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LONG-TERM GOALS 
 
To accurately describe the statistics of acoustic echoes due to the presence of fish, especially in the 
case of a long-range active sonar.  Toward this goal, fundamental advances in the understanding of fish 
behavior, especially in aggregations, will be made under conditions relevant to the echo statistics 
problem. 
 
OBJECTIVES 
 
To develop new models of behavior of fish aggregations, including the fission/fusion process, and to 
describe the echo statistics associated with the random fish behavior using existing formulations of 
echo statistics. 
 
APPROACH 
 
Several interrelated components of research were conducted in parallel and in a synergistic way:  One 
important component of this research was the development of new advanced models of fish behavior 
inspired by, and grounded by, 3-D images of fish aggregations.  These images were derived by multi-
beam acoustic systems.  Key parameters observed and modeled were the rate of fission/fusion of the 
aggregations and the behavior of fish groups in terms of their trajectories and their characteristic 
scales.  The intent for the observed and modeled fish behaviors was to incorporate them into an 
existing general formulation for echo statistics. 
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This effort was a group effort led by Stanton (see the final report for N00014-11-1-0147 from 
December 2014). This final report focuses on the work of Weber, who analyzed high-frequency (~100 
kHz) multibeam echosounder backscatter collected over fish aggregations to parameterize the behavior 
of fish groups, and that of Grunbaum, who developed new fish behavior models with parameters taken 
in part from data analyzed in this project. This work involved informal collaborations with Chris 
Wilson of NOAA Alaska Fisheries, whose team collected the multibeam data, and Ben Jones of NPS 
who used some of the empirical fish data analyzed by Weber in a forward acoustics model. 
 
WORK COMPLETED 
 
Major milestones were reached in all components of the project--- a new model for fish behavior was 
developed, optimized for numerical efficiency, and used to make predictions with empirical 
parameters; 3-D observations of fish schools made with multi-beam sonars and analyzed to determine 
of important aspects of fish dynamics; and predictions were made of echo statistics of a long-range 
sonar in a realistic ocean waveguide with fish present.  Results from this project have been presented at 
scientific conferences and are summarized in six scientific papers (three published,two more submitted 
to refereed scientific journals, and one more in preparation.)  In addition, some of the fundamental 
scientific results were transitioned in a concurrent applied program (ONR HiFAST FNC program) to 
both NAVSEA and NAVAIR sonar trainers. 
 
The scientific results are given in detail in the following sections. 
 
1.  New model for fish school behavior 
A novel approach was created in this project towards understanding fission, fusion, and migration of 
social groups (fish, in this case) by assuming a high level of sensory and cognitive function by 
interacting individuals.  We published the following paper summarizing the results: Grunbaum (2012).  
Simulations based on this model show all of these behavioral aspects, as illustrated in the time series of 
fish distribution in Figure 1.  
 
Nearly all current models of social interaction are “zone models" which assume that characteristics of 
animal groups such as schools, swarms and flocks arise from individuals' immediate responses to the 
relative positions and velocities of a small number of nearest neighbors. While there is little question 
that position- and velocity-dependent responses are crucial to social grouping, current zone models 
commonly predict that large groups (that is, groups in which individuals in different parts of a group 
must interact indirectly through many individuals between them) should be fragile and therefore rare or 
transient. However, natural groups are frequently large and stable. In other settings, natural populations 
that are sparse or distributed in numerous small groups nonetheless maintain common orientation 
across groups. In most current zone models, directionality can be maintained only by frequent 
encounters between individuals and groups, and so is unlikely in sparse populations at reasonable 
levels of behavioral and physical random forcing. 
 
The new model assumes an additional cognitive layer in fish schooling behavior, in which encounters 
with neighbors are used as input data on which to base statistical estimates of the density and 
movement characteristics of the local population. The key idea is that each individual is continuously 
updating its understanding of the intent of its neighbors, and basing its own decision-making on this 
understanding. Thus, social individuals can glean information even when the instantaneous position 
and velocity of neighbors are quite different from overall movement patterns, or when neighbors are so 
sparse that encounters with them are rare.  



