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Abstract

This project develops a theoretical model for gases of bosonic atoms at ultracold, but

finite temperatures. Under these circumstances, the gas can undergo a phase transition to a

purely quantum mechanical state, a Bose-Einstein condensate (BEC), where the atoms cease

to behave like distinguishable entities, and instead form a single macroscopic matter wave.

At exactly zero temperature, all of the atoms occupy the BEC; at finite temperatures,

a significant fraction of the atoms leave the BEC and form a thermal cloud. Thus, the

state of a low, but finite-temperature gas of bosonic atoms involves the coexistence of a

BEC and a thermal cloud. Further, the atoms can interact in a variety of different ways,

which have important consequences for the state of the gas. We consider both short range

contact interactions and dipolar interactions, where the atoms interact via the long-range,

anisotropic dipole-dipole force. We develop this model in both three- and two-dimensional

geometries.

When the dipolar gas is confined to a nearly two-dimensional geometry, the BEC can

exhibit an unusual excitation spectrum, where certain excitations that would usually be

highly energetic are instead only weakly energetic. These excitations are called rotons.

Because it costs minimal energy for an atom to leave the BEC and be promoted to a

roton excitation, modest temperatures can result in fairly large thermal cloud occupations.

This project describes the relative occupations of the BEC and the thermal cloud at

given temperatures, and when roton excitations are present. Further, BECs in nearly

2D geometries take the form of quasi-condensates, or BECs with finite spatial extent.

Quasi-condensates behave like BECs on shorter length scales, but not on longer length

scales. The project incorporates the presence of a quasi-condensate into the theoretical

model, to more accurately describe the state of the system at hand.

Keywords: Bose Einstein condensation, ultra cold physics, condensed matter, dipoles



2

Acknowledgement

A enormous thanks to Professor Wilson, who without his guidance and expertise, this

project’s completion would have been highly improbable.



3

Contents

Abstract 1

Acknowledgement 2

I. Background 5

II. Theory 10

A. Non-Interacting Bose Gas 10

B. The Challenge Posed By Interactions 13

1. Contact Interactions 14

2. Dipolar Interactions 14

C. Second Quantization 15

D. Mean Field Approximation 17

E. Hartree-Fock Decomposition 18

F. Bogoliubov Transformation 20

G. The Hugenholtz-Pines Theorem 21

H. The Popov Approximation 22

I. Two Dimensions: the Quasi-Condensate 23

J. Superfluidity 25

III. Results 26

A. Three Dimensions with Contact Interactions 26

B. Two Dimensions with Contact Interactions 28

C. Two Dimensions with Dipolar Interactiions 30

IV. Conclusion 34

References 36

A. Derivation of Hartree-Fock Equations 38

B. Expansion via the Bogoliubov Transformation 43

C. Number Operator in terms of Creation and Annihilation Operators 46



4

D. Derivation of Quasi-2D Contact Interaction Potential 47

E. Derivation of Quasi-2D Dipolar Interaction Potential 49

F. Solving the Hartree Fock Bogoliubov Equations 51

G. Matlab Code for Solving Hartree Fock Bogoliubov Equations 52



5

I. BACKGROUND

Quantum mechanics, the science of tiny objects, plays an increasingly significant role in

modern technologies, and is of inherent interest due to its many peculiarities. For example,

quantum mechanics predicts that atoms possess wave-like properties, such as a wavelength,

and can be classified as either ”fermions” or ”bosons.” Thus, every particle has a wavelength,

yet also behaves like an individual particle with either bosonic or fermionic properties. Ad-

ditionally, both wave and particle treatments are necessary to fully understand the behavior

of quantum objects. Concerning the particle classifications, examples of fermions are the

matter-particles that everyone learns about in chemistry class: neutrons, protons, and elec-

trons. Bosons are generally seen as force-carrier particles, or particles that propagate the

four fundamental forces (photons are bosons, for example). However, certain atoms, such as

Helium-4 (4He), which is composed entirely of fermions, acts like a bosons. It turns out that

this is the case whenever an object like an atom is composed of an even number of fermionic

constituents. These atoms are called “boson-like,” [1], though here we will simply refer to

them as bosons. Whereas fermions are not allowed to occupy the same point in space due to

the Pauli Exclusion Principle, bosons can occupy the same point in space. This is the major

distinction between them. Quantum mechanically speaking, this corresponds to fermions

not being able to occupy the same quantum state, with bosons being able to occupy the

same quantum state. In fact, an unlimited number of bosons can occupy a given quantum

state. If electrons were bosons, they could then occupy the same orbitals in atoms, and the

chemistry of our world would certainly be a lot different.

The wavelength of atoms is qualitatively determined by the De Broglie wavelength λ,

which is inversely proportional to the atom’s momentum p, λ = �/p, where � = 1.055 ×
10−34 J · s is the reduced Planck constant. In a gas, only when the inter-particle spacing

approaches the order of the de Broglie wavelength do quantum mechanical effects begin to

matter. Thus, at relatively high temperatures when the average momentum of the atoms is

large, the properties of an atomic gas do not depend on whether the atoms are fermions or

bosons; i.e. the high temperature gas is classical. As the temperature drops to the ultra-cold

regime, the kinetic energy each particle has decreases, and the particle wavelengths grow

and begin to overlap. If the atoms are bosons, they form a Bose-Einstein condensate (BEC).

The atoms can no longer be described individually and instead behave like a giant matter
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wave.

The Bose-Einstein condensate received its name from two instrumental physicists and

mathematicians that heavily contributed to its finding. Satyendra Nath Bose earned a

bachelor’s and a master’s degree at the age of twenty and then began translating Albert

Einstein’s papers on general and special relativity in order to better understand relativity.

As he progressed in his studies, he began to delve into quantum mechanics more. Eventually,

Bose’s contributions to quantum physics would be so significant Paul Dirac, one of the

greatest physicists of the 20th century, would name the boson particle in his honor. In 1924,

Bose derived Planck’s quantum radiation law with no reference to classical physics. In order

to be published, he sent the paper to Einstein to translate it.

The other contributing scientist is world famous physicist Albert Einstein, maybe best

known for his mass-energy equivalence equation, but he made many more extensive con-

tributions to physics. His works include, but are not limited to special relativity, general

relativity, evolving quantum theory, and the explanation of the photoelectric effect. How-

ever, his significant contribution to Bose-Einstein Condensates lies in response to receiving

Bose’s work on quantum statistics of light quanta (photons).

Einstein thoroughly enjoyed the paper so he used his influence to publish the paper and

personally translated it to German. He then extended Bose’s idea to atoms, which led to the

creation of Bose-Einstein statistics. Bosons are indistinguishable from each other and can

occupy the same energy levels. Therefore, we count indistinguishable bosons and fermions

much differently. Indistinguishable versus distinguishable statistics can be eloquently shown

through coin flipping. Say we want to count the probability of flipping two coins and getting

a heads (H) and a tails (T). Common sense dictates that there are four possibilities (or mi-

crostates), HH, HT, TH, and TT because you can individually identify which coin is which.

Maybe the two coins are a nickel and a quarter or quarters of different years. The important

part is that you can distinguish between them and therefore can distinguish separate mi-

crostates. With these distinguishable coins, a tails and heads combination would have two

out of four total microstates or a 1
2
chance of occurring. If the coins were indistinguishable,

the statistics change. Consider taking two newly minted identical quarters. Since there is no

possible way to tell the coins apart, HT and TH are the same microstate. Because of this,

the microstates would be HH, HT, and TT. HT would have 1
3
chance of occurring. This dif-

ference accounts for the seemingly innocuous, but crucial difference in the statistics used to
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analyze bosons. Following are the different equations for Maxwell-Boltzmann, Fermi-Dirac

and Bose-Einstein statistics

Maxwell− Boltzmann : ni =
gi

e(εi−μ)/KbT
(1)

Fermi−Dirac : ni =
gi

e(εi−μ)/kbT + 1
(2)

Bose− Einstein : ni =
gi

e(εi−μ)/kbT − 1
(3)

In Eq 1, Eq 2, and Eq 3, ni describes the number of particles in a given state, i. The

state is given by the energy level associated with it εi. kb is the Boltzmann constant and T

stands for the temperature at which the state is being measured. μ is a Lagrange multiplier

used to fix particle number. If we are modeling photons, we do not require constant particle

numbers so we can ignore μ. Finally, gi is the degeneracy associated with the selected state.

If two states, ε2 and ε3 share the same energy level, ε2, the states are called degenerate and

gi will account for it.

Equation 1, Maxwell-Boltzmann statistics, describes the distribution of non-interacting

particles in thermal equilibrium at temperatures high enough (or density low enough) to

ignore quantum effects. We use these statistics to model a gas (whether indistinguishable or

distinguishable) at high temperatures where the gas behaves classically. Equation 2, Fermi-

Dirac statistics, describes the distribution of indistinguishable fermions, particles that obey

the Pauli-Exclusion Principle. These statistics cover the quantum realm, but specifically

with regards to fermions. As previously stated, the inability of fermions to occupy the same

quantum space requires we treat them differently. Finally, equation 3, Bose Einstein statis-

tics, describes the energy level occupations of indistinguishable bosons. [2] These statistics

cover the quantum realm with regards to bosons.

In 1924, Einstein predicted, based purely on Eq. 3 and Bose-Einstein statistics, a unique

phenomenon occurs at low temperature. [3] As temperature decreases, a particle will lose

energy, leaking it to the environment. Near absolute zero, this particle will most likely

occupy its ground state, or least energetic state. When a collection of bosons all occupy the
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ground state simultaneously, a new state of matter called the BEC appears. In Einstein’s

era, however, there was no way to cool anything to the temperatures required to observe

physical BECs, so physical exploration was tabled until adequate cooling techniques existed.

As time progressed, more research could be made towards the ultimate goal of creating

this new state of matter. Superfluidity was first observed in liquid Helium-4 in 1937, at

temperatures below T=2.17 Kelvin. In 1938, Fritz London proposed BECs as a mecha-

nism for superfluidity. Superfluidity, possibly the most interesting trait of BECs, is when a

liquid/current flows with absolutely zero viscosity below a certain critical temperature. [4]

Interestingly, this is the underlying mechanism for superconductivity in many metal and

ceramic materials. If two electrons pair together, they act like a boson. Once you have a

collection of bosons (electron pairs), they can condense and achieve superfluid properties.

However, you need multiple bosons to achieve a BEC. A single boson cannot become a BEC,

but many pairs of electrons will be able to condense. It is believed that the superfluidity

in liquid Helium-4 is due to the presence of a BEC in the liquid, though this is difficult to

show directly. However, not all BECs produce superfluids, and not all superfluidity stems

from BECs. Superfluidity remains desirable, because it would eliminate energy losses in

fluid systems and electrical systems.

