
Award Number:  

W81XWH-11-1-0755 

TITLE: 

Adaptive Computer-Assisted Mammography Training for Improved 

Breast Cancer Screening  

PRINCIPAL INVESTIGATOR: 

Maciej Mazurowski 

CONTRACTING ORGANIZATION:  Duke University

Durham, NC 27705 

REPORT DATE: March 2015

TYPE OF REPORT: Final Summary 

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 

Fort Detrick, Maryland  21702-5012 

DISTRIBUTION STATEMENT: 

 Approved for public release; distribution unlimited 

The views, opinions and/or findings contained in this report are 

those of the author(s) and should not be construed as an official 

Department of the Army position, policy or decision unless so 

designated by other documentation. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data 
needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY)

March 2015
2. REPORT TYPE

Final Summary 
3. DATES COVERED (From - To)

15Sep2011 - 14Dec2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

W81XWH-11-1-0755 

Adaptive Computer-Assisted Mammography Training for Improved Breast Cancer Screening 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Maciej Mazurowski 5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Duke University

2200 W Main St Ste 710

Durham, NC 27705 

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland  21702-5012 

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this project, we propose to research the methodology for constructing adaptive computer-aided education 
systems for mammography. Improved mammography education could lead to improved benefit of mammography 
to breast cancer care and in turn to decreased mortality from the disease. The project includes: Observer studies to 
collect reading data from radiology trainees; Extraction of image features (human- and computer- based); Statistical 
modeling of the reader data to discover patterns in their error making; Development of methodology for adaptive 
training that utilizes the constructed models. The proposed adaptive system could improve education in 
mammography. This may in turn result in improved benefit of mammography in breast cancer detection and lower 
mortality associated the disease.
15. SUBJECT TERMS

Mammography, radiology, education, user modeling, resident, graduate medical education 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area 

code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

email: maciej.mazurowski@duke.edu

U U U UU 32

USAMRMC



Table of Contents 

 Page 

Introduction…………………………………………………………….………..….. 3 

Body………………………………………………………………………………….. 3 

Key Research Accomplishments………………………………………….…….. 8 

Reportable Outcomes……………………………………………………………… 8 

Conclusion…………………………………………………………………………… 10 

Appendices…………………………………………………………………………… 10 



INTRODUCTION: In this project, we proposed to research the methodology for constructing 
adaptive computer-aided education systems for mammography. The project includes: Observer 
studies to collect reading data from radiology trainees; Extraction of image features (human- 
and computer- based) from mammograms; Statistical modeling of trainees reading data to 
discover patterns in their error making; Development of methodology for adaptive training that 
utilizes the constructed models. The proposed adaptive system could improve education in 
mammography. This may in turn result in improved benefit of mammography in breast cancer 
detection and lower mortality associated the disease.  

BODY: 

Overall progress: 

Specific aim Expected Actual 

1.1 Prepare the database of screening mammograms 
(year 1, months 1-6) 

Completed Completed 

1.2 Obtain the approval for the human subject 
(observer) studies in tasks 1 and 3. 

Completed Completed 

1.3 Perform an observer study in which residents will 
search for masses and architectural distortions 
(year 1, months 7-9). We expect 20 human subjects 
(observers) to participate in this study. 

Completed Completed 

1.4 Utilize the user data collected in the observer study 
to develop machine learning-based individual user 
models (year 1, month 10 – year 2, month 6) 

Completed Completed 

2.1 Develop a computer tool that presents the user 
profiles to the users and provides them with 
guidance regarding their performance 

Not necessary 
based on change 
in Aim 3 

Not necessary 
based on change 
in Aim 3 

2.2 Develop an algorithm that generates an 
individualized training protocol based on the user 
model captured by the system developed in aim 1 

Modified version 
completed based 
on change in Aim 
3 

Modified version 
completed based 
on change in Aim 
3 

3    Test if a trainee is presented with cases for which 
he/she made an error, will they benefit more than 
by being presented with randomly selected cases 

Completed Completed 

The detailed description of progress regarding each specific aim follows. 

1.1 Prepare the database of screening mammograms (year 1, months 1-6) 

STATUS: completed in the 2011-2012 period in respect to the data for the first reader study 

1.2 Obtain the approval for the human subject (observer) studies in tasks 1 and 3. 

STATUS: completed in the 2011-2012 period 



1.3 Perform an observer study in which residents will search for masses and architectural 
distortions (year 1, months 7-9). We expect 20 human subjects (observers) to participate 
in this study. 

STATUS: completed in the 2011-2012 period 

1.4 Utilize the user data collected in the observer study to develop machine learning-based 
individual user models (year 1, month 10 – year 2, month 6) 

STATUS: main part completed in the 2012-2013 period. Some experiments are still in progress 

2.2 Develop an algorithm that generates an individualized training protocol based on the user 
model captured by the system developed in aim 1 

STATUS: completed with some modifications. We developed algorithms that are able to select 
cases that are predicted to be the most difficult for each trainee. 

2.3 Test if a trainee is presented with cases for which he/she made an error, will they benefit 
more than by being presented with randomly selected cases 

STATUS: completed 

DETAILS: 

The work in the 2013-2014 period focused on three aspects of the work: 

 Further collection of mammograms (aim 1)

 Further development of machine learning algorithms for individual user models (aim 1)

 Reader study to test whether individually adapted educational material shows improved
educational utility over randomly selected material (aim 2 & 3)

Please note that the PI has contacted Dr. Kristy Lidie on 4/22/2014 regarding a change in Aim 3 
which was approved. Specifically, we decided that instead testing the specific educational 
system, we will test a more basic hypothesis: “if a trainee is presented with cases for which 
he/she made an error, will they benefit more than by being presented with randomly selected 
cases?”. This hypothesis is a foundation on which we base our research and is very important to 
test. Following this change, we also adjusted the work in Aim 2 to fit the hypothesis tested in 
Aim 3. 

