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1. INTRODUCTION 

This user’s guide details the FANS-3D code model and the procedure of execution of the model. 
This guide was developed in support of Environmental Security Technology Certification Program 
(ESTEP) Project ER-201-031. 

Dr. Hamn-Ching Chen and his students and collaborators developed the FANS-3D code over the 
past 25 years. Programmers use this general-purpose computational fluid dynamics (CFD) code for 
solving the Navier–Stokes equations governing laminar and turbulent flows in body-fitted curvilinear 
grids. The code employs multi-block overset (chimera) grids, including fully matched, arbitrarily 
embedded, and/or overlapping grids to facilitate detailed resolution of unsteady laminar and turbulent 
flows around complex geometries involving arbitrary body motions as well as fluid-structure 
interactions. Communication between grid components is achieved by Lagrange interpolation at the 
fringes. The code is fully coupled with the hole-making and donor-finding algorithm, allowing for the 
relative movement of the grid blocks at each time step for time-domain simulation of fluid-    
structure interaction problems, including violent free surface motions. 

The underlying theory of the local-analytic-based discretization (also known as finite analytic 
based discretization) is briefly presented in Section 1.1. A complete description of the formulation, 
including the numerical solution of well-established two-dimensional and three-dimensional 
benchmarks, is documented in Pontaza, Chen, and Reddy (2005). Additional published work on the 
theory of the discretization method is from Chen and Chen (1984), Chen, Patel, and Ju (1990), and 
Chen, Bravo, Chen and Xu (1995). 

 
1.1 THEORY AND NUMERICAL ALGORITHM OF FANS CODE 

The authors mentioned above developed the finite analytic method for accurate numerical 
simulation of the time-dependent incompressible Navier–Stokes equations. To briefly describe the 
formulation, consider a two-dimensional domain partitioned into equal-sized non-overlapping 
elements, Ωe. We linearized the Navier–Stokes equations in each element and write: 

    h 
 

 

(U0 • ∇)U − 
1 

∇2U = F − 
∂ U 

− ∇ 
Re ∂t h

 
P = L(U , P) in Ωe, (1) 

where ∂h/∂t is a discrete representation of the temporal operator (e.g., a backward Euler 
representation) and ∇h is a discrete gradient operator in space. Momentarily treating L(U,P) as 
known and constant over the element, we see that the linearized momentum equations are non- 
homogeneous advection-diffusion equations. 

Treating each of the momentum equations as a transport equation for the associated velocity 
component, we use the natural solution of the linearized equation as boundary conditions along the 
edges of the square element and solve the associated equations by the method of separation of 
variables to obtain local analytic interpolants in terms of unknown neighboring nodal values of the 
velocity components. The interpolant may be written as 

 
8 ∑  n     n f 

U = α U 
n =1 

+ α  L(U , P) in Ωe. (2) 

The local analytic interpolants {α }8     , α f are functions of the local velocity field and respond 
analytically to local flow conditions. In addition, the interpolants satisfy zeroth and first-order 
consistency requirements, and are always positive. These properties ensure that spurious energy 
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modes are non-existent in the scheme, and render it stable at high Reynolds numbers. Plots of one of 
the coefficients for different flow conditions in a single element are shown in Figure 1. A more 
detailed description of the finite analytic functions is given in Pontaza, Chen, and Reddy (2005) and 
Chen and Chen (1984). 

 

 
Figure 1. Finite analytic function associated with a node placed a 
(x,y) = (-1,0), for an element in (x,y) ∈ [-1,1]× [-1,1], for different flow 
conditions. 

 
The interpolants satisfy (locally) the linearized momentum equations and a collocation scheme is 

adopted to form the discrete equations. In other words, the local analytic functions are only evaluated 
at the center of the element to yield coefficients that make up the stencil relating the center value to 
its neighbors. 

If the pressure field is known a priori, the pressure gradient may be evaluated and a set of discrete 
equations for each interior nodded can be written using Equation (2). These equations can be 
assembled to yield a banded, unsymmetrical, definite matrix system. When augmented with suitable 
boundary conditions, the system can be solved (in an iterative manner for the linearization) to yield 
the nodal velocity values in a time-marching procedure. 

In general, however, the pressure field is not known a priori and must be computed such that the 
velocity field is divergence-free. This task is achieved by projecting the velocity field onto a 
divergence-free space through a discrete Poisson equation for the pressure. The discrete 
representation of the divergence operator is constructed such that a strong velocity-pressure coupling 
is achieved, effectively avoiding spurious pressure solutions for the co-located node arrangement, 
where nodal degrees of freedom for velocities and pressure share the same locations. The projection 
is directly applied to boundaries as well, so that no artificial boundary conditions for the pressure are 
necessary. Thus, pressure is consistently computed at the boundaries. 
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The momentum and discrete pressure Poisson equation are solved sequentially in an iterative 
manner. Pontaza, Chen, and Reddy (2005) showed the method to be second-order accurate in 
velocities and pressure. Convergence properties of the method are illustrated in Figure 2. When 
Equation (2) is used as an interpolant, the interpolation is fourth-order accurate, as shown in Figure 
2(a). When Equation (2) is used as a collocation discretization procedure, the error decays at a 
second-order rate, as shown in Figures 2(b) and 2(c) for linear and nonlinear equations. Figure 2(d) 
shows second-order accuracy in velocities and pressures, indicating good velocity pressure coupling 
by implementing the segregated solution approach. 

In practical implementations, we seldom encounter square domains. The general procedure 
consists of constructing the local analytic interpolants in a mapped space. Using this approach, we 
can handle skewed or curvilinear elements with a unified approach. The method has proven robust in 
the presence of severe mesh skews and high aspect ratio cells (Pontaza, Chen, and Reddy, 2005). 

 

 

Figure 2. Convergence curves for verification studies of the finite analytic functions 
as (a) interpolants, and as (b), (c), (d) a collocation discretization procedure. 

 
For time-accurate solutions, the time derivative is represented here by second-order accurate 

truncated expansions in time domain. Specifically, the time integration scheme corresponds to the 
generalized α-method family of time integrators. The family is generated by varying a single free- 
integrator parameter, ρ, for high-frequency damping. Unresolved high frequencies (due to the choice 
of the time step size) are damped out according to the value of ρ. The choice ρ = 1.0, corresponds to 
the trapezoidal rule, which is known to have no damping for high-frequency modes that may excite 
odd–even mode oscillations. High-frequency damping is allowed by decreasing the value of ρ. 
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Additional documentation on this particular family of time integrators is given by Chung and Hulbert 
(1993) and by Dettmer and Peric (2003). The discrete pressure gradient operator is represented using 
standard second-order accurate finite differences in each spatial direction. 

Extension to the three-dimensional case is straightforward and achieved by superimposing two- 
dimensional local analytic solutions, such that the three-dimensional equations are satisfied locally. 
Details of the derivation were first presented by Chen, Patel and Ju (1990) and Chen, Bravo, Chen, 
and Xu (1995), and are also outlined by Pontaza, Chen, and Reddy (2005). The resulting stencil 
relates one nodal unknown to its 19 neighbors, and is thus a 19-point finite analytic stencil. 

For turbulent flows modeled through the numerical solution of the Reynolds-averaged Navier– 
Stokes (RANS) equations, see Equations (5) through (11) provided by Wang and Chen (2016) in 
the technical report published by Space and Naval Warfare Systems Center (SSC Pacific). In the 
two-layer k-ε model, the k-ε model is patched together with a k-l model used in the near-wall region. 
Thus, the near-wall region is computed directly and adequate grid resolution must be used there. 
Additional details can be found in Chen and Patel (1988). 

The discretization procedure for the turbulent transport equations is exactly the same used for the 
momentum equations described earlier, as these equations can always be written in the standard form 
given by Equation (13). This standard is certainly a major advantage of the formulation, as no special 
treatment is needed for the turbulence transport equations. 
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2. FANS-3D SOFTWARE DOCUMENTATION AND EXECUTION 

In this current study, the FANS-3D code was employed for the propeller wash simulations of both 
DDG 51 ship and tugboat cases as described in previous sections. The computer code executables, 
numerical grids, input files, simulation results, and animation movies for all seven propeller wash 
scenarios were delivered to Dr. Pei-Fang Wang from SSC Pacific. The deliverables are organized in 
seven tar (tape archive) files as follows: 

 
1. ddg51_5kt_33ft.tar.gz: DDG 51 ship at 5 kts and 33 ft water depth 
2. ddg51_5kt_38ft.tar.gz: DDG 51 ship at 5 kts and 38 ft water depth 
3. ddg51_10kt_33ft.tar.gz: DDG 51 ship at 10 kts and 33 ft water depth 
4. ddg51_10kt_38ft.tar.gz: DDG 51 ship at 10 kts and 33 ft water depth 
5. tugboat_case1.tar.gz: tugboat scenario 1 with propeller blowing to open water 
6. tugboat_case2.tar.gz: tugboat scenario 2 with propeller blowing to pier wall 
7. tugboat_case3.tar.gz: tugboat scenario 3 with propeller blowing parallel to pier wall 

 
Each folder contains the following set of files that must be written by the users: 

1. gridgen0.dat (or  plot3d0.dat),  this file contains the multi-block numerical grids in 
either GRIDGEN or PLOT3D format. The file format is given later. 

2. inputblk.dat, this file assigns a name to each of the computational grid blocks and 
contains information regarding their size (both active and phantom grids are listed). 

3. inputmpd.dat, this file contains the multi-processor distribution information. 
4. input.dat, this is the control program file, where the user may specify, for example, the 

Reynolds number, the time step size, relaxation factors, etc. 
5. overset.in, this is the control file for the hole-cutting and donor-searching program 
6. *.bcs, files containing the boundary condition input for each block in each process, a total 

of “number of processes” files must be present. 

In all FANS-3D simulations, it is necessary to construct first the numerical grid for each test case. 
The name of the grid file is specified in inputblk.dat. The grid file may be written in either 
GRIDGEN or PLOT3D format as follows: 

(A) GRIDGEN format (iformat = 1) 
 
! read the volume grid from gridgen0.dat file (specified in inputblk.dat) 
! each block has size nxi_GL, net_GL, nzt_GL 

 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
ijkst_GL=ijkpos_GL(nbk_GL) + 1 
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
read(10,*) nbk_dum,nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk,GL) 
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 

(yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
(zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL) 

end do 
 

(B) PLOT3D format (iformat = 2) 
 
! read the volume grid from plot3d0.dat file (specified in inputblk.dat) 
! each block has size nxi_GL, net_GL, nzt_GL 
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read(10,*) ndum 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
read(10,*) nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL) 
end do 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
ijkst_GL=ijkpos_GL(nbk_GL) + 1 
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 

(yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
(zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL) 

end do 

As the simulation progresses and the grids move and rotate with respect to one another, the grid 
motions (e.g., ship motion and propeller rotation) are updated based on the reference configuration in 
gridgen0.dat (or plot3d0.dat). In the above pseudo-code statements nblocks_GL and 
nphantoms_GL are the number of active (computational) blocks and the number of phantom 
blocks, respectively; which were already read from inputblk.dat. More details of the input files 
and their contents will be given in the following sections, in the context of the example problems. 
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3. FANS-3D CODE PARALLELIZATION 

The FANS-3D code is a general-purpose CFD code allowing for the numerical solution of the 
Navier–Stokes equations governing incompressible flow in body-fitted grids. The code allows for 
multi-block overset (chimera) grids, which can be fully matched, arbitrarily embedded, and/or 
overlapping with each other. Communication between grid components is achieved by Lagrange 
interpolation at the fringes. The code is fully coupled with the hole-making and donor-finding 
algorithm, allowing for the relative movement of the grid blocks at each time step for time-domain 
simulation of fluid-structure interaction problems including violent free surface motions. 

The FANS-3D code is written in Fortran 90/95 standard with dynamic memory allocation and is 
fully parallelized using Message-Passing-Interface (MPI) bindings. It employs a general data 
management strategy that allows single or arbitrarily large groups of consecutive or non-consecutive 
blocks to be assigned to different processors. This strategy enables us to achieve optimal load 
balancing when dealing with multi-block structured grids with vastly different dimensions among 
different grid blocks as shown below. 

Given a multiple block structured grid with N blocks of different sizes, we would like to distribute 
the workload amongst P processes. For example, consider the case N = 7, as shown in Figure 3. 

 

 
Figure 3. Multiple block structured grid showing N = 7 blocks, which 
are to be distributed among P ≤ 7 processes. 

 
The minimum number of processes allowed in the parallelized code is P = 2, and the maximum for 

this case would be P = 7, which would imply that each block is assigned to a single process. Having 
observed the above constraints, the code allows the user to distribute the load in any other manner. 
Below are some examples (by no means exhaustive) of valid load distributions, where we fix the 
number of available processors: 

Example #1: 
P=2 
P1:{1,2,3} and P2:{4,5,6,7} 

 
In this example, process 1 is assigned blocks {1,2,3} and process 2 is assigned blocks {4,5,6,7}. 
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Example #2: 
P=3 
P1:{1,4}, P2:{2,5}, and P3:{3,6,7} 

 
In this example, non-consecutive numbered blocks are assigned to different processors. This is 
particularly advantageous, as the user need not order the blocks in any particular manner during and 
after the grid generation process. 

