreement between the two plotted quantities is a proof of the
condition ΔN0 � N0 . Lower curves and markers are plots of
|ΔNk | for values of |k| ranging between 1 and 4 (we recall that
|ΔNk | = |ΔN−k |). The plot shows that the absolute value of the
coefficients ΔNk is more than two orders of magnitude smaller
than N0 , thus confirming the condition |ΔNk | � N0 , also for
|k| > 0. Moreover, the excellent agreement between the full
model and the coupled-mode model validates the perturbation
approach for arbitrary magnitude of the perturbations.

We stress that the coupled-mode model offers considerably
greater computational efficiency, as compared to the full time
domain model. In the specific example of Fig. 1, the integration
time of the coupled-mode equations was more than two orders
of magnitude smaller than the integration time required by the
space-time equations, using in both cases in-house developed
MATLAB routines run on the same workstation.

In Fig. 2 we illustrate the dependence of the coupled-mode
model’s results on the number of field coefficients that are
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Fig. 3. Dual-pumped SOA-based PSA’s gain versus the relative phase of
the input signal φs introduced in Eq. (55). The SOA parameters used in the
numerical computation are those given in Table I, the input pump powers were
set to WP 1 = WP 2 = −2 dBm, and the input signal power to Ws = −22 dBm.
The solid curve refers to the coupled-mode model with M = 4 (larger values of
M yield indistinguishable results), while the circles were obtained by integrating
the space-time equations of the full model. The dashed curve shows the results
obtained with the coupled-mode model by propagating only the pump and signal
components, namely by setting M = 1.

considered. In the top panel we plot the output intensities
|Ek (L)|2 evaluated by solving the coupled-mode equations for
increasing values of M , with each curve corresponding to a
different value of k. Since the accounting for the frequency
component Ek dictates that M ≥ |k|, the curve referring to
Ek originates at M = |k|. The plot shows that in the numer-
ical example considered here the results of the coupled-mode
equations for the component Ek become accurate (that is, the
corresponding curve in the figure becomes flat) for M exceeding
|k| by a one or two units. However, it should be pointed out that
the convergence to the correct result is affected by the specific
SOA parameters’ value and may be slower. This is shown in
the lower panel of the Fig. 2, where the same curves plotted in
the top panel are re-calculated by increasing the SOA optical
confinement factor from 10% to 20% and by leaving the other
SOA parameters unchanged. In this example, it can be seen that
using M < 6 may yield an error in the calculation of |E1(L)|2
up to a factor of 100.

The SOA length assumed in this section for the validation
of the coupled-mode model is intermediate between the typical
length of “ultra-short” SOAs (L < 0.5 mm) and that of “ultra-
long” SOAs (L > 1 mm). We note that while the accuracy of the
coupled-mode model is not affected in the case of shorter SOAs,
the model may require some improvement in the case of ultra-
long SOAs, where one needs to take into account the spatial
dependence of the injection current, as well as its dependence
on the local carrier density [20].

IV. APPLICATION OF THE MODEL: DUAL-PUMPED

SOA-BASED PSA

In this section we apply the coupled-mode model to the study
of the dual-pumped SOA-based PSA presented in [11]–[13].
The goal of this exercise is two-folded. On the one hand we
aim to show that the phase-sensitive gain value obtained with
the coupled-mode model assuming realistic SOA parameters is

consistent with the experimentally obtained value. On the other
hand, we show explicitly that by restricting the coupled-mode
model to the pump and signal components only, as is sometimes
done [21], yields significantly incorrect results when a realistic
dependence of the amplifier gain on carrier density is used.

The waveform at the input of a PSA of the kind considered
here can be expressed as

Ein(t) = eiφ1
√

W1e
−iΩt + eiφ0

√
W0 + eiφ−1

√
W−1e

iΩt ,
(51)

where by W1 and W−1 we denote the optical powers of the
two pumps and by φ1 and φ−1 their absolute phases. The field
component at the central frequency represents the input sig-
nal component. By removing in all components the immaterial
average phase of the two pumps

φc = (φ1 + φ−1)/2, (52)

and denoting by
φs = φ0 − φc (53)

the input signal phase relative to φc , the input field envelope can
be expressed as

Ein(t) = eiφp
√

W1e
−iΩt + eiφs

√
W0 + e−iφp

√
W−1e

iΩt ,
(54)

where φp = (φ1 − φ−1)/2. We further note that the effect of φp

is limited to introducing an immaterial time shift tp = φp/Ω,
and hence it can be safely set to φp = 0. We therefore solve the
space-time equations using the following input waveform,

Ein(t) =
√

WP1 e
−iΩt + eiφs

√
Ws +

√
WP2 e

iΩt , (55)

and the coupled-mode equations with the input field vector

	Ein = [· · · , 0,
√

WP1 , eiφs
√

Ws,
√

WP2 , 0, · · ·]t . (56)

The key quantity that characterizes the performance of the PSA
under scrutiny is the dependence of the signal gain on the phase
φs . In Fig. 3 we plot the gain Gs(φs) = |Es(L)|2/Ws (in deci-
bels) as a function of φs , where in the case of the full model the
term Es(L) is extracted from the numerical solution Enum(L, t)
according to Eq. (50) with z = L. The SOA parameters used in
the numerical example are those given in Table I. The input
pump powers were set to WP1 = WP2 = −2 dBm, and the in-
put signal power to the much smaller value Ws = −22 dBm.
The solid curve is obtained by integrating the coupled-mode
model with M = 4, whereas the circles refer to the space-
time model. The excellent agreement between the coupled-mode
model and the space-time model, like in the previous section,
is self-evident. The thin dashed curve in Fig. 3 shows the result
obtained with the coupled-mode model by including only the
pump and signal field components, that is by using M = 1. The
plot shows that the neglect of high-order FWM products yields
higher gain values and a lower phase dependent gain.