The specific work accomplished in the 2013-2014 included: 

 Development of new computer vision algorithms for automatic analysis of
mammograms in order to predict whether a resident will or will not make a false
positive error. We have submitted a journal manuscript on this concept in the 2013-
2014 period.

 Revision of the 3 journal manuscripts submitted in the 2012-2013 period that led to
eventual publication all 3 of them in the 2013-2014 period.



 Data collection for the final reader study. Over 400 mammographic cases were collected 
along with original radiology interpretations data. 

 Development of a graphical user interface for the final reader study that in addition to 
testing, presents the reader with educational material. 

 First part of the reader study (reader study still in progress): 11 subjects recruited 

Below, we briefly present the design and results for the study that examined the relationship 
between difficulty and error: 

Introduction: We developed an algorithm for prediction of false positive error making among 
radiology trainees. Identifying difficult locations for the trainees could allow for focusing their 
training and result in improvement in performance. 

Methods: The proposed algorithm identifies locations that are associated with high likelihood 
of a trainee making a false positive error. Those locations can be identified on images 
previously unseen by the trainees. The algorithm first uses a Difference of Gaussian (DOG) filter 
to identify potential suspicious locations. Then, a random forest classifier identifies the 
locations with the highest probability of occurrence of a false positive error using 133 features 
extracted from each location identified by the DOG filter. The random forest is developed 
individually for each trainee, using previous locations pointed out by the trainee. 

Results: The accuracy of our algorithm in identifying locations associated with false positive 
errors was notably higher than of an algorithm that identifies such locations randomly. 

Specifically, the accuracy of our algorithm was 40% when only 1 location was selected by the 
algorithm for all cases for each trainee and 12% when 10 locations were selected. The 
accuracies for random location selection was 0% for both of these two scenarios. 

Figure 3 show the performance of our algorithm and a random algorithm assessed using free-
response receiver operating characteristics (from the paper below): 



   (a)    (b) 

Fig. 3 FROC curves for trainees’ false positive clicks and all clicks prediction. (a) shows the FROC curve 

Figure 4 shows locations found by the algorithm for different trainees (from the paper attached 
below): 



Fig. 4 The images of top 10 predicted false positives. The 10 images in the first column and the 10 
images in the second column are top 10 false positives predicted by the algorithm for trainee 3 and 
trainee 6, respectively. The 10 images in the third column are the top 10 false positives predicted based  

DIFFICULTIES: 

No major difficulties have been encountered as of this point, however, we decided that instead 
of testing the hypothesis that was initially proposed in Aim 3, we will test a hypothesis that is 
more basic and potentially more generally useful in this research. This was discussed with the 
Scientific Officer at the DOD. 



KEY RESEARCH ACCOMPLISHMENTS:  

2011-2012 

 Secured IRB approval for the study 

 Retrospectively collected a set of mammograms for the study 

 Conducted an observer study 

 Conducted preliminary analysis of the observer study results 

 Initiated development of a controlled dictionary for mammography education 

2012-2013 

 Evaluated the relationship between the concepts of self-assessed case difficulty, expert 
assessment of difficulty, and actual resident error (this analysis was started in 2011-
2012 period). 

 Implemented computer vision features for analysis of mammograms, which could be 
used for prediction of case difficulty/error and used them for prediction of false 
negative errors among radiology trainees 

 We collected assessments of image features from experienced radiologists and 
established whether such features can be used for prediction of false negative errors 
among radiology trainees 

2013-2014 

 Development of new computer vision algorithms for automatic analysis of 
mammograms in order to predict whether a resident will or will not make a false 
positive error. We have submitted a journal manuscript on this concept in the 2013-
2014 period. 

 Revision of the 3 journal manuscripts submitted in the 2012-2013 period that led to 
eventual publication all 3 of them in the 2013-2014 period. 

 Data collection for the final reader study. Over 400 mammographic cases were collected 
along with original radiology interpretations data. 

 Development of a graphical user interface for the final reader study that in addition to 
testing, presents the reader with educational material. 

 First part of the reader study (reader study still in progress): 11 subjects recruited 

2014-2015 

 Analysis of the final experiment. The analysis to date did not show conclusive results, 
likely due to fatigue of the trainees during this very long experiment (>400 
mammographic cases). 

 

 



REPORTABLE OUTCOMES:  

2011-2012 

 Collected a database of digital mammograms 

 An extended abstract entitled “Difficulty of mammographic cases in the context of 
resident training: preliminary experimental data” submitted and accepted to SPIE 
Medical Imaging 2013 conference. 

2012-2013 

 Three manuscripts were submitted to journals and are currently in various review 
stages: 

o L. Grimm, S. V. Ghate, S.Yoon, C. M. Kuzmiak, C. Kim, M. A. Mazurowski (2013). 
‘Predicting error in detecting mammographic masses among radiology trainees 
using statistical models based on BI-RADS features’, in revision for Medical 
Physics, November 2013. 

o L. Grimm, C. M. Kuzmiak, S. V. Ghate, S. Yoon, M. A. Mazurowski (2013). 
‘Mammography difficulty and error making patterns in the context of resident 
training’, submitted to Academic Radiology, October 2013 

o J. Zhang, J. Y. Lo, C. M. Kuzmiak, S. V. Ghate, S. C. Yoon, M. A. Mazurowski 
(2013), ‘Using computer-extracted image features for modeling of error-making 
patterns in detection of mammographic masses among radiology residents’, 
submitted to Physics in Medicine and Biology, October 2013. 