Despite continued predictions, Bose-Einstein Condensates remained elusive due to the

technological restraint of lowering temperatures down to near absolute zero. In 1978, laser

cooling was invented and the ability to reach previously unfathomable temperatures, within

nanoKelvin of absolute zero, became realistic. As the technology developed, this type of

cooling became readily available and practical. Laser cooling is successful because photons

have momentum. If a photon is traveling in the opposite direction of an atom and is

absorbed, the atom will slow (Imagine a collision between a bowling ball rolling down an

alley and a ping pong ball shot in the opposite direction. The bowling ball slows, but

not significantly enough to be noticed). Then, the atom emits the photon in a random

direction. On average, this will additionally decrease the momentum of the atom. This

can be imagined as the bowling ball absorbed the ping pong ball and randomly ejecting

it. In half of the possible ejections, the bowling ball will slow even more, albeit minimally.

However, after enough absorptions (nearly 20,000 for a sodium atom), the atom will near

absolute zero. [5] Because a laser can induce up to 107 absorptions per second, this process

can occur in milliseconds.
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With this new technology, scientists could finally examine Einstein’s predictions about the

BEC. On June 5, 1995, University of Colorado Boulder became the first to synthesize a Bose-

Einstein Condensate with Rubidium (Rb) atoms at near 170 nK. [6] That’s 1.7×10−7 Kelvin

above absolute zero, which was the coldest known temperature in the universe! Within a

few months, MIT researchers also synthesized a BEC, but with Sodium (Na) atoms. [7] Both

teams received the 2001 Nobel Prize for their foray into a new section of physics. [3]

The study of BECs recently underwent even more dynamic and interesting developments.

In 1998, just three years after a BEC was first realized, Lene Hau of Harvard managed to

slow light down to 17 meters per second by trapping it within a BEC. Within the following

years, Hau and her team managed to not only slow light down, but capture it outright.

They stopped a pulse of light within a BEC, released it, and then recaptured the light

packet within another BEC. This raises the possibility of new developments in light based

communications, optical data storage, and quantum computing.

Today, BECs can be made with a variety of atomic species, including Chromium (Cr) [8]

and the rare-earth (lanthanide) atoms Erbium (Er) [9] and Dysprosium (Dy) [10], which

possess large magnetic dipole moments. Further, BECs are used for a variety of purposes,

including the investigation of matter’s fundamental low-temperature properties. For ex-

ample, superfluid flow and quantized circulation (quantum vortices) were directly observed

in experiments with BECs. [11] [12] The National Institute of Standards and Technology

in Gaithersburg, Maryland carried out many of these experiments. However, the experi-

ments involved atoms that possess negligible dipole moments (like the alkali atoms). Today,

there is a strong effort to learn more about the nature of BECs of dipolar atoms, the so-

called dipolar BECs. Unlike most atoms, which interact via the short-range Van der Waals

force, dipolar atoms interact via the dipole-dipole force, which is anisotropic and long-range.

When oriented side-by-side, two dipoles repel each other, and when oriented head-to-tail,

they attract. For this reason, experiments with dipolar BECs usually work in nearly two di-

mensional (2D) geometries, with the dipoles polarized perpendicular to the 2D plane. This

results in a configuration where the dipoles are oriented side-by-side, and exert repulsive

forces on each other, which helps to stabilize the BEC. The presence of the dipole-dipole

force has been shown to result in interesting phenomena in dipolar BECs, and a growing

body of theoretical work provides motivation for future experiments. [13]

The attractive interaction results in a unique excitation called a roton excitation. A roton
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excitation allows for a particle with high momentum and short wavelength to be excited out

of the condensate for very low energy. This is atypical. In order to explore how rotons affect

a BEC and its superfluid properties, we first need to understand the mechanisms already

in place to describe BECs. From a non-interacting case, to contact interactions, and finally

to dipolar interactions, the following section will provide the knowledge to understand the

functioning of the BEC.

II. THEORY

A. Non-Interacting Bose Gas

The original phenomenon of Bose Einstein condensation focused on a non-interacting gas.

Einstein predicted Bose Einstein condensation because it is a purely statistical phenomenon.

This means, that a zero interaction BEC exists only due to quantum statistics and not to

interactions between molecules, intra molecular interactions, or the nature of the particle. [4]

For a BEC to exist, there must be a multitude of particles. A single particle cannot become

a BEC. Being a purely statistical phenomenon requires large numbers of particles, despite

that each individual particle has no idea any other particles are around it. As mentioned in

equation 3, the Bose Distribution governs the statistical occupation of the condensate,

ni =
gi

e(εi−μ)/kbT − 1
(4)

Here, εk denotes the energy of a single particle state, μ is a chemical potential that acts

as a Lagrange multiplier to fix particle number in the Grand Canonical Ensemble. In order

to achieve this, the condition is applied that the sum of all individual occupancies must sum

to the total particle number. kb is the Boltzmann constant and T is temperature. We fully

calculate the Bose-Einstein Distribution because we know the energy levels in free space for

non-interacting particles. When interactions appear in our condensate, calculating becomes

significantly more difficult, as we will discuss later. Based solely on quantum statistics, the

Bose Distribution dictates the occupancy of each state, ground and excited. [4]

At high temperatures, these quantum statistics are meaningless. Any large temperature

precludes the ability for a condensate to form and the statistics that govern it become the

Maxwell Boltzmann statistics mentioned in Eq 1 [2].
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However, Bose-Einstein statistics are required near the critical temperature because quan-

tum statistics fully control the arrangement of bosons at such low temperatures. The critical

temperature, defined as the highest temperature at which the macroscopic occupation of the

lowest energy state appears, is the lowest temperature in which all atoms are in excited states

(no atoms in the ground state). The maximum values of particles in excited states results

in a μ of zero. The equation for number of particles in an excited state is given as followed

Nex =
∫
dk/(2π)3fk. fk is the same as the Bose-Einstein distribution mentioned earlier in

Eq 3, we simply replace ni with fk (k being the new momentum quantum number). The

integral is then rewritten in terms of x = ε/kbTcrit and evaluated. After changing bases back

and solving, the calculations result in [14]

Tcrit =
2π�2

mkb

[
N

V ζ(3/2)

]2/3
(5)

If we rewrite the result of Eq 5, we getNex = N(T/Tcrit)
α. We findN0/N = [1−(T/Tcrit)

α]

where α is 3/2 for particles in a 3 dimensional (3D) box of volume V. [14] This result provides

for the graphing of the condensate fraction versus the temperature critical temperature

fraction which will result in Fig. 1. The non-interacting BEC is a purely quantum statistical

phenomenon able to be efficiently and gracefully described using the above equations.

The Schrodinger equation is the only way to describe a quantum object. This equation

−�
2/2m2∇2Ψ + UΨ = EΨ can describe the motion and energy levels of any particle. [4]

Schrodinger’s equation can be written as ĤΨi = EΨi, because the left side of Schrodinger’s

equation is called the Hamiltonian (Ĥ). � is a constant and m is the mass of the particle. In

order to simplify future equations, we set � = m = 1. Ψ is the wave equation that describes

the motion of the particle. We can solve the differential equation for various Ψ’s depending

upon the potential energy function, U , used in the equation. For a particle in free space

(U=0), we find that the type of waves that satisfy it are plane waves that take the form,

Ψ = Aeıkx−ıωt. Although there are two types of Schrodinger’s equations, time independent

and time dependent, we use the time independent equation because it gives us energies which

we can plug into the Bose-Einstein distribution. Without the time component, plane waves

take the form Ψ = Aeıkx with A = 1/LD/2. D is the dimensionality of our system. L is the

length scale over which the quantum object is being described. If confined by an infinite

potential well, L is the distance between the two walls of the well. In order to find the
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FIG. 1: Condensate fraction of a non-interacting BEC. At 0 Kelvin, every atom is within the

condensate. As temperature increases, the condensate fraction begins to drop, more slowly at first,

but gradually sharpens as it reaches the critical temperature. Beyond the critical temperature,

every atom occupies the thermal gas.

energy levels the particle can inhabit, we operate on the wave equation with the quantum

Hamiltonian operator. The return of this operation gives the eigenvalues, or energy levels, of

εk = �
2k2/2m. k is a quantum number describing the state level that the particle occupies.

At low energy in a box of length LD, the particle can only exist in discrete energy levels. [14]

At higher energies with no potential, the energy levels are not defined.

Since non-interacting Bose-Einstein condensation is purely statistical, we require large

numbers of particles. For a BEC without interactions, each particle feels no effect from

any other particle. Therefore, we treat the condensate and surrounding thermal cloud as a

collection of individual particles. For a single particle, the Schrodinger Equation gives the

energy which we can plug into the Bose Distribution for a given temperature.
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B. The Challenge Posed By Interactions

If we have several interacting atoms to describe, the Hamiltonian becomes more compli-

cated Ĥ =
∑

i
p̂2

2mi
+
∑

i U(�ri) +
1
2

∑
ij V (�ri − �rj). In order to account for the interactions

between particles, we add a term to our potential to describe particle-particle interactions.

An example of what this terms would look like is V (�ri − �rj) =
∑

�r
1

4πε0
e2/|�ri − �rj| in the

case of electrons repelling via Coulomb interactions. For one particle, our solution remains

unchanged. For two particles, the solution becomes more difficult but still reasonable. When

our particles do not interact, our wave equation is a product of single particle wave func-

tions. When our particles do interact, each particle must remain symmetric upon exchange

with any other particle. As we increase particle number drastically, keeping track of each

particle’s interactions with every other one is absurdly difficult.

This difficulty is compounded by the difference between bosons and fermions and how

they cause the wave functions to alter. When we have the requirement that particles are

indistinguishable like our particles, we must ensure that the probability density of the wave

function remains symmetric upon exchange. If the probability density differed when swap-

ping two particles, then the particles are distinguishable. There are two methods of con-

structing a wave function to describe indistinguishable particles. The first method is by

ensuring that when swapping two particle positions, the sign of the wave equation remains

the same Ψ(x1, x2) = Ψ(x2, x1). This is called a symmetric wave function. The second

method is by ensuring that when two particles swap positions, a minus sign is introduced

Ψ(x1, x2) = −Ψ(x2, x1). This is called an antisymmetric wave function. When a particle is

under symmetric exchange, it is a boson. Likewise, particles which are antisymmetric under

exchange are fermions. Since we model bosons, all our particles will be symmetric under

exchange.

