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Abstract 

Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle 

Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. Two 

approaches using, 1) Ant Colony Optimization and 2) hybrid metaheuristics algorithm 

comprising a combination of ACO, Genetic Algorithm (GA) and heuristics are proposed and 

tested on benchmark SDVRP problems. The results indicate that the two proposed algorithms are 

competitive in both solution quality and solution time.  In some instances, the best ever solutions 

have been found for particular problem instances. 
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1. Introduction 

The Vehicle Routing Problem (VRP) is a prominent problem in the areas of logistics, operations 

research, and transportation management.  With an objective to minimize the delivery cost of 

goods to a set of customers from depot(s), numerous variants of the VRP have been developed 

and studied over the years. One such variant is the Capacitated Vehicle Routing Problem 

(CVRP). The objective of a CVRP is to minimize cost of delivering a single product to a set of 

customers from a single depot using a homogenous fleet of vehicles (Liu et al., 2009). The Split 

Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle Routing 

Problem (CVRP). In the case of a CVRP, each customer is served by only one vehicle, whereas 

in SDVRP, the customer demand can be split between vehicles.  For example, consider three 

customers each with a demand of 100 served by vehicle with a capacity of 150.  In the case of 
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the CVRP, three vehicles are required but in the case of SDVRP, since the customer demand can 

be split amongst multiple vehicles, only two vehicles are required to fulfill the customer demand. 

 

SDVRP was first developed by Dror and Trudeau (1989; 1990).  They showed that if the demand 

is relatively low compared to the vehicle capacity and the triangular inequality holds, an optimal 

solution exists in the SDVRP in which two routes cannot have more than one common customer.  

In addition, it was proven that the SDVRP is a NP-hard problem, and that there are potential 

savings in solving instances of the problem in terms of both minimizing the total distance 

traveled in serving all demands, as well as the number of vehicles used. 

 

Over the past few years, several heuristic methods have been applied to solve the SDVRP, such 

as a construction heuristic (Wilck and Cavalier, 2012a), a genetic algorithm (Wilck and Cavalier, 

2012b), and Tabu search (Archetti et al., 2006).  An IEEE conference proceeding paper by Sui et 

al. (2008) presents an ACO approach for the SDVRP, but does not present empirical results 

compared to published methods.  Hence, we developed an ACO approach for the SDVRP and 

further, extended the ACO algorithm to develop a hybrid metaheuristics algorithm in which the 

initial set of population (vehicle routes) is generated using ACO. Then, a combination of 

heuristics and genetic algorithm is applied to discover a more optimal vehicle route. We tested 

the capability of the two proposed algorithms on different benchmark test problems in order to 

measure the ability of these algorithms to generate competitive solutions for this problem. 

 

The rest of the paper is organized as follows:  Section 2 and Section 3 provide an overview of the 

SDVRP and our proposed algorithms respectively.  Computational experiments are described in 

Section 4, and the conclusions and future research opportunities are summarized in Section 5. 

2. SDVRP Formulation, Literature Review, and Benchmark Data Sets 

This section of the paper is organized as follows:  subsection 1 presents the SDVRP formulation, 

subsection 2 and 3 presents a literature review for the SDVRP and application of metaheuristics 

in solving the VRP respectively, and subsection 4 provides an overview of the benchmark data 

sets for the SDVRP. 

 

 



3 

 

2.1 SDVRP Formulation 

According to Aleman et al. (2010), the SDVRP is defined on an undirected graph G = (V ,E) 

where V  is the set of n nodes of the graph and E = {(i, j ) : i, j ∈ V, i <j} is the set of edges 

connecting the nodes .  Node 1 represents a depot where a fleet M of identical vehicles with 

capacity Q are stationed, while the remaining node set N = {2, . . . , n} represents the customers.  

A non-negative cost, usually a function of distance or travel time, cij is associated with every 

edge (i, j).  Each customer i ∈ N has a demand of qi units.  The optimization problem is to 

determine which customers are served by each vehicle and what route the vehicle will follow to 

serve those assigned customers, while minimizing the operational costs of the fleet, such as 

travel distance, gas consumption, and/or vehicle depreciation.  The most frequently used 

formulations for SDVRP found in literature are from Dror and Treadeau (1990), Frizzell and 

Giffin (1992), and Dror et al. (1994). 

 

In this research, we use the SDVRP flow formulation adapted from Wilck and Rajappa (2010), 

which is given below.  This formulation assumes that cij satisfies the triangle inequality and that 

exactly the minimum number of vehicle routes, , are used.  The formulation does not assume 

that distances are symmetric. 

 

Indexed Sets: 

; node index ; 1 is the depot 

; node index 

; route index 

 

Parameters: 

:  The number of vehicle routes 

:  The number of nodes 

:  The vehicle capacity 

:  The cost or distance from node  to node  

:  The demand of customer , where . 
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Decision Variables: 

:  A binary variable that is one when arc  is traversed on route ; zero otherwise 

:  Free variable used in the sub-tour elimination constraints 

:  A binary variable that is one when node  is visited on route ; zero otherwise 

:  A variable that denotes the amount of material delivered to node  on route  

Without loss of generality,  and  are not defined for . 

 

Objective:  Minimize Travel Distance 

Minimize        (1) 

Constraints: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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The objective is represented by Equation (1), which minimizes the total distance traveled.  

Constraints (2) and (3) ensure that all customer demand is satisfied without violating vehicle 

capacity.  Constraints (4) and (5) ensure flow conservation and that sub-tours are eliminated, 

respectively.  The sub-tours are eliminated using the method described in Miller et al. (1960).  

