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Abstract 

Satellite imagery classification is useful for a variety of commonly used ap-
plications, such as land use classification, agriculture, wetland delineation, 
forestry, geology, and landslide potential. However, image classification 
for physical properties of surface soils, such as strength or bearing capac-
ity, is often obscured by other surface conditions, such as moisture and 
vegetation, although these are also indicators of soil strength. This project 
used remote methods of terrain analysis to search for areas suitable for ve-
hicle or aircraft maneuverability based on slope, roughness, vegetation, 
soil type, and wetness and also performed direct classification of imagery 
based on soil strength. Using a maximum likelihood supervised classifica-
tion approach, trained by a limited amount of ground-truth strength meas-
urements, a soil strength classification was applied to WorldView-2 multi-
spectral satellite imagery. This paper presents the work done on the im-
agery classification for soil strength, the apparent relationship between the 
reflectance and soil strength, and the ongoing work to expand the tech-
nique to new imagery by using existing training sets. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

The ability to determine physical soil properties, such as strength or bear-
ing capacity, is necessary for mobility and trafficability purposes; however, 
fieldwork is laborious, time consuming, and resource intensive. In addi-
tion, soil strength changes with time as vegetation draws moisture as well 
as through the seasons as the soil dries or becomes wet, freezes and ex-
pands, or thaws and saturates. Thus, the ability to map soil strength re-
motely will prove very useful, particularly for agencies such as the United 
States Army, where sending troops into the field to measure physical soil 
properties may be dangerous or not possible.  

Recent multi- and hyperspectral satellites with high spatial resolution have 
allowed for tremendous growth and opportunities to study the earth from 
space. Remote sensing is a powerful and highly relevant tool for forecast-
ing weather; assessing water quality; mapping terrain features; studying 
climate change, natural disasters, and mineralogy of the earth’s surface; 
and many more applications. Two types of sensors are used in remote 
sensing. Passive sensors measure energy emissions that are naturally 
available, such as sunlight radiation reflected off the surface of the earth or 
thermal infrared radiation. Active sensors provide their own energy source 
by emitting radiation and collecting what is backscattered off the target. 

Some previous research efforts have focused on characterizing physical 
soil properties by using spectral characteristics. Dutta et al. (2015) looked 
at mapping surface soil properties, such as chemical constituents and top-
soil textural properties, by using hyperspectral data containing 224 contin-
uous channels over a wavelength range of 400–2500 nm. Higher resolu-
tion visible and near-infrared diffuse reflectance spectroscopy has been 
shown to successfully characterize numerous soil properties, including 
texture, pH, presence of organic and inorganic carbon, and clay mineral-
ogy (Ge et al. 2011; Sørensen and Dalsgaard 2005). Shepherd and Walsh 
(2002) estimated soil properties from soil reflectance spectra by using a 
spectral library of over 1000 topsoils from eastern and southern Africa. 
Ben-Dor et al. (2002) analyzed spectral laboratory data that showed sig-
nificant capability to predict soil field moisture, soil saturated moisture, 
and soil salinity by using visible and near infrared analysis (VNIRA). Ben-
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Dor et al. (2002) developed a procedure to successfully map soil properties 
of Izrael Valley in northern Israel by using hyperspectral imagery from an 
airborne sensor. In 2003, Ben-Dor et al. conducted a study on determining 
properties of soil structural crusts solely from spectral information in the 
1.2–2.5 μm wavelength range.  

There have also been numerous efforts to develop algorithms and pro-
cesses to successfully map soil properties from imagery. Pass et al. (n.d.) 
developed RevelatumTM, a set of algorithms and visualizations focused on 
revealing patterns and relationships in multispectral (and other) imagery 
to improve decision-making and to offer predictive capabilities. Bachmann 
et al. (2006) explored the use of manifold coordinate estimation algo-
rithms, which were typically used outside of the remote-sensing field, on 
hyperspectral imagery to discriminate between land-cover types with a 
high level of spectral similarity. In 2012 at the Naval Research Laboratory, 
Bachmann et al. developed the Hyperspectral Imagery Trafficability Tool 
(HITT), a geospatial analysis tool that creates estimated soil bearing 
strength maps from hyperspectral data taken in coastal regions. Between 
2006 and 2007, Boeing developed a method to predict soil type from mul-
tispectral imagery and digital elevation data (Hines and Wolboldt 2008). 
This area of study has received increased attention because remote sensing 
of soil spectral characteristics to determine soil physical properties is non-
destructive to the soil, rapid, and less expensive than conventional soil an-
alytical techniques (Viscarra Rossel et al. 2006). 

