

TECHNICAL DOCUMENT 3293
August 2016

FANS-3D User’s Guide
(ESTEP Project ER-201031)

Pei-Fang Wang
SSC Pacific

Hamn-Ching Chen

Texas A&M University

Approved for public release.

SSC Pacific
San Diego, CA 92152-5001

SB

SSC Pacific
San Diego, California 92152-5001

K. J. Rothenhaus, CAPT, USN
Commanding Officer

C. A. Keeney
Executive Director

ADMINISTRATIVE INFORMATION
 This report was was developed in support of Environmental Security Technology Certification
Program (ESTEP) Project ER-201-031 by the Environmental Sciences Branch (Code 71750), of
the Advanced Systems and Applied Sciences Division (Code 71700), Space and Naval Warfare
Systems Center Pacific (SSC Pacific), San Diego, CA; and the Ocean Engineering Program,
Zachry Department of Civil Engineering, Texas A&M University, College Station, TX,

 This is a work of the United States Government and therefore is not copyrighted. This work may
be copied and disseminated without restriction.

 The citation of trade names and names of manufacturers in this publication is not to construed as
official government endorsement or approval of commercial products or services referenced herein.

Dell® is a registered trademark of Dell, Inc.
IBM® is a registered trademark of International Business Machines Corporation.
lntel® is a registered trademark of Intel Corporation.
Gridgen® is a registered trademark of Gridgen Glyph.
Linux® is a registered trademark of Linus Tolvalds.
MATLAB® is a registered trademark of MathWorks.
TecPlot® is a registered trademark of .Tecplot, Inc.

Released by
P. J. Earley, Head
Environmental Sciences Branch

Under authority of
A. J. Ramirez, Head
Advanced Systems & Applied
Sciences Division

iii

CONTENTS

1. INTRODUCTION ... 1

1.1 THEORY AND NUMERICAL ALGORITHM OF FANS CODE ... 1
2. FANS-3D SOFTWARE DOCUMENTATION AND EXECUTION... 5

3. FANS-3D CODE PARALLELIZATION ... 7

4. COMPUTER PLATFORMS, COMPILATION, AND EXECUTION ... 9

5. FANS-3D DATA EXPORT .. 11

6. EXAMPLE CASE 1 DDG 51 SHIP AND P4876 PROPELLER WASH STUDY 13

7. EXAMPLE CASE 2 TUGBOAT AND DUCTED PROPELLER WASH STUDY 21

REFERENCES .. 28

APPENDICES

A: STRUCTURE OF THE BOUNDARY CONDITION INPUT ...A-1
B: COSMIC INPUT FILE FOR DDG-51 AND P4876 PROPELLER WASH STUDYB-1
C: COSMIC INPUT FILE FOR TUGBOAT AND DUCTED-PROPELLER WASH STUDY ...C-1

Figures

1. Finite analytic function associated with a node placed a (x,y) = (-1,0), for an element in
(x,y) ∈ [-1,1]× [-1,1], for different flow conditions ... 2

2. Convergence curves for verification studies of the finite analytic functions as
(a) interpolants, and as (b), (c), (d) a collocation discretization procedure 3

3. Multiple block structured grid showing N = 7 blocks, which are to be distributed among
P ≤ 7 processes .. 7

1

n n =1

  

1. INTRODUCTION

This user’s guide details the FANS-3D code model and the procedure of execution of the model.
This guide was developed in support of Environmental Security Technology Certification Program
(ESTEP) Project ER-201-031.

Dr. Hamn-Ching Chen and his students and collaborators developed the FANS-3D code over the
past 25 years. Programmers use this general-purpose computational fluid dynamics (CFD) code for
solving the Navier–Stokes equations governing laminar and turbulent flows in body-fitted curvilinear
grids. The code employs multi-block overset (chimera) grids, including fully matched, arbitrarily
embedded, and/or overlapping grids to facilitate detailed resolution of unsteady laminar and turbulent
flows around complex geometries involving arbitrary body motions as well as fluid-structure
interactions. Communication between grid components is achieved by Lagrange interpolation at the
fringes. The code is fully coupled with the hole-making and donor-finding algorithm, allowing for the
relative movement of the grid blocks at each time step for time-domain simulation of fluid-
structure interaction problems, including violent free surface motions.

The underlying theory of the local-analytic-based discretization (also known as finite analytic
based discretization) is briefly presented in Section 1.1. A complete description of the formulation,
including the numerical solution of well-established two-dimensional and three-dimensional
benchmarks, is documented in Pontaza, Chen, and Reddy (2005). Additional published work on the
theory of the discretization method is from Chen and Chen (1984), Chen, Patel, and Ju (1990), and
Chen, Bravo, Chen and Xu (1995).

1.1 THEORY AND NUMERICAL ALGORITHM OF FANS CODE

The authors mentioned above developed the finite analytic method for accurate numerical
simulation of the time-dependent incompressible Navier–Stokes equations. To briefly describe the
formulation, consider a two-dimensional domain partitioned into equal-sized non-overlapping
elements, Ωe. We linearized the Navier–Stokes equations in each element and write:

    h




(U0 • ∇)U −
1

∇2U = F −
∂ U

− ∇
Re ∂t h

P = L(U , P) in Ωe, (1)

where ∂h/∂t is a discrete representation of the temporal operator (e.g., a backward Euler
representation) and ∇h is a discrete gradient operator in space. Momentarily treating L(U,P) as
known and constant over the element, we see that the linearized momentum equations are non-
homogeneous advection-diffusion equations.

Treating each of the momentum equations as a transport equation for the associated velocity
component, we use the natural solution of the linearized equation as boundary conditions along the
edges of the square element and solve the associated equations by the method of separation of
variables to obtain local analytic interpolants in terms of unknown neighboring nodal values of the
velocity components. The interpolant may be written as

8 ∑ n n f

U = α U
n =1

+ α L(U , P) in Ωe. (2)

The local analytic interpolants {α }8 , α f are functions of the local velocity field and respond
analytically to local flow conditions. In addition, the interpolants satisfy zeroth and first-order
consistency requirements, and are always positive. These properties ensure that spurious energy

2

modes are non-existent in the scheme, and render it stable at high Reynolds numbers. Plots of one of
the coefficients for different flow conditions in a single element are shown in Figure 1. A more
detailed description of the finite analytic functions is given in Pontaza, Chen, and Reddy (2005) and
Chen and Chen (1984).

Figure 1. Finite analytic function associated with a node placed a
(x,y) = (-1,0), for an element in (x,y) ∈ [-1,1]× [-1,1], for different flow
conditions.

The interpolants satisfy (locally) the linearized momentum equations and a collocation scheme is

adopted to form the discrete equations. In other words, the local analytic functions are only evaluated
at the center of the element to yield coefficients that make up the stencil relating the center value to
its neighbors.

If the pressure field is known a priori, the pressure gradient may be evaluated and a set of discrete
equations for each interior nodded can be written using Equation (2). These equations can be
assembled to yield a banded, unsymmetrical, definite matrix system. When augmented with suitable
boundary conditions, the system can be solved (in an iterative manner for the linearization) to yield
the nodal velocity values in a time-marching procedure.

In general, however, the pressure field is not known a priori and must be computed such that the
velocity field is divergence-free. This task is achieved by projecting the velocity field onto a
divergence-free space through a discrete Poisson equation for the pressure. The discrete
representation of the divergence operator is constructed such that a strong velocity-pressure coupling
is achieved, effectively avoiding spurious pressure solutions for the co-located node arrangement,
where nodal degrees of freedom for velocities and pressure share the same locations. The projection
is directly applied to boundaries as well, so that no artificial boundary conditions for the pressure are
necessary. Thus, pressure is consistently computed at the boundaries.

3

The momentum and discrete pressure Poisson equation are solved sequentially in an iterative
manner. Pontaza, Chen, and Reddy (2005) showed the method to be second-order accurate in
velocities and pressure. Convergence properties of the method are illustrated in Figure 2. When
Equation (2) is used as an interpolant, the interpolation is fourth-order accurate, as shown in Figure
2(a). When Equation (2) is used as a collocation discretization procedure, the error decays at a
second-order rate, as shown in Figures 2(b) and 2(c) for linear and nonlinear equations. Figure 2(d)
shows second-order accuracy in velocities and pressures, indicating good velocity pressure coupling
by implementing the segregated solution approach.

In practical implementations, we seldom encounter square domains. The general procedure
consists of constructing the local analytic interpolants in a mapped space. Using this approach, we
can handle skewed or curvilinear elements with a unified approach. The method has proven robust in
the presence of severe mesh skews and high aspect ratio cells (Pontaza, Chen, and Reddy, 2005).

Figure 2. Convergence curves for verification studies of the finite analytic functions
as (a) interpolants, and as (b), (c), (d) a collocation discretization procedure.

For time-accurate solutions, the time derivative is represented here by second-order accurate

truncated expansions in time domain. Specifically, the time integration scheme corresponds to the
generalized α-method family of time integrators. The family is generated by varying a single free-
integrator parameter, ρ, for high-frequency damping. Unresolved high frequencies (due to the choice
of the time step size) are damped out according to the value of ρ. The choice ρ = 1.0, corresponds to
the trapezoidal rule, which is known to have no damping for high-frequency modes that may excite
odd–even mode oscillations. High-frequency damping is allowed by decreasing the value of ρ.

4

Additional documentation on this particular family of time integrators is given by Chung and Hulbert
(1993) and by Dettmer and Peric (2003). The discrete pressure gradient operator is represented using
standard second-order accurate finite differences in each spatial direction.

Extension to the three-dimensional case is straightforward and achieved by superimposing two-
dimensional local analytic solutions, such that the three-dimensional equations are satisfied locally.
Details of the derivation were first presented by Chen, Patel and Ju (1990) and Chen, Bravo, Chen,
and Xu (1995), and are also outlined by Pontaza, Chen, and Reddy (2005). The resulting stencil
relates one nodal unknown to its 19 neighbors, and is thus a 19-point finite analytic stencil.

For turbulent flows modeled through the numerical solution of the Reynolds-averaged Navier–
Stokes (RANS) equations, see Equations (5) through (11) provided by Wang and Chen (2016) in
the technical report published by Space and Naval Warfare Systems Center (SSC Pacific). In the
two-layer k-ε model, the k-ε model is patched together with a k-l model used in the near-wall region.
Thus, the near-wall region is computed directly and adequate grid resolution must be used there.
Additional details can be found in Chen and Patel (1988).

The discretization procedure for the turbulent transport equations is exactly the same used for the
momentum equations described earlier, as these equations can always be written in the standard form
given by Equation (13). This standard is certainly a major advantage of the formulation, as no special
treatment is needed for the turbulence transport equations.

5

2. FANS-3D SOFTWARE DOCUMENTATION AND EXECUTION

In this current study, the FANS-3D code was employed for the propeller wash simulations of both
DDG 51 ship and tugboat cases as described in previous sections. The computer code executables,
numerical grids, input files, simulation results, and animation movies for all seven propeller wash
scenarios were delivered to Dr. Pei-Fang Wang from SSC Pacific. The deliverables are organized in
seven tar (tape archive) files as follows:

1. ddg51_5kt_33ft.tar.gz: DDG 51 ship at 5 kts and 33 ft water depth
2. ddg51_5kt_38ft.tar.gz: DDG 51 ship at 5 kts and 38 ft water depth
3. ddg51_10kt_33ft.tar.gz: DDG 51 ship at 10 kts and 33 ft water depth
4. ddg51_10kt_38ft.tar.gz: DDG 51 ship at 10 kts and 33 ft water depth
5. tugboat_case1.tar.gz: tugboat scenario 1 with propeller blowing to open water
6. tugboat_case2.tar.gz: tugboat scenario 2 with propeller blowing to pier wall
7. tugboat_case3.tar.gz: tugboat scenario 3 with propeller blowing parallel to pier wall

Each folder contains the following set of files that must be written by the users:

1. gridgen0.dat (or plot3d0.dat), this file contains the multi-block numerical grids in
either GRIDGEN or PLOT3D format. The file format is given later.

2. inputblk.dat, this file assigns a name to each of the computational grid blocks and
contains information regarding their size (both active and phantom grids are listed).

3. inputmpd.dat, this file contains the multi-processor distribution information.
4. input.dat, this is the control program file, where the user may specify, for example, the

Reynolds number, the time step size, relaxation factors, etc.
5. overset.in, this is the control file for the hole-cutting and donor-searching program
6. *.bcs, files containing the boundary condition input for each block in each process, a total

of “number of processes” files must be present.

In all FANS-3D simulations, it is necessary to construct first the numerical grid for each test case.
The name of the grid file is specified in inputblk.dat. The grid file may be written in either
GRIDGEN or PLOT3D format as follows:

(A) GRIDGEN format (iformat = 1)

! read the volume grid from gridgen0.dat file (specified in inputblk.dat)
! each block has size nxi_GL, net_GL, nzt_GL

do nbk_GL=1,nblocks_GL + nphantoms_GL
ijkst_GL=ijkpos_GL(nbk_GL) + 1
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
read(10,*) nbk_dum,nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk,GL)
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &

(yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
(zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL)

end do

(B) PLOT3D format (iformat = 2)

! read the volume grid from plot3d0.dat file (specified in inputblk.dat)
! each block has size nxi_GL, net_GL, nzt_GL

6

read(10,*) ndum
do nbk_GL=1,nblocks_GL + nphantoms_GL
read(10,*) nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)
end do
do nbk_GL=1,nblocks_GL + nphantoms_GL
ijkst_GL=ijkpos_GL(nbk_GL) + 1
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &

(yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
(zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL)

end do

As the simulation progresses and the grids move and rotate with respect to one another, the grid
motions (e.g., ship motion and propeller rotation) are updated based on the reference configuration in
gridgen0.dat (or plot3d0.dat). In the above pseudo-code statements nblocks_GL and
nphantoms_GL are the number of active (computational) blocks and the number of phantom
blocks, respectively; which were already read from inputblk.dat. More details of the input files
and their contents will be given in the following sections, in the context of the example problems.