Constraints (6) and (7) force the binary variables to be positive if material is delivered to node  

on route .  Constraint (8) ensures that the depot is entered and exited on every vehicle route, 

and constraints (9) – (11) provide variable restrictions. 

 

2.2 SDVRP Literature Review 

In recent work on the SDVRP, several researchers developed approaches for generating solutions 

to the SDVRP.  Archetti et al. (2006) developed a Tabu search algorithm called SPLITTABU to 

solve the SDVRP in which they showed that there always exists an optimal solution where the 

quantity delivered by each vehicle when visiting a customer is an integer number.  Also, Archetti 

et al. (2008a) performed a mathematical analysis and proved that by adopting a SDVRP strategy, 

a maximum of 50% reduction can be achieved in the number of routes.  They also showed that 

when the demand variance is relatively small and the customer demand is in the range of 50% to 

70% of the vehicle capacity, maximum benefits are achieved by splitting the customer’s demand.  

Furthermore, Archetti et al. (2008b) presented a solution approach that combines heuristic search 

and integer programming.  Boudia et al. (2007) solved an SDVRP instance using a memetic 

algorithm with population management which produced better and faster results than the 

SPLITTABU approach (Archetti et al., 2006).  Mota et al. (2007) proposed an algorithm based 

on scatter search methodology which generated excellent results compared to SPLITTABU. 

Archetti and Sperenza (2012) have published an extensive survey on SDVRP and its variants. 

 

2.3 Metaheuristics for the VRP: Literature Review 

Over a period of time, researchers have developed numerous metaheuristics based solutions for 

VRP and its variants.  One of the first papers on application of ACO in VRP was proposed by 

Bullheimer et al. (1997; 1999).  They proposed a variant called “hybrid ACO” using 2-opt 

heuristic. Their algorithm was tested on fourteen Christofides benchmark problems and 

computation results showed that the results obtained were not as good as the ones obtained from 

other metaheuristics.  Additionally, Gambardella et al. (1999) proposed an algorithm based on 

i

k
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ACO called MACS-VRPTW (Multiple Ant Colony System for Vehicle Routing Problems with 

Time Windows).  This is the first paper in which a multi-objective minimization problem is 

solved using a multiple ant colony optimization algorithm. MACS-VRPTW not only provided 

improved solutions on benchmark test problems but also was on par or better than other existing 

methods in terms of solution quality and computation time.  Next, Baran and Schaerer (2003) 

proposed a multi objective ACO for VRPTW based on MACS-VRPTW but instead of using two 

ant colonies, only one ant colony was used to find a set of Pareto optimal solutions for three 

objectives. Yu and Yang (2011) proposed an improved ACO (IACO) to solve period vehicle 

routing problem with time windows (PVRPTW) in which the planning horizon is extended to 

multiple days and deliveries are made within a specific time window for each customer. A 

combination of multi-dimension pheromone information and two crossover operations (one-

point and two-point crossover) was used to solve PVRPTW and the algorithm was tested on 

benchmark problems. 

 

Rizzoli et al. (2004) have done extensive surveys on ACO for VRP and its variants. Montemanni 

et al. (2004) proposed an ACO solution called ACS-DVRP to solve the Dynamic VRP (DVRP) 

in which the large DVRP problem was divided into smaller static VRP problems.  Bell et al. 

(2004) proposed single and multiple ant colony methodologies to solve the VRP. Their 

experimental results showed that the best results were obtained when the candidate list size was 

between ten and twenty.  Doerner et al. (2004) proposed a parallel ant system algorithm for 

CVRP and this is the first paper which shows the effect of parallelization of processors on speed 

and efficiency.  Additionally, Favaretto et al. (2007) formulated and provided an ACO based 

solution for VRP with multiple time windows and multiple visits which consider periodic 

constraints. Computation results show that their proposed algorithm provides better solutions as 

compared to some of the other metaheuristics published in the literature.  

 

In the area of transportation management, Yi and Kumar (2007) proposed an ACO based 

approach for solving a logistics problem that involves supplying goods to distribution centers 

and evacuating injured people to medical centers in disaster relief operations. The ACO 

algorithm decomposes the emergency logistics problem into a vehicle routing problem and a 

multi-commodity dispatch problem. The ACO algorithm also includes several trial updating 
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strategies and was tested on randomly generated test problems. The results of ACO algorithm 

were compared with solutions from CPLEX which was used to solve the mathematical model of 

the disaster relief problem.  The ACO algorithm generated comparable solutions within one 

minute of computational time, when compared to the optimal solution generated by CPLEX.  

The quality and time to generate the ACO generated solutions were considered acceptable due to 

the real-time needs of during a disaster relief event. 

 

Gajpal and Abad (2009) proposed an ant colony system for VRP with simultaneous delivery and 

pickup (VRPSDP). Computational results on benchmark test problems show that the proposed 

algorithm provides better results both in terms of solution quality and CPU time when compared 

to previously published methods and data sets, including 31 new best known solutions for the 

VRPSDP data sets.  Li, et al. (2009) provided an ant colony optimization metaheuristic that was 

hybridized with tabu search to find good solutions to the open vehicle routing problem (OVRP).  

Yu et al. (2011) utilized a parallel ant colony optimization scheme for the virtual multi-depot 

vehicle routing problem (V-MDVRP). Finally, Hu et al. (2011) provided an ACO based solution 

for distributed planning problems for home delivery in which a revised methodology to update 

the pheromone and the probability matrix is proposed. 