3 
 

The above line of reasoning suggests a new hybrid model that combines agent-based “Lagrangian" 
movement rules with a “Eulerian" distribution of population density and flux, together with local 
distributions of orientation angle. This hybrid approach has multiple advantages from the perspective 
of understanding acoustic signatures of fish in real-world settings. One is computational tractability: 
Agent-based models of social grouping are inherently N2 computations, where N is the number of 
individuals. (Specifying maximum interaction distances can enable subdivision of the habitat into non-
interacting parts, but computational requirements remain large for dense groups.) The hybrid model 
executes parallel simulations, in which the estimates of local population characteristics evolve as 
partial differential equations, and the individuals respond to estimates as autonomous agents. Hence, 
there is no N2 calculation required. Another advantage of our hybrid approach is that the statistical 
distributions calculated during social simulations (population density, orientation angles, etc.) are 
directly relevant to estimates of acoustic signatures. 
 
The hybrid modeling assumes a Bayesian framework for local estimation of population movement. For 
example, for estimates of local density, we assume each individual maintains a Bayesian updating 
scheme for determining the expected value and uncertainty associated with the Poisson distribution of 
neighbors. In a standard updating scheme, appropriate for statistically stationary neighbor distributions, 
the uncertainty decreases monotonically with ongoing sampling. In application to schooling, in which 
populations move and therefore are not statistically stationary, we discount the predictive value of old 
information. Hence, an individual's uncertainty about local density and direction fluctuates downwards 
when informative samples occur frequently and upwards when such samples are rare. 
 
2.  Parameterizing and optimizing new model for fish school behavior 
This work followed the above development (Section 1) of the new fish schooling model and focused 
on estimating parameters of the new model using individual-level and population-level fish schooling 
data. The individual-level data are 10-minute-long 3-dimensional-trajectory sequences of all 
individuals within small schooling and milling aggregations in the laboratory. The population-level 
data were collected in field surveys of Alaska pollock being analyzed by Weber and Stanton as 
described below in Section 3. The model and its application to schooling analysis involve a relatively 
large number of parameters, which must be constrained and optimized with respect to the available 
data.  Therefore, much of the effort also involved building computational and statistical machinery to 
execute this optimization. Both the number of parameters and the relatively high computational 
demands of large-scale spatially-explicit schooling models make effectiveness and efficiency key to 
successful parameter-fitting. The principal modeling accomplishments, specific to parameterizing and 
optimizing, are summarized: 
 

(a)  We reanalyzed individual-level fish trajectory data to comprehensively characterize individual 
positions and movements within groups and to quantify neighbor-neighbor turning and 
acceleration responses.  We developed new computational machinery for parameter-fitting 
behavioral models to our individual-level fish trajectory data. We conducted large-scale 
numerical optimization to obtain best-fitting behavioral response zones for short-memory 
cases.  We have also extended our analysis to long-memory cases. We conducted simulations 
using the best-fit behaviors to assess the degree to which they reflect the observed behaviors 
from which they were extracted.   

(b)  We developed model computer code to embed observed fish trajectories into the new cognitive 
schooling model. This enables us to conduct simulations in which modeled fish respond to 
actual observed fish behavior. This also enables us to assess model behaviors by replacing one 
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or more members of a real fish aggregation with a simulated counterpart, and quantifying the 
degree to which position, movement and neighbor-neighbor responses are statistically 
consistent with the true behavior.  

(c)  We developed model computer code to identify and characterize schools in the output of the 
cognitive schooling model (Fig. 2). Identification of schools is based largely on mathematical 
morphology analysis techniques for “segmentation” of features in images. Densities and edge 
characteristics of groups are used to delineate them from surrounding non-group distributions. 
This analytical machinery is a key tool in constraining model parameters to field surveys of fish 
schools that quantify distributions of group size, shape and separation distance.  

(d)  We developed computational infrastructure to extract cognitive behavior and other parameters 
from the NOAA Alaska Fisheries Science Center acoustic/trawl walleye pollock survey data. 
The central challenge in parameter estimation from data of this type is that data have 
incomplete spatial coverage and, at any given spatial position, are irregular in time. A 
consequence is that, within a set of repeated surveys, each acoustic transect reflects an 
unknown fraction of fish that were previously detected, that moved into the survey area since 
the last transect, or that left the survey area since the last transit. 