1.2 Objectives 

The work described in this report was funded under the Army Terrestrial 
Environmental Modeling and Intelligence System–Geospatial Remote As-
sessment for Ingress Locations (ARTEMIS-GRAIL) research program. The 
long-term goal of this program is to automate a process to locate austere 
landing zones and drop zones by using satellite imagery and remote-sens-
ing data. Before landing an aircraft on an unpaved and austere surface, 
personnel must confirm that the site passes numerous requirements. 
Among other things, the site must be flat, large enough, and free from any 
obstructions and must possess soil properties suitable to withstand the 
proposed applied loads. Because of its strong background in soil strength 
testing, mobility mapping, and remote sensing, the U.S. Army Engineer 
Research and Development Center Cold Regions Research and Engineer-
ing Laboratory (ERDC-CRREL) is able to further research soil strength 
prediction based on satellite imagery. 
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Soil strength is a complicated soil property affected by numerous factors, 
including soil density, soil type, moisture content, plasticity characteris-
tics, gradation, and particle shape. This report explores remote soil 
strength prediction in a geographic information system (GIS) environ-
ment, one objective of the ARTEMIS-GRAIL program. 

1.3 Approach 

This study used supervised classification techniques on multispectral sat-
ellite imagery to classify areas of higher soil strength versus lower soil 
strength. Standard image classification algorithms were run using a GIS 
platform; and all images were classified into ten classes based on soil 
strength, water, and vegetation. Specific pixels corresponding to areas of 
known soil strength were selected to train the algorithms to predict 
strength across the entire image.  

This study used multispectral satellite imagery from a passive sensor for 
all remote-sensing analysis. Multispectral platforms collect imagery at 
multiple (on the order of ten) wavelength bands across the electromag-
netic spectrum. Multispectral imagery is generally used in analyses of ter-
rain and atmospheric features such as vegetation, snow, and clouds; detec-
tion of changes in terrain or atmospheric conditions over time; classifica-
tion of data from the images into categories of objects on the ground; and 
other applications.  

Classification is the process of categorizing each pixel into a certain spec-
tral class to describe what kind of object that pixel depicts. Supervised 
classifications use training data, which are groups of pixels that the analyst 
knows to be of a certain information class, or characteristic on the ground. 
A common and important assumption that is typically made in remote 
sensing for statistical supervised classifications is that each spectral class 
can be described by some probability distribution in multispectral space 
(Richards 1999). In the current study, pixels used to train the classification 
algorithms were selected based on soil strength data collected in the field. 
Numerous soil strength measurements were taken throughout the study 
area while multispectral imagery was collected. Pixels designating areas of 
known strength were then used to train a classification of the entire image. 
Fieldwork with subsequent imagery analysis was executed in 2013, 2014, 
and 2015; and results over the three years were compared. 
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2 Methodology 

A broad overview of the explored methodology is as follows: 

1. Sample soil strength at numerous and varied locations during concurrent 
satellite imagery collections. 

2. From the imagery, create training regions of interest (ROIs) at each meas-
urement location and group into categories of strength. 

3. Use spectra of pixels within the ROIs to train a supervised “strength-
based” classification of the entire image. 

4. Explore whether training classes from one image can be applied to other 
images. 

5. Evaluate the success of the mapping. 

2.1 Data and preprocessing 

This study used Digital Globe’s WorldView-2 (WV2) 8-band multispectral 
satellite imagery. This earth-imaging satellite was launched in 2009 as the 
first high-resolution, commercially available satellite and offers 1.85 m 
multispectral resolution (Digital Globe 2016). WV2 multispectral bands 
range from 0.4 to 1.04 μm and are typically used for vegetation, coastal, 
and land-use applications and mapping (Kruse 2015).Over the course of 
this study, three WV2 collections of approximately 880 km2 over Fort 
Hunter Liggett (FHL) in southern Monterey County, CA, were acquired 
from Digital Globe. The collections took place in May 2013, January 2014, 
and March 2015. Figure 1 shows the location of FHL within California. 

