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1. Introduction 

Rapid prototyping (RP) is the term most commonly used to describe additive 
manufacturing technologies. An additive manufacturing technology is any 
manufacturing process that fabricates a part by adding one layer of material at a 
time, one on top of the other, to produce detailed 3-D geometries directly from  
3-D computer-aided design (CAD) models. The additive manufacturing process 
generally uses a computer-controlled deposition/curing process to create the 
individual layers, eventually culminating in a 3-D reproduction of an input CAD 
geometry. Some processes produce finished, fully cured parts, and others produce 
parts that must be cured as an additional process. This differs from conventional 
machining, which can be thought of as subtractive manufacturing. Conventional 
machining creates a part by cutting away material from a piece of solid stock 
material such as a rod or a block. Conventional machining can be combined with 
computer-aided manufacturing (CAM) software to produce highly complex 
geometries directly from CAD models.  

There are advantages and disadvantages to each process that must be considered 
each time a designer wishes to take his/her design to the manufacturing stage. Even 
with the advancements in CAM software for conventional machining, the initial 
setup process requires a substantial amount of time and effort by the designer and 
machinist each and every time a part is manufactured. Generally, RP technologies 
are relatively easy to set up and operate. There is less interaction required between 
the designer and the person operating the machine, which is typically the biggest 
time saver and error reducer when comparing the 2 manufacturing methods. For the 
purpose of this experiment, an RP manufacturing technology was chosen by the 
designer based on these principles. This allowed for highly accurate parts to be 
manufactured with the ability to quickly incorporate design changes, as the 
experiment was in its early stages, producing various types of geometries that were 
evaluated before a final experimental model was chosen.  

There are a variety of different additive fabrication processes in use today, 
including stereolithography, selective laser sintering (SLS), direct metal SLS, and 
fused deposition modeling, to name a few. Each of these technologies can create 
parts from a variety of different materials. However, in comparison, conventional 
machining can be applied to a much larger variety of metallic materials that, to date, 
RP technologies are not capable of producing.  

The initial parameters of this experiment pointed toward RP technologies as a 
viable option. The experiment required a lightweight and robust material that could 
survive several blunt impacts before being discarded. An SLS technology was 



 

Approved for public release; distribution is unlimited. 
2 

selected and the material chosen was a glass-filled polyamide material that had 
adequate impact resistance and durability. This selection was based on the previous 
experience of the US Army Research Laboratory’s (ARL’s) Guidance 
Technologies Branch (GTB) in the design and fabrication of sabots for 
nontraditional shaped projectile geometries used in smoothbore-gun-launched 
applications.1,2 SLS technology uses a bed of powdered material that is introduced 
to a laser. The laser is controlled by a computer to sinter the particles of powdered 
material to form the aforementioned layers of material one on top of the other until 
the entire geometry emerges fully cured. 

As part of their behind helmet blunt trauma (BHBT) research initiative, the 
Warfighter Survivability Branch(WSB) of ARL’s Survivability/Lethality Analysis 
Directorate (SLAD) was commissioned to design and build a projectile that could 
be used to record impact data between itself and a variety of target materials. The 
projectile needed to provide stable, repetitive flight for a set distance between a 
compressed air cannon, developed by SLAD in collaboration with the Weapons 
and Materials Research Directorate’s Flight Sciences Branch, and a target. 
Experimental results needed to be recorded with high-speed photography and by 
data collection onboard the projectile using a commercial-off-the-shelf (COTS) 
onboard recorder (OBR). As part of the experiment, a specific frontal geometry was 
needed that could produce the correct amount of force on a desired impact area. 
Varying frontal geometries were developed to be evaluated during the first phase 
of the experiment. Of these geometries, 2 specific frontal radii of curvature (RoCs) 
were chosen for use in Phase 2 of the experiment. Phase 2 consisted of taking the 
selected frontal geometries and adapting them to a projectile that contained a COTS 
OBR and power supply with an external interface for data download and power 
recharging. Leveraging specific expertise in creating internal gun-hardened 
electronics for a variety of high-g applications, GTB developed an internal 
electronics package containing a COTS OBR that could be custom fit into the 
projectile geometry chosen from Phase 1 with a few modifications.3–6 The final 
product was a robust self-contained projectile that could be reused over multiple 
firing events, providing many valuable impact data points to the customer.  