 
Our approach to estimating parameters utilizes iterated simulations of behavioral models, 
maximizing statistical similarities between predicted and observed data where observations are 
available. The gist of this approach is that a model provides a means to accumulate information 
between intermittent and probably sparse data. The combination of data and movement 
mechanisms embedded in the equations enable the model to "learn" as much as possible about 
the state of the system. A necessary element in this maximization is as unbiased as possible a 
“null” population distribution for areas in which no observation data are available. Because in 
this dataset the speed and direction of ambient currents is not known, the analysis is 
implemented in two steps. The implementation of both stages of analysis is derived from the 
cognitive schooling behavioral model developed in this project. In the initial step, ambient 
current velocity is inferred by maximizing “fit” of observed fish densities over time and space 
using the entire acoustic times series. In this step, current velocity is assumed to be constant 
within a given depth stratum. In the second step, the spatial map of localized fish group 
velocities at each time/space coordinate in the domain of interest is inferred by maximizing the 
“fit” of model projections with acoustic observations. The result is a statistical “best estimate” 
of the swimming velocities of fish at every point in time and space informed by the acoustic 
surveys. 
 
An example of this method is given in Fig.s 3 and 4. Fig. 3 shows first-stage ambient current 
velocity estimates for the walleye pollock survey data using a constant coefficient advection-
diffusion process as the underlying movement mechanism for fish populations. The analysis 
goes through the entire sequence of recent surveys, and determines the advection velocity and 
diffusion that yield the best matches between model and data (according to one of a number of 
statistical metrics; the figure reflects a likelihood metric). Because the input data include all 
acoustic returns (not just above-threshold returns indicating dense fish aggregations), the best-
fit advection velocity for fish signals likely is dominated by the ambient current velocity. The 
diffusion coefficient reflects movement and fission/fusion of fish schools, possibly with 
contributions from other sources. Fig. 4 shows the second stage analysis, in which the 
estimated current velocity is used to quantify how the fish are moving relative to the water in 
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which they are immersed, reflecting the best fit estimates of true school movement dynamics as 
schools move, split and fuse across time and space. 
 

(e)  Because cognitive schooling models have not been developed previous to this project, 
statistical methods for estimating cognitive behavioral parameters do not yet exist. To develop 
statistical tools for inferring these parameters, we considered a simpler spatial 
memory/cognition problem, which is the odor source location problem, applicable to many 
engineering and environmental problems of interest to the Navy. We had access to trajectories 
of male moths finding a pheromone-emitting female; our goal was to quantify the mate-seeking 
behavior of these male moths in a cognitive behavioral framework. This is a simpler parameter 
estimation problem because ways in which the geometry of plumes transported by turbulent 
environmental flows might be statistically summarized are known from fluid physics. 

 
Using the moth dataset, we developed new biomimetic cognition-based algorithms for odor source 
location, and mapped out strategies for estimating parameters of models of spatial memory and 
cognition (Fig 5). We assumed that cognitive parameters were structured so as to estimate and respond 
to plume geometry in the most efficient way. The guidance to parameterizing behavioral parameters 
provided by this assumption was central to obtaining parameter estimates that explain large fractions of 
variance in observed movements. This work is described in a manuscript in collaboration with a 
chemosensory ecologist and was submitted to the Journal of Movement Ecology (Grunbaum and 
Willis, 2014). As with fish schooling, this is an entirely new approach to assessing this biological 
phenomenon, which will be stimulating and useful to a wide range of future investigations.  
 
