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Final Technical Report, FA9550-12-1-0147 “ CATALYSIS BY ATOMIC-SIZED CENTERS:  METHANE 
ACTIVATION FOR PARTIAL OXIDATION AND COMBUSTION

Modified Oxides” 

The recent availability of alkanes (C1-C4) from cheap natural gas has created great 
industrial and scientific interest in catalysts that convert alkanes into valuable chemicals.  There 
is abundant literature showing that oxides catalyze extremely interesting and useful alkane 
reactions but in almost all cases the performance is not good enough for commercial utilization.  
The goal of our research is to use experiments and theory to find chemical and morphological 
modifications of oxide surfaces that will boost their catalytic performance for alkane conversion.  
This AFOSR grant supports the theoretical work but the two aspects of our research are 
intimately linked and there is no clear demarcation between them.  We have examined a large 
number of modifications: doping with higher-valence or lower-valence cations, halogenating the 
surface, delaminating some oxides to turn them in two-dimensional materials, creating 
submonolayers of oxides supported on other oxides or on metals, or promoting oxide catalytic 
chemistry by using molten salts.  

With support from this grant, we have published twenty-two papers [1-22], submitted two 
manuscripts[23-24], and have written two manuscripts that will be submitted soon to the Journal 
of Physical Chemistry [25-26].  One Ph.D. dissertation was produced (see Appendix).  While our 
main focus is catalysis by oxides we have explored other related areas as outlined below.   

Besides the PI, Horia Metiu, the following people have been involved in the research 
effort (in alphabetical order): Vishal Agarwal (postdoc), Abhinav Anand (undergraduate 
student), Steeve Chrétien (postdoc), Zhenpeng Hu (postdoc), Chang Huang (visiting graduate 
student), Henrik H. Kristoffersen (postdoc), Bo Li (postdoc), XiaoYing Sun (visiting postdoc), 
Suheng Wang (visiting undergraduate student), Jie Yu (graduate student).   

Because of the variety of the work presented here we organize the report into several 
sections.  

(1) A general set of qualitative rules.  Our work on catalysis by oxides has been guided by a 
paradigm first noted by us in 2007 and fully developed in subsequent work[1-7,10-11,22].  Two 
review articles[5-6] present a synthesis of our conclusions.  Based on a large number of 
calculations on a variety of oxide-molecule systems we proposed a set of general rules.  (1) 
There is a very strong interaction between Lewis bases (electron donors) and Lewis acids 
(electrons acceptors) when they are coadsorbed on an oxide surface.  Lewis acids important for 
alkane activation by oxides are oxygen, halogens, and oxide surfaces doped with a lower-valence 
dopant.  Important Lewis bases for alkane activation are H adsorbed on surface, alkyls adsorbed 
on the surface, and oxygen vacancies in the oxide.  Obviously the chemistry of alkane on oxide 
surfaces, which consists mainly of partial oxidation reactions, involves both acids and bases and 
this is why these rules are important.  (2) If two amphoteric molecules or molecular fragments 
(formed by dissociative adsorption) are present on a surface, one will adsorb on a surface site 
that allows it to be a Lewis acid and the other on a site that allows it to be a Lewis base.  For 
example, H adsorbed alone on an oxide surface will bind to oxygen to form a hydroxide.  
However, if a Lewis base (e.g. any electron donor) is already present on the surface, hydrogen 
will adsorb on a cation to make a hydride (negatively charged H).  The essential observation is 
that the presence of an acid on a surface will change the site to which a base will bind, and vice-
versa.  Prior to this work it was assumed that in the presence of another species a molecule will 
bind to the site to which it binds when it is alone on the surface; this is not true if one molecule is 
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an acid and the other is a base.  (3) This acid-base interaction is “through oxide” and it is not 
because the acid reacts (forms a chemical bond) with the base.  (4) The interaction is long-
ranged, meaning that it does take place even if the acid and the base are separated by several 
lattice sites or if the acid is buried in the third layer from the surface and the base is on the 
surface.   
 These rules give guidance regarding which surface modifications will improve alkane 
activation by oxide.  They also reduce the number of calculations that need to be performed 
when analyzing a specific oxide catalyst for a specific alkane.   
 