 Conference proceedings paper (/extended abstract) accepted for oral presentation at 
SPIE Medical Imaging: 

o M. A. Mazurowski, J. Zhang, J. Y. Lo, C. M. Kuzmiak, S. V. Ghate, S. Yoon  (2014). 
‘Modeling resident error-making patterns in detection of mammographic masses 
using computer-extracted image features: preliminary experiments’, SPIE 
Medical Imaging 2014, in press 

 Oral presentation given at SPIE Medical Imaging 2013: 
o M. A. Mazurowski, ‘Difficulty of mammographic cases in the context of resident 

training: preliminary experimental data’, SPIE Medical Imaging, 2013 

 Conference proceedings paper published: 
o M. A. Mazurowski, ‘Difficulty of mammographic cases in the context of resident 

training: preliminary experimental data’, SPIE Medical Imaging, 2013 

2013-2014 

 Three manuscripts were published: 
o L. Grimm, S. V. Ghate, S.Yoon, C. M. Kuzmiak, C. Kim, M. A. Mazurowski (2014). 

‘Predicting error in detecting mammographic masses among radiology trainees 
using statistical models based on BI-RADS features’, Medical Physics 41, 2014. 

o L. Grimm, C. M. Kuzmiak, S. V. Ghate, S. Yoon, M. A. Mazurowski (2014). 
‘Radiology Resident Mammography Training: Interpretation Difficulty and Error-
making Patterns’, Academic Radiology 21, 2014 



o J. Zhang, J. Y. Lo, C. M. Kuzmiak, S. V. Ghate, S. C. Yoon, M. A. Mazurowski 
(2014), ‘Using computer-extracted image features for modeling of error-making 
patterns in detection of mammographic masses among radiology residents’, 
Medical Physics 41, 2014. 

 One conference proceedings paper was published: 
o M. A. Mazurowski, J. Zhang, J. Y. Lo, C. M. Kuzmiak, S. V. Ghate, S. Yoon  (2014). 

‘Modeling resident error-making patterns in detection of mammographic masses 
using computer-extracted image features: preliminary experiments’, SPIE 
Medical Imaging 2014 

 One oral presentation given by Dr. Mazurowski: 
o “Modeling resident error-making patterns in detection of mammographic 

masses using computer-extracted image features: preliminary experiments”, 
SPIE Medical Imaging 2014 

 One journal paper submitted: 
o J. Zhang, J. I. Silber, M. A. Mazurowski, “Modeling false positive error making 

patterns in radiology trainees for improved mammography education”, Journal 
of Biomedical Informatics, in revision (2014) 

 Grants: 
o This work inspired an application for a preliminary study on a related topic of 

education in digital breast tomosynthesis which is now funded by the 
Radiological Association of North America (PI: Mazurowski) 

2014-2015 (no cost extension) 

 One journal manuscript published 
o J. Zhang, J. I. Silber, M. A. Mazurowski, “Modeling false positive error making 

patterns in radiology trainees for improved mammography education”, Journal 
0of Biomedical Informatics, in revision (2014) 

 

CONCLUSION: 

This project is considered very successful. It resulted in a significant improvement of our 
understanding of the error making process in radiology. The measurable outcomes of the 
project include 4 manuscript published in high impact factor journals and 2 conference 
proceedings papers accompanied with 2 oral presentations on the topic at international 
conferences. This project also inspired the next step of this research (education in digital breast 
tomosynthesis) and was recently funded by Radiological Society of North America Research and 
Education Foundation. 

 

 

 



APPENDICES: The manuscript submitted in the 2013-2014 period (in its state at the time, after 
revisions) is attached below. This manuscript is now published in the Journal of Biomedical 
Informatics (2015). 
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Abstract: 

Introduction While mammography notably contributes to earlier detection of breast cancer, it has its 

limitations including a large number of false positive exams. Improved radiology education could 

potentially contribute to alleviating this issue. Toward this goal, in this paper we propose an algorithm for 

modeling of false positive error making among radiology trainees. Identifying troublesome locations for 

the trainees could focus their training and in turn improve their performance. 

Methods The algorithm proposed in this paper predicts locations that are likely to result in a false 

positive error for each trainee based on the previous annotations made by the trainee. The algorithm 

consists of three steps. First, the suspicious false positive locations are identified in mammograms by 

Difference of Gaussian filter and suspicious regions are segmented by computer vision-based 

segmentation algorithms. Second, 133 features are extracted for each suspicious region to describe its 

distinctive characteristics. Third, a random forest classifier is applied to predict the likelihood of the 

trainee making a false positive error using the extracted features. The random forest classifier is trained 

using previous annotations made by the trainee. We evaluated the algorithm using data from a reader 

study in which 3 experts and 10 trainees interpreted 100 mammographic cases. 

Results The algorithm was able to identify locations where the trainee will commit a false positive error 

with accuracy higher than an algorithm that selects such locations randomly. Specifically, our algorithm 

found false positive locations with 40% accuracy when only 1 location was selected for all cases for each 

trainee and 12% accuracy when 10 locations were selected. The accuracies for randomly identified 

locations were both 0% for these two scenarios. 

Conclusions In this first study on the topic, we were able to build computer models that were able to 

find locations for which a trainee will make a false positive error in images that were not previously seen 



by the trainee. Presenting the trainees with such locations rather than randomly selected ones may 

improve their educational outcomes. 

