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Abstract. Superquantiles, which refer to conditional value-at-risk (CVaR) in the same way that
quantiles refer to value-at-risk (VaR), have many advantages in the modeling of risk in finance and en-
gineering. However, some applications may benefit from a further step, from superquantiles to second-
order superquantiles. Measures of risk based on second-order superquantiles have recently been explored
in some settings, but key parts of the theory have been lacking: descriptions of the associated risk en-
velopes and risk identifiers. Those missing ingredients are supplied in this paper, and moreover not just
for second-order superquantiles, but also for a much broader class of mixed superquantile measures of
risk. Such dualizing expressions facilitate the development of dual methods for mixed and second-order
superquantile risk minimization as well as superquantile regression, a proposed second-order version of
quantile regression.
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1 Introduction

The second-order version of conditional value-at-risk that we introduced in [21], with further explana-
tions in [20, 23], corresponds to a sort of smoothing of the cumulative distribution function of a random
variable but has other key interpretations as well. Motivated by specific applications in risk-averse
optimization and regression for physical systems, we develop it further here with particular attention

1This material is based upon work supported in part by the U. S. Air Force Office of Scientific Research under grants
FA9550-11-1-0206 and F1ATAO1194GOO1 and DARPA under grant HR0011517798.
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to duality. The term “superquantile” as an alternative to “conditional value-at-risk” [19] is employed
for this broad purpose, beyond the usual domain of finance.

To understand the second-order ideas with which we will be occupied in this paper, some back-
ground in the first-order ideas is needed, and we begin briefly with that. The conditional value-at-risk
CVaRα(X) of a random variable X oriented to “loss” or “cost,” at a probability level α ∈ [0, 1), is
the expected value of the α-upper tail distribution of X as defined in [24, 25]. When the cumulative
distribution function FX for X is continuous at VaRα(X), the value-at-risk of X at level α, this tail
distribution is simply the conditional distribution for X with respect to the interval [VaRα,∞), but
otherwise it requires taking into account an atom of probability at VaRα(X). This distinction makes
CVaR different from other notions introduced around the same time, such as “tail-VaR” [2], which
includes the entire probability atom, and “mean shortfall” [12], which omits it (although the similar
term “expected shortfall” has been ambiguous in this respect). Conditional value-at-risk can also be
expressed by the formula

CVaRα(X) =
1

1− α

∫ 1

α
VaRβ(X)dβ

of [1], which was adopted by Föllmer and Schied as the definition of “average” value-at-risk [7].2

These other concepts were originally articulated for random variables oriented toward gain, but the
loss orientation we follow here has the advantage of making the value-at-risk VaRα(X) coincide with
the α-quantile qX(α) familiar in statistics:

VaRα(X) = qX(α) = min{x ∈ IR|FX(x) ≥ α}.

This uniting of VaR with quantiles has further suggested a way of exiting from finance-driven termi-
nology about risk for the sake of applications outside of finance, namely by speaking of the conditional
value-at-risk CVaRα(X) as the α-superquantile of X in the parallel notation q̄X(α). Then the integral
formula for CVaRα(X) becomes

q̄X(α) =
1

1− α

∫ 1

α
qX(β)dβ. (1)

With this shift we have a platform for displaying the second-order superquantiles of [21], to be
denoted by ¯̄qX(α); they are defined by

¯̄qX(α) =
1

1− α

∫ 1

α
q̄X(β)dβ. (2)

There is more to the second-order superquantile than just the analogy between (1) and (2), though, as
has been laid out in [21].

Especially of interest is a formula derived in [21] that extends to superquantiles and second-order
superquantiles the basic connection between VaR and CVaR discovered in [24, 25]. That earlier formula
asserts, in quantile/superquantile notation, that

q̄X(α) = min
c∈IR

{c+ Vα(X − c)}, qX(α) = argmin
c∈IR

{c+ Vα(X − c)}, (3)

2They preferred “average” because “conditional” could have differing usages. This issue also adds motivation to our
passage to “superquantiles.”
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in terms of the “regret” functional

Vα(X) =
1

1− α
E[max{0, X}] = 1

1− α

∫ 1

0
max{0, qX(β)}dβ

(with the argmin being an interval which, if not a singleton, has the quantile in question as its left
endpoint). The second-order extension asserts that

¯̄qX(α) = min
c∈IR

{c+ V̄α(X − c)}, q̄X(α) = argmin
c∈IR

{c+ V̄α(X − c)}, (4)

where

V̄α(X) =
1

1− α

∫ 1

0
max{0, q̄X(β)}dβ. (5)

Achieving such a formula had been one of our main goals in pursuing second-order superquantilies,
because it is deeply tied to generalized regression. The joint formula (3) is central to quantile regression,
a well known alternative to ordinary least-squares regression, so the joint formula (4) indicates a possible
elevation to superquantile regression. The double formula (4) was developed in [21] through a technique
in which the superquantiles of X could be interpreted as the quantiles of a “super” random variable X̄
associated with X.

Our primary aim in this paper is to fill in missing parts of the second-order theory concerned
with duality. An important ingredient of duality for any coherent measure of risk, including superquan-
tile/CVaR, is an expression of the risk as a worst-case expectation over an associated class of probability
measures. This requires identifying the “risk envelope” that characterizes that class. The risk envelope
for the risk measure given by second-order superquantiles has not yet been fully understood, but we
will pin it down here.

This pushes us naturally into wider terrain in observing that the integral formula for the second-
order superquantile casts it as a special “spectral” measure of risk of X in the sense of Acerbi [1].
Spectral measures of risk, which have also been studied from various angles under the heading of mixed
superquantile/CVaR measures of risk [28, 26], are known to be fundamental for characterizing coherent
measures of risk that are law-invariant [11, 7, 10, 17, 15, 32]. Some properties of risk envelopes of
mixed superquantile measures of risk are known for the setting with random variables defined on a
nonatomic probability space; see [9, Sections 4.5 and 4.6] and [32]. We provide a development for
arbitrary probability spaces and give explicit formulae for risk envelopes and identifiers, especially for
second-order superquantile risk measures. Moreover, in the broader framework of risk quadrangles [26],
we provide a deeper understanding of the risk quadrangles with (first-order) superquantile/CVaR as its
statistics and for the first time state explicit expressions for risk envelopes and identifiers in the case of
(finite) mixture of quantiles as the statistic.

Although dualization of risk measures can be carried out for a variety of spaces of random variables
and paired dual spaces (see for example [31, 4, 9]), we focus here on random variables with finite second
moments. This excludes some applications, for example in finance, where only the first moments are
finite. Still, in many applications in engineering and generalized regression, the assumption appears
tolerable. A compelling reason in our setting is that this restriction guarantees the finiteness of second-
order superquantiles. That follows from their expression as an integral of first-order superquantiles and
the bounds derived for the latter under such restriction in [23, Proposition 1], namely

E[X] ≤ q̄X(α) ≤ min

{
E[X] +

σ(X)√
1− α

, supX

}
, (6)
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where σ(X) denotes standard deviation and the lower bound is strict for nonconstant X unless α = 0.
Another plus is that this choice allows for random variables with normal distributions, whereas much
of the literature in finance restricts consideration to random variables with essentially bounded range.

In Section 2 we lay the foundation for working in this framework and the measures of risk that fit
into it. We proceed in Section 3 with the central results of duality concerning risk envelopes and the
risk identifiers they associate with random variables. Section 4 then applies the results to optimization
and generalized regression. An appendix collects some of the technical details that are needed along
the way.

2 Risk Measure Framework

For a probability space (Ω,F ,P), we let

L2 = L2(Ω,F ,P) := {X : Ω → IR | X F-measurable, E[X2] <∞}

be the space of random variables with finite second moment, where we write integration with respect to
P using the standard notation E[X] =

∫
ΩX(ω)dP(ω). We equip L2 with the standard norm ∥X∥2 :=

(E[X2])1/2. As explained in the introduction, the choice of L2 ensures, through (6), the finiteness of
the second-order superquantiles ¯̄qX(α) we are especially focused on.

In the following, we deal with classes of measures of risk defined on L2. Regularity [26, 22] provides
fundamental properties for such risk measures. We recall that a measure of risk R : L2 → (−∞,∞] is
regular if it satisfies the following axioms:

R(X) = c for constant random variables X ≡ c,

R((1− τ)X + τX ′) ≤ (1− τ)R(X) + τR(X ′) for all X,X ′ ∈ L2 and τ ∈ (0, 1) (convexity),

{X ∈ L2 | R(X) ≤ c} is closed for all c ∈ IR (closedness),

R(X) > E[X] for nonconstant X ∈ L2 (averseness),

which have as a consequence that R(X + c) = R(X) + c for all c ∈ IR. In fact we will only be working
here with risk measures that in addition are both positively homogeneous,

R(τX) = τR(X) for τ > 0, X ∈ L2,

and monotonic,
R(X) ≤ R(Y ) whenever X(ω) ≤ Y (ω) for a.e. ω ∈ Ω.

