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Accomplishments/New Findings: 

- A computational framework was established for the optimal design of morphing 
structures comprised of active smart materials through locally controllable 
actuation and activation.  The framework combined finite element analysis to 
predict the morphing process for a given set of activation and actuation 
parameters with nonlinear optimization to identify the optimal set of those 
parameters.  For context the framework was developed for the specific application 
of morphing structures comprised of thermally responsive polymers, and therefore 
the activation was applied thermal stimulus.  The framework was capable of 
considering linear transient heat transfer coupled with quasi-static solid 
mechanics.  Specific targets of the design process that could be considered 
including the desired motion or kinematic of the structure as well as the energy 
and time required to complete the morphing process. 

- The initial incarnation of the computational optimal design framework for smart 
material morphing structures utilized non-gradient-based optimization to ensure 
that the design solution was near to the global optimum regardless of 
computational expense.  This framework was numerically evaluated through 
simulated case studies.  The framework was shown to be capable of identifying 
design parameters, including activation and actuation locations and sequencing, to 
produce substantial savings in terms of total energy cost and more accurately 
achieve a desired shape change in comparison to standard intuitive designs. 

- The computational optimal design framework for smart material morphing 
structures was extended to substantially improve the computational efficiency of 
the overall solution procedure by replacing the non-gradient-based optimization 
with gradient-based optimization.  Furthermore, to even further improve the 
computational efficiency an adjoint approach was formulated and implemented to 
calculate the gradient of the design objectives with respect to the morphing 
system activation and actuation parameters that only required the equivalent of 
two finite element analyses per iteration.  Again, the design procedure with 
gradient-based optimization was shown to be capable of identifying design 
parameters, including activation and actuation locations and sequencing, to 
produce substantial savings in terms of total energy cost and more accurately 
achieve a desired shape change in comparison to standard intuitive designs.  
Furthermore, although the design solutions were less optimal than those that could 
be obtained with non-gradient-based optimization, the computational cost of the 
gradient-based approach was multiple orders of magnitude less than that of the 
gradient-based optimization. 

- A computational approach was established to create physics-based reduced-order 
models (ROM) for representing the behavior of a boundary value problem (e.g., 
solid mechanics, heat transfer, etc.) in a generally applicable way, with minimal 
computational cost, but with accuracy commensurate with traditional finite 
element analysis methods.  The approach utilized the reduced-basis ROM 
technique and was established in the context of inverse problem applications, such 
that the accuracy of the ROM is maximized over a range of system parameters 
that will ultimately be solved for through an inverse problem solution strategy.  
The ROM creation approach was tested with example nondestructive evaluation 



problems and was shown to provide a sufficiently accurate representation of the 
system physics to be utilized in an inverse problem solution technique, and 
required only a fraction of the cost of a standard finite element analysis method. 

- An entirely new variation on the use of proper-orthogonal decomposition (POD) 
bases for inverse material characterization problems was hypothesized, developed, 
and tested.  This new variation creates a POD basis from a previously generated 
or observed set of system response fields for the system to be characterized as is 
typical.  However, rather than use the basis to recreate a reduced-order model, the 
basis is used with the Gappy POD machine learning technique to create a tool that 
predicts a full-field response from partial field measurements (as would be 
available from nondestructive testing techniques).  Then, the full-field response is 
utilized with a direct inversion strategy to predict the inverse characterization 
solution.  The approach was shown through simulated nondestructive evaluation 
problems to require a fraction of the cost of typical iterative inverse problem 
solution techniques, to maintain general applicable, and to still provide accurate 
inverse solution estimates. 

- The use of multi-objective optimization, rather than the typically utilized single-
objective format, for non-gradient-based optimization-based inverse problem 
solution strategies was investigated and evaluated.  Through simulated examples, 
the multi-objective approach was shown to maintain a substantially higher 
diversity in the potential solution set throughout the non-gradient-based 
optimization in comparison to single-objective approaches.  This increase in 
diversity was shown to substantially improve the efficiency of the optimization-
based solution strategy as well as the consistency and accuracy of the final 
solution estimate.  In addition, a strategy was developed to utilize this solution 
diversity throughout the inverse problem solution procedure to adaptive modify 
the parameterization of the unknown field of the inverse problem, thereby further 
increasing the accuracy and efficiency of the inverse problem solution estimation 
procedure.   



SUMMARY

A strategy to obtain maximally e�cient and accurate morphing structures composed of ac-
tive materials such as shape memory polymers (SMP) through synchronization of adaptable and
localized activation and actuation was established and numerically tested. A computational in-
verse mechanics framework was created that combines a computational representation of the SMP
thermo-mechanical behavior with a nonlinear optimization algorithm to determine location, mag-
nitude and sequencing of the activation and actuation to obtain a desired shape change subject to
design objectives such and prevention of damage. The concept of localized activation along with
the optimal design strategy were shown to be able to produce far more energy e�cient morph-
ing structures and more accurately reach the desired shape change in comparison to traditional
methods that require complete structural activation prior to actuation.

The computational strategy for estimation of the optimal parameters relating to the distribution
and sequencing of activation and actuation for a morphing smart material structure or structural
component to e�ciently and e↵ectively achieve a desired morphing function was extended to sub-
stantially increase computational e�ciency. In particular, a formulation of the adjoint method was
developed to be utilized to estimate the gradient of the objective function(s) with respect to the
activation and actuation parameters with minimal computational expense within a gradient-based
optimization strategy, which then provides an optimization process that is substantially compu-
tationally e�cient overall. Overall, the computational optimal design approach with the adjoint
method was shown to provide the capability to e�ciently identify activation and actuation pa-
rameters to achieve desired morphing capabilities. Furthermore, the computational approach was
shown to be capable of determining energy-e�cient design solutions for a diverse set of target shape
changes with fixed instrumentation, providing the potential for substantial functionality beyond
what could be expected through traditional empirical design strategies.

A generally applicable algorithm for adaptive generation of data ensembles to e�ciently cre-
ate accurate computational mechanics reduced-order models (ROM) for use in computational ap-
proaches to approximate inverse problem solutions was developed and numerically evaluated. The
ROM approach considered was based on identifying the optimal low-dimensional basis to be used
within a Galerkin weak-form finite element method to provide substantially reduced computational
cost while maintaining accuracy relative to that of a (traditional) full-order finite element model.
The core hypothesis of the algorithm presented is that maximizing the diversity, as defined in a
measurable sense, of the full-order models used to create the ROM will maximize the accuracy of
the ROM over a range of input system parameters. The adaptive snapshot generation algorithm
was shown to produce ROMs that can accurately estimate response fields over a wide range of
input parameters, and which are substantially more accurate than ROMs created from randomly
generated snapshot sets. Moreover, the accurate generalization of the adaptively generated ROMs
was shown to be su�cient to consistently produce accurate inverse characterization solution esti-
mates with a fraction of the computational expense that would be required to do so with full-order
analyses.

A new and unique approach for computationally e�cient inverse material characterization from
partial-field response measurements that combines the Gappy proper orthogonal decomposition
(POD) machine learning technique with a physics-based direct inversion strategy was created
and evaluated. Gappy POD is used to derive a data reconstruction tool from a set of potential



system response fields that are generated from available a priori information regarding the potential
distribution of the unknown material properties. Then, the Gappy POD technique is applied
to reconstruct the full spatial distribution of the system response from whatever portion of the
response field has been measured with the chosen system testing method. Lastly, a direct inversion
strategy is presented that is derived from the equations governing the system response (i.e., physics
of the system), which utilizes the full-field response reconstructed by Gappy POD to produce an
estimate of the spatial distribution of the unknown material properties. The inversion procedure
was shown to have the capability to e�ciently provide accurate estimates to material property
distributions from partial-field response measurements. The direct inversion with Gappy POD
response estimation was also shown to be substantially tolerant to noise in comparison to the
direct inversion given measured full-field response.