(2) Possible predictors for a quick screening of catalytic activity: oxygen vacancy formation, 
the binding energy of the products, the activation energy for breaking the C-H bond.  
Numerous experiments have concluded that the rate-limiting step in alkane activation is the 
breaking of the carbon-hydrogen bond to make an adsorbed alkyl and an adsorbed hydrogen 
atom.  This means that one can screen alkane activation catalysts by calculating the activation 
energy for alkane dissociation and this is what we do in most of our calculations.  Given the 
extremely large number of oxides and modified oxides, it is valuable to have more efficient ways 
of screening (or pre-screening) alkane activation by oxide catalysts.  One of these predictors is 
based on the Brønsted-Evans-Polanyi rules, which say that the stronger the alkane dissociation 
products (namely H and the alkyl) bind to the surface, the lower the activation energy to break 
the C-H bond.  This allows us to efficiently compare the activity of various oxides by calculating 
binding energies instead of activation energies.  Binding-energy calculations are more efficient, 
by a factor 20, than activation energy calculations.  An even simpler procedure is to compare the 
ability of various oxides or modified oxides to function as oxidation catalysts by calculating how 
much energy it takes to remove oxygen from the surface (to make an oxygen vacancy).  This is a 
reasonable descriptor because practically all catalytic chemistry of alkanes is partial oxidation 
and it has been shown that the oxygen in the product originates from the surface of the oxide, not 
from the oxygen present in the gas.  That is, the oxide surface oxidizes and the gas phase oxygen 
replenishes the oxygen lost by the surface.  In a recent paper[7], involving computations and 
experiments, we have shown that there is a linear relationship between the energy of oxygen-
vacancy formation calculated by DFT and the activation energy for methane oxidation catalyzed 
by La2O3 doped with a variety of cations.  
 
(3) Implications of the acid-base rules for alkane activation.  Our Lewis acid-base rules suggest 
that because the dissociation fragments of an alkane are Lewis bases, the oxide should be 
modified to become a Lewis acid.  This will make the dissociative-adsorption reaction more 
exoergic and lower the activation energy for breaking the C-H bond.  We have shown that this 
can be achieved in two ways.  (a) Doping the oxide with a lower valence dopant (CaO doped 
with Li, ZrO2 with La, etc.) creates a deficit of electrons in the surface and converts a surface 
oxygen into a Lewis acid.  This increases substantially the binding energy of basic fragments (H 
and alkyl) to the surface.  The Brønsted-Evans-Polanyi rules suggest that this change in the 
binding energy of the products will lower the activation energy for dissociative adsorption, 
which is true in all calculations we have performed so far[3,5,6; and our earlier work].  
(b) Doping an oxide with a higher valence dopant (e.g. CaO doped with La) creates a Lewis-
basic site on the surface because a trivalent atom (La) replaces a divalent one (Ca).  According to 
our rules, oxygen (which is a Lewis acid) adsorbs on or near the higher-valence dopant, takes 
electrons from it, and becomes chemically active.  This activated oxygen reacts readily with an 
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alkane and breaks the C-H bond.  This is a new mechanism, proposed by us, which is the 
opposite of the Mars-van Krevelen mechanism; in our case the oxygen in the oxidation products 
originates from the gas, while in the MvK mechanism it originates from the surface of the oxide.  
Experiments with 18O2 that showed that this computational prediction is correct[27].   
 
(4) A general mechanism for alkane dissociative adsorption on oxide catalysts.  In any 
dissociative adsorption, the reaction breaks a bond and makes two (each dissociation fragment 
binds to the surface).  In general, the activation energy is lower if the new bonds are formed 
while the old bond is broken.  This is not possible for alkane dissociation on oxides because the 
distances between the binding sites are much larger than the C-H bond length.  We found that 
this factor controls the reaction path for alkane dissociation.  In all cases we have examined, 
regardless of the chemical nature of the oxide (doped or not) or of its morphology (being 
supported on a metal or another oxide, or being pure, or having a step), the dissociation took 
place by a disconcerted mechanism:  first a hydrogen atom made a bond with a surface oxygen 
atom and then the alkyl tumbles on the surface to find a binding site.  There are two transition 
states along this reaction path.  During this motion the alkyl is weakly bonded to the surface and 
as a result, the rate for producing a hydroxyl and an alkoxide on the surface is comparable to that 
of producing a hydroxyl on the surface and an alkyl in the gas phase.  These results suggest the 
possibility of parallel mechanisms: one produces an alkyl bonded to the surface and the other 
produces an alkyl in the gas.  This possibility has been debated in the experimental literature and 
Lunsford has shown conclusively that gas phase radicals are produced during the oxidative 
coupling of methane on MgO.  We suggest that this is likely to be general when the reaction is 
carried out at high temperature.  There have been numerous suggestions by experimentalists that 
in high-temperature alkane catalytic activation, gas phase radical formation is important.  Our 
calculations support this conclusion and also explain that the formation of a gas phase alkyl is 
caused essentially by the large distance between the binding sites for the dissociation fragments.  
Given the structure of oxides this is an unavoidable feature for all oxides.  
 
