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Abstract 

Neuromorphic computing algorithms have become an area of strong interest for their strong inference 

capabilities. These algorithms are compute intensive and require high performance processing 

capabilities. This study examined the parallelization of several neuromorphic algorithms and their 

acceleration on a variety of highly parallel computing platforms. While the Bayesian algorithms examined 

had strong thread level parallelism, the neural algorithms examined had both data and thread level 

parallelism. As a result the Bayesian algorithms were mapped to chip-multiprocessors, such as Xeon 

processors, while the neural algorithms were mapped to both chip-multiprocessors and SIMD platforms, 

such as GPGPUs. Large compute clusters based on these processing architectures were also examined. 

The results indicate that these algorithms have a high degree of parallelism and are well suited multicore 

architectures. They are also well suited to large compute clusters of these multicore processors. In follow-

on work, we are designing novel multicore neuromorphic computing architectures that will be several 

orders of magnitude more efficient than the architectures examined in this study. That work is based on 

the algorithm properties exposed in this study along with the computing architecture features we have 

found best suited for the algorithms.  
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1. Introduction 

The human brain can perform more complex cognitive tasks at a faster rate than silicon based processors, 

despite the fact that neurons are much slower than the transistors used to design the processors. This is 

primarily because of the massive parallel processing employed in the neocortex. The main part of the 

brain dealing with learning and cognition is the neocortex. This is the outer layer of the human brain and 

is approximately the size of a large unfolded dinner napkin. It is estimated to consist of approximately 

1011 neurons and 1014 connections between the neurons. Each neuron is connected to a large set of other 

neurons through extensions called dendrites and axons. Neurons communicate with each other by sending 

electrical pulses. These pulses are generated by the exchange of ions between the neurons.  

 

There has been a strong interest amongst researchers to develop large parallel implementations of neuron 

models on the order of animal or human brains. At this scale, the models have the potential to provide 

much stronger inference capabilities than current generation computing algorithms [1]. A large domain of 

applications would benefit from the stronger inference capabilities including speech recognition, 

computer vision, textual and image content recognition, robotic control, and making sense of massive 

quantities of data.  

 

Large scale models however require significant computing power to implement. Lansner et. al. [2] have 

shown that mouse sized cortical models developed on a cluster of commodity computers are 

computationally bound rather than communication bound. Thus the acceleration of neuron models on 

modern multicore architectures can provide significant benefits for the development of large scale cortical 

models. Multicore processors are the norm in the computing industry now given that it is difficult to 

increase the performance gains of single core processors (primarily because we have reached the limits on 

frequency scaling). Several research groups are examining the acceleration of neocortex models on 

commercial and custom multicore architectures.  

 

Several mathematical models of processing within the neocortex have been proposed at different levels. 

The lowest level of modeling considers the chemical changes inside the soma, axon and dendrites of a 

neuron [3,4]. These models have significant complexity and provide insights into how neurons work. 

However they are too complex to develop large scale models of the brain as the computations for a single 

neuron can be computationally challenging.  

 

The next level in the modeling hierarchy is based on modeling individual neurons using a set of 

differential equations. These artificial neural network models were first developed in 1952 [5]. Spiking 

neural networks fall under the third generation of these models and are currently in wide use [6]. They are 

significantly more biologically accurate than neural networks of the first two generations. Several large 

scale models based on spiking neural networks include [7-10,11]. 

 

Neuroanatomits have identified that a collection of about 80 to 100 neurons form into regular patterns of 

local cells running perpendicular to the cortical plane [12]. These collections of neurons are called mini-

columns. Mountcastle [13] states that the basic unit of cortical operation is the mini-column and that a 

collection of mini-columns are grouped into a cortical column. He also states that the mini-columns 

within a cortical column are bound together by a common set of inputs and short-range horizontal 

connections.  

 

Recently, several models of the neocortex have been proposed that are based on modeling  

mini-columns/columns. Modeling the neocortex based on cortical columns instead of individual neurons 

has several computational advantages: the number of nodes to model is decreased significantly (a node 

could represent a neuron or cortical column) and the number of connections between the nodes is sparse. 
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In fact, anatomical evidence [14] suggests that the connectivity between columns has the properties of a 

small-world graph [15], thus also enabling low latency communications between any two cortical 

columns [16]. Several mathematical models of the neocortex have been proposed based on cortical 

columns [17-21]. However, a set of recently published models based on cortical columns [19-21] provide 

significantly more insight into the workings of the neocortex. These newer models are based on 

hierarchical graphical networks and concur well with experimental results. They describe the brain as a 

hierarchical device that computes by performing sophisticated pattern matching and sequence prediction. 