In particular R is then a coherent measure of risk in the sense of [2]. Duality in this case is expressed
by the following correspondence between risk measures R and sets Q called their risk envelopes.3

2.1 Proposition (risk envelope duality). For a regular measure of risk R on L2 that is positively
homogeneous and monotone, the relations

R(X) = sup
Q∈Q

E[XQ] for X ∈ L2, Q = {Q ∈ L2 | E[XQ] ≤ R(X) for all X ∈ L2},

3The term “risk envelope” was introduced in 2002 in [27].
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give a one-to-one correspondence between the regular measures of risk R on L2 that are positively
homogeneous and monotonic and the nonempty closed convex subsets Q of L2 that consist of elements
Q ≥ 0 with E[Q] = 1 and are such that each nonzero X ∈ L2 has E[XQ] > 0 for at least one Q ∈ Q.

This fact, a specialization of the general support function correspondence in convex analysis, is
a variant from [26] of known results characterizing other classes of risk measures, starting with [2].
Important along with the risk envelope Q associated with R are the sets

QX = argmax
Q∈Q

E[XQ] for X ∈ L2, (7)

which are called the risk identifiers for the individual random variables X.4

The measures of risk at the center of our attention are the first-order superquantile measures Rα

and the second-order superquantile measures R̄α given by

Rα(X) = q̄X(α) and R̄α(X) = ¯̄qX(α) for α ∈ [0, 1) (8)

in accordance with the expressions (1) for q̄X(α) and (2) for ¯̄qX(α) in Section 1. The properties of
Rα that make it regular, positively homogeneous, and monotonic have been known for some time, and
those properties are obviously inherited by R̄α through the expression of ¯̄qX(α) as an integral in (2).
In both cases, therefore, we are dealing with measure of risk covered by the preceding theorem. For
Rα, the risk envelope is known to be

Qα := {Q ∈ L2 | 0 ≤ Q(ω) ≤ 1/(1− α) a.e. ω ∈ Ω, E[Q] = 1}, (9)

cf. [27, 26]. For R̄α, the specifics of the corresponding risk envelope Q̄α will be determined for the
first time in Section 3; some properties are known from [9, Sections 4.5 and 4.6] and [32] under the
additional assumption that (Ω,F ,P) is nonatomic. However, to accomplish this efficiently and gain
other new insights at the same time, we will pass through a broader class of risk measures that we
call mixed superquantile measures of risk. Such measures are already known, having been identified by
Acerbi [1] as corresponding broadly to “spectral” measures in the pattern of dual utility theory. They
are a key ingredient in the sup representation that Kusuoka [11] has provided for a class of law-invariant
measures of risk, later also studied in [16, 32].

2.2 Definition (mixed superquantile measures of risk). For a weighting measure λ, namely a proba-
bility measure on ([0, 1),B[0,1)),

5 the associated mixed superquantile measure of risk R : L2 → (−∞,∞]
is given by

R(X) :=

∫ 1

0
q̄X(β) dλ(β). (10)

For technical reasons, we exclusively deal in this situation with the completion of ([0, 1),B[0,1), λ),
which, with a slight abuse of notation, we denote by ([0, 1), B̄[0,1), λ).

4This term was introduced in [28], although the sets in question were handled earlier as being the subdifferentials of
convex analysis for the risk measure functionals in question.

5For a set S with a topology, let BS be its Borel sigma-algebra.
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Here, the key aspect is that second-order superquantile risk measures fit this definition because,
through (2), we have

R̄α(X) = ¯̄qX(α) =

∫ 1

0
q̄X(α) dλ̄α(β), where λ̄α(S) :=

m(S ∩ (α, 1))

1− α
for S ∈ B[0,1).

6 (11)

As another special case, if λ is concentrated on a finite number of points in [0, 1), say α1, α2, ..., αk,
then simply R(X) = λ(α1)q̄X(α1) + · · · + λ(αk)q̄X(αk). A first-order superquantile risk measure is
realized by setting k = 1.

Note in general that, since λ is defined on B[0,1), we exclude the possibility of a weighting measure
that places a positive weight at α = 1. That case simply yields R(X) = ∞ whenever supX = ∞, and
it is better treated separately.

The basic properties of a mixed superquantile risk measure are described by the following result,
where certain parts are immediate from the definition. The result extends previous results in [27, 28],
which built in turn on the earlier spectral representation of Acerbi [1], by dealing with a significantly
relaxed condition for finiteness and admitting the point β = 0 explicitly.

2.3 Proposition (mixed superquantile properties). A mixed superquantile risk measure R as in (10) is
well-defined, monotonic and positively homogeneous. It is regular if λ({0}) < 1, but lacking averseness
if λ({0}) = 1. Specifically,

R(X) ≥ E[X] for all X ∈ L2 and R(X) > E[X] for nonconstant X unless λ({0}) = 1.

It is finite on L2 whenever the weighting measure λ satisfies∫ 1

0

1√
1− β

dλ(β) <∞

and, regardless of the weighting measure, has R(X) <∞ whenever supX <∞.
It has the alternative expression

R(X) =

∫ 1

0
qX(β)φ(β)dβ, where φ(β) :=

∫
0≤α<β

1

1− α
dλ(α), β ∈ [0, 1].

The risk profile function φ is right-continuous and nondecreasing on [0, 1] with φ(0) = 0 and satisfies∫ 1
0 (1 − α)dφ(α) = 1. Conversely, any φ with these properties arises from a unique weighting measure
λ given by dλ(α) = (1− α)dφ(α).

The proof of this proposition, similar in some ways to that of previous versions but containing new
parts, is provided in the Appendix. Further clarification of properties of mixed superquantile measures
of risk has been furnished in [26, Mixing Theorem].

Next on the agenda is applying this general result to the case in (11) that corresponds to second-
order superquantile measures of risk.

6Here, and throughout the paper, m denotes Lebesgue measure.
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2.4 Theorem (second-order superquantile properties). Any second-order superquantile risk measure
R̄α : L2 → IR, α ∈ [0, 1), is regular, monotonic, and positively homogenous, and satisfies for X ∈ L2

E[X] ≤ ¯̄qX(α) = R̄α(X) ≤ min

{
E[X] +

2σ(X)√
1− α

, supX

}
,

with the lower bound holding with strict inequality whenever X is nonconstant.
It has the alternative expressions

R̄α(X) =
1

1− α

∫ 1

α
qX(β) log

1− α

1− β
dβ =

∫ 1

0
qX(β)φ̄α(β)dβ,

with respect to the risk profile function

φ̄α(β) :=

{ 1
1−α log 1−α

1−β if α ≤ β < 1

0 if 0 ≤ β < α.

Moreover, φ̄α is a nondecreasing, finite convex function on [0, 1] with right-derivative equal to 1/(1−α)2
as it starts to grow from 0 at β = α.

Proof. As a special case of Proposition 2.3, it follows automatically that R̄α is well-defined, regular,
monotonic, positively homogeneous, and bounded from below by E[X]. From (6),

R̄α(X) ≤ 1

1− α

∫ 1

α
E[X] +

σ(X)√
1− β

dβ = E[X] +
σ(X)

1− α

∫ 1

α

1√
1− β

dλ(β) = E[X] +
2σ(X)√
1− α

.

Obviously, R̄α(X) ≤ supX also holds.
The alternative expression follows after a specialization of φ of Proposition 2.3 for the given choice

of weighting measure λ = λ̄α. Specifically,

φ(β) =

∫
0≤γ<β

1

1− γ
dλ̄α(γ) = φ̄α(β) =

{ ∫ β
α

1
1−γ

1
1−αdγ if α ≤ β < 1

0 if 0 ≤ β ≤ α.

Since for 0 ≤ a ≤ b < 1, ∫ b

a

1

1− β
dβ = log

1− a

1− b
,

we therefore find that the alternative expressions follow.
The assertion about φ̄α being convex is justified by its derivative being zero for β ∈ (0, α) and

1/((1 − α)(1 − β)) for β ∈ (α, 1), with left- and right-derivatives at β = α equal to 0 and 1/(1 − α)2,
respectively.