3.  Inferring fish school characteristics from seabird foraging behaviors 
Foraging seabirds are highly informative about fish distributions and schooling behaviors, both directly 
as model systems of social grouping and information sharing, and indirectly as rapidly-responding 
indicator of location, abundance, size, depth, species and other characteristic of prey schools. For 
foraging seabirds, effective search strategies can make the difference between breeding success and 
failure; hence, strong natural selection is expected for optimal use of information, especially when prey 
is concentrated in schools. Seabirds are hypothesized to utilize cognition to gain up-to-date information 
on fish school distributions by monitoring the direction of birds returning to the colony or the behavior 
of other birds at sea through network foraging. However, search strategies based on this type of social 
information is affected by seabird population densities. We used Bayesian analysis of Peruvian 
anchoveta (Engraulis ringens) in the northern Humboldt Current System to generate simulated fish 
school distributions with the differing spatial structures observed in two years, 2008 and 2009 (Fig. 6). 
We analyzed movement data of Peruvian Boobies (Sula variegata) to extract parameters for a 
spatially-explicit individual-based foraging model. We then used the model to assess how variations in 
foraging trip statistics reflect differences in fish school distributions. We simulated a range of 
scenarios, including ranges of seabird population densities and different weighting of alternative types 
of information available to seabirds before embarking on foraging trips. In our simulations, orientation 
of outbound headings in line with returning birds enabled departing birds to avoid areas without prey 
even at relatively low population densities (Fig. 7). The mechanisms underpinning network foraging 
become more effective as population densities increase and may be facilitated by other search 
strategies that concentrate individuals in profitable areas. These results, presented in Boyd et al. (in 
prep.)  suggest that monitoring seabird foraging behaviors at colonies, specifically the time and 
direction of departures on foraging trips, is a potentially effective approach to assessing both large-
scale distributions of fish schools and more detailed characteristics such as depth, size and species 
composition. 
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4.  Extracting fish-behavior parameters from high resolution images of fish aggregations derived from 
acoustic multibeam data 
Multibeam data analysis has focused on data collected in the Eastern Bering Sea (EBS) during both 
2010 and 2012.  These data were collected using a Simrad ME70 multibeam echosounder as part of the 
NOAA Alaska Fisheries Science Center (NOAA-AFSC) acoustic/trawl walleye pollock surveys.  
Through use of sequential pings from the 2-D multibeam data, 3-D images of fish schools could be 
made (Figs. 8-9).   
 
Data collections from both years represent multiple (approximately 9) week survey efforts aimed at 
broad-scale stock assessments in the EBS, and ME70 data have been made available to this project 
courtesy of Chris Wilson (NOAA-AFSC).  Most of the data were collected along widely spaced (~40 
km) transects, and for the purposes of this research are considered to represent a ‘snapshot’ of the 
pollock aggregations present in the EBS. These widely spaced transects from 2010 were analyzed to 
form clusters of volumetric backscatter representing mid-water pollock aggregations (Figure 8). 49,650 
clusters were extracted over an 8 day period, and compared to the general models of Anderson [1981] 
and Niw [2003]. The data can be fit to the Anderson [1981] model. 
 
During the 2012 data collection effort, NOAA-AFSC also conducted repeat transects at our request 
and with our guidance on two occasions.  This resulted in ~1-nmi-long transects that were repeated 
every 10-15 minutes, with 24 transects on the first occasion and 14 transects on the second occasion.  
Analysis of the 2012 data concerned studying rates of schooling fission and fusion. These latter data 
were analyzed to extract metrics describing morphological changes in the fish aggregations that can be 
used to tune or ground-truth behavioral models.  Metrics of particular interest include group scales for 
length, velocity, and time, trajectories of individual groups, and bounds on the rate at which 
aggregations appear to split (a ‘fission’ event) or recombine (a ‘fusion’ event).  Data of these type 
(repeat passes over the same groups) provide a unique observation of group dynamics at a local scale, 
although they are rarely collected. A manuscript describing these data has been submitted (Weber, 
2015). 
 