A multi-objective optimization-based computational approach to nondestructive evaluation of
material properties was numerically evaluated. The multi-objective approach provides a substan-
tial improvement in the capabilities to traverse the optimization search space to minimize the
measurement error and produce accurate damage estimates. In addition, a novel self-evolving pa-
rameterization approach for nondestructive evaluation was developed and numerically evaluated.
The adaptive approach utilizes the substantial solution diversity that is uniquely provided by multi-
objective optimization to iteratively build up the parameterization and accurately characterize all
property changes with the minimum dimensional parameterization. The nondestructive evalua-
tion approach with self-evolving parameterization was shown to provide an accurate and e�cient
process for the solution of inverse characterization problems.



Optimal Design of Locally Activated Smart Material Morphing Structures:
Figure 1 illustrates the general form of the morphing structure design (and analogously control)

problems considered. In this concept, the morphing process begins with some portion of the domain
heated with a controllable transient temperature distribution and/or surface heat flux (TA(~x, t)
or qA(~x, t)). Once a su�cient portion of the structure is softened through activation, mechanical
actuation begins through controlled transient displacement and/or force (~uA(~x, t) or ~⌧A(~x, t)) to
deform the structure into a desired shape. Therefore, the design/control problem to identify the
activation and actuation distributions to achieve the desired shape change can be cast in a general
way in the form of the following constrained optimization problem:

Minimize :

8
>>>><

>>>>:

k starget � sapprox(TA, qA, ~uA,~⌧A) k⌦,t
F

JT (TA, qA, ~uA,~⌧A)
JW (TA, qA, ~uA,~⌧A)
tF (TA, qA, ~uA,~⌧A)
w(TA, qA, ~uA,~⌧A)

(1)

Subject to :

⇢
�̃(�(~x, t;TA, qA, ~uA,~⌧A)) < �damage, 8~x 2 ⌦, t 2 [0, tF ]
T (~x, t;TA, qA, ~uA,~⌧A) < T damage, 8~x 2 ⌦, t 2 [0, tF ]

(2)

where ~x is the spatial position vector, t is the time, ⌦ is the spatial domain of the structure, tF
is the total time of the morphing process, k · k⌦,t

F

is the metric norm with respect to the spatial
domain and time, starget is the desired shape change, sapprox is the approximate expected shape
change given the design parameters predicted by a numerical representation of the structure, JT
and JW are the total thermal energy and mechanical work, respectively, predicted by the numerical
representation to perform the morph, w represents additional design objectives that may be desired,
� and T are the approximate expected internal stress tensor and internal temperature, respectively,
predicted by the numerical representation throughout the structure during the morphing process,
�̃(·) is a suitable scalar stress transform (e.g., von Mises criterion), and �damage and T damage are the
stress and temperature limits, respectively, to avoid damaging the material. A framework was built
to solve the constrained optimization problem (Eqns. (1) - (2)) through a computational inverse
problem solution approach that combines a numerical representation of the morphing system (i.e.,
forward problem) and a nonlinear optimization strategy to identify the parameters that minimize
the desired objectives while satisfying the required constraints.

Figure 1: Schematic of the morphing structure design problem in which the applied activation (TA

or qA) and actuation (~uA or ~⌧A) are to be determined to achieve a desired shape change.



Two optimization approaches were investigated for the solution of this (now PDE-constrained)
optimization problem. The first portion of the investigation (i.e., the proof-of-concept) used a
genetic algorithm, a stochastic global search algorithm that mimics the process of evolution in
nature [1, 2]. Genetic algorithms (GAs) are heuristic optimization approaches that generally rely
on three main operations to evolve a population of potential solutions to the optimization problem
parameters: survival, reproduction, and mutation. GAs have seen substantial use in recent years
due to their ease of implementation (e.g., there is no need for complicated gradient calculations),
global search capabilities, and simplicity of parallelization. However, GAs may not be ideal for
many applications in computational inverse mechanics due to the large number of function evalu-
ations (i.e., numerical simulations) that are typically required to converge to an optimal solution.
To create a substantially more realistically applicable framework, the second portion of the work
utilized gradient-based optimization, particularly relying on the adjoint approach to expedite gra-
dient calculations. A quasi-Newton gradient-based algorithm, the BFGS interior point algorithm
[3, 4, 5], was chosen for this purpose.

To present the adjoint formulation developed and implemented, consider the following specific
example form of the optimal design/control objective functional:

f(~p) = J(~p) + C · S(~p) (3)

where ~p is the vector of unknown design parameters to be determined through the optimization
(i.e., activation and actuation parameters) and C is the scalar weighting constant (note that the
specific value of the weighting constant allows emphasis of the optimization e↵ort to be placed
on a specific objective, energy or shape, depending on the relative importance for a particular
application). The total energy of the morphing process (J = JT + JW ) can be defined with:

JT =

Z

t

Z

⌦

⇢c[T (~x, t)� T0]�(t� tF )d~xdt (4)

and

JW =

Z

t

Z

�

�(~x, t) · ~n(~x) · ~̇u(~x, t)d~xdt, (5)

where � is the Dirac delta function, and the morphing error could be defined as:

S =

Z

t

Z

⌦

MX

m=1

⇥
~u(~x, t)� ~utarget(~x, t)

⇤2
�(~x� ~x⇤

m)�(t� tF )d~xdt, (6)

where ~u and ~utarget are the predicted and desired (i.e., target) displacement fields, respectively,
{~x⇤

m}
M
m=1 is the set of M discrete spatial locations where the target displacement is desired to be

achieved by the morph, and tF is the time at the completion of the morphing process. For simplicity
of illustration, the activation process can be assumed to occurred entirely through a temperature-
dependent Young’s, and the behavior of the structures was assumed to be defined by linear transient
heat transfer and linear elastic quasi-static solid mechanics. Therefore, the morphing process of a



smart material structure could be represented by the following initial boundary value problem:

kO2T (~x, t) = ⇢c@T (~x,t)
@t

, 8 ~x 2 ⌦, t 2 [0, tF ],
O · �(~x, t) = ~0, 8 ~x 2 ⌦, t 2 [0, tF ],
T (~x, 0) = T0, 8 ~x 2 ⌦, t = 0,
T (~x, t) = TA(~x, t), 8 ~x 2 �T , t 2 [0, tF ],
�kOT (~x, t) · ~n(~x) = qA, 8 ~x 2 �q, t 2 [0, tF ],
~u(~x, t) = ~uA(~x, t), 8 ~x 2 �U , t 2 [0, tF ],
�(~x, t) · ~n(~x) = ~⌧A(~x, t), 8 ~x 2 �~⌧ , t 2 [0, tF ],
�(~x, t) = CIV (E(T ), ⌫) : ✏(~x, t), 8 ~x 2 ⌦, t 2 [0, tF ],
✏(~x, t) = 1

2 [O~u(~x, t) + O~u(~x, t)T ], 8 ~x 2 ⌦, t 2 [0, tF ],

(7)

where k is the thermal conductivity, ⇢ is the mass density, c is the specific heat, � is the Cauchy
stress tensor, ✏ is the small strain tensor, CIV is the fourth order elastic sti↵ness tensor, E is the
Young’s modulus, ⌫ is the Poisson’s ratio, ~u is the displacement vector, ⌦ is the spatial domain, �
is the domain boundary, ~n is the unit outward normal vector on the boundary. �T is the portion of
the domain boundary where the temperature is specified, �q is the portion of the domain boundary
where the heat flux is specified, �U is the portion of the domain boundary where the displacement
is specified, and �~⌧ is the portion of the domain boundary where the traction is specified. Following
the procedure for the adjoint method [6], for the above forward problem the adjoint problem for
the Lagrange multipliers (� and ~') can be written as:

k 52 �(~x, t) + ⇢c@�(~x,t)
@t

� 1
E

@E
@T

(5~') : �~u = 0, 8 ~x 2 ⌦, t 2 [0, tF ],
5 · �~'(~x, t) + C

PM
m=1 2[~u� ~utarget]�(~x� ~x⇤

m)�(t� tF ) = ~0, 8 ~x 2 ⌦, t 2 [0, tF ],
�(~x, tF ) = 0, 8 ~x 2 ⌦, t = tF ,
�(~x, t) = 0, 8 ~x 2 �T , t 2 [0, tF ],
�k 5 �(~x, t) · ~n(~x) = 0, 8 ~x 2 �q, t 2 [0, tF ],