The Schrodinger equation is capable of fully describing a single particle. With two parti-

cles, we treat the system in its center of mass frame (effectively framing it as a one particle

problem). As we transition to a many body system, particle number ranging from 3 to

infinity, the equations become increasingly difficult to solve. We can numerically solve many

body problems, but computations become exponentially more difficult the more particles we

encounter. Every particle has 3 spatial degrees of freedom (in 3D) so a system of N particles

has 3N degrees of freedoms. In addition, a symmetric wave function requires that the wave
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function remain unchanged through particle exchange. This means a system of two particles

would look like Ψ = 1√
2
(ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)). A system of 3 particles would have

6 terms in it. As we increase the number of particles in the system, the number of terms

increases as N !. Even if N is just 20, the number of terms in our wave function we need

to keep track of is over 2.4× 1018. The systems of particles we intend to work with will be

much more vast than twenty so a different method of computation is required. We describe

our method for overcoming these difficulties, ”second quantization”, in Section IIC.

1. Contact Interactions

Although we will focus on dipolar interactions, most atoms exhibit contact interactions.

Van der Waals interactions, the normal mode for most atoms, model contact interactions

well. Particles with contact interactions can be thought of as pool balls. Our particles

move and if they make contact with another particle, they exchange energy and momentum.

The particles then move off in different directions, until they interact with another particle.

Without contact interactions, the particles would pass right through each other, completely

unaware of the other’s existence.

We model contact interactions using a delta function and a contact-interaction coupling,

g, which we can adjust to model stronger and weaker interactions. Physically, g corresponds

to a ratio of the scattering length of the particles to the inter particle spacing. For our

dilute gas, g = 1 models the strongest interaction strength we will use while g = 0 models

no interactions at all. The potential itself manifests as V (�r − �r′) = gδ(�r − �r′).

2. Dipolar Interactions

Magnetic moments in an atom come from the total accumulation of electron spin added

with orbital angular momentum of that specific atom. The magnetic dipole moment can

be calculated from the total angular momentum of the atom via the following equation

mAtom = gJμB
√

j(j + 1). In this equation, j is the total angular momentum and gJ and μB

are constants.

For dipoles with dipole moments of magnitude d all polarized in the same direction, d̂ = ẑ

describes a dipole moment polarized along the z axis. [15] The dipole dipole interaction
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potential is given by

Vd(�r) = d2
1− 3 cos θ

|�r − �r′|3 . (6)

.

θ is the angle between the dipole polarization vector d̂ and the vector separating the

dipoles |�r− �r′|. [16] Vectors �r and �r′ give the position of the two dipoles and d is the dipole

moment. These can range from zero to completely non-interacting (in terms of dipoles) to

upwards of 10 in dimensionless units. This constant is determined by the physical dipole

moments of the atom.

The dipole-dipole interaction can be attractive or repulsive. When the dipoles align hori-

zontally, they repel each other. When the dipoles instead align vertically, they attract. This

causes problems for a BEC because particles that are too attractive will acquire too much

kinetic energy exciting them out of the BEC. In order to avoid this, we confine our particles

to a 2D geometry so they only sample the repulsive potential of each other. However, as the

momentum of the particles increases, their size nears the same order as the trap. This allows

the bosons to begin to sample the attractive potential of dipolar interactions as oppose to

solely the repulsive component.

C. Second Quantization

An alternative method to perform calculations without the Schrodinger is by using 2nd

Quantization. Our calculations for 2nd Quantization are shown in appendix A. 2nd Quanti-

zation represents the quantum many body states as part of a Fock state basis. Fock states

are a form of a Hilbert space. Hilbert space is an infinite orthonormal basis set. For ex-

ample, Cartesian coordinates scale where each new dimension becomes orthonormal to all

previous dimensions. As we gain more dimensions, the orthogonality of our basis remains

the same. Fock states are a quantum mechanical states that have well defined number of

particles within them. For example a state with 2 particles in the ground state, none in the

first excited state, three in the second excited state, and seven in the third excited state will

appear as χ1 = |2, 0, 3, 7, ... >. In order to change the number of particles in a certain state,

we operate on it withe a creation or an annihilation operator. âk=2χ1 =
√
n|2, 0, 4, 7, ... >
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where n is the number of states in the wave equation.

In order to convert from our Hilbert space wave function to Fock space wave functions

(Fock space is a specific type of Hilbert space), we expand Ψ̂ and Ψ̂† as a function of an

orthonormal basis with creation and annihilation operators. [3]

Ψ̂†(�r) =
1√
Ld

∑
�k

e−i
�k·�râ†�k (7)

Ψ̂(�r) =
1√
Ld

∑
�q

e−i�q·�râ�q (8)

Creation and annihilation operators do exactly what their names suggest. One creates a

particle in a specific state and one annihilates a particle in a specific state. [3] Creation and

annihilation operators are referred to as raising and lowering operators as well.

â†�ki |N�k=0, N�k1
, ..., N�ki

, ... >=
√

N�ki
+ 1|N�k=0, N�k1

, ..., N�ki
+ 1, ... >

â�ki |N�k=0, N�k1
, ..., N�ki

, ... >=
√

N�ki
|N�k=0, N�k1

, ..., N�ki
− 1, ... > (9)

We substitute these new Ψs into our non-interacting Hamiltonian,

Ĥ =

∫
Ψ†(�r)Ĥ1Ψ(�r)d�r, (10)

and using several commutation relations as seen in Appendix A, arrive at a new Fock space

Hamiltonian.

Ĥ1 =
∑
�k

â†�kâ�k
k2

2
(11)

We use ensure our Hamiltonian maintains symmetry by relying on the commutation

relations. Our system is made up entirely of bosons so we require a symmetric wave function,

despite introducing second quantization.

In addition, we replace k2/2 with ε�k; the single particle energy term. ε�k describes the

kinetic energy of a single particle. Once summed, we can find the kinetic energy of our whole
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system. As previously mentioned, μ is the chemical potential and serves as a Lagrange

multiplier to fix particle number. It appears here from writing our Hamiltonian in the

grand-canonical ensemble,

Ĥ =
∑
�k

â†�kâ�k
(
ε�k − μ

)
. (12)

We perform the same type of operation for the interaction potential and the interaction

Hamiltonian.

Ĥint =
1

2LD

∑
�k,�p,�q

Ṽ (�q)â†�q−�qâ
†
�k+�p

â�kâ�p (13)

Here, Ṽ (�q) is the Fourier transform of V (�r) into momentum space. This term describes

the exchange of momentum between two particles when they interact. We’ve begun with

modeling a general contact interaction potential, but eventually will focus on magnetic

dipoles in a quasi-2D case.

D. Mean Field Approximation

Despite the work put into second quantization, our Hamiltonian is still not in a practical

form. We need the Hamiltonian to be diagonal and quadratic in order to find its eigenvalues

(energy of the system). Our first step in simplifying our equations is to make the mean

field approximation The mean field approximation claims since we are going to working

with such large numbers of particles in the ground state, we can approximate â�k=0 and â†�k=0

as a number,
√
N0. Normally, â�k=0 would return a value of

√
N0 − 1. [17] The difference

between a single particle in a state consisting of 100,000 is insignificant. When our quantum

numbers p, q, and k equal zero, all the operators go to
√
N0. This leads to a factor of N2

0

appearing in front of the interaction term. N2
0 Ṽ (0)/2LD is the coefficient in front of the

zeroth order interaction portion of the Hamiltonian. This component of the Hamiltonian

models the interactions between the condensate atoms and other condensate atoms. Next

we should set three operators to â0. When these three operators all go to
√
N0, we will

only have one operator left. However the expectation value of a single operator is always
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zero. This stems from the fact that an expectation value needs two equal energy states

with the same particle number or the expectation value goes to zero. When a raising or

lowering operator acts upon our initial state, particle number will change. Since we will

have same momentum states with with different particle number , the expectation value is

zero. As a result, Ĥ3 will also go to zero. Since we need to return Fock states with the same

particle number in order to calculate with them, no system of 2 raising and 1 lowering or

2 lowering and 1 raising operator will return our initial particle. Ĥ1 = Ĥ3 = 0. Ĥ2, which

models the interactions between the condensate atoms and the excited gas, will be non-zero.

We send two operators from â0 to
√
N0, and keep two to act upon the state. There are

six combinations two operator systems when two operators are approximated to â0. The

first term is when the two creation operators are set to zero, q = p and k = −p. This

leaves us with N0/2L
DṼ (�p)â �−pâ�p. The N0 is due to the two â0 we approximated, and the

remaining operators are summed over one quantum number. A full derivation can be found

in Appendix A. After completing the decomposition for all six possible combinations, we

find

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+

N0

2

∑
�k

{Ṽ (�k)
(
â†�kâ

†
�−k + â�kâ �−k + 2â†�kâ�k

)
+ 2Ṽ (0)â†�kâ�k}+ Ĥ4. (14)

.

E. Hartree-Fock Decomposition

Ĥ4 which describes the thermal cloud interacting with other thermal cloud atoms. This

portion of the Hamiltonian describes our momentum numbers, k, q, and p, when none can

equal zero. Only atoms in excited states contribute to Ĥ4. When we add Ĥ0, Ĥ2, and Ĥ4, we

have the Bogoliubov Hamiltonian. This Hamiltonian can describe an interacting condensate

and its surrounding gas. The interaction component of the Hamiltonian is now mostly

in quadratic operators, but it is not yet diagonal so we cannot compute the eigenvalues

for several reasons. In order to be diagonal, the Hamiltonian must have no off-diagonal

elements. A series of operators with equal numbers of creation and annihilation operators is

diagonal while having an inequality between the number of operators constitutes being off

diagonal.
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Ĥ4 remains undiagonalized and quartic in terms of its operators. We cannot use a mean

field approximation on Ĥ4, because none of the operators can go to â0 because we’ve already

eliminated these terms. Therefore, we need to use a different method of obtaining an equiva-

lent quadratic form. Hartree-Fock decomposition will achieve exactly this. In Hartree-Fock,

you take every possible ordered pair of operators and create expectation values of them,

leaving the other two operators unchanged. For our four operator term, this will leave six

terms. Once we have our six terms, we set equivalences that will reduce the number of

quantum numbers to two. The â†�kâ�k operators and our densities, normal and anomalous,

stay in terms of the quantum number �k. �p and �k are allowed to appear without reservation

in the other portions of the term. We define our normal density to be the expectation value

of ñ(�k) = â†�kâ�k, because it results in a number operator and when combined with 1/LD, will

provide the actual density for our condensate. [17] We also define an anomalous density to

be m̃(�k) = â�kâ�k. After applying these definitions, our Ĥ4 turns into

Ĥ4 � ñṼ (0)
∑
�k �=0

â†�kâ�k +
1

2LD

∑
�k�q �=0

Ṽ (�q − �k)
(
ñ(q)â†�kâ�k + m̃(q)â†�kâ �−k + h.c.