 

2.4 SDVRP Benchmark Data Sets 

Despite several exact optimization and metaheuristic solution methods being applied to the 

SDVRP, no previous research has applied either ACO or a hybrid combination of ACO, GA and 

a heuristic algorithm to solve the SDVRP. Hence, we compare our algorithms in this research 

with two previous approaches used on the SDVRP that have established benchmark problem 

instances. 

 

First, Jin et al. (2008) proposed a column generation approach to solve SDVRP with large 

demands, in which the columns have route and delivery amount information and a limited-

search-with-bound algorithm is used to find the lower and upper bounds of the problem.  They 

used column generation to find lower bounds and an iterative approach to find upper bounds for 

a SDVRP.  They also suggested that their approach of solving the SDVRP does not yield good 

solutions for large customer demands and in such cases, they recommend solving the SDVRP 
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instance as a CVRP. The number of customers for the 11 test problems from Jin et al. (2008) 

ranged from 50 to 100, with an additional node for the depot.  The data sets also differ by 

amount of spare capacity (i.e., additional vehicle capacity, accumulated from all vehicles, after 

serving all customer demand, across all customers).  The customers were placed randomly 

around a central depot and demand was generated randomly based on a high and low threshold. 

 

Second, Derigs et al. (2010) extended four different moves: 2-OPT, EXCHANGE and 

RELOCATE and RELOCATE 1 of VRP to the SDVRP. They then embedded these four moves 

in metaheuristics such as simulated annealing (SA), threshold accepting (TA), record-to-record 

travel (RRT), attribute-based hill climber (ABHC) and attribute based local beam search 

(ABLBS) and tested their algorithms on datasets from Archetti et al. (2008b) and Chen et al. 

(2007).  Derigs et al. (2010) concluded that the best solutions were obtained using attribute-based 

hill climber (ABHC). 

 

In Section 4, we compare the results of our two proposed algorithms first with the results of Jin 

(2008) for their 11 benchmark problems, and then with the solutions from Derigs et al. (2010), 

which were accomplished on the original 21 problems from Chen et al. (2007). The nodes in the 

21 test problems ranged from eight to 288, with an additional node for the depot.  The problems 

do not have any spare vehicle capacity (i.e., additional vehicle capacity, accumulated from all 

vehicles, after serving all customer demand, across all customers), and the customers were 

placed on rings (i.e., circular pattern) surrounding a central depot and the demand was either 60 

or 90, with a vehicle capacity of 100. 

3. Proposed Algorithms 

In this section, we describe our proposed algorithms for solving the SDVRP. 

 

3.1 ACO for the SDVRP 

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo (1992).  Inspired by 

foraging behavior of ants, ACO belongs to a class of metaheuristic algorithms that can be used to 

obtain near optimal solutions in reasonable computational time for combinatorial optimization 

problems.  Ants communicate with one another by depositing pheromones, a trace chemical 

substance that can be detected by other ants (Rizzoli et al., 2004).  As ants travel, they deposit 
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pheromones along their trail, and other ants tend to follow these pheromone trails. However 

during their journey, ants may randomly discover a new trail, which might be shorter or longer 

than the previous trail.  Pheromones have a tendency to evaporate.  Hence, over a period of time, 

the shortest trail (path) from the food source to the colony will have a larger amount of 

pheromone deposited as compared with other trails and will become the preferred trail. 

 

The main elements in an ACO are ants that independently build solutions to the problem. For an 

ant k, the probability of it visiting a node j after visiting node i depend on the two attributes 

namely: 

 Attractiveness (𝜼𝒊𝒋):  It is a static component that never changes. In the case of VRP, it 

is calculated as inverse of arc length for shortest path problems and for other variants, it 

can depend on other parameters besides the arc length (e.g., in VRPTW it also depends 

on the current time and the time window limits of the customers to be visited (Rizzoli et 

al., 2004). 

 Pheromone trails(𝝉𝒊𝒋):  It is the dynamic component which changes with time. It is used 

to measure the desirability of insertion of an arc in the solution. In other words, if an ant 

finds a strong pheromone trail leading to a particular node, that direction will be more 

desirable than other directions. The trail desirability depends on the amount of 

pheromone deposited on a particular arc (Rizzoli et al., 2004). 

 

For solving a VRP, each individual ant simulates a vehicle.  Starting from the depot, each ant 

constructs a route by selecting one customer at a time until all customers have been visited.  

Using the formula from Dorigo and Gamberdella (1997), the ant selects the next customer j as 

shown in equation (12): 

 

j= {
 arg max {(τiu)(η

iu

β
) }  for u∉Mk ,q≤q

o
 

Equation (13),  otherwise
 

                                                             (12) 

where 𝜏𝑖𝑢  is the amount of pheromone on arc (i,u), u being all possible unvisited customers.  In 

classic VRP, locations already visited are stored in ants’ working memory Mk and are not 

considered for selection.  However, in the case of SDVRP, the locations for which the demands 

have not been fulfilled (demand >0) are stored in the ants’ working memory and are considered 
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for selection.  β establishes correlation between the importance of distance with respect to the 

pheromone quantity (β >0).  q is a randomly generated variable between 0 and 1 and q0 is a 

predefined static parameter.  If equation (12) does not hold, the next customer to be visited is 

selected based on a random probability rule as shown in equation (13): 

 

Pij= {

[(τij)]
 
[(ηij

β)]

∑ [(τij)]
 
[(ηij

β)] 
j∉Mk

          if j∉Mk ,  q>q
o

0 (depot),             otherwise

      (13) 

 

If the vehicle capacity constraint is satisfied, the ant will return to the depot before starting the 

next tour in its route.  This selection process continues until all customers are visited by an ant.  

