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Communication Dependent Control of Multi-Vehicle

Formations

MIDN Aaron M. Sims, USN

The expanded role of unmanned systems in military and civilian applications has introduced interesting
new questions in multi-vehicle coordination and communication. Specifically, in communication-limited or
denied environments, there exists a need for control algorithms that drive agents to desired formation in space
while coordinating the time instances in which they communicate. In the undersea domain, communication
is limited underwater since it compromises stealth and signals attenuate at relatively short spatial scales
compared to the air domain. Consequently, there exists a need for multi-vehicle control algorithms capable
of driving vehicles to a dynamic configuration subject to directed, time delayed communication topologies
amongst the vehicles.

To combat these issues and deliver a system that allows underwater vehicles to communicate without
reliance on an underwater network, coordination of vehicle surfacing is essential. The goal of this research
is to derive steering algorithms utilizing event- and self-triggered control, capable of driving vehicles to a
particular formation while simultaneously coordinating inter-agent communication instances (i.e. surfacing
times). This goal is broken up into two segments: multi-vehicle control and communication control.

By leveraging previous work in tracking control, we show the ability to combine kinematic and vehicle
dynamic controllers to create a model that easily adapts to changing vehicle dynamics and time-varying
desired configurations. Target and trajectory tracking are demonstrated, both of which are useful in con-
ducting autonomous missions. Additionally, we present a permutation algorithm to optimally assign vehicles
to formation positions based on proximity.

This work also leverages theories from self-triggering control and builds upon them by accounting for
the time delayed communication. In this work, each agent computes its own control based on the last known
information of its communicating neighbors. The information includes the time, position, and velocity of the
neighbor vehicles at their last known communication time. Using the provided information, agents calculate
their own control and the next interval update time. Each agent uses the last shared information from
its communicating neighbors to determine its own next execution time independent of the other agent’s
execution times. The results guarantee convergence to a desired configuration. We compare the results
of self-triggered control strategies in which all agents update their control at each time instance to our
algorithm which relies on delayed information to update the control of individual agents based on their
unique computed next execution time.

In total, this work combines the multi-vehicle and communication-coordinating control to present a
framework capable of steering a multi-vehicle system to a time-varying configuration without relying on all-
to-all communication. The contributions of this work may enhance the capability of underwater sampling
by increasing formation precision subject to intermittent communication. This may be especially beneficial
for applications such as underwater surveillance, environmental sampling, or underwater threat detection.

Keywords- Consensus, Tracking, Multi-vehicle Control, Laplacian, Coordination, Self-Triggered Control
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1 INTRODUCTION

Both the military and private sector have expressed interest in unmanned multi-vehicle
systems to conduct missions currently requiring manned craft. As a result, there exists a
need to control multi-vehicle systems subject to realistic communication limitations. This
paper addresses this need by deriving an algorithm capable of steering vehicles to desired
configurations subject to practical limitations on communication between agents.

Consider a multi-vehicle system in which each agent computes its steering control based
on information communicated to it by its network of neighbors. This system of agents, called
a decentralized system of agents, is subject to practical limitations in how or when it can
communicate information. The goal of this research is to design a controller for each agent
to steer the vehicles to a desired configuration subject to the communication constraints
imposed by operating in a realistic environment. Specifically, we aim to leverage precious
work in self-triggered control to derive new steering algorithms that steer vehicles to desired
configurations while simultaneously coordinating the timing at which they communicate.

The project is broken down into two segments. First, we derive a decentralized algorithm
to steer a set of N vehicles to a desired configuration subject to a pre-determined commu-
nication network. To achieve the configuration with a realistic vehicle model, we pursue a
two-part control approach. First, we generate reference trajectories assuming simple kine-
matic agents. Then, we track the reference trajectories with higher fidelity dynamic vehicle
models. The desired configuration can be a specific, spatial position, an orbit in a desired
parametric shape around a target, or a path that tracks a moving target. Additionally, the
results of the research include implementation of a network flow optimization routine to
demonstrate the benefits of vehicle communication in agreeing on vehicle assignment to a
set of end-state positions.

The second phase of the project focuses on implementing self triggering control to allow
for relaxed communication constraints among the vehicles. The results of the research include
the derivation of a new self-triggering condition that allows for individual vehicles to update
their control as opposed to current strategies that require all agents to communicate at each
time instance. Further, the consensus algorithm, which steers all vehicles to a common
position, was adapted to allow for the steering of the vehicles to any desired formation
utilizing the self triggered control strategy.

The time delayed communication aspect is addressed by applying theories from event and
self-triggered control from [1] and [2]. However, the focus of the control law presented is for
a multi-agent systems where the agents compute their individual control law based on the
last known information of the other agents. The distributed self-triggered control strategy
is used to calculate the next time for each individual vehicle to update its control.

The contributions of this work are 1) a kinematic controller that steers vehicles to any
desired configuration, 2) a tracking controller that steers high fidelity vehicle dynamics to
track the kinematic reference trajectories, and 3) a distributed self-triggering control that
coordinates communication instances between neighboring agents.

The paper is organized as follows. The following subsection outlines the specific problem
this work addresses. Section II provides a mathematical introduction and overview of the
key components of the research. Section III introduces and derives a graph transforma-
tion for steering vehicles to a desired formation. Section IV derives the theoretical results
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beginning with the kinematic controller and working up to self-triggering and tracking con-
trol. Section V illustrates a numerical simulation of the self-triggering and tracking control
applied to tracking a moving target. Section VI concludes the paper by summarizing the
accomplishments and proposing future areas for research focus.

1.1 Problem Statement

In an ideal case, the vehicles will operate under all-to-all (each vehicle communicates directly
with every other vehicle) instantaneous communication. However, real applications impose
constraints that may make all-to-all communication unrealistic. For example, in applica-
tions with obstacles between vehicles that require line of sight data transmission, all-to-all
communication is not achievable.

Take for example, an undersea application where stealth is paramount. In this case, the
unmanned underwater vehicles (UUV) would not want to communicate underwater if the
acoustic communication would subject them to counter detection. As a result, surfacing to
communicate with one another through a receiver such as a satellite could be one method
for reducing the reliance on underwater communication.

Another example could be a multi AUV system clearing a building. If one vehicle wants
to clear a room, it too must drop out of the formation and may be subjected to intermittent
communication with the formation.

In a UUV application, the objective is to stay on target as long as possible while con-
ducting the specified mission. However, there is a need to surface and communicate in
order to receive information from other agents. As a result, the vehicles will not be able
to communicate every time instance. Prior work has shown that if we assume each vehicle
communicates at every time step, the vehicles converge to a desired formation of positions
as shown in Figure 1. However, in reality, each vehicle will spend time underwater without

Figure 1: Convergence to desire positions assuming the vehicles communicate in accordance
with defined communication topology every time step

communication. As a result, communication occurs at intervals of τ , which affects the rate
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of formation convergence.
Figure 1 illustrates a control update delay of τ = 0.3 seconds. Notice, the system takes

slightly longer to converge to the desired configuration and reached the formation in a jagged
fashion. The trajectories of the vehicle show the effects updating the control law every τ = 0.3
seconds instance. Since the vehicles have no new information for 0.3 time instances, they are
forced to rely on outdated information during that time, thus explaining the linear motion
between update instances. When they communicate again, they are able to update their
control law and adjust their motion. However, they will maintain the same linear motion
until they are able to communicate again. If the communication intervals become too large,
the system will become unstable and the desired configuration will not be achieved.