We now proceed to compare the results of the coupled-mode
model with the experimental data reported in ref. [13], wherein
all the details concerning the experiment can be found.

The comparison between the theory and the data is performed
by looking at the dependence of the PSA gain on the input signal
relative phase φs of the kind shown in Fig. 3. To this end, we
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note that the numerical values of the SOA parameters listed in
Table I are those estimated for one of the devices tested in [13],
and specifically for the device with a phase dependent gain of
about 6.3 dB. Some of the parameters were directly taken from
the device geometry, like the active region length and width.
The active region thickness was taken to be 65 nm to reflect
the fact that the active region of the device consisted of 10
InP/InGaAsP QWs of 6.5 nm width each. Some of the param-
eters were estimated by independent analysis, like for instance
the value of Γ � 10%, which was extracted from the mode pro-
file given by a finite-difference-method-based electromagnetic
solver. The value of the transparency current density used in
simulations is Jth = 0.43 kA/cm2 , versus the measured value
of about 1 kA/cm2 . This implies an injection efficiency of about
43%, which includes the loss caused by lateral current spread-
ing in the waveguide region and the carrier trapping efficiency
in the QWs. The values for the gain coefficient g0 and for the
coefficients A, B and C are those typical for the InP/InGaAsP
MQW active region of the SOA used in the experiment [6],
[13]. The waveguide internal loss was also set to the typical
value of αint = 5 cm−1 measured in good quality devices. The
linewidth enhancement factor α = 5 is also within the typical
range of values for devices of this type. With these parameters,
the model predicts about 59 dB of linear gain, whereas the mea-
sured linear gain of the device under test was about 48.5 dB
[13]. The 10 dB difference can, however, be safely attributed to
gain compression induced by ASE—neglected in the model but
significant for zero input in devices with high linear gain—and
to thermal effects within the waveguide.

The comparison between the theoretical curve shown in Fig. 3
and the data requires some care. More specifically, since the way
in which the experiment is performed does not allow a precise
measurement of the input signal power, in this comparison we
look at the output signal power (rather than at the gain). In
the logarithmic scale, this simply requires adding a bias to the
theoretical PSA gain. The relative signal phase φs defined in
Eq. (53) is also not known directly. Indeed in the experiment,
the phase of the input signal is controlled by passing the signal
through a tuning region prior to the injection into the SOA. The
phase change of the signal is proportional to the square root
of the current Iφ injected in the tuning region. A calibration
procedure allowed to establish, for Iφ between 1 and 2 mA,
the relation φ0 − φ1 = πχ

√
Iφ with χ � 1 mA−1/2 . As a re-

sult, the relation between the signal relative phase φs and the
measured control current Iφ , φs = πχ

√
Iφ + φb , obtained us-

ing the definition of φs in Eq. (53), contains the unknown bias
φb = (φ1 − φ−1)/2, which also needs to be added to the theo-
retical signal phase in order to facilitate the comparison between
the theory and the data.

In Fig. 4 we plot the output signal power versus the square-
root injection current

√
Iφ . The markers refer to the experimen-

tal results, and they were taken from [13, Fig. 26(a)]. The solid
curve is obtained from the curve plotted in Fig. 3 by shifting the
vertical and the horizontal axes, so as to fit the data, as discussed
in the previous paragraph. The agreement between theory and
experiment is self evident. We remark that such good agree-
ment cannot be obtained by using the conventional three-wave

Fig. 4. Measured relationship among the signal power, the signal phase and
the square root of the current applied to the phase tuner (see ref. [13]), together
with the curve of Fig. 3, suitably re-centered to fit the data.

model (corresponding to the case M = 1 in our theory and used
in ref. [21]) where the high-order harmonics generated by the
nonlinear interaction between the signal and the two pump are
neglected, unless unrealistic values for the device parameters
are assumed.

V. CONCLUSION

To conclude, we derived a couple-mode model for multi-wave
mixing in SOAs characterized by arbitrary functional depen-
dencies of the recombination rate and material gain on carrier
density. The model takes into account the frequency dependence
of the material gain, as well as all orders of the waveguide dis-
persion, and accommodates input fields consisting of arbitrary
combinations of multiple frequency components. We showed
that the conventional approach assuming a limited number of
generated FWM components gives inaccurate results when two
waveforms of similar intensities are injected into the SOA. In
this case, our model gives highly accurate results if a sufficient
number of generated components are taken into account, as we
showed by direct comparison with full time-domain simulations.
We applied the coupled-mode model to studying the operation
of a recently demonstrated dual-pumped PSA based on an inte-
grated QW SOA [11]–[13], and showed that the outcome of the
model is consistent with the experimental results.
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Photonic Integrated Circuits (ser. Microwave and Optical Engineering),
2nd ed. Hoboken, NJ, USA: Wiley, 2012, ch. 5, p. 257.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% Three_input_waves_versus_z.m %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% This file produces |E_k|^2 in dB versus z/L, and Phase(E_k) versus z/L 
% In agreement with Fig. 1 of the paper 
  
clear; clc; close all; 
  