In ACO, the pheromone trail is updated locally during solution construction and globally at the 

end of construction phase.  An interesting aspect of pheromone trail updating is that every time 

an arc is visited, its value is diminished which favors the exploration of other non-visited nodes 

and diversity in the solution.  Pheromone trials are updated by reducing the amount of 

pheromone deposited on each arc (i,j) visited by an ant (local update).  Also, after a 

predetermined number of ants construct feasible routes, pheromones are added to all the arcs of 

the best found solution (global update). 

 

Local update on a particular arc (𝜏𝑖𝑗) is updated done using equation (14) (Dorigo and 

Gamberdella, 1997) : 

τij = (1-α)τij +ατ0                                                                                                            (14) 

where 0≤α≤1 is the pheromone trail evaporation rate and τ0 is the initial pheromone value for all 

arcs. 

 

Global trial updating is done using equation (15) (Dorigo and Gamberdella, 1997): 

τij = (1-α)τij +αL-1                                                                                                           (15) 

where L is the best found objective function value (total distance).This procedure is repeated 

until a terminating condition is met. 
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3.2 Hybrid Metaheuristics Algorithm 

For the hybrid metaheuristics algorithm, the initial set of population (vehicle routes) is generated 

using ACO and then, a combination of heuristics and genetic algorithm (GA) is applied to 

discover a more optimal vehicle route. 

 

Genetic algorithms (GA) are population based search algorithms to solve combinatorial 

optimization problems. It was first proposed by John Holland (Goldberg, 1989). In these 

algorithms, the search space (population) of a problem is represented as a collection of 

individuals (chromosomes).Genetic algorithms generate solutions for optimization problem 

based on theory of evolution using concepts such as reproduction, crossover and mutation.  The 

fundamental concept of a genetic algorithm states a set of conditions to achieve global optima. 

These conditions describe the reproduction process and ensure that better solution remain in 

future generations and weaker solutions be eliminated from future generations. This is similar to 

the Darwin’s survival of fittest concept in the theory of evolution. The genetic algorithm search 

mechanism consists of three phases: (1) Evaluation of fitness function of each solution in the 

population (2) selection of parent solutions based on fitness values and (3) application of genetic 

operations such as crossover and mutation to generate new offspring. 

 

A typical genetic algorithm consists of the following steps (Goldberg, 1989): 

 Step 1: Generate an initial population of N solutions. 

 Step 2: Evaluate each solution of the initial population using a fitness function/objective 

function. 

 Step 3: Select solutions as parents for the new generation based on probability or 

randomness.  The best solutions (in terms of fitness or objective) have a higher 

probability of being selected than poor solutions. 

 Step 4: Use the parent solutions from Step 3 to produce the next generation (called 

offspring). This process is called as crossover. The offspring are placed in the initial set 

of solutions replacing the weaker solutions. 
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 Step 5: Randomly alter the new generation by mutation. Usually this is done using a 

mutation probability. 

 Step 6: Repeat Steps 2 through 5 until a stopping criteria is met. 

Due to the constraints of a SDVRP, it is not possible to directly use genetic algorithm in the way 

it is described above.  In particular, after crossover and mutation, there may be solutions which 

do not satisfy the constraints. Hence, to obtain a feasible set of offspring, we may need to modify 

the way crossover is done or another possibility is to remove infeasible solutions after mutation 

and replace them with the solutions having higher fitness value in the old population (Cordeau et 

al., 2002). 

 

The proposed hybrid algorithm is a combination of Ant Colony Optimization (ACO), Genetic 

Algorithms and Heuristics, a detailed description of which is given below: 

 Solution encoding: It’s represents a feasible vehicle route. The solutions are encoded as 

a series of random numbers from 0 to N, wherein, each N represents a node (customer 

location) and 0 represents a depot. For example, a route is represented as 

[0,1,2,3,0,3,4,5,0]. 

 Initial population: 1000 random solutions using ant colony optimization metaheuristics 

are used for the initial population. 

 Fitness: The objective function (minimizing the total distance) is evaluated for each route 

from the initial population and then a corresponding fitness value is assigned. The fitness 

value is the total distance of a particular route. 

 Selection: Using the fitness value of each route, the top 500 routes from the initial 

population are selected for future generation. 

 Future Generation (Crossover and mutation): 

o The size of the future generation is set to 50. 

o Due to the constraints of SDVRP, mutation was not considered. 

o Elitism: The top 5 results from previous generation were by default used in the 

next generation. 

o Crossover: Crossover is performed until 50 new routes are generated. Two 

parents are randomly selected from the previous generation. As described below, 
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a heuristics based one point crossover is then applied to each of these parents to 

create future generation. 

 Heuristics:  The routes are constructed as follows: 

o Condition 1: For all the available nodes (demand is not satisfied), add the next 

node to the route if: 

 The node’s demand is less than the remaining capacity of the vehicle and 

 The next node is closest to the previous node and 

 The next node has the largest demand amongst all the nodes. 

o Condition 2: If condition 1 is not satisfied, then for all the available nodes 

(demand is not satisfied), add the next node to the route if: 

 The node’s demand is less than the remaining capacity of the vehicle and 

 The next node is closest to the previous node. 

o If condition 1 and condition 2 are not satisfied, go back to the depot. 

 Termination condition: Repeat the Fitness to Heuristics procedure for 100 iterations. 

