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Abstract: 

Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high 
speed, compressible, and highly turbulent flows. The combustion environment and the turbulent 
flames at the heart of these engines are difficult to simulate and study in the laboratory under 
well controlled conditions. Typically, wind-tunnel testing is performed that more closely 
approximates engine testing rather than a careful investigation of the underlying physics that 
drives the combustion process. The experiments described in this report, along with companion 
data sets developed separately, aim to isolate the chemical kinetic effects from the fuel-air 
mixing process in a dual-mode scramjet combustion environment. A unique fuel injection 
approach is taken that produces a uniform fuel-air mixture at the entrance to the combustor. This 
approach relies on the precombustion shock train upstream of the dual-mode scramjet 
combustor. A stable ethylene flame anchored on a cavity flame holder with a uniformly mixed 
combustor inflow was achieved in these experiments, allowing numerous companion studies 
involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and 
planar laser induced fluorescence (PLIF) to be performed 
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I. Introduction 
Sustained hypersonic flight via scramjet propulsion presents considerable capabilities for future 
space access and high speed weapons. However, in order for this technology to become a 
practical and reliable propulsion method, there is a need for improved understanding and 
prediction of the reacting flow of the scramjet combustor, which is highly compressible and 
highly turbulent. The fundamental processes in the combustor include the injection, mixing, and 
reaction of a fuel in a supersonic or high speed airstream. For certain fuels, such as hydrogen, the 
chemical kinetic time scales are much shorter than the flow time scales, and the rate-controlling 
process is the fuel-air mixing. While hydrocarbon fuels have longer kinetic time scales than 
hydrogen, the mixing can still be rate-controlling if the flow temperature is high or if a flame 
holder is present and there is an adequate source of combustion radicals. In order to focus on a 
process that is fundamental to scramjet combustion, the present study examines high speed 
premixed fuel-air flows. In this way, the mixing may be decoupled from the turbulent 
combustion and the chemical kinetics become rate-controlling. This allows the turbulent 
combustion physics to be isolated. Models of turbulence-chemistry closures can then be 
developed and validated. Investigations of the effect of turbulent fluctuations on flame structure, 
including eddy sizes and distributions, can also be conducted. Furthermore, complications, such 
as the effect of jet mixing on flame propagation, can be avoided. 

Unlike in non-premixed turbulent combustion, where there is no meaningful time scale based 
on velocity, in premixed turbulent combustion the velocity fluctuations, v', play a critical role in 
defining the turbulent combustion regimes. For low density ratio variations, the dependence of 
normalized turbulent velocity fluctuations with respect to laminar burning velocity, v'/sL, to the 
normalized integral turbulent length, l/lL are well established, and are given by 

  (1) 
 
where Rel is the Reynolds number based on integral length scale, Kaη is the Karlovitz number 
based on Kolmogorov length scale, and Dal is the Damkohler number based on integral length 
scale [1]. For large Rel numbers, the above relationships yield four distinct turbulent combustion 
regimes identified as wrinkled flamelets, corrugated flamelets, distributed reaction zones, and 
well-stirred reaction zones [2]. It is currently not known in which regime a scramjet with 
premixed combustion operates. Therefore, a high speed premixed combustion capability is 
desirable in order to conduct experiments to identify the combustion regime of these flames. 

For scramjet combustion that involves turbulent compressible reacting flows with large 
density variations, the turbulent combustion regimes are influenced by an additional parameter 
characterized by 
 
 , (2) 
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where ΔTs is the change in temperature associated with kinetic energy and ΔTc is the change in 
temperature associated with the chemistry [3]. If the rise in temperature associated with kinetic 
energy is approximated by 
 
 , (3) 
 
then the parameter S becomes 

  (4) 
 
where ΔTc /T0 can be identified as a heat release parameter, α, with typical values ranging from 1 
to 10 [4]. If typical values of α = 6 and γ = 1.3 are selected, then M = 6 flow yields S = 1, 
indicating that velocity fluctuations can introduce temperature fluctuations close to the increase 
in temperature by chemical reactions. This demonstrates how closely coupled velocity 
fluctuations and chemical reactions can be in the high speed combustion environment of a 
scramjet. By decoupling the mixing from the turbulent combustion process, the experiments 
described in this report offer an opportunity to examine the turbulence-chemistry coupling in a 
scramjet relevant environment.  

Therefore, the main goal of the present research is to develop a high speed premixed 
combustion capability to enable investigation of the strong coupling between flow 
compressibility, turbulence, and heat release. By applying advanced diagnostics, the exact 
turbulent combustion regime of the scramjet combustor may be identified. Such measurements 
have not been previously published for scramjet combustors nor has stable high speed premixed 
combustion been demonstrated. The specific objectives of the present study are: 1) design and 
construct fuel-air premix hardware for a series of high speed combustion experiments, 2) 
demonstrate stable premixed combustion in a scramjet combustor, and 3) examine the effects of 
equivalence ratio and inflow gas temperature on flame ignition, propagation, and flameout. 

This study was performed in collaboration with the National Center for Hypersonic Combined 
Cycle Propulsion (NCHCCP). The Center work is aimed at examining combustion in a dual-
mode scramjet with flight Mach numbers in the range of 4 to 6. Here, a theoretical flight vehicle 
would be expected to transition from a subsonic ramjet mode of combustion to a supersonic 
scramjet mode of combustion. As part of this larger effort, a suite of advanced instream 
diagnostics are available including coherent anti-Stokes Raman scattering (CARS), OH and 
CH2O planar laser induced fluorescence (PLIF), and particle image velocimetry (PIV) [5-7]. 
Together with conventional measurement techniques, these diagnostics enable the study of both 
the cavity flow (operability limits, residence time, internal cavity flame structure, and shear layer 
characterization) and the main flame (flame surface area, local strain rate/stretch and flame 
propagation angle). The experiments described in this report have resulted in databases that are  
leading to the validation of advanced time averaged and time accurate numerical models [8]. 
Details and status of the CARS and PIV measurements are presented elsewhere by Gallo and 
Kirik, respectively [9,10]. Edwards presents results of the numerical modeling efforts [11]. The 
purpose of this report is to document the development and demonstration of the premixed 
capability and the initial experimental results. 