~'(~x, t) = �~̇u
A
(~x, t), 8 ~x 2 �U , t 2 [0, tF ],

�~'(~x, t) · ~n(~x)� ~⌧A�(t� tF ) +
@~⌧A

@t
= ~0, 8 ~x 2 �~⌧ , t 2 [0, tF ],

(8)

Then, the gradient of the objective function can be calculated as:

dL
dp

j

=
R
t

R
�
T

(�k 5 � · ~n)@TA

@p
j

d~xdt�
R
t

R
�
q

(�@qA

@p
j

)d~xdt

+
R
t

R
�
~⌧

⇣
~'+ ~̇u

A
⌘

@~⌧A

@p
j

d~xdt+
R
t

R
�
U

(��~' · ~n · @~uA

@p
j

+ �~u · ~n · @~̇u
A

@p
j

)d~xdt,
(9)

where

�~u =
E

2(1 + ⌫)
[5~u+5(~u)T ] +

E

(1 + ⌫)(1� 2⌫)
(5 · ~u)I, (10)

�~' =
E

2(1 + ⌫)
[5~'+5(~')T ] +

E

(1 + ⌫)(1� 2⌫)
(5 · ~')I, (11)

and I is the identity tensor. The algorithm for the calculation of the gradient using the adjoint
method can be summarized as follows:



(1) Solve the forward initial boundary value problem (Eqns. (7)) to obtain the displacement field
~u and the temperature field T .

(2) Solve the adjoint initial boundary value problem (Eqns. (8)) to obtain the Lagrange multipliers
� and ~'.

(3) Substitute ~u, T , � and ~' into Eqn. (9) to compute the gradient of the objective function.

For this work, the forward initial boundary value problem and the adjoint problem were solved
using the traditional Galerkin finite element method.

To test the inherent benefits and challenges of the developed computational approach, numerical
investigations were performed with example design applications from concepts of morphing skeletal
structural components (i.e., framing and connecting elements). A smart link concept with direct
shape control was tested to verify the computational framework, as well as to compare the e�ciency
and e↵ectiveness of the computational approach using the adjoint method with the non-gradient-
based genetic algorithm approach. Then, an example of a morphing structural backbone with
substantially increased complexity of design parameters and objectives was considered. As shown
in Figure 2, the smart link consisted of a 20mm ⇥ 5mm ⇥ 1mm homogeneous rectangular prism
composed of thermally responsive SMP. The morphing procedure considered involved first heating
the structure in its cast configuration to initiate the activation process. After some time of purely
heating, actuation would be applied to deform the structure into the desired shape. As such,
the total time to perform the structural morphing, tF , was simply the summation of the purely
heating time prior to actuation, tD, and the actuation time, tM . A schematic of the structural
backbone considered for the second example is shown in Figure 3. The structure was taken to be
a homogeneous half-circular prism with a 150mm outer radius composed of thermally responsive
SMP. The morphing procedure applied followed a similar sequencing pattern as the first example.
However, to provide greater degrees of freedom for the design/control of the morphing system,
several more heating pads and actuators were employed in this case compared to the first example,
with a total of nine pairs of approximately 45mm long heating pads and eight approximately
15mm long actuation regions, all equally spaced along the surface of the structure. Additionally,
the operation of the structure and the design/control objectives were assumed to be symmetric
with respect to the horizontal access. Thus, only the top half to the structure needed to be analyzed
and the morphing process of the structure was defined by 10 independent heating pads and four

Figure 2: Schematic of the smart link design concept.



Figure 3: Schematic of the Morphing Structural Backbone Design Concept.

Table 1: Control, optimized design parameters from Genetic Algorithm optimization (GA Opt),
optimized design parameters from quasi-Newton gradient-based optimization using the adjoint
method (Adjoint Opt), resulting energy consumption to perform the morph, and the percent dif-
ference (%Di↵) with respect to the control design for the Smart Link example (mJ = 10�3Joule).

Design t1T t2T t3T t4T JT JW J
Case (s) (s) (s) (s) (mJ) (mJ) (mJ)

Control 80.0 80.0 80.0 80.0 14037.5 10.4 14047.9
GA Opt 44.4 42.5 41.5 69.3 9231.2 83.2 9314.5
%Di↵ -44.5 -46.9 -48.2 -13.3 -34.2 +704.0 -33.7

Adjoint Opt 51.0 57.3 65.6 66.7 10833.9 86.7 10920.6
%Di↵ -36.2 -28.4 -18.0 -16.6 -22.8 +737.1 -22.3

actuators (note that the heating pad pairs were not linked in this example as was the case in the
first example).

Table 1 shows a set of “control” design parameters, the optimized design parameters from
the GA optimization, and the optimized design parameters from the gradient-based optimization
using the adjoint method, along with the corresponding activation thermal energy (JT ), actuation
mechanical work (JW ), and total energy (J), and the percent di↵erence for these energies with
respect to the control design for the smart link example. The GA results represent an approximation
of the best possible results that could obtained from the computational design procedure, yielding
an energy savings of more than 30% with respect to the control design, but required an extensive
computational cost, on the order of 104 function evaluations, to achieve convergence. Alternatively,
the gradient-based optimization results were able to yield less energy savings than the GA, but still
a substantial amount at over 20% with respect to the control design, but required two orders of
magnitude less function evaluations, on the order of 102, than the GA to achieve convergence (even



with the 10 runs with di↵erent initial parameter sets). Furthermore, it is often the case for design
or control problems such as this that an approximation of the global minimum is unnecessary, and a
local solution would be su�cient. In such instances, the substantial improvement in computational
savings provided by the gradient-based approach with the adjoint method would likely outweigh the
loss in global search capabilities. Table 2 shows three morphing target shapes considered (elliptic,
square, and step-type), the optimal design solutions for each target shape, and the corresponding
temperature distributions at the initiation of morphing, final stress distributions, and final deformed
shapes for the morphing structural backbone example. All of the optimal design solutions can be
seen to have produced recognizable approximations to the target shapes, which is particularly
significant considering that each of the three shapes is considerably di↵erent from one another
and yet the morphing mechanism (i.e., activators and actuators) used to achieve the shapes is
identical. However, there was a degradation in the morphing accuracy as the complexity of the
target shape change increased, which is not necessarily unexpected. This morphing accuracy can be
seen quantitatively through the relative di↵erence between the optimized morphing error (Sopt) and
the morphing error for the starting shape (S0), which was approximately 90% for the elliptic shape,
40% for the square shape, and 10% for the step-type shape. The target step-type shape was clearly
the most challenging to achieve, both intuitively and based on the optimization results, particularly
since it was the only shape that required a change from convex to concave. Furthermore, the results
would imply that to better achieve a target shape similar to the step-type the starting shape or the
morphing mechanisms (i.e., activators and actuators) would need further modification. However,
overall, the multiple localized activations and actuations showed the capability to accurately and
e�ciently achieve a diverse set of shape changes with a fixed set of morphing mechanisms, and the
computational approach was particularly well-suited to facilitate the implementation, particularly
where intuitive design approaches would be infeasible.



Table 2: Optimized (Opt) design solutions (temperature distribution and final stress distribution)
with respect to three di↵erent target shapes (ellipse, square and step-type) for the Morphing
Structural Backbone example.