Keywords   Breast Cancer   Radiology education   Mammography Tumor segmentation   Feature 

Extraction   False Positive     Predictive Model   Random forest 

1. Introduction 

Mammography is the most widely used screening technique for breast cancer early detection, which plays 

an important role in reducing the mortality of breast cancer. However, interpretation of mammograms is 

a very challenging task due to overlapping tissue that might both obscure signs of cancer (false negative 

errors) as well as create patterns that resemble true abnormalities and unnecessarily alert a radiologist 

(false positive errors) (Baker and Lo 2011). 

Our group has been working on the development of an adaptive computer-aided education system for 

mammography education. Specifically, in (Mazurowski, Baker et al. 2010), we proposed a general 

framework for such a system and demonstrated that image features can be used to predict errors made 

by a trainee. In (Mazurowski, Barnhart et al. 2012), we presented models for prediction of errors in 

assignment of BI-RADS features of masses and images. In (Mazurowski and Tourassi 2011), we 

investigated the use of collaborative filtering algorithms to model resident errors in mammography. Other 

work on the adaptive mammography education is limited, some related studies are available. Sun et al. 

(Sun, Taylor et al. 2008, Sun, Taylor et al. 2008) presented initial studies on developing an ontology 

related educational training system based on differences between radiologists. The studies by Mello-

Thoms et al. (Mello-Thoms, Dunn et al. 2002), Tourassi et al. (Tourassi, Voisin et al. 2013), Voisin et al. 

(Voisin, Pinto et al. 2013) investigate visual attention and spatial frequency representations, human 

perception and cognition, and eye gaze tracking to study error making in mammography. Some work in 

computer-aided detection is also relevant to our study in terms of the computer vision methods used, 

such as the studies presented by Masotti et al. (Masotti, Lanconelli et al. 2009), Wei et al. (Wei, Chan et 

al. 1997), and Mudigonda et al. (Mudigonda, Rangayyan et al. 2001). 



In this paper we focus on a topic largely unexplored in the context of radiology education: false positive 

error making. Specifically, the task that we approach is to automatically find locations that will cause a 

trainee to make a false positive error. For this purpose, we propose an algorithm that identifies 

challenging locations using computer vision algorithms and machine learning models. The models are 

constructed individually for each trainee based on their prior interpretations to capture their individual 

error making patterns. 

To our knowledge, this is the first study in which future false positive locations are predicted. It differs 

from our previous studies in which we focused on false negative errors (Grimm, Ghate et al. 2014), errors 

in distinguishing benign and malignant masses (Mazurowski, Baker et al. 2010), and errors in assessment 

of BI-RADS features (Mazurowski, Barnhart et al. 2012). Predicting false positive locations is a difficult 

task as it requires analysis of the entire image and finding those locations that might cause difficulty to 

the trainee while dismissing all the locations that will not. While our experiments confirm the high 

difficulty of the task, they also show promise of our approach. One practical application of our approach 

is to identify locations that would result in false positive errors for each trainee, so that they can focus 

their training on such locations potentially improving their training.  

2. Reader study and the definition of false positive errors 

To validate our algorithm for predicting false positive errors, we used data from a reader study in which 

10 radiology trainees along with 3 expert radiologists interpreted 100 mammographic cases 

independently. Among the 10 trainees, 7 were radiology residents with at least four weeks of formal 

breast imaging training and 3 were novices (2 medical imaging researchers and 1 medical student) with 

no formal training. We included the three novices to simulate radiology residents at the very beginning of 

their residency program. The three expert radiologists were all fellowship trained in breast imaging with 

7-14 years of experience. The experts and the trainees were not aware of patients’ age and medical 

history. The 100 mammographic cases are balanced with 50 cases originally deemed as normal and 50 

abnormal cases. Each case contained 4 standard mammographic views: left craniocaudal (LCC), right 

craniocaudal (RCC), left mediolateral oblique (LMLO), and right mediolateral oblique (RMLO). All 

participants were asked to identify actionable abnormalities by clicking on them. We asked the 



participants to ignore microcalcifications as the focus of our study was on masses. Institutional Review 

Board approval was secured for this study.  

We used the marks provided by the three experts to find the actual actionable masses. Specifically, if a 

region contained at least two out of three experts’ marks and the distance between two marks was 

smaller than a predefined threshold Td, we considered this region to be associated with an actionable 

mass. The centers of actual actionable masses were determined as the centroids of the expert 

annotations. Consequently, if the distance between a trainee’s mark and its nearest actionable mass 

center is bigger than Td, this mark is defined as a false positive error. Otherwise, it is defined as a true 

positive. Because the average radius of the breast masses is 9mm (Timp, Karssemeijer et al. 2003) and 

the pixel spacing of the images used in the reader study was 0.0941 mm, the threshold was set to Td = 

9mm/0.0941mm=96 pixels in our study. 

3. The algorithm for prediction of false positive locations 

3.1 Overview 

In this paper, we propose an algorithm that searches through an entire mammographic image to find 

locations where the trainee made false positive errors. The proposed algorithm accepts an entire 

mammographic image as the input and returns locations that are more likely to be associated with a false 

positive error as the output. The algorithm is composed of 3 steps:  

Step 1:  The Difference of Gaussian (DoG) filter (Babaud, Witkin et al. 1986) is adopted to identify 

suspicious false positive locations of an image, and then rubber band and region growing 

methods are used to segment suspicious false positive regions using local maximum points 

extracted from the DoG filter response map;  

Step 2:  Features are extracted to describe the properties of each region and its context; and  

Step 3:  A classifier is applied to predict the likelihood of a predicted location being a false positive error 

made by the trainee using the extracted features.  



The flowchart of the proposed algorithm is shown in Fig. 1. The three steps of the algorithm are 

described in the subsections below. 