Statistics of fish school size—population level 
To examine the statistics of walleye pollock, an automated process was generated and exercised for the 
ME70 multibeam echosounder data. Eight days of survey effort in July 2010 were analyzed to form 
clusters of volumetric backscatter representing mid-water pollock aggregations (Figure 11).  These 
data cover a region extending from 176ºW to 179.5ºW and 58ºN to 62.5ºN.  Mid-water trawls (N = 43) 
conducted in this region caught 98% pollock by weight.  The ME70 data were processed to 

 
a. remove potential seabed returns and sidelobe contamination 

b. remove data below a threshold of Sv = -60 dB (independent of beam angle) 

c. remove spatially isolated targets that are considered ‘speckle’ noise 

d. cluster, and uniquely label, data that are within 25 m of each other horizontally and 5 m of each 
other vertically 

e. extract metrics describing each cluster including the cluster volume,V, maximum vertical 
extent, H, and maximum horizontal extent, L. 
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This process resulted in 49,650 clusters of fish were extracted for the 8 day period.  Histograms of their 
effective size, V1/3, vertical extent, and horizontal extent are shown in Figure 12.  Also shown are best 
fits of the data to the models of Anderson [1981] and Niwa [2003].  Neglecting issues that may arise 
from the ME70 finite field of view and range/angle-dependent resolution, the data suggest that the 
pollock aggregations have a high aspect ratio: the mode of the horizontal extent is approximately 6 
times greater than the mode for the maximum vertical extent.  The data can be fitted quite closely to 
the Anderson model, which assumed disk-like aggregations of fish and modeled the diameter of 
schools. 
 
Observations of fish group behavior at the local level 
An important caveat in the population statistics shown in Figure 12 is that the data represent 
aggregations of both juveniles and adults, nighttime and daytime behaviors, other environmental 
covariates, and possible ‘contamination’ from other species.  To examine this issue further, we have 
extracted population statistics from the 2012 repeat transects.  The first set of repeat transects targeted 
small, dense fish aggregations (“cherry balls”) that were fully contained within the ME70 field of 
view.  The second set of repeat transects targeted dense aggregations that could be acoustically 
mapped, but which at least partially extended outside of the field of view.  For the first set of repeat 
transects (Figure 11), the fish aggregations observed on consecutive passes appeared to be 
uncorrelated, and were largely constrained to dense aggregations at water depths less than 80 m with a 
large, widely-spaced aggregation of targets below 80 m.  The second set of repeat transects exhibited 
dense aggregations of fish throughout the water column, with a quasi-continuous distribution of fish 
below 80 m water depth and relatively well-separated aggregations in the upper portion of the water 
column (Figure 12).  These data were processed similarly to the 2010 ME70 data, except that rather 
than cluster the data based on an a priori assumption about horizontal and vertical ‘linking’ distances, 
the data were contoured based on volume scattering strength.  Aggregation metrics were subsequently 
calculated at the contour level representing a fish density 100x less than the peak density.  This 
approach made it possible to treat discrete and quasi-continuous aggregations using the same 
methodology.  The distribution of the effective school horizontal radius is shown in Figure 13 for the 
1st set of repeat passes (‘subset 1’), and for the second set of repeat passes for fish observed in the 
upper 80 m of water (‘subset 2, upper 80 m’), below 80 m (‘subset 2, below 80 m’), and for a 10 m 
thick layer between 90-100 m (‘subset 2, 90-100 m’).  Each distribution appears quite similar and, like 
the larger population of aggregations analyzed from the 2010 data, fit a power-law distribution of 
approximately L-3 for the larger aggregation sizes. 
 