The load distributions should be such that the load is almost the same amongst all processes. This 
is not a requirement in the code, but is recommended to make efficient use of the computational 
resources. 

The information on load distribution is read in through the file inputmpd.dat, and is as follows 
for example #1 and #2, respectively. 

 
Example #1: 
3 4 % blocks per process for each process 

 
1 2 3 % global block numbers for each process 
4 5 6 7 

 
Example #2: 
2 2 3 % blocks per process for each process 

 
1 4 % global block numbers for each process 
2 5 
3 6 7 

The above input is all that is needed by the code for it to understand and schedule the loads among 
the different processes. In addition, each processes expects one boundary condition file, containing 
boundary condition information for all the blocks it was assigned. The format of the boundary 
condition file is discussed in Appendix A. 
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4. COMPUTER PLATFORMS, COMPILATION, AND EXECUTION 

The FANS-3D code was tested on platforms with Linux® as the operating system, with Intel® 

Fortran 90/95 compilers and Message Passing Interface Chameleon (MPICH) implementations. 
Specifically, in the Dell® clusters at Texas A&M Civil Engineering Department, IBM® clusters at 
Texas A&M Supercomputing Facility, Linux® clusters at U.S. Army Research Laboratory (ARL) 
High Performance Computing cluster, and the Cray XE6m (Copper) cluster at Department of  
Defense High Performance Computing Modernization Program (DoD HPCMP). The FANS code and 
executable can be installed on a wide variety of Unix and Linux® clusters with Message-Passing- 
Interface (MPI) libraries for parallel computations using multiple processors. For simplicity, we will 
summarize only the procedures to compile and execute the code on the Copper cluster at DoD Open 
Research Systems in the following sections. 

The FANS-3D code consists of 18 Fortran 90 files, each with a specific function. A list of the files 
accompanied with a brief description is as follows: 

• main.f90 is the master control file from which all other subroutines are called. The program 
follows a modular-style programming by making use of Fortran 90 modules, which are invoked 
and used in this file. 

• global.f90 is where all global variables are defined. 
• sflow.f90 defines flow parameter variables such as the turbulence model coefficients. 
• sinput.f90 reads-in all the program control inputs, allocates memory, and distributes the load 

among processors. 
• geocoeff.f90 computes and stores the geometric coefficients associated with a well-defined 

transformation. 
• facoeff.f90 computes the 19-point stencil finite-analytic coefficients. 
• moment.f90 solves the moment equations for the velocity components. 
• pressub.f90 computes the 19-point stencil for the pressure Poisson equation, assembles and 

solves the associated system of equations. 
• turbsub.f90 solves the turbulence model equations. 
• sources.f90 computes the source functions for the governing equations. 
• boundary.f90 computes and assigns boundary conditions 
• snorms.f90 computes various metrics, such as residual norms, outer iteration norms, time 

stepping norms, to establish convergence of the iterative solution procedure and time marching 
procedure. 

• gmotions.f90 grid motions file to control and impose how the grids move relative to each 
other and compute the grid velocities. 

• datamgmt.f90 contains the subroutines for the multi-block data management. 
• graphics.f90 generates output files for visualization. 
• sclean.f90 deallocates memory. 
• overset.f90 grid interpolation program for overset grids. 
• dwssub.f90 computes directional short-crested waves. 
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The code is to be compiled by linking the Fortran 90/95 compiler with a MPI library or by using a 
Fortran 90/95 MPI wrapper (e.g., mpiifort, mpif90 or ftn). When using MPI as a library, the 
following is used to compile the code on DoD HPCMP Copper cluster: 
prompt%> module swap PrgEnv-pgi PrgEnv-intel 
prompt%> ftn –openmp –O2 –o fans3d.exe {list of Fortran files} 

The code is simply run by typing the following at the prompt or giving the following command in 
the batch-job file (e.g., for PBS or LSF queue managers): 
prompt%> aprun –n {number of processors} ./fans3d.exe > fans3d.out 

Note that the simulation results for all seven propeller wash scenarios described earlier can be 
reproduced by uploading the corresponding tar files to DoD HPCMP Copper cluster and executing 
the following four commands (using tugboat_case3.tar.gz as an example): 

1.0 Unzip *.tar.gz file. The code executable and input data files will be saved in a newly 
created folder tugboat_case3 

 
Prompt%> tar xzf tugboat_case3.tar.gz 

 
2.0 Change programming environment from the default 'pgi' to 'intel' Fortran 

 
Prompt%> module swap PrgEnv-pgi PrgEnv-intel 

 
3.0 Switch to working directory 

 
Prompt%> cd tugboat_case3 

 
4.0 Submit job to the batch queue (with appropriate project number in the job control 

file) 
 

Prompt%> qsub submit_pbs 
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5. FANS-3D DATA EXPORT 

On FANS-3D output, the following files are written out to visualize the solution using the 
commercial flow visualization software such as FieldView, Tecplot®, or MATLAB®: 

1. force.dat, x, y, and z forces exerted on the propeller blades, ship hull surface, and/or other 
solid surfaces. 

2. motion.dat, time history of six-degree-of-freedom ship motion 
3. overset.out, output file containing grid interpolation information. 
4. fans3d.out, output file for monitoring of convergence history. 
5. restart_xyz.dat, instantaneous grid restart file for continuation run 
6. restart_q{number}.dat, instantaneous flow field restart file for continuation run. 
7. movie_x{number}.dat, three-dimensional output to visualize the entire grid at time step 

{number}. 
8. movie_q(number}.dat, three-dimensional output to visualize instantaneous velocity and 

pressure fields at time step {number}. 
 

The force.dat contains ASCII data files in column format. It can be read directly into Tecplot® 

or MATLAB® or other compatible software for 2D line plots of the (x, y, z) forces and moments 
(with respect to the gravity or center of rotation). For a problem involving six degrees-of-freedom 
(heave, sway, surge, pitch, yaw, and roll) motions under hydrodynamic loadings, such as wave and 
current, the code will also output the motion histories in motion.dat file, which is also in ASCII 
column data format. 

The  overset.out is an ASCII file containing grid interpolation information such as 
interpolation stencils and interpolation coefficients for the multi-block overset grid system. The 
fans3d.out is also in ASCII format. It is used to monitor the convergence histories of all flow 
variables. These files are useful for debugging of the input data files. 

The restart files restart_xyz.dat and restart_q*.dat are unformatted files which are 
used internally by the FANS-3D code for continuation runs. The code will automatically read in the 
restart files if the users wish to continue a previous simulation for a longer duration. 

The movie_x*.dat and movie_q*.dat output files were written in standard PLOT3D format 
as follows: 
! PLOT3D grid output (movie_x{number}.dat) for flow visualization 
write(54) nblocks_GL 
write(54) 
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL) 

 
do nbk_GL=1,nblocks_GL 

ijkst=ijkpos_GL(nbk_GL)+1 
ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
write(54)(xp(ijk),ijk=ijkst,ijknd), & 

(yp(ijk),ijk=ijkst,ijknd), & 
(zp(ijk),ijk=ijkst,ijknd), & 
(iblank(ijk),ijk=ijkst,ijknd) 

end do 
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! PLOT3D flow output (movie_q{number}.dat) for flow visualization 
write(55) nblocks_GL 
write(55) 
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL) 

 
do nbk_GL=1,nblocks_GL 

ijkst=ijkpos_GL(nbk_GL)+1 
ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
write(55) alpha,fsmach,reynolds,time 
write(55)(rho(ijk),ijk=ijkst,ijknd), & 

(rho(ijk)*u(ijk),ijk=ijkst,ijknd), & 
(rho(ijk)*v(ijk),ijk=ijkst,ijknd), & 
(rho(ijk)*w(ijk),ijk=ijkst,ijknd), & 
(pr(ijk),ijk=ijkst,ijknd) 

end do 
 

The PLOT3D grid output files (movie_x*.dat) contain the coordinates (x, y, z) and blanking 
information (iblank) for every grid point in the multi-block overset grid system. The corresponding 
flow variables, including density, momentum, and pressure (ρ, ρu, ρv, ρw, p) are stored in PLOT3D 
output files (movie_q*.dat). These data files can be imported directly into the commercial 
software FieldView for flow visualization and saved in animation video files (in avi format). The 
movie data files can also be imported into the commercial Tecplot® software using the ‘PLOT3D 
Loader’ option. Typical results include the velocity contours, velocity vector plots, and pressure 
contours. Other quantities such as shear stresses and vorticities can also be calculated using the user- 
defined functions in FieldView and Tecplot®. The users may consult the FieldView and Tec)Plot® 

manuals for additional information on the post-processing of PLOT3D data. 
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6. EXAMPLE CASE 1 
DDG 51 SHIP AND P4876 PROPELLER WASH STUDY 

In this section, we present an example test case for the DDG 51 propeller wash study. The problem 
demonstrates the many capabilities of the FANS-3D formulation and implementation, which include: 
embedded and non-matching grids, relative motion between grid components, load distribution 
among different processes, high Reynolds number flows, and robustness in the presence of high 
aspect ratio skewed meshes. 

Chen and Wang (2016) show the computational domain and multi-block overset grids for this case 
in Figure 2 of the SSC Pacific technical report. The length of the DDG 51 ship is 142.04 m (466 ft) 
and the designed draft is 9.4488 m. The diameter of the twin-screw P4876 propellers is 5.4864 m (18 
ft), and the center of propeller axis is located at 5.7912 m below the mean water level. We   
performed a calculation for a shallow water case with water depth H = 10.0584 m (33 ft). Under this 
condition, the underkeel clearance is only 0.6096 m (2 ft) beneath the sonar dome and the minimum 
gap between the propeller tip and the sea bottom is 1.524 m (5 ft). The twin-screw propellers are 
rotating at 51 rpm when the ship speed is 10 kts. 

A commercial grid generation software Gridgen® was used to generate the overset grid system for 
the DDG 51 ship and the five-blade P4876 propeller. As noted earlier, the composite grid consists of 
15 computational blocks and 7 phantom grid blocks with 2,369,549 grid points covering half of the 
solution domain. There are five blocks for five propeller blades, three blocks for propeller shaft and 
near-wake regions, one block for the ship, and six blocks for the far field. The 15 blocks are shown in 
different colors in Figure 2 of the SSC Pacific technical report. In  addition, seven phantom grids (not 
shown) are needed to perform the hole-cutting adequately. The end-user does not need to be 
concerned with phantom grids, as they do not enter into the actual computations, and hence do not 
need to be listed in the multi-processor input file or the boundary condition input files. 

In this particular run, the five propeller blades, the shaft block, are assigned to three processes, the 
ship is assigned to the fourth process, the propeller near-wake region is divided into two blocks and 
assigned to two separate processes, and the far-field grids are decomposed into six blocks and 
assigned to six different processes. For this example, the file inputblk.dat contains the following 
data: 
! Geometry input file (second line, no more than 40 characters) 
gridgen0.dat 

 

1  ! 1: Gridgen format, 2: Plot3d format 
15 7 ! nblocks + nphantom (including phantom grid) 

62 41 41 
propeller01 

 
62 41 41 

propeller02 
 
62 41 41 

propeller03 
 
62 41 41 

propeller04 

62 41 41 



14  

propeller05 
 

38 21 122 
shaft01 

 
28 32 122 

shaft02 
 

65 21 122 
shaft03 

 
121 35 41 
ship01 

 
34 81 77 

basin01 
 

34 81 77 
basin02 
 

34 81 77 
basin03 
 
152 65 21 
ocean01 

 
77 65 42 

ocean02 
 

77 65 42 
ocean03 
 

3 41 61 
phantom01 
 

3 41 61 
phantom02 
 

3 41 61 
phantom03 

 
3 41 61 

phantom04 
 

3 41 61 
phantom05 
 

2 2 2 
phantom06 
 

2 2 2 
phantom07 

This input specifies that the name of the composite grid file is gridgen0.dat, and it is in 
Gridgen® format. There are 15 computational blocks and 7 phantom blocks (22 blocks total). Then, 
for each of the 15 computational blocks, we must specify their (i, j, k) sizes and assign to a name to 
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them that must be consistent with the names used in the overset.in input for the hole-cutting and 
donor-search algorithm. 

The file overset.in contains the input necessary for the hole-cutting and donor-search program. 
The format of this file is not discussed here, and the interested reader may consult the Chimera 
Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file 
used for this case is shown in Appendix B. 