If the goal is to keep the agents in a prescribed configuration as long as possible, then the
communication intervals of the vehicles should vary to ensure that some of them are always
conducting the mission when others drop out to communicate. As a result, we investigate
the behavior for a group of vehicles who communicate with individual surfacing intervals,
meaning τ1 �= τ2 �= τn. In this case, each vehicle gains information from its neighbors
from the time when they last surfaced. Figure 2 exemplifies this scenario for the case of 3
UUVs conducting a sampling mission. Moving from left to right, the vehicles have surfacing
intervals of τ = 3 seconds, τ = 4 seconds, and τ = 5 seconds respectively. The diagram
depicts the knowledge of each vehicle at time step 9. It shows the latest information each
vehicle has about every other vehicle. For example, in Figure 2 (left), vehicle one knows

Figure 2: At 9 time units (left), the second UUV is surfaced. All of the UUVs are annotated
with the time of their last known information about every other vehicle. The graphical repre-
sentation (right) shows the effects of individual discrete surfacing intervals on the information
available to each agents when it surfaces to update its control.

its own position at time 9, denoted V1(9), and the position of vehicles two, V2(6), and
three, V3(5), respectively. Figure 2 (right) shows a time lapse graphical representation of
the information available to each vehicle when it surfaces to calculate its control. Note,
in between surfacing instances, the vehicles are unaware of any changes to their neighbors
and therefor maintain their last computed control for the entire submerged interval. It is
evident that vehicle one’s information not only depends on its own surfacing intervals, but
the surfacing interval of the other vehicles. When vehicle one surfaces, it only receives the
information from the other vehicles the last time they surfaced. If the vehicle surfaces in the
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shortest intervals, then it is relatively simple. However, in the case like vehicle three, the
known vehicle information is derived as follows:

tsurf,n = mod(t, τn) (1)

tknown,n,i = floor(tsurf,n/τn)τn (2)

Once an equation defining the information each vehicle knows is derived, the goal is to
derive an algorithm that allows each vehicle to coordinate its interval time to maintain the
formation.

2 MATHEMATICAL BACKGROUND

This section provides a brief overview of the mathematical concepts that are utilized to derive
the results of this paper. Section 2.1 discusses basic concepts and terminology from graph
theory that are used to model a multi-agent communication network. Section 2.2 introduces
lyapunov based control which will be used to guarantee convergence of the multi-vehicle
system.

2.1 Graphical Representation of Agent Communication

Consider a multi-vehicle system consisting of N agents with the goal being to steer each
vehicle to a position in a desired configuration. Each agent is represented as a vertex such
that the group is given by the set of vertices, ν. A communication channel between i
and j is represented as an edge between vertice νi and νj. The set of edges representing
all agent communication is defined as ε. The communication topology is defined by the
graph, G = (ν, ε) [3]. For example, the graph in Figure 3 illustrates communication between
N = 5 agents. Agent one communicates with agents four and five as represented by the
bi-directional arrows representing edges ε1,4 and ε1,5. Agent one is informed of agent three’s
behavior via information gathered through agent four’s behavior.

The graph, G, admits a matrix representation known as the graph Laplacian, L. To
compose L, we define the degree matrix, D, a diagonal matrix whose ith diagonal element
represents the number of edges connecting vehicle i. D(i, j) is equal to the number of
junctions at node i when i = j. The Adjacency matrix, A, is a matrix representation of the
set of edges ε. The element A(i, j) = 1 if (ni, nj) is a set of ε and zero otherwise. The degree
and adjacency matricies for the digraph in Figure 3, are shown below in Equations (3) and
(4)

D =

⎡
⎢⎢⎢⎢⎣
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ (3)

A =

⎡
⎢⎢⎢⎢⎣
0 0 0 1 1
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ . (4)
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Figure 3: The digraph is one example of a possible digraph for N = 5 agents. Only the
agents directly connected with an arrow are able to communicate with one another. Other
agents must rely on indirect communication to determine their final positions.

The graph Laplacian is defined
L = D − A, (5)

and can be used to describe the communication between the vehicles [3]. The graph laplacian
for the graph in Figure 3 is found from equations (1)-(3) as

L =

⎡
⎢⎢⎢⎢⎣

2 0 0 −1 −1
0 1 0 0 −1
0 0 1 −1 0
−1 0 −1 2 0
−1 −1 0 0 2

⎤
⎥⎥⎥⎥⎦ . (6)

The graph laplacian has a few important properties that are utilized in future analysis.
First, the second smallest eigenvalue, λ2 approximates the time required to achieve the
desired configuration from the random initial conditions [4]. This value plays a significant
role in further work where communication assumptions are relaxed to determine the effects of
the system behavior. Second, Lx = 0 if x = [1, 1, ..., 1]T . This property becomes significant
when lyapunov based control is implemented since a potential function based on this property
is minimum when all of the agents have the same position. Third, previous work has shown
that in order to guarantee convergence, the graph, G, must be connected [3]. A connected
graph is one in which there exists a path from node νi to νj for any (i, j). The path does not
have to be a direct link between the two nodes since information can be shared throughout
the system. A connected graph is essential because it guarantees that information can travel
between any two agents.
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2.2 Lyapunov Control

In order to achieve the desired configuration, this research leverages previous work from
Lyapunov-based control, most notably the results in references [5], [6], [7], [8], [9], [10], [11],
[12], [13], and [14].

The Lyapunov-based control approach seeks to derive a control that minimizes a potential
function derived based on the desired agent formation. Define the vector of agent positions
x = [x1, x2, ..., xN ]

T and consider a potential function defined such that

V (x) ≥ 0 ∀x, (7)

and V (xf ) = 0 for the desired agent configuration vector xf . The goal is to design a control
such that

V̇ (x) < 0 ∀x �= xf . (8)

Equation 7 guarantees that the potential function representing the current vehicle formation,
V , is always positive, while Equation 8 guarantees that the potential will be decreasing for
all possible formations, x, except the desired formation, xf [15]. Combining these two
principles guarantees that the potential function eventually reaches its minimum where V =
0, corresponding to the desired final configuration. The concept of potential function-based
control is illustrated in Figure 4. The state xf = [x1, x2]

T represents the current configuration

Figure 4: The diagram represents Lyapunov Based Control where the goal is to drive the
potential, V , to a minimum (the bottom of the bowl).

of the two-vehicle system, while the bowl represents the potential function over all possible
configurations, with the minimum being the desired configuration, x = [0, 0]T . If the gradient
of the state motion is always negative, meaning it is moving downward in the bowl, it will
eventually arrive at the bottom, or minimum, of the bowl. At that point, any motion of the
particle will have a positive gradient, thus violating Equation (8). Therefore, at that point,
the particle has reached the minimum corresponding to the desired final configuration, called
the steady-state of the system.
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In its simplest form, the potential function for multi-vehicle control applications, V , is
defined as

V (x) =
1

2
xTLx, (9)

where L is the graph laplacian. Recalling the property of the laplacian, Lx = 0, if x =
[1, 1, ..., 1], we see that V (x) is zero only when all of the vehicles have reached consensus,
meaning all agents lie at the same position. In section 3, we introduce a transformation
of the graph laplacian, L, that allows us to steer the vehicles to any desired configuration
instead of only allowing for vehicle consensus to a common position.