Target Temperature Stress
Shape Distribution (K) Distribution (Pa)



Maximized Reduced-Order Model Accuracy for Inverse Problem Applications:
Although generally applicable, the following discussion of an approach to create optimally

accurate physics-based reduced-order models (ROM) is presented within the context of steady-state
harmonic solid mechanics of heterogeneous solids with a range of potential material parameters.
Assuming that the solid considered is excited harmonically to a steady-state in the linear elastic
range, and therefore the system variables vary harmonically in time with angular frequency !,
and neglecting body forces, the governing equations and boundary conditions (i.e., boundary value
problem) from conservation of momentum can be written as:

r · �(~x,!) + !2⇢(~x)~u(~x,!) = 0, 8~x 2 ⌦,
�(~x,!) · ~n(~x) = ~T (~x,!), 8~x 2 �T ,
~u(~x,!) = ~u0(~x,!), 8~x 2 �U ,
�(~x,!) = CIV : ✏(~x,!),
✏(~x,!) = 1

2

�
r~u(~x,!) +r~u(~x,!)T

�
,

(12)

where ~x is the spatial position vector, �(~x,!) is the stress tensor, ⇢(~x) represents the density of
the solid, ~u(~x,!) is the steady-state displacement amplitude field, ~T (~x,!) is the applied traction
amplitude vector, ~u0(~x,!) is the applied displacement amplitude, CIV is the fourth-order elasticity
tensor, ⌦ is the domain of the solid, ~n(~x) is the unit outward normal vector to the surface of the
domain, �, and �T and �U are the portions of the domain surface where traction and displacement
are applied, respectively, such that �T

S
�U = � and �T

T
�U = ?. The standard weak form

Galerkin approach was employed for this work to approximate the solution of the boundary value
problem described by Eqns. (12) using an arbitrary approximation function of the steady-state
harmonic displacement field. As such, the weak form of the steady-state dynamic solid mechanics
problem can be expressed as:

Z

⌦

r�~u(~x) : �(~x,!)d~x�
Z

⌦

!2⇢(~x)�~u(~x) · ~u(~x,!)d~x�
Z

�
T

�~u(~x) · ~T (~x,!)d~x = 0, (13)

where �~u(~x) is an arbitrary weight function vector (i.e., trial function vector or virtual displacement
vector). Therefore, all that is necessary to complete the Galerkin approach is to substitute an
approximation for the displacement field and the weight function (using the same basis for both)
to obtain a discretized form and a linear system of equations for each excitation frequency. The
common finite element approach would be to discretize the spatial domain into elements and use
polynomial approximations within each element to discretize then assemble a system of equations.
However, as is commonly known, this finite element approach (referred to as the full-order modeling
approach herein) typically requires at least many thousands of degrees of freedom, even for relatively
simple two-dimensional problems to accurately represent the physics of the system. Alternatively,
the objective of the reduced-basis form of reduced-order modeling is to identify a basis that is
optimal in some sense for representing the physics of the system under consideration with far fewer
degrees of freedom than the full-order (i.e., traditional finite element) model (FOM).

The core hypothesis of the reduced-basis reduced order modeling approach considered in the
present work is that a relatively small number of full-order (i.e., traditional finite element) analyses
based upon di↵erent values of the input parameters of interest (material parameters herein) contain



fundamental information about the potential solution fields of the BVP and can be used to derive
a low-dimensional basis that can predict the solution fields for a range of input parameters (not
just the specific parameter values used to generate the set of full-order analyses) with reasonably
su�cient accuracy. The POD approach was applied to derive this basis from a set of full-order
analyses. POD specifically derives the low-dimensional basis such that the di↵erence between the
original full-order data and the best approximation to that data with this basis is minimized in
an L2 average sense [7]. The critical question is then how to select the set of input parameters
used to create the set of full-order analyses to use for creating the POD basis. In particular, this
dataset must be generated in such a way to limit the number of full-order simulations necessary to
ensure su�ciently accurate generalization of the reduced-order model over the admissible range of
the input parameters of interest. The problem of finding a set of snapshots to create an accurate
ROM can be outlined in a general way as follows. Suppose that F : X ! V is a finite element (i.e.,
full-order) operator that maps the space of input parameters (e.g., material properties) X to the
space of displacement response fields V . The goal is to find a subset Xn ⇢ X with F : Xn ! Vn

to create a POD reduced-order model operator F�(Vn) : X ! V , such that:

if F : x ! v1 and F�(Vn) : x ! v2, then kv1 � v2k < ✏, 8x 2 X, and 8v1, v2 2 V,

where ✏ is some acceptable error tolerance for the ROM. Extending the work in [7], the core
hypothesis of the proposed adaptive snapshot generation method is that maximizing the diversity
of the snapshots created within the space of the input parameters of interest will maximize the
generalization of the resulting reduced-order model over that parameter space.

Given a set of n0 input parameters sets {~�i}n0

i=1 and the corresponding full-order analysis re-
sponse fields (i.e., snapshot), a measure of the total diversity of the ith snapshot (created with
input parameter set ~�i) within the set can be calculated as:

R⇤(~�i) =
n0X

j=1
j 6=i

R(~�i,~�j), (14)

where

R(~�i,~�j) =
(~u(~x,~�i), ~u(~x,~�j))

k~u(~x,~�i)kL2(⌦) · k~u(~x,~�j)kL2(⌦)
. (15)

Then, provided with the diversity metric for each snapshot in the set {R⇤(~�i)}n0

i=1, a surrogate model
approach can create an approximate mapping between the input parameters and the diversity
metric. Any preferred machine learning technique can be used to generate the surrogate model,
with this work using support vector regression [8, 9]. The surrogate model of the diversity RSM(~�)
can then be easily minimized to estimate the optimal next set of input parameters (within the
domain of the parameters X) to use with the full-order model to generate another set of snapshots
that would maximize the diversity of the snapshot set as:

Minimize
~�2X

RSM(~�). (16)

Note that since the computational cost of the surrogate model is negligible, then essentially any
preferred global optimization algorithm can be used, regardless of the algorithm e�ciency, with a



Figure 4: Flowchart describing the adaptive snapshot generation algorithm.

genetic algorithm being used for this work. Due to the expectation of some loss of accuracy in the
surrogate model, an additional constraint on the parameter sets was added to the surrogate model
optimization for the present work. To ensure that the input parameter sets are not overly clustered
in the parameter space, the new parameter set was constrained to be a specified minimum distance
� from every other parameter set, such that:

k~� � ~�ik > � for i = 1, 2, ..., n0, (17)

where k · k is the standard l2-norm. Once the new set of input parameters is determined from the
solution of Eqns. (16) and (17), the input parameter set is used with the full-order model to generate
a new snapshot. Figure 4 shows a flowchart that describes the overall procedure for the adaptive
snapshot generation algorithm to maximize snapshot diversity and resulting reduced-order model
accuracy. At the completion of the snapshot generation algorithm a POD reduced-order model can
be generated and utilized.

To investigate the capabilities and potential applicability of the method for adaptive genera-
tion of optimal reduced-order models, simulated case studies were considered regarding e�cient
and accurate modeling of the deformation of structural members with semi-localized Young’s mod-
ulus distributions. The examples also examined the capabilities to then inversely characterize such
material property distributions using a computational inverse solution procedure relying on this
modeling. POD ROMs were generated through the adaptive approach to maximize diversity of



Figure 5: Schematic for NDE plate example (note that the ‘x’s represent the sensor locations).

the snapshot sets, and the accuracy of these ROMs was quantified with respect to full-order anal-
ysis (i.e., traditional finite element analysis) and compared to the accuracy of similar POD ROMs
created from randomly generated snapshot sets. Then, the adaptively generated ROM was incor-
porated into an inverse characterization solution procedure. The case studies considered structures
tested using frequency-response-based nondestructive testing (NDT) to then determine the mate-
rial properties with nondestructive evaluation (NDE). The NDT consisted of a localized harmonic
actuation applied normal to the surface of the structure at a given excitation frequency and the
resulting steady-state harmonic vertical displacement amplitude was measured at a set of discrete
sensor locations. One example, shown schematically in Figure 5, consisted of a 1m⇥ 1m⇥ 0.02m
aluminum plate subject to a 1kPa harmonic load applied to a 5cm region normal to the top surface
of the plate, excited to steady-state with an actuation frequency of 400Hz. The material behavior
was assumed to be linear elastic with a homogeneous density and Poison’s ratio of 2700 kg/m3 and
0.3, respectively, and the semi-localized Young’s modulus distribution was assumed to be defined
with a radial basis function (RBF) as:

E(~x) = E0

"
1� ↵ · exp

 
�k~x� ~⇣k2

c

!#
, (18)

where E0 is the base Young’s modulus, ↵ is the percentage of the reduction in Young’s modulus, ~⇣
is the center of the RBF, and c is the breadth of the RBF. In other words, each Young’s modulus
distribution considered was parametrized by four parameters, such that ~� = [↵, ⇣1, ⇣2, c]T . The
base Young’s modulus was assumed to be known as a standard nominal value for aluminum, such
that E0 = 69GPa.