The file inputmpd.dat contains the information necessary for the code to distribute the load 
among the different processes, as described in the previous section. For this particular case, the file 
has the following information: 

 
% number of blocks per process, for each process 
2 2 2 1 1 1 1 1 1 1 1 1 

 
1 2 % global block number per process, for each process 
3 4 
5 6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

 

Note that only active (computational) blocks are listed in this input, i.e., phantom blocks do not 
need to be distributed as they do not represent any computational load. In this particular case, we 
assign propeller blades 1 and 2 (propeller01, propeller02) to first process, blades 3 and 4 
(propeller03, propeller04) to the second process, and blade 5 and the first shaft block 
(propeller05, shaft01) to the third process. The remaining nine computational blocks (two 
shaft blocks, one ship block, three basin blocks, and three ocean blocks) are assigned to processes 
#4–#12 with only one single block in each process. 
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The input.dat file is the main control input file and is as follows: 
 
1 % MTURB flag for laminar (0) or turbulent (1) flow 
1 % INCOMP flag for incompressible (1) or compressible (0) flow 
0 % IFSURF flag for (1) free surface flow (0) no free surface 
2.1868E7 % RE Reynolds number 
0.04 % TAU time step size 
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0 
1.0E-08  % TOL1  L2 vel tol to stop time stepping 
1.0E-03 % TOL2 L1 res tol to stop outer iterations 
1 % ITIMEST starting time step to compute 
12500  % ITIMEND ending time step to compute 
1 % MAXIT_LS max allowable ADI sweeps for level-set function 
3 % MAXITER max allowable outer iterations 
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps 
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP sweeps 
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps 
6 % MAXIT_DIVU max projections of velocity field onto div-free space 
0.60 % RFU relaxation factor for velocities (due to nonlinearity) 
0.30 % RFP relaxation factor for pressure (due to u-p decoupling) 
0.010 % RFKE relaxation factor for turbulent k.e. and dissipation 
0.5 % RFPHI relaxation factor for level-set function 
0 % ITIME_BCS flag to indicate (1) time dependent bcs 
 
fans.grd  % GEOFILE geometry input file (HCC: not used in this version) 
ddg.bcs % BCSFILE boundary conditions input file 
 
1 % IACT_PLOT flag to activate (1) visualization output 
100 % ISKP_PLOT time intervals for vis and restart 

 
1 % IACT_ANIME flag to activate (1) animation output 
0 % IBGN_ANIME time step number at which animation begins 
4 % ISKP_ANIME multiples at which sol is written out for animation 
 
0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn 
 
-5.0 % UMIN 
5.0 % UMAX 

-10. % PMIN 
10. % PMAX 
0.050 % TKEMAX 
0.02 % TVISMAX 

-0.5 % PHILSMIN 
0.5 % PHILSMAX 

 
1.0 % FROUDE Froude number (gravity acts in negative z-direction) 
0.0020  % EWIDE  representative grid size 
 
0.0 % RFG geometry distortion relaxation parameter 

 
0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities 
-1.103143 0. 0. % UBODY, VBODY, WBODY body velocities (ship speed) 

 
1 % IMOVE (0) fixed grid, (1) moving grid 

 
0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof) 
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1 12 % NPROP (#propellers), NMVPROP (max #blocks moving with propeller) 
 
1 1 % IPROP (propeller ID), IROT (1: clockwise, -1: counter-clockwise) 
12 6 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 
1 2 3 4 5 6 7 16 17 18 19 20 % moving propeller block ID (propeller #1) 

 

Most of the entries of the input file are self-descriptive, but we further elaborate on each of them in 
the following: 

• MTURB is a flag to specify whether to numerically solve the Navier–Stokes equations directly 
(laminar flow or DNS) or to solve the Reynolds-averaged Navier–Stokes equations with the near- 
wall two-layer k-epsilon model. 

• INCOMP is a flag to specify whether flow is incompressible or compressible. 
• IFSURF is a flag to specify whether it is necessary to update free surface. For this case, the free 

surface effect is ignored. 
• RE is the Reynolds number. For this case, it is based on the propeller diameter and the propeller 

rotating speed. 
• TAU is the value for the time step size. In this case the angular velocity of the propeller is such 

that one revolution is completed in one unit of time. 
• AMP_RHO is the high-frequency damping parameter for the second-order accurate family of time 

integrators, as described in the formulation section. 
• TOL1 is tolerance of L2 velocity-norm to stop time stepping when the steady state is reached. 
• TOL2 is tolerance of L1 velocity-residuals to stop outer iterations within each time step. 
• ITEMEST is the starting time step of the computation. A value of 1 is specified for new runs. If 

the value is greater than 1, the code will read-in restart files from previous runs and continue the 
computation to the new ending time step. 

• ITEMEND is the ending time step the user wishes to compute, for the previously specified value 
of the time step size. 

• MAXIT_LS is the maximum allowable Alternating-Directional-Implicit (ADI) sweeps for the 
level-set function. 

• MAXITER is the maximum allowable number of outer iterations on a given time step. For time 
accurate solutions this value must be greater than one, to allow for good velocity-pressure 
coupling and hence time accuracy of the flow field. 

• MAXSWP_U, MAXSWP_P, MAXSWP_KE is the maximum allowable number of inner iterations 
on a given outer iteration, to iteratively solve the momentum, pressure, and turbulence transport 
equations, respectively. 

• MAXIT_DIVU is the maximum allowable number of projections of the velocity field onto a 
divergence-free space on a given outer iteration. 

• RFU is the relaxation factor for the velocity field. The optimal values lie in the range [0.4, 1.0], 
although lower values may be needed for complex problems. 

• RFP is the relaxation factor for the pressure field. Also, in accordance with well-established 
practices, we find that optimal values lie in the range [0.1, 0.8], although higher values may also 
be used and lower values may also be needed. 

• RFKE is the relaxation factors for the turbulent transport variables. We find that typically optimal 
values lie in the range [0.01, 0.5]. Although lower values may be needed. 
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• RFPHI is the relaxation factors for the level-set function. We find that typically optimal values 
lie in the range [0.2, 1.0]. 

• BCSFILE is a string specifying the name of the family of boundary conditions files. The family 
must have “number of processors” members. In this particular case, since there are 12 processes 
involved, we must have 12 files (ddg00.bcs ~ ddg11.bcs) ready. 

• GEOFILE is a string specifying the name of the grid file. It is not needed in this version since the 
grid name has already been specified in inputmpd.dat. 

• IACT_PLOT, ISKP_PLOT are control flags to activate the output and to control how frequently 
the output files are updated. The output is in PLOT3D format for visualization using commercial 
software such as FieldView, Tecplot® or other compatible flow visualization tools. 

• IACT_ANIME, IBGN_ANIME, ISKP_ANIME are control flags to write out a movie, which is 
to be processed by the software FieldView. For this case, the movie corresponds to grid 
coordinates and grid blanking values, density, velocity vectors, and pressure on every point in the 
flow field. 

• ISOL_PR is a flag for pressure solvers. The pressure can be solved using either tridiagonal 
matrix algorithm (TDMA-ADI) or strongly-implicit method (SIP-7pt). 

• UMIN, UMAX, PMIN, PMAX, TKEMAX, TVISMAX are limiters on the velocity, pressure, 
and turbulent transport variables. These are set to high values, and are just a safeguard against a 
poor initial guess, which may cause the fields to oscillate violently in the initial stages of the 
iterations. 

• PHILSMIN, PHILSMAX are limiters for the level-set function. They are set to high values, and 
are just a safeguard against a poor initial guess, which may cause the fields to oscillate violently 
in the initial stages of the iterations. 

• EWIDE is a representative grid size used specifying the transitional zone thickness adjacent to 
the air-water interface. 

• RFG is a geometry distortion parameter. The default value is 1 for orthogonal or nearly- 
orthogonal grids, but may be reduced to improve convergence for highly-skewed grids. The 
relaxation parameter does not affect accuracy for orthogonal grids and has negligible effects for 
nearly orthogonal grids. 

• UINF, VINF, WINF are the values of (x,y,z) components of the free-stream velocity. For this 
case, the ambient current velocity is zero. 

• UBODY, VBODY, WBODY are the values of (x,y,z) components of the body velocity (i.e., ship 
speed) normalized by the characteristic velocity nD, when n is the propeller rotating speed and D 
is the propeller diameter. For this case, the ship is traveling in negative-x direction with a 
normalized speed equals to the propeller advance coefficient J=V/nD. 

• IMOVE is a flag for grid motion. A value of 0 is specified for fixed grid system. The value is set 
to 1 for moving grid in this case since the ship is moving at constant forward speed and the 
propeller is also turning. 

• NBODY, NFBODY, MBLK are the number of body for force/moment integration, maximum 
number of surfaces for force/integration, and the maximum number of blocks with six-degree-of- 
freedom motions. These parameters are not needed for the propeller wash study considered in the 
present study. 

• NPROP is the number of propellers. A value of 1 is specified for single-screw propeller. The 
value is set to 2 for twin-screw propellers. In this case, we set NPROP = 1 since the computation 
was performed for only one-half of the solution domain. A value of 2 should be specified for 
fully domain calculations involving twin-screw propellers. 
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• NMVPROP is the maximum number of grid blocks rotating with any propellers. 
• IPROP is the propeller ID. For twin-screw propellers, the propeller rotating directions and the 

computational grid blocks associated with each propeller can be defined separately. 
• IROT is a flag specifying the propeller rotating direction. A value of 1 indicates that the propeller 

is rotating in clockwise direction. For counter-rotating twin-screw propellers, it is convenient to 
straightforward to specify IROT = −1 for the second propeller rotating in counter-clockwise 
direction. Also, it is convenient to change the signs of IROT if the same propellers are under the 
crash-astern condition. 

• IMVPROP is the total number of grid blocks (including phantom grids) rotating with a given 
propeller. In this case, there are 5 propeller blade blocks, 2 shaft/hub blocks, and 5 phantom 
blocks (one for each propeller blade) rotating with each propeller. The identification numbers of 
the rotating grid blocks are specified in the next line. 

• ISHAFT is the block identification number of the shaft grid block. This allows the users to 
specify the center or rotation for each propeller. 

Since the workload is distributed to 12 processors for parallel execution, it is necessary to write 12 
separate boundary condition files (ddg00.bcs~ddg11.bcs) which are included in the 
ddg51_10kt_33ft.tar.gz for the present case. The boundary condition files follow the format 
outlined in Appendix A. Below we discuss, as an example, the boundary conditions specified for one 
of the propeller blades. 

 
propeller01   % global block #1 

1 6 62 41 41 0 % mb,nfabcs,ni,nj,nk 
 

2      % No. of two-layer regions 
1 1 3 1 62 1 21 1 41 % nreg,iedy,idist,(i,j,k) 
2 2 0 1 62 20 41 1 41 % nreg,iedy,idist,(i,j,k) 

 

1       % No. of free surface regions 
1 3 1 62 1 41 1 41 % nLSreg, nLS, (i,j,k) 

Face #1 
% (u,v,w,p,k,epsilon,phiLS) 

1 41 1 41 % (i,j,k) range 
 

2 1      % Face #2 
4 4 4 4 4 4 4    
1 41 1 41       
3 1      % Face #3 
9 9 9 2 1 3 3    
1 62 1 41       
4 1      % Face #4 
4 4 4 4 4 4 4    
1 62 1 41       
5 1      % Face #5 
9 9 9 2 1 3 3    
1 62 1 41       
6 1      % Face #6 
11 11 11 11 11 11 11 
1 62 1 41    
14 2 64 41   % nbk_GL,i,j,k for pressure datum 

1 1      % 
4 4 4 4 4 4 4  
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The first line lists the blockname for block identification. The second line specifies that this is 
block #1 for the given process, it has six faces with boundary conditions, and the (i, j, k) dimensions 
of the block are 62 × 41 × 41. The fourth line indicates that two regions need to be identified to apply 
the near-wall two-layer k-epsilon turbulence model. The following two lines specify the two-layer 
model types (iedy, near-wall or outer), the identification (idist) of each wall boundary, and the 
(i, j, k) range of the specific region. The eighth line indicates that only one region exists for the level- 
set function (phiLS) specification. The free surface solver option (nLS) and the (i, j, k) range for that 
region are specified in the next line. These free surface boundary conditions are not used in this case 
since the free surface effect is neglected with the flag IFSURF = 0. 

Then, for each face, we read the face number and the number of sections in the face. For each 
section on a given face, we read 7 boundary conditions associated with each of the 7 field variables: 
(u, v, w, p, k, ε, phiLS), and the surface limits on that face. 

Faces #1 and #2 (i-min and i-max, respectively) of the blade block receive interpolation 
information, and thus all the field variables have boundary condition #4. Face #3 (j-min) is the solid- 
surface of the blade, for which (u, v, w) are assigned the grid velocity due to the rotation of the blade, 
p is linearly extrapolated, turbulent kinetic energy is zero on the wall, and the Neumann boundary 
conditions are used for turbulent energy dissipation and level-set function. Face #4 (j-max) receives 
interpolation information and all field variables have boundary condition #4. Face #5 (k-min) is part 
of the shaft’s solid-surface and its boundary conditions are identical to those on face #3 for a solid- 
wall. Face #6 (k-max) is a branch cut around the blade tip where the flow variables are updated by 
averaging the adjacent nodal values on either side of the branch cut plane. 

For this example run, the flow field is initialized with calm water condition and the propeller is 
allowed to rotate for 100 revolutions. The ship travels at a constant forward speed of 10 kts and the 
propeller rotating speed is 51 rpm (0.85 rps). The flow conditions correspond to an advance 
coefficient J=1.103 and a Reynolds number of 2.1868 × 107 based on the propeller diameter. This 
corresponds to a Reynolds number of 6.245 × 108 based on the ship length and ship speed. The 
RANS equations are solved with the near-wall two-layer k-ε turbulence model. 