%%%%%%% Main settings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
WdBm1 = -2; % Input power at frequency w_0 - Om / dBm 
WdBm2 = -2; % Input power at frequency w_0 + Om / dBm 
WdBm0 = -7; % Input power at frequency w_0 / dBm 
Ndz = 1000; % Number of slices in the device modeling 
M = 10;     % Total number of frequency components is 2M+1 
Mplot = 3;  % The plot will incude 2Mplot + 1 frequency components around w_0. N.B. Mplot <= M 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%  INPUT DATA  %%%%%%%%%% 
A = 0*1e6; % Linear recombination coefficient / s^-1 
B = 0.3e-10; % Bimolecular recombination coefficient / cm^3/s 
C = 3.3e-29; % Auger recombination coefficient / cm^3/s 
Gamma = 0.09; % Confinement factor; 
lambda0 = 1561e-9; % Wavelength / m 
D2 = -8000; % Waveguide dispersion / (fs/nm/cm), 
D2 = D2*1e-6; % Waveguide dipersion / (s/m/cm) 
beta2 = - 1/(2*pi*3e8)*lambda0^2*D2; % Waveguide dipersion / (s^2/cm) 
alpha = 5; % Linewidth enhancement factor 
w = 2e-4; % Width of the waveguide / cm 
d = 65e-7; % Active region tickness / cm 
L = 0.1; % SOA length / cm 
gN0 = 1800; % Gain coefficent / cm^-1 
Ntr = 2e18; % Transparency carrier density / cm^-3 
aint = 0.5*1e3*1e-2; % Waveguide internal loss / cm^-1 
Ntrw = Ntr*exp(aint/(Gamma*gN0)); % Waveguide 
% transparency carrier density / cm^-3 
e = 1.602e-19; % Electron charge / C 
E = 1.2825e-19; % Photon energy at 1.55 micrometers / J 
Jtr = (A*Ntrw+B*Ntrw^2+C*Ntrw^3)*e*d; % Waveguide transparency injection 
disp(['Current density for transparency Jtr = ', num2str(Jtr/1000), 'kA/cm^2 ']) 
% current, A/cm^2 
W1 = 10^(WdBm1/10)*1e-3; % Input power at frequency w_0 - Om / W 
W2 = 10^(WdBm2/10)*1e-3; % Input power at frequency w_0 + Om / W 
W0 = 10^(WdBm0/10)*1e-3; % Input power at frequency w_0      / W 
lambda1 = lambda0 + 0.84e-9; % Wavelength of pump 2 (longer) 
lambda2 = lambda0 + 0.7e-9; % Wavelength of pump 1 (shorter) 
f1 = 3e8/lambda1; 
f2 = 3e8/lambda2; 
Om = 2*pi*(f2-f1)/2; % 2 Om = angular frequency shift / s^-1 
J = 8.5*Jtr;%4500*0.8; % Injection current density / (A/cm^2) 
disp(['Current density J = ', num2str(J/1000), ' kA/cm^2']) 
vg = 1e2*3e8/3.6; 
%%%%%%%% END OF INPUT DATA %%%%%%%%%%%%%%% 
  
%%%%%%%% Linear gain %%%%%%%%%%%%%%%%%%%%%%% 
Nin = fzero(@(N) (A*N+B*N^2+C*N^3)-J/(e*d), Ntr); % Carrier density @ J with zero optical input 
Glin = exp((Gamma*gN0*log(Nin/Ntr) - aint)*L); 
disp(['Linear gain Glin = ', num2str(10*log10(Glin)), ' dB']) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%% Preparing to loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dz = L/Ndz; % Width of the slice / cm 
Z = 0:dz:L; 
countZ = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%% Field initialization % 
Nf = M;        %%% Number of right/left frequencies. Total is 2Nf+1 
N2p1 = 2*Nf+1; 
EE_in = zeros(N2p1,1); 
EE_in(Nf+1-1) = sqrt(W1);   
EE_in(Nf+1  ) = sqrt(W0);  
EE_in(Nf+1+1) = sqrt(W2);               %%% Input pump 2 
EE = EE_in; 
EEz = zeros(length(EE_in),length(Z)); EEz(:,1) = EE_in; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



     
for z = Z(2:end) 
    waitbar(z/L) 
     