 

Fig. 1 Flowchart of the proposed false positive prediction algorithm 

3.2 Step 1: Identifying suspicious locations 

Difference of Gaussian (DoG) filter, which has been widely used for breast mass detection (Polakowski, 

Cournoyer et al. 1997, Catarious Jr, Baydush et al. 2006), is adopted in our study as the first step to 

identify the suspicious locations where the trainees may make false positive errors (i.e., click on the 

location). After calculating the DoG filter response for the entire image, we extract local maximum points 

from the DoG filter response map and consider these locations suspicious. Then, by using the identified 

suspicious locations as reference points, three segmentation methods (dynamic programming-based 

rubber band, region growing with adaptive threshold, and region growing with fixed threshold) are 

applied to segment the abnormality or the abnormality resembling region. These segmentations will be 

later used to determine features of locations. The segmentation algorithms used are described below. 

 

The Dynamic programming-based rubber band method (Timp and Karssemeijer 2004) can transform a 

round image region to a rectangular region in a polar coordinate system. Gradient, size, and intensity 

information extracted from the image in the polar system are combined to form a cost matrix. The 

boundary of the region is the path that has the lowest cost in the cost matrix determined by dynamic 

programming. The Region growing method (Adams and Bischof 1994) segments a region by computing 

the similarity between the given seed region and its neighboring pixels iteratively. If the similarity is 

smaller than a predefined threshold, the seed region is grown by including its neighboring pixels. The 



method stops when no new pixels can be included. Two seed region growing strategies of region growing 

method were adopted in this study: one with a fixed seed region and the other with an adaptive seed 

region that is updated at each iteration. The purpose of using three different segmentation methods (the 

two variations of the region growing algorithm was treated as two different segmentation algorithms) is 

to be able to compute features indicating segmentation difficulty by comparing the three segmentation 

results. 

 

3.3 Step 2: Extracting features from the identified suspicious locations 

 

Based on the segmented suspicious regions, our algorithm extracts 133 features that capture distinctive 

characteristics of the indicated regions and its surrounding, which we suspect relate to false positive error 

making. The extracted features can be grouped into two categories: region-based features and context-

based features. All features (F1 to F133) are listed in Table 1. ‘region growing I’ and ‘region growing II’ 

represent the region growing method with the fixed seed region and the region growing method with 

adaptive seed region respectively. We group the image features into two different categories and briefly 

describe some of the features that need more explanation as follows: 

 

(1) Region-based features: The features in this category are computed to capture the characteristics of 

an identified suspicious region. For example, the normal region with mass-like appearance (e.g., high 

intensity, sharp edge, and round shape) has a higher probability to be a false positive error made by 

trainees.    

 

F4 indicates the region intensity normalized by fat tissue intensity and dense tissue intensity. Based on 

the rubber band method, F10 to F13 are proposed to explore the intensity changes of the suspicious 

region along its region boundary and inner area in the polar coordinate system, which can indicate the 

strength of the region boundary and whether the identified suspicious region connects with fatty tissue. 

F16 and F17 indicate the location of a mass based on the normalized distance transformed breast region. 

F18-F44 are Haralick texture features (Haralick, Shanmugam et al. 1973) computed based on a gray level 



co-occurrence matrix (GLCM), including correlation, contrast, energy, entropy, etc. F44-F54 and F55-F84 

are Gray scale invariant ranklet features and spatial gray level dependence (SGLD) matrix based local 

features are proposed for false positive reduction in mammography in Masotti et al. (Masotti, Lanconelli 

et al. 2009) and Wei et al. (Wei, Chan et al. 1997). F85-F87 are boundary ribbon based coherence ratio, 

entropy of orientation estimates, and variance of coherence-weighted angular estimates proposed for 

false positive analysis in mammograms in Mudigonda et al. (Mudigonda, Rangayyan et al. 2001). 

 

Table 1. Extracted Features 

Feature category Feature description  

Mass-based F1               Region area  

 F2               Intensity of region centroid 

 F3               Normalized intensity of region 

 F4               Region circularity 

 F5               Region solidity 

 F6               Standard deviation of the intensities of region 

 F7               Region rubber band cost  

 F8               Region boundary gradient 

 F9-F12         Directional intensity changes along region boundary band, between 

boundary and its centroid, inner area, and between its centroid and 

inner area 

 F13             Region area (rubber band) / region area (Region growing I) 

 F14             Region area (rubber band) / region area (Region growing II) 

 F15-F16       Region location X and Y  

 F17-F43       GLCM based Haralick texture features  

 F44-F54       Gray scale invariant ranklet features  

 F55-F84       SGLD based local features 

 F85-F87       Ribbons based coherence ratio, entropy of Orientation Estimates, and 

variance of coherence-weighted angular estimates 
  

Context-based F88             Breast density  
 F89             Dense tissue solidity 

 F90             Dense tissue Euler number 

 F91             Number of suspicious regions 

 F92             Mean intensity of neighboring suspicious regions 

 F93             Number of neighboring suspicious region 

 F94             Number of suspicious regions based on intensity and size similarity 

 F95             Maximum similarity of suspicious regions based on intensity and size  

 F96             Average similarity of suspicious regions based on intensity and size  

 F97             Number of suspicious regions based on intensity, size, and shape 

similarity 

 F98             Maximum similarity to suspicious regions based on intensity, size, and 

shape  

 F99             Average similarity to suspicious regions based on intensity, size, and 

shape  

 F100           Number of local suspicious regions 

 F101           Local Suspicious region area ratio  



 F102           Local breast density  

 F103           Mean intensity of region / Mean intensity of neighboring area 

 F104           Intensity-based area under the ROC curve 

 F105           Is region in pectoral muscle 

F106           DoG filter response 

F107-F133   GLCM based Haralick texture features extracted from context 
  

 

(2) Context-based features: The features in this category are computed to capture the relationships 

between the suspicious region and its context. Examples include if the intensity of a suspicious region is 

higher than its neighboring area or not; and whether a suspicious region is similar to many other regions 

in the breast or not.  