The upper bounds on Rα (see (6)) and R̄α (Theorem 2.4), the latter given here for the first time,
are remarkably similar. They show that, although second-order superquantile risks are larger than
first-order risks, the difference is at most σ(X)/

√
1− α.
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3 Dualization Through Risk Envelopes

We now turn to determining the dual expressions for mixed and second-order superquantile risk mea-
sures in terms of the risk envelopes described in general in Proposition 2.1. The risk envelope Qα that
corresponds to the first-order superquantile measure Rα in (8) has already been indicated in (9).

Another case where the risk envelope is already known is that of a mixed superquantile measure
R associated with a weighting measure λ that is concentrated in finitely many points. Namely, if
R = λ1Rα1 + · · ·+ λkRαk

, the corresponding risk envelope is Q = λ1Qα1 + · · ·+ λkQαk
. This follows

immediately from general principles of convex analysis and has been recorded explicitly, for instance,
in [26]. In the case of a nonatomic probability space but general mixed superquantile risk measures, we
find properties of risk envelopes developed in [9, Sections 4.5 and 4.6] and [32].

For arbitrary probability spaces, the literature lacks explicit expressions for risk envelopes of mixed
superquantile risk measures coming from a weighting measure λ that is not merely discrete. These risk
envelopes ought, by analogy, to be a sort of “continuous sum” or integral of various sets Qα of the form
in (9), and the contemplation of such an expression raises serious technical challenges in integration
theory.

We take on those challenges here, but with some of the technical background details placed in the
Appendix. Let

M :=

{
q : [0, 1) → L2

∣∣∣∣ q is
(
B̄[0,1),BL2

)
-measurable,

∫
∥q(β)∥2 dλ(β) <∞

}
.

Observe that M is well-defined because by Lemma A.5 (the “A” points to the Appendix), the mapping
β 7→ ∥q(β)∥2 is B̄[0,1)-measurable whenever q is (B̄[0,1),BL2)-measurable.

We are now ready to deal with the risk envelope of a mixed superquantile risk measure R and for
this purpose utilize a collection of random variables in terms of (Bochner) integrals of elements of M.
In the following, we let IR = IR ∪ {−∞,∞}.

3.1 Theorem (risk envelope for mixed superquantiles). For a mixed superquantile measure of risk R
with associated weighting measure λ, let7

Q := cl

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

}
,

where cl denotes closure with respect to the (strong) topology on L2. Then Q is nonempty, convex,
and is the risk envelope for R, i.e., for any X ∈ L2,

R(X) = sup
Q∈Q

E[XQ].

Moreover, if
∫ 1
0 1/

√
1− α dλ(α) <∞, then Q is also weakly compact.

Proof. Let X ∈ L2 and f : [0, 1)× L2 → IR be defined by

f(α,Q) =

{
−E[XQ] if Q ∈ Qα

∞ otherwise.

7We note that Q resembles the Aumann integral (see for example [3]) of the set-valued mapping β 7→ Qβ .
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In view of Definition A.3, f is a normal integrand because (i) f is (B̄[0,1) ⊗BL2)-measurable as the sum
of the continuous8 function −E[X·] on [0, 1)× L2 and an indicator function vanishing on the set

{(β,Q) ∈ [0, 1)× L2 | Q ∈ Qβ} ∈ B̄[0,1) ⊗ BL2

and infinity elsewhere, (ii) f(β,Q) ≥ −E[XQ] > −∞ for β ∈ [0, 1) and Q ∈ L2, and (iii) for all
β ∈ [0, 1), f(β, ·) is lower semicontinuous by the continuity of E[X·] on L2 and the closedness of
Qβ ⊂ L2, and f(β, ·) is not identical to ∞ with Q = 1 ∈ Qβ furnishing a finite value f(β, 1) = −E[X].
In view of Proposition A.6 and the fact that q = 1 provides an element of M with

∫
f(β, q(β)) dλ(β) =

−E[X] < ∞, Proposition A.4 applies. Consequently, the interchange of integration and minimization
is permitted and we obtain that

R(X) =

∫
sup

Qβ∈Qβ

E[XQβ] dλ(β) = −
∫

inf
Q∈L2

f(β,Q) dλ(β)

= − inf
q∈M

∫
f(β, q(β)) dλ(β).

We next consider the interchange of integration with respect to λ and P. For q ∈ M, it follows from
Lemma A.5 that the function (β, ω) 7→ |X(ω)q(β)(ω)| is measurable. By Tonelli-Fubini’s Theorem and
Cauchy-Schwartz inequality,∫

|X(ω)q(β)(ω)|d(λ× P)(β, ω) =
∫
E[|Xq(β)|] dλ(β) ≤ ∥X∥2

∫
∥q(β)∥2 dλ(β) <∞,

where the finiteness follows by the property of q ∈ M. Then by Tonelli-Fubini’s Theorem,∫
E[Xq(β)] dλ(β) = E

[
X

∫
q(β) dλ(β)

]
.

Since ∫
f(β, q(β)) dλ(β) =

∫
E[Xq(β)] dλ(β)

whenever q ∈ M is such that q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1) and
∫
f(β, q(β)) dλ(β) = ∞ otherwise, we

find that

inf
q∈M

∫
f(β, q(β)) dλ(β) = inf

q∈M

{∫
E[−Xq(β)] dλ(β) + ι(q)

}
= inf

q∈M

{
−E

[
X

∫
q(β) dλ(β)

]
+ ι(q)

}
,

where

ι(q) =

{
0 if q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

∞ otherwise.

Compiling the above results, we see that

R(X) = − inf
q∈M

∫
f(β, q(β)) dλ(β) = sup

q∈M

{
E

[
X

∫
q(β) dλ(β)

]
− ι(q)

}
= sup

Q∈Q
E[XQ].

8Here continuity is with respect to the product topology of the norm-topologies on [0, 1) and L2.
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The convexity of Q follows from the convexity of Qβ. Since 1 ∈ Q, Q is not empty. Under the
additional assumption that

∫
1/

√
1− α dλ(α) <∞, R is finite-valued on L2 and even locally bounded

around the origin of L2 by Proposition 2.3. This local boundedness for a positively homogeneous convex
function, as the support function of a set Q, corresponds to that set being bounded. Consequently,
Q is bounded. Since Q is convex, weak closedness follows from strong closedness and therefore weak
compactness is established.

For the special case of a second-order superquantile risk measure we then obtain the following
corollary.

3.2 Corollary (risk envelope for second-order superquantiles). For α ∈ [0, 1), the risk envelope for R̄α

is given by

Q̄α := cl

{
Q ∈ L2

∣∣∣∣ Q =
1

1− α

∫ 1

α
q(β)dβ, q ∈ M, q(β) ∈ Qβ for m-a.e. β ∈ [α, 1)

}
.

Moreover, Q̄α is a nonempty weakly-compact convex subset of L2.

In addition to the trivial cases when λ and/or P are positive only on a finite number of points in
[0, 1) and Ω, respectively, the closure in the definition of Q is unnecessary under the following condition.

3.3 Proposition (dispensing with the closure operation). Suppose that λ is nonatomic and also that∫ 1
0 1/(1−α) dλ(α) <∞. Then the closure operation is superfluous in the expression of the envelope in
Theorem 3.1. One can simply take

Q =

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

}
.

Proof. By [6], an integrably bounded B̄[0,1)-measurable set-valued mapping S : [0, 1) ⇒ L2, with closed
and convex values, satisfies

cl

{∫
S(α) dλ(α)

}
=

∫
S(α) dλ(α)

when λ is nonatomic. Take S to be the mapping α 7→ {q(α) | q ∈ M, q(α) ∈ Qα}, which obviously is
closed and convex valued by the properties of Qα. Moreover, since both [0, 1) and L2 are separable,
there exists a countable collection {qi}∞i=1, q

i ∈ M, such that S(α) = cl{qi(α) | i = 1, 2, ...} for λ-a.e.
α ∈ [0, 1). Thus, S is B̄[0,1)-measurable; see for example [18, Theorem 1]. The mapping S is integrably
bounded if there exists a B̄[0,1)-measurable g : [0, 1) → IR with

∫
g(α) dλ(α) <∞ and

sup
Q∈S(α)

∥Q∥2 ≤ g(α) for λ-a.e. α ∈ [0, 1).

Since for our choice of S we have that every Q ∈ S(α) has Q(ω) ≤ 1/(1− α) for a.e. ω ∈ Ω, integrably
boundedness holds with g(α) = 1/(1− α) under the imposed restriction on λ.