  

In this project we have examined the acceleration of neocortex models on high performance computing 

hardware. Several models representing different levels of complexity were chosen to examine the impact 

of performance. At the low level, several biologically accurate spiking neural network models were 

chosen. At a higher level, cortical column models, such as the Hierarchical Temporal Memory (HTM) 

model were chosen [22]. At an even high level of abstraction, the Cellular Simultaneous Recurrent Neural 

network (CSRN) model was selected for its ability to capture invariance [23]. The acceleration of several 

applications of neural models were examined, including face recognition, maze traversal, and robotic 

motion calibration. Radial Basis Function Neural Networks (RBFNN) were utilized for the robot motion 

calibration [24]. 

 

Several high performance multicore computing hardware were also selected in this study. These include 

IBM Cell processors, x86 processors (Intel Xeon and AMD Opteron), and NVIDIA GPGPUs. High 

performance computing clusters used in this study include the Air Force Research Lab Condor Cluster, 

the Ohio Super Computing Center Glenn Cluster, and the National Center for Supercomputing 

Applications Accelerator Cluster. Table 1 lists the platforms examined for acceleration of the different 

models. 

 

Table 1. Acceleration platforms examined. 

 x86 Cell GPGPU 

HTM [22] × ×  

Dean [25] × ×  

Izhikevich [26] × × × 

Hodgkin-Huxley [27] × × × 

Morris Lecar [28] × × × 

Wilson [29] × × × 

CSRN [23] ×  × 

RBFNN [24] ×  × 

 

 

2. Models examined 
 

2.1 Spiking Neural Network Models 

 

Spiking neural models capture neuronal behavior more accurately than traditional neural models. A 

neuron consists of three functionally distinct parts called dendrites, axons, and a soma. Each neuron is 

typically connected to over 10,000 other neurons [30]. The dendrites of a neuron collect input signals 

from other neurons, while the axons send output signals to other neurons. Input signals coming in along 

dendrites can cause changes in the ionic levels within the soma, which in turn can cause the neuron’s 

membrane potential to change. If this membrane potential crosses a certain threshold, the neuron is said to 

have “fired” or “spiked”. In these events the membrane potential rises rapidly for a short period of time (a 

spike) and causes electrical signals to be transmitted along the axons of the neuron to other neurons 
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connected to it [31]. Spiking is the primary mechanism by which neurons send signals to each other. Over 

the last 50 years, several models have been proposed that capture the spiking mechanism within a neuron. 

 

In this study, four of the more biologically accurate spiking neuron models (as listed by Izhikevich [32]) 

are examined. These are the Hodgkin-Huxley [27], Izhikevich [26], Wilson [29], and Morris-Lecar [28] 

models. The Hodgkin–Huxley model is considered to be one of the most biologically accurate spiking 

neuron models. All four of the models can reproduce almost all types of neuron responses that are seen in 

biological experiments. All but the Izhikevich model are based on biologically meaningful parameters 

(such as activation of Na and K currents, and inactivation of Na currents). Table 2 compares the 

computation properties of the four models. The Hodgkin–Huxley model utilizes exponential functions, 

while the Morris-Lecar model uses hyperbolic functions. These contribute to the higher flops needed for 

these two models.  

 

Table 2. Spiking Network Properties 

Model Differential 

Equations 

Variables 

updated 

each 

cycle 

Other 

variables 

Constants Flops / 

neuron 

(Euler) 

Flops / 

neuron 

(Runge-

Kutta) 

Izhikevich 2 2 2 4 13 70 

Wilson 4 7 2 11 38 152 

Morris-Lecar 2 5 2 12 147 297 

Hodgkin-Huxley 4 16 2 10 246 442 

 

Two common methods to implement the differential equations in these models include the Euler and the 

Runge-Kutta approaches. While the Runge-Kutta approach provides more accurate results, the Euler 

method is the most common approach for implementing the differential equations as it has a significantly 

lower computational load. In this study we primarily utilize the Euler approach, although we do examine 

the Runge-Kutta approach as well. The flop counts for both the Euler and the Runge-Kutta approach are 

listed in Table 2. These values are based on our implementations of the four models. 

