Systems-of-Systems
Programmatics:
Guidelines for Program
Managers

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Jim Smith, Craig Meyers, David Fisher
Presentation for Systems and Software
Technology Conference 2007

June 21, 2007

=== Software Engineering Institute | CarnegieMellon ©2007 Camegie Wellon Uriversity

Purpose

To introduce a set of guidelines for dealing with systems of systems
programmatics, and show how these can aid in the identification and
resolution of issues.

Jp— Systems-of-Systems Programmatics:

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Agenda

Background

Guidelines for the program manager: the “laws of programmatics”
Discussion

Conclusions

Future directions

— Systems-of-Systems Programmatics:

== Software Engineering Institute | CarnegicMellon &5 T ire Fanor - dune o1 2007

© 2007 Carnegie Mellon University

DOCTOR FUN Oct 2002

o

T THik 10 EATHER
MAMAGE A LARGE SOFTLIARE
DEVELOPMERT PREDIECT,

Copyright © 2002 David Farley, d-farley@ibiblio.org

http://ibiblic.org/Dave/drfun.html
This cartoon is made available on the Internet for personal viewing

only. Opinions expressed herein are solely thase of the authar.

g o

LTS

The da}fd reams of cat herders Used by permission of the artist

Systems-of-Systems Programmatics:
Guidelines for Program Managers

Smith, Meyers, Fisher — June 21, 2007
© 2007 Carnegie Mellon University

Background,

What is the vision for net-centric operations?

Bottom line: Seamless, ubiquitous interoperability enabling dynamically-
composable capabilities to achieve desired mission effects

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Background,

Current approaches to providing
capability based on integration of and
interoperation between systems

FCS Core Sy=stemns: 19
sy=termns identified in
FCS ORD, Annex &, D
&E

- Constituent systems not necessarily
developed with “broad”
interoperability in mind

FC5 Complarmeantary
Systerns: Swystems
ezserntial for family of
systerns interoperability
not in FC5% Core. Swystemns
have applicability outside
FC5 Core Swystems.

« Acquisition (development,

aalod aanosalqo

sustainment, etc.) focused on their g DA Complamartary
i el e

individual systems/programs, with
their individual requirements, funding,
users, etc.

systerns operations Unit
UE & b we Complem sntary zet fielding implications.

gurtama

UES fb e Complem entary:
Surtem 1 needed to operate or
wpporta ey etem of yitama
outalde e U

HenProponed
Bywtam

Future Increments Technology Base

« Integration “after the fact”

Example from “Future Combat Systems
Program Relationships”

Jp— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Background,

Results in disconnects between the goals and reality:

Goal Reality

. Seamless interoperability Interoperability either insufficiently
defined (e.g., “interoperable with XYZ

system”) or too narrowly constrained
(e.g., “interoperable with XYZ
system, using TDMA over 25 KHz
UHF DAMA STACOM ...” etc.

 Integration results in brittle systems

« Dynamic, flexible, responsive to , ot ,
/ P that are fragile and difficult to sustain

changing environment and threat,

survivable
« Programs will “cooperate and - Stovepiped programs/systems not
graduate” incentivized to engage in altruistic

behavior

Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Background,

For many reasons, systems of systems are currently the preferred approach to
providing net-centric capabilities

Certain inescapable consequences of systems of systems:
« Autonomous constituents with independent operations and management
— Includes people, organizations, software agents, etc.
— Source of independent actions and decisions
« Independent operation/evolution of each constituent

— Can respond to new technology and mission needs at its own pace and
direction

Emergent behavior
— “Whole is different than the sum of the parts”
— Indirect and cumulative effects of influences, actions, interactions

These require a fundamentally new approach to understanding and managing
the programmatics (i.e., the interrelationships between issues/decisions in
management, development, and operations)

Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Background;

Some critical aspects of desirable systems of systems programmatics include:
- Collective, collaborative behavior to accomplish systems of systems goals

« Understanding the interrelationships and interdependencies between
management, development, and operational domains

 Distributed execution authority

- Effective decision making in the presence of inconsistent, incomplete, and
incorrect information

These often conflict with the “system-centric” pressures on a program manager
to satisfy their instant cost, schedule, and performance requirements

What is needed are some guidelines to help program managers in the
execution of their responsibilities consistent with systems of systems
principles: the “Laws of Programmatics”

— Systems-of-Systems Programmatics:

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

The “Laws of Programmatics”

Zeroth Law

An actor or constituent (hereinafter referred-to as actor) shall not take unilateral action
within their program to the detriment a system of systems, or through inaction, knowingly
allow detriment to come to a system of systems

First Law

An actor shall not take unilateral action within their program to the detriment of another
program, or through inaction, knowingly allow detriment to come to another program.

Second Law

An actor shall comply with all applicable laws, regulations, directives, policies, etc. issued
by competent authority except when doing so would conflict with the zeroeth or first laws.

Third Law

An actor shall take corrective actions to remedy any risks, issues, problems etc. in their
program except when such actions conflict with any higher law.

Fourth Law
An actor may “be creative” as long as their actions do not conflict with any higher law.