3 GRAPH TRANSFORMATION FOR MULTI-VEHICLE FORMATION CON-
TROL

Currently, the potential function from Equation (9) ensures the vehicles steer to consensus
based on the initial conditions. In order to achieve the overall goal of steering vehicles to a
desired formation, we transform the the graph laplacian, L.

As a result, let c be the desired configuration for the vehicles. The goal is to design
a transformed laplacian, P , such that Pc = 0. In this case, if the vehicle positions are
equal to the desired final position, c or some multiple, then the potential will be at its
minimum indicating that all of the vehicles are in their desired positions. The derivation
of the transformed graph laplacian is as follows, using a similarity transformation between
matrices:

c =
xf

|xf | (10)

R = diag(c1, c2, ...cn) (11)

P = RLR−1. (12)

In a 1-dimensional, numerical example where N = 3 vehicles and the desired linear
configuration of c = [2, 3, 6], R is calculated in accordance with the following equations.

R =

⎡
⎣2

7
0 0

0 3
7

0
0 0 6

7

⎤
⎦ (13)

L =

⎡
⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎦ (14)

P =

⎡
⎣ 2 −2

3
−1
3−3

2
2 −1

2−3 −2 2

⎤
⎦ (15)

Note that the transformed laplacian does not guarantee convergence to the desired con-
figuration. Rather it will steer the vehicles to some multiple of the configuration. In order
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to account for this change and ensure the vehicles reach the exact desired formation, a term
is added to the potential which takes on the form

V =
1

2
xTRLR−1x+

1

2

N∑
k=1

a0(xk − xf,k)
2 (16)

The first term on the right hand side in Equation (16) is the relative position term which
defines the relative position between the two agents. After the similarity transform shown in
Equation (15), the P matrix weights the graph lapliacian, L, according to the desired final
positions. Additionally, the similarity transform shown in Equation (12) is used to ensure
the new matrix, P , has the same eigenvalues as L. While the graph laplacian, L, does not
affect the desired shape of the configuration, it does effect the robustness of convergence.
If you calculate the eigenvalues of the graph laplacian, you will have one 0 eigenvalue since
L is not linearly independent. The second smallest eigenvalue, which is the first non-zero
value, is proportional to the speed of response to a step disturbance [4]. Specifically, the
larger λ2, the quicker the convergence of the system. Additionally, L and P share the same
eigenvalues. In accordance with Equation (7), V is positive semi-definite.

Multiplying x and xT in Equation (7), ensures V ≥ 0∀x. Further, the transformation
ensures that the magnitude of V is not affected by the square. In addition, a factor of 1

2
is

introduced to account for the factor of 2 appearing when a derivative is taken.
The second term in Equation (16) is the absolute position term which defines each agents

absolute position in space. This term allows to ensure the vehicles converge to the desired
formation as opposed to some scaled multiple. The term a0,k is a vector of length N which
is assigned based on the following [14]:

a0,k =

{
0, if kth agent is unaware of its desired position

1, if kth agent knows its desired final position.
(17)

In the case where a0,k = 0, the kth vehicle must rely on communicated information from the
other agents to determine its control. This work has shown that as long as

||a0,k|| �= 0foratleastonevehicle (18)

the system will converge since other vehicles can rely on inter-vehicle communication to
determine their appropriate relative position [14]. Additionally, the positions error, x− xf ,
is squared in the absolute position term to guarantee that V is always positive ensuring that
Equation 16 holds true.

Once the potential function, V is defined, the focus then shifts to developing the control
to ensure the vehicles convergence in accordance with V .

4 THEORETICAL RESULTS

This section presents solutions to achieve our three contributions. Inter-vehicle communi-
cation must be defined in order to develop a steering control algorithm for multi-vehicle
configurations subject to intermittent communication. Once complete, we are able to derive
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Figure 5: The red box outlines the kinematic controller, while the blue box outlines the
tracking controller. The blue box encapsulates the more realistic steering dynamics that are
used to track the kinematic reference trajectories.

a kinematic steering control. This project then derives more robust and realistic controls
such as trajectory and target tracking to build upon the kinematic controller.

Once the control is established, the communication assumptions are relaxed through the
implementation of self-triggering control to allow agents to calculate their next communica-
tion instance. This section addressed the various facets of the final implementation through
a methodical derivation of the final control.

4.1 Control Approach

Prior to considering the communication constraints of the multi-vehicle system, we first ad-
dressed the control aspect. Specifically, how can a multi-agent system be steered to any
number of configurations with more complex dynamics? A two component approach with
reference and actual vehicles, governed by simple kinematics and high fidelity vehicle dy-
namics respectively. This approach is easier to implement higher fidelity dynamics since we
can derive the complex trajectory motion utilizing a kinematic controller.

Figure 5 illustrates a block diagram of the control structure for a single vehicle. The
block diagram demonstrates the basic control structure for our algorithm, which we built
incrementally as we increased the complexity and capability of the simulations. At a high
level, the controller works by generating desired trajectories and steering the vehicles to track
the desired trajectories. The reference trajectories are governed by kinematic equations of
motion allowing for free range of motion, while the actual vehicle dynamics are governed
by the equations of motion of a self-propelled steering vehicle. For perspective, think of
kinematic dynamics as a hockey puck since the x and y velocities can be directly controlled,
while the particle dynamics would be comparable to a bicycle which must steer to change
direction.

Simply put, we design the reference trajectories with a simple kinematic controller that
can be easily applied to any desired trajectory. The actual vehicle dynamics are used to
chase the reference trajectories bounded by their steering limitations.

The diagram changes slightly when we shift to incorporate the effects of the self-triggering
control and communication assumption. The new block diagram for our desired final system
is shown in Figure 6, which differed from Figure 5 in that it includes the self-triggering
control as a part of the kinematic controller. The self-triggering control is built into the
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kinematic control and is used to govern the behavior of the reference trajectories.

Figure 6: Although the broad concept of tracking control still applies when the communica-
tion constraints are added, the overall control diagram must be amended to account for the
self-triggering control implementation.

In the new control set-up, the self-triggering control is effectively integrated into the
kinematic control block. Essentially, the reference trajectories are governed by the kinematic
controller and the self-triggering control, while the actual vehicles, governed by the vehicle
dynamics are unchanged and continue to chase after the reference trajectories.

Note that surfacing, control update, and communication are synonymous in this paper.
Each time an agent surfaces, not only do we assume it is instantaneous, but also, we assume
that the agents communicate with an information router and calculate their new control.