As noted earlier, the PLOT3D grid output files (movie_x*.dat) contain (x, y, z, iblank) for the 
multi-block overset grids, while the PLOT3D flow output files (movie_q*.dat) contain the flow 
variables (ρ, ρu, ρv, ρw, p). These data files can be imported directly into FieldView for flow 
visualization and post-processing. Typical results include the velocity contours, velocity vector plots, 
and pressure contours as shown in Figures 2 through 7. Other derived quantities such as shear 
stresses and vorticities can also be calculated using the user-defined functions in FieldView. Figure 8 
shows the shear stresses on the sea bed which can be readily obtained by evaluating the velocity 
gradients adjacent to the bottom boundary using the following formula: 

τ = µ ∂q 
= µ ∆q 

 
, q=  u2  + v2  + w2  , (14) 

∂n ∆n wall 

where q is the velocity magnitude, µ is the dynamic viscosity of the seawater, and ∆n is the normal 
distance from the wall. The same shear stress data can also be plotted using another commercial code 
MATLAB®, as shown in Figure 9. 
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7. EXAMPLE CASE 2 
TUGBOAT AND DUCTED PROPELLER WASH STUDY 

In the second test case, we consider a tugboat boat with two ducted propellers under bollard-pull 
condition (i.e., zero forward speed), as shown in Figure 11 of the SSC Pacific technical report and 
Figures 1 and 2 in this document. The composite grid was generated by the commercial grid 
generation software Gridgen®. It consists of 47 computational blocks and 9 phantom grid blocks, 
with 7,070,832 total grid points. There are four blades for each propeller, and each blade is divided 
into two overlapping computational blocks. Each ducted propeller assembly is surrounded by five 
computational blocks covering the upstream, downstream, inner, and outer regions between the 
propeller shaft and the shroud. In addition, two near-wake cylindrical grid blocks (one for each 
propeller) are added to provide accurate resolution of the propeller wake flows. The tugboat is 
surrounded by a single boundary-fitted grid block, and the far field is covered by 18 overlapping 
rectangular grid points. A near-wall spacing of 10-6 ft was used near the sea bottom to provide 
accurate resolution of the turbulent boundary layer flow. This allows us to calculate the shear stresses 
on the seabed directly without relying on the wall-function approximations. 

The composite grid load is now distributed among 35 processes and we consider the bollard-pull 
(zero tugboat speed) condition with the ducted propellers blowing parallel to a pier wall. The file 
inputblk.dat contains the following data: 
! Geometry input file (second line, no more than 40 characters) 
gridgen0.dat 
1 ! 1: Gridgen format, 2: Plot3d format 
47 9 ! nblock + nphantom0 (including phantom0 grid) 

 
62 35 42 

propeller01a 
 

62 35 42 
propeller02a 

 
62 35 42 

propeller03a 
 
62 35 42 

propeller04a 
 

29 4 5 
tip01a 
 

29 4 5 
tip02a 
 

29 4 5 
tip03a 
 

29 4 5 
tip04a 
 
21 57 122 

duct01a 
 
66 24 122 
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duct02a 
 

53 35 
duct03a 

122 

53 23 
duct04a 

122 

21 79 
duct05a 

122 

40 41 
wake01a 

122 

62 35 42 
propeller01b 

 
62 35 42 

propeller02b 
 

62 35 42 
propeller03b 

 
62 35 42 

propeller04b 
 

29 4 5 
tip01b 

 
29 4 5 

tip02b 
 

29 4 5 
tip03b 

 
29 4 5 

tip04b 
 

21 57 122 
duct01b 

 
66 24 122 

duct02b 
 

53 35 122 
duct03b 

 
53 23 122 

duct04b 
 

21 79 122 
duct05b 

 
40 41 122 

wake01b 
 

20 116 95 
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ocean01 
 
20 116 95 
ocean02 
 
20 116 95 
ocean03 
 
20 116 95 
ocean04 
 
20 116 95 
ocean05 
 
20 116 95 
ocean06 
 
20 116 95 
ocean07 
 
20 116 95 
ocean08 
 
20 116 95 
ocean09 
 
20 116 95 
ocean10 
 
20 116 95 
ocean11 
 
20 116 95 
ocean12 
 
20 116 95 
ocean13 
 
20 116 95 
ocean14 
 
20 116 95 
ocean15 
 
16 116 95 
ocean16 
 
151 37 33 
ocean17 
 
151 37 33 
ocean18 
 
107 34 61 
barge01 

3 31 41 
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phantom01a 
 

3 31 41 
phantom02a 

 
3 31 41 

phantom03a 
 

3 31 41 
phantom04a 

 
3 31 41 

phantom01b 
 

3 31 41 
phantom02b 
 
3 31 41 

phantom03b 
 
3 31 41 

phantom04b 
 

2 3 2 
phantom05 

 
The file inputmpd.dat contains the information necessary for the code to distribute the load 

among the 35 different processes. For this particular case, the file has the following information: 
 
% number of blocks per process, for each process (excluding phantom grids) 
4 4 1 1 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
1 5 2 6 % global block number per process, for each process 
3 7 4 8 
9 

10 
11 
12 
13 
14 
15 19 16 20 
17 21 18 22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
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36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

 

Once again, the only active (computational) blocks are listed in this input, i.e., phantom blocks do 
not need to be distributed as they do not represent any computational load. In this particular case, 
there are 47 actives blocks, including 14 blocks for each ducted propeller assembly, 2 blocks for 
propeller near-wakes, 1 block for the tugboat, and 18 blocks for the far field. To balance the 
workload for each process, we assign two blade and two tip blocks to a single processor. More 
specifically, the first eight computational blocks (#1 though #8) consist of four blade and four tip 
grids for the first ducted propeller are assigned to processes #0 (master process) and #1, while the 
other eight blade/tip blocks (#15 through #22) for the second ducted propeller are assigned to 
processes #8 and #9 as shown in the inputmpd.dat file. The remaining 31 computational blocks 
containing the ship, shroud, near-wake, and far-field grids are assigned to 31 different processes. As 
noted earlier, the user need not order the blocks in any particular manner during and after the grid 
generation process. 

The input.dat file (the main control input file) requires only minor modifications, relative to 
the DDG 51 ship case. The most notable difference is that there are two co-rotating propellers in the 
present full-domain simulation. For each ducted propeller, there are 12 rotating grid blocks (4 blade 
surface blocks, 4 blade tip blocks, and 4 phantom grids). It is straightforward to specify the rotating 
direction, shaft block ID, and the IDs of rotating grid blocks associated with each propeller in the 
following input.dat file. 

 
1 % MTURB turbulence model: (0)laminar (1)k-epsilon (2)LES 
1 % INCOMP flag for incompressible (1) or compressible (0) flow 
0 % IFSURF flag for free surface flow (1) or no free surface (0) 
2.6468E5 % RE  Reynolds number (L=1ft, U=1ft/s, T=L/U=1s) 
0.04 % TAU time step size 
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0 
1.0E-08 % TOL1 L2 vel tol to stop time stepping 
1.0E-03 % TOL2 L1 res tol to stop outer iterations 
1 % ITIMEST starting time step to compute 
12500  % ITIMEND ending time step to compute 
1 % MAXITER_LS max allowable outer equation for level-set eqn 
6 % MAXITER max allowable outer iterations 
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps 
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP sweeps 
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps 
2 % MAXIT_DIVU max projections of velocity field onto div-free space 
0.4 % RFU relaxation factor for velocities (due to nonlinearity) 
0.2 % RFP relaxation factor for pressure (due to u-p decoupling) 
0.001 % RFKE relaxation factor for turbulent k.e. and dissipation 
0.5 % RFPHI relaxation factor for level set funtion 
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0 % ITIME_BCS flag to indicate (1) time dependent bcs 
 
fans.grd % GEOFILE geometry input file (HCC: not used in this version) 
prop.bcs % BCSFILE boundary conditions input file 

 
1 % IACT_PLOT flag to activate (1) visualization output 
100 % ISKP_PLOT time intervals for vis and restart 

 
1 % IACT_ANIME flag to activate (1) animation output 
0 % IBGN_ANIME time step number at which animation begins 
20 % ISKP_ANIME multiples at which sol is written out for animation 

 
0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn 

 
-30. % UMIN 
30. % UMAX 

-200. % PMIN 
200. % PMAX 
1.0 % TKEMAX 
0.01 % TVISMAX 

-30. % PHILSMIN 
30. % PHILSMAX 

 
1.0 % FROUDE Froude number (gravity acts in negative z-direction) 
0.003 % EWIDE representative grid size 

 
0.0 % RFG geometry distortion relaxation parameter 
 
0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities 
0.0 0.0 0.0 % UBODY, VBODY, WBODY body velocities (ship speed) 
1 % IMOVE (0) fixed grid, (1) moving grid 
 
0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof) 
 
2 12 % NPROP (#propellers), NMVPROP (max #blocks moving with a propeller) 

 
1 1 % IPROP (propeller #1), IROT (1: clockwise, -1: counter-clockwise) 
12 10 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 
1 2 3 4 5 6 7 8 48 49 50 51 % moving propeller block ID (propeller #1) 

 
2 1 % IPROP (propeller #2), IROT (1: clockwise, -1: counter-clockwise) 
12 24 % NMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 15 
16 17 18 19 20 21 22 52 53 54 55 % moving propeller ID (propeller #2) 

 

The file overset.in needs to be suitably modified for the hole-cutting and donor-search 
algorithm, and is provided in Appendix C. New boundary condition files need to be created for the 
new tugboat and ducted propeller geometries. In addition, the boundary condition files for the far 
field need to be modified slightly to enforce the no-slip boundary conditions on pier walls. All 35 
boundary condition files are included in tugboat_case3.tar.gz zipped folder. 

For this example run, the flow field is initialized with a calm water condition and the propeller is 
allowed to rotate for 500 revolutions under the bollard-pull condition with zero forward speed. The 
simulation was performed for 12,500 time steps with a time increment of 0.04 To, where To is a 
characteristic time for the propeller to turn one revolution. For simplicity, the characteristic length Lo 
was chosen to be 1 ft so the full scale tugboat and propeller grids (in ft) can be used directly without 
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rescaling. This gives a Reynolds number of 2.647 × 105 based on the characteristic length Lo = 1 ft 
when the propeller is rotating at 200 rpm. The corresponding Reynolds number based on the 
propeller diameter is 1.488 × 107 based on the propeller diameter. The RANS equations are solved 
with the near-wall two-layer k-ε turbulence model. 

The movie_x*.dat and movie_q*.dat output files were post-processed using the FieldView 
flow visualization software. Typical results include the velocity contours and velocity vector plots at 
selected coordinate surfaces, and pressure contours on the propeller blade and shroud surfaces. The 
velocity and pressure fields induced by the twin propellers were shown earlier in Figures 19 through 
23 for this case. These velocity contours and velocity-vector plots clearly illustrate that the right 
propeller wake is strongly affected by the parallel pier wall. Furthermore, there is a strong interaction 
between the left and right propellers with the two ducted propellers rotating in the same rotation. For 
the co-rotating propellers considered here, there is a partial suppression of the swirling flow 
momentums in the overlap region between two propeller wakes. This resulted in a deflection of the 
weaker left propeller wake (away from the pier wall) toward the sea bottom, as shown in Figure 23 
provided in the  SSC Pacific technical report. 
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APPENDIX A 
STRUCTURE OF THE BOUNDARY CONDITION INPUT 

The structure of the boundary conditions input is best explained by showing the pseudo-code used 
in the program to read the data: 
do nbk=1,nblocks 

 
read(LB,'(a40)') blockname0 

! dummy read, blockname specified in inputblk.dat 
read(LB,*) mb,nfabcs(mb),ni_dum,nj_dum,nk_dum,mlamp(mb) 

 
read(LB,*) 
read(LB,*) nregions(mb) 

 
nregs=nregions(mb) 
do nr=1,nregs 

read(LB,*)nreg,iedy(mb,nr),idist(mb,nr), & 
read(LB,*)mst1(mb,nr),mnd1(mb,nr), & 

mst2(mb,nr),mnd2(mb,nr), & 
mst3(mb,nr),mnd3(mb,nr) 

end do 
 
read(LB,*) 
read(LB,*) nLSregions(mb) 

 
nLSregs=nLSregions(mb) 
do nLSr=1,nLSregs 

read(LB,*)nLSreg,nLS(mb,nLSr), 
mst1_LS(mb,nLSr),mnd1_LS(mb,nLSr), & 
mst2_LS(mb,nLSr),mnd2_LS(mb,nLSr), & 
mst3_LS(mb,nLSr),mnd3_LS(mb,nLSr) 

end do 
 
read(LB,*) mb,nfabcs(mb),nregions(mb) 
nfbcs=nfabcs(mb) 
do nf=1,nfbcs 
read(LB,*)nfa(mb,nf),nsec(mb,nf) 
nsect=nsec(mb,nf) 
do ns=1,nsect 
read(LB,*)nu(mb,nf,ns),nv(mb,nf,ns),nw(mb,nf,ns),npr(mb,nf,ns), & 

ntke(mb,nf,ns),ntds(mb,nf,ns),nphiLS(mb,nf,ns) 
read(LB,*)nst1(mb,nf,ns),nnd1(mb,nf,ns), & 

nst2(mb,nf,ns),nnd2(mb,nf,ns) 
end do 
end do 

 
end do 
read(LB,*) nbk_prd,i_prd,j_prd,k_prd 
close(LB) 

 

Each process expects a boundary condition input file and executes the above given pseudo-code. 
The first read statement is a dummy read of the blockname to provide clarity, while the 
blockname specified earlier in the inputblk.dat file will be used for block identification. 
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The second read statement reads-in the local block number, the number of faces with boundary 
conditions for that block, and the (i, j, k) dimensions of the block. 