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

The Laws in Action

reportin"gﬂ

r;imrling
Division 2
VP
reporfing raporh.ng
requiremeants_dependanc |
a -ren 'v reporting
| 1
//_ I“_""-\.\ g '__
o Iy requirements_dependency reyuirements_dependency /-"__“\\
- Project 44 (-~ B [
cost_plus_contract K Manager o o i
. . & 5 sql_l_?dule_dependency i Meanager
I ey '-.____..l = -_.______.- -
. 4 requirements / schedule_dependency™—— - \"\.._/’/
o cost plus contract requirements .
| requirements Txed-price_contract ruquurumants
t Contractor A [P _ cost plus contract
(g N /n.«\\
\“ 7, N
L Camrienalar
| Contractar : wp
builds R =
! g x—-—.—-—"""’
. I T
Frodoct Az -1 — bullds builcs bul:lds
1 | ¥ ¥y
provides_capability
»Product B
=l ProdoetAc ot || |Frediet ..
~backwards_compatible™ — interoperable

Jp— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Zeroth Law

An actor shall not take unilateral action within their program to the
detriment a system of systems, or through inaction, knowingly allow
detriment to come to a system of systems

Applies when it is known (or can reasonably be inferred) that a
program is part of one or more systems of systems

Obligates a program to not take action to the detriment of the system(s)
of systems in the pursuit of its goals. For example:

- Capability “X,” is critical for the system of systems, but not for the
success of program “X”

« Program “X” should not, therefore, decide to delete capability “X,” on its
own, even when it has the authority to do so under existing acquisition
program guidance, etc.

Jp— Systems-of-Systems Programmatics:

== Software Engineering Institute | CarnegicMellon &5 T ire Fanor - dune o1 2007

© 2007 Carnegie Mellon University

Zeroth Law

To comply with the zeroth law, several
actions need to be undertaken:

« Program “P’ must explore options to

Sector
B President han

prolong its operation in the event that > =
system “A,” cannot be ready on time @ o

- Before any additional changes to T e
systems “P” and | B, _prog ram “A .rr.\ust o (m),m* { % D‘ (“
be allowed to weigh in on the decision, VA Al &8 =
and suggest possible alternatives that ,:f;;,:f;\) T s /M\
won'’t further endanger their ability to bt i(,?‘;?;:\) (i ‘-3 =)
meet schedule o T vl =

- Program “A” must reconsider their risk BT ——

reduction effort (system “A,") if it will be
unable to support the system of
systems interoperability requirements.

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

First Law

An actor shall not take unilateral action within their program to the
detriment of another program, or through inaction, knowingly allow
detriment to come to another program.

Obligates a program to not take action to the detriment of another
program. For example:

« Program “Y” has an interoperability requirement with program “X”; this
interoperability is critical to the success of program “X,” but not for
program “Y”

« Program “Y” should not remove or modify this requirement on its own

Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

First Law

Independent program actions causing
harm to other programs:

Changes to system P require
corresponding changes to system B

— Impacts design/development for
system A,

System A risk-reduction effort (A,)
will impose significant changes on
system B if implemented

Systems-of-Systems Programmatics:
Guidelines for Program Managers
Smith, Meyers, Fisher — June 21, 2007

© 2007 Carnegie Mellon University

Software Engineering Institute

Carnegie Mellon

Second Law

An actor shall comply with all applicable laws, regulations, directives, policies,
etc. issued by competent authority except when doing so would conflict with
the zeroth or first laws.

This obligates a program to follow the applicable laws, directives, etc. unless
doing so would harm another program or the system(s) of systems

One consequence of this is to require that a program “throw an exception”
when there are conflicts between the laws, directives, etc. and the needs of
another program, or the system(s) of systems. For example:

« Funding for program “X” is reduced, which will result in a delay to fielding a
capability that is critical to the system of systems

- Program “X’ should identify the conflict between its goals and those of the
system of systems, and attempt to find a solution (or force reconsideration)

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Second Law

Conflict between goals, directives, etc.
of individual programs and the system
of systems:

« Planned retirement of system P
jeopardizes system of systems @

— What if system A, not ready? T S

T ref n‘;linﬂ
_r/’ ‘*'\kw requirements, _dependancy 4 TLT vecjuironants_dependeis: P R
. . iy | :
— What if program A risk e e { S R ==
/ “schedule_dependericy L lU/ o
/ ARG ~ =
H . _y, requirement; schedule_dependency” — - —
reduction effort (system A,)is 22, == (™ o
2 \/ Contrsc m’) | requirements flxed-price_contrac, mqmmmft;r_plm contract
(e - vy b
im 2 \ <N | =
implemented? 77 S i —\
builds k A) 1 ks £ 7
- =
. E— \u___// =T \“"’
Prodocta | bulids buile huilds
.] it v
o des, capatity 5
. »| PrOGUGLE
=1 Prodisotac | [Pkt - -
~ “backwards_ccmparibes }‘ ‘ ‘ e cteroperatie

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

—== Software Engineering Institute | CarnegieMellon gy Vevers, Fishor - Juns 21. 2007

© 2007 Carnegie Mellon University

Third Law

An actor shall take corrective actions to remedy any risks, issues,
problems etc. in their program except when such actions conflict with
any higher law.