4.2 Kinematic Control for Reference Trajectory Generation

In order to implement tracking control, we must first define the dynamics of the actual and
reference trajectories. Kinematic control is the most basic. In two dimensions, the kinematic
equations of motion are

ẋ = u1 (19)

ẏ = u2. (20)

In Equations (19) and (20), we have direct control over both the x and y velocity. Using a
control derived from the potential function (16) results in

uk = −KPxxk −Ka0,k(xk − xf). (21)

Figure 7 shows the functionality of kinematic control by simulating a set ofN one dimensional
agents without loss of generality. The control in Equation (21), u, is designed in order to
guarantee the agents reach the desired locations specified by the dashed lines. By designing
the controller in accordance with the requirements, it is possible to guarantee convergence
to the final desired positions.

Figure 7 shows the convergence of a five agent system using kinematic control. By ap-
plying lyapunov based control, the vehicles move to their preassigned desired final positions.
The results provide the foundation for future work with trajectory tracking to simulate more
realistic vehicle dynamics.
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Figure 7: The plot show the position versus time of 5 agents using kinematic control. Their
initial positions are x0 = [2, 4, 6, 8, 10] and final positions are xf = [1, 2, 3, 4, 5]. The gain is
0.5.

Kinematic control is excellent due to its simplicity and ease of design; however, it does
not realistically represent vehicle dynamics. The position plot of the vehicles shows that all
of the vehicles reach their desired final position, thus validating the use of lyapunov-based
control. However, this steering method is crude and assumes a particle is able to move about
in any orientation, hence the direct control of both the x and y velocities. As a result, a
control law that more closely represents actual vehicle dynamics is desired. Referring to the
previous analogy, vehicles that behave like bicycles are preferred to those that behave like
hockey pucks since most vehicles use steering to change their position as opposed to directly
adjusting their velocity. Consequently, a more complex controller capable of more closely
mimicking a true system is desired.

We desire higher fidelity dynamics to more closely mimic the behavior of actual vehicles.
However, higher fidelity dynamics make derivation of coordinated control algorithms difficult
and requires new derivations for each vehicle model. To combat this issue, we can utilize
a trajectory tracking approach in which the reference vehicles are defined by the kinematic
control and the actual vehicles are governed by steering dynamics. The actual vehicles then
’chase’ the reference trajectories. As a result, this work leverages the work from Ren and
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Beard to implement more complex dynamics [9]. For the actual vehicles, we use the self
propelled particle dynamics

ẋ = s cos θ

ẏ = s sin θ

θ̇ = u1

s = u2

(22)

where θ is the vehicle orientation, s is vehicle speed, u = [u1, u2] are the turn rate and speed
controls, respectively, and x and y are the x and y positions, respectively.

Figure 8: The plot shows the interaction between the reference trajectories (red) and actual
vehicles (blue) as derived from Ren and Beard [9]. The actual vehicles chase, catch, and
then follow the oval pattern of the reference trajectories.

Figure 8 demonstrates the trajectory tracking control as the actual vehicles (blue circles)
chase and catch the reference trajectories (red circles).

The functional block diagram in Figure 5 represents the structure of our final control
design. It features a combination of kinematic control, contained within the red dashed box,
and self-propelled particle dynamics, contained within the blue dashed box, to drive the
vehicles to their desired final positions. More specifically, this work draws on the simplicity
of kinematic control which allows us to define a multitude of shapes. For example, its
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is possible to define any parametric equation such as circles, ovals, sine waves, etc. with
relative simplicity.

Self-propelled particle dynamics are used to act as our actual vehicles. Between the two
separate controllers, this work creates a tracking control in which the actual vehicles follow
the reference trajectories defined by the kinematic controller. The advantage is that we can
define a large number of trajectories without significantly changing the control law, and the
actual vehicles will follow and catch the reference trajectories with their own steering and
speed limits imposed.

Take for example, Figure 8. In this simulation, tracking control with the reference trajec-
tories denoted by blue circles and the actual vehicle denoted by red circles is implemented.
As apparent in the figure, the actual vehicles must catch the reference trajectories for their
respective path. Once they catch it, they are able to continue following the reference tra-
jectory which serves as the desired configuration. To achieve the desired result, the control
derived in Ren and Beard is implemented by including reference and actual vehicles. The
reference vehicles are subject to particle dynamics and track the desired position without
a steering constraint. Note, the reference vehicles are simply phantom trajectories that are
used as targets for the actual vehicles.

From Figure 8, it is evident that the reference vehicles (blue) traveled in an ellipse, and
the actual vehicles (red) followed them before eventually meeting. In the fourth panel in
Figure 8, note that the actual vehicles track the reference vehicles. The strength of our
controller is evident in Figures 8 and 9. Figure 8 illustrates how the kinematic equations
follow the exact desired shape. However, the sharp turns are not possible for the particle
dynamics to track with the given steering constant. As a result, the actual vehicles track
the reference vehicles as best they can, but are not always identical. The robustness of this
control is shown by implementing a target tracking scenario. In the simulation in Figure 9,
the same combination of dynamics is implemented. Instead the control is modified to have
the vehicle follow the target vehicle, denoted by a blue x.

4.3 Self-Triggered Control for Consensus

While all-to-all communication is both desirable and ideal, many applications require either
directed topologies or time-delayed communication between agents. Self and event-triggered
control approaches have proven successful in addressing the demand for robust control despite
non instantaneous vehicle communication in [16], [17], [18], [19], [20], [21], and [22]. However,
these application present limiting assumptions that do not fit every possible application.

While many applications are possible, framing the communication problem in the context
of an undersea surveillance mission provides a clear understanding of the advantages and
results, where triggering instances represent surfacing of the unmanned underwater vehicles
(UUVs) including communication with a central information router such as a satellite. Our
goal is to maximize the UUV time on target while maintaining a time-bounded formation
error. In our algorithm, instead of each UUV surfacing when one triggers to surface, only
the triggered vehicle will surface. The remaining UUVs will continue conducting the mission
underwater. The surfacing UUV will share its current information with the satellite and
compute its control based on the last known position, velocity, and surfacing time of its
neighboring UUVs. We assume that the surfacing of the vehicle is instantaneous relative to
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Figure 9: Four instances in time from the target tracking simulation are shown. It is evident
that the actual vehicles are constrained in their motion as they steer and change velocities
in order to catch the reference vehicles moving in an oval.

the time scales associated with the problem.
The time delayed communication aspect is addressed by applying theories from event and

self-triggered control from [1] and [2]. However, the focus of our control law presented is for
a multi-agent systems where the agents compute their individual control law based on the
last known information of the other agents. The distributed self-triggered control strategy
is used to calculate the next communication execution time for each individual vehicle.

In the control presented in [1], every time a vehicle triggers, all other vehicles communicate
as well. While this is ideal as there is no distributed time delay amongst the vehicles and
the control laws for each can be computed based on current information, it is not practical
in our application as it would require all neighbors to surface with the triggered vehicle.
As a result, our algorithm excludes the need for all of the vehicles to communicate at each
triggering instance. Instead only the triggering vehicle recomputes its control at its respective
triggering instance. In theory, this will reduce the overall recomputing instances.