The third read statement reads-in the number of regions needed to identify near-wall and outer 
regions for the two-layer k-ε model. For each region, we read the iedy flag, indicating whether the 
region is a near-wall region (a value of 1) or an outer region (a value of 2). If the region is a near-wall 
region then the value of idist is the block face number on which the wall lies. We then read the (i, 
j, k) size of the region. 

The fourth read statement reads-in the number of regions needed for various treatments of level-set 
function for free surface flows. For each region, we read the nLS flag, indicating whether the free 
surface should be solved directly using the advection equation for level-set function (a value of 1), 
updated using zero-gradient condition (a value of 2, typically used for the near-wall region), or 
skipped (a value of 3, for single-phase regions without air-water interface). The (i, j, k) size was then 
specified for each region. For the propeller wash study considered here, the free surface wave effects 
were negligible and the initial level-set function for calm free surface was used throughout the entire 
simulation by specifying nLS = 3. 

After defining various regions for the two-layer k-ε turbulence model and the level-set function, 
we then specify boundary conditions for all boundary surfaces in the following order: i = imin (Face 
#1), i = imax (Face #2), j = jmin (Face #3), j = jmax (Face #4), k = kmin (Face #5), and k = kmax 
(Face #6). For each face, we first read the face number and the number of sections in the face. For 
each section on a given face, we then read 7 boundary conditions associated with each of the 7 field 
variables: (u, v, w, p, k, ε, phiLS), and the surface limits on that face. Once this is done for all faces, 
we proceed to read the block, region, and surface data for the next local block on the same processor 
(if more than one blocks are assigned to the same CPU). Finally, we must specify where the global 
pressure datum is located. The information is stored in the variables, nbk_prd, i_prd, j_prd, 
and k_prd. 

A list of available boundary conditions for the velocity components and turbulence field variables 
is given below: 

• #1: Dirichlet boundary condition, which is set by the initial guess or in the initial input 
• #2: linear-extrapolation boundary condition 
• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data 
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6: moving surface boundary condition, assign grid velocities 
• #7, #8: free (not used at the moment) 
• #9: moving surface boundary condition, assign grid velocities 
• #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
• #12: branch cut in higher index, average across branch cut 
• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 

 
 

The following is a list of available boundary conditions for the pressure: 
• #1: free (not used at the moment) 
• #2: linear-extrapolation boundary condition 
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• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data 
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6: free (not used at the moment) 
• #7: compute pressure consistently, using conservation of mass 
• #8, #9, #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
• #12: branch cut in higher index, average across branch cut 
• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 

Typical boundary conditions for a stationary wall are either of the following: 

1 1 1 2 1 1 3 or 
1 1 1 3 1 1 3 
 

In the first one, pressure is linearly extrapolated at the wall, and in the second it is computed 
consistently at the wall using conservation of mass at the boundary itself. For highly skewed meshes 
in the near wall region, linear extrapolation is more stable. 

 
At a free-stream inflow the following are valid options: 

 
5 5 5 2 1 1 or 
5 5 5 3 1 1 
 

In the first one, a zero pressure gradient is enforced, and in the second pressure is computed 
consistently at the boundary using conservation of mass. The second option, where pressure is 
computed consistently, is also valid at the inflow of a channel – where a pressure drop is present. The 
user can appreciate the versatility of the consistent pressure boundary condition, as it applies to 
virtually any situation where velocities are prescribed. 

Similarly, at an outflow, the following are valid options: 

2 2 2 2 2 2 or 
2 2 2 7 2 2 
 

For problems involving free surface, the available boundary conditions for the level-set function 
are listed in the following: 

• #1: free (not used at the moment) 
• #2: linear-extrapolation boundary condition 
• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data 
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6, #7, #8, #9, #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
• #12: branch cut in higher index, average across branch cut 
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• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 
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APPENDIX B 
COSMIC INPUT FILE FOR DDG-51 AND P4876 

PROPELLER WASH STUDY 
! example input for DDG-51 Ship and P4876 propeller wash study 
 
! global parameters 
 
<global> 

fringe = 1, 
quality = 0.01, 
nquality = 4, 
eps = 0.001, 

</global> 
 
 
! grid block definition 
 
<block name = "propeller01"> 

linking_grid_list = <"propeller01","shaft01","shaft02","basin01", 
"basin02","propeller05","propeller02","ocean03"> 

</block> 
<block name = "propeller02"> 

linking_grid_list = <"propeller02","shaft01","shaft02","basin01", 
"basin02","propeller01","propeller03","ocean03"> 

</block> 
<block name = "propeller03"> 

linking_grid_list = <"propeller03","shaft01","shaft02","basin01", 
"basin02","propeller02","propeller04","ocean03"> 

</block> 
<block name = "propeller04"> 

linking_grid_list = <"propeller04","shaft01","shaft02","basin01", 
"basin02","propeller03","propeller05","ocean03"> 

</block> 
<block name = "propeller05"> 

linking_grid_list = <"propeller05","shaft01","shaft02","basin01", 
"basin02","propeller04","propeller01","ocean03"> 

</block> 
<block name = "shaft01"> 

linking_grid_list = <"shaft01","shaft02","shaft03","basin01", 
"basin02","propeller01","propeller02", 
"propeller03","propeller04","propeller05", 
"ocean02","ocean03"> 

</block> 
<block name = "shaft02"> 

linking_grid_list = <"shaft02","shaft01","shaft03","basin01", 
"basin02","propeller01","propeller02", 
"propeller03","propeller04","propeller05", 
"ocean02","ocean03"> 

</block> 
<block name = "shaft03"> 

linking_grid_list = <"shaft03","shaft01","shaft02","basin01", 
"ship01","ocean02","ocean03"> 

</block> 
<block name = "ship01"> 

linking_grid_list = <"basin01","basin02","basin03","ocean01", 
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</block> 

"ocean02","ocean03","shaft01","shaft02", 
"shaft03"> 

<block name = "basin01"> 
linking_grid_list = <"basin02","shaft01","shaft02","shaft03", 

"ocean01","ocean02","ocean03", 
"propeller01","propeller02","propeller03", 
"propeller04","propeller05","ship01"> 

</block> 
<block name = "basin02"> 

linking_grid_list = <"basin01","basin03","shaft01","shaft02", 
"shaft03","ocean01","ocean02","ocean03", 
"propeller01","propeller02","propeller03", 
"propeller04","propeller05","ship01"> 

</block> 
<block name = "basin03"> 

linking_grid_list = <"basin02","ocean01","ocean03"> 
</block> 
<block name = "ocean01"> 

linking_grid_list = <"basin01","basin02","basin03", 
"ocean02","ocean03"> 

</block> 
<block name = "ocean02"> 

linking_grid_list = <"ocean01","ocean03","ship01","basin01", 
"shaft01","shaft02","shaft03"> 

</block> 
<block name = "ocean03"> 

linking_grid_list = <"ocean01","ocean02","basin01","basin02", 
"basin03","ship01","shaft03","shaft02", 
"shaft01"> 

</block> 
<block name = "phantom01"> 

linking_grid_list = <"phantom01"> 
</block> 
<block name = "phantom02"> 

linking_grid_list = <"phantom02"> 
</block> 
<block name = "phantom03"> 

linking_grid_list = <"phantom03"> 
</block> 
<block name = "phantom04"> 

linking_grid_list = <"phantom04"> 
</block> 
<block name = "phantom05"> 

linking_grid_list = <"phantom05"> 
</block> 
<block name = "phantom06"> 

linking_grid_list = <"phantom06"> 
</block> 
<block name = "phantom07"> 

linking_grid_list = <"phantom07"> 
</block> 
 
 
! hole boundary definition 
 
<boundary name = "phantom01 hole boundary"> 
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parent_grid = "phantom01", 
hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 

</boundary> 
 
<boundary name = "phantom02 hole boundary"> 

parent_grid = "phantom02", 
hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 

</boundary> 
 
<boundary name = "phantom03 hole boundary"> 

parent_grid = "phantom03", 
hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 

</boundary> 
 
<boundary name = "phantom04 hole boundary"> 

parent_grid = "phantom04", 
hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 

</boundary> 
 
<boundary name = "phantom05 hole boundary"> 

parent_grid = "phantom05", 
hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 

</boundary> 
 
<boundary name = "phantom06 hole boundary"> 

parent_grid = "phantom06", 
hole_cutting_list = <"ship01"> 

</boundary> 
 
<boundary name = "phantom07 hole boundary"> 

parent_grid = "phantom07", 
hole_cutting_list = <"ship01","ocean03"> 

</boundary> 
 
<boundary name = "shaft01 hole boundary"> 

parent_grid = "shaft01" 
hole_cutting_list = <"basin01","basin02"> 

</boundary> 
 
<boundary name = "shaft03 hole boundary"> 

parent_grid = "shaft03" 
hole_cutting_list = <"basin01"> 

</boundary> 
 
<boundary name = "ship01 hole boundary"> 

parent_grid = "ship01", 
hole_cutting_list = <"shaft03","basin01","basin02", 

"ocean02","ocean03"> 
</boundary> 
 
 
! hole surface definitions 
 
<surface name = "phantom01 hole boundary"> 

ijk_range = 1, 1, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 
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</surface> 
<surface name = "phantom01 hole boundary"> 

ijk_range = 3, 3, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01 hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom01 hole boundary"> 

ijk_range = 1, 3, 41, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01 hole boundary"> 

ijk_range = 1, 3, 1, 41, 61, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom02 hole boundary"> 

ijk_range = 1, 1, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02 hole boundary"> 

ijk_range = 3, 3, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02 hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02 hole boundary"> 

ijk_range = 1, 3, 41, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02 hole boundary"> 

ijk_range = 1, 3, 1, 41, 61, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom03 hole boundary"> 

ijk_range = 1, 1, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03 hole boundary"> 

ijk_range = 3, 3, 1, 41, 1, 61, 
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boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03 hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03 hole boundary"> 

ijk_range = 1, 3, 41, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03 hole boundary"> 

ijk_range = 1, 3, 1, 41, 61, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom04 hole boundary"> 

ijk_range = 1, 1, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04 hole boundary"> 

ijk_range = 3, 3, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04 hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04 hole boundary"> 

ijk_range = 1, 3, 41, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04 hole boundary"> 

ijk_range = 1, 3, 1, 41, 61, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 1, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 3, 3, 1, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
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<surface name = "phantom05 hole boundary"> 
ijk_range = 1, 3, 1, 1, 1, 61, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 3, 41, 41, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 3, 1, 41, 61, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom06 hole boundary"> 

ijk_range = 1, 1, 1, 2, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom06 hole boundary"> 

ijk_range = 2, 2, 1, 2, 1, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom06 hole boundary"> 

ijk_range = 1, 2, 1, 1, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom06 hole boundary"> 

ijk_range = 1, 2, 2, 2, 1, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom06 hole boundary"> 

ijk_range = 1, 2, 1, 2, 1, 1, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom06 hole boundary"> 

ijk_range = 1, 2, 1, 2, 2, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom07 hole boundary"> 

ijk_range = 1, 1, 1, 2, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom07 hole boundary"> 

ijk_range = 2, 2, 1, 2, 1, 2, 
boundary_condition ="cut", 
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surface_normal = "+ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 

ijk_range = 1, 2, 1, 1, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom07 hole boundary"> 

ijk_range = 1, 2, 2, 2, 1, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom07 hole boundary"> 

ijk_range = 1, 2, 1, 2, 1, 1, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom07 hole boundary"> 

ijk_range = 1, 2, 1, 2, 2, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "shaft01 hole boundary"> 

ijk_range = 1, 38, 3, 3, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "shaft03 hole boundary"> 

ijk_range = 6, 65, 3, 3, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "ship01 hole boundary"> 

ijk_range = 1, 121, 21, 21, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
 
! outer boundary definition 
 
<boundary name = "propeller01 outer boundary"> 

parent_grid = "propeller01", 
</boundary> 
<boundary name = "propeller02 outer boundary"> 

parent_grid = "propeller02", 
</boundary> 
<boundary name = "propeller03 outer boundary"> 

parent_grid = "propeller03", 
</boundary> 
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<boundary name = "propeller04 outer boundary"> 
parent_grid = "propeller04", 