 

DISTRIBUTION A: Distribution approved for public release.



 
 
 
 

5 

II. Relationship to National Center for Hypersonic Combined Cycle Propulsion 
 Research during the first three years of the Center focused on combustion in non-premixed 

flow. In addition, this work was performed mostly with hydrogen as the fuel. Work in years four 
and five were devoted primarily to combustion using ethylene.  The present project represented 
additional effort that was devoted in year four to prepare for the premixed experiments to be 
conducted in year five of the Center.  This was done in parallel with the experiments in year four 
by personnel who were partially supported by the Center and partially supported by the present 
project.  According to the Statement of Work as defined in the original Center proposal, year five 
was to be devoted to shock wave control and innovative fuel injection schemes.  While these 
investigations are important, it was felt that the premixed experiments were an appropriate and 
important replacement. Since the premixed experiments were outside the original scope of the 
Center, the budget for the present project supported the additional costs to prepare for and 
conduct the premixed combustion experiments. 

III. Experimental Approach 
 Three focus areas have been identified to guide the experimental approach of the Center: 1) 
measurement of reacting flow turbulence statistics and novel fuel-air mixing and flame holding 
schemes through the development and application of advanced diagnostics, 2) development of 
benchmark data sets with quantified experimental uncertainty for the purposes of developing 
accurate RANS, hybrid LES/RANS, and LES computational models, and 3) generation of 
performance improvements of combined cycle systems and the development of methods for 
controlling combined cycle mode-transition [12]. 

The dual-mode scramjet experiments are being conducted with the aim of examining the flow 
processes that take place in the isolator and combustor in the flight Mach number regime of 4 to 
6. Specifically, the experiments employ a direct connect scramjet combustor that is operated at 
Mach 5 enthalpy (total temperature of 1200 K) using the University of Virginia Supersonic 
Combustion Facility (UVaSCF). The test-section hardware has been designed to accommodate 
the application of multiple advanced flow diagnostic techniques [13]. In particular, the 
combustor section incorporates a modular construction approach that provides substantial access 
for optical laser diagnostics. In addition to static wall pressure and temperature measurements, a 
number of advanced, instream diagnostics have been applied in the facility, including CARS, OH 
PLIF (Hz), CH2O PLIF (Hz and kHz), stereoscopic and planar PIV (Hz and kHz), and high 
speed chemiluminescence imaging (Hz and kHz). Combined, these diagnostics result in the 
measurement of: wall static pressure, temperature, species concentration (N2, O2, H2, CO, CO2, 
H2O, C2H4, and qualitative OH), scalar correlations, three-component velocity, three-component 
turbulence intensity (RMS), and Reynolds stresses. 

The experiments described in this report have used ethylene fueling in what is termed the 
modified Configuration E (Fig. 1). The flowpath starts with a Mach 2 facility nozzle and 
incorporates a long, constant-area isolator upstream of the combustor that contains any 
precombustion shock train. Injecting fuel at the upstream end of the isolator allows for 
significant mixing of the fuel into the freestream ahead of the cavity flame holder. The isolator is 
a 15.97” long rectangular duct with a 1” x 1.5” cross-section. A 2.9° divergence on the cavity-
side wall starts 2.1” upstream of the cavity leading edge. This divergence is maintained through 
the combustor and extender sections of the flowpath. A constant area section downstream of the 
combustor compresses the flow inducing a thermal throat when the flowpath is operating in the 
dual-mode with a precombustion shock train in the isolator and subsonic flow through the 
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combustor. CFD analysis indicates this feature promotes flame holding in the combustor. The 
cavity spans the width of the duct and has an initial depth of 0.356”, which is maintained over a 
length of 1.22”. The cavity closes with a 22.5° ramp that terminates 2.1” downstream of the 
leading edge. The scramjet terminates with an atmospheric backpressure at the exit, 19.61” 
downstream of the cavity leading edge. The exit of the combustor is 40.8” from the exit of the 
Mach 2 nozzle. 

All components in the flowpath were constructed of stainless steel with the exception of the 
cavity wall of the combustor, which is OFHC copper, and the large optical windows in the 
combustor, which are 0.375” thick fused-silica. Water cooling is incorporated in each component 
of the test-section and all stainless steel walls in the isolator, combustor, and constant area 
section are coated with a 0.015” thick layer of thermal barrier zirconia. The copper cavity wall is 
not coated. 

 

 
 

Figure 1. Modified Configuration E flowpath showing CARS measurement planes (green) 
and OH PLIF field of view (red): a) side view and b) top view with normalized axial 

distances from cavity leading edge (x/h). 
 