 

2.1.1 Izhikevich Model 

 

Izhikevich proposed a new spiking neuron model in 2003 [26] that is based on only two differential 

equations (equations (1) and (2)). This model requires the least computations of all the models examined, 

because it needs fewer flops per neuron update and requires fewer neuron updates to be carried out per 

simulation run time (since the simulation time step is higher). However the model can still reproduce 

almost all types of neuron responses that are seen in biological experiments. The four constant parameters 

(a, b, c and d) can be initialized differently to allow modeling of various neural responses. A time step of 

1 ms was utilized (as was done by Izhikevich in [26]).  

 

20.04 5 140
dV

V V u I
dt

      (1) 

( )
du

a bV u
dt

   (2) 

if 30 mV, then 
V c

V
u u d
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2.1.2 Wilson Model 

 

The Wilson model [29], proposed in 1999, requires four differential equations (equations (3) to (6)). The 

model has a large number of parameters than the Izhikevich model. Tuning these parameters allows the 

model to exhibit almost all neuronal properties. Three of the parameters in the differential equations (T∞, 

R∞, and m∞) also need to be evaluated each cycle, thus adding a set of three more equations. A time step 

of 0.01 ms was utilized to update the four differential equations.  

 

(1 / 45)( 3 )
dH

H T
dt

    (3) 

(1 /14)( )
dT

T T
dt

    (4) 

(1 / )( )R

dR
R R

dt
   

 
 

(5) 

1
( )( ( ) 26 ( ) ( )

( ) )

Na K T Ca

H K

dV
m V E R V E g T V E

dt C

g H V E I

       

 

 
(6) 

 

 

2.1.3 Morris-Lecar Model 

 

Cathy Morris and Harold Lecar proposed a two dimensional conductance-based spiking model in 1981 

[28]. The model consists of two differential equations (equations (7) and  (8)). Three of the parameters in 

the differential equations (m∞, w∞, and τw) also need to be evaluated each cycle, thus adding a set of three 

more equations. These three equations involve hyperbolic functions, thus making it computationally more 

expensive than the Izhikevich and Wilson models. This computational load is lower than the Hodgkin-

Huxley model however, thus making it popular in neurocomputation communities. A time step of 0.01 ms 

was utilized to update the two differential equations. 

 

1
( )( ( ) ( )

( ))

Ca Ca K K

Leak Leak

dv
I g m V V g w V V

dt C

g V V

    

   

 

(7) 

1
( )( )

w

dw
w w

dt



   (8) 

 

 

2.1.4  Hodgkin Huxley Model  

 

The Hodgkin–Huxley model [27] was a seminal work in neuron modeling. It consists of four differential 

equations (equations (9) to (12)). A set of 10 more equations have to be evaluated each cycle to update 

parameters used in the differential equations. Four of these equations involve exponential functions, thus 

making the model the most complex of the four models studied. A time step of 0.01 ms was utilized to 

update the four differential equations as this is the most commonly used value. This model is used in the 

detailed large scale neural simulations being carried out by IBM and EPFL [33]. 

 

4 31
( ){ ( ) ( ) ( )}K K Na Na L L

dv
I g n V E g m h V E g V E

dt C
        (9) 
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( ( ) ) / ( )n

dn
n V n V

dt
   (10) 

( ( ) ) / ( )m

dm
m V m V

dt
   (11) 

( ( ) ) / ( )h

dh
h V h V

dt
   (12) 

 

2.1.5 Difference equation solution: Runge-Kutte versus Euler  

 

The Runge-Kutte method is a numerical solution algorithm for difference equations. It provides more 

precise results when compared with ordinary Euler algorithms. Precise of simulation is very important if 

the network has a recurrent structure.  The recurrent structure is very common in real neural networks on 

brain’s cortex level. In the Euler algorithm, we simply use the current status as the difference and 

multiply the value with a time interval to calculate the increment of state. The Runge-Kutta method uses a 

combination of multiple calculations to eliminate the high-order error terms. For example, if we need to 

examine the equation:  

                                                                                       (13) 

 

In four-order RK algorithm, we divide the state update process into four steps as follow: 

 

                                                       (14) 

 

It is clear that because we divide the update of difference equation into several steps, the RK algorithm 

requires more FLOPs to compute the state of neuron. Then difference of FLOPs between Euler and RK 

simulation is shown in Table 2.  