The distributed-self triggering algorithm leverages previous work including [1] and [2].
In our case, instead every agent communicating when one vehicle triggers, we created a
central information hub that allows individual vehicles to compute their control. The central
information hub contains the last known position, velocity, and update time of all other
vehicles, which is used to calculate the triggering vehicles information. Essentially, instead



16

Figure 10: The time line indicates the different surfacing instances of agents i and j. This
representation allows for a visual understanding of how the control is derived and how the
integration of ẋ is derived.

of having all current information at each triggering time, this algorithm relies on dated
information from the other agents to calculate its control over its next interval.

The control for agent i is based on the position error between vehicle i and its neighboring
agents. Since consensus is desired, the control law is the sum of the errors between an agent
and its communicating neighbors. This error is zero when agent i and its communicating
neighbors all share the same position. As a result, the control law for agent i is

ui(t) = −K
∑
j∈Ni

(xi(t
i
ki
)− xj(t

j
kj
)) = −KLix, (23)

where Li is the ith row of the laplacian, L, and xj(t
j
kj
) is the last known event time of

xj. The control for i is updated only at its event times ti0i , t
i
1i
, ..., ti∞i

. The control for j is

updated only at its event times tj0j , t
j
1j
, ..., tj∞j

. From Figure 10, if agent i chooses to update
its control at time t, it may only use information available at that time. Since agent i has
not communicated since ti, the information passed at tj is unknown to agent i. As a result,
this information must be excluded from the control. Hence, xj(tki) is used for the position
of agent j since i was last aware of j’s position at time ti. This clearly illustrates the time
delayed nature of the control. As a result of the known information, the control is updated
to be

ui(t) = −
∑
j∈Ni

(xi(t
i
ki
)− xj(t

i
ki
)).

However, when i surfaces, it receives information about j timestamped at j’s last surface
time, tjkj . So if j shares its last known position and computed velocity then xj’s position can
be computed using the integral form

xj(t
i
ki
) = xj(t

j
kj
) + ẋj(t

j
kj
)(tiki − tjkj), (24)

so substituting for xj(t
i
ki
) the control becomes

ui(t) = −K
∑
j∈Ni

xi(t
i
ki
)− [xj(t

j
kj
) + ẋj(t

j
kj
)(tiki − tjkj)],

for t ∈ [tiki , tk+1
i
i). Since ui(t) = ẋi(t), the kinematics of agent i are

ẋi(t) = −
∑
j∈Ni

(xi(t
i
ki
)− xj(t

i
ki
)). (25)
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Define the position error of each agent as the difference between the last known position (i.e.
the position of its last trigger/control update time) and the position at the current time.
Thus

ei(t) = xi(t
i
ki
)− xi(t), and ej(t) = xj(t

j
kj
)− xj(t).

Then rearranging both equations gives

xi(t
i
ki
) = xi(t) + ei(t), and xj(t

j
kj
) = xj(t) + ej(t).

Also, from (24) we know xj(t
i
ki
) = xj(t

j
kj
) + ẋj(t

j
kj
)(tiki − tjkj). Since xj(t

j
kj
) is unknown, we

substitute the error which gives

xj(t
i
ki
) = xj(t) + ej(t) + ẋj(t

j
kj
)(tiki − tjkj). (26)

Substituting (24) and (26) into (25) gives the updated control

ẋi(t) = −
∑
j∈Ni

[xi(t)− xj(t) + ei(t)− ej(t)− ẋj(t
j
kj
)(tiki − tjkj)]. (27)

In order to eventually write in vector form, we break the kinematics down into three terms
by rewriting the kinematics as

ẋi(t) = −
∑
j∈Ni

(xi(t)− xj(t))−
∑
j∈Ni

(ei(t)− ej(t)) +
∑
j∈Ni

ẋj(t
j
kj
)(tiki − tjkj).

Letting γj =
∑

j∈Ni
ẋj(t

j
kj
)(tiki − tjkj), then

˙̄x = −Lx̄− Lē+ γ̄.

Switching focus, we define the lyapunov potential as

V =
1

2
xTLx,

and let z = Lx. Then, taking the derivative of the potential and substituting z yields

V̇ = xTLẋ = xTL(−Lx−Le+γ) = −xTLLx−xTLLe+xTLγ = −zTz−zTLe+zTγ. (28)

Expressing the potential as a summation we have

V̇ = −
∑
i

z2i −
∑
i

∑
j∈Ni

zi(ei − ej) +
∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj)

= −
∑
i

z2i −
∑
i

|Ni|ziei +
∑
i

∑
j∈Ni

ziej +
∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj)
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Using the inequality xy ≤ a
2
x2+ 1

2a
y2 for a > 0 on ziei and zjej, we use algebra to rearrange

the potential as shown, noting that a property of summations allows |Ni|, the neighbors of
i, to replace the summation if no j terms are present. We have

V̇ ≤ −
∑
i

z2i +
∑
i

|Ni|(a
2
z2i +

1

2a
e2i ) +

∑
i

∑
j∈Ni

(
a

2
z2i +

1

2a
e2j) +

∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj),

which yields

V̇ ≤ −
∑
i

z2i +
∑
i

|Ni|a
2
z2i +

∑
i

|Ni| 1
2a

e2i +
∑
i

|Ni|a
2
z2i

+
∑
i

∑
j∈Ni

1

2a
e2j +

∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj)

V̇ ≤ −
∑
i

z2i +
∑
i

|Ni|az2i +
∑
i

|Ni| 1
2a

e2i +
∑
i

∑
j∈Ni

1

2a
e2j +

∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj) (29)

Since the graph is symmetric, meaning for some matrix M , M = MT , we can interchange
indices to get the ej term in terms of i allowing for future simplification of the control

∑
i

∑
j∈Ni

1

2a
e2j =

∑
i

∑
j∈Ni

1

2a
e2i =

∑
i

1

2a
|Ni|e2i . (30)

Substituting (30) into (29) gives

V̇ ≤ −
∑
i

z2i +
∑
i

|Ni|az2i +
∑
i

|Ni| 1
2a

e2i +
∑
i

|Ni| 1
2a

e2i +
∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj

V̇ ≤ −
∑
i

z2i +
∑
i

|Ni|az2i +
∑
i

|Ni|
a

e2i +
∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj)

V̇ ≤ −
∑
i

(1− |Ni|a)z2i +
∑
i

|Ni|
a

e2i +
∑
i

∑
j∈Ni

ziẋj(t
j
kj
)(tiki − tjkj)

where γj = ẋj(t
j
kj
)(tiki − tjkj). Invoking xy < a

2
x2 + 1

2a
y2 on the term ziγj we have

V̇ ≤ −
∑
i

(1− |Ni|a)z2i +
∑
i

|Ni|
a

e2i +
∑
i

∑
j∈Ni

(
a

2
z2i +

1

2a
γ2
j )

which simplifies to

V̇ ≤ −
∑
i

(1− 3|Ni|
2

a)z2i +
∑
i

|Ni|
a

e2i +
∑
i

∑
j ∈ Ni

1

2a
γ2
j . (31)

Requiring 1− 3|Ni|
2

a > 0, stipulates a < 2|Ni|
3

for each i. Then V̇ ≤ 0 if

−
∑
i

(1− 3|Ni|
2

a)z2i +
∑
i

|Ni|
a

e2i +
∑
i

∑
j∈Ni

1

2a
γ2
j ≤ 0
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−
∑
i

[(
∑
j∈Ni

1

2a
γ2
j ) +

|Ni|
a

e2i − (1− 3|Ni|
2

a)z2i ] ≤ 0.