F94 to F96 measure the similarities among suspicious regions and other neighboring suspicious regions 

by computing the average similarity value and the biggest similarity value using size and intensity, and 

the number of regions whose similarities are bigger than a threshold. F97 to F99 measure the similarities 

using neighboring suspicious regions as well, but one more feature, region solidity, is used for similarity 

computation. F100 and F101 indicate the number of suspicious regions inside a surrounding circular area 

and the area ratio between the suspicious region and all suspicious regions inside this surrounding area. 

By using the intensity of pixels as predictors and assigning pixels inside and outside the suspicious region 

two different classes, F104 computes the area under curve (AUC) of a receiver operating characteristic 

(ROC) curve. F106 is the DoG filter response and F107-F133 are Haralick texture features extracted from 

the surrounding context of a suspicious region. 

3.4 Step 3: Classification 

The task of our classifier is to determine, for each location found by the DoG filter in step 1 of our 

algorithm, whether the trainee will make a false positive error for the location (i.e., click on the location) 

or not. Using a classifier will allow for elimination of some incorrect predictions. The input to the classifier 

is the set of features extracted from the location and its surrounding in Step 2 of our algorithm described 

in Section 3.3. The classifier was trained individually for each trainee. For the classifier training, we used 

the previous annotation data of the trainee (i.e., their clicks). For the classification purpose, we defined 

positive and negative instances (i.e., examples, or samples) in the following way: 



Positive instances:  (1) the locations that were indicated by the DoG filter and predicting the false 

positive errors marked by a trainee correctly (i.e., they were within 96 pixels from 

an actual trainee’s false positive mark); and (2) the locations that were marked by 

the trainee but were not indicated by the DoG filter. 

Negative instances:  locations that were indicated by the DoG filter but did not predict false positive 

errors made by the trainee correctly.  

 

A Random forest classifier (Breiman 2001) was used in our study. Random forest is a popular machine 

learning method that utilizes an ensemble of decision trees for classification. The Matlab function 

“TreeBagger” was used to create the random forest. 500 trees were used in the forest and 5 variables 

were selected randomly for each decision tree. 

 

4 Evaluation of the algorithm 

4.1 Determining whether the algorithm’s prediction is correct 

Note that as we focus on prediction of false positive errors in this study, in our evaluation we excluded 

the locations found by the algorithm that indicated true positive marks made by a trainee. Such locations 

cannot be considered correct predictions of false positive location but we believe that they should also 

not be considered incorrect predictions as they still correctly predict the trainees’ click and therefore 

demonstrate that the trainee’s behavior was modeled correctly. When counting the number of correctly 

and incorrectly predicted false positives, such locations will be simply excluded from the analysis. Hence, 

the following description does not apply to such locations. 

 

To determine whether a location indicated by our algorithm correctly predicts a false positive error, we 

used the following criterion: if the distance between the location predicted by the algorithm and any 

trainee’s false positive location is smaller than the threshold Td, (96 pixels) we consider this predicted 

location to be a correct prediction. Otherwise, we consider it to be an incorrect prediction. Fig. 2-a 



illustrates an example of a mammographic image and Fig. 2-b is the close up of the green box in Fig.2-a. 

In this image, one mass was marked by the experts (green star) and two locations were marked by the 

trainee (yellow cross). One is a true positive (yellow cross #2) and the other is a false positive error 

(yellow cross #1). The suspicious locations found by the first step of our algorithm are shown as red plus 

signs. The cyan circles indicate the round areas centered at yellow crosses and green stars with the 

radius Td. We can see that the trainee’s clicks are detected by the red plus signs successfully using the 

criteria described above. As an example of such situation, see the red plus sign closest to the yellow 

cross #2. Thus, the location found by the algorithm closest to the trainee’s false positive (yellow cross 

#1) is the only correct prediction. 

 

                                (a)                                                                                               (b) 

Fig. 2 Definition of correct false positive prediction provided by the algorithm. (a) is an example of a 

mammogram and (b) is the close up of the green box in (a). The green star is a mass centroid computed 

using experts’ marks. Yellow crosses are clicks made by the trainee (yellow cross #1 is a false positive 

mark and yellow cross #2 is true positive mark). Red plus points are suspicious locations found by the 

algorithm. The cyan circles show the round areas centered at yellow crosses and green stars within a 

radius of 96 pixels. 



4.2 Cross validation  

To minimize bias in our evaluation of the algorithm, we applied a leave-one-case-out cross validation 

approach (Kearns and Ron 1999). Specifically, for each individual trainee, one case was excluded from 

the dataset and the remaining cases were used for development of the algorithm. Please note that while 

many parts of the algorithm (such as the DoG filtering) do not change based on the training data, what 

will change is the random forest classifier. After the algorithm is trained, it is applied to the images of the 

case that was left-out and it provides a set of locations for each image along with a likelihood of 

becoming a false positive location provided by the classifier. This process is repeated multiple times such 

that each case is excluded from training set and is assigned a set of locations once.  