The flowchart for the hybrid metaheuristics algorithm is shown in Figure 1 below: 
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Figure 1: Hybrid Metaheuristics Algorithm Flowchart 

 

An IEEE conference proceeding paper by Sui et al. (2008) presents an ACO approach for the 

SDVRP, but does not present empirical results compared to published methods. To the best of 

our knowledge and despite previous success in applying ACO and Genetic Algorithms to 

variants of the VRP, no known research effort has applied just ACO or a combination of ACO 

and GA to the SDVRP and experimentally tested the ability of the algorithms on SDVRP 

instances. 

Step 2: (Selection) Select the top 500 routes from the 

initial population for future generation 

Step 3: (Future Generation) Select the top 5 routes 

from previous generation and add it to the future 

generation (Elitism) 

Step 4: (Crossover) Select 2 parents randomly from 

previous generation and perform a one-point crossover 

Step 5: (Route Construction) Apply the heuristics to 

build new routes and add it to the future generation 

Step 6:  Repeat Step 4 and Step 5 until a future 

generation of 50 is generated 

Step 7: Evaluate the fitness of the future generation and 

sort them according to the shortest distance 

Step 1(Initial Population) Generate 1000 random 

routes using Ant Colony Optimization and evaluate 

fitness of each route 

Step 8: (Terminating condition) Repeat Step3 to Step 7 

for 100 iterations 

Step 9: Once the terminating condition is met, display 

the best route 
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4. Computational Experiments 

 

Both algorithms for this study was coded in Java and run on a Windows7, Intel i5 2.4 Ghz, 4 GB 

RAM computer.  For all our test datasets, search parameters were tuned during pilot-testing and 

set as shown in Table 1 and Table 5.  The algorithm was tested against two procedures from the 

literature, namely Jin et al. (2008) and Derigs et al. (2010) as mentioned in the section on 

benchmark datasets (Section 2) and each problem was run in 10 separate iterations (Fuellerer et 

al., 2010).  The results are shown in Table 2 and Table 3 for ACO and Table 6 and Table 7 for 

hybrid metaheuristics algorithm. 

 

4.1 ACO Algorithm 

 

One of the route improvement strategies common to the VRP is to have a candidate list to 

determine the next location for each customer.  In other words, only a set of predetermined 

closest locations are included in the candidate list for the next possible move.  In previous 

research (Bullnheimer et al., 1999a), set the size of their candidate list to one fourth of the total 

number of customers, irrespective of the problem size. In pilot testing for this study, we 

experimented with different candidate list sizes and for our research the candidate list size of one 

ninth (n/9, where n is the number of customers) was found to yield the best solutions for 

instances of the SDVRP. 

 

Additionally, in the case of CVRP, an ant (vehicle) travels to a customer (node) only if the 

customer’s demand can be completely fulfilled with the remaining vehicle capacity.  But in the 

case of SDVRP a modification to the VRP must be made.  Since a customer’s demand can be 

split amongst multiple vehicle routes, an ant can travel to a customer in the ACO SDVRP 

algorithm based on three conditions:  (1) If the customer is in the candidate list, (2) if the 

customer’s demand is not completely fulfilled, and (3) there is remaining capacity on the vehicle.  

If the above conditions cannot be satisfied for any location, the ant (vehicle) returns to the depot. 

 

 



16 

 

 

 

Table 1: ACO Parameters 

Parameter Values 

α 0.5 
β 1.3 
τ0 10-5 
q0 0.9 

m (global update counter) 10 

Number of iterations 100,000 

 

Table 2: Comparing ACO results versus Jin et al. (2008) 

 
*The objective function values highlighted in bold are the best results 

Note:  GAP indicates ACO versus best known solution.  A negative GAP indicates a new best 

solution when compared to previous literature. 

Jin et al. (2008) Computer Specifications:  Pentium 4 Processor, 2.8 GHz CPU, 2 GB memory. 

ACO Computer Specifications:  Java , Windows7, Intel i5 2.4 Ghz, 4 GB RAM computer. 

 

Dataset Objective Function 

Mean (std dev))

Objective 

Function    

(Best)

Best 

Time(s)

Total Time(s) Objective Function Total Time(s) GAP

s51d2 744.03(14.07) 727.28 186.59 699.56 722.93 10741 0.60%

s51d3 1001.97(15.87) 982.66 164.5 843.23 968.85 833 1.43%

s51d4 1654.56(12.68) 1629.09 1053.95 1074.66 1605.64 789 1.46%

s51d5 1416.60(20.37) 1389.01 519.44 1015.48 1361.24 10 2.04%

s51d6 2302.72(14.16) 2267.97 584.65 1339.2 2196.35 478 3.26%

s76d2 1161.19(12.47) 1134.27 1431.9 1742.09 1146.68 75074 -1.08%

s76d3 1527.25(19.06) 1502.36 979 2078.88 1474.89 3546 1.86%

s76d4 2218.51(21.63) 2191.83 337.7 1310.3 2157.87 369 1.57%

s101d2 1484.12(16.99) 1457.39 930.81 3352.49 1460.54 189392 -0.22%

s101d3 2000.94(33.52) 1948.09 3166.21 3938.37 1956.91 36777 -0.45%

s101d5 2972.54(17.29) 2945.41 3778.25 4947.82 2885 5043 2.09%

Ant Colony Optimization Results from Jin et al.
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Table 3: Comparing ACO results versus Derigs et al. (2010) 

 
*The objective function values highlighted in bold are the best known results 

Note:  GAP indicates ACO versus previously best known solutions.  A negative GAP indicates a 

new best solution when compared to previous literature. 

Derigs et al. (2010) Computer Specifications:  3 GHz, 2 GB Memory, Windows XP. 

ACO Computer Specifications:   Windows7, Intel i5 2.4 Ghz, 4 GB RAM computer. 