Next, we turn to specific expressions for risk identifiers. Recall from (7) that for any X ∈ L2 and
positively homogeneous regular measure of risk on L2, a Q in the risk envelope of the risk measure
that maximizes E[XQ] is called a risk identifier at X. We again start with the building blocks from
first-order superquantile risk measures.
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For X ∈ L2, the set
QX

α := argmax
Q∈Qα

E[XQ]

is convex and nonempty with its elements referred to as risk identifiers of Rα. Before we characterize
these risk identifiers, we introduce additional notation.

For β ∈ (0, 1), let
Ωβ(X) := {ω ∈ Ω | X(ω) = qX(β)}

and let
F−
X (x) := lim

x′ ↗x
FX(x′), x ∈ IR

be the left-continuous “companion” of the cumulative distribution function FX , where the limit exists
by the virtue of FX being nondecreasing and bounded from above. For FX continuous, FX = F−

X of
course.

The risk identifiers of Rα are then characterized as follows; see also [31, Equation 4.21] for closely
related expressions.

3.4 Proposition For X ∈ L2 and β ∈ (0, 1), let rXβ ∈ L2 be such that

0 ≤ rXβ (ω) ≤ 1

1− β
for a.e. ω ∈ Ω and

∫
Ωβ(X)

rXβ (ω)dP(ω) =
FX(qX(β))− β

1− β
. (12)

Every such rXβ , defines a unique9 Q
X,rXβ
β ∈ L2 given for a.e. ω ∈ Ω by

Q
X,rXβ
β (ω) :=


1

1−β if X(ω) > qX(β)

rXβ (ω) if X(ω) = qX(β) and P({ω}) > 0

0 otherwise.

(13)

Then,

QX
β =

{
Q ∈ L2

∣∣∣∣ Q = Q
X,rXβ
β for some rXβ ∈ L2 satisfying (12)

}
.

Moreover,
QX

0 = {Q ∈ L2 | Q(ω) = 1 for a.e. ω ∈ Ω}.

Proof. Let β ∈ (0, 1) and X ∈ L2. We first show that there exists an rXβ ∈ L2 satisfying (12). For

ω ∈ Ω satisfying X(ω) = qX(β) and P({ω}) > 0, F−
X (X(ω)) ≤ β ≤ FX(X(ω)), with at least one of the

inequalities being strict, and

FX(X(ω))− β

(1− β)(FX(X(ω))− F−
X (X(ω)))

∈ [0, 1/(1− β)].

9With L2 consisting of equivalence classes of functions identical up to on a set of P-measure zero, uniqueness of course
is in the sense of such equivalence classes.

11



Let r̂Xβ ∈ L2 be defined for a.e. ω ∈ Ω by

r̂Xβ (ω) :=

{
FX(X(ω))−β

(1−β)(FX(X(ω))−F−
X (X(ω)))

, if X(ω) = qX(β) and P({ω}) > 0

0 otherwise.
(14)

Clearly, r̂Xβ satisfies 0 ≤ r̂Xβ (ω) ≤ 1/(1− β) for a.e. ω ∈ Ω. Moreover,∫
Ωβ(X)

r̂Xβ (ω)dP(ω) =
∫
Ωβ(X)

FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

dP(ω) =
FX(qX(β))− β

1− β

and r̂Xβ therefore satisfies (12).

Let rXβ ∈ L2 satisfy (12). Since 0 ≤ Q
X,rXβ
β (ω) ≤ 1/(1− β) for a.e. ω ∈ Ω and∫

Q
X,rXβ
β (ω)dP(ω) =

∫
{ω∈Ω | X(ω)>qX(β)}

1

1− β
dP(ω) +

∫
Ωβ(X)

rXβ (ω)dP(ω)

=
1− FX(qX(β))

1− β
+
FX(qX(β))− β

1− β
= 1,

we find that Q
X,rXβ
β ∈ Qβ. Moreover,

E

[
XQ

X,rXβ
β

]
=

∫
{ω∈Ω | X(ω)>qX(β)}

X(ω)

1− β
dP(ω) +

∫
Ωβ(X)

X(ω)rXβ (ω)dP(ω)

=
1

1− β

∫
{ω∈Ω | X(ω)>qX(β)}

X(ω)dP(ω) + qX(β)
FX(qX(β))− β

1− β

=

∫ ∞

−∞
x dF β

X(x),

where

F β
X(x) :=

{
FX(x)−β

1−β if FX(x) ≥ β

0 if FX(x) < β.

It is well known (see [25]) that the superquantile q̄X(β) =
∫∞
−∞ x dF β

X(x). Thus, we have proved that

Q
X,rXβ
β maximizes E[X·] over Qβ. Any Q ∈ Qβ not equal to Q

X,rXβ
β for any rXβ must necessarily have

E[XQ] < q̄X(β).
The case of β = 0 follows also as then Q0 = {Q ∈ L2 | 0 ≤ Q(ω) ≤ 1 for a.e. ω ∈ Ω, E[Q] = 1}.

A particular element of QX
β plays a central role in the following. Let r̂Xβ ∈ L2 be as defined in (14).

Consequently by Proposition 3.4, Q̂X
β defined for a.e. ω ∈ Ω by

Q̂X
β (ω) :=


1

1−β if X(ω) > qX(β)

r̂Xβ (ω) if X(ω) = qX(β) and P({ω}) > 0

0 otherwise

(15)
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is a point in QX
β . Moreover, let Q̂X

0 ∈ L2 be defined by Q̂X
0 (ω) = 1 for a.e. ω ∈ Ω, which therefore by

Proposition 3.4 is a point in QX
0 . The random variable Q̂X

β behaves continuously in β in a sense given
next.

3.5 Proposition If βν , β ∈ [0, 1) and βν → β, then for any X ∈ L2, ∥Q̂X
βν − Q̂X

β ∥2 → 0.

Proof. LetX ∈ L2 and r̂Xβ be defined in (14) and β ∈ (0, 1). Suppose that FX(qX(β))−F−
X (qX(β)) > 0.

We consider two cases.
First, suppose that βν → β, with βν < β for all ν, which implies that β ∈ [F−

X (qX(β)), FX(qX(β))]. If
β ∈ (F−

X (qX(β)), FX(qX(β))], then qX(βν) = qX(β) for sufficiently large ν. Consequently, for sufficiently
large ν,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<qX(β)}

(0− 0)2dP(ω)

+

∫
Ωβ(X)

(r̂Xβν (ω)− r̂Xβ (ω))2dP(ω) +
∫
{ω|X(ω)>qX(β)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

When X(ω) = qX(βν) = qX(β),

r̂Xβν (ω)− r̂Xβ (ω) =
FX(qX(β))− βν

(1− βν)(FX(qX(β))− F−
X (qX(β)))

− FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

Hence, all three terms in the above integral vanish as ν → ∞. If β = F−
X (qX(β)), then we only have

that qX(βν)↗qX(β) by the left-continuity of qX and in fact qX(βν) < qX(β)) for all ν. Consequently,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<qX(βν)}

(0− 0)2dP(ω)

+

∫
{ω|qX(βν)=X(ω)<qX(β)}

(r̂Xβν (ω)− 0)2dP(ω)

+

∫
{ω|qX(βν)<X(ω)=qX(β)}

(
1

1− βν
− r̂Xβ (ω)

)2

dP(ω)

+

∫
{ω|qX(βν)<qX(β)<X(ω)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

Of the four integrals, the first and fourth ones obviously tend to zero. For the second one, we see that

P({ω|qX(βν) < X(ω) = qX(β)}) = FX(qX(βν))− F−
X (qX(βν)) ≤ FX(qX(β))− F−

X (qX(βν)) → 0

by the left-continuity of F−
X and consequently the integral also tends to zero. For the third integral, we

find that when X(ω) = qX(β)

r̂Xβ (ω) =
FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

=
FX(qX(β))− F−

X (qX(β))

(1− β)(FX(qX(β))− F−
X (qX(β)))

=
1

1− β
.

Consequently, the third integral also tends to zero.