)
(15)

We now redefine our quadratic (but off diagonal Hamiltonian) to be H
′
2 = H2+H4. This

equation can be made much simpler by substituting the self energies Σ11(�k), Σ20(�k), and

Σ∗
02(

�k). [18] We set Σ11(�k) equal to all components of the already diagonalized portion. We

set Σ20(�k) and its Hermitian Σ∗
02(

�k) equal to all the components in front of the off diagonal

operators. This simplifies our equation and produces the result below

Ĥ
′
2 =

∑
�k �=0

(
ε�k − μ+ Σ11(�k)

)
â†�kâ�k +

1

2

∑
�k �=0

(
Σ20(�k)â�kâ �−k + Σ∗

02(
�kâ†�kâ

†
�k

)
(16)

Where

Σ11(�k) = nṼ (0) + n0Ṽ (�k) +
1

LD

∑
�q �=0

ñ(�q)Ṽ (�q − �k) (17)

Σ20(�k) = n0Ṽ (�k) +
1

LD

∑
�q �=0

m̃(�q)Ṽ (�q − �k) (18)

If we did not want to include Ĥ4 in our calculations, we could obtain the results from

only Ĥ2 by setting our densities, ñ(�q) and m̃(�q), to zero and moving n to n0. This result
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would account for interactions between the condensate and itself and the condensate and

the thermal gas surrounding the condensate (but no interactions between the gas and other

thermal atoms).

F. Bogoliubov Transformation

Next we diagonalize H
′
2 in order to extract its eigenvalues. Diagonalized matrices are

necessary for calculations, because we need to find the eigenstates of the Hamiltonians to

find the energies of the system to plug into the Bose-Einstein distribution (Eq 3). [19] An

off diagonal Hamiltonian has off center elements such as quadratic operators which feature

two creation operators. Diagonal elements need equal numbers of creation and annihilation

operators. We use the Bogoliubov transformation in order to achieve this. The Bogoliubov

transformation uses a change of variable to change any non-diagonal quadratic equation into

a diagonal one. [15] Unfortunately, the transformation does not conserve particle number so

we introduce the grand-canonical ensemble and μ to conserve particle number. Bogoliubov

originally invented this method in order to solve mathematical difficulties with supercon-

ductivity. In order to do this, Bogoliubov redefined the creation and annihilation operators

as follows

â�k = u�kb̂�k + v∗�k b̂
†
−�k (19)

â†�k = u∗
�k
b̂†�k + v�kb̂−�k (20)

Instead of our previous operators that create or destroy single particles, our new operators

b̂�k and b̂†�k create and annihilate quasi-particles. Quasi-particles are a mathematical tool used

to describe complicated systems. Instead of modeling a difficult system of many moving

particles strongly interacting with each other, we can model quasi-particles which act more

like non-interacting particles. Keep in mind quasi-particles are not ”real” particles and

instead a mathematical representation used to simplify the system.

To ensure our operators commute, we calculate the commutation relation we previously

defined for â�k and â†�k. As opposed to a simple Dirac delta, we find the result u�ku
∗
�k
−v∗�kv�k = 1.

First, we plug in our definitions for â�k and â†�k into the Bogoliubov Hamiltonian, Ĥ
′
2. Next, we

bundle similar terms; We place all b̂�kb̂�k, b̂
†
�k
b̂�k, and b̂†�kb̂

†
�k
into separate groups. We find that the
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bundle of b̂�kb̂�k and b̂†�kb̂
†
�k
are conjugates of each other. (v2+u2+2uv)Ṽ (�q)+2Ṽ (0)vu+ ε�k−μ

lies in front of b̂�kb̂�k. We have the freedom to choose u and v such that these off diagonal

elements vanish. We linearly combine our b̂�kb̂�k’s coefficients with the boson commutation

relation via Mathematica in order to solve for u and v. [4]

u�k =

√√√√1

2

(
ε�k − μ+ Σ11(�k)

ω�k
+ 1

)
(21)

v�k = −
√√√√1

2

(
ε�k − μ+ Σ11(�k)

ω�k
− 1

)
(22)

where

ω�k =

√(
ε�k − μ+ Σ11(�k)

)2

− (Σ20(�k))2 (23)

We redefine our normal and anamolous energies using our u and v.

ñ(�k) =
(
u2
�k
+ v2�k

)
f�k + v2�k (24)

m̃(�k) = u�kv�k
(
2f�k + 1

)
(25)

After plugging our values for u and v into the our Hamiltonian, simplification brings

us the full diagonalized Hamiltonian. Despite the complexity of our system, Ĥ
′
2 ultimately

arrives at a simple and elegant final form.

Ĥ
′
2 = E

′
0 +

∑
�k �=0

ω�kb̂
†
�k
b̂�k (26)

G. The Hugenholtz-Pines Theorem

We have yet to find an expression for the chemical potential, μ. We can find the chem-

ical potential by introducing the mean field expansion into the equation of motion for an

operator, â�k
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i�∂tâ�k =
[
â�k, Ĥ

]
=
(
ε�k − μ

)
â�k +

1

LD

∑
�q,�p

Ṽ (�q)â†�pâ�p−�qâ�k (27)

μ = nṼ (0) +
1

LD

∑
�k

Ṽ (�k)
(
ñ(�k) + m̃(�k)

)
(28)

In 1959, by a rigorous and general argument, Hugenholtz and Pines determined that μ,

the chemical potential, must equal the difference between the two self energies describing

the bosonic system; [20]

μ = Σ11(0)− Σ20(0) (29)

ω�k is the quasi-particle spectrum that describes the dispersion of non-condensate atoms.

At vanishingly small k, this spectrum must produce a gapless Goldstone mode, meaning

ω0 = 0. This is due to the continuous symmetry of the Hamiltonian that is broken by the

presence of a condensate. One can easily check that for ω�k to be gapless at k = 0, the above

equation must be satisfied.

H. The Popov Approximation

We can check that when we set k = 0 in Σ11(0) and Σ20(0), we get

Σ11(0) = nṼ (0) + n0Ṽ (0) +
1

LD

∑
�q �=0

ñ(�q)Ṽ (�q) (30)

Σ20(0) = n0Ṽ (0) +
1

LD

∑
�q �=0

m̃(�q)Ṽ (�q) (31)

We substitute the values gained from Eq. 30 into the Hugenholtz-Pines theorem (Eq.

29), we arrive at the result

Σ11(0)− Σ20(0) =nṼ (0) +
1

LD

∑
�k

Ṽ (�k)
(
ñ(�k)− m̃(�k)

)
�=μ. (32)
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We remember our value for μ in Eq. 28. Unfortunately, our equations don’t immediately

satisfy the Hugenholtz-Pines theorem. This is a problem, because it indicates our method

is somehow flawed. However, we can implement the common Popov approximation in order

to comply with Hugenholtz-Pines. The Popov approximation amounts to neglecting the

anomalous density, setting m̃(�k) → 0. [4, 17]

Physically, m̃ corresponds to two non-BEC atoms simultaneously scattering out of the

BEC or scattering into it. This interaction happens, but is not common enough to signifi-

cantly alter our model of the BEC.

I. Two Dimensions: the Quasi-Condensate

As we saw in section II B 2, when we consider a gas of polarized dipolar bosons, their

interactions are anisotropic. When the dipoles are polarized along the z-axis, the interactions

are repulsive in the x-y plane, but are attractive in the z-direction, so two dipoles will attract

if aligned in a “head-to-tail” configuration. For this reason it is advantageous to confine the

dipolar atoms in the x-y plane with some sort of strong trapping potential, like a harmonic

trap in the z-direction, to discourage the gas from collapsing onto itself. Experimentally,

this trapping potential can be created using, for example, strong laser beams that attract

the atoms into a plane. This results in an effectively two dimensional system where all of the

atoms occupy a wave function with a common z-dependence given by χ(z), which we take

to be a Gaussian (the single particle ground state of a 1D harmonic potential). We discuss

this further, and derive the reduced contact and dipolar interactions that are relevant for a

quasi-2D geometry in Appendix E.

When Bose gas is forced into 2D, it turns out that a true BEC, where every atom occupies

the exact same quantum mechanical ground state, can only exist at exactly zero temperature.

Thus, no BEC can exist in 2D at any finite temperature [21]. Instead, however, a different

low temperature phase can emerge, called a “quasi-condensate,” which looks like a BEC on

small length scales, but has large thermal fluctuations in the phase of the condensate wave

function on longer length scales. This fact was proven rigorously by Mermin andWagner, and

is thus called the Mermin-Wagner theorem. [22] It states that in 2D, continuous symmetries

cannot be spontaneously broken at finite temperature in systems with sufficiently short-

range interactions (which includes both contact and dipolar ∝ 1/r3 interactions). In this
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case, the continuous symmetry is the phase symmetry; in our Hamiltonian, the operators

can be modified by any phase eiφ and the Hamiltonian remains unchanged. Essentially, any

long-range interaction can induce fluctuations with minimal energy costs, hence altering the

ground state of the system.

Heuristically, we find that the Hartree Fock Bogoliubov (HFB) equations can not be

solved at finite temperatures in 2D, due to the divergence of the integrals over ñ(�k). This is

a backwards proof of the Mermin-Wagner theorem. So, we need to introduce a new mean-

field for the ground state phase. Instead of a pure BEC, we will have a quasi-condensate.

The BEC was described by the k = 0 (spatially uniform) mode
√
n0. To determine an

analogous mode for the quasi-condensate, we consider the number-phase representation of

the Bose annihilation and creation operators that we started with. We can write

Ψ̂(�r) =
√

n̂(�r)eiθ̂(�r). (33)

where n̂(�r) is the number operator and θ̂(�r) is the phase operator. Anticipating there being

fluctuations in the phase in a quasi-condensate, we will leave the phase operator as-is, but

introduce a mean-field (just a number) for the mean value of the density,

Ψ̂(�r) =
√

n0 + δn̂(�r)eiθ̂(�r). (34)

Expanding this to linear order in the operators, which we have to do to match up with

our theory above, we find

Ψ̂(�r) =
√
n0 + i

√
n0θ̂(�r) +

1

2

δn̂(�r)√
n0

Ψ̂†(�r) =
√
n0 − i

√
n0θ̂(�r) +

1

2

δn̂(�r)√
n0

. (35)

We now wish to make a connection with the Bogoliubov theory outlined above in sec-

tion II F; we move to momentum space, and proceed to represent these operators in momen-

tum space. Enforcing the commutation relation for number and phase operators,

[
δn̂(�r′), θ̂(�r)

]
= iδ(�r′ − �r), (36)
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we find the momentum space forms to be

δn̂�k =
√
n0(u�k + v�k)

(
b̂�k + b̂†�k

)
θ̂�k = − i

2
√
n0

(u�k − v�k)
(
b̂�k − b̂†�k

)
. (37)

The normal density of non-condensate atoms can be written as

ñ(k) = n0〈θ̂�kθ̂�k〉+
1

4n0

〈δn̂�kδn̂�k〉+
i

2

〈[
δn̂�k, θ̂�k

]〉
= n0〈θ̂�kθ̂�k〉+

1

4n0

〈δn̂�kδn̂�k〉 −
1

2
. (38)

Let’s look at the behavior of this function at small values of k. We find that it goes like

ñ(k) ∼ T/k2 at small k. In 3D, this is convergent at small k when integrating over ñ(k).