The primary measurement locations are indicated in Fig. 1. Nitric oxide (NO) PLIF 
measurements were taken on a transverse plane at the leading edge of the cavity to verify the 
level of premixing. Other measurements taken in this flowpath but not reported here include 
CARS, PLIF (OH and CH2O), and PIV. The vertical green lines in Fig. 1 represent the CARS 
measurement locations. Normalized by the cavity depth (h = 0.356”), these measurement planes 
are at axial locations of x/h = -9.14, 2.39, 6.60, and 10.80 relative to the cavity leading edge. 
PLIF (OH and CH2O) has been performed from the cavity leading edge to the downstream end 
of the optical windows in the duct, as indicated by the red box in Fig. 1. The cavity-side wall is 
instrumented from inlet to exit with 80 low frequency pressure taps and 13 type K thermocouples 
that are primarily located on the combustor centerline. 

a) 

b) 

-59.54 -5.91 0 5.90 15.89 31.81 55.07 

Combustor Extender Isolator 

Mach 2 
nozzle 

Constant 
Area 

Isolator fuel injectors 
(-55.33 and -54.64) 

2.9° divergence Cavity 

Divergence start Secondary fuel injectors (-2.72) 

Air throttle 
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IV. Facility and Flow Conditions 
 The experiments were conducted using the UVaSCF. This facility is an electrically heated, 
continuous flow, direct-connect scramjet wind tunnel. It is capable of simulating up to Mach 5 
flight enthalpy and provides a clean test flow that is free of contaminates such as those from a 
vitiation heater. Facility run times are on the order of hours with steady-state heating and fuel 
conditions. Because CARS is a point-by-point measurement technique, the extended run time 
provides for high spatial resolutions using a finely-spaced measurement grid [5]. Likewise, PIV 
and PLIF require non-correlated image counts on the order of 500 to 1000 or more for 
calculating average turbulence statistics and other parameters to a reasonable degree of accuracy 
[7,14,15]. Coupled with the optical access in the tunnel and proximity to laser diagnostics labs, 
the facility is well suited to the application of the advanced optical diagnostics required by the 
NCHCCP. 
 The facility flow conditions are presented in Table 1. The uncertainties given in the table are 
calculated by standard propagation of error and include temporal variability as well as 
instrumentation uncertainty. Tunnel air flow conditions were typically maintained to less than 
±1% during a run and across multiple runs. The facility is fully described elsewhere [16-18]. 

An air throttle is available downstream of the combustor, near the upstream end of the 
extender (at x/h = 37.52), which allows the duct to be back pressured independently or in 
conjunction with a combustion process to simulate the pressure rise associated with combustion. 
The throttle consists of two slotted, high pressure air injectors, one in each side wall, that are 
used to restrict flow at that location. The slots are 0.125” wide and extend over the full height of 
the duct. Although air throttle pressures and flow rates are not generally measured directly, the 
isolator pressures were monitored in real time with adjustments made to the throttle to maintain 
the desired shock location. Through use of the air throttle, it is possible to accurately locate and 
stabilize the leading edge of the isolator shock train at any point in the duct. 

 
Table 1. Test conditions for main air flow. 

 
Parameter Air Uncertainty 
Total pressure 
(kPa) 300 ± 1% 

Total temperature 
(K) 

120
0 ± 0.8% 

Mach number* 2.0
3 ± 1% 

* Property at nozzle exit determined using nozzle area ratio and assuming isentropic flow 
(γ=1.36 for air). 

 
A NetScannerTM pressure scanner and remote NetScannerTM thermocouple unit were used to 

acquire wall pressures and temperatures along the centerline of the fuel injector wall in the 
scramjet flowpath. Typically, a scan of 20 samples was acquired over 2 seconds at a sample rate 
of 10 Hz for each pressure tap and thermocouple. This data was then averaged and normalized 
by the measured pressure at the most upstream pressure tap (located 0.25 in. downstream of the 
facility nozzle exit) prior to plotting. Wall pressure and temperature were typically measured to 
within ±0.5% and average quantities had a 95% confidence interval of no more than ±1.5%. 
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V. Fuel Injection and Mixing 
 

1. Injector Design 

a. Details of the injector design process 
The primary objective for the fuel injection scheme developed in this work was to generate a 

uniform mixture of ethylene fuel and air across the duct at the combustor entrance (which was 
defined as the leading edge of the cavity). It was assumed that placing the fuel injectors close to 
the exit of the facility nozzle, well upstream of the cavity flame holder, would allow the 
maximum time and distance for fuel/air mixing in the isolator. Although introducing fuel into the 
isolator carries the risk of the flame flashing forward of the combustor, it was not clear at the 
outset how likely this would be in the UVASCF, whether it was a controllable phenomenon, or 
what the repercussions for the facility would be. 

Several injection strategies were considered including injection through a single row of 
injectors distributed laterally across the duct, staged injection through two or more closely-
spaced rows of injectors, and angled injection at 30 or 45 degrees. In addition to the level of 
mixing, a tradeoff to be considered was the potential for blockage of the freestream air flow, 
which could unstart the facility nozzle. 

Three sonic fuel injectors per row, each with a diameter of 0.049 inches produced a 
reasonable mechanical design for the facility. A single row of injectors can deliver sufficient fuel 
for a global equivalence ratio of 0.5 at a total pressure of about 1900 kPa, which is near the limit 
for existing upstream components in the fuel system. Table 2 lists the potential combinations of 
fuel injectors available at each injector bank in the facility along with the estimated fuel dynamic 
pressure and dynamic pressure ratio for each injector. There are a total of four such banks 
available in the isolator hardware of the facility located at the upstream and downstream ends of 
the isolator, on the cavity-side and opposite-side walls (see Fig. 1). 

Figure 2 shows results from a RANS CFD study of several potential strategies based on fuel 
injection at the upstream end of the isolator. In all cases, the total amount of fuel being injected 
produces a global equivalence ratio of 0.5 and the fuel mass flow through each injector is 
identical. Thus, with two rowed injection (90/90, 45/90, or 30/45), the mass flow and dynamic 
pressure of fuel injected through any one injector are half of what they would be in the case of 
single row injection. The numbers in the left hand column refers to the angle of fuel injection 
with respect to the incoming air flow. It can be seen that the use of normal injection, either 
through two closely spaced rows or a single row, produces the most uniform distribution of fuel 
in the cavity with a local equivalence ratio in the middle of the cavity of about 1. Based on these 
results, a decision was made to focus on the normal fuel injectors. Further, two rowed injection 
was chosen as the primary injection scheme over single rowed injection because it requires lower 
fuel pressures to deliver the same amount of fuel while producing a nearly identical mixing 
profile in the cavity. 