13



Second, suppose that βν → β, with βν > β for all ν. If β ∈ [F−
X (qX(β)), FX(qX(β))), then

qX(βν) = qX(β) for sufficiently large ν and the corresponding argument for the first case still holds. If
β = FX(qX(β)), then we only have that qX(βν) > qX(β)) for all ν. Consequently,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<qX(β)}

(0− 0)2dP(ω)

+

∫
{ω|qX(β)=X(ω)<qX(βν)}

(0− r̂Xβ (ω))2dP(ω)

+

∫
{ω|qX(β)<X(ω)=qX(βν)}

(
r̂Xβν (ω)−

1

1− β

)2

dP(ω)

+

∫
{ω|qX(β)<qX(βν)<X(ω)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

The first and fourth integrals obviously tend to zero. For the second one,

r̂Xβ (ω) =
FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

=
FX(qX(β))− FX(qX(β))

(1− β)(FX(qX(β))− F−
X (qX(β)))

= 0

and consequently a zero integral. For the third integral,

r̂Xβν (ω) =
FX(qX(βν))− βν

(1− βν)(FX(qX(βν))− F−
X (qX(βν)))

→ 1

1− β

if qX(βν) remains bounded away from qX(β) because then F−
X (βν) → FX(β) = β. If qX(βν) → qX(β),

then by the right-continuity of FX we have that

P({ω ∈ Ω| qX(β) < X(ω) = qX(βν)}) = FX(qX(βν))− F−
X (qX(βν)) ≤ FX(qX(βν))− FX(qX(β)) → 0.

Consequently, the third integral also tends to zero.
The situation with FX(qX(β))−F−

X (qX(β)) = 0 follows with similar and in fact simplified arguments
as in that case FX is continuous at qX(β) and qX is continuous at β.

Finally, we consider the case with β = 0 and βν ↘0. Then,

∥Q̂βν − Q̂0∥22 =
∫
{ω|X(ω)>qX(βν)}

(
1

1− βν
− 1

)2

dP(ω)

+

∫
Ωβν (X)

(r̂βν (ω)− 1)2dP(ω) +
∫
{ω|X(ω)<qX(βν)}

(0− 1)2dP(ω).

Since 1/(1 − βν) → 1, the first integral vanishes. The last two integrals vanish since their integrands
are bounded and FX(qX(βν)) → 0.

We are then in a position to characterize risk identifiers of mixed superquantile risk measures. For
X ∈ L2, let

QX := cl

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ QX

β for λ-a.e. β ∈ [0, 1)

}
. (16)
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3.6 Theorem (risk identifiers for mixed superquantiles). For X ∈ L2, the set QX is convex and
satisfies the following.

(i) If Q ∈ QX , then Q is a risk identifier of R at X.

(ii) If
∫
1/

√
1− β dλ(β) < ∞, then QX is nonempty and weakly compact, and Q ∈ QX whenever Q

is a risk identifier of R at X. Moreover, Q̂ :=
∫
q̂(β) dλ(β), where

q̂ : [0, 1) → L2, with q̂(β) = Q̂X
β (defined in (15)) for all β ∈ [0, 1),

is furnishing an element of QX .

Proof. We first consider (i). Let Q ∈ QX . There exists sequences {Qν}∞ν=1 ⊂ L2 and {qν}∞ν=1 ⊂ M
such that ∥Qν −Q∥2 → 0, Qν =

∫
qν(β) dλ(β), and qν(β) ∈ QX

β for all ν and λ-a.e. β ∈ [0, 1). Then,
for every ν,

R(X) =

∫
E[Xqν(β)] dλ(β) = E

[
X

∫
qν(β) dλ(β)

]
= E[XQν ],

where the middle equality follows by the same argument as in the proof of Theorem 3.1. Since by the
Cauchy-Schwartz inequality E[XQν ] → E[XQ], we also have that R(X) = E[XQ], which establishes
(i).

Next, we consider (ii). Suppose that
∫
1/

√
1− β dλ(β) < ∞. We proceed toward a contradiction.

Suppose that Q ∈ Q is a risk identifier of R at X, but Q ̸∈ QX . Then there must exists a q ∈ M and
B ∈ B̄[0,1) such that q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1), λ(B) > 0, and q(β) ̸∈ QX

β for all β ∈ B. However,

this implies that E[Xq(β)] < E[XQX
β ] for all β ∈ B and any QX

β ∈ QX
β . Consequently, E[XQ] < R(X),

which is a contradiction.
Since Q is weakly compact by Theorem 3.1, the weak compactness of QX follows from it being

a closed convex subset of Q. Finally, we show that Q̂ ∈ QX . The conclusion follows when we have
shown that q̂ ∈ M. By Proposition 3.5, q̂ is continuous and therefore (B̄[0,1),BL2)-measurable. Since
for β ∈ (0, 1)

∥Q̂X
β ∥22 =

∫
{ω∈Ω | X(ω)>qX(β)}

1

(1− β)2
dP(ω) +

∫
Ωβ(X)

[
FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

]2
dP(ω)

=
1− β

(1− β)2
+

[
FX(qX(β))− β

(1− β)(FX(qX(β))− F−
X (qX(β)))

]2
(FX(qX(β))− F−

X (qX(β)))

=
1

1− β
+

(FX(qX(β))− β)2

(1− β)2(FX(qX(β))− F−
X (qX(β)))

≤ 1

1− β
+

(1− β)(FX(qX(β))− β)

(1− β)2(FX(qX(β))− F−
X (qX(β)))

≤ 1

1− β
+

FX(qX(β))− F−
X (qX(β))

(1− β)(FX(qX(β))− F−
X (qX(β)))

=
2

1− β

and ∥Q̂X
0 ∥22 = 1, we find that∫

∥q̂(β)∥2 dλ(β) ≤
√
2

∫
1√

1− β
dλ(β) <∞.
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Consequently q̂ ∈ M and Q̂ =
∫
q̂(β) dλ(β) ∈ QX , which complete the proof.

We observe that when
∫
1/

√
1− β dλ(β) = ∞, there are random variables X ∈ L2 with R(X) = ∞.

In this case it might not be necessary to select q in (16) with q(β) ∈ QX
β for λ-a.e. β ∈ [0, 1) because∫

E[Xq(β)] dλ(β) might still be infinity. For the special case of a second-order superquantile risk
measure, we directly obtain the following corollary without this complication.

3.7 Corollary For α ∈ [0, 1) and X ∈ L2, the set

Q̄X
α := cl

{
Q ∈ L2

∣∣∣∣ Q =
1

1− α

∫ 1

α
q(β)dβ, q ∈ M, q(β) ∈ QX

β for m-a.e. β ∈ [α, 1)

}
is nonempty, convex, and weakly compact. Moreover,

Q ∈ Q̄X
α if and only if Q is a risk identifier of Rα at X.

Further simplifications are possible in the case of second-order superquantile risk measures. As
usual, we interpret 0 times −∞ as zero in the following.

3.8 Theorem (further characterization of second-order superquantile risk identifiers). For X ∈ L2

and α ∈ [0, 1), Q̄X
α is the closure of elements Q̄X

α ∈ Q̄α given, for a.e. ω ∈ Ω, by

Q̄X
α (ω) =


1

1−α

[
log 1−α

1−f(ω) +
∫ F (ω)
f(ω) r

X
β (ω)dβ

]
if α < f(ω) < 1

1
1−α

∫ F (ω)
α rXβ (ω)dβ if f(ω) ≤ α ≤ F (ω)

0 otherwise,

where rXβ ∈ L2 satisfies (12) and F (ω) := FX(X(ω)) and f(ω) := F−
X (X(ω)).

The specific choice r̂Xβ ∈ L2 given in (14) results in the risk identifier Q̄X
α ∈ Q̄X

α having, for a.e.
ω ∈ Ω,

Q̄X
α (ω) =



1
1−α log 1−α

1−F (ω) if α < f(ω) = F (ω) < 1

1
1−α

[
log 1−α

1−f(ω) + 1 + 1−F (ω)
F (ω)−f(ω) log

1−F (ω)
1−f(ω)

]
if α < f(ω) < F (ω)

1
1−α

[
F (ω)−α

F (ω)−f(ω) +
1−F (ω)

F (ω)−f(ω) log
1−F (ω)
1−α

]
if f(ω) ≤ α ≤ F (ω) and f(ω) < F (ω)

0 otherwise.