Rearranging the inequality and solving for ei we achieve

e2i ≤
σia

|Ni| [(1−
3|Ni|
2

a)z2i −
∑
j∈Ni

1

2a
γ2
j ]. (32)

To simplify the notation, let

βi �
σia(1− 3

2
a|Ni|)

|Ni| , (33)

which gives

e2i ≤ βiz
2
i −

σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j . (34)

Expanding the error allows the condition to be rewritten as

|xi(t
i
ki
)− xi(t)|2 ≤ βz2i −

σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j (35)

Recalling (25), the kinematics are

ẋi(t) = −
∑
j∈Ni

xi(t
i
ki
)− xj(t

i
ki
).

Integrating ẋi(t) gives

xi(t) = −
∑
j∈Ni

[xi(t
i
ki
)− xj(t

i
ki
)](t− tiki) + xi(t

i
ki
). (36)

which can then be substituted into (35) to give

|xi(t
i
ki
)− (−

∑
j∈Ni

[xi(t
i
ki
)− xj(t

i
ki
)](t− tiki) + xi(t

i
ki
))|2 ≤ βz2i −

σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j .

Combining like terms and simplifying gives the left hand side of (37) in terms of agent i
variables

|
∑
j∈Ni

[xi(t
i
ki
)− xj(t

i
ki
)](t− tiki)|2 ≤ βz2i −

σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j . (37)

Since xj(t) will follow the same form as xi(t), we get

xj(t) = −
∑
l∈Nj

[xj(t
j
kj
)− xl(t

j
kj
)](t− tjkj) + xj(t

j
kj
), (38)

where l are the neighbors of j as defined by the graph laplacian, L. From (36) and (38),
denote now

ρi = −
∑
j∈Ni

(xi(t
i
ki
)− xj(t

i
ki
)),
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and
ρj = −

∑
l∈Nj

(xj(t
j
kj
)− xl(t

j
kj
)).

Also, let the discrete execution times be ξi = t∗− tiki where t
∗ is a vector of candidate future

trigger times. Now recalling z = Lx, we know zi = Lixi which is equivalent to

zi(t) = −
∑
j∈Ni

(xi(t)− xj(t)). (39)

Substituting (36) and (38) gives

zi(t) =
∑
j∈Ni

[(−
∑
j∈Ni

(xi(t
i
ki
)− xj(t

i
ki
))(t− tiki) + xi(t

i
ki
)]

−
∑
j∈Ni

[−
∑
l∈Nj

(xj(t
j
kj
)− xl(t

j
kj
))(t− tjkj) + xj(t

j
kj
)].

Making substitutions for ρi, ρj,and ξi and simplifying gives

zi(t) =
∑
j∈Ni

(−ρiξi + xi(t
i
ki
))−

∑
j∈Ni

(−ρj(t− tjkj) + xj(t
j
kj
))

= −|Ni|ρiξi + |Ni|xi(t
i
ki
) +

∑
j∈Ni

(ρj((t− tiki) + tiki − tjkj) + xj(t
j
kj
))

= −|Ni|ρiξi +
∑
j∈Ni

xi(t
i
ki
) +

∑
j∈Ni

ρjξi +
∑
j∈Ni

ρjξi(tkii − tjkj)−
∑
j∈Ni

xj(t
j
kj
)

zi(t) = [−|Ni|ρi +
∑
j∈Ni

ρj]ξi +
∑
j∈Ni

ρj(t
i
ki
− tjkj) + |Ni|xi(t

i
ki
)−

∑
j∈Ni

xj(t
j
kj
). (40)

Let Pi = −|Ni|ρi +
∑

j∈Ni
ρj and Φi =

∑
j∈Ni

ρj(t
i
ki
− tjkj) + |Ni|xi(t

i
ki
) − ∑

j∈Ni
xj(t

j
kj
) in

order to facilitate simplification of the triggering expression. Recall from (37), we have

|
∑
j∈Ni

[xi(t
i
ki
)− xj(t

i
ki
)](t− tiki)|2 ≤ βz2i −

σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j .

Expanding zi from (40), we have

|
∑
j∈Ni

[xi(t
i
ki
)− xj(t

i
ki
)](t− tiki)|2 ≤ β[(−|Ni|ρi +

∑
j∈Ni

ρj)ξi +
∑
j∈Ni

ρj(t
i
ki
− tjkj)

+|Ni|xi(t
i
ki
)−

∑
j∈Ni

xj(t
j
kj
)]2 − σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j

(42)

Simplifying by substituting ρi, ξi, Pi, and Φi gives the triggering expression

|ρiξi|2 ≤ β(Piξi + Φi)
2 − σi

2|Ni|
∑
j∈Ni

1

2a
γ2
j . (43)
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The trigger time, t∗ is found by determining the value of ξi that establishes equivalence
because it ensures V̇ ≤ 0 in (28). The results of the self-trigger control simulation for a N=4
vehicle system is shown below. The control guarantees convergence due to the decreasing
potential from lyapunov-based control. Asterisks represent the time in which the control is
updated. Figure 11, compares the behavior of the system with the old and new triggering
conditions applied, respectively.

Figure 11: The left figure shows the system behavior with the old implementation requiring
all neighbor vehicles to surface at an agent’s triggering instance. The right figure shows the
implementation of the new condition 43 which allows only one vehicle to surface at its own
triggering instance.

It is important to note that there are more individual triggering instances in the new
application. However, since the new triggering condition requires only one vehicle to surface
at each trigger instance, while the old condition requires all vehicles to surface at each
instance, there are less total control updates in the new control.

4.4 Self-Triggered Kinematic Formation Control

The previous derivation works when consensus is desired. However, our end goal desires
steering vehicles to formations. As a result, we must incorporate the transformation into our
control. Since the transformed laplacian is scaled based on the desired final formation, it is
not necessarily a symmetric matrix. Consequently, the assumptions made in the previous
proof do not hold and a new derivation is required.

We must derive the transformed graph laplacian to account for the changes in our control
law. In order to resolve this issue, we redefined the control, ui(t), by including the desired
final positions to scale the control. While much of the derivation follows from section 4.3, the
triggering condition is slightly different. The key steps of the derivation are shown below.

Start by redefining the control law based on the last known event times of the vehicles
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including the desired final positions, c, as

ui(t) = −K
∑
j∈Ni

(cjxi(t
i
ki
)− cixj(t

j
kj
)) = −KHx, (44)

where
H = diag(S∗ ∗ 1− S)andS = A ◦ c1T ,

where xj(t
j
kj
) is the last known event time of xj. The control for i is updated only at its

event times ti0, t
i
1, ..., t

i
∞. The control for j is updated only at its event times tj0, t

j
1, ..., t

j
∞.