Figure 3 shows results from a RANS CFD study that looked at the effect of an isolator shock 
train on free stream fuel/air mixing. Here, the global equivalence ratio was set at 0.35, which is 
close to the lean flame out limit. The shock train clearly enhances the fuel/air mixing process 
leading to a decreased local equivalence ratio in the cavity. 

From these CFD studies it was determined that achieving a uniformly premixed flow at the 
cavity entrance plane would be possible, most likely by using a combination of distributed fuel 
injection at the upstream end of the isolator from both the cavity-side and opposite-side walls of 
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the duct along with a sufficiently long precombustion shock train. This approach precludes 
generating a fully premixed flow for scram combustion experiments, but poses significantly less 
risk than introducing fuel into the plenum upstream of the facility nozzle. 

 
 

Table 2. Potential ethylene fuel injection configurations and dynamic pressures for the 
UVaSCF. 

  Number of Each Jet 
Global φ Rows Jets Q (kPa) Q ratio 

0.2 1 3 270.65 2.54 

 2 6 135.33 1.27 

 3 9 90.22 0.85 

 4 12 67.66 0.64 
0.4 1 3 541.30 5.09 

 2 6 270.65 2.54 

 3 9 180.43 1.70 

 4 12 135.33 1.27 
0.6 1 3   

 2 6 405.98 3.82 

 3 9 270.65 2.54 

 4 12 202.99 1.91 
0.8 1 3   

 2 6 541.30 5.09 

 3 9 360.87 3.39 

 4 12 270.65 2.54 
1 1 3   
 2 6 676.63 6.36 

 3 9 451.08 4.24 

 4 12 338.31 3.18 

Notes: Table assumes injection upstream of the precombustion shock train and all jets are 
identical with a discharge coefficient per row of 0.40. (Measured discharge coefficients on 
fabricated hardware are 0.64 to 0.66 per row.) 
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Figure 2. RANS CFD investigation of several potential mixing strategies showing local 
equivalence ratio at crossplanes in the isolator and cavity as well as axial distribution in the 
immediate vicinity of the injector. 

 

 
 C2H4 mass fraction in the isolator and cavity (cavity entrance)(cavity middle) 

Figure 3. RANS CFD investigation of the effect of an isolator shock train on mixing, 
global equivalence ratio = 0.35. 

Local equivalence 
ratio 
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b. Lessons learned 
 
There were three main lessons learned in the development of the fuel injection scheme: 
 
1. Fuel injection through two rows of injectors is as effective as a single row operating at a 

higher dynamic pressure. 
 

Figure 4 shows two PLIF images of the NO distribution at the cavity leading edge due to 
normal fuel injection through the upstream injector banks with no shock train in the isolator. In 
both cases, the cavity-side injectors (top edge of image) are operating with a simulated 
equivalence ratio of 0.17 while the opposite-side injectors (lower edge) are at 0.11 for the two 
rowed injection (image a) and 0.17 for single row injection (image b). The distribution of NO in 
the top half of the images (on the cavity side wall) is nearly identical, confirming that two rows 
of injectors is as effective as a single row operating at twice the pressure. The opposite-side wall 
shows a more intense NO PLIF signal with single row injection because of the increased 
equivalence ratio from those injectors. 
 

 
Figure 4. Averaged NO PLIF images of fuel simulant distribution at the cavity leading edge 
for a) two rowed injection from both walls with equivalence ratio = 0.17 from the cavity-
side wall and 0.11 from the opposite-side wall and b) single row injection from both walls 
with equivalence ratio = 0.17 from the cavity-side wall and 0.17 from the opposite-side wall. 
Cavity side is at the top of the image. 

 
2. Global equivalence ratios on the order of 0.4 or higher (> 0.2 from each side) would be 

required to produce a uniform premix without the benefit of a precombustion shock train. 
 

Also of note in Fig. 4 is the band of lean fueling in the middle of the duct. This indicates that 
injection at these fuel flow rates is not sufficient to produce a uniform fuel/air mixture in the 
cavity without the benefit of an isolator shock train. 
 
3.  A longer precombustion shock train produces better fuel/air mixing. 
 

Figure 5 shows a sequence of NO PLIF images illustrating the effect of isolator shock train 
length on fuel/air mixing. In this study, fuel was injected through two rows of injectors on both 
the cavity-side and opposite-side walls at equivalence ratios of 0.25 and 0.14, respectively. As 
the length of the shock train is increased from 0 to nearly the full length of the isolator, the 

a) b) 
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distribution of fuel at the cavity leading edge becomes increasingly uniform, confirming the CFD 
result shown in Fig. 3. 

 
Figure 5. Averaged NO PLIF images of fuel simulant distribution at the cavity leading edge 
for two rows of fuel injection from both walls with global equivalence ratio = 0.39 and 
shock train leading edge at a) x/h = 0, b) x/h = -15, c) x/h = -30, and d) x/h = -45. Cavity side 
is at the top of the image. Image artifacts from window damage can be disregarded. 
 