4.3 Evaluation metrics 

The purpose of the algorithm is to find normal locations that will be erroneously identified as abnormal by 

a radiology trainee. For this purpose we employed two evaluation metrics: (1) free-response receiver 

operating characteristic (FROC) (Chakraborty 1989) to show the percentage of “detected” false positive 

clicks given a different number of incorrectly predicted false positive clicks; and (2) positive predictive 

value (PPV) to show, at a given number of predicted locations, the proportion of such locations that will 

actually result in false positive errors committed by the trainee. 

FROC allows us to see how well the algorithm is doing at finding the locations that will be incorrectly 

marked by a trainee at a given average number of locations indicated by the algorithm but not 

corresponding to a trainee’s error. In our FROC evaluation, sensitivity is defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
Number of false positive locations found by the algorithm 

Number of false positive errors made by trainee
 

Higher sensitivity with lower number of predictions means better performance of the algorithm. Besides 

FROC for false positive clicks, we additionally evaluated our algorithm for the complete set of clicks for all 

trainees (false positive and true positive clicks) see how well the algorithms predict trainees marking 

behavior in general. The FROC curves were calculated individually for each trainee and the curves of the 

10 trainees were averaged to show the overall performance of our algorithm. 

Furthermore, we evaluated performance of our algorithm in respect to a particular practical scenario in 

which a certain limited number of locations is selected to be presented to a trainee. Specifically, the 



locations were selected based on the likelihood of being a false positive location provided by our 

algorithm. We calculated how many of such locations found by the algorithm actually correspond to a 

trainee’s false positives. Formally, this performance measure is positive predictive value of our algorithm 

(PPV):  

𝑃𝑃𝑉 =
Number of correctly predicted false positives provided by the algorithm 

Number of predicted false positives provided by the algorithm

The PPVs were calculated individually for the 10 trainees and then average to provide the overall 

performance of our algorithm. 

As we are not aware of any previous algorithms approaching the task tackled in this paper, we compared 

our algorithm to a “chance” algorithm, which finds the locations randomly. To simulate such an 

algorithm, we first selected the same number of random locations as the number of locations indicated 

by the DoG filter, and then each random location was assigned a random value that is used as its 

likelihood to be a trainee’s false positive error. Showing the superiority of our algorithm over the “chance” 

algorithm will allow us to establish that the false positive error making in radiology trainees is not entirely 

random but rather it is driven by a pattern that we were able to capture in our algorithm. 

5 Experimental results 

Analysis of the marks indicated by experts showed that there were total of 154 mass locations that could 

be used in our analysis based on a majority vote, among which 97 locations were indicated by all 3 

experts and 57 locations were indicated by 2 out of 3 experts. The image-based Cohen’s Kappa scores 

were computed using the 400 images in the dataset. The image-based Cohen’s Kappa calculated for all 

400 images were  0.5059 between Expert 1 and Expert2, 0.7003 between Expert 1 and Expert 3, and 

0.4570 between Expert 2 and Expert 3.  This indicates that the three experts achieved moderate to 

substantial agreement. 

Table 2 lists the number of true positive and false positive annotations made by 10 trainees (R1 to R7 are 

the 7 residents and N1 to N2 are the 3 novices) for all 400 images in the database. One can see wide 

variability in the number of false positive errors made which ranges from 12 to 341. 

Table 2. Number of true positives and false positives of trainees 

Subject R1 R2 R3 R4 R5 R6 R7 N1 N2 N3 

Number of True 91 67 103 98 61 106 93 63 74 72 



Positives 
           

Number of  

False Positives 
41 12 49 51 64 341 46 70 124 158 

 

Table 3 shows the detection rates of the DoG filter for all clicks (true positive + false positive) and false 

positive clicks only for the 10 trainees (R1 to R7 are the 7 residents and N1 to N3 are the 3 novices). 

Table 3. Detection rates of DoG filter for true positive + false positive (TP+FP) and false positive (FP) 

 R1 R2 R3 R4 R5 R6 R7 N1 N2 N3 Mean 

TP+FP 0.89 0.87 0.88 0.83 0.91 0.89 0.87 0.87 0.91 0.86 0.88 
FP 0.88 0.67 0.82 0.73 0.91 0.85 0.80 0.76 0.91 0.81 0.81 

 

Figure 3 shows FROC curves for our algorithm and randomly selected locations. The red curves are FROC 

generated using algorithm predicted locations and the blue curves are FROC generated using random 

locations.  

    
                                     (a)                                                                        (b)  
Fig. 3 FROC curves for trainees’ false positive clicks and all clicks prediction. (a) shows the FROC curve 

for the trainees’ false positive clicks (red *) found by the algorithm and the FROC curve for trainees’ false 

positive clicks (blue +) selected randomly. (b) shows the FROC curve for trainees’ all clicks (red *) found 

by the algorithm and the FROC curve for trainees’ all clicks (blue +) selected randomly.   

By comparing the red and blue curves in Fig. 3-a and b, we can see that our algorithm has much higher 

sensitivities than the random selection, which means that it is able to locate a much higher number of 



locations that will be associated with trainees’ false positive errors. When the number of incorrectly 

predicted locations is equal to 20, the sensitivities of red curves are nearly 4 times higher than those of 

blue curves and when the number of incorrectly predicted locations is 5, the sensitivities of red curves are 

about 10 times higher than those of blue curves. Therefore, the proposed algorithm can predict where 

trainees are likely to commit false positive clicks much better than chance.  

The PPV of algorithm predicted locations are illustrated in Fig. 4 with 1, 10, 20, 30, 40, 50, and 60 

predicted false positives. For the location with the highest likelihood for each trainee, 4 out of 10 

locations catch the false positive clicks made by trainees correctly. When the number of predicted false 

positives is from 10 to 60, the PPVs are higher than or equal to 10%. The comparison of PPVs of 

algorithm predicted locations and random locations are listed in Table 4. Clearly the algorithm predicted 

locations have notably higher PPV than random locations.  