    %%%%%% Working point %%%%%%%%%%%%%%%%% 
    N0 = fzero(@(x)  J/(e*d) -(A*x+B*x^2+C*x^3) - Gamma/(E*w*d)*gN0*log(x/Ntr)*(EE'*EE) , Nin); %%%% N_0 of the paper 
    RN0 = A*N0+B*N0^2+C*N0^3; 
    tau = 1/(A+2*B*N0+3*C*N0^2); % Spontaneus lifetime / s 
    Nin = N0; 
    countZ = countZ +1; 
    g0 = gN0*log(N0/Ntr); 
    gN = gN0/N0; % Differentiall gain at reference carrier density / cm^2 
    Psat  = E*(w*d)/(Gamma*gN*tau); % Local saturation power / W 
    Pstim = E*(w*d)/(Gamma*g0    )*RN0; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    %%% Evaluation of DN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    EcorrE = conv(EE,conj(EE(end:-1:1)),'same'); 
    Cvec = EcorrE; 
    Cvec(Nf+1) = 0; 
%     Ck = ([EcorrE(Nf+1:-1:1);zeros(Nf,1)]); 
    EcorrE = conv(EE,conj(EE(end:-1:1))); 
    Ck = EcorrE(2*Nf+1:-1:1); 
    MatDN1 = eye(2*Nf+1) - 1i*tau*Om*diag([Nf:-1:-Nf] ); 
    MatDN2 = toeplitz(Ck)/Psat; 
    DN = - tau*RN0*( MatDN1 + MatDN2  )^(-1)*Cvec/Pstim; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %%%%%%% Evolution of E %%%%%%%%%%%%%%%% 
    Emat = 1/2*(1-1i*alpha)*Gamma*gN*toeplitz([DN(Nf+1:-1:1);zeros(Nf,1)]); 
    EE = expm( ( ((1-1i*alpha)*Gamma*g0-aint )/2*eye(2*Nf+1) + Emat )*dz )*EE; 
    EEz(:,countZ) = EE; 
    DDN(:,countZ) = DN; 
    N0z(countZ) = N0; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
  
%%%%%%% Compute phase of Ek %%%%%%%%%%%%%%%% 
for nn = 1:(2*Nf+1) 
    kk = nn - (Nf+1); 
    phiz(nn,:) = angle( EEz(nn,:).*exp(-1i*kk*Om*Z/vg) ); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(1);  
plot(Z/L,10*log10(abs(EEz(Nf+1-Mplot:Nf+1+Mplot,:)).^2/1e-3),'-','linewidth',2); 
WmaxdBm = max(max(10*log10(abs(EEz(Nf+1-Mplot:Nf+1+Mplot,:)).^2/1e-3))); 
ylim([-10, WmaxdBm+1]);  
xlabel('z/L'); ylabel('|E_k|^2 (dBm)') 
  
figure(2);  
plot(Z/L,phiz(Nf+1-Mplot:Nf+1+Mplot,:),'-','linewidth',2) 
  
  



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% PSA_gain_versus_phi_s.m %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% This file produces signal gain in dB versus signal relative phase phi_s 
  
clear; clc; close all; 
  
%%%%%%%%%% Selection of input and output %%%%%%%%% 
Min = 0; % Input frequency: Min * Om 
Mout = 2; % Output frequency: Mout * Om 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%% Main settings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
WdBm1 = -2-3; % Input pump power at frequency w_0 - Om / dBm 
WdBm2 = -2; % Input pump power at frequency w_0 + Om / dBm 
WdBm0 = min([WdBm1,WdBm2]) - 20; % Input signal power at frequency w_0 / dBm 
Ndz = 100; % Number of slices in the device modeling 
M = 5;     % Total number of frequency components is 2M+1 
phi_s_vec = (0:0.001:1)*pi; % Signal phase values phi_s 
%%%% Computation time increases by increasing Ndz   
%%%% and by -3increasing the resolution of phi_s_vec 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%  INPUT DATA  %%%%%%%% 
A = 0*1e6; % Linear recombination coefficient / s^-1 
B = 0.3e-10; % Bimolecular recombination coefficient / cm^3/s 
C = 3.3e-29; % Auger recombination coefficient / cm^3/s 
Gamma = 0.098; % Confinement factor; 
lambda0 = 1561e-9; % Wavelength / m 
D2 = -8000; % Waveguide dispersion / (fs/nm/cm), 
D2 = D2*1e-6; % Waveguide dipersion / (s/m/cm) 
beta2 = - 1/(2*pi*3e8)*lambda0^2*D2; % Waveguide dipersion / (s^2/cm) 
alpha = 5; % Linewidth enhancement factor 
w = 2e-4; % Width of the waveguide / cm 
d = 65e-7; % Active region tickness / cm 
L = 0.1; % SOA length / cm 
gN0 = 1800; % Gain coefficent / cm^-1 
Ntr = 2e18; % Transparency carrier density / cm^-3 
aint = 0.5*1e3*1e-2; % Waveguide internal loss / cm^-1 
Ntrw = Ntr*exp(aint/(Gamma*gN0)); % Waveguide 
% transparency carrier density / cm^-3 
e = 1.602e-19; % Electron charge / C 
E = 1.2825e-19; % Photon energy at 1.55 micrometers / J 
Jtr = (A*Ntrw+B*Ntrw^2+C*Ntrw^3)*e*d; % Waveguide transparency injection 
disp(['Current density for transparency Jtr = ', num2str(Jtr/1000), 'kA/cm^2 ']) 
% current, A/cm^2 
W1 = 10^(WdBm1/10)*1e-3; % Input power at frequency w_0 - Om / W 
W2 = 10^(WdBm2/10)*1e-3; % Input power at frequency w_0 + Om / W 
W0 = 10^(WdBm0/10)*1e-3; % Input power at frequency w_0      / W 
lambda1 = lambda0 + 0.84e-9; % Wavelength of pump 2 (longer) 
lambda2 = lambda0 + 0.7e-9; % Wavelength of pump 1 (shorter) 
f1 = 3e8/lambda1; 
f2 = 3e8/lambda2; 
Om = 2*pi*(f2-f1)/2; % 2 Om = angular frequency shift / s^-1 
J = 8.5*Jtr;%4500*0.8; % Injection current density / (A/cm^2) 
disp(['Current density J = ', num2str(J/1000), ' kA/cm^2']) 
vg = 1e2*3e8/3.6; 
%%%%%%%% END OF INPUT DATA %%%%%%%%%%%%%%% 
  