7

3. FANS-3D CODE PARALLELIZATION

The FANS-3D code is a general-purpose CFD code allowing for the numerical solution of the
Navier–Stokes equations governing incompressible flow in body-fitted grids. The code allows for
multi-block overset (chimera) grids, which can be fully matched, arbitrarily embedded, and/or
overlapping with each other. Communication between grid components is achieved by Lagrange
interpolation at the fringes. The code is fully coupled with the hole-making and donor-finding
algorithm, allowing for the relative movement of the grid blocks at each time step for time-domain
simulation of fluid-structure interaction problems including violent free surface motions.

The FANS-3D code is written in Fortran 90/95 standard with dynamic memory allocation and is
fully parallelized using Message-Passing-Interface (MPI) bindings. It employs a general data
management strategy that allows single or arbitrarily large groups of consecutive or non-consecutive
blocks to be assigned to different processors. This strategy enables us to achieve optimal load
balancing when dealing with multi-block structured grids with vastly different dimensions among
different grid blocks as shown below.

Given a multiple block structured grid with N blocks of different sizes, we would like to distribute
the workload amongst P processes. For example, consider the case N = 7, as shown in Figure 3.

Figure 3. Multiple block structured grid showing N = 7 blocks, which
are to be distributed among P ≤ 7 processes.

The minimum number of processes allowed in the parallelized code is P = 2, and the maximum for

this case would be P = 7, which would imply that each block is assigned to a single process. Having
observed the above constraints, the code allows the user to distribute the load in any other manner.
Below are some examples (by no means exhaustive) of valid load distributions, where we fix the
number of available processors:

Example #1:
P=2
P1:{1,2,3} and P2:{4,5,6,7}

In this example, process 1 is assigned blocks {1,2,3} and process 2 is assigned blocks {4,5,6,7}.

8

Example #2:
P=3
P1:{1,4}, P2:{2,5}, and P3:{3,6,7}

In this example, non-consecutive numbered blocks are assigned to different processors. This is
particularly advantageous, as the user need not order the blocks in any particular manner during and
after the grid generation process.

The load distributions should be such that the load is almost the same amongst all processes. This
is not a requirement in the code, but is recommended to make efficient use of the computational
resources.

The information on load distribution is read in through the file inputmpd.dat, and is as follows
for example #1 and #2, respectively.

Example #1:
3 4 % blocks per process for each process

1 2 3 % global block numbers for each process
4 5 6 7

Example #2:
2 2 3 % blocks per process for each process

1 4 % global block numbers for each process
2 5
3 6 7

The above input is all that is needed by the code for it to understand and schedule the loads among
the different processes. In addition, each processes expects one boundary condition file, containing
boundary condition information for all the blocks it was assigned. The format of the boundary
condition file is discussed in Appendix A.

9

4. COMPUTER PLATFORMS, COMPILATION, AND EXECUTION

The FANS-3D code was tested on platforms with Linux® as the operating system, with Intel®

Fortran 90/95 compilers and Message Passing Interface Chameleon (MPICH) implementations.
Specifically, in the Dell® clusters at Texas A&M Civil Engineering Department, IBM® clusters at
Texas A&M Supercomputing Facility, Linux® clusters at U.S. Army Research Laboratory (ARL)
High Performance Computing cluster, and the Cray XE6m (Copper) cluster at Department of
Defense High Performance Computing Modernization Program (DoD HPCMP). The FANS code and
executable can be installed on a wide variety of Unix and Linux® clusters with Message-Passing-
Interface (MPI) libraries for parallel computations using multiple processors. For simplicity, we will
summarize only the procedures to compile and execute the code on the Copper cluster at DoD Open
Research Systems in the following sections.

The FANS-3D code consists of 18 Fortran 90 files, each with a specific function. A list of the files
accompanied with a brief description is as follows:

• main.f90 is the master control file from which all other subroutines are called. The program
follows a modular-style programming by making use of Fortran 90 modules, which are invoked
and used in this file.

• global.f90 is where all global variables are defined.
• sflow.f90 defines flow parameter variables such as the turbulence model coefficients.
• sinput.f90 reads-in all the program control inputs, allocates memory, and distributes the load

among processors.
• geocoeff.f90 computes and stores the geometric coefficients associated with a well-defined

transformation.
• facoeff.f90 computes the 19-point stencil finite-analytic coefficients.
• moment.f90 solves the moment equations for the velocity components.
• pressub.f90 computes the 19-point stencil for the pressure Poisson equation, assembles and

solves the associated system of equations.
• turbsub.f90 solves the turbulence model equations.
• sources.f90 computes the source functions for the governing equations.
• boundary.f90 computes and assigns boundary conditions
• snorms.f90 computes various metrics, such as residual norms, outer iteration norms, time

stepping norms, to establish convergence of the iterative solution procedure and time marching
procedure.

• gmotions.f90 grid motions file to control and impose how the grids move relative to each
other and compute the grid velocities.

• datamgmt.f90 contains the subroutines for the multi-block data management.
• graphics.f90 generates output files for visualization.
• sclean.f90 deallocates memory.
• overset.f90 grid interpolation program for overset grids.
• dwssub.f90 computes directional short-crested waves.

10

The code is to be compiled by linking the Fortran 90/95 compiler with a MPI library or by using a
Fortran 90/95 MPI wrapper (e.g., mpiifort, mpif90 or ftn). When using MPI as a library, the
following is used to compile the code on DoD HPCMP Copper cluster:
prompt%> module swap PrgEnv-pgi PrgEnv-intel
prompt%> ftn –openmp –O2 –o fans3d.exe {list of Fortran files}

The code is simply run by typing the following at the prompt or giving the following command in
the batch-job file (e.g., for PBS or LSF queue managers):
prompt%> aprun –n {number of processors} ./fans3d.exe > fans3d.out

Note that the simulation results for all seven propeller wash scenarios described earlier can be
reproduced by uploading the corresponding tar files to DoD HPCMP Copper cluster and executing
the following four commands (using tugboat_case3.tar.gz as an example):

1.0 Unzip *.tar.gz file. The code executable and input data files will be saved in a newly
created folder tugboat_case3

Prompt%> tar xzf tugboat_case3.tar.gz

2.0 Change programming environment from the default 'pgi' to 'intel' Fortran

Prompt%> module swap PrgEnv-pgi PrgEnv-intel

3.0 Switch to working directory

Prompt%> cd tugboat_case3

4.0 Submit job to the batch queue (with appropriate project number in the job control

file)

Prompt%> qsub submit_pbs

11

5. FANS-3D DATA EXPORT

On FANS-3D output, the following files are written out to visualize the solution using the
commercial flow visualization software such as FieldView, Tecplot®, or MATLAB®:

1. force.dat, x, y, and z forces exerted on the propeller blades, ship hull surface, and/or other
solid surfaces.

2. motion.dat, time history of six-degree-of-freedom ship motion
3. overset.out, output file containing grid interpolation information.
4. fans3d.out, output file for monitoring of convergence history.
5. restart_xyz.dat, instantaneous grid restart file for continuation run
6. restart_q{number}.dat, instantaneous flow field restart file for continuation run.
7. movie_x{number}.dat, three-dimensional output to visualize the entire grid at time step

{number}.
8. movie_q(number}.dat, three-dimensional output to visualize instantaneous velocity and

pressure fields at time step {number}.

The force.dat contains ASCII data files in column format. It can be read directly into Tecplot®

or MATLAB® or other compatible software for 2D line plots of the (x, y, z) forces and moments
(with respect to the gravity or center of rotation). For a problem involving six degrees-of-freedom
(heave, sway, surge, pitch, yaw, and roll) motions under hydrodynamic loadings, such as wave and
current, the code will also output the motion histories in motion.dat file, which is also in ASCII
column data format.

The overset.out is an ASCII file containing grid interpolation information such as
interpolation stencils and interpolation coefficients for the multi-block overset grid system. The
fans3d.out is also in ASCII format. It is used to monitor the convergence histories of all flow
variables. These files are useful for debugging of the input data files.

The restart files restart_xyz.dat and restart_q*.dat are unformatted files which are
used internally by the FANS-3D code for continuation runs. The code will automatically read in the
restart files if the users wish to continue a previous simulation for a longer duration.

The movie_x*.dat and movie_q*.dat output files were written in standard PLOT3D format
as follows:
! PLOT3D grid output (movie_x{number}.dat) for flow visualization
write(54) nblocks_GL
write(54)
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL)

do nbk_GL=1,nblocks_GL

ijkst=ijkpos_GL(nbk_GL)+1
ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
write(54)(xp(ijk),ijk=ijkst,ijknd), &

(yp(ijk),ijk=ijkst,ijknd), &
(zp(ijk),ijk=ijkst,ijknd), &
(iblank(ijk),ijk=ijkst,ijknd)

end do

12

! PLOT3D flow output (movie_q{number}.dat) for flow visualization
write(55) nblocks_GL
write(55)
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL)

do nbk_GL=1,nblocks_GL

ijkst=ijkpos_GL(nbk_GL)+1
ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
write(55) alpha,fsmach,reynolds,time
write(55)(rho(ijk),ijk=ijkst,ijknd), &

(rho(ijk)*u(ijk),ijk=ijkst,ijknd), &
(rho(ijk)*v(ijk),ijk=ijkst,ijknd), &
(rho(ijk)*w(ijk),ijk=ijkst,ijknd), &
(pr(ijk),ijk=ijkst,ijknd)

end do

The PLOT3D grid output files (movie_x*.dat) contain the coordinates (x, y, z) and blanking
information (iblank) for every grid point in the multi-block overset grid system. The corresponding
flow variables, including density, momentum, and pressure (ρ, ρu, ρv, ρw, p) are stored in PLOT3D
output files (movie_q*.dat). These data files can be imported directly into the commercial
software FieldView for flow visualization and saved in animation video files (in avi format). The
movie data files can also be imported into the commercial Tecplot® software using the ‘PLOT3D
Loader’ option. Typical results include the velocity contours, velocity vector plots, and pressure
contours. Other quantities such as shear stresses and vorticities can also be calculated using the user-
defined functions in FieldView and Tecplot®. The users may consult the FieldView and Tec)Plot®

manuals for additional information on the post-processing of PLOT3D data.

13

6. EXAMPLE CASE 1
DDG 51 SHIP AND P4876 PROPELLER WASH STUDY

In this section, we present an example test case for the DDG 51 propeller wash study. The problem
demonstrates the many capabilities of the FANS-3D formulation and implementation, which include:
embedded and non-matching grids, relative motion between grid components, load distribution
among different processes, high Reynolds number flows, and robustness in the presence of high
aspect ratio skewed meshes.

Chen and Wang (2016) show the computational domain and multi-block overset grids for this case
in Figure 2 of the SSC Pacific technical report. The length of the DDG 51 ship is 142.04 m (466 ft)
and the designed draft is 9.4488 m. The diameter of the twin-screw P4876 propellers is 5.4864 m (18
ft), and the center of propeller axis is located at 5.7912 m below the mean water level. We
performed a calculation for a shallow water case with water depth H = 10.0584 m (33 ft). Under this
condition, the underkeel clearance is only 0.6096 m (2 ft) beneath the sonar dome and the minimum
gap between the propeller tip and the sea bottom is 1.524 m (5 ft). The twin-screw propellers are
rotating at 51 rpm when the ship speed is 10 kts.

A commercial grid generation software Gridgen® was used to generate the overset grid system for
the DDG 51 ship and the five-blade P4876 propeller. As noted earlier, the composite grid consists of
15 computational blocks and 7 phantom grid blocks with 2,369,549 grid points covering half of the
solution domain. There are five blocks for five propeller blades, three blocks for propeller shaft and
near-wake regions, one block for the ship, and six blocks for the far field. The 15 blocks are shown in
different colors in Figure 2 of the SSC Pacific technical report. In addition, seven phantom grids (not
shown) are needed to perform the hole-cutting adequately. The end-user does not need to be
concerned with phantom grids, as they do not enter into the actual computations, and hence do not
need to be listed in the multi-processor input file or the boundary condition input files.

In this particular run, the five propeller blades, the shaft block, are assigned to three processes, the
ship is assigned to the fourth process, the propeller near-wake region is divided into two blocks and
assigned to two separate processes, and the far-field grids are decomposed into six blocks and
assigned to six different processes. For this example, the file inputblk.dat contains the following
data:
! Geometry input file (second line, no more than 40 characters)
gridgen0.dat

1 ! 1: Gridgen format, 2: Plot3d format
15 7 ! nblocks + nphantom (including phantom grid)

62 41 41
propeller01

62 41 41

propeller02

62 41 41

propeller03

62 41 41

propeller04

62 41 41

14

propeller05

38 21 122
shaft01

28 32 122

shaft02

65 21 122
shaft03

121 35 41
ship01

34 81 77

basin01

34 81 77
basin02

34 81 77
basin03

152 65 21
ocean01

77 65 42

ocean02

77 65 42
ocean03

3 41 61
phantom01

3 41 61
phantom02

3 41 61
phantom03

3 41 61

phantom04

3 41 61
phantom05

2 2 2
phantom06

2 2 2
phantom07

This input specifies that the name of the composite grid file is gridgen0.dat, and it is in
Gridgen® format. There are 15 computational blocks and 7 phantom blocks (22 blocks total). Then,
for each of the 15 computational blocks, we must specify their (i, j, k) sizes and assign to a name to

15

them that must be consistent with the names used in the overset.in input for the hole-cutting and
donor-search algorithm.

The file overset.in contains the input necessary for the hole-cutting and donor-search program.
The format of this file is not discussed here, and the interested reader may consult the Chimera
Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file
used for this case is shown in Appendix B.