</boundary> 
<boundary name = "propeller05 outer boundary"> 

parent_grid = "propeller05", 
</boundary> 
<boundary name = "shaft01 outer boundary"> 

parent_grid = "shaft01", 
</boundary> 
<boundary name = "shaft02 outer boundary"> 

parent_grid = "shaft02", 
</boundary> 
<boundary name = "shaft03 outer boundary"> 

parent_grid = "shaft03", 
</boundary> 
<boundary name = "ship01 outer boundary"> 

parent_grid = "ship01", 
</boundary> 
<boundary name = "basin01 outer boundary"> 

parent_grid = "basin01", 
</boundary> 
<boundary name = "basin02 outer boundary"> 

parent_grid = "basin02", 
</boundary> 
<boundary name = "basin03 outer boundary"> 

parent_grid = "basin03", 
</boundary> 
<boundary name = "ocean01 outer boundary"> 

parent_grid = "ocean01", 
</boundary> 
<boundary name = "ocean02 outer boundary"> 

parent_grid = "ocean02", 
</boundary> 
<boundary name = "ocean03 outer boundary"> 

parent_grid = "ocean03", 
</boundary> 
 
 
! outer boundary surface definition 
 
<surface name = "propeller01 outer boundary"> 

ijk_range = 1, 1, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller01" 
donor_ijk_range = 61, 61, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller01 outer boundary"> 

ijk_range = 62, 62, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller01" 
donor_ijk_range = 2, 2, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller01 outer boundary"> 

ijk_range = 1, 62, 41, 41, 2, 40, 
</surface> 
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<surface name = "propeller02 outer boundary"> 
ijk_range = 1, 1, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller02" 
donor_ijk_range = 61, 61, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller02 outer boundary"> 

ijk_range = 62, 62, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller02" 
donor_ijk_range = 2, 2, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller02 outer boundary"> 

ijk_range = 1, 62, 41, 41, 2, 40, 
</surface> 

 
 
<surface name = "propeller03 outer boundary"> 

ijk_range = 1, 1, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller03" 
donor_ijk_range = 61, 61, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller03 outer boundary"> 

ijk_range = 62, 62, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller03" 
donor_ijk_range = 2, 2, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller03 outer boundary"> 

ijk_range = 1, 62, 41, 41, 2, 40, 
</surface> 

 
 
<surface name = "propeller04 outer boundary"> 

ijk_range = 1, 1, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller04" 
donor_ijk_range = 61, 61, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller04 outer boundary"> 

ijk_range = 62, 62, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller04" 
donor_ijk_range = 2, 2, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller04 outer boundary"> 

ijk_range = 1, 62, 41, 41, 2, 40, 
</surface> 

 
 
<surface name = "propeller05 outer boundary"> 

ijk_range = 1, 1, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller05" 
donor_ijk_range = 61, 61, 1, 41, 1, 41, 

</surface> 
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<surface name = "propeller05 outer boundary"> 
ijk_range = 62, 62, 1, 41,  1, 41, 
boundary_condition = "periodic", 
donor_grid = "propeller05" 
donor_ijk_range = 2, 2, 1, 41, 1, 41, 

</surface> 
<surface name = "propeller05 outer boundary"> 

ijk_range = 1, 62, 41, 41, 2, 40, 
</surface> 
 
 
<surface name = "shaft01 outer boundary"> 

ijk_range = 1, 1, 1, 21, 1, 122, 
</surface> 
<surface name = "shaft01 outer boundary"> 

ijk_range = 1, 38, 21, 21, 1, 122, 
</surface> 
<surface name = "shaft01 outer boundary"> 

ijk_range = 1, 38, 1, 21, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "shaft01" 
donor_ijk_range = 1, 38, 1, 21, 121, 121, 

</surface> 
<surface name = "shaft01 outer boundary"> 

ijk_range = 1, 38, 1, 21, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "shaft01" 
donor_ijk_range = 1, 38, 1, 21, 2, 2, 

</surface> 
 
 
<surface name = "shaft02 outer boundary"> 

ijk_range = 1, 1, 1, 31, 1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 

ijk_range = 28, 28, 1, 31, 1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 

ijk_range = 1, 28, 1, 1, 1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 

ijk_range = 1, 28, 31, 31, 1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 

ijk_range = 1, 28, 1, 31, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "shaft02" 
donor_ijk_range = 1, 28, 1, 31, 121, 121, 

</surface> 
<surface name = "shaft02 outer boundary"> 

ijk_range = 1, 28, 1, 31, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "shaft02" 
donor_ijk_range = 1, 28, 1, 31, 2, 2, 

</surface> 
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<surface name = "shaft03 outer boundary"> 
ijk_range = 65, 65, 1, 21, 1, 122, 

</surface> 
<surface name = "shaft03 outer boundary"> 

ijk_range = 2, 65, 21, 21, 1, 122, 
</surface> 
<surface name = "shaft03 outer boundary"> 

ijk_range = 1, 65, 1, 21, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "shaft03" 
donor_ijk_range = 1, 65, 1, 21, 121, 121, 

</surface> 
<surface name = "shaft03 outer boundary"> 

ijk_range = 1, 65, 1, 21, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "shaft03" 
donor_ijk_range = 1, 65, 1, 21, 2, 2, 

</surface> 
<surface name = "shaft03 outer boundary"> 

ijk_range = 1, 65, 1, 1, 1, 122, 
boundary_condition = "body", 

</surface> 
 
 
<surface name = "ship01 outer boundary"> 

ijk_range = 1, 121, 35, 35, 1, 41, 
</surface> 
 
 
<surface name = "basin01 outer boundary"> 

ijk_range = 1, 1, 1, 81, 1, 77, 
</surface> 
<surface name = "basin01 outer boundary"> 

ijk_range = 34, 34, 1, 81, 1, 77, 
</surface> 
<surface name = "basin01 outer boundary"> 

ijk_range = 1, 34, 81, 81, 1, 77, 
</surface> 
<surface name = "basin01 outer boundary"> 

ijk_range = 1, 34, 1, 81, 1, 1, 
</surface> 
<surface name = "basin01 outer boundary"> 

ijk_range = 1, 34, 1, 81, 77, 77, 
</surface> 
 
 
<surface name = "basin02 outer boundary"> 

ijk_range = 1, 1, 1, 81, 1, 77, 
</surface> 
<surface name = "basin02 outer boundary"> 

ijk_range = 34, 34, 1, 81, 1, 77, 
</surface> 
<surface name = "basin02 outer boundary"> 

ijk_range = 1, 34, 81, 81, 1, 77, 
</surface> 
<surface name = "basin02 outer boundary"> 

ijk_range = 1, 34, 1, 81, 1, 1, 
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</surface> 
<surface name = "basin02 outer boundary"> 

ijk_range = 1, 34, 1, 81, 77, 77, 
</surface> 
 
 
<surface name = "basin03 outer boundary"> 

ijk_range = 1, 1, 1, 81, 1, 77, 
</surface> 
<surface name = "basin03 outer boundary"> 

ijk_range = 34, 34, 1, 81, 1, 77, 
</surface> 
<surface name = "basin03 outer boundary"> 

ijk_range = 1, 34, 81, 81, 1, 77, 
</surface> 
<surface name = "basin03 outer boundary"> 

ijk_range = 1, 34, 1, 81, 1, 1, 
</surface> 
<surface name = "basin03 outer boundary"> 

ijk_range = 1, 34, 1, 81, 77, 77, 
</surface> 
 
 
<surface name = "ocean01 outer boundary"> 

ijk_range = 1, 152, 1, 65, 21, 21, 
</surface> 
 
 
<surface name = "ocean02 outer boundary"> 

ijk_range = 77, 77, 1, 65, 1, 42, 
</surface> 
<surface name = "ocean02 outer boundary"> 

ijk_range = 1, 77, 1, 65, 1, 1, 
</surface> 
 
 
<surface name = "ocean03 outer boundary"> 

ijk_range = 1, 1, 1, 65, 1, 42, 
</surface> 
<surface name = "ocean03 outer boundary"> 

ijk_range = 1, 77, 1, 65, 1, 1, 
</surface> 
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APPENDIX C 
COSMIC INPUT FILE FOR TUGBOAT 

AND DUCTED-PROPELLER WASH STUDY 
 
! example input for tugboat and ducted propellers 
 
! global parameters 
 
<global> 

fringe = 1, 
quality = 0.01, 
nquality = 4, 
eps = 0.001, 

</global> 
 
 
 
! grid block definition 
 
<block name = "propeller01a"> 

linking_grid_list = <"propeller01a","tip01a","propeller04a", 
"propeller02a","duct02a","duct03a"> 

</block> 
<block name = "propeller02a"> 

linking_grid_list = <"propeller02a","tip02a","propeller01a", 
"propeller03a","duct02a","duct03a"> 

</block> 
<block name = "propeller03a"> 

linking_grid_list = <"propeller03a","tip03a","propeller02a", 
"propeller04a","duct02a","duct03a"> 

</block> 
<block name = "propeller04a"> 

linking_grid_list = <"propeller04a","tip04a","propeller03a", 
"propeller01a","duct02a","duct03a"> 

</block> 
<block name = "tip01a"> 

linking_grid_list = <"propeller01a","duct03a"> 
</block> 
<block name = "tip02a"> 

linking_grid_list = <"propeller02a","duct03a"> 
</block> 
<block name = "tip03a"> 

linking_grid_list = <"propeller03a","duct03a"> 
</block> 
<block name = "tip04a"> 

linking_grid_list = <"propeller04a","duct03a"> 
</block> 
<block name = "duct01a"> 

linking_grid_list = <"duct01a","duct02a","duct03a","duct04a", 
"barge01","ocean03","ocean04"> 

</block> 
<block name = "duct02a"> 

linking_grid_list = <"duct02a","duct01a","duct03a","duct05a", 
"wake01a","propeller01a","propeller02a", 
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</block> 

"propeller03a","propeller04a"> 

<block name = "duct03a"> 
linking_grid_list = <"duct03a","duct01a","duct02a","duct05a", 

"propeller01a","propeller02a", 
"propeller03a","propeller04a","tip01a", 
"tip02a","tip03a","tip04a","barge01"> 

</block> 
<block name = "duct04a"> 

linking_grid_list = <"duct04a","duct01a","duct05a","wake01a", 
"barge01","ocean04"> 

</block> 
<block name = "duct05a"> 

linking_grid_list = <"duct05a","duct02a","duct03a","duct04a", 
"wake01a","barge01","ocean04"> 

</block> 
<block name = "wake01a"> 

linking_grid_list = <"wake01a","duct02a","duct03a","duct04a", 
"duct05a","barge01","ocean04","ocean05"> 

</block> 
<block name = "propeller01b"> 

linking_grid_list = <"propeller01b","tip01b","propeller04b", 
"propeller02b","duct02b","duct03b"> 

</block> 
<block name = "propeller02b"> 

linking_grid_list = <"propeller02b","tip02b","propeller01b", 
"propeller03b","duct02b","duct03b"> 

</block> 
<block name = "propeller03b"> 

linking_grid_list = <"propeller03b","tip03b","propeller02b", 
"propeller04b","duct02b","duct03b"> 

</block> 
<block name = "propeller04b"> 

linking_grid_list = <"propeller04b","tip04b","propeller03b", 
"propeller01b","duct02b","duct03b"> 

</block> 
<block name = "tip01b"> 

linking_grid_list = <"propeller01b","duct03b"> 
</block> 
<block name = "tip02b"> 

linking_grid_list = <"propeller02b","duct03b"> 
</block> 
<block name = "tip03b"> 

linking_grid_list = <"propeller03b","duct03b"> 
</block> 
<block name = "tip04b"> 

linking_grid_list = <"propeller04b","duct03b"> 
</block> 
<block name = "duct01b"> 

linking_grid_list = <"duct01b","duct02b","duct03b","duct04b", 
"barge01","ocean03","ocean04"> 

</block> 
<block name = "duct02b"> 

linking_grid_list = <"duct02b","duct01b","duct03b","duct05b", 
"wake01b","propeller01b","propeller02b", 
"propeller03b","propeller04b"> 

</block> 
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<block name = "duct03b"> 
linking_grid_list = <"duct03b","duct01b","duct02b","duct05b", 

"propeller01b","propeller02b", 
"propeller03b","propeller04b","tip01b", 
"tip02b","tip03b","tip04b","barge01"> 

</block> 
<block name = "duct04b"> 

linking_grid_list = <"duct04b","duct01b","duct05b","wake01b", 
"barge01","ocean04"> 

</block> 
<block name = "duct05b"> 

linking_grid_list = <"duct05b","duct02b","duct03b","duct04b", 
"wake01b","barge01","ocean04"> 

</block> 
<block name = "wake01b"> 

linking_grid_list = <"wake01b","duct02b","duct03b","duct04b", 
"duct05b","barge01","ocean04","ocean05"> 

</block> 
<block name = "ocean01"> 

linking_grid_list = <"ocean02","ocean17","ocean18","barge01"> 
</block> 
<block name = "ocean02"> 

linking_grid_list = <"ocean01","ocean03","ocean17","ocean18", 
"barge01"> 

</block> 
<block name = "ocean03"> 

linking_grid_list = <"ocean02","ocean04","ocean17","ocean18", 
"duct01a","duct01b","duct04a","duct04b", 
"barge01"> 

</block> 
<block name = "ocean04"> 

linking_grid_list = <"ocean03","ocean05","ocean17","ocean18", 
"wake01a","wake01b","duct01a","duct01b", 
"duct04a","duct04b","duct05a","duct05b", 
"barge01"> 

</block> 
<block name = "ocean05"> 

linking_grid_list = <"ocean04","ocean06","ocean17","ocean18", 
"wake01a","wake01b","barge01"> 