For the adaptive snapshot generation approach, an initial random set of 10 snapshots was
generated, and then the adaptive surrogate modeling approach was iteratively applied to generate
the remaining snapshots in the set used to create the ROM. To examine the dependence on the
total number of snapshots, snapshot sets of 10 (i.e., the original randomly generated set), 20, 30,



40, 50, and 60 were investigated, in turn. The forward modeling accuracy of the ROMs was first
tested directly in comparison to the full-order modeling for 100 randomly generated parameter sets
that were not included in the snapshot sets, to directly quantify the generalization capabilities of
the ROMs before considering an inverse characterization problem. To test the ROM accuracy a
standard relative error metric was utilized for each parameter set as follows:

Error(~�) =
k~uROM(~x,!,~�)� ~uFOM(~x,!,~�)k⌦

k~uFOM(~x,!,~�)k⌦
, (19)

where ~uROM and ~uFOM are the displacement response fields calculated with the ROM and full-order
model, respectively, and k · k⌦ is the chosen norm over the spatial domain, ⌦, with both the L2

and L1 norms being considered in the following. To provide a baseline for comparing the accuracy
of the adaptively generated ROMs, ROMs were also created for the examples using an equivalent
total number of randomly generated snapshots (generated in the same format as the initial set for
the adaptive approach). To test the e�cacy of the resulting ROMs to be used in a computational
inverse problem solution procedure, each example case considered a corresponding set of tests
in which the ROMs were used in an NDE procedure to estimate the sti↵ness parameters of the
structures given simulated NDT measurements for several test cases. The inverse problem was
cast as an optimization problem to determine the material parameters that minimize the relative
di↵erence between the simulated experimental NDT measurements and the response predicted by
the ROM as:

Minimize
~�2X

Pn
s

i=1

�
~uROM(~xi,!,~�)� ~uexp(~xi,!)

�2
Pn

s

j=1 (~u
exp(~xj,!))

2 , (20)

where again X is the domain of the unknown sti↵ness parameters and ~uexp is the simulated experi-
mental displacement responses. A standard genetic algorithm was again applied to solve the above
optimization problem and identify the parameters to estimate the Young’s modulus distributions,
and therefore, estimate the solution to the inverse problem. The quality of the final inverse prob-
lem solution estimates were quantified through the relative L2-error between the Young’s modulus
distribution defined by the parameters used to create the simulated experimental data and that
estimated by the inverse characterization results as:

⇣R
⌦ (E(~x,~�exp)� E(~x,~�inv))

2
d~x
⌘1/2

�R
⌦ (E(~x,~�exp))2 d~x

�1/2 , (21)

where ~�exp are the parameters used to create the simulated experimental measurement data and
~�inv are the corresponding inverse solution estimates.

Figure 6 shows the average and standard deviation of the relative ROM error for the 100 test
cases for both the adaptively generated ROMs and the randomly generated ROMs. As would be
expected, for both approaches, the average error as well as the standard deviation of the error for
the resulting ROM decreased as the number of snapshots used to construct the ROM increased.
More interestingly, the ROM error corresponding to the adaptively generated snapshots was sub-
stantially lower than the the ROM error corresponding to the randomly generated snapshots by
approximately a factor of 2 or more for every size of the snapshot set. In addition, the standard



Figure 6: Average and standard deviation (error bars) with respect to the 100 test cases of the
relative L2 and L1 ROM errors for the randomly generated (Random) and the adaptively generated
(Adaptive) ROMs for the plate example.

deviation of the error for the adaptively generated ROMs decreased considerably more quickly
than the randomly generated ROMs, and while the adaptively generated ROMs appeared to have
converged to some degree in terms of the error at 50 snapshots, the randomly generated ROMs
show no such signs of convergence. Table 3 shows the material parameters used to create the
simulated experimental measurement data for the five scenarios considered and the corresponding
parameters estimated by the inverse solution process with the various ROMs (built from 20, 40,
and 60 total snapshots), the respective ROM measurement error for the inverse solutions (as de-
fined by Eqn. (20)), the respective FOM measurement error for the inverse solutions (substituting
the FOM in place of the ROM in Eqn. (20)), and the error in the respective Young’s modulus
distributions predicted by the inverse solution estimates (as defined by Eqn. (21)). In addition, to
provide further perspective on the relative accuracy of the Young’s modulus distributions obtained
by the inverse solution process, Figure 7 shows (as a representative example) the target (i.e., sim-
ulated experimental) Young’s modulus distribution for a material property scenario compared to
the Young’s modulus distribution that was inversely estimated using the ROM built from 60 adap-
tively generated snapshots. Overall, the optimization process was able to su�ciently match the
ROM response to the measurement data. More importantly, the FOM responses with the inverse
solution estimates also su�ciently matched the measurement data, even though the optimization
was performed with the ROM. Moreover, the FOM measurement error was minimally higher than
the ROM measurement error. In other words, the inverse problem solution estimates obtained
with the ROMs were nearly as accurate with respect to the FOM in terms of the measurement
data, and were still within an error range in terms of the FOM to be considered an inverse problem
solution estimate. As would be expected, corresponding to the accuracy in the measurement error,
the resulting estimates of the Young’s modulus distributions were accurate for all three ROMs,
with Young’s modulus reconstruction errors of less than 1% for every test.



Table 3: Target (i.e., simulated experimental) values for the RBF amplitude (↵), the breadth of
the RBF (c1), and the horizontal and vertical locations of the center of the RBF (⇣1, ⇣2) defining
the Young’s modulus distribution, the corresponding parameters estimated with the inverse char-
acterization process using the ROMs created with 20 (ROM-20), 40 (ROM-40), and 60 (ROM-60)
adaptively generated snapshots, and the respective ROM measurement error (ME), the FOM mea-
surement error (FE), and the error in the predicted Young’s modulus distribution (YE) for five test
cases (i.e., damage scenarios) for the plate example.

↵ ⇣1 ⇣2 c ME(%) FE(%) YE(%)

Test 1

Target 0.701 0.592 0.511 0.004
ROM-20 0.544 0.652 0.481 0.003 2.78 3.45 0.37
ROM-40 0.552 0.610 0.536 0.005 1.53 1.86 0.01
ROM-60 0.552 0.607 0.521 0.005 1.45 1.57 0.01

Test 2

Target 0.416 0.841 0.832 0.002
ROM-20 0.310 0.763 0.782 0.003 0.72 3.12 0.04
ROM-40 0.384 0.803 0.791 0.002 0.52 2.73 0.02
ROM-60 0.405 0.824 0.801 0.002 0.49 1.67 0.07

Test 3

Target 0.540 0.869 0.264 0.003
ROM-20 0.407 0.781 0.396 0.005 5.61 4.82 0.32
ROM-40 0.601 0.855 0.202 0.001 3.52 2.67 0.13
ROM-60 0.451 0.860 0.236 0.003 1.46 2.22 0.08

Test 4

Target 0.639 0.544 0.647 0.005
ROM-20 0.558 0.598 0.607 0.003 2.89 5.14 0.48
ROM-40 0.583 0.576 0.683 0.004 2.4 2.39 0.27
ROM-60 0.608 0.532 0.651 0.004 2.11 1.5 0.24

Test 5

Target 0.066 0.404 0.448 0.007
ROM-20 0.048 0.488 0.337 0.005 0.65 4.93 0.07
ROM-40 0.071 0.381 0.411 0.005 0.48 3.01 0.03
ROM-60 0.061 0.414 0.491 0.006 0.46 2.47 0.03



Figure 7: Spatial distribution of the Young’s modulus from (a) the target (simulated experiment)
and (b) the inverse characterization estimate with the ROM built from 60 adaptively generated
snapshots for the fourth test scenario for the plate example.