 

The GAP column in Table 2 and Table 3 is the percentage difference in objective function values 

of ACO and those obtained from Jin et al. (2008) and Derigs et al. (2010) respectively. From 

Table 2, ACO solutions were between 0.6% - 3.26% of the objective function values from Jin et 

al. (2008) but the computational times were much faster. Also for 3 datasets, ACO found the best 

known solutions. For example, in problem s76d2, we found an improved solution that is 1.08% 

better than the previously best known solution.  This problem is a 75 node problem and is one of 

three problems that the best known solution was improved on in this dataset using the ACO 

methodology. 

Dataset Objective 

Function Mean 

(std dev))

Objective 

Function    

(Best)

Best 

Time (s)

Total Time(s) Objective Function Time(s) GAP

sd1 240(0) 240 1.743 76.01 228.28 300 5.13%

sd2 758(11.35) 740 56.77 87.25 708.28 300 4.48%

sd3 451.52(2.42) 447.69 66.12 81.81 430.58 300 3.97%

sd4 679.04(1.86) 673.89 65.43 202.75 631.05 300 6.79%

sd5 1454.91(3.85) 1445.64 106.92 405.28 1390.57 300 3.96%

sd6 860.45(0) 860.45 0.13 378.08 831.24 300 3.51%

sd7 3640(0) 3640 0.3 603.01 3640 300 0.00%

sd8 5110.80(45.67) 5068.28 214.58 963.57 5068.28 300 0.00%

sd9 2140.15(14.99) 2129.59 201.15 1017.24 2067.81 300 2.99%

sd10 2841.07(14.97) 2807.05 1352.83 2013.42 2784.21 300 0.82%

sd11 13280(0) 13280 2.65 3086.07 13280 300 0.00%

sd12 7280.06(0) 7280.06 2337.17 3367.17 7220.36 300 0.83%

sd13 10281.74(282.23) 10171.92 4653.16 5232.16 10277.81 300 -1.03%

sd14 11069.11(46.97) 11021.54 7325.6 9208.81 10790.58 3600 2.14%

sd15 15405.92(79.36) 15309.9 12816.82 17594.98 15152.88 3600 1.04%

sd16 3411.31(11.17) 3398.69 0.743 17201.99 3381.29 3600 0.51%

sd17 26586.11(16.56) 26560.11 12188.12 23866.41 26536.09 3600 0.09%

sd18 14772.57(30.52) 14720.11 24301.78 24439.43 14469.1 3600 1.73%

sd19 20376.31(29.96) 20312.44 11455.71 38677.42 20420.11 3600 -0.53%

sd20 40479.27(51.83) 40390.68 49658.4 78854.5 40368.58 3600 0.05%

sd21 11449.88(26.31) 11411.61 1.64 121148.8 11271.06 3600 1.25%

Results from Derigs et al.Ant Colony Optimization
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However, much greater success was found in improving the best known solutions in the problem 

sets of Derigs et al. (2010).  From Table 3, for 5 out of the 21 datasets, ACO produced better or 

equivalent results; however this often came at the expense of computational time.  For example 

in problem sd19, ACO was able to find the objective function value 20312.44.  This value is 

0.53% better than the previously known best solution. 

 

For several of the smaller problems (sd1-sd4), the method appeared to have difficulty.  Since 

these problems consist of fewer than 40 nodes, it was believed that the combination of using a 

candidate list size of n/9 and the small problem size may have restricted the algorithm from 

considering enough nodes in the route construction process.  Therefore, in post-hoc testing of 

these four problems, the candidate list size was removed in order to assess the ability of ACO to 

solve these smaller problems without the need for a candidate list size.  The results of this post-

hoc test are listed in Table 4. Notice that after the candidate list was removed, the objective 

function for sd1 was improved from 240 to 228.28, which is equal to the previously best known 

solution.  Also, as you can see from Table 3 and Table 4, for datasets sd2, sd3 and sd4, a 

significant improvement in objective function values at the expense of computational time were 

obtained without using a candidate list. Overall, ACO was able to find improved or equal 

solutions in 9 out of a total of 32 problem sets. 

Table 4: Post-hoc results (without using a candidate list) 

 
*The objective function values highlighted in bold are the best results 

 

As seen from the results in Table 2 and Table 3, ant colony optimization has the ability to find 

competitive solutions at or within only a few percent of the optimal SDVRP solutions. Also, 

SDVRP has complex constraints that the memory and learning features of ACO are able to 

navigate and find improved solutions to, consistent with previous research in the field of logistics 

on other variants of the VRP.  For example, both Bell & Griffis (2010) and Griffis et al. (2012) 

have shown that the adaptive memory abilities ACO are well-suited to the increasingly complex 

Dataset Objective Function 

(Average (std dev))

Objective 

Function    

(Best)

Best 

Time (s)

Total Time(s) Objective Function Time(s) GAP

sd1 228.28(0) 228.28 0.25 27.27 228.28 300 0.00%

sd2 747.56(8.86) 734.34 92.53 121.29 708.28 300 3.68%

sd3 454.72(6.9) 440.07 48.56 111.11 430.58 300 2.20%

sd4 670.18(3.93) 665.94 131.68 270.08 631.05 300 5.53%

Ant Colony Optimization Results from Derigs et al.
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constraints of the current VRP instances being analyzed and solved by transportation and supply 

chain practitioners.  However, in our experimental results, for larger problem instance (Table 3), 

ACO produced better results than the optimal solutions but often at the expense of computational 

time.  Also, the use of candidate lists on larger problems and tuning of ACO parameters 

significantly improves the ability of ACO to find better solutions. 