The repeat-transect data collected in 2012 were further analyzed to extract group behavioral metrics 
with the express goal of using them to iteratively fine-tune fish behavior models. First, a subset of the 
passes corresponding to the time before sunset (at which time the general behavior of the fish was 
observed to change) was used (Figure 14).  Where possible, fish detections that appear to be jointed 
during any one transect were tracked as they moved and underwent fusion or fission events. An 
example of this process is shown in Figure 15. For the first two passes (A and B) shown in Figure 15, 
the group exhibited approximately the same volume and volume scattering strength, Sv. The group then 
split into two subgroups over the subsequent passes (C1, C2 and D1, D2). The subgroups appear to 
recombine during the fourth and fifth passes, and remained together through the sixth pass. The 
combination of Sv and volume data are consistent enough to suggest that it is possible to follow a large 
fraction of the group from transect to transect, offering a rare glimpse of fish group fusion and fission 
events. The Sv data and the TS to length model of Traynor (1996) together with the frequency response 
work of de Robertis et al [2010] suggest that the average spacing between fish is 1.5-2.0 m throughout 
the six transects. 
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We have also determined several other group parameters for fish groups that were identified in 
sequential passes. For example, The group speed, Vg, is found by computing the horizontal distance 
traveled and dividing by the time between observations. A characteristic group length scale, Lg, for 
each pair of observations is found by taking the cube root of the average of the volumes for the 
sequential passes. A group time scale is then found from Tg=Lg/Vg. This resulted in N=19 observations 
of group length scales, group velocities, and group time scales (Figure 16). The average Lg, Vg, and Tg 
are 31 m, 5 cm/s, and 770 seconds, respectively. The small sample size makes it difficult to 
unambiguously empirically fit statistical distributions to these data. For each parameter, however, the 
data more frequently lie below the mean: the median is generally 15-30% lower than the mean. There 
is no apparent correlation (r = 0.1) between Lg and Vg. 
 
These results were presented in a special session on fish acoustics in the Spring 2014 scientific meeting 
of the Acoustical Society of America in Providence, R.I.  A manuscript based on the final results 
described here has been submitted (Weber, 2015). 
 
RESULTS 
 
We have reached major milestones of new understanding in two complementary areas:  1. Modeling of 
fish behavior.  The advanced modeling of fish behavior has yielded significant results.  Fission, 
fusion, and migratory behavior of the fish have been modeled.  These results use a hybrid approach 
that integrates both intelligence of the fish in nearest neighbor interactions as well as group behavior.  
Modeling of 3-D data has given information on the rate at which fish exit a school. Through use of 
empirical parameters and numerical optimization, realistic predictions of fish behavior have been 
made.  2.  3-D sonar observations of fish schools.  (a) Examination of data from several locations in 
the world has consistently exhibited a mode in the statistics of school dimensions, which provides 
information for the modeling in #1 above. (b) Time series data from repeated passes of fish has 
provided a rare ocean investigation of fission/fusion processes yielding critical empirical information 
on fish dynamics in their natural environment.  For example, the speed at which groups of various 
sizes move, split, and recombine, is rarely observed outside of laboratory settings.  These data help to 
bound the space/time scales at which information is passed (or remains coherent) within the school.  
These group-level ocean data, coupled with our laboratory data involving individual fish, are being 
instrumental in enabling the model (through experimental parameterization) to make realistic 
predictions.   
 
In addition, a closely associated effort led by Stanton provided integration of these two milestones with 
the echo statistics from a long range sonar in the presence of fish schools. This effort demonstrated 
that echo PDF’s from fish schools are heavy-tailed, and the degree to which the tail of the echo 
distribution is non-Rayleigh depends directly upon the number of patches of fish in the sonar beam. 
Consequently, the level of the tail is dependent both on the population statistics of the fish in general, 
and on the local, within-beam behaviors of the fish groups. 
 
Overall, the combination of the new modeling and measurements of fish schools, along with the 
predictions of echo statistics associated with long-range sonars, provides a powerful suite of tools to 
make realistic predictions of long-range sonar performance in the presence of fish and under a wide 
range of realistic conditions. 
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IMPACT/APPLICATIONS 
 
The modeling and observations of fish behavior represent an advancement of the fundamental 
understanding of fish behavior.  A key advancement in the modeling is including fish “intelligence”.  
Integrating the 3-D ocean data with the model is creating a powerful tool for making realistic 
predictions of fish behavior.  The modeling of echo statistics from a mid-frequency sonar with fish 
aggregations present demonstrates the fish clutter characteristics relevant to Navy ASW applications. 
The observed speeds of fish schools yields information on the degree to which fish impact Doppler-
sensitive sonars.  The advanced behavior model is in a form that can be incorporated into the echo 
statistics model.  The combination of the two models, grounded by our observations of fish behavior, 
provides a significant tool for predicting sonar performance associated with the presence of fish. 
 