The file inputmpd.dat contains the information necessary for the code to distribute the load
among the different processes, as described in the previous section. For this particular case, the file
has the following information:

% number of blocks per process, for each process
2 2 2 1 1 1 1 1 1 1 1 1

1 2 % global block number per process, for each process
3 4
5 6
7
8
9

10
11
12
13
14
15

Note that only active (computational) blocks are listed in this input, i.e., phantom blocks do not
need to be distributed as they do not represent any computational load. In this particular case, we
assign propeller blades 1 and 2 (propeller01, propeller02) to first process, blades 3 and 4
(propeller03, propeller04) to the second process, and blade 5 and the first shaft block
(propeller05, shaft01) to the third process. The remaining nine computational blocks (two
shaft blocks, one ship block, three basin blocks, and three ocean blocks) are assigned to processes
#4–#12 with only one single block in each process.

16

The input.dat file is the main control input file and is as follows:

1 % MTURB flag for laminar (0) or turbulent (1) flow
1 % INCOMP flag for incompressible (1) or compressible (0) flow
0 % IFSURF flag for (1) free surface flow (0) no free surface
2.1868E7 % RE Reynolds number
0.04 % TAU time step size
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0
1.0E-08 % TOL1 L2 vel tol to stop time stepping
1.0E-03 % TOL2 L1 res tol to stop outer iterations
1 % ITIMEST starting time step to compute
12500 % ITIMEND ending time step to compute
1 % MAXIT_LS max allowable ADI sweeps for level-set function
3 % MAXITER max allowable outer iterations
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP sweeps
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps
6 % MAXIT_DIVU max projections of velocity field onto div-free space
0.60 % RFU relaxation factor for velocities (due to nonlinearity)
0.30 % RFP relaxation factor for pressure (due to u-p decoupling)
0.010 % RFKE relaxation factor for turbulent k.e. and dissipation
0.5 % RFPHI relaxation factor for level-set function
0 % ITIME_BCS flag to indicate (1) time dependent bcs

fans.grd % GEOFILE geometry input file (HCC: not used in this version)
ddg.bcs % BCSFILE boundary conditions input file

1 % IACT_PLOT flag to activate (1) visualization output
100 % ISKP_PLOT time intervals for vis and restart

1 % IACT_ANIME flag to activate (1) animation output
0 % IBGN_ANIME time step number at which animation begins
4 % ISKP_ANIME multiples at which sol is written out for animation

0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn

-5.0 % UMIN
5.0 % UMAX

-10. % PMIN
10. % PMAX
0.050 % TKEMAX
0.02 % TVISMAX

-0.5 % PHILSMIN
0.5 % PHILSMAX

1.0 % FROUDE Froude number (gravity acts in negative z-direction)
0.0020 % EWIDE representative grid size

0.0 % RFG geometry distortion relaxation parameter

0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities
-1.103143 0. 0. % UBODY, VBODY, WBODY body velocities (ship speed)

1 % IMOVE (0) fixed grid, (1) moving grid

0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)

17

1 12 % NPROP (#propellers), NMVPROP (max #blocks moving with propeller)

1 1 % IPROP (propeller ID), IROT (1: clockwise, -1: counter-clockwise)
12 6 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID)
1 2 3 4 5 6 7 16 17 18 19 20 % moving propeller block ID (propeller #1)

Most of the entries of the input file are self-descriptive, but we further elaborate on each of them in
the following:

• MTURB is a flag to specify whether to numerically solve the Navier–Stokes equations directly
(laminar flow or DNS) or to solve the Reynolds-averaged Navier–Stokes equations with the near-
wall two-layer k-epsilon model.

• INCOMP is a flag to specify whether flow is incompressible or compressible.
• IFSURF is a flag to specify whether it is necessary to update free surface. For this case, the free

surface effect is ignored.
• RE is the Reynolds number. For this case, it is based on the propeller diameter and the propeller

rotating speed.
• TAU is the value for the time step size. In this case the angular velocity of the propeller is such

that one revolution is completed in one unit of time.
• AMP_RHO is the high-frequency damping parameter for the second-order accurate family of time

integrators, as described in the formulation section.
• TOL1 is tolerance of L2 velocity-norm to stop time stepping when the steady state is reached.
• TOL2 is tolerance of L1 velocity-residuals to stop outer iterations within each time step.
• ITEMEST is the starting time step of the computation. A value of 1 is specified for new runs. If

the value is greater than 1, the code will read-in restart files from previous runs and continue the
computation to the new ending time step.

• ITEMEND is the ending time step the user wishes to compute, for the previously specified value
of the time step size.

• MAXIT_LS is the maximum allowable Alternating-Directional-Implicit (ADI) sweeps for the
level-set function.

• MAXITER is the maximum allowable number of outer iterations on a given time step. For time
accurate solutions this value must be greater than one, to allow for good velocity-pressure
coupling and hence time accuracy of the flow field.

• MAXSWP_U, MAXSWP_P, MAXSWP_KE is the maximum allowable number of inner iterations
on a given outer iteration, to iteratively solve the momentum, pressure, and turbulence transport
equations, respectively.

• MAXIT_DIVU is the maximum allowable number of projections of the velocity field onto a
divergence-free space on a given outer iteration.

• RFU is the relaxation factor for the velocity field. The optimal values lie in the range [0.4, 1.0],
although lower values may be needed for complex problems.

• RFP is the relaxation factor for the pressure field. Also, in accordance with well-established
practices, we find that optimal values lie in the range [0.1, 0.8], although higher values may also
be used and lower values may also be needed.

• RFKE is the relaxation factors for the turbulent transport variables. We find that typically optimal
values lie in the range [0.01, 0.5]. Although lower values may be needed.

18

• RFPHI is the relaxation factors for the level-set function. We find that typically optimal values
lie in the range [0.2, 1.0].

• BCSFILE is a string specifying the name of the family of boundary conditions files. The family
must have “number of processors” members. In this particular case, since there are 12 processes
involved, we must have 12 files (ddg00.bcs ~ ddg11.bcs) ready.

• GEOFILE is a string specifying the name of the grid file. It is not needed in this version since the
grid name has already been specified in inputmpd.dat.

• IACT_PLOT, ISKP_PLOT are control flags to activate the output and to control how frequently
the output files are updated. The output is in PLOT3D format for visualization using commercial
software such as FieldView, Tecplot® or other compatible flow visualization tools.

• IACT_ANIME, IBGN_ANIME, ISKP_ANIME are control flags to write out a movie, which is
to be processed by the software FieldView. For this case, the movie corresponds to grid
coordinates and grid blanking values, density, velocity vectors, and pressure on every point in the
flow field.

• ISOL_PR is a flag for pressure solvers. The pressure can be solved using either tridiagonal
matrix algorithm (TDMA-ADI) or strongly-implicit method (SIP-7pt).

• UMIN, UMAX, PMIN, PMAX, TKEMAX, TVISMAX are limiters on the velocity, pressure,
and turbulent transport variables. These are set to high values, and are just a safeguard against a
poor initial guess, which may cause the fields to oscillate violently in the initial stages of the
iterations.

• PHILSMIN, PHILSMAX are limiters for the level-set function. They are set to high values, and
are just a safeguard against a poor initial guess, which may cause the fields to oscillate violently
in the initial stages of the iterations.

• EWIDE is a representative grid size used specifying the transitional zone thickness adjacent to
the air-water interface.

• RFG is a geometry distortion parameter. The default value is 1 for orthogonal or nearly-
orthogonal grids, but may be reduced to improve convergence for highly-skewed grids. The
relaxation parameter does not affect accuracy for orthogonal grids and has negligible effects for
nearly orthogonal grids.

• UINF, VINF, WINF are the values of (x,y,z) components of the free-stream velocity. For this
case, the ambient current velocity is zero.

• UBODY, VBODY, WBODY are the values of (x,y,z) components of the body velocity (i.e., ship
speed) normalized by the characteristic velocity nD, when n is the propeller rotating speed and D
is the propeller diameter. For this case, the ship is traveling in negative-x direction with a
normalized speed equals to the propeller advance coefficient J=V/nD.

• IMOVE is a flag for grid motion. A value of 0 is specified for fixed grid system. The value is set
to 1 for moving grid in this case since the ship is moving at constant forward speed and the
propeller is also turning.

• NBODY, NFBODY, MBLK are the number of body for force/moment integration, maximum
number of surfaces for force/integration, and the maximum number of blocks with six-degree-of-
freedom motions. These parameters are not needed for the propeller wash study considered in the
present study.

• NPROP is the number of propellers. A value of 1 is specified for single-screw propeller. The
value is set to 2 for twin-screw propellers. In this case, we set NPROP = 1 since the computation
was performed for only one-half of the solution domain. A value of 2 should be specified for
fully domain calculations involving twin-screw propellers.

19

• NMVPROP is the maximum number of grid blocks rotating with any propellers.
• IPROP is the propeller ID. For twin-screw propellers, the propeller rotating directions and the

computational grid blocks associated with each propeller can be defined separately.
• IROT is a flag specifying the propeller rotating direction. A value of 1 indicates that the propeller

is rotating in clockwise direction. For counter-rotating twin-screw propellers, it is convenient to
straightforward to specify IROT = −1 for the second propeller rotating in counter-clockwise
direction. Also, it is convenient to change the signs of IROT if the same propellers are under the
crash-astern condition.

• IMVPROP is the total number of grid blocks (including phantom grids) rotating with a given
propeller. In this case, there are 5 propeller blade blocks, 2 shaft/hub blocks, and 5 phantom
blocks (one for each propeller blade) rotating with each propeller. The identification numbers of
the rotating grid blocks are specified in the next line.

• ISHAFT is the block identification number of the shaft grid block. This allows the users to
specify the center or rotation for each propeller.

Since the workload is distributed to 12 processors for parallel execution, it is necessary to write 12
separate boundary condition files (ddg00.bcs~ddg11.bcs) which are included in the
ddg51_10kt_33ft.tar.gz for the present case. The boundary condition files follow the format
outlined in Appendix A. Below we discuss, as an example, the boundary conditions specified for one
of the propeller blades.

propeller01 % global block #1

1 6 62 41 41 0 % mb,nfabcs,ni,nj,nk

2 % No. of two-layer regions
1 1 3 1 62 1 21 1 41 % nreg,iedy,idist,(i,j,k)
2 2 0 1 62 20 41 1 41 % nreg,iedy,idist,(i,j,k)

1 % No. of free surface regions
1 3 1 62 1 41 1 41 % nLSreg, nLS, (i,j,k)

Face #1
% (u,v,w,p,k,epsilon,phiLS)

1 41 1 41 % (i,j,k) range

2 1 % Face #2
4 4 4 4 4 4 4
1 41 1 41
3 1 % Face #3
9 9 9 2 1 3 3
1 62 1 41
4 1 % Face #4
4 4 4 4 4 4 4
1 62 1 41
5 1 % Face #5
9 9 9 2 1 3 3
1 62 1 41
6 1 % Face #6
11 11 11 11 11 11 11
1 62 1 41
14 2 64 41 % nbk_GL,i,j,k for pressure datum

1 1 %
4 4 4 4 4 4 4

20

The first line lists the blockname for block identification. The second line specifies that this is
block #1 for the given process, it has six faces with boundary conditions, and the (i, j, k) dimensions
of the block are 62 × 41 × 41. The fourth line indicates that two regions need to be identified to apply
the near-wall two-layer k-epsilon turbulence model. The following two lines specify the two-layer
model types (iedy, near-wall or outer), the identification (idist) of each wall boundary, and the
(i, j, k) range of the specific region. The eighth line indicates that only one region exists for the level-
set function (phiLS) specification. The free surface solver option (nLS) and the (i, j, k) range for that
region are specified in the next line. These free surface boundary conditions are not used in this case
since the free surface effect is neglected with the flag IFSURF = 0.

Then, for each face, we read the face number and the number of sections in the face. For each
section on a given face, we read 7 boundary conditions associated with each of the 7 field variables:
(u, v, w, p, k, ε, phiLS), and the surface limits on that face.

Faces #1 and #2 (i-min and i-max, respectively) of the blade block receive interpolation
information, and thus all the field variables have boundary condition #4. Face #3 (j-min) is the solid-
surface of the blade, for which (u, v, w) are assigned the grid velocity due to the rotation of the blade,
p is linearly extrapolated, turbulent kinetic energy is zero on the wall, and the Neumann boundary
conditions are used for turbulent energy dissipation and level-set function. Face #4 (j-max) receives
interpolation information and all field variables have boundary condition #4. Face #5 (k-min) is part
of the shaft’s solid-surface and its boundary conditions are identical to those on face #3 for a solid-
wall. Face #6 (k-max) is a branch cut around the blade tip where the flow variables are updated by
averaging the adjacent nodal values on either side of the branch cut plane.

For this example run, the flow field is initialized with calm water condition and the propeller is
allowed to rotate for 100 revolutions. The ship travels at a constant forward speed of 10 kts and the
propeller rotating speed is 51 rpm (0.85 rps). The flow conditions correspond to an advance
coefficient J=1.103 and a Reynolds number of 2.1868 × 107 based on the propeller diameter. This
corresponds to a Reynolds number of 6.245 × 108 based on the ship length and ship speed. The
RANS equations are solved with the near-wall two-layer k-ε turbulence model.