 

4.2 Hybrid Metaheuristics Algorithm 

Table 5: Hybrid Metaheuristics Parameters 

Parameter Values 

Initial Population 500 
Size of Future Generation 50 

Elite List 5 
Number of future generation (Terminating condition) 100 

 

Table 6: Comparing Hybrid metaheuristics algorithm results versus Jin et al.(2008) 

 
*The objective function values highlighted in bold are the best results 

  

Dataset Objective Function 

(Average (std dev))

Objective 

Function    

(Best)

Time(s) Objective Function Total Time(s) GAP

s51d2 862.67(11.44) 845.86 399.6 722.93 10741 17%

s51d3 1118.48(23.45) 1080.32 433.62 968.85 833 12%

s51d4 1775.10(15.90) 1752.79 475.56 1605.64 789 9%

s51d5 1542.91(14.17) 1512.46 453.6 1361.24 10 11%

s51d6 2401.90(1.20) 2398.47 519.12 2196.35 478 9%

576d2 1292.75(5.64) 1282.8 756 1146.68 75074 12%

s76d3 1674.94(14.12) 1649.51 828 1474.89 3546 12%

s76d4 2396.14(24.93) 2357.02 876.6 2157.87 369 9%

s101d2 1624.82(20.89) 1586.97 1306.8 1460.54 189392 9%

s101d3 2158.10(24.09) 2122.04 1429.2 1956.91 36777 8%

s101d5 3134.49(17.22) 3109.88 1539 2885 5043 8%

Hybrid Metaheuristics Algorithm Results from Jin et al.
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Table 7: Comparing Hybrid metaheuristics algorithm results versus Derigs et al. (2010) 

 

 
*The objective function values highlighted in bold are the best results 

 

The GAP column in Table 6 and Table 7 is the percentage difference in objective function values 

of the hybrid metaheuristics algorithm and those obtained from Jin et al. (2008) and Derigs et al. 

(2010) respectively. The time in Table 6 and Table 7 represents the time stamp at which the best 

solution was obtained for the proposed hybrid algorithm. From Table 6, the hybrid algorithm was 

able to find solutions within 8%-17% for all the datasets. However, much greater success was 

found in improving the best known solutions in the 21 datasets of Derigs et al. (2010). From 

Table 7, the hybrid algorithm found equal or better solutions for 5 of the 21 datasets (sd1, sd7, 

sd10, sd11, sd19). For the remaining datasets, the hybrid algorithm found solutions that ranged 

anywhere between 0.3% to 7.3% of the objective function. 

 

Dataset Objective Function 

(Average (std dev))

Objective Function    

(Best)

Time(s) Objective Function Time(s) GAP

sd1 232.38(2.83) 228.28 112.56 228.28 300 0.00%

sd2 762.83(5.96) 760 165.6 708.28 300 7.30%

sd3 466.56(4.86) 458.25 179.1 430.58 300 6.43%

sd4 677.05(2.65) 676.28 181.14 631.05 300 7.17%

sd5 1520.91(13.68) 1484.85 293.88 1390.57 300 6.78%

sd6 860.44(0) 860.44 276.54 831.24 300 3.51%

sd7 3640(0) 3640 369.24 3640 300 0.00%

sd8 5213.19(62.73) 5106.5 492.24 5068.28 300 0.75%

sd9 2254.75(25.08) 2206.02 528.36 2067.81 300 6.68%

sd10 2853.12(36.29) 2757.51 755.28 2784.21 300 -0.96%

sd11 13320(28.28) 13280 1156.68 13280 300 0.00%

sd12 7676.31(31.68) 7627.82 1490.1 7220.36 300 5.64%

sd13 10559.42(44.6) 10470.09 1718.52 10277.81 300 1.87%

sd14 11399.11(32.14) 11359.9 813.6 10790.58 3600 5.28%

sd15 15766.5(56.75) 15681.02 1458 15152.88 3600 3.49%

sd16 3397.48(4.34) 3391.7 1090.8 3381.29 3600 0.31%

sd17 27532.4(83.43) 27407.36 1863 26536.09 3600 3.28%

sd18 15007.04(77.58) 14853.66 1873.62 14469.1 3600 2.66%

sd19 20635.12(172.20) 20260.55 2972.4 20420.11 3600 -0.78%

sd20 41151.15(134.84) 40866.09 5360.88 40368.58 3600 1.23%

sd21 11465.5(32.77) 11389.72 28443 11271.06 3600 1.05%

Results from Derigs et al.Hybrid Metaheuristics Algorithm
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As a further test of the ability of ACO and hybrid metaheuristics algorithm, the ACO objective 

function values for the two test problem sets are also compared with the dual bound obtained by 

column generation (Wilck and Cavalier, 2013).  These results are shown in Table 8 and Table 9 

respectively. The GAP represents the percentage difference between the objective function 

values of the proposed algorithms and the column generation dual bound. As you can see from 

Table 8 and Table 9 below, the percentage difference between ACO objective function and 

column generation dual bound ranges from 0 % to 6.36 % (Derigs et al., 2010) and 3.60% to 

8.17% (Jin et al., 2008) respectively whereas for the hybrid metaheuristics algorithm, the 

percentage difference ranges from 0 % to 7.62 % (Derigs et al., 2010) and 11.81% to 18.56% 

(Jin et al., 2008) respectively. The dual bound is a computation of the best lower bound for the 

optimal solution and both algorithms did an excellent job in finding solutions at or close to this 

bound. 

Table 8: Comparison of ACO and hybrid metaheuristics objective function for Derigs et al. 