Figure 1.  Map of the western United States (left) and close-up map of FHL field site (right) 
outlined in red. 
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The Naval Postgraduate School (NPS), under research professor Fred A. 
Kruse, preprocessed the imagery. The three datasets were orthorectified 
and corrected to reflectance. Orthorectification required use of a coinci-
dent digital elevation model (DEM) and a high-resolution orthophoto-
graph collected by the National Agriculture Imagery Program. Ground 
control points were selected to constrain the orthorectification (Kruse 
2015). The three images were scaled to radiance and then corrected to re-
flectance by using the moderate resolution atmospheric transmission 
(MODTRAN) atmospheric compensation model and software developed 
by Spectral Sciences, Inc., called Fast Line-of-Sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH) (Kruse 2015). The fraction of incident 
light reflected by some surface is described by reflectance, which is a unit-
less number between zero and one (Shaw and Burke 2003). 

On the occasions when field spectral measurements were also taken dur-
ing site visits, the imagery was further modified to match measured reflec-
tance of specific target sites by using an empirical line correction method 
(Kruse 2015). The above-described efforts of NPS resulted in three coregis-
tered and calibrated WV2 reflectance images from June 2013, January 
2014, and March 2015. 

2.2 Fieldwork 

During each visit to FHL, team members from CRREL and other collabo-
rating organizations, such as NPS and the ERDC Geospatial Research La-
boratory (GRL), measured soil strength at various locations within the im-
age collection area by using a Clegg Impact Hammer, a dynamic cone pen-
etrometer, and a static cone penetrometer. Moisture content and soil den-
sity were also measured using a FieldScout TDR 300 Moisture Meter and a 
Troxler soil density gauge, respectively. Exact sampling locations were 
marked using a handheld global positioning system. Furthermore, in 2014 
and 2015, field spectral measurements were taken using an ASD Field-
Spec4 Standard-Res spectroradiometer. Reflectance measurements from 
0.4 to 2.5 μm with 3–10 nm of spectral resolution were collected at target 
locations around FHL with the help of NPS and GRL personnel. Spectra of 
specific materials like rocks, vegetation, and soil were taken as were walk-
ing average measurements to illustrate each test location on a remote-
sensing scale.  
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Fieldwork focused on five general geographic areas of interest (AOIs): Mil-
pitas, Jolon, San Miguelito, Tule, and El Piojo. These areas covered a vari-
ety of terrain types and were chosen to include a pre-existing landing zone 
or drop zone or terrain suitable for one. Figure 2 shows the locations of the 
five AOIs throughout FHL, denoted with orange rectangles, as well as the 
numerous test locations, denoted with small dots. Figure 3 shows an ex-
ample from the satellite imagery of one of the existing landing zones. 

Figure 2.  2013, 2014, and 2015 test locations mapped on WV2 true-color composite from 
May 2014 with AOIs outlined in orange (1 mile = 1609.344 m).  

 

Figure 3.  2013 WV2 image (left) and on-the-ground image (right) of the Tule landing zone. 
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2.3 Strength calculations 

The California bearing ratio (CBR) is a measurement of soils’ load-bearing 
capacity and is commonly used to test subgrades and base layers of airfield 
and road pavements. The CBR test was created by the California State 
Highway Department and was integrated into the design of flexible pave-
ments by the Army Corps of Engineers in the 1940s (Middlebrooks and 
Bertram 1950). The American Society for Testing and Materials (ASTM) 
and international standards describe proper CBR measurement technique 
(ASTM 2005; Al-Amoudi et al. 2002). CBR is described by the ratio of the 
pressure required to penetrate the soil of interest compared to the pres-
sure for equal penetration of crushed well-graded limestone. This ratio is 
multiplied by 100, and CBR is reported as a percentage. Despite its wide-
spread use, laboratory and field CBR testing is laborious and time inten-
sive. As such, researchers have looked for more simple and portable tech-
niques that correlate well with the CBR test. One of these methods uses the 
Clegg Impact Hammer, which is light, easy to operate, and cost effective. 
The Clegg Impact Hammer measures stiffness of the soil surface by drop-
ping a standard weight equipped with a piezoelectric accelerometer from a 
constant height and is shown in Figure 4. The peak rate of rebound of the 
hammer is recorded (Al-Amoudi et al. 2002).  