As noted earlier, the PLOT3D grid output files (movie_x*.dat) contain (x, y, z, iblank) for the
multi-block overset grids, while the PLOT3D flow output files (movie_q*.dat) contain the flow
variables (ρ, ρu, ρv, ρw, p). These data files can be imported directly into FieldView for flow
visualization and post-processing. Typical results include the velocity contours, velocity vector plots,
and pressure contours as shown in Figures 2 through 7. Other derived quantities such as shear
stresses and vorticities can also be calculated using the user-defined functions in FieldView. Figure 8
shows the shear stresses on the sea bed which can be readily obtained by evaluating the velocity
gradients adjacent to the bottom boundary using the following formula:

τ = µ ∂q
= µ ∆q

, q= u2 + v2 + w2 , (14)

∂n ∆n wall

where q is the velocity magnitude, µ is the dynamic viscosity of the seawater, and ∆n is the normal
distance from the wall. The same shear stress data can also be plotted using another commercial code
MATLAB®, as shown in Figure 9.

21

7. EXAMPLE CASE 2
TUGBOAT AND DUCTED PROPELLER WASH STUDY

In the second test case, we consider a tugboat boat with two ducted propellers under bollard-pull
condition (i.e., zero forward speed), as shown in Figure 11 of the SSC Pacific technical report and
Figures 1 and 2 in this document. The composite grid was generated by the commercial grid
generation software Gridgen®. It consists of 47 computational blocks and 9 phantom grid blocks,
with 7,070,832 total grid points. There are four blades for each propeller, and each blade is divided
into two overlapping computational blocks. Each ducted propeller assembly is surrounded by five
computational blocks covering the upstream, downstream, inner, and outer regions between the
propeller shaft and the shroud. In addition, two near-wake cylindrical grid blocks (one for each
propeller) are added to provide accurate resolution of the propeller wake flows. The tugboat is
surrounded by a single boundary-fitted grid block, and the far field is covered by 18 overlapping
rectangular grid points. A near-wall spacing of 10-6 ft was used near the sea bottom to provide
accurate resolution of the turbulent boundary layer flow. This allows us to calculate the shear stresses
on the seabed directly without relying on the wall-function approximations.

The composite grid load is now distributed among 35 processes and we consider the bollard-pull
(zero tugboat speed) condition with the ducted propellers blowing parallel to a pier wall. The file
inputblk.dat contains the following data:
! Geometry input file (second line, no more than 40 characters)
gridgen0.dat
1 ! 1: Gridgen format, 2: Plot3d format
47 9 ! nblock + nphantom0 (including phantom0 grid)

62 35 42

propeller01a

62 35 42
propeller02a

62 35 42

propeller03a

62 35 42

propeller04a

29 4 5
tip01a

29 4 5
tip02a

29 4 5
tip03a

29 4 5
tip04a

21 57 122

duct01a

66 24 122

22

duct02a

53 35
duct03a

122

53 23
duct04a

122

21 79
duct05a

122

40 41
wake01a

122

62 35 42
propeller01b

62 35 42

propeller02b

62 35 42
propeller03b

62 35 42

propeller04b

29 4 5
tip01b

29 4 5

tip02b

29 4 5
tip03b

29 4 5

tip04b

21 57 122
duct01b

66 24 122

duct02b

53 35 122
duct03b

53 23 122

duct04b

21 79 122
duct05b

40 41 122

wake01b

20 116 95

23

ocean01

20 116 95
ocean02

20 116 95
ocean03

20 116 95
ocean04

20 116 95
ocean05

20 116 95
ocean06

20 116 95
ocean07

20 116 95
ocean08

20 116 95
ocean09

20 116 95
ocean10

20 116 95
ocean11

20 116 95
ocean12

20 116 95
ocean13

20 116 95
ocean14

20 116 95
ocean15

16 116 95
ocean16

151 37 33
ocean17

151 37 33
ocean18

107 34 61
barge01

3 31 41

24

phantom01a

3 31 41
phantom02a

3 31 41

phantom03a

3 31 41
phantom04a

3 31 41

phantom01b

3 31 41
phantom02b

3 31 41

phantom03b

3 31 41

phantom04b

2 3 2
phantom05

The file inputmpd.dat contains the information necessary for the code to distribute the load

among the 35 different processes. For this particular case, the file has the following information:

% number of blocks per process, for each process (excluding phantom grids)
4 4 1 1 1 1 1 1 4 4 1

1 5 2 6 % global block number per process, for each process
3 7 4 8
9

10
11
12
13
14
15 19 16 20
17 21 18 22
23
24
25
26
27
28
29
30
31
32
33
34
35

25

36
37
38
39
40
41
42
43
44
45
46
47

Once again, the only active (computational) blocks are listed in this input, i.e., phantom blocks do
not need to be distributed as they do not represent any computational load. In this particular case,
there are 47 actives blocks, including 14 blocks for each ducted propeller assembly, 2 blocks for
propeller near-wakes, 1 block for the tugboat, and 18 blocks for the far field. To balance the
workload for each process, we assign two blade and two tip blocks to a single processor. More
specifically, the first eight computational blocks (#1 though #8) consist of four blade and four tip
grids for the first ducted propeller are assigned to processes #0 (master process) and #1, while the
other eight blade/tip blocks (#15 through #22) for the second ducted propeller are assigned to
processes #8 and #9 as shown in the inputmpd.dat file. The remaining 31 computational blocks
containing the ship, shroud, near-wake, and far-field grids are assigned to 31 different processes. As
noted earlier, the user need not order the blocks in any particular manner during and after the grid
generation process.

The input.dat file (the main control input file) requires only minor modifications, relative to
the DDG 51 ship case. The most notable difference is that there are two co-rotating propellers in the
present full-domain simulation. For each ducted propeller, there are 12 rotating grid blocks (4 blade
surface blocks, 4 blade tip blocks, and 4 phantom grids). It is straightforward to specify the rotating
direction, shaft block ID, and the IDs of rotating grid blocks associated with each propeller in the
following input.dat file.

1 % MTURB turbulence model: (0)laminar (1)k-epsilon (2)LES
1 % INCOMP flag for incompressible (1) or compressible (0) flow
0 % IFSURF flag for free surface flow (1) or no free surface (0)
2.6468E5 % RE Reynolds number (L=1ft, U=1ft/s, T=L/U=1s)
0.04 % TAU time step size
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0
1.0E-08 % TOL1 L2 vel tol to stop time stepping
1.0E-03 % TOL2 L1 res tol to stop outer iterations
1 % ITIMEST starting time step to compute
12500 % ITIMEND ending time step to compute
1 % MAXITER_LS max allowable outer equation for level-set eqn
6 % MAXITER max allowable outer iterations
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP sweeps
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps
2 % MAXIT_DIVU max projections of velocity field onto div-free space
0.4 % RFU relaxation factor for velocities (due to nonlinearity)
0.2 % RFP relaxation factor for pressure (due to u-p decoupling)
0.001 % RFKE relaxation factor for turbulent k.e. and dissipation
0.5 % RFPHI relaxation factor for level set funtion

26

0 % ITIME_BCS flag to indicate (1) time dependent bcs

fans.grd % GEOFILE geometry input file (HCC: not used in this version)
prop.bcs % BCSFILE boundary conditions input file

1 % IACT_PLOT flag to activate (1) visualization output
100 % ISKP_PLOT time intervals for vis and restart

1 % IACT_ANIME flag to activate (1) animation output
0 % IBGN_ANIME time step number at which animation begins
20 % ISKP_ANIME multiples at which sol is written out for animation

0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn

-30. % UMIN
30. % UMAX

-200. % PMIN
200. % PMAX
1.0 % TKEMAX
0.01 % TVISMAX

-30. % PHILSMIN
30. % PHILSMAX

1.0 % FROUDE Froude number (gravity acts in negative z-direction)
0.003 % EWIDE representative grid size

0.0 % RFG geometry distortion relaxation parameter

0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities
0.0 0.0 0.0 % UBODY, VBODY, WBODY body velocities (ship speed)
1 % IMOVE (0) fixed grid, (1) moving grid

0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)

2 12 % NPROP (#propellers), NMVPROP (max #blocks moving with a propeller)

1 1 % IPROP (propeller #1), IROT (1: clockwise, -1: counter-clockwise)
12 10 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID)
1 2 3 4 5 6 7 8 48 49 50 51 % moving propeller block ID (propeller #1)

2 1 % IPROP (propeller #2), IROT (1: clockwise, -1: counter-clockwise)
12 24 % NMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 15
16 17 18 19 20 21 22 52 53 54 55 % moving propeller ID (propeller #2)

The file overset.in needs to be suitably modified for the hole-cutting and donor-search
algorithm, and is provided in Appendix C. New boundary condition files need to be created for the
new tugboat and ducted propeller geometries. In addition, the boundary condition files for the far
field need to be modified slightly to enforce the no-slip boundary conditions on pier walls. All 35
boundary condition files are included in tugboat_case3.tar.gz zipped folder.

For this example run, the flow field is initialized with a calm water condition and the propeller is
allowed to rotate for 500 revolutions under the bollard-pull condition with zero forward speed. The
simulation was performed for 12,500 time steps with a time increment of 0.04 To, where To is a
characteristic time for the propeller to turn one revolution. For simplicity, the characteristic length Lo
was chosen to be 1 ft so the full scale tugboat and propeller grids (in ft) can be used directly without

27

rescaling. This gives a Reynolds number of 2.647 × 105 based on the characteristic length Lo = 1 ft
when the propeller is rotating at 200 rpm. The corresponding Reynolds number based on the
propeller diameter is 1.488 × 107 based on the propeller diameter. The RANS equations are solved
with the near-wall two-layer k-ε turbulence model.

The movie_x*.dat and movie_q*.dat output files were post-processed using the FieldView
flow visualization software. Typical results include the velocity contours and velocity vector plots at
selected coordinate surfaces, and pressure contours on the propeller blade and shroud surfaces. The
velocity and pressure fields induced by the twin propellers were shown earlier in Figures 19 through
23 for this case. These velocity contours and velocity-vector plots clearly illustrate that the right
propeller wake is strongly affected by the parallel pier wall. Furthermore, there is a strong interaction
between the left and right propellers with the two ducted propellers rotating in the same rotation. For
the co-rotating propellers considered here, there is a partial suppression of the swirling flow
momentums in the overlap region between two propeller wakes. This resulted in a deflection of the
weaker left propeller wake (away from the pier wall) toward the sea bottom, as shown in Figure 23
provided in the SSC Pacific technical report.

28

REFERENCES

Chen, C.-J, R. H. Bravo, H.-C. Chen, and Z. Xu. 1995. “Accurate Discretization of Incompressible
Three-Dimensional Navier–Stokes Equations,” Numerical Heat Transfer, Part B: Fundamentals,
vol. 27, no. 4, pp. 371–392.

Chen, C.-J., and H.-C. Chen. 1984. “Finite Analytic Numerical Method for Unsteady Two-
dimensional Navier–Stokes Equations,” Journal of Computational Physics, vol. 53, pp. 209–
226.

Chen, H.-C. and V. C. Patel. 1988. “Near-Wall Turbulence Models for Complex Flows Including
Separation,” AIAA Journal, vol. 26, no. 6, pp. 641–648.

Chen, H.-C., V.C. Patel, and S. Ju. 1990. “Solutions of Reynolds-Averaged Navier–Stokes Equations
for Three-Dimensional Incompressible Flows,” Journal of Computational Physics, vol. 88, no. 2,
pp. 305–336.

Chung, J. and G. M. Hulbert. 1993. “A Time Integration Algorithm for Structural Dynamics with
Improved Numerical Dissipation: The Generalized-α Method,” Journal of Applied Mechanics,
vol. 60, pp. 371–375.

Dettmer, W. and D. Peric. 2003. “An Analysis of the Time Integration Algorithms for the Finite
Element Solutions Of Incompressible Navier–Stokes Equations Based on a Stabilised
Formulation,” Computer Methods in Applied Mechanics and Engineering, vol. 192. pp. 1177–
1226.

Pontaza J. P., H.-C. Chen, and J. N. Reddy. 2005, “A Local-analytic-based Discretization Procedure
for the Numerical Solution of Incompressible Flows.” International Journal for Numerical
Methods in Fluids, vol. 49, no. 6, pp. 657–699.

Wang, Pei-Fang and H.-C Chen. 2016. “FANS Simulation of Propeller Wash at Navy Harbors.”
Technical Report 2085. Space and Naval Warfare Systems Center Pacific (SSC Pacific), San
Diego, CA.

A-1

APPENDIX A
STRUCTURE OF THE BOUNDARY CONDITION INPUT

The structure of the boundary conditions input is best explained by showing the pseudo-code used
in the program to read the data:
do nbk=1,nblocks

read(LB,'(a40)') blockname0

! dummy read, blockname specified in inputblk.dat
read(LB,*) mb,nfabcs(mb),ni_dum,nj_dum,nk_dum,mlamp(mb)

read(LB,*)
read(LB,*) nregions(mb)

nregs=nregions(mb)
do nr=1,nregs

read(LB,*)nreg,iedy(mb,nr),idist(mb,nr), &
read(LB,*)mst1(mb,nr),mnd1(mb,nr), &

mst2(mb,nr),mnd2(mb,nr), &
mst3(mb,nr),mnd3(mb,nr)

end do

read(LB,*)
read(LB,*) nLSregions(mb)

nLSregs=nLSregions(mb)
do nLSr=1,nLSregs

read(LB,*)nLSreg,nLS(mb,nLSr),
mst1_LS(mb,nLSr),mnd1_LS(mb,nLSr), &
mst2_LS(mb,nLSr),mnd2_LS(mb,nLSr), &
mst3_LS(mb,nLSr),mnd3_LS(mb,nLSr)

end do

read(LB,*) mb,nfabcs(mb),nregions(mb)
nfbcs=nfabcs(mb)
do nf=1,nfbcs
read(LB,*)nfa(mb,nf),nsec(mb,nf)
nsect=nsec(mb,nf)
do ns=1,nsect
read(LB,*)nu(mb,nf,ns),nv(mb,nf,ns),nw(mb,nf,ns),npr(mb,nf,ns), &

ntke(mb,nf,ns),ntds(mb,nf,ns),nphiLS(mb,nf,ns)
read(LB,*)nst1(mb,nf,ns),nnd1(mb,nf,ns), &

nst2(mb,nf,ns),nnd2(mb,nf,ns)
end do
end do

end do
read(LB,*) nbk_prd,i_prd,j_prd,k_prd
close(LB)

Each process expects a boundary condition input file and executes the above given pseudo-code.
The first read statement is a dummy read of the blockname to provide clarity, while the
blockname specified earlier in the inputblk.dat file will be used for block identification.