 

2.2 Hierarchical Temporal Memory Model 

 
George and Hawkins developed an initial mathematical model [34] of the neocortex based on the 

framework described by Hawkins in [35]. Their model utilizes a hierarchical collection of nodes that 

employ Pearl’s Bayesian belief propagation algorithm [36]. As shown in Figure 1, each node has one 

parent and multiple children. Input data is fed into the bottom layer of nodes (level 1) after undergoing 

some preprocessing. After a set of feed-forward and feedback belief propagations between nodes in the 

network, a final belief is available at the top level node. This belief is a distribution that indicates the 

degree of similarity between the input and the different items the network has been trained to recognize. 

The model is trained in a supervised manner by presenting the training data multiple times to the bottom 

layer of nodes. 
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Figure 1. Network structure of HTM model implemented. 

 

The computational algorithm within each node of the model is identical and follows equations (15) 

through (20) below. The nodes send belief vectors to each other (π and λ) and utilize an internal 

probability matrix, Pxu (generated in an offline training phase).  

 

 child inproduct ichildi ]][[][   (15) 

Fxu[j][k] = in[j]  Pxu[j][k]  product[k] (16) 
mrow[j] = max(mrow[j], Fxu[j][k]) (17) 
mcol[k] = max(mcol[k], Fxu[j][k]) (18) 
out[j] = mrow[j] / in[j] (19) 
out[child][k] = mcol[k] / in[child][k] (20) 

 

2.3 Dean Model 

 

Thomas Dean proposed a hierarchical Bayesian model [37] based on the work by Lee and Mumford [38] 

to model the invariant pattern recognition seen in the visual cortex. The example model examined in this 

study consists of a hierarchy of nodes with each node connected to a set of lower level nodes. There is a 

degree of overlap in the receptive field of the nodes in some of the layers (such as layer 2 in Figure 2). 

Inputs to the layer 1 nodes are processed through a set of feed-forward and feedback processing steps 

through the network. A final inference based on this input is produced by the top layer node. The model is 

trained in a supervised manner by presenting a set of training data to the bottom layer of nodes multiple 

times. 

 
Figure 2. A simple example of Thomas Dean’s hierarchical Bayesian network model. This network can 

be divided into three subnets as shown. The nodes are numbered with the subnets they belong to. 

 

Dean examined several approaches to process the hierarchical Bayesian network structure. The approach 

examined in this study is the one proposed by Dean where the network is decomposed into a set of 

subnets, and each subnet is evaluated individually. This decomposes the full tree into multiple 

subcomponents, thus simplifying the overall evaluation. A subnet can be defined as a node, its parents, 

and all the children of those parents in the same level as the original node, and as shown in Figure 2, a 

node can belong to multiple subnets. Each subnet produces evidence to send to the next layer of subnets. 

 

 

 

 

1 1 1,2 1,2 1,2 2 2

2,31,3 1,2,3

3

Subnet 2Subnet 1

Layer 1

Layer 2

Layer 3

11 11 1,21,2 1,21,2 1,21,2 22 22

2,32,31,31,3 1,2,31,2,3

33

Subnet 2Subnet 1

Layer 1

Layer 2

Layer 3
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Algorithm 1. Processing in the Dean model 

 1.  Preprocess inputs: find mixture of Gaussian for each 4×4 pixel patch 

 2.  Repeat till output convergence: 

 3.   Upward pass (from layers 1 to 3): 

 4.   For all subnets in a layer: 

 5.    Incorporate evidence from below (get image evidence or lambda values) 

 6.    Process junction tree (collecting and distributing evidence) 

 7.    Calculate evidence to send to upper layer of subnets (lambda values) 

 8.  Downward pass (from layers 3 to 1): 

 9.   For all subnets in a layer: 

 10.    Incorporate evidence from above (get pi values) 

 11.    Process junction tree (collecting and distributing evidence) 

 12.    Calculate evidence to send to lower layer of subnets (pi values) 

 13. Read output 

 

In order to process a subnet, it is first converted to its equivalent junction-tree representation. The 

Lauritzen and Spiegelhalter's junction-tree algorithm [39] is utilized for exact inference in the tree. 

Algorithm 1 lists the set of steps involved in the recognition phase of the Dean model. 

 

2.4 Cellular Simultaneous Recurrent Network Model 

CSRNs are a recent class of biologically inspired algorithms that have several significant advantages over 

other neural algorithms for distortion invariant image recognition. Firstly, they are more capable than 

regular recurrent networks (RNNs), such as the Elman network, in capturing temporal information. 