Inverse Material Characterization Using Gappy POD with Direct Inversion:
The Gappy POD process starts by following the standard POD procedure to obtain a set

of orthogonal modes from a given set of snapshots. The point in which Gappy POD diverges
from standard POD is how those modes are utilized. If the full distribution (specifically, full
spatial distribution for the cases herein) of a field is available, the modal coe�cients (ai) needed to
reconstruct that field with the POD modes can be easily obtained by projecting the modes onto
the field as:

ai =

Z

⌦

~u
⇣
~⇠
⌘
· ~�i

⇣
~⇠
⌘
d~⇠. (22)

However, projection is no longer applicable to determine the values of the modal coe�cients to
reconstruct the field if the entire spatial distribution is not available. Thus, the objective of
Gappy POD is to provide a means to reconstruct the full spatial distribution of a field using the
POD modes, but with only a partial spatial distribution of the field given. Defining ~̂u (~x) as the
given partial distribution of the field of interest such that ~̂u (~x) is (incorrectly) 0 anywhere data is
unavailable, then ~̂u (~x) can be expressed in terms of the corresponding, but unknown, full spatial
distribution as:

~̂u (~x) = � (~x, ~u) ~u (~x) , (23)

where � (~x, ~u) is a mask function that is defined as 0 where data is unavailable and 1 where data is
available. Assuming that the full spatial distribution can be approximated with the POD modes,
an approximation of ~̂u (~x) can be written in terms of the POD modes as:

~̂u⇤ (~x) = � (~x, ~u)
mX

i=1

ai~�i (~x) . (24)

Then, based upon a least-squares criteria, the optimal set of modal coe�cients to reconstruct the
full spatial distribution of the field can be defined as that which minimizes an error function of the



form:

" =

Z

⌦

"
� (~x, ~u) ~u (~x)� � (~x, ~u)

mX

i=1

ai~�i(~x)

#2
d~x. (25)

Lastly, applying the necessary condition for extrema of a function by setting the derivative of the
error function with respect to the modal coe�cients to zero, the optimal set of modal coe�cients,
{a}, to reconstruct the full spatial distribution of the field can be determined from the solution of:

[M ]{a} = {f}, (26)

where

Mij =

Z

⌦

� (~x, ~u) ~�i(~x) · ~�j(~x) d~x. (27)

and

fi =

Z

⌦

� (~x, ~u) ~u(~x) · ~�i(~x) d~x. (28)

Although potentially applicable to a variety of di↵erent physical systems, the application of the
present work is characterization of the elastic modulus distribution of a solid from displacement
measurements (full-field displacement response once Gappy POD has been utilized). Furthermore,
the following formulation is presented with respect to a steady-state dynamic testing procedure (as
could be applicable to frequency response function-based evaluation), but could easily be converted
to a static problem by simply setting the excitation frequency to zero. Therefore, the forward prob-
lem and weak form defined above in Eqns. (12) and (13) are still applicable. Applying the standard
finite element procedure and converting to Voigt notation, the domain can be discretized into a
collection of elements, and the displacement and virtual displacement fields and their corresponding
strain vectors can be approximated as:

~u(~x,!) ⇡ [N~u(~x)]{~ue(!)}, (29)

�~u(~x) ⇡ [N~u(~x)]{�~ue}, (30)

{"(~x,!)} ⇡ [B~u(~x)]{~ue(!)}, (31)

and
{�"(~x)} ⇡ [B~u(~x)]{�~ue}, (32)

where [N~u(~x)] is the standard matrix of shape functions for displacement interpolation and [B~u(~x)]
is the matrix of shape function spatial derivatives for strain interpolation. Substituting these
field approximations into Eqn. (13), eliminating the arbitrary virtual response field vector, and
assembling individual element contributions, the final finite element equations are depicted as:

[K]{u}� [M ]{u} = {P}, (33)

where

[K] =
X

element

Z

⌦e

[B~u(~x)]
T [D][B~u(~x)] d~x, (34)



[M ] =
X

element

Z

⌦e

⇢(~x)!2[N~u(~x)]
T [N~u(~x)] d~x, (35)

{P} =
X

element

Z

�e

~

T

[N~u(~x)]
T ~T (~x,!) d~x, (36)

and [D] is elasticity matrix, such that:

{�(~x,!)} = [D]{"(~x,!)} (37)

The summation over elements refers to the assembly process.
With the objective of the inverse problem being characterization of the elastic modulus distri-

bution provided with the entire displacement field everywhere in the domain, the first step in the
inverse solution formulation is to separate the elastic modulus (E(~x)) from the elasticity matrix
as:

[D] = [DI ]E(~x), (38)

where DI is now only a function of Poisson’s ratio (⌫). Applying the same general weak form
procedure as was done previously for displacement, but now for the elastic modulus, the inverse
problem weak form for the steady-state dynamic boundary value problem can be written as:

Z

⌦

r� ~E(~x) : �I(~x,!)E(~x) d~x =

Z

⌦

⇢(~x)!2� ~E(~x) · ~u(~x,!) d~x+
Z

�
~

T

� ~E(~x) · ~T (~x,!) d~x,
(39)

where
{�I(~x,!)} = [DI ]{"(~x,!)}, (40)

and � ~E is the virtual elastic modulus vector (matching the dimension of the displacement field,
and therefore, the number of equilibrium equations, even though the modulus itself is a scalar).
Now discretizing the domain into finite elements to represent the elastic modulus and again using
Voigt notation where applicable, the elastic modulus and virtual elastic modulus vector and their
corresponding gradients can be approximated as:

E(~x) ⇡ [NE(~x)]{Ee}, (41)

� ~E(~x) ⇡ [N� ~E(~x)]{� ~E
e}, (42)

{rE(~x)} ⇡ [BE(~x)]{Ee}, (43)

and
{r� ~E(~x)} ⇡ [B� ~E(~x)]{� ~E

e}, (44)

where [NE(~x)] is now the matrix of shape functions for elastic modulus interpolation, [N� ~E(~x)]
is the expanded version (to match the dimensions of the displacement) of the matrix of shape
functions for elastic modulus interpolation, and [BE(~x)] and [B� ~E(~x)] are the respective matrices



of these shape function spatial derivatives. Substituting these field approximations as well as the
previously-defined discretization of the given displacement field into Eqn. (39), eliminating the
arbitrary virtual elastic modulus field vector, and assembling individual element contributions, the
final finite element equations for the direct inversion elastography problem are depicted as:

[KI ]{E} = {PI}+ [MI ]{u}, (45)

where

[KI ] =
X

element

Z

⌦e

[B� ~E(~x)]
T [DI ][B~u(~x)]{~ue}[NE(~x)] d~x, (46)

[MI ] =
X

element

Z

⌦e

⇢(~x)!2[N� ~E(~x)]
T [N~u(~x)] d~x, (47)

and

{PI} =
X

element

Z

�e

~

T

[N� ~E(~x)]
T ~T (~x,!) d~x. (48)

Since [KI ] is typically non-square and Eqn. (45) is typically an overdetermined system ([KI ] has
dimensions 3N ⇥N , where N is the number of nodes in the mesh if the same mesh is used for both
fields), the elastic modulus cannot be estimated by simply inverting [KI ]. Thus, as is common,
a least-squares approach was used here to solve Eqn. (45) for {E}. As such, the nodal values of
elastic modulus can be determined as:

{E} =
�
[KI ]

T [KI ]
��1

[KI ]
T ({PI}+ [MI ]{u}) . (49)

The overall algorithm for direct inversion of a material property distribution from partial-field
response measurements with Gappy POD can be summarized as follows:

Given: The geometry of the structure of interest, the boundary conditions and partial-field re-
sponse measurements from a nondestructive testing procedure, and any available material
properties.

Find: The unknown material property distribution.
Step 1: Generate (e.g., randomly or through some other sampling procedure) a set of potential

distributions for the unknown material property, using any information available a priori
relating to the likely nature of the unknown distribution, and use a forward analysis procedure
to produce the corresponding full-field structural responses for each property distribution
from the nondestructive testing conditions.