Figure 4.  CRREL research 
technician, Jesse Stanley, taking 

Clegg measurements at a test 
location in San Miguelito. 
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In this experiment, CBR was calculated from measurements taken in the 
field with a 2.25 kg Clegg Impact Hammer by using the following equation 
published in 2011 by Dr. Baden Clegg Pty Ltd. for the Dublin Light Rail 
Transit Project (Clegg 2011): 

 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑒𝑒(10∗𝐶𝐶𝐶𝐶𝐶𝐶−14.936) 79.523⁄  (1) 

where CIV (Clegg impact value) is the third out of four drops of the Clegg 
Impact Hammer.  

At each test location, three Clegg measurements were taken; and an aver-
age calculated CBR was used in subsequent analysis as a measure of that 
site’s soil strength. 

Based on the average CBR value, each site was assigned a “strength class” 
by using the following conditions: 

• Class 1: 0% < CBR ≤ 5% 
• Class 2: 5% < CBR ≤ 10% 
• Class 3: 10% < CBR ≤ 15% 
• Class 4: 15% < CBR ≤ 20% 
• Class 5: 20% < CBR ≤ 25% 
• Class 6: 25% < CBR ≤ 30% 
• Class 7: 30% < CBR ≤ 35% 
• Class 8: 35% < CBR 

2.4 Supervised imagery classifications 

Coordinates for each test location were selected in large (10 × 10 m) open 
areas of homogenous terrain. After collecting strength data at these loca-
tions in the field, ROIs were manually drawn on the WV2 imagery encap-
sulating about nine pixels of homogenous terrain surrounding each test lo-
cation, as shown in Figure 5. The reflectance values of these pixels are 
called “training data.” During the classification, training data is compared 
with reflectance values of every other pixel in the image to determine its 
most appropriate class. While there is uncertainty associated with using 
one strength measurement for each 3 × 3 pixel (5.5 × 5.5 m on the ground) 
ROI, it was assumed that the conditions and properties of the soil sur-
rounding each test location varied at greater scales than the area of the 
ROI polygons.  
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The reflectance values of each training pixel were used to train a super-
vised classification of the entire image by using the maximum likelihood 
algorithm. ROIs encapsulating pixels indicating heavy vegetation and wa-
ter were also created and incorporated into the supervised classification. 

Figure 5.  Example of a training ROI (yellow rectangle) surrounding 
a test location (orange dot) northwest of the Tule landing zone 

that was used in the classification of the 2013 WV2 image. 

 

The maximum likelihood algorithm is the most common supervised classi-
fication technique used with remote-sensing image data (Richards 1999). 
This algorithm estimates a normal probability distribution from sufficient 
training data to describe the chance, or probability, that some pixel be-
longs to a designated class. For each pixel at a given position in multispec-
tral space, a set of probabilities is determined to define the relative likeli-
hood that that pixel belongs to each class (Richards 1999). In this example, 
there are 8 soil classes based on strength plus a vegetation and a water 
class, resulting in 10 classes total. The soil classes were determined by 
CBR, as discussed previously. 

Supervised classifications were run in the Environment for Visualizing Im-
ages (ENVI) software application, which uses the following discriminant 
function to calculate the probability of a pixel belonging to a specific class 
when applying the maximum likelihood algorithm (Richards 1999; Harris 
Geospatial Solutions 2016b):  

 𝑔𝑔𝑖𝑖(𝑥𝑥) = ln𝑝𝑝(𝜔𝜔𝑖𝑖) − 1
2� ln|Σ𝑖𝑖| − 1

2� (𝑥𝑥 − 𝑚𝑚𝑖𝑖)𝑇𝑇Σ𝑖𝑖−1(𝑥𝑥 − 𝑚𝑚𝑖𝑖) (2) 
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where 

 i = the class, 
 x = n-dimensional data (where n is the number of bands), 
 p(ωi) = the probability that class ωi occurs in the image and is 

assumed the same for all classes, 
 |Σi| = the determinant of covariance matrix of the data in class ωi,  
 Σ−1 = its inverse matrix, and 
 mi = the mean vector. 