A-2

The second read statement reads-in the local block number, the number of faces with boundary
conditions for that block, and the (i, j, k) dimensions of the block.

The third read statement reads-in the number of regions needed to identify near-wall and outer
regions for the two-layer k-ε model. For each region, we read the iedy flag, indicating whether the
region is a near-wall region (a value of 1) or an outer region (a value of 2). If the region is a near-wall
region then the value of idist is the block face number on which the wall lies. We then read the (i,
j, k) size of the region.

The fourth read statement reads-in the number of regions needed for various treatments of level-set
function for free surface flows. For each region, we read the nLS flag, indicating whether the free
surface should be solved directly using the advection equation for level-set function (a value of 1),
updated using zero-gradient condition (a value of 2, typically used for the near-wall region), or
skipped (a value of 3, for single-phase regions without air-water interface). The (i, j, k) size was then
specified for each region. For the propeller wash study considered here, the free surface wave effects
were negligible and the initial level-set function for calm free surface was used throughout the entire
simulation by specifying nLS = 3.

After defining various regions for the two-layer k-ε turbulence model and the level-set function,
we then specify boundary conditions for all boundary surfaces in the following order: i = imin (Face
#1), i = imax (Face #2), j = jmin (Face #3), j = jmax (Face #4), k = kmin (Face #5), and k = kmax
(Face #6). For each face, we first read the face number and the number of sections in the face. For
each section on a given face, we then read 7 boundary conditions associated with each of the 7 field
variables: (u, v, w, p, k, ε, phiLS), and the surface limits on that face. Once this is done for all faces,
we proceed to read the block, region, and surface data for the next local block on the same processor
(if more than one blocks are assigned to the same CPU). Finally, we must specify where the global
pressure datum is located. The information is stored in the variables, nbk_prd, i_prd, j_prd,
and k_prd.

A list of available boundary conditions for the velocity components and turbulence field variables
is given below:

• #1: Dirichlet boundary condition, which is set by the initial guess or in the initial input
• #2: linear-extrapolation boundary condition
• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6: moving surface boundary condition, assign grid velocities
• #7, #8: free (not used at the moment)
• #9: moving surface boundary condition, assign grid velocities
• #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut
• #12: branch cut in higher index, average across branch cut
• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

The following is a list of available boundary conditions for the pressure:
• #1: free (not used at the moment)
• #2: linear-extrapolation boundary condition

A-3

• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6: free (not used at the moment)
• #7: compute pressure consistently, using conservation of mass
• #8, #9, #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut
• #12: branch cut in higher index, average across branch cut
• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

Typical boundary conditions for a stationary wall are either of the following:

1 1 1 2 1 1 3 or
1 1 1 3 1 1 3

In the first one, pressure is linearly extrapolated at the wall, and in the second it is computed
consistently at the wall using conservation of mass at the boundary itself. For highly skewed meshes
in the near wall region, linear extrapolation is more stable.

At a free-stream inflow the following are valid options:

5 5 5 2 1 1 or
5 5 5 3 1 1

In the first one, a zero pressure gradient is enforced, and in the second pressure is computed
consistently at the boundary using conservation of mass. The second option, where pressure is
computed consistently, is also valid at the inflow of a channel – where a pressure drop is present. The
user can appreciate the versatility of the consistent pressure boundary condition, as it applies to
virtually any situation where velocities are prescribed.

Similarly, at an outflow, the following are valid options:

2 2 2 2 2 2 or
2 2 2 7 2 2

For problems involving free surface, the available boundary conditions for the level-set function
are listed in the following:

• #1: free (not used at the moment)
• #2: linear-extrapolation boundary condition
• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6, #7, #8, #9, #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut
• #12: branch cut in higher index, average across branch cut

A-4

• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

B-1

APPENDIX B
COSMIC INPUT FILE FOR DDG-51 AND P4876

PROPELLER WASH STUDY
! example input for DDG-51 Ship and P4876 propeller wash study

! global parameters

<global>

fringe = 1,
quality = 0.01,
nquality = 4,
eps = 0.001,

</global>

! grid block definition

<block name = "propeller01">

linking_grid_list = <"propeller01","shaft01","shaft02","basin01",
"basin02","propeller05","propeller02","ocean03">

</block>
<block name = "propeller02">

linking_grid_list = <"propeller02","shaft01","shaft02","basin01",
"basin02","propeller01","propeller03","ocean03">

</block>
<block name = "propeller03">

linking_grid_list = <"propeller03","shaft01","shaft02","basin01",
"basin02","propeller02","propeller04","ocean03">

</block>
<block name = "propeller04">

linking_grid_list = <"propeller04","shaft01","shaft02","basin01",
"basin02","propeller03","propeller05","ocean03">

</block>
<block name = "propeller05">

linking_grid_list = <"propeller05","shaft01","shaft02","basin01",
"basin02","propeller04","propeller01","ocean03">

</block>
<block name = "shaft01">

linking_grid_list = <"shaft01","shaft02","shaft03","basin01",
"basin02","propeller01","propeller02",
"propeller03","propeller04","propeller05",
"ocean02","ocean03">

</block>
<block name = "shaft02">

linking_grid_list = <"shaft02","shaft01","shaft03","basin01",
"basin02","propeller01","propeller02",
"propeller03","propeller04","propeller05",
"ocean02","ocean03">

</block>
<block name = "shaft03">

linking_grid_list = <"shaft03","shaft01","shaft02","basin01",
"ship01","ocean02","ocean03">

</block>
<block name = "ship01">

linking_grid_list = <"basin01","basin02","basin03","ocean01",

B-2

</block>

"ocean02","ocean03","shaft01","shaft02",
"shaft03">

<block name = "basin01">
linking_grid_list = <"basin02","shaft01","shaft02","shaft03",

"ocean01","ocean02","ocean03",
"propeller01","propeller02","propeller03",
"propeller04","propeller05","ship01">

</block>
<block name = "basin02">

linking_grid_list = <"basin01","basin03","shaft01","shaft02",
"shaft03","ocean01","ocean02","ocean03",
"propeller01","propeller02","propeller03",
"propeller04","propeller05","ship01">

</block>
<block name = "basin03">

linking_grid_list = <"basin02","ocean01","ocean03">
</block>
<block name = "ocean01">

linking_grid_list = <"basin01","basin02","basin03",
"ocean02","ocean03">

</block>
<block name = "ocean02">

linking_grid_list = <"ocean01","ocean03","ship01","basin01",
"shaft01","shaft02","shaft03">

</block>
<block name = "ocean03">

linking_grid_list = <"ocean01","ocean02","basin01","basin02",
"basin03","ship01","shaft03","shaft02",
"shaft01">

</block>
<block name = "phantom01">

linking_grid_list = <"phantom01">
</block>
<block name = "phantom02">

linking_grid_list = <"phantom02">
</block>
<block name = "phantom03">

linking_grid_list = <"phantom03">
</block>
<block name = "phantom04">

linking_grid_list = <"phantom04">
</block>
<block name = "phantom05">

linking_grid_list = <"phantom05">
</block>
<block name = "phantom06">

linking_grid_list = <"phantom06">
</block>
<block name = "phantom07">

linking_grid_list = <"phantom07">
</block>

! hole boundary definition

<boundary name = "phantom01 hole boundary">

B-3

parent_grid = "phantom01",
hole_cutting_list = <"shaft01","shaft02","basin01","basin02">

</boundary>

<boundary name = "phantom02 hole boundary">

parent_grid = "phantom02",
hole_cutting_list = <"shaft01","shaft02","basin01","basin02">

</boundary>

<boundary name = "phantom03 hole boundary">

parent_grid = "phantom03",
hole_cutting_list = <"shaft01","shaft02","basin01","basin02">

</boundary>

<boundary name = "phantom04 hole boundary">

parent_grid = "phantom04",
hole_cutting_list = <"shaft01","shaft02","basin01","basin02">

</boundary>

<boundary name = "phantom05 hole boundary">

parent_grid = "phantom05",
hole_cutting_list = <"shaft01","shaft02","basin01","basin02">

</boundary>

<boundary name = "phantom06 hole boundary">

parent_grid = "phantom06",
hole_cutting_list = <"ship01">

</boundary>

<boundary name = "phantom07 hole boundary">

parent_grid = "phantom07",
hole_cutting_list = <"ship01","ocean03">

</boundary>

<boundary name = "shaft01 hole boundary">

parent_grid = "shaft01"
hole_cutting_list = <"basin01","basin02">

</boundary>

<boundary name = "shaft03 hole boundary">

parent_grid = "shaft03"
hole_cutting_list = <"basin01">

</boundary>

<boundary name = "ship01 hole boundary">

parent_grid = "ship01",
hole_cutting_list = <"shaft03","basin01","basin02",

"ocean02","ocean03">
</boundary>

! hole surface definitions

<surface name = "phantom01 hole boundary">

ijk_range = 1, 1, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

B-4

</surface>
<surface name = "phantom01 hole boundary">

ijk_range = 3, 3, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01 hole boundary">

ijk_range = 1, 3, 1, 1, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom01 hole boundary">

ijk_range = 1, 3, 41, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01 hole boundary">

ijk_range = 1, 3, 1, 41, 61, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom02 hole boundary">

ijk_range = 1, 1, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02 hole boundary">

ijk_range = 3, 3, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02 hole boundary">

ijk_range = 1, 3, 1, 1, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02 hole boundary">

ijk_range = 1, 3, 41, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02 hole boundary">

ijk_range = 1, 3, 1, 41, 61, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom03 hole boundary">

ijk_range = 1, 1, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03 hole boundary">

ijk_range = 3, 3, 1, 41, 1, 61,

B-5

boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03 hole boundary">

ijk_range = 1, 3, 1, 1, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03 hole boundary">

ijk_range = 1, 3, 41, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03 hole boundary">

ijk_range = 1, 3, 1, 41, 61, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom04 hole boundary">

ijk_range = 1, 1, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04 hole boundary">

ijk_range = 3, 3, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04 hole boundary">

ijk_range = 1, 3, 1, 1, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04 hole boundary">

ijk_range = 1, 3, 41, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04 hole boundary">

ijk_range = 1, 3, 1, 41, 61, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom05 hole boundary">

ijk_range = 1, 1, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 3, 3, 1, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

B-6

<surface name = "phantom05 hole boundary">
ijk_range = 1, 3, 1, 1, 1, 61,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 3, 41, 41, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 3, 1, 41, 61, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom06 hole boundary">

ijk_range = 1, 1, 1, 2, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom06 hole boundary">

ijk_range = 2, 2, 1, 2, 1, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom06 hole boundary">

ijk_range = 1, 2, 1, 1, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom06 hole boundary">

ijk_range = 1, 2, 2, 2, 1, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom06 hole boundary">

ijk_range = 1, 2, 1, 2, 1, 1,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom06 hole boundary">

ijk_range = 1, 2, 1, 2, 2, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom07 hole boundary">

ijk_range = 1, 1, 1, 2, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom07 hole boundary">

ijk_range = 2, 2, 1, 2, 1, 2,
boundary_condition ="cut",

B-7

surface_normal = "+ijk",
</surface>
<surface name = "phantom07 hole boundary">

ijk_range = 1, 2, 1, 1, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom07 hole boundary">

ijk_range = 1, 2, 2, 2, 1, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom07 hole boundary">

ijk_range = 1, 2, 1, 2, 1, 1,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom07 hole boundary">

ijk_range = 1, 2, 1, 2, 2, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "shaft01 hole boundary">

ijk_range = 1, 38, 3, 3, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "shaft03 hole boundary">

ijk_range = 6, 65, 3, 3, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "ship01 hole boundary">

ijk_range = 1, 121, 21, 21, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

! outer boundary definition

<boundary name = "propeller01 outer boundary">

parent_grid = "propeller01",
</boundary>
<boundary name = "propeller02 outer boundary">

parent_grid = "propeller02",
</boundary>
<boundary name = "propeller03 outer boundary">

parent_grid = "propeller03",
</boundary>

B-8

<boundary name = "propeller04 outer boundary">
parent_grid = "propeller04",

</boundary>
<boundary name = "propeller05 outer boundary">

parent_grid = "propeller05",
</boundary>
<boundary name = "shaft01 outer boundary">

parent_grid = "shaft01",
</boundary>
<boundary name = "shaft02 outer boundary">

parent_grid = "shaft02",
</boundary>
<boundary name = "shaft03 outer boundary">

parent_grid = "shaft03",
</boundary>
<boundary name = "ship01 outer boundary">

parent_grid = "ship01",
</boundary>
<boundary name = "basin01 outer boundary">

parent_grid = "basin01",
</boundary>
<boundary name = "basin02 outer boundary">

parent_grid = "basin02",
</boundary>
<boundary name = "basin03 outer boundary">

parent_grid = "basin03",
</boundary>
<boundary name = "ocean01 outer boundary">

parent_grid = "ocean01",
</boundary>
<boundary name = "ocean02 outer boundary">

parent_grid = "ocean02",
</boundary>
<boundary name = "ocean03 outer boundary">

parent_grid = "ocean03",
</boundary>

! outer boundary surface definition

<surface name = "propeller01 outer boundary">

ijk_range = 1, 1, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller01"
donor_ijk_range = 61, 61, 1, 41, 1, 41,

</surface>
<surface name = "propeller01 outer boundary">

ijk_range = 62, 62, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller01"
donor_ijk_range = 2, 2, 1, 41, 1, 41,

