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LONG-TERM GOALS 
 
To enhance wave forecasting models such as WAVEWATCH III (WW3) so that they can predict the 
marginal ice zone (MIZ) wave climate in the present and future Arctic seas. 
 
OBJECTIVES 
 

1. To build a comprehensive wave-ice interaction mathematical framework for a wide range of ice 
conditions observable in MIZ;  

2. To identify a minimum set of rheological parameters that can reproduce all existing wave-ice 
interaction types;  

3. To test the sensitivity of various parameters in the new wave-ice interaction model;  

4. To relate physically detectable ice cover parameters from remote sensing to its rheological 
properties;  

5. To establish a strategy for  WW3 to implement the wave-ice interaction mechanisms;  

6. To test the model performance and validate it using WW3. 

 
APPROACH 
 
For objective 1: Complete the viscoelastic theory. Key individuals are the PI and a PhD student. 

Task 1: Use an analytical method to determine the propagation of waves through a floating 
viscoelastic mat for a wide range of effective viscosity and elasticity parameters. This range should 
include all possible ice cover types in the MIZ. The outcome of this task is a direct relation 
between viscoelastic properties and the wave dispersion, including the group velocity and the 
attenuation.  
Task 2: Obtain the energy flux between different regions of ice covers via analytical solutions, i.e. 
the transmission and reflection energy between different viscoelastic mats.  
 

For objective 2: Justify the rheological parameters. Key individuals are the PI and a PhD student, in 
collaboration with Vernon Squire and Ben Holt. 
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Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers.  
Task 4: Determine if all existing evidence of wave property changes across ice covers is reflected 
in the theoretical model, i.e. verify that the proposed viscoelastic theory is capable of producing 
qualitatively similar range of the observations.  
 

For objective 3: Test the sensitivity of parameters. Key individuals are the PI and a PhD student. 
Task 5: Apply statistical analysis to examine the sensitivity of model dependence on the 
rheological parameters. It is likely that over certain ranges of parameters the resulting wave 
property change may either be highly sensitive or insensitive to changes of the parameter values. 
This part of the study will help to simplify the wave-ice interaction model.  
 

For objective 4: Relate accessible ice cover data to its rheological properties. Key individuals are the 
PI, a postdoc, and a graduate student, in collaboration with Vernon Squire. Additional information will 
be collected from all other PIs in this DRI.  

Task 6: Perform inverse analysis to map accessible wave dispersion and reflection/transmission 
data to the viscoelastic parameters. The accessible data will include all old and new data from field, 
laboratory, and remote sensing studies, as well as those derived from the scattering theory.  
 

For objective 5: Develop tools to implement the rheological model into WW3. Key individuals are the 
PI, a postdoc, and a PhD student. 

Task 7: Determine the best strategy to implement the rheological theory to WW3. The 
mathematical theory contains many parameters. Each set of parameters produces different wave 
group velocity, attenuation coefficient, and transmission and reflection properties. Results from the 
theory are input that needs to feed into WW3. These results are both time and space dependent. 
Implementation method will be established keeping in mind the resolution, accuracy, and 
computational efficiency.  
 

For objective 6: Test the updated WW3. Key individuals are the PI, a postdoc, and Erick Rogers. 
Task 8: The modified WW3 will be tested using both hind- and fore-casts.  

 
WORK COMPLETED 
 
Tasks 1, 2, 3 have been completed. Tasks 4, 5, 6 continue to make progress. Task 7 has been further 
improved. Task 8 is currently being carried out by Erick Rogers. We have also tried it using two sets of 
field data obtained in 2000 and 2012 in the Antarctic to determine its performance under calm and 
storm conditions. 
 
Tasks 1,2: The viscoelastic theory gives both the change of wave speed and wave attenuation once the 
equivalent mechanical properties of an ice cover are determined. This theory yields several possible 
wave modes (Wang and Shen, 2010). The interesting mathematical structure and its physical 
implications are under further investigation. Until proven necessary, the leading mode of the dispersion 
relation is solved and implemented in WW3 as option IC3 described in the manual (Tolman et al. 
2014). Instead of using a look-up table as first envisioned, a fast numerical procedure is used to 
directly solve the dispersion relation within WW3. The code provided last year however crashed under 
long wave conditions. This problem has been identified as resulting from the initial guess of the 
process of solution procedure. It has been rectified in the new code recently submitted to Erick Rogers. 
The transmission/reflection between two different viscoelastic regions is further studied to include 
more modes and to improve the matching boundary conditions between two different regions. The 



3 

results show, fortunately, that the approximate method using two leading modes is not significantly 
different from the more rigorous approach. This transmission/reflection mechanism has not been 
implemented in WW3. 
 