Step 2: Calculate the POD modes from the set of full-field structural responses, and select the
modes (based on a user-defined criteria, such as the eigenvalue energy) to be retained for
Gappy POD field reconstruction.

Step 3: Reconstruct the full-field structural response from the given partial-field measurements
with Gappy POD.

Step 4: Calculate an estimate to the unknown material property distribution using the direct
inversion procedure with the reconstructed full-field structural response and nondestructive
test boundary conditions.
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Figure 8: Schematic for the numerically simulated examples representing characterization of an
elastic modulus distribution with an inclusion.

Examples were considered and evaluated to examine the potential benefits and capabilities of
using the direct inversion approach with Gappy POD to characterize the elastic modulus distri-
bution in solids from partial-field measurements. Numerically simulated experiments were based
upon characterization of elastic modulus distributions with circular inclusions (hard or soft), as
shown schematically in Figure 8. Again, a Gaussian radial basis function representation was cho-
sen to define the localized elastic modulus variations, as defined in Eqn. (18). For the inverse
characterization process, it was assumed to be known a priori that the variation in elastic modulus
was similarly localized in nature (of course, with the size, amplitude, and location of this variation
to be estimated by characterizing the entire spatial distribution of the elastic modulus with the
direct inversion procedure). Therefore, the process to create the POD modes used snapshots gen-
erated with this same RBF parameterization of the elastic modulus distribution. For one example,
a soft material block was modeled as a 50 mm ⇥ 50 mm square domain with the bottom fixed
to a rigid support that was expected to have a hard inclusion. The entire material (matrix and
inclusion) was assumed to be known to be nearly incompressible, and a Poisson’s ratio of 0.49999
was assigned. A simulated static test was implemented by applying a 0.2 N/mm (factoring out the
arbitrary thickness) excitation uniformly to the top surface of the block. Then, the static vertical
displacement response to the loading was measured at 100 uniformly spaced discrete locations, as
shown in Figure 9. 5% Gaussian white noise was added to the measurements for this first example,
which was deemed to be reasonable level of noise that could be expected from similar tests (note
that this level of noise is commensurate with the highest levels of noise used in prior referenced
works on direct inversion strategies with full-field response measurements).

For the process of generating the snapshots for POD, the elastic modulus of the background
material (i.e., matrix material) was assumed to be fixed at 15 kPa. Alternatively, the parameters
defining the inclusion based on the RBF description were assumed to be variable. The specific
parameter values used to create the snapshots were chosen arbitrarily by uniformly sampling the
space of the four variable parameters (the two spatial coordinates, amplitude, and breadth). Three
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Figure 9: Schematic of the vertical displacement sensor locations (red dots) for the example soft
matrix with a hard inclusion.
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Figure 10: Schematic of the nine inclusion centers used separately to generate the snapshots for
POD for the numerically simulated examples.

values were chosen for each spatial coordinate of the inclusion center and two values were chosen
each for the amplitude and breadth of the inclusion, and one last scenario with no inclusion (i.e.,
homogeneous matrix material) was added, for a total of 37 parameter combinations used to create
snapshots. Figure 10 shows the nine location combinations of the inclusion center used to generate
the snapshots. The values of the other two parameters used to create the parameter combinations
were chosen based on an expectation of what the lower and upper-end would be for the application,
using 1 and 3 for the amplitude parameter (i.e., modulus at inclusion center of 30 kPa and 60 kPa)
and 5 mm and 15 mm for the breadth parameter.

Figure 11 shows a representative example trial of a simulated displacement response field from a
randomly generated parameter set and including the 5% Gaussian white noise in comparison to the
displacement response field reconstructed from the 100 response measurements of that response
field with the Gappy POD procedure. In general, the Gappy POD reconstruction of the dis-
placement response from partial-field measurements was found to be accurate, producing response
distributions that were nearly identical to the full simulated responses, with errors consistent with
the example shown, which had relative L2 and L1 errors in the displacement reconstruction of 7.4%
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Figure 11: Representative example of the (a) horizontal and (b) vertical components of a simulated
experimental displacement field with 5% Gaussian white noise and the (c) horizontal and (d)
vertical components of the corresponding reconstructed displacement field from Gappy POD with
only the discrete measurement data (color contours in units of m) for the example soft matrix with
a hard inclusion.
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Figure 12: Representative example of (a) the elastic modulus distribution used to simulate ex-
perimental measurements (i.e., the target modulus distribution) and (b) the corresponding elastic
modulus distribution estimated with the direct inversion approach with Gappy POD full-field dis-
placement reconstruction from the partial-field measurements (color contours in units of Pa) for
the example soft matrix with a hard inclusion.

and 18.5%, respectively. More importantly, Figure 12 shows a representative example of an elastic
modulus distribution used to generate simulated experimental measurements (i.e., target modulus
distribution) and the corresponding elastic modulus distribution estimated by the direct inversion
procedure with Gappy POD displacement reconstruction. There was a noticeable amount of er-
ror in the modulus reconstruction, and the relative L2 and L1 errors in the modulus estimation
compared to the target distribution were 21% and 43%, respectively. However, the localization
of the modulus distribution was accurate, indicating a single harder region within the solid, and
the matrix modulus value and the maximum inclusion modulus value were nearly identical to the
target distribution. Again, it should be noted that the direct inversion process does not restrict the
distribution of the modulus to be localized, which emphasizes the significance of having recovered
the correct localization with the inversion procedure. Moreover, the accuracy of the modulus recon-
struction was commensurate, if not qualitatively better, than in alternate works in the literature on
direct inversion techniques [10, 11], with those approaches using full-field response measurements,
rather than the partial-field measurements used here. To further expand on the benefits of the
direct inversion with Gappy POD, Figure 13 shows the elastic modulus distribution estimated by
the direct inversion procedure with the original simulated full-field displacement with the added
5% Gaussian white noise. Clearly, the direct inversion procedure applied to the noisy data was
unable to remotely come close to estimating the target elastic modulus distribution, indicating the
significance of the noise filtering capability of the Gappy POD field reconstruction prior to direct
inversion. For all test cases investigated the Gappy POD with direct inversion procedure was able
to reconstruct the full-field displacement and then estimate the elastic modulus distribution with
an accuracy consistent with the representative example shown. In particular, the capability of
the Gappy POD with direct inversion procedure to correctly localize and accurately estimate the
magnitude of the elastic modulus distribution remained consistent.
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Figure 13: Example of an elastic modulus distribution estimated with the direct inversion approach
applied directly to the full-field simulated experimental data with noise (i.e., without using Gappy
POD) (color contours in units of Pa) for the example soft matrix with a hard inclusion.

Multi-Objective Optimization for Computationally E�cient Nondestructive Evalu-
ation:

This portion of the work also focused on NDE of solid continua and utilized the common ap-
proach of casting the inverse characterization problem as an optimization problem to determine
the unknown parameters of the structure to minimize the di↵erence between the measured re-
sponse and those predicted by a numerical representation of the structure (e.g., finite element or
boundary element analysis) subject to the nondestructive testing conditions. This type of opti-
mization strategy to approximate the solution of inverse characterization problems provides several
benefits, including the capability to address a variety of physical processes/measurements, even si-
multaneously, and providing quantitative results. However, there are also inherent challenges in
addition to the ubiquitous ill-posedness associated with inverse problems, most prevalent being
the large computational expense of this optimization approach. The key to using multi-objective
optimization for these inverse problems is as simple as dividing up the measurement components
or spatial distribution into several separate objective functionals to be minimized simultaneously,
but separately, which could be viewed as (e.g., for the case of dividing the spatial distribution of
the measurements):

Minimize
~↵

8
>>>><

>>>>:

k~Rsim(~↵, ~x)� ~Rexp(~x)k�1

k~Rsim(~↵, ~x)� ~Rexp(~x)k�2

...