Proof. For ω ∈ Ω such that α < F−
X (X(ω)) < 1,∫

{β∈(α,1) | X(ω)>qX(β)}

1

1− β
dβ = [− log(1− β)]

F−
X (X(ω))

α = log
1− α

1− F−
X (X(ω))

. (17)

By Proposition 3.4,

Q̄X
α (ω) =

1

1− α

[∫
{β∈(α,1) | X(ω)>qX(β)}

1

1− β
dβ +

∫
{β∈(α,1) | X(ω)=qX(β)}

rXβ (ω)dβ

]

=
1

1− α

[
log

1− α

1− F−
X (X(ω))

+

∫ FX(X(ω))

F−
X (X(ω))

rXβ (ω)dβ

]
,
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which proves the first claim. The second claim follows by a similar argument.
We next turn to the specific choice of r̂Xβ . For α < F−

X (X(ω)) = FX(X(ω)) < 1, the conclusion

follows trivially. For α < F−
X (X(ω)) < FX(X(ω)), integration gives that∫ FX(X(ω))

F−
X (X(ω))

r̂Xβ (ω)dβ =

∫ FX(X(ω))

F−
X (X(ω))

FX(X(ω))− β

(1− β)(FX(X(ω))− F−
X (X(ω)))

dβ

= 1 +
1− FX(X(ω))

FX(X(ω))− F−
X (X(ω))

log
1− FX(X(ω))

1− F−
X (X(ω))

,

and the corresponding conclusion follows. The last case follows by a similar calculation.

The situation is especially simple for the following case.

3.9 Corollary Suppose that FX is continuous for X ∈ L2 and α ∈ [0, 1). Then, Q̄X
α is a singleton10

with element given, for a.e. ω ∈ Ω, by

Q̄X
α (ω) =

{
1

1−α log 1−α
1−FX(X(ω)) if α < FX(X(ω)) < 1

0 otherwise.

It is obvious that expressions of risk identifiers provide alternative expressions for risk measures.
Specifically, for X ∈ L2,

R(X) = sup
Q∈Q

∫
X(ω)Q(ω)dP (ω) =

∫
X(ω)QX(ω)dP (ω),

for any QX ∈ QX . In the case of the previous corollary, it is easy to see that the second-order
superquantile risk takes the simple form

R̄α(X) =
1

1− α

∫ ∞

qX(α)
x log

1− α

1− FX(x)
dFX(x),

where qX(α) = −∞ for α = 0, which complements the expression of Theorem 2.4.

4 Applications to Optimization and Regression

In applications arising in optimization under uncertainty and generalized regression, one is not only
interested in the risk of a single random variable X, but rather of a parameterized family of random
variables over which the “best” is to be selected according to some criterion and constraints. When
the criterion and/or the constraints are given in terms of measures of risk applied to this family of
random variables, we obtain optimization problems involving parameterized risk. Properties of these
measures of risk as functions of the parameters as well as formulae for the functions’ (sub)gradients
become central. In this section, we discuss optimization problems involving parameterized mixed and

10Again, uniqueness is up to on a set of P-measure zero.
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second-order superquantile risk. In particular, we see that risk identifiers developed in this paper are
central for expressions of subgradients.

We consider a family of random variables Xu = g(u, ·), u ∈ IRn, generated by the function g :
IRn × Ω → IR. Consistent with the previous sections, we assume that Xu ∈ L2 for all u ∈ IRn. For a
weighting measure λ and the corresponding mixed superquantile risk measure R, as before given by

R(Xu) =

∫
q̄Xu(β) dλ(β),

we get a function
f(u) := R(Xu), u ∈ IRn, (18)

representing parameterized risk. One might then proceed with determining a u ∈ IRn that

minimizes f(u) over a subset of IRn

or, alternatively, with determining a u ∈ IRn that

minimizes some criterion function of u subject to f(u) ≤ 0 and possibly other constraints.

Algorithms such as cutting plane and bundle methods for solving these optimization problems require
expressions for (sub)gradients of f . Justification for these approaches is provided by the Convexity
Theorem of [26], which establishes that f is convex whenever g(·, ω) is convex for a.e. ω ∈ Ω.

In the remainder of the paper, we give expressions for subgradients of f , but refrain from discussing
full algorithms; see for example [16, 13, 30] for risk minimization algorithms based on dual approaches
and [31] for related subgradient expressions. However, we end the paper with a discussion of primal
and dual methods in the context of superquantile regression.

4.1 Subgradients of Parameterized Risk

We restrict the attention to the case with
∫
1/

√
1− α dλ(α) <∞ which ensures the finiteness of R on

L2 and also the weak compactness of Q. We equip IRn × L2 with the product topology generated by
the norm topology on IRn and the weak topology on L2. The convergence of points in IRn ×L2 in this
weak sense is denoted by →w.

For notational convenience, we let h : IRn × L2 → IR be given by

h(u,Q) :=

∫
g(u, ω)Q(ω)dP(ω). (19)

Properties of this function are recorded next. The development here is rather standard (see for example
[33]), but is included as it explicitly shows the central role of risk identifiers.

4.1 Proposition Consider h in (19) and suppose for an open set U ⊂ IRn that

(i) there exists an L ∈ L2 such that

|g(u, ω)− g(u′, ω)| ≤ L(ω)∥u− u′∥ for all u, u′ ∈ U and a.e. ω ∈ Ω
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(ii) for every i = 1, ..., n, there exists an Ωi ⊂ Ω, with P{Ωi} = 1, and an Li ∈ L2 such that
∂g(u, ω)/∂ui exists for u ∈ U and ω ∈ Ωi, and∣∣∣∣∂g(u, ω)∂ui

− ∂g(u′, ω)

∂ui

∣∣∣∣ ≤ Li(ω)∥u− u′∥ for all u, u′ ∈ U and ω ∈ Ωi

(iii) g(v, ·), ∂g(vi, ·)/∂ui ∈ L2 for some v, vi ∈ U , i = 1, ..., n.

Then, h is weakly continuous on U × L2 and ∇uh exists and is likewise weakly continuous on U × L2.

Proof. First we consider h, which is well-defined and finite on U × L2 from assumptions (i) and
(iii). Suppose that (uν , Qν) →w (u,Q), with uν , u ∈ U and Qν , Q ∈ L2. Then by the triangle and
Cauchy-Schwartz inequalities and assumption (i),

|h(uν , Qν)− h(u,Q)| ≤
∣∣∣∣∫ [g(uν , ω)− g(u, ω)]Qν(ω)dP(ω)

∣∣∣∣+ ∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)
∣∣∣∣

≤ ∥g(uν , ·)− g(u, ·)∥2∥Qν∥2 +
∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)

∣∣∣∣
≤ (E[L2])1/2∥uν − u∥∥Qν∥2 +

∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)
∣∣∣∣ .

By the Uniform Boundedness Principle, {∥Qν∥2}∞ν=1 is bounded and the first term therefore vanishes.
Since assumptions (i) and (iii) imply that g(u, ω) ∈ L2 for all u ∈ U , the second term vanishes by the
weak convergence of Qν to Q.

Second we consider ∇uh. Following a standard argument and the Dominated Convergence Theorem
(see for example the proof of Theorem 7.44 in [33]), we find that for every u ∈ U and Q ∈ L2, ∇uh(u,Q)
exists and is given by

∇uh(u,Q) =

∫
∇ug(u, ω)Q(ω)dP(ω).

Repeating the above argument with g replaced by ∂g/∂ui and assumption (i) by assumption (ii) estab-
lishes the claim about ∇uh.

In view of Proposition 4.1, the following conclusions is a direct consequence of [29, Theorem 10.31].

4.2 Theorem (subdifferentiability of f). Suppose that the assumptions of Proposition 4.1 holds. Then,
f in (18) is locally Lipschitz continuous on U and strictly differentiable11 where it is differentiable. There
exists a set D ⊂ U such that U \ D is negligible12, f is differentiable on D, and the gradient ∇f is
continuous relative to the set D.

Moreover, the directional derivative of f at u ∈ U in direction v ∈ IRn is

df(u)(v) = max
{
⟨E [∇ug(u, ·)Q] , v⟩

∣∣∣ Q ∈ Qg(u,·)
}

11Recall that f : IRn → IR is strictly differentiable at a point x̄ if f(x̄) is finite and there is a vector v ∈ IRn such that
(f(x′)− f(x)− ⟨v, x′ − x⟩)/|x′ − x| → 0 whenever x, x′ → x̄ and x′ ̸= x; see [29, Definition 9.17].

12A subset of a set of Lebesgue measure zero is negligible.
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and the subdifferential of f at u ∈ U is

∂f(u) = con
{
E [∇ug(u, ·)Q]

∣∣∣ Q ∈ Qg(u,·)
}
,

where Qg(u,·) is given in (16) with X replaced by g(u, ·).

We observe that when λ = λ̄α, i.e., the focus is on a second-order superquantile risk measure R̄α,
then Qg(u,·) is fully characterized by Theorem 3.8. In particular, the latter half of that theorem provides
a specific risk identifier Q ∈ Qg(u,·) that is easily calculated when Ω has finite cardinality. Such a risk
identifier then provides the subgradient E[∇ug(u, ·)Q] of f , which also is easily calculated in this case.