1.1 Experiment Description and Results: Phase 1 

The objective of Phase 1 was to create a blunt simulator projectile with the frontal 
impact geometry derived from WSB’s preliminary experimental results in BHBT 
research. The concept behind selecting the geometry was to launch an instrumented 
projectile that would simulate the impact caused by the deformed helmet after 
defeating a ballistic threat. A schematic for the design concept of the blunt-impact 
simulator is shown in Fig. 1.
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Fig. 1 Development of radius of curvature (ROC) for blunt impactor 

Based on internal helmet surface deformations recorded using digital image 
correlation (DIC) from empty helmets against various ballistic threats at different 
velocities, 3 RoCs were chosen to be evaluated, as shown in Fig. 2. These 
geometries were selected to represent the deformation of the helmets when the 
greatest kinetic energy and momentum occurred.  

 
Fig. 2 Three evaluated RoCs 

The clay Peepsite headform, shown in Fig. 3, can be used to measure impact 
geometries. Figures 4 and 5 show examples of impacts produced and digitized using 
the portable 3-D coordinate measuring system FAROArm (FARO, Lake Mary, 
Florida) to determine impact geometries and volume. Figure 4 shows the imprint 
on the headform created by helmet back-face deformation by a 9-mm bullet shot, 
and Fig. 5 shows the imprint from an 80-mm RoC blunt-impact simulator. 

 

 50-mm RoC  80-mm RoC  110-mm RoC 
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Fig. 3 Peepsite headform used to assess impact conditions from helmet back-face 
deformation and blunt-impact simulator 

 

Fig. 4 Imprint of 9-mm bullet 
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Fig. 5 Imprint of 80-mm RoC blunt-impact simulator 

A variety of blunt-impact simulator configurations was evaluated with each RoC 
before a suitable design could be implemented for progression into Phase 2 of the 
experiment. During these initial tests with the experimental range setup shown in 
Fig. 6, the projectile is launched using a compressed air cannon, and after muzzle 
exit it travels approximately 5 m through the air before impacting the target. From 
these tests, it became readily apparent that in addition to the helmet back-face 
geometries, another key performance capability of the simulator had to be 
considered. It was extremely important to maintain projectile stability during flight 
to produce consistent impact profiles on the designated target material.  

 

Fig. 6 Compressed air cannon experimental setup 

WSB was actively refining projectile requirements during this initial phase of the 
experiment. Comparisons were made of the projectile impacts and data collected 
from previous experiments using a 9-mm bullet and helmet on both the Peepsite 
headform and the ballistic load sensing headform (BLSH; Biokinetics, Ottawa, 
Ontario, Canada), shown in Fig. 7. Mass, velocity, geometry, and momentum from 
these existing back-face deformation studies were used to optimize the projectiles. 
Projectile mass was dictated by frontal area and material strength requirements, 
plus predicted mass of future instrumentation. The ability to rapidly produce 
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prototypes to be used to adjust certain portions of the geometry was key in being 
able to meet these customer requirements in a timely manner consistent with their 
aggressive project schedule. As experiment parameters were refined, the projectile 
geometry was able to be updated and prototypes were produced, usually within one 
or 2 working days.  

 
Fig. 7 Ballistic load sensing headform 

Within 6 iterations, an optimized projectile configuration emerged that met these 
requirements, provided a stable, repetitive flight, and withstood over 20 projectile 
launches and impact events (Fig. 8). The final projectile design consisted of 3 
separate parts: a threaded can portion (capable of containing future OBR 
electronics), a threaded blunt face (with each RoC being interchangeable with any 
can), and an obturator portion (slip-on foam doughnut). WSB then repeated 
previous experiments performed with a 9-mm bullet and a helmet using this 
projectile with selected RoCs on both Peepsite and BLSH targets.  
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Fig. 8 Projectile design iterations 