However, in the case where not all vehicles communicate at each triggering instance, the
control is updated to be

ui(t) = −K
∑
j∈Ni

(cjxi(t
i
ki
)− cixj(t

i
ki
)).

However, when i surfaces, it receives information about j timestamped at j’s last surface
time, tjkj . So if j shares its last known position and computed velocity then

xj(t
i
ki
) = xj(t

j
kj
) + ẋj(t

j
kj
)(tiki − tjkj), (45)

so substituting for xj(t
i
ki
) the control is

ui(t) = −
∑
j∈Ni

cjxi(t
i
ki
)− ci[xj(t

j
kj
) + ẋj(t

j
kj
)(tiki − tjkj)],

for t ∈ [tiki , tk+1
i
i). Next, the kinematics of agent i are

ẋi(t) = −
∑
j∈Ni

(cjxi(t
i
ki
)− cixj(t

i
ki
)). (46)

Following from page 17, the error does not change. As a result, we can perform the same
substitution into the kinematic equation (46) to give

ẋi(t) = −
∑
j∈Ni

[cj(xi(t) + ei(t))− ci((xj(t) + ej(t) + ẋj(t
j
kj
)(tiki − tjkj))]

ẋi(t) = −
∑
j∈Ni

[cjxi(t)− cixj(t) + cjei(t)− ciej(t)− ciẋj(t
j
kj
)(tiki − tjkj)]. (47)

Rewriting (47) gives

ẋi(t) = −
∑
j∈Ni

(cjxi(t)− cixj(t))−
∑
j∈Ni

(cjei(t)− ciej(t)) +
∑
j∈Ni

ciẋj(t
j
kj
)(tiki − tjkj).

Let γj =
∑

j∈Ni
ciẋj(t

j
kj
)(tiki − tjkj), then

ẋ = −Hx̄−Hē+ γ̄.
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Let

V =
1

2
xTHx,

and let z = Hx. Then,

V̇ = xTHẋ = xTH(−Hx−He+γ) = −xTHHx−xTHHe+xTHγ = −zTz− zTHe+ zTγ.

Now
V̇ = −

∑
i

z2i −
∑
i

∑
j∈Ni

zi(cjei − ciej) +
∑
i

∑
j∈Ni

ziciẋj(t
j
kj
)(tiki − tjkj).

Let Ci =
∑

j∈Ni
cj then

V̇ = −
∑
i

z2i −
∑
i

Ciziei +
∑
i

∑
j∈Ni

ziciej +
∑
i

∑
j∈Ni

ziciẋj(t
j
kj
)(tiki − tjkj).

Using the inequality xy ≤ a
2
x2 + 1

2a
y2 for a > 0 on ziei, (zici)ej, and ziγi,

V̇ ≤ −
∑
i

z2i −
∑
i

Ci
a

2
z2i −

∑
i

Ci
1

2a
e2i

+
∑
i

∑
j∈Ni

[
a

2
(cizi)

2 +
1

2a
e2j ] +

∑
i

∑
j∈Ni

(
a

2
z2i +

1

2a
γ2
j )

V̇ ≤ −
∑
i

z2i −
∑
i

Ci
a

2
z2i −

∑
i

Ci
1

2a
e2i

+
∑
i

∑
j∈Ni

a

2
(cizi)

2 +
∑
i

∑
j∈Ni

1

2a
e2j +

∑
i

∑
j∈Ni

(
a

2
z2i +

1

2a
γ2
j ).

We combine like terms and simplify to give

V̇ ≤ −
∑
i

1− a

2
(Ci − |Ni|c2i + 1)z2i −

∑
i

Ci
1

2a
e2i +

∑
i

∑
j∈Ni

1

2a
e2j +

∑
i

∑
j∈Ni

1

2a
γ2
j

assume 1− a
2
(Ci − |Ni|c2i + 1) > 0, then a < 2

Ci−|Ni|c2i+1
. Then V̇ ≤ 0 if

−
∑
i

[(1− a

2
(Ci − |Ni|c2i + 1))z2i − Ci

1

2a
e2i +

∑
j

1

2a
(e2j + γ2

j )] ≤ 0,

or

e2i ≤
σi2a

Ci

[(1− a

2
(Ci − |Ni|c2i + 1))z2i −

∑
j
1

2a
(e2j + γ2

j )].

To simplify the notation, let

βi =
σi2a

Ci

(1− a

2
(Ci − |Ni|c2i + 1))z2i .
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As expected, the βi value changes to account for the ci and cj terms which will eventually
scale the control to steer the vehicles to their individual desired positions in the formation.

e2i ≤ βiz
2
i −

σi2a

Ci

∑
j
1

2a
(e2j + γ2

j )]

From (46), we have

ẋi(t) = −
∑
j∈Ni

[cjxi(t
i
ki
)− cixj(t

i
ki
)].

Integrating ẋi(t) gives

xi(t) = −
∑
j∈Ni

(cjxi(t
i
ki
)− cixj(t

i
ki
))(t− tiki) + xi(t

i
ki
). (48)

Plugging in for xi(t) and simplifying the left hand side of the equation renders

|
∑
j∈Ni

cjxi(t
i
ki
)− cixj(t

i
ki
)(t− tiki)|2 ≤ βz2i −

σi2a

Ci

∑
j
1

2a
(e2j + γ2

j ).

Let
zi(t) = −

∑
j∈Ni

(cjxi(t)− cixj(t)).

Integrate xj the same way. From these denote, now

ρi = −
∑
j∈Ni

(xi(t
i
ki
)− xj(t

i
ki
)),

and
ρj = −

∑
l∈Nj

(xj(t
j
kj
)− xl(t

j
kj
)).

Also, let the discrete execution times be ξi = t∗ − tiki where t∗ is a vector of candidate
future trigger times. We follow the same procedure starting with equation (37) on page 19
to complete the derivation.

|ρiξi|2 ≤ β(Piξi + Φi)
2 − σi

Ci

∑
j∈Ni

(e2j + γ2
j ) (49)

The trigger condition is when equivalence is established in (49).
As shown in Figure 12, the new derivation allows the vehicles to steer to desired final

positions which in this simulation are located at xf = [1, 2, 4, 5]. There is no significant
change in the number of triggering instance. In order to achieve desirable convergence results,
we are able to manipulate the constant a from the triggering derivation. Manipulating
a is comparable to changing the triggering gain of the system and ultimately affects the
number of triggering instances and thus the convergence of the agents. The smaller we
make a, the greater the number of triggering instances, and the more closely the trajectory
models a first order differential equation. Figure 13 below illustrates the difference between
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Figure 12: The new implementation allows the vehicles to be steered to a desired formation
in 2-D. Note, since there is no absolute position term in our algorithm, we only guarantee
that convergence is to some multiple of the desired formation, not to the absolute formation.
The desired configuration is xf = [1, 2, 4, 5].

the responses for an identical system (same initial and final desired positions) when the
a value is changed. As apparent in the figure, there is a distinct tradeoff between the
convergence behavior and the number of triggering conditions that can be optimized based
on the desired behavior of the system. If a system of agents needs to be extremely accurate
and converge quickly, then a smaller a value is more appropriate. However, these vehicles
will be required to communicate more frequently. The idea is to increase a to the point where
the convergence behavior just meets the desired convergence parameters. At this point, you
will have the minimum communication and triggering instances necessary to achieve your
desired configuration parameters for the given mission.