(5) A few specific discoveries regarding catalysis by oxides.  We have examined[2] the 
interaction of oxygen with a series of higher valence dopants in La2O3 to answer the following 
general question:  how does a dopant having a higher valence than the cation it substitutes affect 
the catalytic activity of the oxide?  We found some unexpected behavior: the dopant donates an 
electron to the surface to make a polaron even though the host oxide is irreducible; the oxygen 
adsorbs at the polaron site and it is activated; there are very substantial differences between 
dopants from the left-hand site of the periodic table (e.g. Ti, Zr, Nb, Ta) and those in the right-
hand side (e.g. Ge, Sn, As, Sb).  This “overturned” the previous paradigm that the valence of the 
dopant is the major factor controlling its chemistry.  Paper 3 studied the role of steps in methane 
dissociation on Na-doped with alkali.  We found that the dopant prefers to be imbedded in the 
edge of the step and that the stepped surface is much more active for methane activation than the 
flat one.  Paper 4 shows that during methane dissociation, the H and the CH3 radicals form a 
hydride and a methoxide even though when they bind alone they prefer to bind to oxygen.  This 
is another example of the dramatic influence of the acid-base interaction we discovered in 
previous work.  Paper 7 performed experiments to test a prediction made by our computations.  
We found that the measured activation energy for methane partial oxidation is a linear function 
of the calculated energy of oxygen vacancy formation.  Papers 8-9 are experimental and had two 
purposes: to show that doped oxides are better methane partial oxidation catalysts than undoped 
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oxides (a thesis which our calculations developed); and that the catalyst under working 
conditions is the reduced doped oxide.   
 
(6) Effect of the halogenation of an oxide surface on its catalytic activity.  There have been 
many experiments that indicated that the presence of halogens on an oxide surface improves (in 
the vast majority of cases) its catalytic activity for alkane activation.  We have examined such a 
system in the past work sponsored by AFOSR and continued these investigations under the 
current grant.  In paper 11 we showed that the presence of an adsorbed halogen on an oxide 
surface makes it easier to make oxygen vacancies and therefore makes the oxide a better oxidant.  
This fact is in agreement with our acid-base rules: the halogen is an acid and making an oxygen 
vacancy creates a base; hence a strong acid-base interaction facilitates the formation of the 
vacancy.  Then we thought (along with a number of experimentalists) that an oxychloride might 
be a good model for explaining the role of halogenation.  We found that we were wrong: the 
oxychloride is a very inert compound and worthless catalyst.  We remained, however, very 
curious about the possible effect of halogens and decided to examine their role in gas phase 
alkane reactions.  We found[11,13] that addition of I2 catalyzes the hydrogenation of CH2Br2 and 
the formation of propylene from propane.  We proposed that I2 is a gas phase catalyst and we 
currently believe that this system will lead to a higher propylene yield than the current industrial 
processes.   
 
(7) Oxide clusters supported on metals or on oxides.  A possible modification of an oxide is to 
create submonolayers supported on a metal or on an oxide.  We have shown that isolated VO4 
clusters supported on Au or Ag are good methane activation catalysts[14].  That paper also made 
an intriguing observation, that many high-energy isomers of the cluster are as good catalysts as 
the low-energy ones:  the energy required to create the isomer is compensated by the fact that the 
isomer has lower activation energy for methane dissociation; the populations of these isomers are 
low but they react much faster.  For paper 20 we prepared in ultra-high vacuum mass-selected 
vanadium oxide clusters supported on TiO2 and studied their catalytic activity for methanol 
oxidation to formaldehyde.  This is part of our effort to study well-defined catalysts to 
understand the connection between activity and clusters size and composition.  
 