4.2 Application to Superquantile Regression

Superquantile regression as laid out in [23] (see also [21] and [14], which also includes several appli-
cations) resembles quantile regression, but instead of estimating conditional quantiles focuses on con-
ditional superquantiles; quantifies of substantial interest as demonstrated by the numerous references
listed in [23]. In particular, the approach of estimating a weighted average of conditional quantiles (see
for example [5]) can be viewed as an approximate approach to estimating conditional superquantiles
as realized from (1). The approach given in [23] is more direct and avoid approximations of this kind.
Specifically, we find that for Y ∈ L2 and α ∈ (0, 1),

{q̄Y (α)} = argmin
u0∈IR

Ēα(Y − u0), where Ēα(Y ) := V̄α(Y )− E[Y ]

is a measure of error given in terms of the measure of regret 13 V̄α defined in (5). In the same manner as
minimizing mean-squared error yields an expectation and the foundation for least-squares regression,
and minimizing a Koenker-Basset error yields a quantile and the foundation for quantile regression,
minimizing Ēα leads to superquantile regression.

Superquantile regression deals with the problem of approximating a random variable Y ∈ L2 by a
combination of more accessible random variables X1, X2, ..., Xn ∈ L2, such that the error as quantified
by Ēα is minimized. Hopefully, the knowledge of X = (X1, ..., Xn) would then provide reasonably
accurate predictions of Y . We stress that the terminology “regression” is here used more broadly than
in the statistics literature. Limiting the scope to affine regression functions, superquantile regression
then needs to solve the problem

min
u0∈IR,u∈IRn

Ēα (Y − [u0 + ⟨u,X⟩])

to obtain regression coefficients u0 and u. That is, the regression coefficients (u0, u) are selected such
that the error between Y and the model u0 + ⟨u,X⟩ is minimized.

We show in [23] that this problem can be decomposed into the two problems

(i) find û ∈ argmin
u∈IRn

1

1− α

∫ 1

α
q̄g(u,·)(β)dβ − E[g(u, ·)] and (ii) find û0 = q̄g(û,·)(α),

13We refer to [26] for a general treatment of measures of error and regret.
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where for each u ∈ IRn,
g(u, ·) = Y − ⟨u,X⟩

is a random variable defined on the sample space Ω = IRn+1, with sigma-algebra BIRn+1 , and probability
P given by the distribution of (X,Y ). The problem (i) is that of minimizing a second-order superquantile
of g(u, ·) minus the expectation of g(u, ·). Since E[g(u, ·)] = E[Y ]−⟨u,E[X]⟩ is a deterministic quantity,
this problem is essentially in the form discussed earlier in the section: to minimize a mixed superquantile
risk measure, in fact a second-order superquantile risk measure.

Suppose that the distribution P is supported on the points {(xj , yj)}νj=1 ⊂ IRn+1 with P{(xj , yj)} =

pj , j = 1, ..., ν, as is the case in practice when the regression relies on the observed data {(xj , yj)}νj=1.
Then, the evaluation at a given u ∈ IRn of the objective function

f(u) =
1

1− α

∫ 1

α
q̄g(u,·)(β)dβ − E[g(u, ·)]

of problem (i) and a corresponding subgradient are achieved as follows: Determine the cumulative
distribution function of g(u, ·) and use the formula in the second half of Theorem 3.8, with X replaced

by g(u, ·), to determine a risk identifier Q̄
g(u,·)
α . This computation can be obtained in O(ν log ν) time,

with sorting of {yj − ⟨u, xj⟩}νj=1 to obtain the cumulative distribution function being the bottleneck.
Then, in view of Theorem 4.2, the function value and a subgradient are readily available through

f(u) =

ν∑
j=1

pj(yj − ⟨u, xj⟩)Q̄g(u,·)
α (ωj)−

ν∑
j=1

pj(yj − ⟨u, xj⟩)

and

∇f(u) =
ν∑

j=1

−pjxjQ̄g(u,·)
α (ωj) +

ν∑
j=1

pjxj , where ωj = (xj , yj).

We note that the assumptions of Proposition 4.1 are easily verified in this case due, in part, to the
affine form of g(·, ω). Consequently, each iteration of a cutting-plane method or bundle method requires
therefore computational time of order O(ν log ν) as a function of the number of data points. The number
of iterations needed would depend on the method, n (the number of explanatory variables), and other
factors. In comparison, a “primal” method proposed in [23] for solving the same problem requires the
solution of a linear program with n+O(ν2) variables and O(ν2) inequality constraints. It is therefore
clear that for small n and large ν, which is typical in regression problems, a dual method relying on
the expressions derived in this paper might outperform the linear-programming-based approach; see
[14] for empirical evidence supporting this claim. In fact, even storage of the linear program becomes
challenging for large ν.

A Appendix

As support for proving Proposition 2.3 in Section 2, we need the following consequence of the Fubini-
Tonelli’s Theorem.

A.1 Proposition Suppose that (X ,A, µ) and (Y,B, ν) are sigma-finite measure spaces. If f : X×Y →
IR is measurable with respect to the product sigma-algebra on X ×Y and g : X ×Y → IR is integrable
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with respect to the product measure µ× ν, with f(x, y) ≥ g(x, y) for (µ× ν)-a.e. (x, y) ∈ X ×Y, then
the following hold:

(i) the function h1 =
∫
f(x, ·) dµ(x) is B-measurable,

(ii) the function h2 =
∫
f(·, y) dν(y) is A-measurable,

(iii) and ∫
f d(µ× ν) =

∫ [∫
f(x, y) dµ(x)

]
dν(y) =

∫ [∫
f(x, y) dν(y)

]
dµ(x).

Proof. We recall that the integral of the sum of a nonnegative measurable function and an integrable
function equates the sum of the individual integrals under the usual rules for handling addition with
infinity. Then,

h1 =

∫
f(x, ·)dµ(x) =

∫
(f − g)(x, ·)dµ(x) +

∫
g(x, ·)dµ(x)

is B-measurable since both terms on the right-hand side are B-measurable by the Fubini-Tonelli The-
orem. A similar argument yields the conclusion for h2. The final assertion follows by applying the
Fubini-Tonelli Theorem to f − g and g, and the above rule about interchange of summation and inte-
gration.

Proof of Proposition 2.3. For every X ∈ L2, q̄X is continuous and finite on [0, 1) and therefore
B̄[0,1)-measurable. Moreover, q̄X ≥ E[X] and therefore R(X) ≥ E[X] > −∞. Consequently, R is well-
defined with values in [E[X],∞]. Its regularity and positive homogeneity follow directly from those of
Rα; see [26]. Since q̄X is strictly increasing on [0, 1) for nonconstant X, we have that if λ({0}) < 1,
then

R(X) = E[X]λ({0}) +
∫
1>β>0

q̄X(β) dλ(β) > E[X]λ({0}) + E[X](1− λ({0}) = E[X]

and the strict lower bound follows. From (6),

R(X) ≤
∫ 1

0
E[X] +

σ(X)√
1− β

dλ(β) = E[X] + σ(X)

∫ 1

0

1√
1− β

dλ(β) <∞

under the stated assumption, which establishes the corresponding finiteness on L2. In the case of
supX <∞, finiteness of R(X) follows trivially.

We next consider the alternative expression. By definition,

R(X) =

∫ 1

0

[∫ 1

0
qX(β)ψ(α, β)dβ

]
dλ(α), (20)

with ψ(α, β) = 1
1−α if 0 ≤ α < β < 1 and ψ(α, β) = 0 otherwise. We equip [0, 1) × (0, 1) with

the product measure λ×m defined on the product sigma-algebra B̄[0,1) ⊗ B(0,1). It is obvious that ψ :
[0, 1)×(0, 1) → IR is (B̄[0,1)⊗B(0,1))-measurable and likewise qX , viewed as a function on [0, 1)×(0, 1) that
is constant in its first argument, due its monotonicity. Consequently, the function (α, β) 7→ qX(β)ψ(α, β)
is measurable in the same sense. Then, we look toward the interchange of integration order in (20).
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We consider three cases. (i) Suppose that X ≥ 0 a.e. Then, qX ≥ 0 and qXψ ≥ 0, and the
interchange of integration order is permitted by Tonelli-Fubini’s Theorem. (ii) Suppose that X ≤ 0
a.e. Then, −qX ≥ 0 and −qXψ ≥ 0, and the interchange of integration order is again permitted by
Tonelli-Fubini’s Theorem. (iii) Suppose that neither (i) nor (ii) holds. Then, there exists a βX ∈ (0, 1)
such that qX(β) ≥ 0 for β ≥ βX and qX(β) ≤ 0 for β ≤ βX . In view of Proposition A.1, it suffices to
find an integrable, lower-bounding function of qXψ. Let g : [0, 1)× (0, 1) → IR be given by

g(α, β) =


qX(β)/(1− βX) if 0 ≤ α < β ≤ βX

qX(β) if 0 ≤ α < β < 1, βX < β

0 otherwise.