</block> 
<block name = "ocean06"> 

linking_grid_list = <"ocean05","ocean07","ocean17","ocean18", 
"wake01a","wake01b","barge01"> 

</block> 
<block name = "ocean07"> 

linking_grid_list = <"ocean06","ocean08","ocean17","ocean18", 
"barge01"> 

</block> 
<block name = "ocean08"> 

linking_grid_list = <"ocean07","ocean09","ocean17","ocean18", 
"barge01"> 

</block> 
<block name = "ocean09"> 

linking_grid_list = <"ocean08","ocean10","ocean17","ocean18", 
"barge01"> 

</block> 
<block name = "ocean10"> 
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linking_grid_list = <"ocean09","ocean11","ocean17","ocean18", 
"barge01"> 

</block> 
<block name = "ocean11"> 

linking_grid_list = <"ocean10","ocean12","ocean17","ocean18"> 
</block> 
<block name = "ocean12"> 

linking_grid_list = <"ocean11","ocean13","ocean17","ocean18"> 
</block> 
<block name = "ocean13"> 

linking_grid_list = <"ocean12","ocean14","ocean17","ocean18"> 
</block> 
<block name = "ocean14"> 

linking_grid_list = <"ocean13","ocean15","ocean17","ocean18"> 
</block> 
<block name = "ocean15"> 

linking_grid_list = <"ocean14","ocean16","ocean17","ocean18"> 
</block> 
<block name = "ocean16"> 

linking_grid_list = <"ocean15","ocean17","ocean18"> 
</block> 
<block name = "ocean17"> 

linking_grid_list = <"ocean01","ocean02","ocean03","ocean04", 
"ocean05","ocean06","ocean07","ocean08", 
"ocean09","ocean10","ocean11","ocean12", 
"ocean13","ocean14","ocean15","ocean16", 
"ocean18","barge01"> 

</block> 
<block name = "ocean18"> 

linking_grid_list = <"ocean01","ocean02","ocean03","ocean04", 
"ocean05","ocean06","ocean07","ocean08", 
"ocean09","ocean10","ocean11","ocean12", 
"ocean13","ocean14","ocean15","ocean16", 
"ocean17","barge01"> 

</block> 
<block name = "barge01"> 

linking_grid_list = <"duct01a","duct01b","duct04a","duct04b", 
"duct05a","duct05b","wake01a","wake01b", 
"ocean01","ocean02","ocean03","ocean04", 
"ocean05","ocean06","ocean07","ocean08", 
"ocean09","ocean10","ocean17","ocean18"> 

</block> 
<block name = "phantom01a"> 

linking_grid_list = <"phantom01a"> 
</block> 
<block name = "phantom02a"> 

linking_grid_list = <"phantom02a"> 
</block> 
<block name = "phantom03a"> 

linking_grid_list = <"phantom03a"> 
</block> 
<block name = "phantom04a"> 

linking_grid_list = <"phantom04a"> 
</block> 
<block name = "phantom01b"> 

linking_grid_list = <"phantom01b"> 
</block> 
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<block name = "phantom02b"> 
linking_grid_list = <"phantom02b"> 

</block> 
<block name = "phantom03b"> 

linking_grid_list = <"phantom03b"> 
</block> 
<block name = "phantom04b"> 

linking_grid_list = <"phantom04b"> 
</block> 
<block name = "phantom05"> 

linking_grid_list = <"phantom05"> 
</block> 
 
 
! hole boundary definition 
 
<boundary name = "phantom01a hole boundary"> 

parent_grid = "phantom01a", 
hole_cutting_list = <"duct02a","duct03a"> 

</boundary> 
 
<boundary name = "phantom02a hole boundary"> 

parent_grid = "phantom02a", 
hole_cutting_list = <"duct02a","duct03a"> 

</boundary> 
 
<boundary name = "phantom03a hole boundary"> 

parent_grid = "phantom03a", 
hole_cutting_list = <"duct02a","duct03a"> 

</boundary> 
 
<boundary name = "phantom04a hole boundary"> 

parent_grid = "phantom04a", 
hole_cutting_list = <"duct02a","duct03a"> 

</boundary> 
 
<boundary name = "phantom01b hole boundary"> 

parent_grid = "phantom01b", 
hole_cutting_list = <"duct02b","duct03b"> 

</boundary> 
 
<boundary name = "phantom02b hole boundary"> 

parent_grid = "phantom02b", 
hole_cutting_list = <"duct02b","duct03b"> 

</boundary> 
 
<boundary name = "phantom03b hole boundary"> 

parent_grid = "phantom03b", 
hole_cutting_list = <"duct02b","duct03b"> 

</boundary> 
 
<boundary name = "phantom04b hole boundary"> 

parent_grid = "phantom04b", 
hole_cutting_list = <"duct02b","duct03b"> 

</boundary> 
 
<boundary name = "phantom05 hole boundary"> 
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parent_grid = "phantom05", 
hole_cutting_list = <"ocean01","ocean02","ocean03", 

"ocean04","ocean05","ocean06", 
"ocean07","ocean08","ocean09", 
"ocean10"> 

</boundary> 
 
<boundary name = "duct01a hole boundary"> 

parent_grid = "duct01a", 
hole_cutting_list = <"ocean03","ocean04","barge01"> 

</boundary> 
 
 
<boundary name = "duct04a hole boundary"> 

parent_grid = "duct04a", 
hole_cutting_list = <"wake01a","ocean04","ocean03", 

"barge01"> 
</boundary> 
 
<boundary name = "duct05a hole boundary"> 

parent_grid = "duct05a", 
hole_cutting_list = <"wake01a","ocean04","barge01"> 

</boundary> 
 
<boundary name = "wake01a hole boundary"> 

parent_grid = "wake01a", 
hole_cutting_list = <"ocean04","ocean05","barge01"> 

</boundary> 
 
<boundary name = "duct01b hole boundary"> 

parent_grid = "duct01b", 
hole_cutting_list = <"ocean03","ocean04","barge01"> 

</boundary> 
 
 
<boundary name = "duct04b hole boundary"> 

parent_grid = "duct04b", 
hole_cutting_list = <"wake01b","ocean04","ocean03", 

"barge01"> 
</boundary> 
 
<boundary name = "duct05b hole boundary"> 

parent_grid = "duct05b", 
hole_cutting_list = <"wake01b","ocean04","barge01"> 

</boundary> 
 
<boundary name = "wake01b hole boundary"> 

parent_grid = "wake01b", 
hole_cutting_list = <"ocean04","ocean05","barge01"> 

</boundary> 
 
<boundary name = "barge01 hole boundary"> 

parent_grid = "barge01", 
hole_cutting_list = <"ocean01","ocean02","ocean03", 

"ocean04","ocean05","ocean06", 
"ocean07","ocean08","ocean09", 
"ocean10","wake01a","wake01b", 
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</boundary> 

"duct01a","duct01b","duct04a", 
"duct04b","duct05a","duct05b"> 

 
 
! hole surface definitions 
 
<surface name = "phantom01a hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom01a hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01a hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom01a hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01a hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom02a hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02a hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02a hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02a hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02a hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
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surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom03a hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03a hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03a hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03a hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03a hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom04a hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04a hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04a hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04a hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04a hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
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<surface name = "phantom01b hole boundary"> 
ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom01b hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01b hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom01b hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom01b hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom02b hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02b hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02b hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom02b hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom02b hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom03b hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
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boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03b hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03b hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom03b hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom03b hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom04b hole boundary"> 

ijk_range = 1, 1, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04b hole boundary"> 

ijk_range = 3, 3, 1, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04b hole boundary"> 

ijk_range = 1, 3, 1, 1, 1, 41, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom04b hole boundary"> 

ijk_range = 1, 3, 31, 31, 1, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom04b hole boundary"> 

ijk_range = 1, 3, 1, 31, 41, 41, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 1, 1, 3, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
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<surface name = "phantom05 hole boundary"> 
ijk_range = 2, 2, 1, 3, 1, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 2, 1, 1, 1, 2, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 2, 3, 3, 1, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 2, 1, 3, 1, 1, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "phantom05 hole boundary"> 

ijk_range = 1, 2, 1, 3, 2, 2, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct01a hole boundary"> 

ijk_range = 7, 7, 1, 37, 1, 121, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "duct01a hole boundary"> 

ijk_range = 7, 21, 37, 37, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct04a hole boundary"> 

ijk_range = 1, 53, 3, 3, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct05a hole boundary"> 

ijk_range = 1, 15, 59, 59, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "wake01a hole boundary"> 

ijk_range = 1, 1, 1, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "-ijk", 
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</surface> 
<surface name = "wake01a hole boundary"> 

ijk_range = 36, 36, 1, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "wake01a hole boundary"> 

ijk_range = 1, 36, 29, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct01b hole boundary"> 

ijk_range = 7, 7, 1, 37, 1, 121, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "duct01b hole boundary"> 

ijk_range = 7, 21, 37, 37, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct04b hole boundary"> 

ijk_range = 1, 53, 3, 3, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "duct05b hole boundary"> 

ijk_range = 1, 15, 59, 59, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "wake01b hole boundary"> 

ijk_range = 1, 1, 1, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "-ijk", 

</surface> 
<surface name = "wake01b hole boundary"> 

ijk_range = 36, 36, 1, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
<surface name = "wake01b hole boundary"> 

ijk_range = 1, 36, 29, 29, 1, 121, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
<surface name = "barge01 hole boundary"> 
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ijk_range = 1, 107, 17, 17, 1, 61, 
boundary_condition ="cut", 
surface_normal = "+ijk", 

</surface> 
 
 
 
! outer boundary definition 
 
 
<boundary name = "propeller01a outer boundary"> 

parent_grid = "propeller01a", 
</boundary> 
<boundary name = "propeller02a outer boundary"> 

parent_grid = "propeller02a", 
</boundary> 
<boundary name = "propeller03a outer boundary"> 

parent_grid = "propeller03a", 
</boundary> 
<boundary name = "propeller04a outer boundary"> 

parent_grid = "propeller04a", 
</boundary> 
<boundary name = "tip01a outer boundary"> 

parent_grid = "tip01a", 
</boundary> 
<boundary name = "tip02a outer boundary"> 

parent_grid = "tip02a", 
</boundary> 
<boundary name = "tip03a outer boundary"> 

parent_grid = "tip03a", 
</boundary> 
<boundary name = "tip04a outer boundary"> 

parent_grid = "tip04a", 
</boundary> 
<boundary name = "duct01a outer boundary"> 

parent_grid = "duct01a", 
</boundary> 
<boundary name = "duct02a outer boundary"> 

parent_grid = "duct02a", 
</boundary> 
<boundary name = "duct03a outer boundary"> 

parent_grid = "duct03a", 
</boundary> 
<boundary name = "duct04a outer boundary"> 

parent_grid = "duct04a", 
</boundary> 
<boundary name = "duct05a outer boundary"> 

parent_grid = "duct05a", 
</boundary> 
<boundary name = "wake01a outer boundary"> 

parent_grid = "wake01a", 
</boundary> 
<boundary name = "propeller01b outer boundary"> 

parent_grid = "propeller01b", 
</boundary> 
<boundary name = "propeller02b outer boundary"> 

parent_grid = "propeller02b", 
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</boundary> 
<boundary name = "propeller03b outer boundary"> 

parent_grid = "propeller03b", 
</boundary> 
<boundary name = "propeller04b outer boundary"> 

parent_grid = "propeller04b", 
</boundary> 
<boundary name = "tip01b outer boundary"> 

parent_grid = "tip01b", 
</boundary> 
<boundary name = "tip02b outer boundary"> 

parent_grid = "tip02b", 
</boundary> 
<boundary name = "tip03b outer boundary"> 

parent_grid = "tip03b", 
</boundary> 
<boundary name = "tip04b outer boundary"> 

parent_grid = "tip04b", 
</boundary> 
<boundary name = "duct01b outer boundary"> 

parent_grid = "duct01b", 
</boundary> 
<boundary name = "duct02b outer boundary"> 

parent_grid = "duct02b", 
</boundary> 
<boundary name = "duct03b outer boundary"> 

parent_grid = "duct03b", 
</boundary> 
<boundary name = "duct04b outer boundary"> 

parent_grid = "duct04b", 
</boundary> 
<boundary name = "duct05b outer boundary"> 

parent_grid = "duct05b", 
</boundary> 
<boundary name = "wake01b outer boundary"> 

parent_grid = "wake01b", 
</boundary> 
<boundary name = "ocean01 outer boundary"> 

parent_grid = "ocean01", 
</boundary> 
<boundary name = "ocean02 outer boundary"> 

parent_grid = "ocean02", 
</boundary> 
<boundary name = "ocean03 outer boundary"> 

parent_grid = "ocean03", 
</boundary> 
<boundary name = "ocean04 outer boundary"> 

parent_grid = "ocean04", 
</boundary> 
<boundary name = "ocean05 outer boundary"> 

parent_grid = "ocean05", 
</boundary> 
<boundary name = "ocean06 outer boundary"> 

parent_grid = "ocean06", 
</boundary> 
<boundary name = "ocean07 outer boundary"> 

parent_grid = "ocean07", 
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</boundary> 
<boundary name = "ocean08 outer boundary"> 

parent_grid = "ocean08", 
</boundary> 
<boundary name = "ocean09 outer boundary"> 

parent_grid = "ocean09", 
</boundary> 
<boundary name = "ocean10 outer boundary"> 

parent_grid = "ocean10", 
</boundary> 
<boundary name = "ocean11 outer boundary"> 

parent_grid = "ocean11", 
</boundary> 
<boundary name = "ocean12 outer boundary"> 

parent_grid = "ocean12", 
</boundary> 
<boundary name = "ocean13 outer boundary"> 

parent_grid = "ocean13", 
</boundary> 
<boundary name = "ocean14 outer boundary"> 

parent_grid = "ocean14", 
</boundary> 
<boundary name = "ocean15 outer boundary"> 

parent_grid = "ocean15", 
</boundary> 
<boundary name = "ocean16 outer boundary"> 

parent_grid = "ocean16", 
</boundary> 
<boundary name = "ocean17 outer boundary"> 

parent_grid = "ocean17", 
</boundary> 
<boundary name = "ocean18 outer boundary"> 

parent_grid = "ocean18", 
</boundary> 
<boundary name = "barge01 outer boundary"> 

parent_grid = "barge01", 
</boundary> 
 
! outer boundary surface definition 
 
 
<surface name = "propeller01a outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller01a" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller01a outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller01a" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller01a outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller01a outer boundary"> 
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ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller02a outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller02a" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller02a outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller02a" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller02a outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller02a outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller03a outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller03a" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller03a outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller03a" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller03a outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller03a outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller04a outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller04a" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller04a outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller04a" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller04a outer boundary"> 
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ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller04a outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "tip01a outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip01a outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip01a outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip01a outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip01a outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "tip02a outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip02a outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip02a outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip02a outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip02a outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "tip03a outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip03a outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip03a outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip03a outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip03a outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
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<surface name = "tip04a outer boundary"> 
ijk_range = 1, 1, 1, 4, 2, 5, 