(2010) and Column generation dual bound (Wilck and Cavalier, 2013) 

 
*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) / Primal Solution]. 

Dataset ACO Objective 

function

Hybrid 

Metaheuristics 

Objective function

Column 

generation 

dual bound*

ACO 

GAP

Hybrid Metaheuristics 

GAP

sd1 240 228.28 228.28 4.88% 0.00%

sd2 740 760 708.28 4.29% 6.81%

sd3 447.69 458.25 430.58 3.82% 6.04%

sd4 673.89 676.28 631.05 6.36% 6.69%

sd5 1445.64 1484.85 1390.57 3.81% 6.35%

sd6 860.45 860.44 831.21 3.40% 3.40%

sd7 3640 3640 3640 0.00% 0.00%

sd8 5068.28 5106.5 5068.28 0.00% 0.75%

sd9 2129.59 2206.02 2044.23 4.01% 7.33%

sd10 2807.05 2757.51 2684.84 4.35% 2.64%

sd11 13280 13280 13265.29 0.11% 0.11%

sd12 7280.06 7627.82 7275.97 0.06% 4.61%

sd13 10171.92 10470.09 10093.72 0.77% 3.59%

sd14 11021.54 11359.9 10632.67 3.53% 6.40%

sd15 15309.9 15681.02 15146.92 1.06% 3.41%

sd16 3398.69 3391.7 3375.95 0.67% 0.46%

sd17 26560.11 27407.36 25320.09 4.67% 7.62%

sd18 14720.11 14853.66 14253.94 3.17% 4.04%

sd19 20312.44 20260.55 19768.23 2.68% 2.43%

sd20 40390.68 40866.09 38071.58 5.74% 6.84%

sd21 11411.61 11389.72 11062.32 3.06% 2.87%
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Table 9: Comparison of ACO and hybrid metaheuristics objective function for Jin et al. 

(2008) and Column generation dual bound (Wilck and Cavalier, 2013) 

 
*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) / Primal Solution]. 

5. Conclusions and Future Directions 

In this study, we presented an ACO and a hybrid combination of ACO, GA and a heuristic based 

approach to solve the Split Delivery Vehicle Routing Problem (SDVRP).  The algorithms were 

tested on benchmark SDVRP test problems and results obtained were promising. For some 

instances, the best known solution to date was found using the two proposed algorithms. Further, 

as seen from Table 8 and Table 9, comparing the objective function values for the two proposed 

algorithms, ACO provided equal or better results for 14 out of 21 datasets in Derigs et al. (2010) 

and for all datasets in Jin et al. (2008).  

 An interesting observation that we can highlight and consider for future research is the use of 

modified candidate list sizes for ACO.  As mentioned in previous literature (Bullheimer et al. , 

1999a), a candidate list size of one fourth of the total number of customers is recommended, but 

for our datasets a candidate list of one ninth the total number of customers was found to yield 

better results during pilot testing.  However, at times, this restricted the ability to find improved 

solutions on the smallest problems.  Hence, further research on developing a logic that will 

generate an ideal candidate list based on total number of customers is needed.  Additionally, 

Dataset ACO 

Objective 

function

Hybrid 

Metaheuristics 

Objective 

function

Column generation 

dual bound*

ACO GAP Hybrid 

Metaheuristics 

GAP

s51d2 727.28 845.86 688.83 5.29% 18.56%

s51d3 982.66 1080.32 920.58 6.32% 14.79%

s51d4 1629.09 1752.79 1520.71 6.65% 13.24%

s51d5 1389.01 1512.46 1310.12 5.68% 13.38%

s51d6 2267.97 2398.47 2115.2 6.74% 11.81%

s76d2 1134.27 1282.8 1093.39 3.60% 14.77%

s76d3 1502.36 1649.51 1399.37 6.86% 15.16%

s76d4 2191.83 2357.02 2039.11 6.97% 13.49%

s101d2 1457.39 1586.97 1395.25 4.26% 12.08%

s101d3 1948.09 2122.04 1859.36 4.55% 12.38%

s101d5 2945.41 3109.88 2704.63 8.17% 13.03%
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practitioners and software developers who use candidate lists in their algorithms should consider 

how to adjust the candidate list size based on different problem characteristics, and they might 

consider eliminating the use of a candidate lists in the smallest problems sizes.  Also in the 

future, research should focus on improving the ACO algorithm for SDVRP by (1) using local 

exchange heuristics to improve the solution, and (2) using specialized groups of ants and 

multiple colonies as mentioned in the literature (Bell and McMullen, 2004; Gambardella et al., 

1999), and considering combining other metaheuristics to solve the SDVRP. 

Finally, the successful analysis of the SDVRP in this research using ACO helps confirm the 

ability of memory based metaheuristics to adapt to the complexities of real-world logistics-

oriented vehicle routing problems (Bell and Griffis, 2010).  Continued research in the fields of 

transportation and logistics management should continue to explore how methods such as ACO 

or a hybrid combination of ACO and other metaheuristics can be used to improve solutions for 

new instances of the VRP such as the open vehicle routing problem, or it should explore the 

ability of ACO and hybrid metaheuristics on additional SDVRP constraints such as route 

congestion, supply chain disruptions of a network link (Griffis et al., 2012) or violations of the 

triangle inequality caused by traffic delays (Fleming et al., 2012).  Doing so will help researchers 

and practitioners discover the right algorithms and algorithm characteristics needed to solve 

more complex routing variants such as the SDVRP. Also, in future, we would like to test the two 

proposed algorithms on other variants of the vehicle routing problem. 
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