(8) Are sulfides similar to oxides?  During the reporting period we became interested in a project 
whose aim was to develop a HBr flow electrochemical cell for energy storage using a sulfide 
electrode.  We got involved in this project partly because we assumed that sulfides are similar to 
oxides and therefore we had an opportunity to test whether the acid-base rules we proposed for 
oxides, work also for sulfides.  The result is that they do not.  Nevertheless we published a 
number of interesting experimental-computational work[15-19]  which tested a variety of sulfide 
electrodes and performed experiments (and calculations) to find out why sulfides performed 
poorly for the electrochemical hydrogen oxidation.   
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APPENDIX 
 
Computational Study of a Model Inverse Catalyst and of Defects in an Oxide Surface 
Jie Yu  
Ph.D. dissertation, University of California, Santa Barbara, 2013  
UCSB Library Call Number Electronic Dissertations QD47.5.C2 S25 YUJI 2013  
ProQuest Dissertations & Theses 1504844416 
 
Summary 
 In recent years, significant research efforts on fundamental catalytic research have been 
undertaken, driven by the need to control and improve heterogeneous catalysis processes at a 
molecular level.  Model systems have been designed and studied to investigate catalytic 
processes, while most of the work so far has involved metal nanoparticles deposited on oxide 
supports.  Recently, another type of model catalyst system has been suggested which consists of 
a metal single-crystal surface decorated with submonolayer quantities of an oxide phase.  This 
“inverse-catalyst model system” offers interesting possibilities to explore the effects of the 
metal-oxide interface on the reactivity.  
 We use density functional theory, with the GGA-PBE functional, to investigate the ability 
of vanadium oxide clusters, supported on Ag or Au, to break the C-H bond in methane.  We 
perform a thermodynamic analysis to show that the VO4 cluster is the most likely oxidant and 
then proceed to calculate the energy of the dissociative adsorption of methane and its activation 
energy with the Nudged Elastic Band (NEB) method.  It appears that isolated VO4 clusters 
supported on Au (111) are promising catalysts for the first step in methane activation, the 
breaking of the C-H bond.  We explain some peculiar features of the reaction path and propose 
that they are general for alkane activation on oxides.  
 We also observe that the support makes a substantial difference and that Au is a much 
better support than Ag.  This probably happens because Au makes weaker bonds with the oxygen 
in VO4, or, equivalently, because VO4 binds less strongly to Au than to Ag.  We propose that if 
one compares the activity of the same cluster on a variety of supports, then the reaction energy 
for the dissociative adsorption is higher when the bond of the cluster to the support is weaker.  
We emphasize that these “rules” are, at this point, based on very few examples and need to be 
tested further.  
 An important role in catalysis is the surface mobility of active species in the catalytic 
process and also during activation or regeneration treatments of the catalysts.  To quantify the 
degree of difficulty for VO4 clusters to move on Au (111) and Ag (111) surfaces, we calculate, 
by using the NEB method, the energy barrier for the motion of the VO4 cluster along the surface.  
The energy barrier for VO4 moving on a silver surface is higher than that on a gold surface, 
which is not surprising considering the bonding character between the cluster and metal surfaces.  
The high mobility verifies our observation that the bonding connection between the cluster and 
the surface is much weaker after the dissociation and less sensitive on the positions of the VO4 
cluster.  We observe that the adsorption and the dissociation of methane on the cluster are 
equally probable for all intermediate cluster geometries during the motion from one lattice site to 
another.  
 As another model system for catalysis, MgO oxide surfaces have been an active research 
topic in the last decade and it is believed that oxygen vacancies on oxide surfaces can participate 
in various chemical reactions.  The formation of oxygen vacancies on MgO surfaces has been 
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studied extensively.  However, previous work has mainly been limited to the neutral case and the 
studies of charged defects mainly focus on their geometric and thermodynamic properties. 
Furthermore, the doping effect is barely included in the previous theoretical works due to its 
complexity.  Here, we study the geometric and electronic properties of the oxygen vacancies 
with different charge states on the MgO (001) surface.  We have developed a methodology for 
calculating charged defect formation energies at surfaces.  From first-principles calculations we 
obtain the formation energies of the oxygen vacancies on MgO surface with 0, +1, +2, and -1 
charge states under both oxygen-rich and oxygen-poor conditions.  We investigate the effects of 
doping on the formation energy and concentration of oxygen vacancies.  The doping effect is 
considered in our calculations through the corresponding change of the Fermi level.  We further 
study the absorption of oxygen molecules at these vacancies, calculate their relative energetic 
stability, and analyze its implication on their surface catalytic properties.  This study sheds light 
on the catalytic activity of charged oxygen vacancies on oxide surfaces.     
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