%%%%%%%% Linear gain %%%%%%%%%%%%%%%%%%%%%%% 
Nin = fzero(@(N) (A*N+B*N^2+C*N^3)-J/(e*d), Ntr); % Carrier density @ J with zero optical input 
Glin = exp((Gamma*gN0*log(Nin/Ntr) - aint)*L); 
disp(['Linear gain Glin = ', num2str(10*log10(Glin)), ' dB']) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%% Preparing to loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dz = L/Ndz; % Width of the slice / cm 
Z = 0:dz:L; 
count_phi = 1; 
Nseed = Nin; 
Pt = zeros(1,Ndz); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%% Field initialization % 
Nf = M;        %%% Number of right/left frequencies. Total is 2Nf+1 



N2p1 = 2*Nf+1; 
EE_in = zeros(N2p1,1); 
EE_in(Nf+1-1) = sqrt(W1); 
EE_in(Nf+1+1) = sqrt(W2);               %%% Input pump 2 
EE = EE_in; 
EEz = zeros(length(EE_in),length(Z)); EEz(:,1) = EE_in; 
E_gain = sqrt(W0); 
nphi = length(phi_s_vec); 
gs = zeros(1,nphi); 
phi_vec = zeros(1,nphi); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for phi = phi_s_vec 
     
    waitbar(phi/pi) 
     
    %%%%%% Per-phase value initialization %%%%%%%%%%%%%%%%% 
    EE = EE_in; 
    EE(Nf + 1 + Min) = sqrt(W0)*exp(-1i*phi);  %%% Input signal 
    countZ = 1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for z = Z(2:end) 
         
        %%%% Working point %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        if count_phi == 1  %%% Solve the fzero equation 
            Nin = fzero(@(x)  -(A*x+B*x^2+C*x^3)+J/(e*d) - Gamma*gN0*log(x/Ntr)*(EE'*EE)/(E*w*d) , Nseed);  
            Nseed = Nin; 
            Pt(countZ) = EE'*EE; 
            countZ = countZ +1; 
        else   %%% Use the the look-up table 
            [XXX, Pt_index] = min(abs(Pt_vec-EE'*EE)); 
            Nin = Nin_vec(Pt_index); 
        end 
        N0 = Nin; 
        RN0 = A*N0+B*N0^2+C*N0^3; 
        tau = 1/(A+2*B*N0+3*C*N0^2); % Spontaneus lifetime / s 
        Nin = N0; 
        g0 = gN0*log(N0/Ntr); 
        gN = gN0/N0; % Differentiall gain at reference carrier density / cm^2 
        Psat  = E*(w*d)/(Gamma*gN*tau); % Local saturation power / W 
        Pstim = E*(w*d)/(Gamma*g0    )*RN0; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %%% Evaluation of DN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        EcorrE = conv(EE,conj(EE(end:-1:1)),'same'); 
        Cvec = EcorrE; 
        Cvec(Nf+1) = 0;     
        EcorrE = conv(EE,conj(EE(end:-1:1))); 
        Ck = EcorrE(2*Nf+1:-1:1); 
        MatDN1 = eye(2*Nf+1) - 1i*tau*Om*diag(Nf:-1:-Nf); 
        MatDN2 = toeplitz(Ck)/Psat; 
        DN = - tau*RN0*( MatDN1 + MatDN2  )^(-1)*Cvec/Pstim; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %%%%%%% Evolution of E %%%%%%%%%%%%%%%% 
        Emat = 1/2*(1-1i*alpha)*Gamma*gN*toeplitz([DN(Nf+1:-1:1);zeros(Nf,1)]); 
        EE = expm( ( ((1-1i*alpha)*Gamma*g0-aint )/2*eye(2*Nf+1) + Emat )*dz )*EE; 
        if count_phi == 1 
            E_gain = exp(((1-1i*alpha)*Gamma*g0-aint)/2*dz)*E_gain; 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end 
     
    %%% Build the the look-up table %%%%%%%%%%%%%%%%%% 
    if count_phi == 1  
        NPt = 1e4; 
        Nseed = Ntr; 
        Pt_vec = zeros(1,NPt+1); 
        Nin_vec = zeros(1,NPt+1); 
        countPt = 1; 
        for Pt = (0:NPt)/NPt*2*max(Pt) 
            Pt_vec(countPt) = Pt; 
            Nin_vec(countPt) = fzero(@(x)  -(A*x+B*x^2+C*x^3)+J/(e*d) - Gamma*gN0*log(x/Ntr)*Pt/(E*w*d) , Nseed); 
            Nseed = Nin_vec(countPt); 
            countPt = countPt + 1; 
        end 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



     
    phi_vec(count_phi) = phi; 
    Ws = abs(EE(Nf+1+Mout)^2); 
    gs(count_phi) = 10*log10(Ws/W0); 
    count_phi = count_phi + 1; 
end   
  