 Table 4. PPV for locations found by the algorithm and locations selected randomly 

Number of predicted False 

Positives 
1 10 20 30 40 50 60 

PPV: locations found by 

the algorithm 
0.4 0.12 0.115 0.12 0.105 0.10 0.10 

        

PPV: Random locations 0 0 0 0 0.0025 0.0020 0.0017 

 



 
Fig. 4 The images of top 10 predicted false positives. The 10 images in the first column and the 10 

images in the second column are top 10 false positives predicted by the algorithm for trainee 3 and 

trainee 6, respectively. The 10 images in the third column are the top 10 false positives predicted based 

on random values of randomly selected locations. The images with red frames are correctly predicted 

false positives. 

The images of top 10 predicted false positives for trainee 3 and trainee 6 are shown in the first two 

columns in Fig. 4. For comparison purpose, the images of top 10 random locations are also shown in the 

third column. The images with red frame are correctly predicted false positive errors made by trainees. 

We can see that all images for trainee 3 and trainee 6 contain regions that resemble mass regions that 

are more likely to be associated with false positive errors. Because trainee 6 has 341 false positive clicks 

and trainee 3 has only 49 false positive clicks as listed in Table 4, it is not a surprise that a much higher 



proportion of the locations identified by our algorithm are associated with an actual false positive click for 

the trainee 6 than for the trainee 3. While the predicted locations for the trainee 3 and the trainee 6 are 

different, examining the top 10 locations for other trainees revealed that there is a notable overlap 

between the selected locations between trainees suggesting that there are both common and individual 

error making patterns among the trainees. 

The analysis of the importance of individual features in predicting false positive errors (based on single 

run of random forest for each trainee and the “OOBPermutedVarDeltaError” parameter) showed that 

Intensity-based area under the ROC curve (F103), Region circularity (F4), and Normalized intensity of 

region (F3) are the most important features for false positive prediction. Among the three features, F103 

was the most important feature for 5 trainees, F4 for 4 trainees, and F3 for 1 trainee.  

6 Conclusions and Discussion 

In this first exploratory study on modeling false positive error making behavior for radiology trainees from 

the perspective of mammography education, we were able to build computer models that are able to find 

unseen locations that were more likely to be associated with false positive errors. Our algorithm used 

computer vision and machine learning-based approaches to identify suspicious false positive locations, 

segment suspicious locations, extract image features, and predict the likelihood of false positive error in a 

fully automatically manner without human intervention. The FROC and PPV based evaluations on the 

database containing 100 mammographic cases demonstrate that the proposed algorithm can provide 

much more accurate prediction of false positive locations than chance. 

Although much better than those of randomly selected locations, the FROC and PPV of locations 

predicted by the algorithm are not high. This result is expected for a number of different reasons. First, 

the number of false positive errors is very low for some trainees which results in: (1) a lower number of 

training samples for our model (to identify patterns in a trainee’s error making) and a lower likelihood of 

identifying the actual false positives by our algorithm as the trainees with lower number of false positives 

will dismiss many locations that might appear challenging to our algorithm. Please note that the 

performance of our algorithm for the trainee for whom many false positive errors were available (trainee 



6) is very good. The PPVs of the algorithm for this trainee at 1, 10, 30, and 60 selected locations are 1, 

0.6, 0.5, and 0.5167, which are much higher than the average values shown in Table 4. 

Second, while we believe that there is a pattern in error making among radiology trainees, we also 

believe that part of error making cannot be explained by properties of the images but is rather caused by 

other factors, such as the level of distraction and fatigue of the trainee as well as other factors. As we do 

not measure these factors, they are considered random (noise) from our perspective. Future educational 

systems could measure these factors through eye tracking and other modern technologies and 

incorporate them in the error modeling. Finally, even though the proportion of actual false positive errors 

among the locations identified by the algorithm was low for some trainees, it does not mean that the 

remaining locations were not challenging for the trainee. In other words, not all challenging locations are 

expected to result in false positive errors (i.e., a good trainee is expected to dismiss a large portion of 

challenging locations). Visual inspection of the locations selected by the algorithms suggests that many of 

the selected locations might pose increased challenge to the trainees. The final test of usefulness of the 

locations indicated by our algorithm would be through evaluation of their educational benefit. 

Future work on improvement of the algorithm’s performance will focus on two issues. First, new 

segmentation algorithms and feature extraction algorithms can be applied to improve characterization of 

the suspicious regions indicated by the DoG filter. Modern machine learning methods such as deep 

learning can also be applied for this purpose. Second, we will collect more data. Availability of data from 

more readers and for more cases will improve performance of the classifiers that determine locations with 

high and low likelihood of false positive mark. Finally, we will combine non-imaging features, such as 

patient’s age and medical history, with imaging features used in our current study to explore the impact 

of non-imaging features on error. Further research could also investigate locations that were commonly 

indicated by trainees but not experts and incorporate expert-generated explanations in the training 

process. 

Practical applications of predicting challenging locations for radiology trainees that learn mammography 

are significant. We envision a system that displays such more difficult negative locations to each trainee 

for more targeted training. Specifically, our system will learn the trainee’s individual weaknesses and 

construct a user model based on his/her previous image interpretations. Then the algorithm will search 

the database of available images in order to identify images and locations in those images that might 



pose a challenge to the trainee. Such locations will be presented to the trainee in order to focus 

their training on challenging cases/locations. Our fully automated approach makes such a system 

possible. Focusing of more challenging locations rather than random selection of material is likely to 

improve efficiency of the trainee’s training.  
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