2.5 “In-scene” versus “out-of-scene” classifications 

After running the aforementioned methodology on WV2 imagery from 
2013, 2014, and 2015, the authors explored whether spectra from one im-
age could be used as training spectra to classify a different image. Atmos-
pheric, terrain, and vegetation conditions vary between collections. Fur-
thermore, the presence of the atmosphere obscures incident radiation on 
the surface of the earth and also attenuates reflected radiation. However, 
all three images were atmospherically corrected, and all analysis remained 
site specific. The ability to classify an image collected in 2015 with spectra 
from an image of the same scene collected at a different time, and ulti-
mately a different location, would further minimize the need for “boots on 
the ground.” Table 1 illustrates the combinations used to train and classify 
the image. 

Table 1.  Established convention to describe images classified using training spectra from the 
same scene (“in scene”) versus images classified using training spectra from a different 

scene (“out of scene”).  

 

Training ROIs created previously for in-scene classifications were used to 
select training spectra for out-of-scene classifications. The maximum like-
lihood algorithm was used to run all nine of the classifications depicted in 
the matrix in Table 1.  
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2.6 Varying conditions 

Because this analysis was conducted over the course of three years and vis-
its to the test site were timed to capture different seasonal conditions, ter-
rain and climate conditions were noticeably different during each visit and 
were apparent in the imagery. This phenomenon can be seen in Figure 6, 
which shows one location for each of the image collection dates. 

Figure 6.  The El Piojo reservoir and surrounding terrain in May 2013, January 2014, and 
March 2015, from left to right. 

 

January 2014 was the driest of the three visits whereas March 2015 was 
the most vegetated and moist. As such, areas of bare soil or dried grass in 
2014 were mostly covered in healthy vegetation in 2015.  

Figure 7 shows the WV2 imagery over San Miguelito from each year. Spec-
tral signatures of the test location outlined in an orange circle in Figure 7 
are shown in Figure 8. The signatures are more indicative of healthy vege-
tation in 2013 and particularly in 2015 while the 2014 signature is more 
indicative of bare soil. 

Figure 7.  WV2 true-color composites of San Miguelito test location from 2013, 2014, 2015. 
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Figure 8.  Spectral signatures of the site outlined by the orange circle in Fig. 7. 
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3 Results 

Figures 9, 10, and 11 show examples of all nine training and classifications 
combinations at three different landing zones (Milpitas, El Piojo, and Tule, 
respectively). 

To analyze the success of each classified image, kappa coefficients (κ) and 
overall accuracy percentages were calculated using an ENVI post-pro-
cessing tool called Confusion Matrix Using Ground Truth ROIs. This tool 
compares the assigned class of pixels in each ground-truth ROI with the 
class of those pixels in the resulting classified image.  

The kappa coefficient is a measurement used to quantify agreement be-
tween two or more entities and takes into account that agreement may oc-
cur purely by chance. The kappa coefficient returns a value from 0 to 1 
where 0 signifies no agreement and 1 signifies perfect agreement and is 
calculated as follows (Sim and Wright 2005): 

 𝜅𝜅 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎
1−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎

 (3) 

Kappa coefficients and overall accuracy calculations for all nine classifica-
tion combinations are given in Tables 2 and 3, respectively. 

Figure 9.  In-scene and out-of-scene supervised classifications of the Milpitas landing zone. 
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Figure 10.  In-scene and out-of-scene supervised classifications of the El Piojo landing zone. 

 

Figure 11.  In-scene and out-of-scene supervised classifications of the Tule landing zone. 
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Table 2.  Kappa coefficients for all classified images. 

 

Table 3.  Overall accuracy percentages for all classified images. 