</surface>
<surface name = "propeller01 outer boundary">

ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

B-9

<surface name = "propeller02 outer boundary">
ijk_range = 1, 1, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller02"
donor_ijk_range = 61, 61, 1, 41, 1, 41,

</surface>
<surface name = "propeller02 outer boundary">

ijk_range = 62, 62, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller02"
donor_ijk_range = 2, 2, 1, 41, 1, 41,

</surface>
<surface name = "propeller02 outer boundary">

ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller03 outer boundary">

ijk_range = 1, 1, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller03"
donor_ijk_range = 61, 61, 1, 41, 1, 41,

</surface>
<surface name = "propeller03 outer boundary">

ijk_range = 62, 62, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller03"
donor_ijk_range = 2, 2, 1, 41, 1, 41,

</surface>
<surface name = "propeller03 outer boundary">

ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller04 outer boundary">

ijk_range = 1, 1, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller04"
donor_ijk_range = 61, 61, 1, 41, 1, 41,

</surface>
<surface name = "propeller04 outer boundary">

ijk_range = 62, 62, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller04"
donor_ijk_range = 2, 2, 1, 41, 1, 41,

</surface>
<surface name = "propeller04 outer boundary">

ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller05 outer boundary">

ijk_range = 1, 1, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller05"
donor_ijk_range = 61, 61, 1, 41, 1, 41,

</surface>

B-10

<surface name = "propeller05 outer boundary">
ijk_range = 62, 62, 1, 41, 1, 41,
boundary_condition = "periodic",
donor_grid = "propeller05"
donor_ijk_range = 2, 2, 1, 41, 1, 41,

</surface>
<surface name = "propeller05 outer boundary">

ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "shaft01 outer boundary">

ijk_range = 1, 1, 1, 21, 1, 122,
</surface>
<surface name = "shaft01 outer boundary">

ijk_range = 1, 38, 21, 21, 1, 122,
</surface>
<surface name = "shaft01 outer boundary">

ijk_range = 1, 38, 1, 21, 1, 1,
boundary_condition = "periodic",
donor_grid = "shaft01"
donor_ijk_range = 1, 38, 1, 21, 121, 121,

</surface>
<surface name = "shaft01 outer boundary">

ijk_range = 1, 38, 1, 21, 122, 122,
boundary_condition = "periodic",
donor_grid = "shaft01"
donor_ijk_range = 1, 38, 1, 21, 2, 2,

</surface>

<surface name = "shaft02 outer boundary">

ijk_range = 1, 1, 1, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">

ijk_range = 28, 28, 1, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">

ijk_range = 1, 28, 1, 1, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">

ijk_range = 1, 28, 31, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">

ijk_range = 1, 28, 1, 31, 1, 1,
boundary_condition = "periodic",
donor_grid = "shaft02"
donor_ijk_range = 1, 28, 1, 31, 121, 121,

</surface>
<surface name = "shaft02 outer boundary">

ijk_range = 1, 28, 1, 31, 122, 122,
boundary_condition = "periodic",
donor_grid = "shaft02"
donor_ijk_range = 1, 28, 1, 31, 2, 2,

</surface>

B-11

<surface name = "shaft03 outer boundary">
ijk_range = 65, 65, 1, 21, 1, 122,

</surface>
<surface name = "shaft03 outer boundary">

ijk_range = 2, 65, 21, 21, 1, 122,
</surface>
<surface name = "shaft03 outer boundary">

ijk_range = 1, 65, 1, 21, 1, 1,
boundary_condition = "periodic",
donor_grid = "shaft03"
donor_ijk_range = 1, 65, 1, 21, 121, 121,

</surface>
<surface name = "shaft03 outer boundary">

ijk_range = 1, 65, 1, 21, 122, 122,
boundary_condition = "periodic",
donor_grid = "shaft03"
donor_ijk_range = 1, 65, 1, 21, 2, 2,

</surface>
<surface name = "shaft03 outer boundary">

ijk_range = 1, 65, 1, 1, 1, 122,
boundary_condition = "body",

</surface>

<surface name = "ship01 outer boundary">

ijk_range = 1, 121, 35, 35, 1, 41,
</surface>

<surface name = "basin01 outer boundary">

ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">

ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">

ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">

ijk_range = 1, 34, 1, 81, 1, 1,
</surface>
<surface name = "basin01 outer boundary">

ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "basin02 outer boundary">

ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">

ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">

ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">

ijk_range = 1, 34, 1, 81, 1, 1,

B-12

</surface>
<surface name = "basin02 outer boundary">

ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "basin03 outer boundary">

ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">

ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">

ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">

ijk_range = 1, 34, 1, 81, 1, 1,
</surface>
<surface name = "basin03 outer boundary">

ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "ocean01 outer boundary">

ijk_range = 1, 152, 1, 65, 21, 21,
</surface>

<surface name = "ocean02 outer boundary">

ijk_range = 77, 77, 1, 65, 1, 42,
</surface>
<surface name = "ocean02 outer boundary">

ijk_range = 1, 77, 1, 65, 1, 1,
</surface>

<surface name = "ocean03 outer boundary">

ijk_range = 1, 1, 1, 65, 1, 42,
</surface>
<surface name = "ocean03 outer boundary">

ijk_range = 1, 77, 1, 65, 1, 1,
</surface>

C-1

APPENDIX C
COSMIC INPUT FILE FOR TUGBOAT

AND DUCTED-PROPELLER WASH STUDY

! example input for tugboat and ducted propellers

! global parameters

<global>

fringe = 1,
quality = 0.01,
nquality = 4,
eps = 0.001,

</global>

! grid block definition

<block name = "propeller01a">

linking_grid_list = <"propeller01a","tip01a","propeller04a",
"propeller02a","duct02a","duct03a">

</block>
<block name = "propeller02a">

linking_grid_list = <"propeller02a","tip02a","propeller01a",
"propeller03a","duct02a","duct03a">

</block>
<block name = "propeller03a">

linking_grid_list = <"propeller03a","tip03a","propeller02a",
"propeller04a","duct02a","duct03a">

</block>
<block name = "propeller04a">

linking_grid_list = <"propeller04a","tip04a","propeller03a",
"propeller01a","duct02a","duct03a">

</block>
<block name = "tip01a">

linking_grid_list = <"propeller01a","duct03a">
</block>
<block name = "tip02a">

linking_grid_list = <"propeller02a","duct03a">
</block>
<block name = "tip03a">

linking_grid_list = <"propeller03a","duct03a">
</block>
<block name = "tip04a">

linking_grid_list = <"propeller04a","duct03a">
</block>
<block name = "duct01a">

linking_grid_list = <"duct01a","duct02a","duct03a","duct04a",
"barge01","ocean03","ocean04">

</block>
<block name = "duct02a">

linking_grid_list = <"duct02a","duct01a","duct03a","duct05a",
"wake01a","propeller01a","propeller02a",

C-2

</block>

"propeller03a","propeller04a">

<block name = "duct03a">
linking_grid_list = <"duct03a","duct01a","duct02a","duct05a",

"propeller01a","propeller02a",
"propeller03a","propeller04a","tip01a",
"tip02a","tip03a","tip04a","barge01">

</block>
<block name = "duct04a">

linking_grid_list = <"duct04a","duct01a","duct05a","wake01a",
"barge01","ocean04">

</block>
<block name = "duct05a">

linking_grid_list = <"duct05a","duct02a","duct03a","duct04a",
"wake01a","barge01","ocean04">

</block>
<block name = "wake01a">

linking_grid_list = <"wake01a","duct02a","duct03a","duct04a",
"duct05a","barge01","ocean04","ocean05">

</block>
<block name = "propeller01b">

linking_grid_list = <"propeller01b","tip01b","propeller04b",
"propeller02b","duct02b","duct03b">

</block>
<block name = "propeller02b">

linking_grid_list = <"propeller02b","tip02b","propeller01b",
"propeller03b","duct02b","duct03b">

</block>
<block name = "propeller03b">

linking_grid_list = <"propeller03b","tip03b","propeller02b",
"propeller04b","duct02b","duct03b">

</block>
<block name = "propeller04b">

linking_grid_list = <"propeller04b","tip04b","propeller03b",
"propeller01b","duct02b","duct03b">

</block>
<block name = "tip01b">

linking_grid_list = <"propeller01b","duct03b">
</block>
<block name = "tip02b">

linking_grid_list = <"propeller02b","duct03b">
</block>
<block name = "tip03b">

linking_grid_list = <"propeller03b","duct03b">
</block>
<block name = "tip04b">

linking_grid_list = <"propeller04b","duct03b">
</block>
<block name = "duct01b">

linking_grid_list = <"duct01b","duct02b","duct03b","duct04b",
"barge01","ocean03","ocean04">

</block>
<block name = "duct02b">

linking_grid_list = <"duct02b","duct01b","duct03b","duct05b",
"wake01b","propeller01b","propeller02b",
"propeller03b","propeller04b">

</block>

C-3

<block name = "duct03b">
linking_grid_list = <"duct03b","duct01b","duct02b","duct05b",

"propeller01b","propeller02b",
"propeller03b","propeller04b","tip01b",
"tip02b","tip03b","tip04b","barge01">

</block>
<block name = "duct04b">

linking_grid_list = <"duct04b","duct01b","duct05b","wake01b",
"barge01","ocean04">

</block>
<block name = "duct05b">

linking_grid_list = <"duct05b","duct02b","duct03b","duct04b",
"wake01b","barge01","ocean04">

</block>
<block name = "wake01b">

linking_grid_list = <"wake01b","duct02b","duct03b","duct04b",
"duct05b","barge01","ocean04","ocean05">

</block>
<block name = "ocean01">

linking_grid_list = <"ocean02","ocean17","ocean18","barge01">
</block>
<block name = "ocean02">

linking_grid_list = <"ocean01","ocean03","ocean17","ocean18",
"barge01">

</block>
<block name = "ocean03">

linking_grid_list = <"ocean02","ocean04","ocean17","ocean18",
"duct01a","duct01b","duct04a","duct04b",
"barge01">

</block>
<block name = "ocean04">

linking_grid_list = <"ocean03","ocean05","ocean17","ocean18",
"wake01a","wake01b","duct01a","duct01b",
"duct04a","duct04b","duct05a","duct05b",
"barge01">

</block>
<block name = "ocean05">

linking_grid_list = <"ocean04","ocean06","ocean17","ocean18",
"wake01a","wake01b","barge01">

</block>
<block name = "ocean06">

linking_grid_list = <"ocean05","ocean07","ocean17","ocean18",
"wake01a","wake01b","barge01">

</block>
<block name = "ocean07">

linking_grid_list = <"ocean06","ocean08","ocean17","ocean18",
"barge01">

</block>
<block name = "ocean08">

linking_grid_list = <"ocean07","ocean09","ocean17","ocean18",
"barge01">

</block>
<block name = "ocean09">

linking_grid_list = <"ocean08","ocean10","ocean17","ocean18",
"barge01">

</block>
<block name = "ocean10">

C-4

linking_grid_list = <"ocean09","ocean11","ocean17","ocean18",
"barge01">

</block>
<block name = "ocean11">

linking_grid_list = <"ocean10","ocean12","ocean17","ocean18">
</block>
<block name = "ocean12">

linking_grid_list = <"ocean11","ocean13","ocean17","ocean18">
</block>
<block name = "ocean13">

linking_grid_list = <"ocean12","ocean14","ocean17","ocean18">
</block>
<block name = "ocean14">

linking_grid_list = <"ocean13","ocean15","ocean17","ocean18">
</block>
<block name = "ocean15">

linking_grid_list = <"ocean14","ocean16","ocean17","ocean18">
</block>
<block name = "ocean16">

linking_grid_list = <"ocean15","ocean17","ocean18">
</block>
<block name = "ocean17">

linking_grid_list = <"ocean01","ocean02","ocean03","ocean04",
"ocean05","ocean06","ocean07","ocean08",
"ocean09","ocean10","ocean11","ocean12",
"ocean13","ocean14","ocean15","ocean16",
"ocean18","barge01">

</block>
<block name = "ocean18">

linking_grid_list = <"ocean01","ocean02","ocean03","ocean04",
"ocean05","ocean06","ocean07","ocean08",
"ocean09","ocean10","ocean11","ocean12",
"ocean13","ocean14","ocean15","ocean16",
"ocean17","barge01">

</block>
<block name = "barge01">

linking_grid_list = <"duct01a","duct01b","duct04a","duct04b",
"duct05a","duct05b","wake01a","wake01b",
"ocean01","ocean02","ocean03","ocean04",
"ocean05","ocean06","ocean07","ocean08",
"ocean09","ocean10","ocean17","ocean18">