This obligates a program to not take actions to the detriment of the
system(s) of systems or other programs, or violate applicable laws,
directives, etc. while mitigating their own problems

As an example:

« Program “Y” has a backwards compatibility requirement with program
“X,” and is experiencing significant cost and schedule pressures that
can be ameliorated by deferring this capability

- Program “Y” should not defer this capability on its own

Jp— Systems-of-Systems Programmatics:

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Third Law

Conflict between risk reduction efforts

or mitigation strategies of individual

programs versus systems of systems

capabilities: D

« System A, risk reduction effort (A,) @ —
satisfies system A, requirements, vd

but adversely impacts system B and Py~
broader system of systems ey, S W z_:_-/D‘_' o {;f:)
requirements p Z,\/“ """"""" T
- Is there a minimally-acceptable E ((u)
subset of interoperability that /. -
system A, could provide that would j DU 11} . ==

preserve system of systems goals?

Jp— Systems-of-Systems Programmatics:

== Software Engineering Institute | CarnegicMellon &5 T ire Fanor - dune o1 2007

© 2007 Carnegie Mellon University

Fourth Law

An actor may “be creative” as long as their actions do not conflict with
any higher law.

While in the context of a single program, there may be numerous
examples of effective solutions to questions about organizational
issues, risk management, budgeting, etc.,

The same is not true for systems of system: most of what program
managers have learned through their experiences and training leave
them ill-prepared to deal with the uncertainties of systems of systems

« Since there are no “off-the-shelf” solutions, you should explore some
“out of the box” possibilities

Jp— Systems-of-Systems Programmatics:

== Software Engineering Institute | CarnegicMellon &5 T ire Fanor - dune o1 2007

© 2007 Carnegie Mellon University

Fourth Law

When there are no known “tried and
true” solutions, then try something else!

« Keeping your “head down,” or your
“nose to the grindstone” won’t make
these problems go away

- Programs must consider the A S
impacts of their decisions oNn every ... (@)™ """ % e
other program—and on the system «mv o i"i/
of systems rcfj/) p A\) t| (fﬁ)

AR o

« Programs need consider this 0. \\;j f B

unpleasant truth: sometimes the g\ O 11 s N =

right answer is “no”

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Conclusions

Systems of systems are the preferred approach to provide net-centric
capability

Managing a program—and maintaining cost, schedule, and
performance—has never been easy, and systems of systems bring
many new challenges

« Conflicts between system-centric and systems of systems perspectives

A way to identify these conflicts, and provide program managers with
guidance on how to proceed, would help

« The “laws” are an attempt to provide this

Jp— Systems-of-Systems Programmatics:

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Future Directions

As interesting as the natural language representation of the laws may
be, a formal definition is required

« Currently, working on a formal definition that integrates Deontic logics
with precedent-based reasoning

« Desire a method for analyzing—and recommending courses of action—
for conflicting normative obligations

Part of a long-term effort to be able to identify what organizational
architecture(s) work better than others, under what conditions

« (Goal is to be able to model the eigenbehaviors of organizations,
defined by their “genomes,” operating within a framework defined by
the laws, when confronted by various systems of systems issues

Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Some Recent Technical Reports

Smith, J.; & Phillips, D. “Interoperable Acquisition for

Systems of Systems: The Challenges” (CMU/SEI-2006- I

TN-034)

Brownsword, L.; et al. “System-of-Systems Navigator: g

An Approach for Managing System-of-Systems I e
Interoperability’ (CMU/SEI-2006-TN-019) ety e
Fisher, D. “An Emergent Perspective on Interoperation SR
in Systems of Systems” (CMU/SEI-2006-TR-003) Managarant n s

Meyers, C.; Smith, J.; et al. “Requirements g
Management in a System of Systems Context: A
Workshop® (CMU/SEI-2006-TN-015)

Smith, J.; & Meyers, C. “Exploring Programmatic
Interoperability: Army Future Force Workshop”
(CMU/SEI-2005-TN-042)

Meyers, C.; Monarch, I.; Levine, L.; & Smith, J.
“Including Interoperability in the Acquisition Process”
(CMU/SEI-2005-TR-004)

Morris, E.; Levine, L.; et al. “Systems of Systems
Interoperability” (CMU/SEI-2004-TR-004)

Jp— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

Contact Information

Jim Smith

(703) 908-8221
ids@sei.cmu.edu

http://www.sei.cmu.edu/staff/ids/

Craig Meyers

(412) 268-6523
becm@sei.cmu.edu

David Fisher

(412) 268-7703
dfisher@sei.cmu.edu

ISIS Initiative

http://www.sei.cmu.edu/isis/isis-main.html|

— Systems-of-Systems Programmatics:
Guidelines for Program Managers

=== Software Engineering Institute | CarnegieMellon Saie'ies o Frooram Maragers o7

© 2007 Carnegie Mellon University