Secondly, CSRNs combine the ideas in cellular neural networks (CNNs) with RNNs to drastically reduce 

the number of adjustable weights in the network. CSRNs have been proven more effective and flexible 

than intricately hand crafted solutions at addressing a wide range of challenging problems, such as path 

optimization for maze traversal [40] and distortion invariance in image recognition. The same cannot be 

said of traditional specialized image recognition algorithms – for instance traditional face recognition 

algorithms cannot be applied to optimization problems.  

In [41], CSRNs were applied to pose invariant face recognition, a task where traditional computer vision 

methods underperform, and were shown to achieve an overall 77% face recognition rate using the 

VidTIMIT database. Although powerful in image processing capabilities, CSRNs have high 

computational demands with increasing input problem size. In order to process large databases, efficient 

processing approaches for implementing CSRNs need to be investigated.  

In this work, the CSRN cell element structure for the face recognition used the generalized multi-layered 

perceptron (GMLP) model is shown in Figure 3.  This GMLP model works in two layers. The first layer 

acts as an input layer. It is composed of a bias node, two external input nodes, four neighbor input nodes  

corresponding to up, down, left, and right cell neighbor outputs, and 10 recurrent nodes. The second layer 

acts as a hidden layer consisting of only the recurrent nodes. 

The nodes are fully connected between the first and second layer. Those connections are also weighted 

with the weights associated with the bias node (gray) denoted as ww and the weights associated with the 

remaining first layer nodes (black) denoted as W. In forming the overall network cell element output, the 

second layer node output values are also aggregated as input from one node to all of the succeeding 

nodes. Ultimately, the last second layer node will receive all preceding second layer node outputs 

multiplied by a weight from W along with the weighted outputs from the first layer nodes as input.  The 

output of the last second layer node is multiplied by a weight scaling value Ws and that is observed as the 

output of that particular CSRN cell element. 
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Ren et al.[42] mapped a single CSRN to a single pattern vector component. The CSRN processes inputs 

as a 2D grid of a pattern vector component’s temporal signature values. Each CSRN cell element receives 

a different temporal signature value as input from that pattern vector. Therefore, if a face sequence has 

been sampled 10 times resulting in nine temporal signatures, then a 3×3 grid of the temporal signature 

data corresponding to one component in the pattern vector is submitted to a CSRN in the network for 

processing. 

In the case of this application, each CSRN cell element uses a 27 node GMLP model. The GMLP model 

has two layers where the first layer consisted of 17 nodes (one bias, two external inputs, four neighbor 

nodes, and 10 recurrent nodes) and the second layer consisted of 10 nodes (10 recurrent nodes). The bias 

node feeds a constant value of one into the input layer.  The first of the two external inputs become the 

value of the temporal signature pattern vector. The second external input is set to one whenever the 

pattern vector value equals zero and is otherwise set to zero. 

 

Figure 3. Two layer GMLP network. One GMLP network is used for each cell in the CSRN. Nodes are 

fully connected between layers.  

CSRNs can be trained several ways, but the method which Ilin et al. [40] observed to have the best results 

was multi-stream extended Kalman filter (MSEKF) training technique. MSEKF works mainly using the 

following four equations: 

 
T

t t t t tC K C R    (21) 

1T

t t t tG K C    (22) 

1t t t tw w G    (23) 

1t t t t t tK K GC K Q     (24) 

 
This is where the variables for time iteration t represent the following: Γt is the residual covariance, Ct is 

the state observation matrix Jacobian, Kt is the predicted estimate covariance, Rt is the observation noise 

covariance, Gt is the optimal Kalman gain, αt is the measurement residual, wt is the predicted state, and Qt 

is the process noise covariance. For training, wt represents the shared weights for the CSRN (W and ww 

from Figure 3). Also, Ct and αt are computed based upon wt. 

Training of a single CSRN using MSEKF for the face recognition problem can broken down into four 

stages as outlined in Algorithm 2. The CSRN feedforward pass (CSRNFF) is for processing a data sample. 

During CSRNFF, the data sample is propagated up through the GMLP contained within the CSRN cells. 

The output of CSRNFF is used as the overall output as well as to compute αt. The CSRN feedback pass 
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(CSRNFB) is used mainly for helping computing Ct. During CSRNFB, the outputs of CSRNFF are 

propagated back down through the GMLP contained within the CSRN cells. CSRNFF and CSRNFB both 

iterate over a predefined interval. 

Algorithm 2. Pseudocode for CSRN MSEKF training. 

