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Purpose

To introduce a set of guidelines for dealing with systems of systems
programmatics, and show how these can aid in the identification and
resolution of issues.
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Background,

What is the vision for net-centric operations?

Bottom line: Seamless, ubiquitous interoperability enabling dynamically-
composable capabilities to achieve desired mission effects
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Background,

Current approaches to providing
capability based on integration of and
interoperation between systems

FCS Core Sy=stemns: 19
sy=termns identified in
FCS ORD, Annex &, D
&E

- Constituent systems not necessarily
developed with “broad”
interoperability in mind

FC5 Complarmeantary
Systerns: Swystems
ezserntial for family of
systerns interoperability
not in FC5% Core. Swystemns
have applicability outside
FC5 Core Swystems.

« Acquisition (development,
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sustainment, etc.) focused on their g DA Complamartary
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individual systems/programs, with
their individual requirements, funding,
users, etc.

systerns operations Unit
UE & b we Complem sntary zet fielding implications.
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Future Increments Technology Base

« Integration “after the fact”

Example from “Future Combat Systems
Program Relationships”
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Background,

Results in disconnects between the goals and reality:

Goal Reality

. Seamless interoperability  Interoperability either insufficiently
defined (e.g., “interoperable with XYZ

system”) or too narrowly constrained
(e.g., “interoperable with XYZ
system, using TDMA over 25 KHz
UHF DAMA STACOM ...” etc.

 Integration results in brittle systems

« Dynamic, flexible, responsive to , ot ,
/ P that are fragile and difficult to sustain

changing environment and threat,

survivable
« Programs will “cooperate and - Stovepiped programs/systems not
graduate” incentivized to engage in altruistic

behavior
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Background,

For many reasons, systems of systems are currently the preferred approach to
providing net-centric capabilities

Certain inescapable consequences of systems of systems:
« Autonomous constituents with independent operations and management
— Includes people, organizations, software agents, etc.
— Source of independent actions and decisions
« Independent operation/evolution of each constituent

— Can respond to new technology and mission needs at its own pace and
direction

Emergent behavior
— “Whole is different than the sum of the parts”
— Indirect and cumulative effects of influences, actions, interactions

These require a fundamentally new approach to understanding and managing
the programmatics (i.e., the interrelationships between issues/decisions in
management, development, and operations)
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Background;

Some critical aspects of desirable systems of systems programmatics include:
- Collective, collaborative behavior to accomplish systems of systems goals

« Understanding the interrelationships and interdependencies between
management, development, and operational domains

 Distributed execution authority

- Effective decision making in the presence of inconsistent, incomplete, and
incorrect information

These often conflict with the “system-centric” pressures on a program manager
to satisfy their instant cost, schedule, and performance requirements

What is needed are some guidelines to help program managers in the
execution of their responsibilities consistent with systems of systems
principles: the “Laws of Programmatics”
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The “Laws of Programmatics”

Zeroth Law

An actor or constituent (hereinafter referred-to as actor) shall not take unilateral action
within their program to the detriment a system of systems, or through inaction, knowingly
allow detriment to come to a system of systems

First Law

An actor shall not take unilateral action within their program to the detriment of another
program, or through inaction, knowingly allow detriment to come to another program.

Second Law

An actor shall comply with all applicable laws, regulations, directives, policies, etc. issued
by competent authority except when doing so would conflict with the zeroeth or first laws.

Third Law

An actor shall take corrective actions to remedy any risks, issues, problems etc. in their
program except when such actions conflict with any higher law.

Fourth Law
An actor may “be creative” as long as their actions do not conflict with any higher law.
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The Laws in Action
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Zeroth Law

An actor shall not take unilateral action within their program to the
detriment a system of systems, or through inaction, knowingly allow
detriment to come to a system of systems

Applies when it is known (or can reasonably be inferred) that a
program is part of one or more systems of systems

Obligates a program to not take action to the detriment of the system(s)
of systems in the pursuit of its goals. For example:

- Capability “X,” is critical for the system of systems, but not for the
success of program “X”

« Program “X” should not, therefore, decide to delete capability “X,” on its
own, even when it has the authority to do so under existing acquisition
program guidance, etc.
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Zeroth Law

To comply with the zeroth law, several
actions need to be undertaken:

« Program “P’ must explore options to

Sector
B President han

prolong its operation in the event that > =
system “A,” cannot be ready on time @ o

- Before any additional changes to T e
systems “P” and | B, _prog ram “A .rr.\ust o (m),m* { % D‘ (“
be allowed to weigh in on the decision, VA Al &8 =
and suggest possible alternatives that ,:f;;,:f;\) T s /M\
won'’t further endanger their ability to bt i(,?‘;?;:\) ( i ‘-3 =)
meet schedule o T vl =

- Program “A” must reconsider their risk BT ——

reduction effort (system “A,") if it will be
unable to support the system of
systems interoperability requirements.
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First Law

An actor shall not take unilateral action within their program to the
detriment of another program, or through inaction, knowingly allow
detriment to come to another program.