</surface> 
<surface name = "tip04a outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip04a outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip04a outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip04a outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 

 
 
<surface name = "duct01a outer boundary"> 

ijk_range = 1, 1, 1, 57, 1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 21, 21, 1, 34, 1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 21, 21, 36, 57, 1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 8, 21, 1, 1, 1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 1, 21, 57, 57, 1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 1, 21, 1, 57, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct01a" 
donor_ijk_range = 1, 21, 1, 57, 121, 121, 

</surface> 
<surface name = "duct01a outer boundary"> 

ijk_range = 1, 21, 1, 57, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct01a" 
donor_ijk_range = 1, 21, 1, 57, 2, 2, 

</surface> 
 
 
<surface name = "duct02a outer boundary"> 

ijk_range = 66, 66, 1, 24, 1, 122, 
</surface> 
<surface name = "duct02a outer boundary"> 

ijk_range = 1, 66, 24, 24, 1, 122, 
</surface> 
<surface name = "duct02a outer boundary"> 

ijk_range = 1, 66, 1, 24, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct02a" 
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donor_ijk_range = 1, 66, 1, 24, 121, 121, 
</surface> 
<surface name = "duct02a outer boundary"> 

ijk_range = 1, 66, 1, 24, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct02a" 
donor_ijk_range = 1, 66, 1, 24, 2, 2, 

</surface> 
 
 
<surface name = "duct03a outer boundary"> 

ijk_range = 1, 1, 1, 35, 1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 

ijk_range = 53, 53, 1, 35, 1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 

ijk_range = 1, 53, 1, 1, 1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 

ijk_range = 1, 53, 1, 35, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct03a" 
donor_ijk_range = 1, 53, 1, 35, 121, 121, 

</surface> 
<surface name = "duct03a outer boundary"> 

ijk_range = 1, 53, 1, 35, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct03a" 
donor_ijk_range = 1, 53, 1, 35, 2, 2, 

</surface> 
 
 
<surface name = "duct04a outer boundary"> 

ijk_range = 1, 1, 1, 23, 1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 

ijk_range = 53, 53, 1, 23, 1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 

ijk_range = 1, 53, 23, 23, 1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 

ijk_range = 1, 53, 1, 23, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct04a" 
donor_ijk_range = 1, 53, 1, 23, 121, 121, 

</surface> 
<surface name = "duct04a outer boundary"> 

ijk_range = 1, 53, 1, 23, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct04a" 
donor_ijk_range = 1, 53, 1, 23, 2, 2, 

</surface> 
 
 
<surface name = "duct05a outer boundary"> 
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ijk_range = 1, 1, 1, 56, 1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 

ijk_range = 1, 1, 58, 79, 1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 

ijk_range = 21, 21, 1, 79, 1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 

ijk_range = 1, 21, 79, 79, 1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 

ijk_range = 1, 21, 1, 79, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct05a" 
donor_ijk_range = 1, 21, 1, 79, 121, 121, 

</surface> 
<surface name = "duct05a outer boundary"> 

ijk_range = 1, 21, 1, 79, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct05a" 
donor_ijk_range = 1, 21, 1, 79, 2, 2, 

</surface> 
 
 
<surface name = "wake01a outer boundary"> 

ijk_range = 1, 1, 1, 41, 1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 

ijk_range = 40, 40, 1, 41, 1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 

ijk_range = 1, 40, 41, 41, 1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 

ijk_range = 1, 40, 1, 41, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "wake01a" 
donor_ijk_range = 1, 40, 1, 41, 121, 121, 

</surface> 
<surface name = "wake01a outer boundary"> 

ijk_range = 1, 40, 1, 41, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "wake01a" 
donor_ijk_range = 1, 40, 1, 41, 2, 2, 

</surface> 
 
 
<surface name = "propeller01b outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller01b" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller01b outer boundary"> 

ijk_range = 62, 62, 1, 35, 1, 42, 
boundary_condition = "periodic", 
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donor_grid = "propeller01b" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller01b outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller01b outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller02b outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller02b" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller02b outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller02b" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller02b outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller02b outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller03b outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller03b" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller03b outer boundary"> 

ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller03b" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller03b outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller03b outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "propeller04b outer boundary"> 

ijk_range = 1, 1, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller04b" 
donor_ijk_range = 61, 61, 1, 35, 1, 42, 

</surface> 
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<surface name = "propeller04b outer boundary"> 
ijk_range = 62, 62, 1, 35,  1, 42, 
boundary_condition = "periodic", 
donor_grid = "propeller04b" 
donor_ijk_range = 2, 2, 1, 35, 1, 42, 

</surface> 
<surface name = "propeller04b outer boundary"> 

ijk_range = 1, 62, 35, 35, 2, 41, 
</surface> 
<surface name = "propeller04b outer boundary"> 

ijk_range = 1, 62, 2, 35, 42, 42, 
</surface> 
 
 
<surface name = "tip01b outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip01b outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip01b outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip01b outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip01b outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "tip02b outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip02b outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip02b outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip02b outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip02b outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "tip03b outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip03b outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip03b outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
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<surface name = "tip03b outer boundary"> 
ijk_range = 1, 29, 4, 4, 1, 5, 

</surface> 
<surface name = "tip03b outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "tip04b outer boundary"> 

ijk_range = 1, 1, 1, 4, 2, 5, 
</surface> 
<surface name = "tip04b outer boundary"> 

ijk_range = 29, 29, 1, 4, 2, 5, 
</surface> 
<surface name = "tip04b outer boundary"> 

ijk_range = 1, 29, 1, 1, 1, 5, 
</surface> 
<surface name = "tip04b outer boundary"> 

ijk_range = 1, 29, 4, 4, 1, 5, 
</surface> 
<surface name = "tip04b outer boundary"> 

ijk_range = 1, 29, 1, 4, 5, 5, 
</surface> 
 
 
<surface name = "duct01b outer boundary"> 

ijk_range = 1, 1, 1, 57, 1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 21, 21, 1, 34, 1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 21, 21, 36, 57, 1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 8, 21, 1, 1, 1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 1, 21, 57, 57, 1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 1, 21, 1, 57, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct01b" 
donor_ijk_range = 1, 21, 1, 57, 121, 121, 

</surface> 
<surface name = "duct01b outer boundary"> 

ijk_range = 1, 21, 1, 57, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct01b" 
donor_ijk_range = 1, 21, 1, 57, 2, 2, 

</surface> 
 
 
<surface name = "duct02b outer boundary"> 

ijk_range = 66, 66, 1, 24, 1, 122, 
</surface> 
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<surface name = "duct02b outer boundary"> 
ijk_range = 1, 66, 24, 24, 1, 122, 

</surface> 
<surface name = "duct02b outer boundary"> 

ijk_range = 1, 66, 1, 24, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct02b" 
donor_ijk_range = 1, 66, 1, 24, 121, 121, 

</surface> 
<surface name = "duct02b outer boundary"> 

ijk_range = 1, 66, 1, 24, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct02b" 
donor_ijk_range = 1, 66, 1, 24, 2, 2, 

</surface> 
 
 
<surface name = "duct03b outer boundary"> 

ijk_range = 1, 1, 1, 35, 1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 

ijk_range = 53, 53, 1, 35, 1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 

ijk_range = 1, 53, 1, 1, 1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 

ijk_range = 1, 53, 1, 35, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct03b" 
donor_ijk_range = 1, 53, 1, 35, 121, 121, 

</surface> 
<surface name = "duct03b outer boundary"> 

ijk_range = 1, 53, 1, 35, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct03b" 
donor_ijk_range = 1, 53, 1, 35, 2, 2, 

</surface> 
 
 
<surface name = "duct04b outer boundary"> 

ijk_range = 1, 1, 1, 23, 1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 

ijk_range = 53, 53, 1, 23, 1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 

ijk_range = 1, 53, 23, 23, 1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 

ijk_range = 1, 53, 1, 23, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct04b" 
donor_ijk_range = 1, 53, 1, 23, 121, 121, 

</surface> 
<surface name = "duct04b outer boundary"> 

ijk_range = 1, 53, 1, 23, 122, 122, 
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boundary_condition = "periodic", 
donor_grid = "duct04b" 
donor_ijk_range = 1, 53, 1, 23, 2, 2, 

</surface> 
 
 
<surface name = "duct05b outer boundary"> 

ijk_range = 1, 1, 1, 56, 1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 

ijk_range = 1, 1, 58, 79, 1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 

ijk_range = 21, 21, 1, 79, 1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 

ijk_range = 1, 21, 79, 79, 1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 

ijk_range = 1, 21, 1, 79, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "duct05b" 
donor_ijk_range = 1, 21, 1, 79, 121, 121, 

</surface> 
<surface name = "duct05b outer boundary"> 

ijk_range = 1, 21, 1, 79, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "duct05b" 
donor_ijk_range = 1, 21, 1, 79, 2, 2, 

</surface> 
 
 
<surface name = "wake01b outer boundary"> 

ijk_range = 1, 1, 1, 41, 1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 

ijk_range = 40, 40, 1, 41, 1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 

ijk_range = 1, 40, 41, 41, 1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 

ijk_range = 1, 40, 1, 41, 1, 1, 
boundary_condition = "periodic", 
donor_grid = "wake01b" 
donor_ijk_range = 1, 40, 1, 41, 121, 121, 

</surface> 
<surface name = "wake01b outer boundary"> 

ijk_range = 1, 40, 1, 41, 122, 122, 
boundary_condition = "periodic", 
donor_grid = "wake01b" 
donor_ijk_range = 1, 40, 1, 41, 2, 2, 

</surface> 
 
 
<surface name = "ocean01 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
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</surface> 
<surface name = "ocean01 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean02 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean02 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean02 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean03 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean03 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean03 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean04 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean04 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean04 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean05 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean05 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean05 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean06 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean06 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean06 outer boundary"> 
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ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean07 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean07 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean07 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean08 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean08 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean08 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean09 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean09 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean09 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean10 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean10 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean10 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean11 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean11 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean11 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
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<surface name = "ocean12 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean12 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean12 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean13 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean13 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean13 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean14 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean14 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean14 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean15 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean15 outer boundary"> 

ijk_range = 20, 20, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean15 outer boundary"> 

ijk_range = 1, 20, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean16 outer boundary"> 

ijk_range = 1, 1, 1, 116, 1, 95, 
</surface> 
<surface name = "ocean16 outer boundary"> 

ijk_range = 1, 16, 1, 1, 1, 95, 
</surface> 
 
 
<surface name = "ocean17 outer boundary"> 

ijk_range = 1, 151, 37, 37, 1, 33, 
</surface> 
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<surface name = "ocean17 outer boundary"> 
ijk_range = 1, 151, 1, 37, 33, 33, 

</surface> 
 
 
<surface name = "ocean18 outer boundary"> 

ijk_range = 1, 151, 37, 37, 1, 33, 
</surface> 
<surface name = "ocean18 outer boundary"> 

ijk_range = 1, 151, 1, 37, 1, 1, 
</surface> 
 
 
<surface name = "barge01 outer boundary"> 

ijk_range = 1, 107, 34, 34, 1, 61, 
</surface> 
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