1.2 Experimental Description and Results: Phase 2 

The objective of Phase 2 of the experiment was to instrument the projectile 
geometry and 2 RoCs chosen in Phase 1 of the experiment with a COTS OBR 
modified to operate off of a rechargeable power supply and fit inside the available 
blunt-impact simulator volume determined in Phase 1. The OBR was also modified 
to interface with an embedded connector for data download, OBR configuration, 
and charging applications (Fig. 9). These instrumented blunt-impact simulators 
were used to measure and record impact data that were later compared with existing 
data from helmet back-face deformation impacts on instrumented headforms. These 
new data were subsequently analyzed by WSB to verify accurate reproduction of 
impact characteristics caused by 9-mm projectile impacts with helmeted head 
surrogates.
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Fig. 9 Instrumented blunt-impact simulator 

Two threaded can sections were instrumented with OBR components including 
rechargeable power supplies, interface connectors, and a 3-axis accelerometer.4 
Each instrumented can was capable of adapting to a screw-on blunt-face geometry 
of either a 50- or 80-mm RoC. To date, 84 impacts have been performed using one 
of the 2 instrumented cans using interchangeable and replaceable blunt-face 
geometries. Figure 10 shows an example of plotted 3-axis accelerometer data 
downloaded from the projectile after an impact with a target. In all 84 impact cases, 
similar data were recovered, proving the functional reliability of the OBR, which 
in turn met the primary objective of the Phase 2 projectile design. Figure 11 shows 
a comparison of a subset of measured projectile velocities with varying initial air 
cannon pressures taken from the OBR with velocity measurements taken from a 
high-speed camera and a laser beam interruption setup along the firing line.  

 
Fig. 10 Acceleration (g’s) vs. time (milliseconds) 
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Fig. 11 Measured velocity (feet per second) vs. air cannon pressure (pounds per square inch) 

The OBR blunt-impact simulator measures a higher force with a faster response 
time than the load-sensing biokinetic headform target that was used in previous  
9-mm helmeted tests. This is due to the protective rubber cover on the load cells in 
the headform that dampens the impact before it is picked up by the sensors. Data 
taken from an OBR blunt-impact simulator’s impact with a biokinetic headform 
target exemplify this phenomenon, as shown in Fig. 12.  

 
Fig. 12 Blunt-impact simulator impact with biokinetic headform experiment 

The OBR blunt-impact simulator is better suited to measure and understand the 
impact loads imparted to the head from a ballistic-blunt event than the existing 
methodologies using an instrumented ballistic load sensing headform. 
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2. Conclusion 

The use of SLS RP technology made it possible to quickly adapt to changes in 
projectile requirements in the initial phases of experimentation. This led to a robust 
2-piece design capable of adapting to all RoCs that were of interest in this study. 
This projectile design, when produced in glass-filled polyamide material, was 
proven to have adequate impact resistance to survive multiple experiments. Costly 
and time-consuming dynamic finite element analysis was avoided by the ability to 
quickly and cost effectively produce test items. Two instrumented OBR blunt-
impact simulator projectiles were produced for testing in Phase 2 of the experiment. 
Repeated re-use demonstrated robustness, making production of additional test 
articles unnecessary and saving significant time and manufacturing cost. Glass-
filled polyamide SLS manufactured parts are suitable for future projectile 
geometries involved in soft-launched recoverable applications. They may also be 
appropriate for use in other areas of nontypical gun-launched research.  

In the field of RP technology, newer materials and processes are continuously being 
developed. These new materials and processes will continue to prove useful for 
these types of applications as well as for any application where project requirements 
are constantly being driven by time and money as limiting factors. The time from 
concept to working prototype during Phase 1 projectile development was on the 
order of a few weeks instead of the months it would have taken to prototype and 
pursue a conventionally manufactured solution.  

3. Future Work 

In the third phase of this experiment, OBR blunt-impact simulators will be used to 
create impacts representative of helmet back-face deformation on postmortem 
human heads, as shown in Fig. 13. These tests will provide the most data for 
understanding the injury mechanisms that contribute to BHBT events to date.7 
Helmet designers will be able to use this research’s data to make changes in helmet 
composition and geometry to better protect the warfighter.  
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Fig. 13 Phase 3 postmortem human head experimental layout 
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