Obligates a program to not take action to the detriment of another
program. For example:

« Program “Y” has an interoperability requirement with program “X”; this
interoperability is critical to the success of program “X,” but not for
program “Y”

« Program “Y” should not remove or modify this requirement on its own
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First Law

Independent program actions causing
harm to other programs:

Changes to system P require
corresponding changes to system B

— Impacts design/development for
system A,

System A risk-reduction effort (A,)
will impose significant changes on
system B if implemented
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Second Law

An actor shall comply with all applicable laws, regulations, directives, policies,
etc. issued by competent authority except when doing so would conflict with
the zeroth or first laws.

This obligates a program to follow the applicable laws, directives, etc. unless
doing so would harm another program or the system(s) of systems

One consequence of this is to require that a program “throw an exception”
when there are conflicts between the laws, directives, etc. and the needs of
another program, or the system(s) of systems. For example:

« Funding for program “X” is reduced, which will result in a delay to fielding a
capability that is critical to the system of systems

- Program “X’ should identify the conflict between its goals and those of the
system of systems, and attempt to find a solution (or force reconsideration)
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Second Law

Conflict between goals, directives, etc.
of individual programs and the system
of systems:
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Third Law

An actor shall take corrective actions to remedy any risks, issues,
problems etc. in their program except when such actions conflict with
any higher law.

This obligates a program to not take actions to the detriment of the
system(s) of systems or other programs, or violate applicable laws,
directives, etc. while mitigating their own problems

As an example:

« Program “Y” has a backwards compatibility requirement with program
“X,” and is experiencing significant cost and schedule pressures that
can be ameliorated by deferring this capability

- Program “Y” should not defer this capability on its own
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Third Law

Conflict between risk reduction efforts

or mitigation strategies of individual

programs versus systems of systems

capabilities: D

« System A, risk reduction effort (A,) @ —
satisfies system A, requirements, vd

but adversely impacts system B and Py~
broader system of systems ey, S W z_:_-/D‘_' o {;f:)
requirements p Z,\/“ """"""" T
- Is there a minimally-acceptable E ( (u)
subset of interoperability that /. -
system A, could provide that would j DU 11} . ==

preserve system of systems goals?
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Fourth Law

An actor may “be creative” as long as their actions do not conflict with
any higher law.

While in the context of a single program, there may be numerous
examples of effective solutions to questions about organizational
issues, risk management, budgeting, etc.,

The same is not true for systems of system: most of what program
managers have learned through their experiences and training leave
them ill-prepared to deal with the uncertainties of systems of systems

« Since there are no “off-the-shelf” solutions, you should explore some
“out of the box” possibilities
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Fourth Law

When there are no known “tried and
true” solutions, then try something else!

« Keeping your “head down,” or your
“nose to the grindstone” won’t make
these problems go away

- Programs must consider the A S
impacts of their decisions oNn every ... (@)™ """ % e
other program—and on the system «mv o i"i/
of systems rcfj/) p A\) t| (fﬁ)

AR o

« Programs need consider this 0. \\;j f B

unpleasant truth: sometimes the g\ O 11 s N =

right answer is “no”
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Conclusions

Systems of systems are the preferred approach to provide net-centric
capability

Managing a program—and maintaining cost, schedule, and
performance—has never been easy, and systems of systems bring
many new challenges

« Conflicts between system-centric and systems of systems perspectives

A way to identify these conflicts, and provide program managers with
guidance on how to proceed, would help

« The “laws” are an attempt to provide this
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Future Directions

As interesting as the natural language representation of the laws may
be, a formal definition is required

« Currently, working on a formal definition that integrates Deontic logics
with precedent-based reasoning

« Desire a method for analyzing—and recommending courses of action—
for conflicting normative obligations

Part of a long-term effort to be able to identify what organizational
architecture(s) work better than others, under what conditions

« (Goal is to be able to model the eigenbehaviors of organizations,
defined by their “genomes,” operating within a framework defined by
the laws, when confronted by various systems of systems issues
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