In 2D, however, this is divergent! We notice that it’s the n0〈θ̂�kθ̂�k〉 term in particular that

behaves this way. This makes sense, because this term involves the phase operator, and

we expect that phase fluctuations to be large and kill the BEC in 2D. Thus, we define the

quasi-condensate as

n0 → n0 + n0

∑
�k

〈θ̂�kθ̂�k〉. (39)

Thus, the quasi-condensate absorbs the phase fluctuations that kill the BEC. The quasi-

condensate still has highly suppressed density fluctuations, however.

To fix the HFB equations, we can simply take every term involving n0〈θ̂�kθ̂�k〉 and set it

to zero. This gives convergent integrals, and a well behaved theory for a quasi-condensate

that is perfectly analogous to the 3D theory for the true BEC.

J. Superfluidity

One of the most interesting phenomenon associated with BECs is the emergence of su-

perfluidity. Superfluids are fluids which experience non-viscous flow. are interesting from

a practical standpoint because easy access to superfluids would eliminate major losses of
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energy and work for industrial applications. Heuristically, it has been found that the super-

fluidity coincides with the existence of certain types of BECs. However, not every BECs is

a superfluid and not all superfluids stem from the existence of a BEC.

The properties of superfluid BECs were being studied even before the connection between

BECs and superfluids was known. Lev Landau, 1962 Nobel Prize winner, analyzed Helium

4, a boson, for its superfluid properties. He showed that Helium 4 would not produce sound

wave excitations while flowing past a wall, granted the flow of the Helium was slower than

the sound velocity. Landau suggested the sound velocity was also the critical velocity for

superfluidity. Above this velocity, Helium 4 is not a superfluid. Unknown at the time, this

phenomenon was due to the existence of a BEC within Helium 4. [23]

In order for a BEC to support superfluidity, there needs to be interactions between its

constituents. [22] A non-interacting BEC is not a superfluid. Different types of interactions,

whether contact or dipolar, could therefore produce superfluidity, and the superfluid fraction

(the density of particles acting as a superfluid over the total density of particles) will vary

depending on it. Not only do interactions factor into the superfluid (SF) fraction, but

the degrees of freedom influence it as well. We calculate the superfluid fraction using the

following equation

ns = ntot +

∫
d�p

(2π)3
p2

3

∂

∂ω�p
f�p. (40)

III. RESULTS

A. Three Dimensions with Contact Interactions

As explained previously, a BEC with no interactions will correspondingly have no super-

fluid properties. Therefore, the non-interacting case in three dimensions shown in Fig. 1

from the Non-Interacting Bose Gas Section shows only the condensate fraction. It has no

superfluid properties so the superfluid fraction remains at zero.

Contact Interactions bring significantly more interesting results than the non-interacting

case. From seeing both the condensate fraction and superfluid fraction on a single plot,

we see that contact interactions, no matter how minimal, will give the SF fraction a slight

increase over the BEC fraction. As we increase the interaction strength, we similarly find
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FIG. 2: Condensate fraction and superfluid fraction of a 3 Dimensional BEC with contact inter-

actions of increasing strength. As the contact interaction strength increases, so does the BEC

fraction, superfluid fraction, and critical temperature. The superfluid and BEC have the same

critical temperature. As temperature nears zero, BECs with very strong contact interactions ex-

perience the phenomenon known as quantum depletion in which some atoms occupy the thermal

cloud even at zero 0 Kelvin.

a greater increase in the relative increase of the SF fraction over the BEC fraction. We

also increasing the contact interaction strength increases the critical temperature. In 3D

with contact interactions, the superfluid and condensate crtical temperatures are the same.

Near absolute zero, we see the effect of quantum depletion diminishing the condensate.

Quantum depletion occurs because of the large strength of the interactions, particles with

non-zero momenta are pushed out of the condensate, even at zero temperature. The system is

stabilized with excited atoms at zero temperature. On the other end of the temperature scale,
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FIG. 3: Condensate fraction and superfluid fraction in a nearly 2D quasi-condensate at finite tem-

peratures with varying strengths of contact interactions. As contact interaction strength increases,

so do both the superfluid and condensate critical temperatures: the superfluid critical tempera-

ture remains the lower of the two. The occupancy of the condensate and superfluid also increase

dramatically with increasing contact interaction strength.

we find that the critical temperature is extended significantly beyond the non-interacting

critical temperature. In fact, every increase in contact interaction strength will induce a

slightly larger critical temperature.

B. Two Dimensions with Contact Interactions

In 2D, a pure BEC only exists at 0 Kelvin. However, the quasi-condensate functions

similar to a pure condensate. The quasi-condensate has supressed density fluctuations and
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FIG. 4: Critical temperature of the superfluid fraction and the quasi-condensate fraction at different

contact interaction strengths while in two dimensions. The critical temperature for the superfluid

and the quasi-condensate both initially sharply increase and then continue to increase more slowly

with increasing contact interaction strength. However, the superfluid critical temperature spectrum

remains moderately lower than the quasi-condensate critical temperature spectrum.

rather large phase fluctuations. Mathematically, these phase fluctuations manifest in the

term
∫

d�k
(2π)2

u�kv�k(2f�k + 1). This behaves like T
k2

when taken at small k. While this is

easily handled in three dimensions, this term diverges in 2D. However, we absorb it into

n0, the condensate density. This converts our condensate from strictly a BEC to a quasi-

condensate with phase fluctuations. When taken from a small distance away, a BEC and

quasi-condensate act the same. However, at large length scales, a quasi-condensate will

change phase whereas a BEC has a single phase. For the purposes of superfluidity and

condensate fraction, two dimensions have significant effects.
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Similar to 3D, increasing contact interaction strength will likewise increase the condensate

fraction. The only temperature where lower interaction strength leads to a higher condensate

fraction is near absolute zero when strong interactions cause quantum depletion. However,

superfluid fraction is only increased with greater interaction strengths. The increase in

contact interaction strength plays a significantly greater role in the increase of the condensate

and SF fraction than in 3D. Unlike in 3D, the superfluid has a different critical temperature

than the condensate. The condensate undergoes a superfluid transition initially and enters

a phase where the condensate still exists, but does not possess superfluid properties. Then

the condensate undergoes a transition at its critical temperature into a thermal gas. The

two transitions can be seen explicitly in Fig. 4.

A derivation of the quasi-2D contact interaction potentials is given in Appendix D.

C. Two Dimensions with Dipolar Interactiions

The dipolar interaction affects the condensate significantly more dramatically than con-

tact interactions. Although weakly interacting dipoles provide similar condensate fractions

and excitation spectrum as those of contact interactions, strong dipolar interactions cause

large changes in the condensate’s nature. Similar to 2D contact interactions, an increase

in the dipolar interaction strength produces an increase in the condensate critical tempera-

ture. However, strong dipolar interactions, where rotons are present, such as the green line

in Fig. 6 show an enormous quantum depletion. For a moderately strong interaction, 1
5
of

the total particles are in the thermal cloud at zero temperature! Weak Dipolar interactions,

where rotons do not manifest, produce higher condensate fractions over the majority of the

temperature scale.

Superfluids also undergo an interesting transition. While weakly interacting dipoles pro-

duce an increase in superfluid fraction and superfluid critical temperature, the development

of the roton excitation spells disater for superfluidity. Not only does superfluidity decrease

dramatically, but the roton excitation causes the lower superfluid fraction than more weakly

interacting dipoles. In fact, the spectrum of superfluid fraction for strong dipoles concaves.

Strong dipolar interactions and roton excitations lead to a dramatic decrease in the conden-

sate’s ability to support superfluidity.

Rotons have a profound effect on quantum depletion. As the condensate experiences a
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FIG. 5: Effect of dipolar interaction strength on condensate occupancy at 0 Kelvin. The condensate

experiences quantum depletion at a consistent rate until dipolar interactions become strong, at

which point the roton mode appears and cause a rapid depletion in the condensate.

gradual increase in dipolar interaction strength, a slight linear drop in condensate fraction

occurs. Near the dipolar interaction strength of gdn2D/
√
2πlz = 1.5, the roton mode begins

to form and creates a sharp decrease in the condensate occupation at 0 Kelvin. This effect

is clearly illustrated in Fig. 5. This steep drop continues until near gdn2D/
√
2πlz = 3

at which point the condensate fraction at 0 Kelvin begins to return to smaller decreases

with increasing interaction strength. We can see the effect of dipolar interaction strength in

regards to excitation energy out in Fig. 7. This probably occurs because a roton mode forms

near gdn2D/
√
2πlz = 1.5 which causes lots of low energy excitations. This process compounds

with increasing dipolar interaction strength and continues to shrink the condensate fraction

at zero temperature.
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The spectrum for strong dipolar excitations is unique because with increasing momentum,

we find a local maximum (a small hill), and then a wide minimum where the roton excitation

exists. If we have only weakly interacting dipoles, then the excitation spectrum looks similar

to those of contact interactions. Fig. 8 shows that only at low temperatures do roton

modes exist. As temperature increases, many atoms become excited out of the condensate,

stabilizing it. If we calculated without a self consistent solution, this would not occur and
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FIG. 6: Condensate fraction and superfluid fraction of a 2 Dimensional BEC with dipolar inter-

actions of varying strength. Increasing dipolar interaction strength vastly increases the critical

temperature of the condensate. However, it also drastically increases the effect of quantum de-

pletion, causing condensates with weak dipolar interactions to have a greater condensate fraction

at most temperatures. Increasing dipolar interaction strength initially has a positive influence on

the superfluid critical temperature and superfluid fraction, but too large of dipolar interactions

decreases the critical temperature and superfluid fraction.
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FIG. 7: Comparison of self consistent versus non-self consistent method of calculating in regards

to excitation energy of increasing dipolar interaction strength at 0 K. When calculating not self

consistently, the roton excitation energy drops to zero soon after roton excitations appear. There-

fore, the condensate collapses and all atoms spill into the thermal cloud. However, a self consistent

calculation shows that regardless of the interaction strength, the roton excitation energy will never

go to zero. As a result, the system is mechanically stable.

instead the condensate would collapse due to the strong dipolar interactions, regardless of

temperature. However, we find that temperature acts as a stabilizing mechanism for the

condensate, removing the roton mode.