Gsat = 10*log10(abs(E_gain)^2/W0); 
disp(['Saturated gain Gsat = ', num2str(Gsat), ' dB']) 
     
figure(3); plot(phi_vec,gs,'k',[0,pi], Gsat*[1,1],'--g','linewidth',2);  
xlim([0 pi]); 
  



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% PSA_NF_estimate.m %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
% This file produces noise figure in dB versus signal relative phase phi_s 
  
clear; clc; close all; %rng('shuffle'); 
  
%%%%%%%%%% Selection of input and output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Min = 0; % Input frequency: Min * Om 
Mout = 0; % Output frequency: Mout * Om 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%% Main settings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
WdBm1 = -2; % Input pump power at frequency w_0 - Om / dBm 
WdBm2 = -2; % Input pump power at frequency w_0 + Om / dBm 
WdBm0 = -24 + min([WdBm1,WdBm2]); % Input signal power at frequency w_0 / dBm 
Ndz = 100; % Number of slices in the device modeling 
M = 5;     % Total number of frequency components is 2M+1 
phi_s_vec = (0.005:0.01:1.005)*pi; % Signal phase values phi_s 
%%%% Computation time increases by increasing Ndz 
%%%% and by increasing the resolution of phi_s_vec 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%  INPUT DATA  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A = 0*1e6; % Linear recombination coefficient / s^-1 
B = 0.3e-10; % Bimolecular recombination coefficient / cm^3/s 
C = 3.3e-29; % Auger recombination coefficient / cm^3/s 
Gamma = 0.098; % Confinement factor; 
lambda0 = 1561e-9; % Wavelength / m 
D2 = -8000; % Waveguide dispersion / (fs/nm/cm), 
D2 = D2*1e-6; % Waveguide dipersion / (s/m/cm) 
beta2 = - 1/(2*pi*3e8)*lambda0^2*D2; % Waveguide dipersion / (s^2/cm) 
alpha = 5; % Linewidth enhancement factor 
w = 2e-4; % Width of the waveguide / cm 
d = 65e-7; % Active region tickness / cm 
L = 0.1; % SOA length / cm 
gN0 = 1800; % Gain coefficent / cm^-1 
Ntr = 2e18; % Transparency carrier density / cm^-3 
aint = 0*0.5*1e3*1e-2; % Waveguide internal loss / cm^-1 
Ntrw = Ntr*exp(aint/(Gamma*gN0)); % Waveguide 
% transparency carrier density / cm^-3 
e = 1.602e-19; % Electron charge / C 
E = 1.2825e-19; % Photon energy at 1.55 micrometers / J 
Jtr = (A*Ntrw+B*Ntrw^2+C*Ntrw^3)*e*d; % Waveguide transparency injection 
disp(['Current density for transparency Jtr = ', ... 
    num2str(Jtr/1000), 'kA/cm^2 ']) 
% current, A/cm^2 
W1 = 10^(WdBm1/10)*1e-3; % Input power at frequency w_0 - Om / W 
W2 = 10^(WdBm2/10)*1e-3; % Input power at frequency w_0 + Om / W 
W0 = 10^(WdBm0/10)*1e-3; % Input power at frequency w_0      / W 
lambda1 = lambda0 + 0.84e-9; % Wavelength of pump 2 (longer) 
lambda2 = lambda0 + 0.7e-9; % Wavelength of pump 1 (shorter) 
f1 = 3e8/lambda1; 
f2 = 3e8/lambda2; 
Om = 2*pi*(f2-f1)/2; % 2 Om = angular frequency shift / s^-1 
J = 8.5*Jtr;%4500*0.8; % Injection current density / (A/cm^2) 
disp(['Current density J = ', num2str(J/1000), ' kA/cm^2']) 
vg = 1e2*3e8/3.6; 
Bw = 1e3; 
%%%%%%%% END OF INPUT DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%% Linear gain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Nin = fzero(@(N) (A*N+B*N^2+C*N^3)-J/(e*d), Ntr); % Carrier density @ J  
%with zero optical input 
Glin = exp((Gamma*gN0*log(Nin/Ntr) - aint)*L); 
disp(['Linear gain Glin = ', num2str(10*log10(Glin)), ' dB']) 
disp(['Unsaturated carrier density = ', num2str(Nin), ' m^-3']) 
disp(['Transparency carrier density = ', num2str(Ntr), ' m^-3']) 
nspin = Nin/(Nin-Ntr); 
% nspin = (Nin/(Nin-Ntr))^.2; 
disp(['Input nsp = ', num2str(nspin)]) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%% Preparing to loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dz = L/Ndz; % Width of the slice / cm 
Z = 0:dz:L; 
count_phi = 1; 
Nseed = Nin; 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%% Field initialization % 
Nf = M;        %%% Number of right/left frequencies. Total is 2Nf+1 
N2p1 = 2*Nf+1; 
EE_in = zeros(N2p1,1); 
EE_in(Nf+1-1) = sqrt(W1); 
EE_in(Nf+1+1) = sqrt(W2);               %%% Input pump 2 
nphi = length(phi_s_vec); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Es = zeros(1,nphi); 
phi_vec = zeros(1,nphi); 
Pt = zeros(1,Ndz); 
  