Tasks 3: Two field data sets both in the Antarctic marginal ice zone were used to evaluate the 
viscoelastic ice damping models. The 2012 data came from two buoys separated by over 100km most 
of the time (Kohout et al. 2014). The WW3 hindcast was successfully perform to compare with this 
data set. The 2000 data set however was from buoys separated by at most 25km (Doble et al. 2003, 
Doble and Wadhams, 2006). This distance is about the resolution of the ice and wind data, hence 
unless finer resolution ice and wind data can be obtained, it is difficult to use the 2000 data to separate 
the sea ice attenuation from other source terms. One recent laboratory data was used to determine the 
viscoelastic parameters. These results have been published (Zhao and Shen, 2015b). 
 
Tasks 4,5,6: Due to the scarcity of the datasets, using the available information to inversely determine 
the ice cover properties presents large uncertainty. Sensitivity analaysis based on ANOVA is 
completed and a paper reporting this analysis has been accepted for publication (Li et al. to appear). 
 
Task 7: This task is now further improved so that the speed of running the viscoelastic model is only 
16% more than the IC1 module which assumes a constant damping for all frequencies. 
  
Task 8: Erick Rogers has begun comparing results from three different rheological models for the ice 
cover: contant attenuation, eddy-viscosity, and viscoelastic. We have begun learning using WW3 so to 
conduct parameter optimization. We have found that other source terms such as the wind input, 
nonlinear wave interaction, and damping may influence the interpretation of the ice attenuation. In 
some cases, the full WW3 simulation is needed to determine the best fit viscoelastic parameters from 
the field data. We have published a paper based on the 2012 data from the Southern Ocean on these 
findings (Li et al. 2015). 
 
The research team is now preparing for the field campaign to take place Oct. 1-Nov. 10 this year. We 
will have abundant data afterwards to digest. This project is truly a synthesis of data and models from a 
large number of sources. We have tried to conduct such a complex study by using the 2014 field data 
to study wind/wave effects on the ice morphology during the summer-fall transition, in collaboration 
with Ben Holt, Erick Rogers, and Jim Thomson. A paper is being prepared for submission.  
 
RESULTS 
 
1) Theoretical development 

A more rigorous solution matching ice covers of different properties was developed to solve the 
wave propagation between different types of ice cover (Zhao and Shen, 2015c). This work is 
published. An example is given in Fig. 1, which shows the effect of including multiple roots in the 
solution. We have found that including multiple roots does not change the results much, hence for 
applications at most two roots should be sufficient.  
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Fig. 1. Effect of including additional modes on transmission/reflection from open water to an elastic 

sheet with the same parameters as in Fig. 2. (a) 2 modes: include 2 propagating modes; 4 modes: 
add 2 symmetrical damped propagating modes; 5 modes: add 1 additional propagating mode. (b) 12 
modes: add 10 evanescent modes to the 2 modes case. 102 modes: add 100 evanescent modes to the 2 

modes case. Fox and Squire’s results used 100 evanescent modes. (From Zhao and Shen, 2015c.) 
 
 

2) Sensitivity analysis 
An inverse method is planned after the field trip to determine the best fit viscoelastic parameters 
between the model and the measured data. For this method to be successful, we need to evaluate 
the sensitivity of the model to its parameters. We completed such a study using ANOVA, a 
standard statistical package to evaluate a multi-variable system, where parameter interactions may 
affect the level of sensitivity. Table 1 provides a key result, where the sensitivity of wave number 
and attenuation rate in response to the ice parameters, depth of the sea, and wave period are given. 
The higher the  value, the more sensitive the parameter itself, or the interaction of the pair 
parameters shown is. Using an inverse method in these regions needs to be more careful. The same 
study is also conducted for the viscoelastic model proposed by Squire and Allen (1980). It was 
found that both viscoelastic model behave the same way, although the effective elastic and viscous 
parameters from the two models can be orders of magnitude different (Li et al. to appear). 
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Table 1. The analysis of variance table for the viscoelastic model. High   values mean low 
sensitivity. High  value means high sensitivity. (From Li et al., to appear.) 

 
Response: Normalized wave number  Response: Attenuation coefficient  

Source   Source   
 1498.60 0.000  1364.29 0.000 

 7.00 0.000  0.85 0.492 

 107.33 0.000  162.44 0.000 

 3641.88 0.000  292.48 0.000 

 0.63 0.643  108.64 0.000 

 0.76 0.731  1.50 0.090 

 186.33 0.000  197.59 0.000 

 1983.73 0.000  644.96 0.000 

 0.99 0.469  150.48 0.000 

 2.13 0.012  1.55 0.098 

 1.88 0.018  1.50 0.090 

 0.55 0.924  1.31 0.182 

 371.02 0.000  35.08 0.000 

 0.60 0.848  10.68 0.000 

 0.51 0.946  38.28 0.000 
 

3) Field data 
A data set containing both calm and storm cases of wave conditions from two drift buoys was used 
to determining the contributions from the four major wave source/sink terms on the right hand side 
of the wave action equation below: wind input, nonlinear wave interaction, turbulence/wave 
breaking, and sea ice attenuation, respectively (Tolman et al. 2014). 
 