2. Adopted Injection Configuration 
 
As indicated in Fig. 1b, the adopted ethylene fuel injection is through two banks of six sonic, 
flush-wall injectors located at the upstream end of the isolator, 1.5 inches downstream of the 
facility nozzle exit on opposite walls of the duct. Injection at this location allows the fuel to be 
processed by the isolator shock train ideally resulting in a fully premixed flow at the cavity 
leading edge. Each bank comprises two rows of three equally spaced 0.049 inch diameter 
injectors oriented normal to the freestream flow. The total fuel pressure and temperature for each 
set of injectors is monitored and controlled to provide the desired fuel split and flow rate. 
 Table 3 lists the primary fueling conditions used in these experiments. As will be discussed 
later, the first fuel condition represents the maximum fuel rate that can be accommodated by the 
flowpath without unstarting the isolator. The second fuel condition is close to the lean flameout 
point of the flowpath with a fully premixed combustor inflow. There is a difference in the fuel 
injection pressures between the cavity-side bank and the opposite-side bank, which is due to a 
small difference in the discharge coefficients of the two injector banks (0.60 for the cavity-side 
bank and 0.56 for the opposite-side bank). Control valves in the fuel system allow the fuel to be 
evenly split between the two injector banks as shown in Table 3 or adjusted such that a larger 
proportion of fuel is delivered through the cavity-side injector bank. Also shown in Fig. 1b, a 
secondary fuel injection location is through a row of five equally spaced 0.021 inch diameter 
sonic, flush-wall injectors located 0.97 inches upstream of the cavity leading edge. The 
secondary injectors are too close to the cavity for the fuel injected through them to fully mix with 

a) b) 

c) d) 
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the freestream and instead provide a means for more directly fueling the cavity. This allows the 
flowpath to operate in the scram mode with either a short or nonexistent precombustion shock 
train. 
  

Table 3. Test conditions for ethylene fuel. 
 

Parameter 
Fuel Condition 1 

Cavity-Side    
Opposite-Side 

Fuel Condition 2 
Cavity-Side    

Opposite-Side 

Uncertain
ty 

Equivalence ratio 0.20 0.20 0.17 0.17 ± 5% 
Total pressure 
(kPa) 260 270 207 223 ± 3% 

Total temperature 
(K) 288 288 288 288 ± 3% 

Mach number* 1.0 1.0 1.0 1.0 ± 0.5% 
* Property at nozzle exit determined using nozzle area ratios and assuming isentropic flow 

(γ=1.36 for air, 1.24 for C2H4). 
 

The static fuel temperatures listed in Table 3 are below the autoignition temperature of 
ethylene. However, following ignition by an outside source, the flame is self-sustaining. Ignition 
is achieved by using the air throttle to pressurize the cavity while injecting hydrogen through a 
port in the base of the cavity. Under these conditions the hydrogen autoignites and ethylene fuel 
can then be introduced through the upstream injectors. Once a sufficient flow rate of ethylene is 
established (typically a global fuel equivalence ratio greater than 0.33), the hydrogen can be 
turned off. The air throttle may be maintained or not depending on the nature of the particular 
experiment being performed. 
 NO PLIF measurements were used to evaluate the level of fuel premixing at the leading edge 
of the cavity. A mixture of 10% (molar) NO in nitrogen was used as a surrogate for the ethylene 
fuel. Note that combustion by-products, such as OH or C*, are not present upstream of the 
combustion region. Importantly, the molar weight of this NO/N2 gas mixture is nearly identical 
to that of ethylene, which allows the fuel system operation, including injection pressures, to be 
the same for equivalent mass flow rates of NO and ethylene. With no combustion process 
present, the air throttle was used to generate a combustor back pressure equivalent to that due to 
combustion at a given fuel equivalence ratio and thus drive the isolator shock train. A full 
description of the NO PLIF measurements is given elsewhere [15]. 
 Uniform fuel premixing for the case with both banks of isolator injectors operating and a 
precombustion shock train in the isolator has been confirmed with NO PLIF as shown in Fig. 6. 
Figure 6a is a single-shot instantaneous image and Fig. 6b shows the average distribution. These 
images present a qualitative representation of the fuel distribution at the cavity leading edge and, 
within the uncertainty of the NO PLIF measurement, represent a uniform fuel-air mix. The left to 
right variation presumably due to attenuation of the laser sheet as laser light is absorbed by the 
NO molecules [15]. 
 For comparison, Fig. 7 shows the fuel distribution from a single isolator fuel injector located 
on the centerline of the cavity-side wall with no shock train to promote mixing. In this case, the 
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dark region along the lateral edges and on the wall opposite the active fuel injector shows that 
NO has not propagated to fill the duct. 
 

 
 

Figure 6: Instantaneous (a) and averaged (b) NO PLIF images of fuel simulant distribution 
for two rows of fuel injection from both walls with global equivalence ratio = 0.42 and 
shock train leading edge at x/h = -45 (adapted from [15]). 

 

 
 

Figure 7: Instantaneous (a) and averaged (b) NO PLIF images of fuel simulant 
distributions for a single fuel injector with equivalence ratio = 0.09 and no shock train 
(adapted from [15]). 
  

a) b) 

a) b) 
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VI. Results 
Figures 8 and 9 show the axial distribution of static pressure on the cavity-side wall for global 

fuel equivalence ratios, φ, of approximately 0.40 and 0.34, respectively. The measured pressures 
have been normalized by the static pressure at the exit of the facility nozzle, Pref, and the axial 
locations are normalized by the cavity depth (0.356 in.). The cavity leading edge is at x/h = 0. 
Results for the case with all fuel being delivered through the cavity-side bank of injectors are 
shown along with two different fuel split ratios. The solid square symbols represent an equal fuel 
split between the cavity-side injector bank and the opposite-side injector bank. This fueling 
scenario is equivalent to that shown in Fig. 6 above and represents a uniform fuel-air premix. 
Also shown in the figures are the pressure distributions for the NO PLIF measurements, 
represented by a dashed line. In these cases the air throttle, rather than a combustion process, was 
used to generate the back pressure that drives the shock train in the isolator. It can be seen that 
the pressure rise in the isolator is the same whether it is due to a combustion process or the air 
throttle giving confidence in the NO PLIF mixing study. The fuel off case is also shown for 
reference. 