%%%%%% Per-phase value initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
EE = EE_in; 
EE(Nf+1+Min) = sqrt(W0);  %%% Input signal 
E_gain = sqrt(W0); 
countZ = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%Part 1: BUILDING A LOOKUP TABLE FOR N vs. THE AVERAGE INTENSITY%%%%%%%% 
  
for z = Z(2:end) 
     
    %%%% Working point %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%% Solve the fzero equation 
    Nin = fzero(@(x)  -(A*x+B*x^2+C*x^3)+J/(e*d) ... 
        - Gamma*gN0*log(x/Ntr)*(EE'*EE)/(E*w*d) , Nseed); 
    Nseed = Nin; 
    Pt(countZ) = EE'*EE; 
    countZ = countZ +1; 
    N0 = Nin; 
    RN0 = A*N0+B*N0^2+C*N0^3; 
    tau = 1/(A+2*B*N0+3*C*N0^2); % Spontaneus lifetime / s 
    Nin = N0; 
    g0 = gN0*log(N0/Ntr); 
    gN = gN0/N0; % Differentiall gain at reference carrier density / cm^2 
    Psat  = E*(w*d)/(Gamma*gN*tau); % Local saturation power / W 
    Pstim = E*(w*d)/(Gamma*g0    )*RN0; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %%% Evaluation of DN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    EcorrE = conv(EE,conj(EE(end:-1:1)),'same'); 
    Cvec = EcorrE; 
    Cvec(Nf+1) = 0; 
    EcorrE = conv(EE,conj(EE(end:-1:1))); 
    Ck = EcorrE(2*Nf+1:-1:1); 
    MatDN1 = eye(2*Nf+1) - 1i*tau*Om*diag(Nf:-1:-Nf); 
    MatDN2 = toeplitz(Ck)/Psat; 
    DN = - tau*RN0*( MatDN1 + MatDN2  )^(-1)*Cvec/Pstim; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %%%%%%% Evolution of E %%%%%%%%%%%%%%%% 
    Emat = 1/2*(1-1i*alpha)*Gamma*gN*toeplitz([DN(Nf+1:-1:1);zeros(Nf,1)]); 
    EE = expm((((1-1i*alpha)*Gamma*g0-aint )/2*eye(2*Nf+1)+ Emat )*dz )*EE; 
    E_gain = exp( ((1-1i*alpha)*Gamma*g0-aint )*dz/2)*E_gain; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
end 
NPt = 1e4; 
Nseed = Ntr; 
Pt_vec = zeros(1,NPt+1); 
Nin_vec = zeros(1,NPt+1); 
countPt = 1; 
for Pt = (0:NPt)/NPt*2*max(Pt) 
    Pt_vec(countPt) = Pt; 
    Nin_vec(countPt) = fzero(@(x)  -(A*x+B*x^2+C*x^3)+J/(e*d) ... 
        - Gamma*gN0*log(x/Ntr)*Pt/(E*w*d) , Nseed); 
    Nseed = Nin_vec(countPt); 
    countPt = countPt + 1; 
end 
  
Gsat = abs(E_gain)^2/W0; 
GsatdB = 10*log10(Gsat); 
disp(['Saturated gain Gsat = ', num2str(GsatdB), ' dB']) 
  
%%%%Part 2: EVALUATING THE NOISLESS OUTPUT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for phi = phi_s_vec 



     
    waitbar(phi/pi) 
     
    %%%%%% Per-phase value initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    EE = EE_in; 
    EE(Nf+1+Min) = sqrt(W0)*exp(-1i*phi);  %%% Input signal 
    countZ = 1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for z = Z(2:end) 
         
        %%%% Working point %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %%% Use the the look-up table 
        [XXX, Pt_index] = min(abs(Pt_vec-EE'*EE)); 
        Nin = Nin_vec(Pt_index); 
        N0 = Nin; 
        RN0 = A*N0+B*N0^2+C*N0^3; 
        tau = 1/(A+2*B*N0+3*C*N0^2); % Spontaneus lifetime / s 
        Nin = N0; 
        g0 = gN0*log(N0/Ntr); 
        gN = gN0/N0; % Differentiall gain at reference carrier density/cm^2 
        Psat  = E*(w*d)/(Gamma*gN*tau); % Local saturation power / W 
        Pstim = E*(w*d)/(Gamma*g0    )*RN0; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %%% Evaluation of DN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        EcorrE = conv(EE,conj(EE(end:-1:1)),'same'); 
        Cvec = EcorrE; 
        Cvec(Nf+1) = 0; 
        EcorrE = conv(EE,conj(EE(end:-1:1))); 
        Ck = EcorrE(2*Nf+1:-1:1); 
        MatDN1 = eye(2*Nf+1) - 1i*tau*Om*diag(Nf:-1:-Nf); 
        MatDN2 = toeplitz(Ck)/Psat; 
        DN = - tau*RN0*( MatDN1 + MatDN2  )^(-1)*Cvec/Pstim; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %%%%%%% Evolution of E %%%%%%%%%%%%%%%% 
        Emat = 1/2*(1-1i*alpha)*Gamma*gN*toeplitz([DN(Nf+1:-1:1);zeros(Nf,1)]); 
        EE = expm( ( ((1-1i*alpha)*Gamma*g0-aint )/2*eye(2*Nf+1) + Emat )*dz )*EE; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    phi_vec(count_phi) = phi; 
    Es(count_phi) = EE(Nf+1+Mout); 
    count_phi = count_phi + 1; 
end 
  
gs = 10*log10(abs(Es).^2/W0); 
figure(3); plot(phi_vec,gs,'k', [0,pi], GsatdB*[1,1], '--c','linewidth',2) 
  
nsrout = zeros(1,nphi);% Initialization of the output noise to signal ratio 
nsrout1 = zeros(1,nphi); 
nsrin = (E*Bw/2)/W0; % Input noise to signal ratio 
  