 (1) 

The modeled significant wave height from four different sea ice attenuation modules, IC0, IC1, 
IC2, and IC3 is compared to the field data from Kohout et al. (2014) in Fig. 2. It appears that IC3 is 
able to have the closest overall agreement. Also, the apparent attenuation rate as shown in Fig. 3 
shows that between calm and storm cases, there is a change of the apparent attenuation coefficient 
without any change of the sea ice attenuation formulation. This is because all other three source 
terms have very different levels of effect between calm and storm conditions. Particularly the wind 
input and the nonlinear wave interaction become orders of magnitude more important in storm 
cases. Thus they mask the sea ice damping, and changed the apparent attenuation rate. This 
conclusion has been speculated in Wadhams et al. (1988), and theoretically proven in Masson and 
LeBlond (1989). It is now also verified by a combination of field data and WW3 model results (Li 
et al. 2015). 
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Fig. 2. Comparisons of measured and simulated significant wave height  of the sensor closest to 
the ice edge (sensor 3, measured: solid gray, simulated: solid black) and the sensor farthest from the 
ice edge (sensor 7, measured: dash gray, simulated: dash black) with different ice damping methods. 

(From Li et al. 2015.) 
 
 

 
 

Fig. 3. Decay rates of sensors farther than 100 km from the ice edge calculated by WW3 with IC3 
and IC1. As was done in Figure 2 of Kohout et al (2014), the black dot is the median, box height 
shows the range within which 50% of the data lie. The whiskers give the range of data, excluding 

outliers (crosses). The solid line is calculated from linear least-squares regression through the 
median values. The dashed line shows the decay that would be expected if small-amplitude wave 

theory held for large waves. The dash-dot line is the median value of the observed . (From 
Li et al. 2015.) 
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4) Remote sensing ice floe size  
Working with Ben Holt, a visiting graduate student has been exploring using the MEDEA, 
Landsat8, and RADARSAT-2 images obtained in Aug.-Sept., 2014 with resolutions of 1m, 15m, 
and 100m to study the floe size distribution and leads characteristics. These data are examined 
against the wave buoy and model data from Jim Tomson and Erick Rogers, and  wind, temperature 
data from various sources. The results are organized into a manuscript which is at its final 
preparation stage for submission. This synthesis of data types and sources is a useful preparation 
for the incoming field campaign. A preliminary result of the cumulative floe size distribution is 
shown in Fig. 4. 
 

 
 

Fig. 4. Cumulative floe size distribution from MEDEA, Landsat8, and RADARSAT-2. 
 
 

IMPACT/APPLICATIONS 
 
More accurate wave models are necessary tools for many naval operations and environmental 
protection purposes: such as navigation route planning, offshore structure design in the Arctic, and 
coastal erosion prevention. They may also be coupled with: 
 

1. the ocean circulation models to study the effects of a more dynamic upper surface on the water 
body underneath;  

2. the ice models to study the evolution of floe size distribution from the wave fracturing process; 

3. the thermodynamic models to evaluate the melting rate from mechanical floe size reduction; 

4. the coastal erosion models of the vulnerable permafrost Arctic coastal zones. 

 
TRANSITIONS 
 
An improved FORTRAM subroutine for IC3 module has been generated and delivered to the WW3 
group.  
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RELATED PROJECTS 
 
A related project funded by the Singapore Ministry of Education Academic Research Fund (AcRF) 
Tier 2 began in January 2014. The project, entitled: “Wave drift and attenuation of viscoelastic floating 
substances”, is led by the principal investigator Prof. Adrian Wing-Keung Law 
(http://research.ntu.edu.sg/expertise/academicprofile/pages/StaffProfile.aspx?ST_EMAILID=CWKLA
W&CategoryDescription=watersustainability). The PI, Hayley Shen, is the international collaborator in 
the project which will run from Jan. 2014-Dec. 2016. A small wave flume (30cm wide and 8m long) is 
completed at the end of 2014. Equipment for making PDMS (a viscoelastic material) with adjustable 
and precisely measured viscoelastic properties has been in operation and successfully used to produce 
a wide range of samples. The stability of these samples has been established in extensive laboratory 
studies performed by a postdoc. Several wave tests have been conducted by a PhD student. This 
project will serve as a necessary check for our wave-ice interaction project. The data obtained will be 
useful to first validate the theory and then used as a true “continuum” analog of the fragmented ice 
covers over large scale. In addition, a proposal has been submitted by Prof. Law to ONR-Global. This 
proposal entitled “Wave impact on Arctic Shipping and Offshore Technology – A unique modeling 
facility” will use the above mentioned facility to further validate the viscoelastic theory and explore 
more complex systems of layered materials that could simulate natural systems in the Arctic 
environment. 
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