 

 
Figure 8. Normalized wall pressures at fuel condition 1. In the legend, the numbers in 
parentheses indicate the cavity-side and opposite-side fuel equivalence ratio, respectively. 
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Figure 9. Normalized wall pressures at fuel condition 2. In the legend, the numbers in 
parentheses indicate the cavity-side and opposite-side fuel equivalence ratio, respectively. 

 
For both global fuel equivalence ratios, delivering all of the fuel through the cavity-side 

injectors alone will result in some level of fuel stratification across the duct with a higher density 
of fuel on the cavity-side wall. All fuel conditions shown in Figs. 8 and 9 result in a stable dual-
mode scramjet flame anchored on the cavity that can be maintained for one to two hours in this 
facility with depletion of the fuel tanks being the limiting factor. 

It can be seen that while the pressures in the isolator and onset of the precombustion shock 
train are nearly the same for all three fuel splits, pressures are noticeably different in the 
combustor section between the cavity and the thermal throat (from x/h = 5 to 35). Here, the flow 
is subsonic in a one-dimensional sense and heat released in the flame drives the pressure down. It 
is evident that the stratified cases, with all the fuel delivered through the cavity-side injector 
bank, results in an initially steeper drop in pressure in the vicinity of the cavity closeout ramp 
(x/h = 5), perhaps due to more robust combustion in the vicinity of the cavity. However, the 
more uniformly mixed cases result in higher combustor pressures overall and presumably would 
generate more thrust. 
 All of the fueled cases shown in Figs. 8 and 9 represent operation of the scramjet flowpath in 
the dual-mode with separated flow and a precombustion shock train in the isolator. Using a one-
dimensional model of the separated flow in the isolator [19], the one-dimensional Mach number 
at the cavity leading edge is estimated to be 0.70 for the φ = 0.40 case and 0.72 for the φ = 0.34 
case. A thermal throat can be seen at the downstream end of the constant area section (x/h = 35), 
which represents the transition back to supersonic flow and indicates that the combustion process 
is isolated from the atmospheric back pressure. Note that at global fuel equivalence ratios above 
0.4, the leading edge of the precombustion shock train is approaching the isolator fuel injection 
location. Care must be taken during these experiments to avoid impingement of the shock train 
directly on the fuel injectors as that results in ignition of the fuel in the isolator leading to a large 

DISTRIBUTION A: Distribution approved for public release.



 
 
 
 

17 

pressure spike in the flowpath and likely damage or breakage of the windows. Thus, to provide 
some margin and avoid damaging tunnel hardware, a practical upper fueling limit for continuous 
testing is a global equivalence ratio of 0.42 with an absolute upper bound of 0.45. 

An important aspect of these experiments was to determine the limits of operability of the 
flowpath. As mentioned above, the upper limit on equivalence ratio has been determined to be 
0.45 to avoid impingement of the shock train on the upstream fuel injectors. In order to 
determine the lower flame holding limits, a number of lean and low temperature flameout tests 
were performed by slowly lowering either the fuel flow rate (lean flameout) or heater 
temperature (low temperature flameout) until the flame was no longer sustained. Figure 10 
shows the results of these tests with each data point representing an observed flameout. Although 
there is some variability in the data, flameout consistently occurs at a global equivalence ratio 
just above 0.3 when the total temperature is 1200 K. Thus, the maximum range of equivalence 
ratio is about 0.14 or a little over 30%. At lower temperatures between 1000 K and 1100 K, the 
fuel equivalence ratio required to sustain combustion rises to between 0.35 and 0.39 resulting in 
a range of operability of only 0.06 or 15%. Additional tests were performed with the air throttle 
on to provide additional back pressure such that the leading edge of the precombustion shock 
train was maintained at x/h = -45. At a total temperature of 1200 K, the incremental increase in 
static temperature behind the longer shock train sustains combustion down to an equivalence 
ratio between 0.26 and 0.29. This represents approximately 10% less fuel than with the air 
throttle off and gives an operability range in equivalence ratio of 0.16 to 0.19, which is between 
40% and 50%. 

Figures 11 is an instantaneous, high speed chemiluminescence image taken at a global 
equivalence ratio of 0.41 with approximately 2/3 of the fuel from the cavity-side injector bank 
and 1/3 from the opposite-side bank. Figure 12 is the same image taken at a global equivalence 
ratio of 0.31. The chemiluminescence is primarily due to emission from excited CH in the active 
reaction zone. Both images were taken with a 0.6 ms exposure. At both equivalence ratios, the 
flame is anchored on the cavity with combustion initiating along the shear layer between the 
cavity and the freestream air, impinges on the sloped cavity closeout surface, and propagates 
downstream expanding away from the cavity-side wall. There is little to no chemiluminescence 
near the cavity leading edge in either case. As would be expected, the higher fuel rate results in a 
somewhat more robust and brighter flame. The field of view is limited to 6.6 cavity depths (2.35 
inches) downstream of the cavity leading edge and at that point the flame propagates a little over 
halfway across the duct in Fig. 11 and little less than halfway in Fig. 12. 
 Figure 13 illustrates scramjet mode transition from a purely scram mode of operation with no 
pressure rise upstream of the cavity to the dual-mode discussed above. In this test, the fuel was 
delivered through both the primary fuel injectors in the isolator as well as the secondary injectors 
immediately upstream of the cavity. Only the cavity-side injectors in the isolator were used. The 
lower equivalence ratios (seen in blue) represent the purely scram mode of operation with no 
pressure rise upstream of the cavity and a one-dimensional Mach number of 1.49 at the leading 
edge of the cavity. Using a combination of the primary and secondary injectors in this fashion 
ensures some proportion of fuel-air premixing. However, the slope of the pressure curves in the 
combustor are more similar to that of the stratified fuel cases than the fully premixed cases in 
Figs. 8 and 9. Nevertheless, the data show that the facility and flowpath are capable of 
supporting scramjet mode transition with ethylene fueling. 
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Figure 10. Facility Operability Limits for Premixed Ethylene Combustion (lean and low 

temperature flameout points). 
 