 

Pixels used to train the classification algorithms were also used as ground-
truth data to determine the above results. It would be more accurate to use 
a percentage of fieldwork CBR measurements to create training data and 
run the classifications and to use the rest of the data to verify classification 
results. Section 4.2 further discusses details on this topic. 
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4 Discussion 

In-scene classifications did, in general, correctly classify most existing 
roads and compacted landing zones as high strength. Naturally, out-of-
scene classifications had much lower kappa values than in-scene classifica-
tions, particularly when 2013 and 2014 spectra were used to train a classi-
fication of the 2015 image.  

Out-of-scene classifications of the 2015 images resulted in nearly all of the 
pixels classifying as vegetation because, during that collection, the vegeta-
tion was very healthy and any significant amount of vegetation dominated 
the spectral profile. Thus, pixels corresponding to bare soils during drier 
years should not be used to train analysis of sites with widespread vegeta-
tion in more moist years. 

It is also important to note that the out-of-scene classification methodol-
ogy relies not only on similar terrain and climate conditions but also on 
similar atmospheric conditions, which are by no means constant. Thus, 
the methodology is heavily reliant on preprocessing to correct for those 
varying conditions. However, preprocessing correction algorithms of mul-
tispectral data to reflectance are not able to perfectly calibrate for these 
varying conditions, even when imagery is processed using scene-specific 
parameters. 

Although differences between spectral signatures and physical soil charac-
teristics like strength are subtle, in-scene strength-based classifications 
may show some utility. As previously mentioned, any presence of vegeta-
tion will dominate the spectral signature, which makes it more difficult to 
understand spectral characteristics related to physical soil properties. 
High-strength training data (Class 8) were mostly taken on landing zones 
and roads. The average signature of Class 8 training data is noticeably dif-
ferent from the average signature of lower-strength training data, as seen 
in Figure 12. This is likely because the areas of very high-strength soil sur-
faces are engineered and modified from their natural state. Dirt roads and 
most landing zones were scraped, leveled, and compacted. The scraped 
surfaces are likely the cause of the noticeable difference in the averaged 
spectral profiles, as these scraped surfaces reflect more intensely. Differ-
ences in spectra amongst strength classes 1–7 are subtler. 
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Figure 12.  Average spectra of training classes 1 and 8 for the 2013, 2014, and 2015 
datasets. 

 

Overall, in-scene classifications have a much higher chance of success be-
cause the training data and the images are temporally consistent. This is 
verified in Tables 2 and 3. Variation among years due to increased precipi-
tation, human modification of the land surface, or changing atmospheric 
conditions will not impact the success of in-scene classifications but may 
have a drastic effect on out-of-scene classifications. More statistical analy-
sis should, however, be done to compare the measured field spectra, the 
WV2 training spectra, and the physical properties of the soil. Further anal-
ysis would illuminate any statistically significant correlation between the 
reflectance properties and physical properties at this spatial and spectral 
remote-sensing resolution. In addition, the benefits of classifying the 
most-critical components (highest strength) could outweigh erroneous 
classifications of terrain not otherwise suitable (i.e., too vegetated, too 
weak, or too wet). 

4.1 Classification case study 

Comparing two test locations in the Milpitas AOI that have very different 
physical properties but have similar spectral reflectance illustrates the 
strengths and limitations of this strength-based classification technique. 
One of the sites is a compacted and leveled dirt area while the other is a 
sandy alluvial wash. These sites are referred to as M6HI and M6LO and 
are depicted in Figure 13 and 14 respectively. 

Unsupervised classification techniques were originally tested on this da-
taset; however, pixels with similarly high reflectance values but differing 
physical properties were often misclassified. Figure 15 shows in-scene su-
pervised classifications of this area. M6HI was typically classified as high 
strength in the WV2 classifications. M6LO was classified as low strength in 
2013; however, in 2015, M6LO was mostly classified incorrectly as high 
strength. Regions of low-strength alluvial wash, such as M6LO, or high-
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strength scraped and compacted dirt runways or parking areas, such as 
M6HI, can be useful indicators of the success of such a technique.   

Figure 13.  A compacted, high-strength area in Milpitas (M6HI). 

  

Figure 14.  A sandy, low-strength area in Milpitas (M6LO). 