</block>
<block name = "phantom01a">

linking_grid_list = <"phantom01a">
</block>
<block name = "phantom02a">

linking_grid_list = <"phantom02a">
</block>
<block name = "phantom03a">

linking_grid_list = <"phantom03a">
</block>
<block name = "phantom04a">

linking_grid_list = <"phantom04a">
</block>
<block name = "phantom01b">

linking_grid_list = <"phantom01b">
</block>

C-5

<block name = "phantom02b">
linking_grid_list = <"phantom02b">

</block>
<block name = "phantom03b">

linking_grid_list = <"phantom03b">
</block>
<block name = "phantom04b">

linking_grid_list = <"phantom04b">
</block>
<block name = "phantom05">

linking_grid_list = <"phantom05">
</block>

! hole boundary definition

<boundary name = "phantom01a hole boundary">

parent_grid = "phantom01a",
hole_cutting_list = <"duct02a","duct03a">

</boundary>

<boundary name = "phantom02a hole boundary">

parent_grid = "phantom02a",
hole_cutting_list = <"duct02a","duct03a">

</boundary>

<boundary name = "phantom03a hole boundary">

parent_grid = "phantom03a",
hole_cutting_list = <"duct02a","duct03a">

</boundary>

<boundary name = "phantom04a hole boundary">

parent_grid = "phantom04a",
hole_cutting_list = <"duct02a","duct03a">

</boundary>

<boundary name = "phantom01b hole boundary">

parent_grid = "phantom01b",
hole_cutting_list = <"duct02b","duct03b">

</boundary>

<boundary name = "phantom02b hole boundary">

parent_grid = "phantom02b",
hole_cutting_list = <"duct02b","duct03b">

</boundary>

<boundary name = "phantom03b hole boundary">

parent_grid = "phantom03b",
hole_cutting_list = <"duct02b","duct03b">

</boundary>

<boundary name = "phantom04b hole boundary">

parent_grid = "phantom04b",
hole_cutting_list = <"duct02b","duct03b">

</boundary>

<boundary name = "phantom05 hole boundary">

C-6

parent_grid = "phantom05",
hole_cutting_list = <"ocean01","ocean02","ocean03",

"ocean04","ocean05","ocean06",
"ocean07","ocean08","ocean09",
"ocean10">

</boundary>

<boundary name = "duct01a hole boundary">

parent_grid = "duct01a",
hole_cutting_list = <"ocean03","ocean04","barge01">

</boundary>

<boundary name = "duct04a hole boundary">

parent_grid = "duct04a",
hole_cutting_list = <"wake01a","ocean04","ocean03",

"barge01">
</boundary>

<boundary name = "duct05a hole boundary">

parent_grid = "duct05a",
hole_cutting_list = <"wake01a","ocean04","barge01">

</boundary>

<boundary name = "wake01a hole boundary">

parent_grid = "wake01a",
hole_cutting_list = <"ocean04","ocean05","barge01">

</boundary>

<boundary name = "duct01b hole boundary">

parent_grid = "duct01b",
hole_cutting_list = <"ocean03","ocean04","barge01">

</boundary>

<boundary name = "duct04b hole boundary">

parent_grid = "duct04b",
hole_cutting_list = <"wake01b","ocean04","ocean03",

"barge01">
</boundary>

<boundary name = "duct05b hole boundary">

parent_grid = "duct05b",
hole_cutting_list = <"wake01b","ocean04","barge01">

</boundary>

<boundary name = "wake01b hole boundary">

parent_grid = "wake01b",
hole_cutting_list = <"ocean04","ocean05","barge01">

</boundary>

<boundary name = "barge01 hole boundary">

parent_grid = "barge01",
hole_cutting_list = <"ocean01","ocean02","ocean03",

"ocean04","ocean05","ocean06",
"ocean07","ocean08","ocean09",
"ocean10","wake01a","wake01b",

C-7

</boundary>

"duct01a","duct01b","duct04a",
"duct04b","duct05a","duct05b">

! hole surface definitions

<surface name = "phantom01a hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom01a hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01a hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom01a hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01a hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom02a hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02a hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02a hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02a hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02a hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",

C-8

surface_normal = "+ijk",
</surface>

<surface name = "phantom03a hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03a hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03a hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03a hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03a hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom04a hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04a hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04a hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04a hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04a hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

C-9

<surface name = "phantom01b hole boundary">
ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom01b hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01b hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom01b hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom01b hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom02b hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02b hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02b hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom02b hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom02b hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom03b hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,

C-10

boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03b hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03b hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom03b hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom03b hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom04b hole boundary">

ijk_range = 1, 1, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04b hole boundary">

ijk_range = 3, 3, 1, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04b hole boundary">

ijk_range = 1, 3, 1, 1, 1, 41,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom04b hole boundary">

ijk_range = 1, 3, 31, 31, 1, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom04b hole boundary">

ijk_range = 1, 3, 1, 31, 41, 41,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "phantom05 hole boundary">

ijk_range = 1, 1, 1, 3, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>

C-11

<surface name = "phantom05 hole boundary">
ijk_range = 2, 2, 1, 3, 1, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 2, 1, 1, 1, 2,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 2, 3, 3, 1, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 2, 1, 3, 1, 1,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "phantom05 hole boundary">

ijk_range = 1, 2, 1, 3, 2, 2,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct01a hole boundary">

ijk_range = 7, 7, 1, 37, 1, 121,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "duct01a hole boundary">

ijk_range = 7, 21, 37, 37, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct04a hole boundary">

ijk_range = 1, 53, 3, 3, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct05a hole boundary">

ijk_range = 1, 15, 59, 59, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "wake01a hole boundary">

ijk_range = 1, 1, 1, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "-ijk",

C-12

</surface>
<surface name = "wake01a hole boundary">

ijk_range = 36, 36, 1, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "wake01a hole boundary">

ijk_range = 1, 36, 29, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct01b hole boundary">

ijk_range = 7, 7, 1, 37, 1, 121,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "duct01b hole boundary">

ijk_range = 7, 21, 37, 37, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct04b hole boundary">

ijk_range = 1, 53, 3, 3, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "duct05b hole boundary">

ijk_range = 1, 15, 59, 59, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "wake01b hole boundary">

ijk_range = 1, 1, 1, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "-ijk",

</surface>
<surface name = "wake01b hole boundary">

ijk_range = 36, 36, 1, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>
<surface name = "wake01b hole boundary">

ijk_range = 1, 36, 29, 29, 1, 121,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

<surface name = "barge01 hole boundary">

C-13

ijk_range = 1, 107, 17, 17, 1, 61,
boundary_condition ="cut",
surface_normal = "+ijk",

</surface>

! outer boundary definition

<boundary name = "propeller01a outer boundary">

parent_grid = "propeller01a",
</boundary>
<boundary name = "propeller02a outer boundary">

parent_grid = "propeller02a",
</boundary>
<boundary name = "propeller03a outer boundary">

parent_grid = "propeller03a",
</boundary>
<boundary name = "propeller04a outer boundary">

parent_grid = "propeller04a",
</boundary>
<boundary name = "tip01a outer boundary">

parent_grid = "tip01a",
</boundary>
<boundary name = "tip02a outer boundary">

parent_grid = "tip02a",
</boundary>
<boundary name = "tip03a outer boundary">

parent_grid = "tip03a",
</boundary>
<boundary name = "tip04a outer boundary">

parent_grid = "tip04a",
</boundary>
<boundary name = "duct01a outer boundary">

parent_grid = "duct01a",
</boundary>
<boundary name = "duct02a outer boundary">

parent_grid = "duct02a",
</boundary>
<boundary name = "duct03a outer boundary">

parent_grid = "duct03a",
</boundary>
<boundary name = "duct04a outer boundary">

parent_grid = "duct04a",
</boundary>
<boundary name = "duct05a outer boundary">

parent_grid = "duct05a",
</boundary>
<boundary name = "wake01a outer boundary">

parent_grid = "wake01a",
</boundary>
<boundary name = "propeller01b outer boundary">

parent_grid = "propeller01b",
</boundary>
<boundary name = "propeller02b outer boundary">

parent_grid = "propeller02b",

C-14

</boundary>
<boundary name = "propeller03b outer boundary">

parent_grid = "propeller03b",
</boundary>
<boundary name = "propeller04b outer boundary">

parent_grid = "propeller04b",
</boundary>
<boundary name = "tip01b outer boundary">

parent_grid = "tip01b",
</boundary>
<boundary name = "tip02b outer boundary">

parent_grid = "tip02b",
</boundary>
<boundary name = "tip03b outer boundary">

parent_grid = "tip03b",
</boundary>
<boundary name = "tip04b outer boundary">

parent_grid = "tip04b",
</boundary>
<boundary name = "duct01b outer boundary">

parent_grid = "duct01b",
</boundary>
<boundary name = "duct02b outer boundary">

parent_grid = "duct02b",
</boundary>
<boundary name = "duct03b outer boundary">

parent_grid = "duct03b",
</boundary>
<boundary name = "duct04b outer boundary">

parent_grid = "duct04b",
</boundary>
<boundary name = "duct05b outer boundary">

parent_grid = "duct05b",
</boundary>
<boundary name = "wake01b outer boundary">

parent_grid = "wake01b",
</boundary>
<boundary name = "ocean01 outer boundary">

parent_grid = "ocean01",
</boundary>
<boundary name = "ocean02 outer boundary">

parent_grid = "ocean02",
</boundary>
<boundary name = "ocean03 outer boundary">

parent_grid = "ocean03",
</boundary>
<boundary name = "ocean04 outer boundary">

parent_grid = "ocean04",
</boundary>
<boundary name = "ocean05 outer boundary">

parent_grid = "ocean05",
</boundary>
<boundary name = "ocean06 outer boundary">

parent_grid = "ocean06",
</boundary>
<boundary name = "ocean07 outer boundary">

parent_grid = "ocean07",

C-15

</boundary>
<boundary name = "ocean08 outer boundary">

parent_grid = "ocean08",
</boundary>
<boundary name = "ocean09 outer boundary">

parent_grid = "ocean09",
</boundary>
<boundary name = "ocean10 outer boundary">

parent_grid = "ocean10",
</boundary>
<boundary name = "ocean11 outer boundary">

parent_grid = "ocean11",
</boundary>
<boundary name = "ocean12 outer boundary">

parent_grid = "ocean12",
</boundary>
<boundary name = "ocean13 outer boundary">

parent_grid = "ocean13",
</boundary>
<boundary name = "ocean14 outer boundary">

parent_grid = "ocean14",
</boundary>
<boundary name = "ocean15 outer boundary">

parent_grid = "ocean15",
</boundary>
<boundary name = "ocean16 outer boundary">

parent_grid = "ocean16",
</boundary>
<boundary name = "ocean17 outer boundary">

parent_grid = "ocean17",
</boundary>
<boundary name = "ocean18 outer boundary">

parent_grid = "ocean18",
</boundary>
<boundary name = "barge01 outer boundary">

parent_grid = "barge01",
</boundary>

! outer boundary surface definition

<surface name = "propeller01a outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller01a"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller01a outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller01a"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller01a outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller01a outer boundary">

C-16

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller02a outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller02a"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller02a outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller02a"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller02a outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller02a outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller03a outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller03a"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller03a outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller03a"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller03a outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller03a outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller04a outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller04a"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller04a outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller04a"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller04a outer boundary">

C-17

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller04a outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "tip01a outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip01a outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip01a outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip01a outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip01a outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip02a outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip02a outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip02a outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip02a outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip02a outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip03a outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip03a outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip03a outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip03a outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip03a outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

C-18

<surface name = "tip04a outer boundary">
ijk_range = 1, 1, 1, 4, 2, 5,

</surface>
<surface name = "tip04a outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip04a outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip04a outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip04a outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "duct01a outer boundary">

ijk_range = 1, 1, 1, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">

ijk_range = 21, 21, 1, 34, 1, 122,
</surface>
<surface name = "duct01a outer boundary">

ijk_range = 21, 21, 36, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">

ijk_range = 8, 21, 1, 1, 1, 122,
</surface>
<surface name = "duct01a outer boundary">

ijk_range = 1, 21, 57, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">

ijk_range = 1, 21, 1, 57, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct01a"
donor_ijk_range = 1, 21, 1, 57, 121, 121,

</surface>
<surface name = "duct01a outer boundary">

ijk_range = 1, 21, 1, 57, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct01a"
donor_ijk_range = 1, 21, 1, 57, 2, 2,

</surface>

<surface name = "duct02a outer boundary">

ijk_range = 66, 66, 1, 24, 1, 122,
</surface>
<surface name = "duct02a outer boundary">

ijk_range = 1, 66, 24, 24, 1, 122,
</surface>
<surface name = "duct02a outer boundary">

ijk_range = 1, 66, 1, 24, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct02a"

C-19

donor_ijk_range = 1, 66, 1, 24, 121, 121,
</surface>
<surface name = "duct02a outer boundary">

ijk_range = 1, 66, 1, 24, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct02a"
donor_ijk_range = 1, 66, 1, 24, 2, 2,

</surface>

<surface name = "duct03a outer boundary">

ijk_range = 1, 1, 1, 35, 1, 122,
</surface>
<surface name = "duct03a outer boundary">

ijk_range = 53, 53, 1, 35, 1, 122,
</surface>
<surface name = "duct03a outer boundary">

ijk_range = 1, 53, 1, 1, 1, 122,
</surface>
<surface name = "duct03a outer boundary">

ijk_range = 1, 53, 1, 35, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct03a"
donor_ijk_range = 1, 53, 1, 35, 121, 121,

</surface>
<surface name = "duct03a outer boundary">

ijk_range = 1, 53, 1, 35, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct03a"
donor_ijk_range = 1, 53, 1, 35, 2, 2,

</surface>

<surface name = "duct04a outer boundary">

ijk_range = 1, 1, 1, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">

ijk_range = 53, 53, 1, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">

ijk_range = 1, 53, 23, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">

ijk_range = 1, 53, 1, 23, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct04a"
donor_ijk_range = 1, 53, 1, 23, 121, 121,

</surface>
<surface name = "duct04a outer boundary">

ijk_range = 1, 53, 1, 23, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct04a"
donor_ijk_range = 1, 53, 1, 23, 2, 2,

</surface>

<surface name = "duct05a outer boundary">

C-20

ijk_range = 1, 1, 1, 56, 1, 122,
</surface>
<surface name = "duct05a outer boundary">

ijk_range = 1, 1, 58, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">

ijk_range = 21, 21, 1, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">

ijk_range = 1, 21, 79, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">

ijk_range = 1, 21, 1, 79, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct05a"
donor_ijk_range = 1, 21, 1, 79, 121, 121,

</surface>
<surface name = "duct05a outer boundary">

ijk_range = 1, 21, 1, 79, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct05a"
donor_ijk_range = 1, 21, 1, 79, 2, 2,