 

 
 

Figure 11. Chemiluminescence image (0.6 ms capture) at global φ = 0.41 (cavity-side = 0.27, 
opposite-side = 0.15). 
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Figure 12. Chemiluminescence image (0.6 ms capture) at global φ = 0.31 (cavity-side = 0.20, 
opposite-side = 0.11). 

 
 

 
Figure 13. Normalized wall pressures illustrating mode transition with primary and 
secondary fuel injection. In the legend, the numbers in parentheses indicate the primary 
(cavity-side) and secondary fuel equivalence ratio, respectively. 
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VII. Current Facility Capabilities 
  

 Table 4 summarizes the current capabilities of the UVASCF with respect to stable, premixed 
ethylene combustion. Fully uniform premixing is achieved by utilizing the precombustion shock 
train in the isolator and is therefore only currently possible in a ram combustion mode with a 
one-dimensional Mach number of approximately 0.7 at the leading edge of the cavity. Partially 
premixed combustion refers to the use of two sets of fuel injectors with one set located at the 
isolator entrance and another set immediately upstream of the cavity. This allows a portion of 
fuel to penetrate the freestream air flow while keeping the local equivalence ratio in the cavity 
high enough to sustain combustion. The injectors immediately upstream of the cavity are referred 
to as the secondary or cavity pilot injectors in this document. Sustained scram combustion with 
one-dimensional Mach numbers up to 1.8 at the cavity leading edge has been achieved in this 
facility using varying ratios of upstream to cavity pilot injection. The minimum cavity pilot 
equivalence ratio for sustained scram combustion is 0.02 with the majority of the fuel 
(equivalence ratio of 0.15) injected through the cavity-side injectors at the isolator entrance). 
 

Table 4. Current UVASCF capabilities for high-speed, premixed ethylene combustion. 

Level of Premixing Combustor Mach 
Number (1-D) 

Global Equivalence 
Ratio 

Cavity Static 
Pressure (kPaa) 

Fully premixed 0.69 – 0.72 0.31 – 0.45 134.0 – 154.4 
Partially premixed 0.65 – 1.79 0.12 – 0.48 65.5 – 157.7 

Note: M2 facility nozzle with simulated M5 flight enthalpy (T0 = 1200 K, P0 = 300 kPaa), and 
facility freestream air flow ≈ 185 g/s. 
 
a. Fully premixed combustion in the ram mode 

As mentioned above, stable ethylene combustion with a fully premixed inflow has been 
achieved in the ram mode by distributed fuel injection through the primary fuel injectors at the 
upstream end of the isolator. These injectors comprise two banks of six sonic, flush-wall 
injectors located 1.5 inches downstream of the facility nozzle exit on opposite walls of the duct. 
Injection at this location allows the fuel to be processed by the isolator shock train. NO PLIF 
imaging confirmed a nearly uniform fuel-air premix across the duct at the cavity leading edge for 
global equivalence ratios of 0.35 and above where the shock train leading edge is located 
between  x/h = -30 and -45 (e.g. see Fig. 6). Lower global equivalence ratios, with a 
commensurate shorter precombustion shock train, leave the middle of the duct somewhat fuel 
lean compared to the perimeter (see Figs. 14 and 15). 

Unfortunately, the range of global fuel equivalence ratios over which combustion can be 
sustained in the fully premixed ram mode is somewhat limited. Global equivalence ratios above 
0.45 result in direct impingement of the isolator shock train leading edge on the upstream fuel 
injector location. This inevitably ignites the fuel in the isolator leading to a large pressure spike 
in the flowpath and likely damage or breakage of the windows. Thus, a practical upper limit in 
equivalence ratio for continuous testing of 0.42 has been established in order to provide some 
operating margin and avoid damaging hardware. 
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Figure 14. Instantaneous (a) and averaged (b) NO PLIF images of fuel simulant 
distribution at the cavity leading edge for two rows of fuel injection from both walls with 
global equivalence ratio = 0.35 and shock train leading edge at x/h = -30. 

	
  

 
Figure 15. Instantaneous (a) and averaged (b) NO PLIF images of fuel simulant distribution 
at the cavity leading edge for two rows of fuel injection from both walls with global 
equivalence ratio = 0.29 and shock train leading edge at x/h = -15. Note: Cavity side is at the 
top and laser sheet was delivered from left to right in all images. 
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Lower flame holding limits in this mode are somewhat less precise. Figure 10 shows 
measured lean and low temperature flameout points. With a nominal total temperature of 1200 
K, stable combustion is maintained to equivalence ratios of about 0.31. At lower temperatures, 
the equivalence ratio required to sustain combustion rises to approximately 0.39. The minimum 
temperature at which stable ethylene combustion has been achieved in this facility is 1040 K. 
 
b. Premixed combustion in the scram mode 

Stable ethylene combustion in the scram mode, with supersonic flow at the entrance to the 
combustor, has only been achieved in this facility with a partially premixed inflow. Figure 16 
shows measured pressures in the combustor for a range of equivalence ratios from 0.15 to 0.25. 
This experiment involved a slightly different version of the flowpath with a shorter isolator (10 
in. vs. 16 in.) than was used in the majority of the premixed combustion testing. Also, in this 
experiment the fuel was delivered through a combination of the upstream injectors on the cavity-
side wall and a set of five secondary injectors on the diverging wall, 0.97 inches upstream of the 
cavity leading edge. This serves to place more of the fuel on the cavity-side wall of the 
combustor and prevents the cavity itself from becoming too fuel lean for flame holding (see Fig. 
17 for fuel distribution). 