Clearly, qXψ ≥ g and∫
|g|d(λ×m) ≤ 1

1− βX

∫
|qX |d(λ×m) =

1

1− βX

∫ 1

0

[∫ 1

0
|qX(β)|dβ

]
dλ(α), (21)

where the equality follows by Tonelli-Fubini’s Theorem. The inner integral simplifies to∫ 1

0
|qX(β)|dβ =

∫ 1

βX

qX(β)dβ −
∫ βX

0
qX(β)dβ = (1− βX)q̄X(βX)−

∫ βX

0
qX(β)dβ.

The last term requires further simplification. Recall that for α ∈ (0, 1),

1

α

∫ α

0
qX(β)dβ = − 1

α

∫ 1

1−α
q−X(β)dβ = −q̄−X(1− α).

Applying this result, the inner integral from above simplifies further to∫ 1

0
|qX(β)|dβ = (1− βX)q̄X(βX) + βX q̄−X(1− βX) <∞.

Consequently in view of (21), g is integrable and therefore furnishes the necessary lower-bounding,
integrable function in Proposition A.1, which completes part (iii). We are therefore permitted to
interchange the order of integration in (20) and get

R(X) =

∫ 1

0

[∫ 1

0
qX(β)ψ(α, β)dβ

]
dλ(α) =

∫ 1

0
qX(β)

[∫ 1

0
ψ(α, β) dλ(α)

]
dβ =

∫ 1

0
qX(β)φ(β)dβ,

where the last equality follows from the definition of φ.
The final assertions follow from recognizing that the Lebesgue-Stieltjes measure dφ associated with

a function φ has dφ(α) = 1
1−α dλ(α) for a weighting measure λ on [0, 1).

Now we articulate other definitions and technical results required in the paper.

A.2 Definition Let (T,A, µ) be a complete measure space, with µ sigma-finite, X a separable reflexive
Banach space, and M a linear subspace of the linear space of all (A,BX )-measurable functions x : T →
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X . The set M is (A,BX )-decomposable if, whenever x ∈ M and x0 : S → X is a bounded (A,BX )-
measurable function on a set S ∈ A, with µ(S) <∞, then the function y : T → X given by

y(t) =

{
x0(t) if t ∈ S

x(t) if t ∈ T \ S

also belongs to M.

A.3 Definition In the notation of Definition A.2, we say that a function f : T × X → (−∞,∞] is a
normal integrand if the following hold:

(i) f is (A⊗ BX )-measurable and

(ii) for every t ∈ T , f(t, ·) is lower semicontinuous on X and not identical to ∞.

A.4 Proposition Suppose that the conditions and notation of Definition A.2 hold and f : T × X →
(−∞,∞] is a normal integrand. Then, the following hold:

(i) the functions t 7→ infξ∈X f(t, ξ) and t 7→ f(t, x(t)), with x : T → X (A,BX )-measurable, are
A-measurable and

(ii) if M is (A,BX )-decomposable and there exists an x ∈ M such that
∫
f(t, x(t)) dµ(t) <∞, then

inf
x∈M

∫
f(t, x(t)) dµ(t) =

∫
φ(t) dµ(t), where φ(t) = inf

ξ∈X
f(t, ξ). (22)

Proof. First, we consider t 7→ infξ∈X f(t, ξ). For measurable spaces (X1,A1) and (X2,A2), we recall
that a set-valued mapping S : X1 ⇒ X2 is (A1,A2)-measurable if its graph is measurable in the sense
that

{(x1, x2) ∈ X1 ×X2 | x2 ∈ S(x1)} ∈ A1 ⊗A2,

where A1⊗A2 is the product sigma-algebra generated by A1 and A2. Since f is a normal integrand, the
set-valued mapping t 7→ epi f(t, ·) is A-measurable and closed-valued; see for example [18, Proposition
1]. By [18, Theorem 1(f)], there exists a countable collection {gi}i∈I of A-measurable functions gi :
T → X × IR of the form gi(t) = (xi(t), αi(t)), xi(t) ∈ X and αi(t) ∈ IR, such that

epi f(t, ·) = cl{gi(t)}i∈I for all t ∈ T,

where cl denotes closure. The mapping t 7→ αi(t) is also A-measurable. Consequently,

inf
ξ∈X

f(t, ξ) = inf
i∈I

αi(t) for all t ∈ T

and the conclusion follows from the fact that the pointwise infimum of a countable collection of mea-
surable functions is a measurable function.

Second, we consider t 7→ f(t, x(t)), which is a composition of f with the measurable mapping
t 7→ (t, x(t)) and therefore measurable.
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Third, we establish part (ii) by following the arguments in the proof of Theorem 2 in [18]. By
assumption there exists a function x1 ∈ M and a µ-integrable function α1 : T → IR such that

f(t, x1(t)) ≤ α1(t) for every t ∈ T.

Since φ(t) ≤ f(t, x(t)) for every function x ∈ M and t ∈ T by definition and φ is A-measurable by
part (i), the integral of φ is well-defined and either finite or equals −∞. Consequently, the inequality
≥ holds in (22). Now, let γ ∈ IR be such that∫

φ(t) dµ(t) < γ. (23)

We will prove the existence of a function x ∈ M such that∫
f(t, x(t)) dµ(t) < γ, (24)

thereby establishing part (ii). From (23) and the properties of (T,A, µ), there exists a µ-integrable
function α0 : T → IR such that φ(t) < α0(t) for every t ∈ T and∫

α0(t) dµ(t) < γ. (25)

We define the set-valued mapping S : T ⇒ X by

S(t) = {ξ ∈ X | f(t, ξ) ≤ α0(t)} for t ∈ T.

Since the function (t, ξ) 7→ f(t, ξ) − α0(t) is (A⊗ BX )-measurable, S is also A-measurable. Moreover,
S(t) is for each t ∈ T closed and nonempty. Since S is A-measurable, there exists a A-measurable
selection x0, i.e., a A-measurable function x0 such that x0(t) ∈ S(t) for every t ∈ T ; see for example the
corollary of Theorem 1 in [18]. Since (25) holds, there exists a measurable set T0 ⊂ T , with µ(T0) <∞,
such that ∫

T0

α0(t) dµ(t) +

∫
T\T0

α1(t) dµ(t) < γ. (26)

By the construction of S in terms of α0, the measurable selection x0 can be chosen to be bounded on
T0. Let x : T → X be such that x(t) = x0(t) for t ∈ T0 and x(t) = x1(t) for t ∈ T \T0. Then, x ∈ M by
the assumption of decomposability, and we have that f(t, x(t)) ≤ α0(t) for t ∈ T0 and f(t, x(t)) ≤ α1(t)
for t ∈ T \ T0. From (26) we then conclude (24), which establishes part (ii).

A.5 Lemma If q : [0, 1) → L2 is (B̄[0,1),BL2)-measurable, then

(i) the function f1 : [0, 1)× Ω → IR given by f1(β, ω) = q(β)(ω) is (B̄[0,1) ⊗F)-measurable, and

(ii) the function f2 : [0, 1) → IR given by f2(β) = ∥q(β)∥2 is B̄[0,1)-measurable.

Proof. For part (i) simply observe that f1 = g ◦ h, where h : [0, 1) × Ω → L2 × Ω, with h(α, ω) =
(q(α), ω), and g : L2×Ω → IR, with g(Q,ω) = Q(ω). The conclusion then follows from the measurability
of q and elements of L2, and the fact that composition of measurable functions is measurable. Next,
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we consider part (ii). A trivial extension of part (i) establishes that the function (β, ω) 7→ [q(β)(ω)]2

is (B̄[0,1) ⊗ F)-measurable. Since it is also nonnegative, it follows from Tonelli-Fubini’s Theorem that
[f2(·)]2 is B̄[0,1)-measurable.

The following is a direct consequence of Definition A.2.

A.6 Proposition The set M is (B̄[0,1),BL2)-decomposable.
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