A derivation of the quasi-2D dipolar interaction potentials is given in Appendix E



34

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

ω
k
/
ω

z

 

 

0 0.5 1 1.5 2 2.5 3
0

1

2

3

klz

ñ
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FIG. 8: Excitation spectrum of dipolar interactions at varying temperatures and occupation of the

thermal cloud at varying temperatures and increasing momentum. As temperatures increase, the

roton excitation requires more energy. With enough temperature, the roton excitation disappears

entirely. The thermal cloud occupation reveals this feature by revealing a larger density of atoms

at the roton momentum at zero temperature. As the temperature rises, the overall density of

excitations increases as well as the majority of the excitations moves away from the former roton

minimum towards lower momentum excitations.

IV. CONCLUSION

Particles at ultracold temperatures have two important features, their wavelike nature

and whether the particles are bosons or fermions. Bosons, the particles we model, are integer

spin particles that can occupy the same quantum space. Fermions, particles of half integer

spin, cannot. We model boson-like atoms which consist of an even number of fermions, such

as Sodium 23. As we cool a gas of bosons into the ultracold regime, we find the De Broglie
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wavelength of the atoms begins to increase. Once the size of the wavelength becomes on the

order of the inter particle spacing, a Bose Einstein condensate forms. This unique statistical

phenomenon creates a new state of matter consisting of a macroscopic quantum mechanical

state. Once the gas is cooled to absolute zero, every particle enters the BEC (only in the

non-interacting case!).

Specifically, we modeled dipolar interactions within the BEC. However, dipolar interac-

tion’s attractive potential causes the condensate to collapse when in three dimensions so we

confine our BEC to a nearly two dimensional geometry. As a result, the condensate gains

moderate phase fluctuations, creating a quasi-condensate. We treat the quasi-condensate

with nearly identical mathematical formalism, but still accounting for the phase fluctua-

tions. The excitation spectrum for dipolar interactions in nearly two dimensions creates a

peculiar excitation called a roton. The roton allows for high momentum excitations for very

low energy. We investigate the extent to which rotons influence our condensate system.

Due to the Schrodinger’s equation restrictions on symmetric wave functions and degrees

of freedom, we find it prohibitively difficult to solve this problem. Therefore, we use an

alternative method known as 2nd Quantization. We enumerate number states and apply

creation and annihilation operators to them in order to count how many particles we have

in each Fock state. We further make the mean field approximation, Hartree-Fock decompo-

sition, Bogoliubov transformation, and finally the Popov approximation in order to create

a diagonalized quadratic Hamiltonian.

We find that in nearly two dimensions, strong dipolar interactions cause a significant

decrease in the superfluid fraction. In addition, two dimensions cause two phase transitions,

first from a superfluid condensate to a non-superfluid condensate and second from a non-

superfluid condensate to a thermal gas. When we calculate our solution self consistently,

ensuring particle number stays constant, we find that the condensate will not collapse at

zero temperature regardless of the dipolar interaction strength. While non-self consistent

calculations cause the roton excitation energy to go to zero, exciting every atom out of

the condensate, self consistent calculations reveal the roton energy never goes to zero. The

system remains mechanically stable. In addition, raising the temperature of our system

gradually removes the roton excitation, stabilizing the system. Our results will be revealing

for modern experiments with ultra cold atoms focusing on dipolar interactions and the

condensate.
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Appendix A: Derivation of Hartree-Fock Equations

We begin with the total Hamiltonian describing our system. We have our non-interacting

component as the first term, which describes the collective kinetic energy of the system. Our

second term consists of the potential term which will vary depending on which potential we

introduce.

Ĥ =

∫
Ψ̂†(�r)Ĥ1Ψ̂(�r)d�r +

1

2

∫
Ψ̂†(�r)Ψ̂†(�r′)V (�r − �r′)Ψ̂(�r)Ψ̂(�r′) (A1)

Ψ̂ is a creation operator. It will create a particle at a certain position of �r. Using an

orthonormal basis of plane waves, we set the creation operator Ψ̂ to another operator â�k

which creates a particle of a certain momentum. An orthonormal basis is a basis of unit

vectors which are all orthogonal to each other. An example would be x̂, ŷ, and ẑ. They are

three unit vectors which are orthogonal or perpendicular to each other.

Ψ̂(�r) =
∑
�k

1√
LD

ei
�k·�râ�k (A2)

where â�k acts as an annihilation operator. â†�k acts as a creation operator.

â†�ki |N�k=0, N�k1
, ..., N�ki

, ... >=
√

N�ki
+ 1|N�k=0, N�k1

, ..., N�ki
+ 1, ... >

â�ki |N�k=0, N�k1
, ..., N�ki

, ... >=
√

N�ki
|N�k=0, N�k1

, ..., N�ki
− 1, ... > (A3)

After substituting Ψ̂ and Ψ̂† into the kinetic energy portion of the Hamiltonian, we find

Ĥ1 =
1

Ld

∑
�k�q

∫
e−i

�k·�r
(
−1

2
∇2

)
ei�q·�r â†�kâ�q d�r (A4)

The Laplace operator ∇2 will return a value of −q2. After moving this value outside the

integral, our equation simplifies to

Ĥ1 =
1

2Ld

∑
�k�q

q2â†�kâ�q

∫
e−i

�k·�rei�q·�rd�r (A5)
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Because of our orthonormal basis,the �k and �q vectors are perpendicular and make the

above integral zero, except when �k = �q. When both momentums are equal, the integral

instead goes to Ld.

Ĥ1 =
1

2

∑
�k

k2â†�kâ�k (A6)

We follow the same process for the interaction potential, with

V (�r − �r′) =
∑

�p
1
Ld Ṽ (�p)e−i�p·(�r−�r′). By following the same process above, we

find

Ĥint =
1

2Ld

∑
�k�q�p

Ṽ (�p)â†�p+�qâ
†
�k−�qâ�kâ�p (A7)

At ultracold temperatures, bosonic gas forms a Bose Einstein Condensate, where the

ground single particle state becomes macroscopically occupied by N0 atoms. The result of

ground state operators (�k = 0) on our Fock states (|N0...) is approximately equal to
√
N0

times our original Fock state. Thus, we can introduce the mean field approximation found

below.

〈a0〉 � 〈a†0〉 =
√

N0 (A8)

We introduce this approximation to our Hamiltonian in A5 and A6. We expand the

Hamiltonian in the form Ĥ = H0+Ĥ1+Ĥ2+... where each term has 0, 1, or 2 non-condensate

(non-ground state) operators. Noting that �k = 0, and introducing the condensate density

of n0 = N0/L
D, we find

H0 ≡ E0 =
N0

2
n0Ṽ0. (A9)

This term is the condensate energy because it describes all energy within the conden-

sate. The next term H1 is neglected because terms with 1 operator will vanish when their

expectation value is taken. Next we move to work on H2. There are six possible ways to

set two operators to �k = 0. As an example, the first two operators will be set to zero to
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show the process for the mean field approximation. We set q → −p and k → p. Our first

two operators now equal a0 =
√
N0 and can be brought out front. Our resulting term is

N0

2LD

∑
�p Ṽ (�p) â†−�pâ�p. After making a shift in quantum numbers (p → −k), our new term

equals

N0

2LD

∑
�k

Ṽ (�k) â†�kâ−�k . (A10)

By setting each possible combination of operators to zero and forcing our equations to

use similar momentum numbers, we find the result

Ĥ2 =
∑
�k �=0

(
ε�k − μ

)
â†�kâ�k +

n0

2

∑
�k �=0

[
2Ṽ (0)â†�kâ�k + Ṽ (�k)

(
2â†�kâ�k + â�kâ−�k + â†�kâ

†
−�k

)]
. (A11)

The Hamiltonian above does not conserve particle number so we must introduce a La-

grange multiplier, the chemical potential, to keep particle number constrained. We place

the chemical potential, μ as a constraint on ε.

The next term in our Hamiltonian expansion is H3, but just at H1 went to zero, H3 also

will. Odd numbers of raising and lowering operators, regardless of order or capacity, will

vanish when an expectation value is calculated. The final component of the Hamiltonian,

H4, is quartic. At this point, the rest of the Hamiltonian is quadratic so we need to force

H4 to be quadratic as well. We use Hartree-Fock decomposition on H4 to accomplish this.

We take each combination of 2 terms and take an expectation value of them.

Ĥ4 =
1

2Ld

∑
�k,�q,�p �=0

Ṽ (�p)â†�p+�qâ
†
�k−�qâ�kâ�p (A12)

Ĥ4 =
∑

�k,�q,�p �=0

Ṽ (�p)

2Ld

[
â†�p+�qâ

†
�k−�q〈â�kâ�p〉+ â†�p+�qâ�p〈â†�k−�qâ�k〉+ â†�p+�qâ�k〈â†�k−�qâ�p〉

+ â†�k−�qâ�p〈â
†
�p+�qâ�k〉+ â†�k−�qâ�k〈â

†
�p+�qâ�p〉+ â�kâ�p〈â†�p+�qâ†�k−�q〉

]
(A13)

We introduce two densities into this equation now. The first is called the normal density

ñk and the second is called the anomalous density m̃k.
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ñk = 〈â†�kâ�k〉 (A14)

m̃k = 〈â�kâ−�k〉 = 〈â†�kâ
†
−�k〉 (A15)

In order to substitute the densities into Ĥ4, we create equations to swap our quantum

numbers. For our first term within the bracket, we set �p → −�k resulting in â†
�q−�kâ

†
�k−�q

˜V (�q)
2LD m̃k.

Following, we set �p → �k− �q. This action results in â†�pâ
†
−�p

˜V (�k−�p)
2LD m̃k. In order to get this term

into a common form with the other five terms, we swap the quantum momentum numbers

�p ↔ �k. Finally, our first term is in the desired form below.

Term 1 = â†�kâ
†
−�k

Ṽ (�p− �k)

2LD
m̃p (A16)

Term 2 will use a normal density as oppose to the anomalous density used in term 1. In

order to alter term 2 into the desired form, we set �q = 0 resulting in â†�pâ�p〈â†�kâ�k〉Ṽ (0). After

substituting the normal density and allowing for a quantum number swap �p ↔ �k.

We follow this same procedure for the remaining four terms. All process similar to those

described above. Our new Ĥ4 follows below

Ĥ4 = ñṼ (0)
∑
�k �=0

â†�kâ�k +
1

2LD

∑
�k�q �=0

Ṽ (�q − �k)(ñ(q)â†�kâ�k + m̃(q)â†�kâ�k). (A17)

Ĥ2 =
∑
�k �=0

(ε�k − μ)â†�kâ�k +
n0

2

∑
�k �=0

[
2Ṽ (0)â†�kâ�k + Ṽ (�k)

(
2â†�kâ�k + â�kâ−�k + â†�kâ

†
−�k

)]
. (A18)

We take Ĥ2 and add it to Ĥ4 to form the Hamiltonian for non-condensate atoms inter-

acting with non-condensate atoms.