   

Figure 15.  True-color composite images of Milpitas high- and low-strength sites 
(top row) with the high-strength compacted area (M6HI) outlined in green and 

the low-strength alluvial wash (M6LO) outlined in red. In-scene classifications of 
the same scene with associated legend (bottom row). 
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Field spectral measurements taken at these two sites in 2014 and 2015 
show similar shapes and levels of reflectance. However, as seen in Figure 
16, both spectra were much brighter, and the relative brightness was re-
versed in 2015. 

Figure 16.  Field spectral measurements from high- and low-strength sites taken in 2014 (left) 
and 2015 (right). 

 

It is possible that increased moisture in the soil at M6HI is the reason for 
this reversal of relative brightness in 2015. The volumetric water content 
of M6HI was three times that of M6LO in 2015, likely because fine-grained 
compacted soil holds moisture much more than the well-drained, sandy 
soil seen at M6LO. Increased and healthier vegetation in 2015 may be the 
reason that many more pixels in this alluvial wash region surrounding 
M6LO were misclassified as high strength. 

4.2 Future work 

To extend this work, it may be helpful and interesting to apply the same 
methodology on a more dry and barren test site to analyze spectral proper-
ties of bare soils without any presence of vegetation. Focusing just on bare 
soil would allow for a more detailed study of the relationship between soil 
physical properties and reflectance.  

Extension of this work should also include a thorough analysis of the field 
spectra taken in January 2014 and March 2015 and a more recent set of 
field spectra collected in December 2015 and planned for July 2016. A sta-
tistical comparison of field spectra, imagery spectra, and measured physi-
cal characteristics should be done to understand the statistical correlation, 
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if any, between the physical and spectral properties of soils at FHL. It also 
may be advantageous to determine whether plant type and vegetation cov-
erage at this site show any correlation to soil strength.  

Future data collections will incorporate the additional bands included in 
Digital Globe’s WV3 satellite. WV3 launched in April 2014 and senses the 
same 8 multispectral bands as WV2, plus 8 shortwave infrared (SWIR) 
bands ranging from 1195 to 2365 nm and 12 clouds, aerosols, vapors, ice, 
and snow (CAVIS) bands ranging from 405 to 2245 nm. These CAVIS 
bands will help to mitigate effects caused by the atmosphere, and the 
SWIR bands will allow for a closer look at surface materials that present 
unique reflectance and absorption features (Longbotham et al. 2014). 
WV3 also has higher spatial resolution than WV2, with multispectral reso-
lution of 1.2 m ground sample distance, SWIR resolution of 3.7 m, and 
CAVIS resolution of 30 m resolution (Longbotham et al. 2014). WV3 is the 
first commercial satellite imaging system with high spatial resolution and 
SWIR capabilities (Kruse and Perry 2013). It is also the first commercial 
system to offer both visible and near infrared (VNIR) and SWIR multi-
spectral capabilities (Kruse and Perry 2013). Transitioning to WV3 would 
allow for greater spectral and spatial resolution although hyperspectral 
resolution may be necessary to discern subtle reflectance changes from 
physical soil properties. Figure 17 shows the bands for WV2 and the subse-
quent WorldView-3 (WV3) sensors. 

Other image analysis techniques should also be explored to improve the 
accuracy of the results. Spectral unmixing is a technique conventionally 
used with hyperspectral data to unmix, or separate, the contents of a pixel 
based on decomposing the measured spectra into a collection of endmem-
bers and their relative abundances. Endmembers represent individual 
components, such as vegetation or soil that jointly occupy the same pixel 
(Keshava and Mustard 2002). This technique may be helpful to unmix the 
effects of vegetation from the spectral signature.  
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Figure 17.  The difference in band wavelengths between WV2 and WV3 sensors. 

 

Furthermore, expanded use of training and holdback sites would allow for 
a more accurate and complete assessment of the results of this process. 
This would require taking field measurements at more sites of varying 
strength to have sufficient data to randomly select sites to holdback during 
the training and classification process. Also, masking out visually discerni-
ble unsuitable areas (like alluvial wash) before running the classifications 
might be helpful. Some known sites have similar spectral properties but 
very different engineering properties, as described in Section 4.1. Visually 
inspecting the imagery and removing before analysis those areas that are 
obviously unsuitable would concentrate the research in the most critical 
study areas. 
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