%%%%%%Part 3: MONTE CARLO RUNS FOR  FOR THE SNR%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for Nloop = 1:5000 
     
    %%%%%%%% Linear gain %%%%%%%%%%%%%%%%%%%%%%% 
    Nin = fzero(@(N) (A*N+B*N^2+C*N^3)-J/(e*d), Ntr); % Carrier density 
    % @ J with zero optical input 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %%%%% Preparing to loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    count_phi = 1; 
    Nseed = Nin; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    E1s = zeros(1,nphi); 
     
    for phi = phi_s_vec 
         
        waitbar(phi/pi) 
         
        %%%%%% Per-phase value initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        EE = EE_in; 
        EE(Nf+1+Min) = sqrt(W0)*exp(-1i*phi);  %%% Input signal 
        EE = EE + sqrt(Bw*E/2)*(randn(N2p1,1)+1i*randn(N2p1,1)); % input 
        % field with zero point noise over bandwidth Bw (power spectral 
        % density of half a photon per quadrature) 
        countZ = 1; 



        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        for z = Z(2:end) 
            [XXX, Pt_index] = min(abs(Pt_vec-EE'*EE)); 
            Nin = Nin_vec(Pt_index); 
            N0 = Nin; 
            RN0 = A*N0+B*N0^2+C*N0^3; 
            tau = 1/(A+2*B*N0+3*C*N0^2); % Spontaneus lifetime / s 
            % nsp = N0/(N0-Ntr); 
            % nsp = (N0/(N0-Ntr))^.2; 
            nsp = 1; 
            Nin = N0; 
            g0 = gN0*log(N0/Ntr); 
            gN = gN0/N0; %Differential gain at reference carr. density/cm^2 
            Psat  = E*(w*d)/(Gamma*gN*tau); % Local saturation power / W 
            Pstim = E*(w*d)/(Gamma*g0)*RN0; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
            %%% Evaluation of DN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            EcorrE = conv(EE,conj(EE(end:-1:1)),'same'); 
            Cvec = EcorrE; 
            Cvec(Nf+1) = 0; 
            EcorrE = conv(EE,conj(EE(end:-1:1))); 
            Ck = EcorrE(2*Nf+1:-1:1); 
            MatDN1 = eye(2*Nf+1) - 1i*tau*Om*diag(Nf:-1:-Nf); 
            MatDN2 = toeplitz(Ck)/Psat; 
            DN = - tau*RN0*( MatDN1 + MatDN2  )^(-1)*Cvec/Pstim; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
            %%%%%%% Evolution of E %%%%%%%%%%%%%%%% 
            Emat = 1/2*(1-1i*alpha)*Gamma*gN... 
                *toeplitz([DN(Nf+1:-1:1);zeros(Nf,1)]); 
            EE = expm((((1-1i*alpha)*Gamma*g0-aint) ... 
                /2*eye(2*Nf+1)+ Emat)*dz )*EE ... 
                + sqrt(E*Bw*((2*nsp-1)*Gamma*g0+aint)*dz/2) ... 
                *(randn(N2p1,1)+1i*randn(N2p1,1)); 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
        end 
         
        phi_vec(count_phi) = phi; 
        E1s(count_phi) = EE(Nf+1+Mout); 
        count_phi = count_phi + 1; 
    end 
     
    nsrout = nsrout*(Nloop-1)/Nloop ... 
        + real((Es-E1s).*exp(-1i*angle(Es))).^2 ... 
        ./real(Es.*exp(-1i*angle(Es))).^2/Nloop;  
    % Updated output noise to signal ratio 
    nsrout1 = nsrout1*(Nloop-1)/Nloop ... 
       + imag((Es-E1s).*exp(-1i*angle(Es))).^2 ... 
       ./real(Es.*exp(-1i*angle(Es))).^2/Nloop;  
    % Updated output ortogonal noise to signal ratio 
    
    figure(4);  
    plot(phi_vec,10*log10(nsrout/nsrin),'o--r', ... 
        phi_vec,10*log10(nsrout1/nsrin),'o--b', ... 
        [0, pi], [3, 3],'--c', [0, pi], [0, 0],'--g');  
    xlim([0,pi]); 
     
    disp(['End of iteration # ', num2str(Nloop)]) 
end 
  
nsrin = (E*Bw/2)/W0; % Input noise to signal ratio 
  
figure(5);  
plot(phi_vec,10*log10((nsrout+nsrout1)/(2*nsrin)),'o--k', ... 
    [0, pi], [3, 3],'--b', [0, pi], [0, 0],'--g');  
xlim([0,pi]); 
 