Ĥ
′
2 =

∑
�k �=0

(ε�k − μ+ Σ11(�k))â
†
�k
â�k +

1

2

∑
�k �=0

(
Σ20(�k)â�kâ−�k + Σ∗

02(
�k)â†�kâ

†
−�k

)
. (A19)

We find the above equation by selectively defining Σ11 and Σ20.
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Σ11(�k) = ñṼ (0) +
1

LD
ñ(�q)Ṽ (�q − �k) + n0(̃0) + n0Ṽ (�k) (A20)

After combining terms, we find

Σ11(�k) = nṼ (0) + n0Ṽ (�k) +
1

LD

∑
�q �=0

ñ(�q)Ṽ (�q − �k) (A21)

.

Similarly, we selectively choose Σ20 = Σ∗
02 to equal the terms associated with â�kâ−�k and

â†�kâ
†
−�k. After minimal simplification,

Σ20(�k) = n0Ṽ (�k) +
1

LD

∑
�q �=0

m̃(�q)Ṽ (�q − �k) (A22)

.
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Appendix B: Expansion via the Bogoliubov Transformation

In order to diagonalize our Hamiltonian, we use the Bogoliubov Transformation. Bogoli-

ubov’s process redefines our creation and annihilation as follows

â�k = u�kb̂�k + v∗�k b̂
†
−�k (B1)

â†�k = u∗
�k
b̂†�k + v�kb̂−�k (B2)

Using these relations, we also redefine our commutation relation in new raising and low-

ering operators.

[
â�k, â

†
�k′

]
= δkk′ (B3)

[
u�kb̂�k + v∗�k b̂

†
−�k, u

∗
�k′ b̂

†
�k′
+ v�k′ b̂−�k′

]
= δkk′ (B4)

[
u�kb̂�k, u

∗
�k′ b̂

†
�k′

]
+
[
u�kb̂�k, v�k′ b̂−�k′

]
+
[
v∗�k b̂

†
−�k, u

∗
�k′ b̂

†
�k′

]
+
[
v∗�k′ b̂

†
−�k′ , v�k′ b̂−�k′

]
= δkk′ (B5)

By definition, [
u�kb̂�k, v�k′ b̂−�k′

]
=
[
v∗�k b̂

†
−�k, u

∗
�k′ b̂

†
�k′

]
= 0. (B6)

u�ku
∗
�k′

[
b̂�k, b̂

†
�k′

]
+ v∗�kv�k′

[
b̂†−�k, b̂−�k′

]
= δkk′ (B7)

u�ku
∗
�k′δkk′ − v∗�kv�k′δkk′ = δkk′ (B8)

We set �k = �k′, forcing the Dirac delta functions equal 1. This results in a normalization

constraint for u�k and v�k.

u�ku
∗
�k
− v∗�kv�k = 1 (B9)
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Now we substitute our redefined creation and annihilation operators into our Hamiltonian.

For ease of explanation, we will only show Ĥ2 with hastened simplifications.

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+

N0

2

∑
�k

[
Ṽ (�k)

(
â†�kâ

†
�−k + â�kâ �−k + 2â†�kâ�k

)
+ 2Ṽ (0)â†�kâ�k

]
(B10)

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+

N0

2

∑
�k

[
Ṽ (�k)

(
(u∗

�k
b̂†�k + v�kb̂−�k)(u

∗
�k
b̂†�k + v�kb̂−�k) + (u�kb̂�k + v∗�k b̂

†
−�k)(u�kb̂�k + v∗�k b̂

†
−�k)

+ 2(u∗
�k
b̂†�k + v�kb̂−�k)(u�kb̂�k + v∗�k b̂

†
−�k)

)
+ 2Ṽ (0)(u∗

�k
b̂†�k + v�kb̂−�k)(u�kb̂�k + v∗�k b̂

†
−�k)

]
(B11)

We multiply out all raising and lowering operators, combining like terms. We remove the

off diagonal terms and set them equal to zero. We also assume all our values for �k are real

causing −�k = �k

[
2(u�ku�k + v�kv�k + 2u�kv�k)Ṽ (�k) + (2u�kv�k)Ṽ (0) + u�kv�k(ε�k − μ)

]
�b�k
�b�k = 0 (B12)

The term for b̂∗�kb̂
∗
�k
is simply the complex conjugate of the above term. However, since

both terms are real, the resulting term will only be a conjugate.

We need to add the single particle energy term, ε�k, into our Hamiltonian to ensure we

have the full spectrum of energy (interaction potential and kinetic energy). By combining

the commutation relation u2
�k
−v2�k = 1 and the off diagonal terms, we can solve for the values

of u�k and v�k. We utilize Mathematica to solve and partially simplify. Through additional

algebra steps, we find

u�k =
1√
2

√
1 +

Ṽ (�k) + ε�k − μ

ω�k
(B13)

where

ω�k = ε
1
2

�k
(2Ṽ (�k) + ε�k)

1
2 (B14)

.
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v�k = −sgnṼ (�k)
1√
2

√
Ṽ (�k) + ε�k − μ

ω�k
− 1 (B15)

The remaining diagonal terms are show in their entirety below

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+

N0

2

∑
�k

[
Ṽ (�k)

(
u∗
�k
v�kb̂

†
�k
b̂�k + v�ku

∗
�k
b̂�kb̂

†
�k
+ u�kv

∗
�k
b̂�kb̂

†
�k
+ v∗�ku�kb̂

†
�k
b̂�k + 2u∗

�k
u�kb̂

†
�k
b̂�k+

2v�kv
∗
�k
b̂�kb̂

†
�k

)
+ 2Ṽ (0)

(
u∗
�k
u�kb̂

†
�k
b̂�k + v�kv

∗
�k
b̂�kb̂

†
�k

)
+ (u∗

�k
u�k + v�kv�k∗(ε�k − μ))

]
. (B16)

We replace b̂�kb̂
†
�k
with b̂†�kb̂�k + 1 as allowed by the commutation relation. In addition, we

remove all ∗ because we assume u�k and v�k are real. After algebraic simplification we find

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+

N0

2

∑
�k

[
Ṽ (�k)

(
u2
�k
+ 2u�kv�k + v2�k

)
b̂†�kb̂�k + 2Ṽ (0)(u2

�k
+ v2�k)b̂

†
�k
b̂�k+

Ṽ (�k)(2u�kv�k + v2�k) + 2Ṽ (0)v2�k(u
2
�k
+ v2�k)(ε�k − μ)b̂†�kb̂�k + u�kv�k(ε�k − μ)

]
(B17)

.

We proceed to plug in our values for u�k and v�k. After simplifying using Mathematica,

our Hamiltonian for Ĥ0,2 simplifies to

Ĥ0,2 =
(N0)

2Ṽ (0)

2LD
+N0

∑
�k

ω�kb̂
†
�k
b̂�k +

N0

2

∑
�k

(
ω�k −

(
ε�k − μ

)− n0Ṽ (�k)
)

(B18)

.
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Appendix C: Number Operator in terms of Creation and Annihilation Operators

In our Hamiltonian, we find pairs of quadratic creation and annihilation operators in the

form â†�kâ�k. This acts as a number operator N̂ , an operator which counts the number of

particles in a given state.

In order to prove â†�kâ�k acts as a number operator, we cat on the following system

|E0, E1, E2, E3, E4, ... >.

N̂k=2|k0, k1, k2, k3, k4, ... >= â†�k2 â�k2 |k0, k1, k2, k3, k4, ... > (C1)

â†�k2 â�k2 |k0, k1, k2, k3, k4, ... >=
√

k2â
†
�k2
|k0, k1, k2 − 1, k3, k4, ... > (C2)

√
k2â

†
�k2
|k0, k1, k2, k3, k4, ... >=

√
k2
√
k2 − 1 + 1|k0, k1, k2, k3, k4, ... > (C3)

N̂k=2 = k2|k0, k1, k2, k3, k4, ... > (C4)

We can apply this knowledge to examining a non-interacting group of particles. We have

a system of four particles

χ�k = |k0, k1, k2, k3, k4 >= |0, 1, 0, 2, 1 > (C5)

When we determine the energy for this system, we apply the Hamiltonian for a non-

interacting system.

Ĥ =
∑
�k

â†�kâ�kε�k (C6)

After counting each individual states kinetic energy and summing over all the states, we

find our collective energy.

Ĥχ�k = Eχ�k =

(
k2
1

2
+

2k2
3

2
+

k2
4

2

)
|0, 1, 0, 2, 1 > (C7)
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Appendix D: Derivation of Quasi-2D Contact Interaction Potential

We begin with the general equation for an interacting Hamiltonian.

Ĥ =

∫
Ψ̂†(�r)Ĥ1Ψ̂(�r)d�r +

1

2

∫
Ψ̂†(�r)Ψ̂†(�r′)V (�r − �r′)Ψ̂(�r)Ψ̂(�r′) (D1)

Then we make the following substitutions into our general interacting Hamiltonian.

Ψ̂(�r) =
∑
�k

χ(z)
1√
LD

ei
�k·�ρâ�k (D2)

Ψ̂†(�r) =
∑
�k

χ∗(z)
1√
LD

e−i
�k·�ρâ†�k (D3)

χ(z) = χ∗(z) =
1√
lzπ

1
4

e
−z2

2lz2 (D4)

V (�r − �r′) =
∑
�p

Ṽ (ρ)
1

LD
e−i�p·(�r−

�r′) (D5)

We begin with calculating the simpler non-interacting component and then follow with

the interacting portion.

H1 =

∫
d�rχ∗(z)

1

L
e−i

�k·�ρ(−1

2
∇2 − U(z))

1

L
ei�q·�ρχ(z)â†�kâ�q (D6)

H1 =
∑
�k�q

1

L2

∫
d�rχ(z)e−i

�k·�ρ(k2 − 1

2

d2

dz2
+

1

2
z2)

1

L
ei�q·�ρχ(z)â†�kâ�q (D7)

The Hamiltonian operator within the non-interacting portion provides an average kinetic

energy summed over all particles. This gives us the total kinetic energy of the system. The

potential portion is the same as for a harmonic oscillator and since χ(z) is the ground state

of the system, the potential is simply 1
2
�ω. Since we set the condition that � = m = ω = 1

as an assumption to simplify calculations, this leaves a potential of 1
2
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H1 =
1

L2

∑
�k�q

(
k2

2
+

1

2

)∫
χ(z)e−i(

�k−�q)·�ρd�ρ
∫

χ2(z)d�z â†�kâ�q (D8)

H1 =
∑
�k

(
k2

2
+

1

2

)
â†�kâ�q (D9)

Since 1
2
is a constant, it can be ignored since it affects every state equally. Therefore, our

final non interacting component is the exact same as our 3-D case.