In order to deliver an algorithm capable of steering a multi-vehicle system to a a desired
formation subject to time-delayed communication, the multi-vehicle control discussed in
section 4.2 must be integrated with the distributed self-triggered control. To achieve this,
we must first transition our simulations from being one dimensional to two dimensional. Since
the entire derivation was based on regrouping terms and additive properties, we achieve the
same results for both the x and y positions of the vehicles. As a result, the only change
occurs with our graph laplacian. We simply add the potential from the x component to
the y component to get a new potential. This equation becoming less than or equal to 0
indicated a triggering instance for the specific agent.

V̇ = V̇x + V̇y (50)

By changing our definition of V , we create two terms for each term in the current control,
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Figure 13: The constant a decreases in the figures from left to right. As the value decreases,
the response more closely resembles a first order response, but the tradeoff is the increased
triggering instances.

one for each dimension of travel. This update would account for the x and y dimensions that
will allow for trajectory tracking. Further, we adapted the kinematics of the distributed-self
triggering control to account for both the reference and actual vehicle trajectories. Following
from the discussion of the trajectory tracking in Section 4.2, we have the reference vehicles
establish the desired, ideal trajectory dictated by the kinematic controllers. The distributed
self-triggering control is implemented with the actual vehicles which affects how they chase
their desired trajectory.

4.5 Assignment of Optimal Formation Locations

In prior control literature, each vehicle is preassigned a position. If the desired configuration
position is denoted by xd = [x1,d, x2,d, ...], then the vehicle designated as x2 will end up and
the final position x2,d. This assignment protocol is not efficient because the pre-assignment
does not account for vehicle positions compared to their desired final positions. For exam-
ple, vehicle three may be closer to x2,d than vehicle two. As a result, we implemented a
permutation matrix to change the assignments of the final positions to the closest agent.
A network flow optimization routine is used to calculate the permutation matrix. The cost
is based on distance, meaning the new assignment protocol worked to minimize the total
distance traveled between all vehicles. The set of all vehicle positions is defined by x and
the set of all target positions as xd.

cij =
√

(xd,xi
− xxi

)2 + (xd,yi − xyi)
2. (51)

The permutation matrix is calculated from the the cost matrix.

Z = min
N∑

i,j=1

Qijcij (52)

Subject to the following constraints:

N∑
i=1

Qij ∈ T (53)
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N∑
j=1

Qij ∈ X (54)

Qij = {0, 1}. (55)

The constraints imposed ensure that every vehicle is assigned to one target and every target
is assigned to one vehicle. Currently, this assumes that all of the vehicle know their desired
positions, meaning a0,n = 1∀n but this can be relaxed to the subset of vehicles with knowl-
edge of the desired positions. This equation sets to define the permutation as Qij. The
permutation is implemented in according to the following equation.

x∗f = Qxf . (56)

Since the permutation matrix, Q is simply a transformation of the identity matrix, I. Equa-
tion (56) reorders the desired positions to the closest agents. A simple simulation is used to
show the difference between traditional and permutation assignments. Figure 14 shows the

Figure 14: Without permutation (left), the vehicles drive to their preassigned final positions
resulting in a large overshoot and aggressive actuation for some of the vehicles. With permu-
tation implemented (right), the vehicle trajectories are much more controlled and the vehicle
motion in smoother.

effects before and after the implementation of the permutations matrix, respectively as three
agents converge to the configuration xd = [1, 4, 7]T . The corresponding control ui producing
the trajectories in shown in Figure 15. As evident in Figure 14, the permutation matrix
causes much smoother responses as opposed to the overshoot that occurs with traditional
assignment. Although the settling time is approximately the same, the permutation imple-
mentation results in less aggressive control, which can reduce fuel consumption and models
more realistic vehicle behavior as shown in Figure 15. Also, in this one dimensional example,
it prevents the vehicles from crossing paths which eliminates the potential for collision.
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Figure 15: When the permutation is implemented, the control does not have a significant
spike at the beginning indicating a less aggressive and more realistic control method.

5 APPLICATION

In order to deliver an algorithm capable of steering vehicles to a time-varying formation
subject to self-triggered control, we must augment the results from the tracking control
and the self triggering control. As shown in the control in Figure 6, the self triggering
controller is implemented as a part of the reference trajectory kinematics. The self-triggering
control is used to generate the desired trajectories which are then tracked by the actual
vehicles governed by steering control. Figure 16 shows the convergence of the vehicles in a
diamond formation and moving in a sawtooth pattern utilizing the self triggering control.
The red circles represent the actual vehicles while the blue dashed line represents the reference
trajectory defined by the self triggering kinematic controller.

Figure 16 shows the error over time of the formation. Due to the time-delayed nature of
the communication, the error never reaches zero. Although it is greatly reduced, when the
formation turns, the vehicles are unaware until their next update time, which accounts for
the increase in error at each corresponding turning time.

The control can be applied to N number of vehicles. To show the versatility of the control,
the N = 6 vehicles are steered into a hexagonal formation in Figure 17. The vehicles converge
to the desired configuration. Again, the error temporarily increases at each turning instance
of the formation due to the lag caused by the time-delay inherent to self triggered control.

The results from the aggregate simulation illustrate the ability to steer vehicles to desired
configurations subject to time-delayed, directed communication. It theoretically justifies the
ability to implement a system capable of conducting underwater missions without the reliance
on underwater communication.



29

6 CONCLUSION

A multi-vehicle steering algorithm utilizing self-triggered control capable of driving vehicles
to a desired formation subject to time-delayed communication is proposed in this paper. We
demonstrated the ability to drive vehicles to a wide range of configurations, given that the
configurations and paths can be defined by a parametric equation. We furthered the applica-
bility of the research by applying an optimization routine which allows the vehicles to make
informed decisions about their final positions. We also derived a distributed self-triggering
control strategy capable of convergence in the presence of time-delayed, directed commu-
nication. We were able to minimize the agents communication instances which maximized
their time conducting their given mission while still ensuring they converge to the desired
formation. In the end, this project delivers a robust system that incorporates advanced
control with a distributed self-triggering control strategy to steer a multi vehicle system to
a desired, time-varying formation with time-delayed, directed communication.

The final simulation theoretically justifies the ability to implement a system to conduct
underwater missions without relying on direct inter-agent communication. Next steps include
implementing the system for ground vehicles and eventually underwater vehicles.
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Figure 16: Implementation of target tracking with self-triggered control. The agents converge
about the desired diamond formation and move about in the desired sawtooth path (left).
As time passes, the formation error approaches zero (right). There are local maximums for
the error at each turn in the formation. Because of the self-triggered control, the delayed
nature of the communication will cause initial lag before the agents trigger to correct their
position.

Figure 17: A hexagonal formation with N=6 agents is shown (left). The agents are able
to use the algorithm to reach the desired, time varying formation. The error eventually
approaches zero (right). There are spikes corresponding to the turning of the formation as
the vehicles momentarily lag before their control is updated.
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