k~Rsim(~↵, ~x)� ~Rexp(~x)k�
n

, (50)

where ~↵ is the vector of parameters to be determined to characterize the desired structural proper-
ties, ~Rsim is the simulated response field to estimate the NDT response for a given set of parameters,
~Rexp is the experimentally measured response field (i.e., optimization target), k ·k� is some suitable
metric norm with respect to the domain of the nondestructive measurements, �i is the ith subdi-
vision of the domain of the response field measurements obtained from nondestructive testing and
n is the total number of subdivisions. Then, any preferred multi-objective optimization algorithm
can be employed to determine the Pareto front for Eqn. (50), which can be thought of as the set of



all possible solutions to the inverse problem that have a lower value for at least one of the separate
objective functionals in comparison to any other solution estimate seen throughout the optimiza-
tion process. This work employed a controlled elitist multi-objective genetic algorithm (CEMGA)
[12, 13] to determine the Pareto front in the example cases considered therein. When the multi-
objective optimization process is complete, a single solution estimate for the inverse problem can
be attained through some chosen final decision criteria, such as the minimum sum of all objective
functionals, such as:

Minimize
~↵2{~↵

i

}p
i=1

nX

j=1

k~Rsim(~↵, ~x)� ~Rexp(~x)k�
j

, (51)

where {~↵i}pi=1 is the set of p potential solutions identified as part of the Pareto front. Apply-
ing multi-objective optimization rather than the standard single objective optimization to inverse
characterization problems was found to be a simple yet e↵ective approach to substantially re-
duce the computational expense and improve the consistency of the solution accuracy for inverse
characterization.

The primary feature of the multi-objective optimization that leads to improved inverse solution
capabilities is that substantial diversity of the solution estimates is maintained throughout the
search process by evolving a set of optima (i.e., the Pareto front) rather than a single optimum
throughout an iterative optimization process. By maintaining diversity, the multi-objective opti-
mization process is uniquely able to traverse the large parameter search spaces that are typical
of inverse characterization problems e�ciently and consistently, avoiding stalling and convergence
to local minima. An additional benefit of the diversity in the solution estimates provided by
multi-objective optimization is the resulting improvement in the ability to reveal the variety of
solutions that may exist for ill-posed (particularly non-unique) problems. As a direct reason for
non-uniqueness can be insu�ciency of the parameterization of the properties to be determined,
the solution diversity provided by multi-objective optimization can thus be assumed to be able to
provide insight into the changes to the parameterization necessary to subsequently produce more
unique and accurate inverse solutions. To provide additional context, the following discussion
will provide example scenarios based upon the class of NDE problems relating to characterizing
an unknown quantity of localized changes in properties (e.g., damage or defect characterization).
However, this approach should be able to be similarly implemented for a variety of inverse char-
acterization problems, particularly those for which some property of the unknown field is known a
priori to be (semi-) localized in the parameter space.

The overall structure of the optimization-type NDE algorithm incorporating an adaptive self-
evolving parameterization approach with multi-objective optimization is shown in Figure 14. The
core hypothesis of the self-evolving parameterization component of the algorithm developed is that
the distribution of solutions in the parameter space produced through multi-objective optimization
provides guidance as to whether a specific physical parameter should be expanded. In the localized
property characterization context, in which the primary method to expand the parameterization
could be to increase the number (n) of basis functions with compact (or semi-compact) support
used to define the property distribution along with their associated unknown parameters to be
determined by the inversion, the self-evolving parameterization component of the characterization
algorithm could be implemented as follows:



Figure 14: Flowchart of the multi-objective optimization-type NDE algorithm with adaptive self-
evolving parameterization.

Given - The Pareto front of potential solutions to the inverse characterization problem (e.g.,
spatial coordinates of the centroid for each localized property change and any associated pa-
rameters) subject to the current value of n (i.e., the number of compactly or quasi-compactly
supported basis functions used to define the localized change).

Step 1 - Identify the n + 1 regions of localized property change whose centroids are separated
by the largest Euclidean distance from the entire Pareto set of solutions (noting that each
solution set could contain multiple localized property changes depending on the value of n),
referred to as the n+ 1 “Parameterization Poles”.

Step 2 - Identify and average all regions of localized property changes that overlap with each
Parameterization Pole to produce the n+1 “Cluster Means” of the localized property changes.

Step 3 - Do any of the Cluster Means overlap?
Yes ! STOP (do not update the parameterization further).
No ! SET n = n+ 1 and GO TO Step 1.

To examine the capability of the self-evolving parameterization approach utilizing multi-objective
optimization for NDE to e�ciently and accurately characterize localized property changes in solid
continua several simulated examples of damage characterization within structural steel plates (as
could potentially be a↵ected by erosion) were considered. More specifically, the example NDE
cases sought to characterize the size and location of circular regions of material loss within the
steel plates considered. Figure 15 shows a schematic for one set of test cases, which consisted of an
arbitrarily thin 1 m⇥ 1 m square section with the bottom fixed to a rigid support. The simulated
NDT consisted of applying a 1 kN/m (factoring out the arbitrary thickness) harmonic excitation
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Figure 15: Schematic of the damaged square plate example.

to the top surface of the plate at an excitation frequency of 20 Hz, and then measuring the vertical
and horizontal displacements at 99 equally-spaced increments along the left and right surfaces.
For both generating the experimental data and simulating the forward problem during the inverse
solution process the structures were assumed to behave linearly and be defined by steady-state
dynamic plane stress solid mechanics, and all analyses were performed using the finite element
method. The inverse problems to determine the parameters defining the damage in the example
structures were cast in the form of the following multi-objective optimization problem, arbitrarily
having selected to divide the displacement measurements into four groupings:

min
~↵
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, (52)

where ~↵ is the vector containing the parameters of the unknown damage to be determined in the
inverse problem, U exp

1j , U exp
2j , U exp

3j and U exp
4j are the experimentally measured displacement at the

jth measurement location in the four groupings, and U sim
1j , U sim

2j , U sim
3j and U sim

4j are the numerically
simulated displacement at the jth measurement location in the four groupings. The four objective
functions for this example were simply defined by dividing the measurements with respect to the
two sides and the two directional components.

One of the simulated scenarios to test the capabilities of the NDE algorithm with self-evolving
parameterization was a case with two actual damage regions in the simulated experiment. Figure
16 shows a representative example from five trials of the inverse solution process of the Pareto
front solution estimates and Figure 17 shows the corresponding measurement error for the four
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Figure 16: Representative results of the Pareto front damage region solution estimates obtained
from the NDE algorithm with self-evolving parameterization after (a) the first iteration with a
single damage region parameterization and (b) the second iteration for which the parameterization
had been automatically updated to two damage regions, along with the best individual from each
Pareto front, and compared to the actual (experimental) two damage regions for the example
square plate.

objectives for the “best” individual from each of the Pareto fronts at each solution iteration (as
the parameterization evolved), and Figure 18 shows the final solution estimate from the converged
algorithm for this example with two actual damage regions. The final solution estimates for all
trials of the test cases were similarly accurate as this example shown, with both the sizes and loca-
tions of the damage regions being relatively accurate. The ability of the adaptive inverse solution
process to consistently and e�ciently determine the exact number of damage regions and provide
relatively accurate estimations of the location and size of these damages based solely on surface
measurements is significant. Moreover, the NDE algorithm with self-evolving parameterization was
found to be robust to potential noise in the measurement data.
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Probabilistic Mechanics and Structural Reliability, Notre Dame, IN, June. �
14. M. Wang and J.C. Brigham (2012), “A Multi-Objective Optimization-Based Approach to
Nondestructive Evaluation of Damage in a Continuum,” 2012 Joint Conference of the
Engineering Mechanics Institute and the 11th ASCE Joint Specialty Conference on
Probabilistic Mechanics and Structural Reliability, Notre Dame, IN, June. 

Changes in research objectives (if any):

None

Change in AFOSR Program Manager, if any:

None

Extensions granted or milestones slipped, if any:

None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary    

Equipment/Facilities    

Supplies    

Total    

Report Document

Appendix Documents

2. Thank You

E-mail user

Nov 30, 2014 09:10:39 Success: Email Sent to: brigham@pitt.edu


	DTIC_Title_Page_-_FUNDAMENTAL_ADVANCES_IN_INVERSE_MECHANICS_TOWARDS_SELF-AWARE
	SF298
	FINAL REPORT
	FA9550-11-1-0132