TRANSITIONS 
 
The 3-D fish shoal data, provided by NOAA Fisheries and analyzed in this project, were the basis 
(credit due to Stanton) for a transition of the biologic simulations in the HiFAST FNC ONR program 
(LaCour, Stanton, Jones) to the CASE (NAVAIR) sonar trainer.  In addition, transition of the shoal 
data into the SAST ACB15 (NAVSEA) sonar trainer via the HiFAST program has been approved and 
is currently being incorporated into the system at the time of this writing. 
 
RELATED PROJECTS 
 
Parts of this project fed into the concurrent ONR HIFAST FNC program (LaCour, Stanton, Jones) in 
which fish echoes were simulated for use in Navy sonar trainers (SAST-NAVSEA and CASE-
NAVAIR) (see “Transitions” above).   The 3-D multi-beam data involving fish shoals from the Eastern 
Bering Sea, provided by NOAA Fisheries and analyzed in this project, were used in the HiFAST 
program to predict echoes from shoals. 
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Fusion-fission dynamics model for  
fish school behavior 

 
 

 
 

Figure 1.  Fission-fusion dynamics in the cognitive schooling model, reflected in population-level 
density distributions at four sequential time steps (note varying time increments between images). 
Blue arrows indicate approach and then fusion of two groups, followed by a subsequent fission 

event and incipient fusion with another group. Green arrows indicate a simultaneous 
approach/fusion/fission sequence in a different part of the simulation domain.  Computations using 

new model published in Grunbaum (2012). 
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Figure 2.  An example of group size distributions from school segmentation in the cognitive 
schooling model using mathematical morphology techniques. Size is quantified as the total number 
of fish within separate schools. Units are arbitrary (rescaled and nondimensionalized from physical 

units).  This plot illustrates the strong effect of spatial memory on group- and population-level 
dynamics: Here, a shift from an effectively “short” memory (T < 1) to an effectively “long” memory 

(T > 1) results in an increase in modal group size of roughly two orders of magnitude. 
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Figure 3  Inferred currents from acoustic survey data, reflecting best fir (likelihood-maximizing) 
currents in the North-South and East-West directions. (A) Snapshots of acoustic data at 50m depth 
(left) along with parameters from the Bayesian analysis hyperparameters (middle and right). These 
hyperparameters represent a log-Normal probability distribution of fish school density at each point 

in time and space, updated across sparse and irregular samples from the acoustic transects and 
inferred via dynamic modeling between observations.  (B) Relative likelihood plot of current 

velocities extracted from the acoustic data at 50m depth. The analysis suggests the most probable 
currents in the 50m depth stratum were approximately 1.6 cm/s to the North and 0.4 cm/s to the 

West. (C) 1.3 cm/s due South. 
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Figure 4  Inferred velocities of Alaskan walleye pollack schools from acoustic survey data. In these 

plots, best fit fish group velocities are represented as streamlines, with the direction of lines 
representing “flow” of fish biomass. Line color reflects best fit estimates of instantaneous swimming 
speed, and line width represents the “flux” (speed x density) of fish biomass. (A) The entire domain 
of analysis at the end of the last transect. (B) A zoomed-in view of inferred finescale movements at 

the upper left of the domain. (C) A zoomed-in view of inferred finescale movements at the middle of 
the domain. Note that data are more recent in the area represented in (B), yielding  a more detailed 
estimate of school movements than in other regions where uncertainty has accumulated over long 

periods in which no samples are available. However, that analysis suggests that the region 
represented in (C) is likely to remain an area of rapid movements of high-density fish schools. 
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Figure 5.  Development of an estimation scheme for cognitive movement behaviors using observed 
trajectories of a simplified behavior: location of the source of an odorant plume in a turbulent flow. 