</surface>

<surface name = "wake01a outer boundary">

ijk_range = 1, 1, 1, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">

ijk_range = 40, 40, 1, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">

ijk_range = 1, 40, 41, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">

ijk_range = 1, 40, 1, 41, 1, 1,
boundary_condition = "periodic",
donor_grid = "wake01a"
donor_ijk_range = 1, 40, 1, 41, 121, 121,

</surface>
<surface name = "wake01a outer boundary">

ijk_range = 1, 40, 1, 41, 122, 122,
boundary_condition = "periodic",
donor_grid = "wake01a"
donor_ijk_range = 1, 40, 1, 41, 2, 2,

</surface>

<surface name = "propeller01b outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller01b"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller01b outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",

C-21

donor_grid = "propeller01b"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller01b outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller01b outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller02b outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller02b"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller02b outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller02b"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller02b outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller02b outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller03b outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller03b"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>
<surface name = "propeller03b outer boundary">

ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller03b"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller03b outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller03b outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller04b outer boundary">

ijk_range = 1, 1, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller04b"
donor_ijk_range = 61, 61, 1, 35, 1, 42,

</surface>

C-22

<surface name = "propeller04b outer boundary">
ijk_range = 62, 62, 1, 35, 1, 42,
boundary_condition = "periodic",
donor_grid = "propeller04b"
donor_ijk_range = 2, 2, 1, 35, 1, 42,

</surface>
<surface name = "propeller04b outer boundary">

ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller04b outer boundary">

ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "tip01b outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip01b outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip01b outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip01b outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip01b outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip02b outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip02b outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip02b outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip02b outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip02b outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip03b outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip03b outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip03b outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>

C-23

<surface name = "tip03b outer boundary">
ijk_range = 1, 29, 4, 4, 1, 5,

</surface>
<surface name = "tip03b outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip04b outer boundary">

ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip04b outer boundary">

ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip04b outer boundary">

ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip04b outer boundary">

ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip04b outer boundary">

ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "duct01b outer boundary">

ijk_range = 1, 1, 1, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">

ijk_range = 21, 21, 1, 34, 1, 122,
</surface>
<surface name = "duct01b outer boundary">

ijk_range = 21, 21, 36, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">

ijk_range = 8, 21, 1, 1, 1, 122,
</surface>
<surface name = "duct01b outer boundary">

ijk_range = 1, 21, 57, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">

ijk_range = 1, 21, 1, 57, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct01b"
donor_ijk_range = 1, 21, 1, 57, 121, 121,

</surface>
<surface name = "duct01b outer boundary">

ijk_range = 1, 21, 1, 57, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct01b"
donor_ijk_range = 1, 21, 1, 57, 2, 2,

</surface>

<surface name = "duct02b outer boundary">

ijk_range = 66, 66, 1, 24, 1, 122,
</surface>

C-24

<surface name = "duct02b outer boundary">
ijk_range = 1, 66, 24, 24, 1, 122,

</surface>
<surface name = "duct02b outer boundary">

ijk_range = 1, 66, 1, 24, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct02b"
donor_ijk_range = 1, 66, 1, 24, 121, 121,

</surface>
<surface name = "duct02b outer boundary">

ijk_range = 1, 66, 1, 24, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct02b"
donor_ijk_range = 1, 66, 1, 24, 2, 2,

</surface>

<surface name = "duct03b outer boundary">

ijk_range = 1, 1, 1, 35, 1, 122,
</surface>
<surface name = "duct03b outer boundary">

ijk_range = 53, 53, 1, 35, 1, 122,
</surface>
<surface name = "duct03b outer boundary">

ijk_range = 1, 53, 1, 1, 1, 122,
</surface>
<surface name = "duct03b outer boundary">

ijk_range = 1, 53, 1, 35, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct03b"
donor_ijk_range = 1, 53, 1, 35, 121, 121,

</surface>
<surface name = "duct03b outer boundary">

ijk_range = 1, 53, 1, 35, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct03b"
donor_ijk_range = 1, 53, 1, 35, 2, 2,

</surface>

<surface name = "duct04b outer boundary">

ijk_range = 1, 1, 1, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">

ijk_range = 53, 53, 1, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">

ijk_range = 1, 53, 23, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">

ijk_range = 1, 53, 1, 23, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct04b"
donor_ijk_range = 1, 53, 1, 23, 121, 121,

</surface>
<surface name = "duct04b outer boundary">

ijk_range = 1, 53, 1, 23, 122, 122,

C-25

boundary_condition = "periodic",
donor_grid = "duct04b"
donor_ijk_range = 1, 53, 1, 23, 2, 2,

</surface>

<surface name = "duct05b outer boundary">

ijk_range = 1, 1, 1, 56, 1, 122,
</surface>
<surface name = "duct05b outer boundary">

ijk_range = 1, 1, 58, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">

ijk_range = 21, 21, 1, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">

ijk_range = 1, 21, 79, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">

ijk_range = 1, 21, 1, 79, 1, 1,
boundary_condition = "periodic",
donor_grid = "duct05b"
donor_ijk_range = 1, 21, 1, 79, 121, 121,

</surface>
<surface name = "duct05b outer boundary">

ijk_range = 1, 21, 1, 79, 122, 122,
boundary_condition = "periodic",
donor_grid = "duct05b"
donor_ijk_range = 1, 21, 1, 79, 2, 2,

</surface>

<surface name = "wake01b outer boundary">

ijk_range = 1, 1, 1, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">

ijk_range = 40, 40, 1, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">

ijk_range = 1, 40, 41, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">

ijk_range = 1, 40, 1, 41, 1, 1,
boundary_condition = "periodic",
donor_grid = "wake01b"
donor_ijk_range = 1, 40, 1, 41, 121, 121,

</surface>
<surface name = "wake01b outer boundary">

ijk_range = 1, 40, 1, 41, 122, 122,
boundary_condition = "periodic",
donor_grid = "wake01b"
donor_ijk_range = 1, 40, 1, 41, 2, 2,

</surface>

<surface name = "ocean01 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,

C-26

</surface>
<surface name = "ocean01 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean02 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean02 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean02 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean03 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean03 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean03 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean04 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean04 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean04 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean05 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean05 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean05 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean06 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean06 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean06 outer boundary">

C-27

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean07 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean07 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean07 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean08 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean08 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean08 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean09 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean09 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean09 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean10 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean10 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean10 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean11 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean11 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean11 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

C-28

<surface name = "ocean12 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean12 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean12 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean13 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean13 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean13 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean14 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean14 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean14 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean15 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean15 outer boundary">

ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean15 outer boundary">

ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean16 outer boundary">

ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean16 outer boundary">

ijk_range = 1, 16, 1, 1, 1, 95,
</surface>

<surface name = "ocean17 outer boundary">

ijk_range = 1, 151, 37, 37, 1, 33,
</surface>

C-29

<surface name = "ocean17 outer boundary">
ijk_range = 1, 151, 1, 37, 33, 33,

</surface>

<surface name = "ocean18 outer boundary">

ijk_range = 1, 151, 37, 37, 1, 33,
</surface>
<surface name = "ocean18 outer boundary">

ijk_range = 1, 151, 1, 37, 1, 1,
</surface>

<surface name = "barge01 outer boundary">

ijk_range = 1, 107, 34, 34, 1, 61,
</surface>

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-01-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
August 2016

2. REPORT TYPE
Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

FANS-3D User’s Guide (ESTEP Project ER-201031)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Pei-Fang Wang
SSC Pacific
Hamn-Ching Chen
Texas A&M University

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SSC Pacific Ocean Engineering Program
53560 Hull Street Zachry Department of Civil Engineering
San Diego, CA 92152–5001 Texas A&M University

College Station, TX 77843-3136

8. PERFORMING ORGANIZATION
REPORT NUMBER

TD 3293

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Environmental Security Technology Certification Program
4800 Mark Center Drive, Suite 17D08
Alexandria, VA 22350-3605

10. SPONSOR/MONITOR’S ACRONYM(S)
ESTEP

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release.
13. SUPPLEMENTARY NOTES

This is work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated
without restriction.

14. ABSTRACT

This user’s guide details the FANS-3D code model and the procedure of execution of the model. This guide was developed in support of
Environmental Security Technology Certification Program (ESTEP) Project ER-201-031.

Dr. Hamn-Ching Chen and his students and collaborators developed the FANS-3D code over the past 25 years. Programmers use this general-
purpose computational fluid dynamics (CFD) code for solving the Navier–Stokes equations governing laminar and turbulent flows in body-fitted
curvilinear grids. The code employs multi-block overset (chimera) grids, including fully matched, arbitrarily embedded, and/or overlapping grids
to facilitate detailed resolution of unsteady laminar and turbulent flows around complex geometries involving arbitrary body motions as well as
fluid-structure interactions. Communication between grid components is achieved by Lagrange interpolation at the fringes. The code is fully
coupled with the hole-making and donor-finding algorithm, allowing for the relative movement of the grid blocks at each time step for time-
domain simulation of fluid-structure interaction problems, including violent free surface motions.

The underlying theory of the local-analytic-based discretization (also known as finite analytic based discretization) is briefly presented in this
user’s guide.

15. SUBJECT TERMS

Mission Area: Environmental Science
FANS-3D code; Naier–Stokes equations; finite analytic base discretion; Poisson equations;

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

U

18. NUMBER
OF
PAGES

79

19a. NAME OF RESPONSIBLE PERSON
Pei-Fang Wang a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U
19B. TELEPHONE NUMBER (Include area code)
(619) 553-9192

Standard Form 298 (Rev. 8/98)

INITIAL DISTRIBUTION
84300 Library (1)
85300 Archives (1)
71750 P.F. Wang (1)

Defense Technical Information Center
Fort Belvoir, VA 22060–6218 (1)

Hamm-Ching Chen
Ocean Engineering Program
Zachry Department of Civil Engineering
Texas A&M University
College Station, TX 77843-3136 (1)

Approved for public release.

SSC Pacific
San Diego, CA 92152-5001

	TECHNICAL DOCUMENT 3293
	SSC Pacific San Diego, CA 92152-5001
	ADMINISTRATIVE INFORMATION
	Released by

	Figures
	1. INTRODUCTION
	in Ωe, (1)
	are functions of the local velocity field and respond

	2. FANS-3D SOFTWARE DOCUMENTATION AND EXECUTION
	Each folder contains the following set of files that must be written by the users:
	As the simulation progresses and the grids move and rotate with respect to one another, the grid motions (e.g., ship motion and propeller rotation) are updated based on the reference configuration in gridgen0.dat (or plot3d0.dat). In the above pseudo-...

	3. FANS-3D CODE PARALLELIZATION
	4. COMPUTER PLATFORMS, COMPILATION, AND EXECUTION
	 sflow.f90 defines flow parameter variables such as the turbulence model coefficients.
	 sources.f90 computes the source functions for the governing equations.
	 snorms.f90 computes various metrics, such as residual norms, outer iteration norms, time stepping norms, to establish convergence of the iterative solution procedure and time marching procedure.
	The code is to be compiled by linking the Fortran 90/95 compiler with a MPI library or by using a Fortran 90/95 MPI wrapper (e.g., mpiifort, mpif90 or ftn). When using MPI as a library, the following is used to compile the code on DoD HPCMP Copper clu...

	5. FANS-3D DATA EXPORT
	The force.dat contains ASCII data files in column format. It can be read directly into Tecplot® or MATLAB® or other compatible software for 2D line plots of the (x, y, z) forces and moments (with respect to the gravity or center of rotation). For a pr...
	The PLOT3D grid output files (movie_x*.dat) contain the coordinates (x, y, z) and blanking information (iblank) for every grid point in the multi-block overset grid system. The corresponding flow variables, including density, momentum, and pressure (...
	This input specifies that the name of the composite grid file is gridgen0.dat, and it is in Gridgen® format. There are 15 computational blocks and 7 phantom blocks (22 blocks total). Then, for each of the 15 computational blocks, we must specify their...
	Note that only active (computational) blocks are listed in this input, i.e., phantom blocks do not need to be distributed as they do not represent any computational load. In this particular case, we assign propeller blades 1 and 2 (propeller01, propel...
	Most of the entries of the input file are self-descriptive, but we further elaborate on each of them in the following:
	The first line lists the blockname for block identification. The second line specifies that this is block #1 for the given process, it has six faces with boundary conditions, and the (i, j, k) dimensions of the block are 62 × 41 × 41. The fourth line ...
	where q is the velocity magnitude, is the dynamic viscosity of the seawater, and n is the normal distance from the wall. The same shear stress data can also be plotted using another commercial code MATLAB®, as shown in Figure 9.
	The file inputmpd.dat contains the information necessary for the code to distribute the load among the 35 different processes. For this particular case, the file has the following information:
	Once again, the only active (computational) blocks are listed in this input, i.e., phantom blocks do not need to be distributed as they do not represent any computational load. In this particular case, there are 47 actives blocks, including 14 blocks ...
	The file overset.in needs to be suitably modified for the hole-cutting and donor-search algorithm, and is provided in Appendix C. New boundary condition files need to be created for the new tugboat and ducted propeller geometries. In addition, the bou...

	REFERENCES
	Chen, C.-J., and H.-C. Chen. 1984. “Finite Analytic Numerical Method for Unsteady Two- dimensional Navier–Stokes Equations,” Journal of Computational Physics, vol. 53, pp. 209–226.
	Each process expects a boundary condition input file and executes the above given pseudo-code.
	The second read statement reads-in the local block number, the number of faces with boundary conditions for that block, and the (i, j, k) dimensions of the block.

	INITIAL DISTRIBUTION
	Defense Technical Information Center