At global equivalence ratios below about 0.2, there is no pressure rise upstream of the 
cavity leading edge indicating a scram mode of combustion with no precombustion shock train. 
As the equivalence ratio is increased above 0.2, an oblique shock train forms upstream of the 
cavity. Significantly, it was not possible to sustain combustion in the scram mode without at least 
a small amount of fuel being injected at the secondary, cavity-pilot injector location. 
Furthermore, at a global equivalence ratio of 0.27, enhanced mixing of the upstream fuel plume 
due to a longer precombustion shock train caused the flame to go out, presumably because the 
local equivalence ratio in the cavity dropped below a critical threshold. 
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Figure 16. Normalized wall pressures for Configuration E with primary and secondary fuel 
injection. In the legend, the numbers in parentheses indicate the primary (cavity-side) and 
secondary (cavity pilot) fuel equivalence ratios, respectively. 

 
 

   
Figure 17. Instantaneous (a) and averaged (b) NO PLIF images of fuel simulant 
distribution at the cavity leading edge for global equivalence ratio = 0.17 (0.15 through the 
primary injectors on the cavity-side wall and 0.01 through the secondary injectors) and no 
shock train forward of the cavity. 

 
Figure 18 shows the Mach number at the cavity leading edge for a range of global fuel 

equivalence ratios as calculated using the 1-D separated flow model for the isolator described in 
Heiser and Pratt (Ref. 19). Several curves are shown. The green curve corresponds to the data 
shown in Fig. 16 for Configuration E. At low equivalence ratios, the Mach number is very close 
to the non-combusting value of 1.8. This is slightly less than the facility exit Mach number of 

a) b) 
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2.03 due to boundary layer growth in the upstream portion of the isolator. With the formation of 
an isolator shock train, the combustor entrance Mach number approaches one at the highest 
equivalence ratio of 0.25. It can also be seen in Fig. 16 that for this fuel rate a thermal throat is 
just beginning to form downstream (at x/h = 35) as the combustor is transitioning to the ram 
mode of combustion. 

The blue curve shows the 1-D Mach number at the cavity leading edge for the mode transition 
experiment performed in the Modified Configuration E with the 16 inch isolator (as for the data 
in Fig. 13). Here the fuel was split evenly between the primary injectors on the cavity-side wall 
of the isolator and the secondary injectors just upstream of the cavity in order to prevent the 
cavity from becoming too lean as the shock train moves forward in the isolator. The lower Mach 
number in the fuel off case is due to increased boundary layer growth in the longer isolator. 
Transition to ram combustion occurs at a global equivalence ratio between 0.21 and 0.24. As 
before, this transition is associated with the formation of thermal throat downstream at x/h = 35 
(see Fig. 13). Finally, the red curve shows the combustor entrance Mach number for the fully 
premixed combustion cases with the shock train well forward in the isolator (see data in Figs. 8 
and 9). 

 

 
Figure 18. 1-D Combustor Entrance Mach Number for Several Fueling Conditions 
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c. Summary of current capabilities 

Combustion in the ram mode with a fully premixed inflow is stable in this facility for global 
equivalence ratios between approximately 0.31 and 0.45 and a total temperature of 1200 K. The 
lean flame out limit can be extended to between 0.26 and 0.29 by maintaining the leading edge 
of the precombustion shock train at x/h = -45, which incrementally increases the static 
temperature at the cavity. This is done by employing a downstream air throttle to provide 
additional back pressure to the combustor as the equivalence ratio is reduced. 

Combustion in the scram mode with a fully premixed inflow has not been achieved in this 
facility, although scram combustion is possible by utilizing a secondary set of cavity-pilot fuel 
injectors. The challenge to be overcome is maintaining sufficient fuel in the cavity for flame 
holding while keeping the global equivalence ratio low enough for scram mode combustion. As 
can be seen in Figs. 13 and 16, a pressure rise upstream of the cavity is observed at global 
equivalence ratios as low as 0.17 and, from Fig. 18, the flow at the cavity leading edge becomes 
subsonic in a one-dimensional sense at a global equivalence ratio of about 0.24. However, the 
lean flame out limit for the fully premixed cases were consistently above 0.3 and a uniform 
fuel/air premix is not possible with current facility hardware without the benefit of a 
precombustion shock train for global equivalence ratios less than approximately 0.4. 

A possible alternative that has been suggested is to use an existing Mach 3.2 facility nozzle 
instead of the current M2 nozzle. While this would allow operation of the facility at higher 
equivalence ratios, it is not clear that stable, premixed scram combustion could be achieved 
without modifications to the flowpath itself. Previous testing with the M3.2 nozzle and hydrogen 
fuel did not produce a scram combustion mode without a precombustion shock train and the 
range of global equivalence ratios for which scram combustion with an oblique shock train was 
possible was small (~0.37 – 0.41). 
 

VIII. Conclusion 
 This report documents the development of a dual-mode scramjet flowpath and fuel injection 
scheme that is capable of sustaining a high speed, uniformly premixed, turbulent flame with a 
combustor inlet Mach number of about 0.7. The work relies on a precombustion shock train in 
the isolator to enhance the fuel-air mixing. The resulting fuel-air premix uniformity at the 
leading edge of the cavity flame holder has been verified with NO PLIF. Furthermore, the 
flowpath is also capable of supporting a purely scram mode of combustion with no 
precombustion shock train as well as a transitional scram mode with a short shock train and 
supersonic combustor inflow. 
 Within the operability limits of the flowpath documented in this report, the scramjet flame is 
stably anchored on the cavity and is highly repeatable. This presents a suitable test environment 
for time-intensive diagnostics such as fine-grid CARS as well as PLIF and PIV, which can be 
performed in sufficient quantity to yield statistically meaningful quantitative results. 
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