H1 =
∑
�k

k2

2
â†�kâ�q (D10)

Now we continue on to the more interesting 2-D contact interaction term.

Hint =
1

2

∫
Ψ̂†(�r)Ψ̂†(�r′)V (�r − �r′)Ψ̂(�r)Ψ̂(�r′) (D11)

=
1

2

∫ ∫
d�rd�r′χ2(z)χ2(z′)

1

L4

∑
�p

Ṽ (p)
1

L2
e−i�p(�r−

�r′)ei
�k·�pei�q·�pe−i

�k′·�pe−i
�q′·�pâ�kâ�qâ

†
�k′
â†�q′ (D12)

=
1

2

∫ ∫
d�rd�r′χ2(z)χ2(z′)

1

L6

∑
�p2D

Ṽ (p)e−i�p(�ρ−
�ρ′)ei�p(

�k+�q−�k′−�q′)∑
�pz

e−i �pz(z−z
′)â�kâ�qâ

†
�k′
â†�q′ (D13)

=
1

2

∫ ∫
dzdz′nz(z)nz(z)

1

L2
δ(k + q − p)δ(p′ − k′ − q′)

∫
dkz
2π

Ṽ (p)e−i �pz(z−z
′)â�kâ�qâ

†
�k′
â†�q′

(D14)

Hint =
1

2L

∫
dze−i �pznz(z)

∫
dz′ei �pz′nz(z′)

∫
dkz
2π

Ṽ (p)e−i �pz(z−z
′)â�p+�qâ�k−�qâ

†
�pâ

†
�k

(D15)

Here we use the Fourier transform (or momentum space equivalent) ñz(kz) =∫
dzeikz ·zχ2(z) in order to change the equation into 2D momentum space.

Hint =
1

2L

∫
dkz
2π

Ṽ (p)ñz(kz)ñz(kz)â�p+�qâ�k−�qâ
†
�pâ

†
�k

(D16)

Hint =
1

2

∑
�k�q�p

â�p+�qâ�k−�qâ
†
�pâ

†
�k
Ṽq2D(�p) (D17)
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Appendix E: Derivation of Quasi-2D Dipolar Interaction Potential

The difference between the contact and dipolar interaction potential lies only in the the

potential term. Dipolar interactions follow the interaction potential Vd(�x) = d2 1−3 cos2 θ
x3

. To

approach this problem, we will use spherical harmonics and Bessel functions.

Hint =
1

2

∫
Ψ̂†(�r)Ψ̂†(�r′)V (�r − �r′)Ψ̂(�r)Ψ̂(�r′)d�rd�r′ (E1)

Below is the potential for dipolar interactions

Vd(�x) = d2
1− 3 cos2(θ)

x3
(E2)

We expand the potential using spherical harmonics.

Vd(�r) =
d2

(�r)3
4

√
π

5
Y20 (E3)

We then Fourier transform and spherically expand our result into a 3D momentum space

potential. What remains to be done is to convert our 3D potential into a quasi 2D potential.

ei
�k·�r = 4π

∑
l,m

ilY ∗
lm(k̂)jl(kx)Ylm(x̂) (E4)

Ṽd(�k) = πd2
4

3
(3 cos2(θk)− 1) where cos(θk) =

kz
|k| (E5)

Ṽq2Dd(�k) =

∫
dkz
2π

ñ2
z(kz)Ṽd(

�k) (E6)

After substituting our value for Ṽk(�k) into the equation we calculated above in Appendix

A, we use Mathematica to calculate Ṽq2Dd(�k).

Ṽq2Dd(�k) =
gd√
2πlz

(
2− 3

√
πqeq

2

erfc[q]
)

where q =
�kρlz√

2
(E7)
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gd is a substitution used to give the equation a similar form regardless of our interaction

type. By making gd =
4π�2add

m
, Ṽk(�k) inhabits the same form whether in the 2D contact case

or the 2D dipolar case. In this equation, add =
md2

3�2
. Ṽq2Dd(�k) has a crucial distinction between

it and the 2D contact case. The momentum dependence coinciding with dipolar interactions

makes calculations significantly more difficult than with momentum independent potentials.
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Appendix F: Solving the Hartree Fock Bogoliubov Equations

Through our mathematical framework, we find a collection of equations we call the

Hartree Fock Bogoliubov (HFB) equations.

μ = nṼ (0) +
1

LD

∑
�k

Ṽ (�k)ñ(�k) (F1)

Σ11(�k) = nṼ (0) + n0Ṽ (�k) +
1

LD

∑
�q �=0

ñ(�q)Ṽ (�q − �k) (F2)

Σ20(�k) = n0Ṽ (�k) (F3)

ω�k =

√(
ε�k − μ+ Σ11(�k)

)2

− (Σ20(�k))2 (F4)

u�k =

√√√√1

2

(
ε�k − μ+ Σ11(�k)

ω�k
+ 1

)
(F5)

v�k = −
√√√√1

2

(
ε�k − μ+ Σ11(�k)

ω�k
− 1

)
(F6)

ñ(�k) =
(
u2
�k
+ v2�k

)
f�k + v2�k (F7)

f�k =
1

eβω�k − 1
(F8)

n = n0 +

∫
d�k

(2π)3
ñ(�k) (F9)

We have nine equations and nine unknowns! In order to calculate a self consistent solu-

tion, we must ensure that particle number remains constant. We first guess a solution for

the condensate fraction n0. We use this value to calculate the self energies Σ11 and Σ20. We

use the self energies to calculate ω�k, u�k, and v�k. Once we have the value for ω�k, we plug

it into the Bose Einstein distribution to find f�k which we use to find our thermal density,

ñ(�k). We use the thermal density to find the number of excited atoms in the system.

However, we often find the number of atoms in our system, excited atoms plus condensate

atoms, exceed the total particle number. In order to fix this, we correct our initial guess of

the condensate fraction and iterate the process using the Matlab code shown in Appendix

G. Through several iterations, we find a converged solution. We perform this analysis to

calculate all of our results.
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Appendix G: Matlab Code for Solving Hartree Fock Bogoliubov Equations

Here we include the Matlab code used for solving our HFB equations.

function data = HFB_Popov_2D_Trident(g,gd,T,ntotal,n0guess,nTguess,kmin,kmax,klength,ite

% HFB solver

kvec = linspace(kmin,kmax,klength);

n0 = n0guess;

if isempty(nTguess)

nT = zeros(size(kvec));

else

nT = nTguess;

end

nTold = nT;

maxiter = 200;

exitflag = 0;

dn0=1;

iter = 1;

tic

while (dn0>1e-16 && ~exitflag && iter<maxiter)

if iter<itertol

nTfrac = iter/itertol;

else

nTfrac = 1;

end
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[wk,uk,vk,S11,S20,S20T0,nTnew,mu] = BdG(kvec,g,gd,n0,ntotal,nT,T);

if isreal(wk)

nT = nTfrac*nTnew+(1-nTfrac)*nTold;

nTtot = 2*pi/(2*pi)^2*trapz(kvec,kvec.*nT);

n0old = n0;

n0 = ntotal-nTtot;

n0-n0old;

dn0 = abs(n0-n0old);

else

n0=0;

exitflag = 1;

end

nTold = nT;

iter = iter+1;

t = toc;

end

% find superfluid fraction

nSF = SFfun(T,kvec,wk,ntotal);

% find local minimum in wk

dwk = gradient(wk,kvec);

wkind = min(find(gradient(dwk./abs(dwk))==1));

if isempty(wkind)

kroton = nan;

wkroton = nan;

else

kroton = kvec(wkind);

wkroton = wk(wkind);
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end

fprintf(’n0 = %G nSF = %G mu = %G\n’,n0,nSF,mu)

data.kroton = kroton;

data.wkroton = wkroton;

data.nSF = nSF;

data.mu = mu;

data.n0 = n0;

data.nTtot = nTtot;

data.nT = nT;

data.n = ntotal;

data.kvec = kvec;

data.wk = wk;

data.uk = uk;

data.vk = vk;

data.S11 = S11;

data.S20 = S20;

data.S20T0 = S20T0;

data.iter = iter-1;

data.exitflag = exitflag;

data.t = t;

% end of HFB.m

function [wk,uk,vk,S11,S20,S20T0,nT,mu] = BdG(kvec,g,gd,n0,ntotal,nT,T)

[S11,S20,S20T0,mu] = SEfun(kvec,g,gd,n0,ntotal,nT);

Ak = kvec.^2/2-mu+S11;

Bk = S20;

wk = sqrt(Ak.^2-Bk.^2);

uk = 1./sqrt(1-((wk-Ak)./Bk).^2);
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vk = ((wk-Ak)./Bk)./sqrt(1-((wk-Ak)./Bk).^2);

if T>1e-6

fk = 1./(exp(wk/T)-1);

else

fk = 0;

end

nT = 1/2*(uk+vk).^2.*fk+vk.^2;

return

function [S11,S20,S20T0,mu] = SEfun(kvec,g,gd,n0,ntotal,nT)

thetavec = linspace(0,pi,128);

Vhn = (2*pi/(2*pi)^2)*trapz(kvec,kvec.*Vkfun(kvec,g,gd).*nT);

Vfn = zeros(size(kvec));

for ii = 1:length(kvec)

k = kvec(ii);

Vfvec = zeros(size(kvec));

for jj = 1:length(kvec)

q = kvec(jj);

Vfvec(jj) = 2*trapz(thetavec,Vkfun(sqrt(q.^2+k.^2-2*k*q*cos(thetavec)),g,gd));

end

Vfn(ii) = 1/(2*pi)^2*trapz(kvec,kvec.*Vfvec.*nT);

end

S11 = ntotal*Vkfun(0,g,gd)+n0*Vkfun(kvec,g,gd)+Vfn;

S20 = n0*Vkfun(kvec,g,gd);

S20T0 = n0*Vkfun(kvec,g,gd);

mu = ntotal*Vkfun(0,g,gd)+Vhn;
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return

function Vk = Vkfun(kin,g,gd)

k = kin(:)/sqrt(2);

ks = k(k<=25);

kl = k(k>25);

vals = exp(ks.^2).*erfc(ks);

vall = 0.0763957775554068*exp(-0.049875774108393764*kl);

Vks = g+gd*(2-3*sqrt(pi)*ks.*vals);

Vkl = g+gd*(vall./kl-1);

Vk = [Vks;Vkl];

Vk = reshape(Vk,size(kin));

return

function nSF = SFfun(T,kvec,wk,ntotal)

nSF = ntotal+1/2*2*pi/(2*pi)^2*trapz(kvec,kvec.^3.*(1./(1-cosh(wk/T)))/2/T);

if nSF<0

nSF=0;

end

return
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