The top plot shows movement of a male moth seeking a pheromone-emitting female, with the 
odorant source indicated by a black semicircle on the right side. Wind direction is right to left. In 

this plot, black circles indicate the raw position data; the blue line represents a corrected path after 
filtering to remove frame rate noise. The red line segments represent straight-line connections 

between maximum lateral excursions. The bottom plot shows the course angle and lateral excursion 
of 458 cross-plume transits, aggregated from four flights by each of by 19 moths. The observed data 
are summarized by the median (solid red line) and 25th and 75th percentiles (dotted red lines). The 

blue solid line indicates best-fit predictions of a cognitive behavioral model (p<<0.01, r2=0.43); 
dotted blue lines represent a sensitivity analysis for these predictions. These results indicate the 

methods and results being pursued to estimate fish schooling behavioral parameters from acoustic 
survey data.   From Grünbaum and Willis (2014). 
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Figure 6. Contrasting foraging conditions in 2008 and 2009. Plots show Bayesian posterior 
predictions generated from acoustic survey data on anchoveta: (a) mean relative abundance in each 
cell by quantile; (b) mean probability that the upper depth limit of aggregations is less than 7.412 m, 
the scaling parameter in the patch selection decision rule for Peruvian Boobies (see Boyd et al., in 

press). The colony is indicated by a black hexagon. Land is shown in grey. 
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Figure 7. Box plots of foraging trip durations for simulations based on the 2008 and 2009 prey 
fields with a range of population densities under various information rules: (a) orientation of 
outbound headings; (b) network foraging; (c) orientation of outbound headings and network 

foraging. Results for population densities of 0 are derived from the no-information scenario. Mean 
values are indicated by black triangles. 
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Sonar imagery of fish schools 
 

 
 

Figure 8.  Example of Simrad ME70 multibeam data collected by NOAA-AFSC in the Eastern 
Bering Sea.  A single ping of data representing a ‘slice’ of the water column is shown in the 
foreground.  Target detections representing aggregations of walleye pollock are shown in the 

background.  The ship’s track line is shown in red. 
 
 
 

 
 
Figure 9. (a) A single raw ping of ME70 MBES data, with a small aggregation of fish located at (-
40 m, 40 m).  (b) Automatically detected potential fish targets (red dots) after removal of data below 

the seabed returns (red circles). 
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Figure 10.  Statistics of fish school dimensions.  Black line: Size distributions for effective size, 
maximum vertical extent, and maximum horizontal extent, as measured by NOAA-AFSC in the 
Eastern Bering Sea.  Red line: Niwa’s model.  Blue line: Anderson’s model.  Note that the axes 

change for each plot. 
 
 

 
 
 
Figure 11.  An example transect from the first set of repeat transects (school subset 1) in the Eastern 

Bering Sea, with dense aggregations of fish (‘cherryballs’) in the upper 80 m and a loose 
aggregation of fish below 80 m. 
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Figure 12.  An example transect from the second set of repeat transects (school subset 2) in the 
Eastern Bering Sea, with dense aggregations of fish found throughout the water column. 

 
 
 

 
Figure 13.  Distributions of effective sizes of fish aggregations (based on Fourier descriptors) were 
calculated for both subsets of fish data (see legend) from Eastern Bering Sea, and appear similar in 
all cases.  For values beyond the mode, there is a power-law appearance (similar to Figure 10) in all 

cases, with the possible exception of subset 1. 
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Figure 14. Example synthetic echograms of the ME70 water column data showing the sequential 
transects in order from top to bottom. The beginning of the first transect (top) occurs at 0559 UTC. 
The end of the last transect (bottom) occurs at 0737 UTC. The grayscale level corresponds to the 

volume scattering strength (dB) averaged across-beams in 2 m depth bins. 
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Figure 15.  Anatomy of a fission (B to C1/C2) and fusion (D1/D2 to E) event.  The upper panel 
shows raw detections extracted from six subsequent passes over an aggregation of fish with a 

multibeam echosounder data (5x vertical exaggeration).  The lower panel describes the change in 
aggregation structure from pass to pass.  In the lower panel, the size of the circles are proportional 
to the estimated number of fish, and the length of the arrows are proportional to the distance the 
school has moved.    Data collected by the NOAA Alaska Fisheries Science Center acoustic/trawl 

walley pollock survey in the Gulf of Alaska, 2012. 

 
Figure 16.  Group length, velocity, and time scales observed from shallow (<75 m) groups that were 

tracked over at least two subsequent transects. 