 

Once the outputs of both the CSRNFF and CSRNFB stage have been obtained, Ct and αt can be computed 

(CCA). After Ct and αt are computed, Kt+1 and wt+1 can be computed (UWK in Figure 13) which consists 

of performing Equations (21) – (24). To train a network of CSRNs, this process must be done for all 

CSRNs within the network. Likewise for testing, a network of CSRNs only needs to perform the CSRNFF 

stage for their respective data samples. 

 

2.5 Radial Basis Function (RBF) neural networks 
 

Robot calibration is an important method to improve robot accuracy. Robot calibration typically consists of 
determining the actual values of kinematic and dynamic parameters of the robot [43]. However, the design 
of some industrial robots and their controllers do not allow the user to change some of those calibration 
parameters.    

 

Figure 4. The MOTOMAN MA1400 Manipulator [44]. 

 

In this study, we introduce the notion of filtering as an effective means to calibrate an industrial 

manipulator. We utilize the MOTOMAN MA1400 manipulator and the NX 100 controller [44] for our 
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experimental effort. Figure 4 depicts the MOTOMAN MA1400 manipulator. The MA1400 manipulator 

has six revolute joints (i.e., 6-DOF manipulator). Our method makes use of a Radial Basis Function 

(RBF) based neural network for calibration as shown in Figure 5.  The RBF network is used to find the 

functional relationship between actual or measured position data points (physical position coordinates of 

the end-effector deduced using an external measuring device) and desired position data points. Note that 

the discrepancy between the actual and desired position data points is due to de-calibration. Our approach 

shows an accuracy/precision improvement of about 88%. 

 

Figure 5. The RBF neural network structure. 

 

3. Acceleration 

3.1 Spiking Neural Networks 

Four versions of an image recognition network were developed corresponding to the four spiking models 

studied (see Algorithm 3). The main between these versions difference was in the equations utilized to 

update the potential of the neurons. For each model, two subversions were developed – one for Euler 

version of the update equations and one for the Runge-Kutta version. The network consisted of two 

layers, where the first layer acted as input neurons and the second layer as output neurons. Input images 

were presented to the first layer of neurons, with each image pixel corresponding to a separate input 

neuron. Thus the number of neurons in the first layer is equal to the number of pixels in the input image. 

Binary input images were utilized in this study. The number of output neurons was equal to the number of 

training images. Each input neuron was connected to all the output neurons. A prototype of this network 

is shown in Figure 6. A set of 48 training images were developed to train the network (see Figure 7). 

 

 

Figure 6. Network used for testing spiking models. 
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Algorithm 3. The testing phase of the spiking neuron image recognition model 

 

1.  Repeat till a level two neuron fires: 

2.   For all level one neurons: 

3.    Read input current 

4.    Calculate neuron membrane voltage 

5.    If neuron fires, upgrade the level 2 input current 

    —Barrier— 

6.   For all level two neurons: 

7.    For each non zero number of firing from level one (from previous cycle), 

8.     calculate total level 2 input current 

 9. Calculate neuron membrane voltage 

  10.    If neuron fires, output is produced 

        —Barrier— 

 

 

 

      

      

      

      

      

      

      

      
 

Figure 7. Training images utilized. There are a total of 48 24×24 pixel images. 
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The networks were scaled to large sizes for testing on the different platforms. In this scaling, the number 

of level 1 layer neurons was increased, while the number of level 2 neurons were held constant. The size 

of the input images were scaled with the number of level 1 neurons. Table 3 shows the networks tested. 

Table 3. Networks implemented on the Opteron cluster. 

Size of input 

image 

Level 1 

neurons 

Level2 

neurons 

Synapses 

3072×3072 9,437,184 48 452,984,832 

6144×6144 37,748,736 48 1,811,939,328 

9216×9216 84,934,656 48 4,076,863,488 

12288×12288 150,798,400 48 7,238,323,200 

15360×15360 235,929,600 48 11,324,620,800 

 

The algorithms were parallelized by splitting the level 1 neurons over each of the cores available. The 

Cell processor requires some specific code optimizations to achieve high performance. The code 

optimizations described for the Opteron processors (vectorization, and minimizing thread creation) are 

essential to obtain high performance on the Cell architecture. Several other explicit code changes are 

needed as well, including branch elimination and double buffering. Since the SPEs in the Cell processor 

do not contain any branch prediction units, it is essential to reduce the number of branch instructions in 

the code run on the SPEs. This was accomplished by unrolling loops and in-lining most function calls. 

Given that data transfers to the SPEs on the Cell are explicitly programmer controlled, double buffering 

was needed to ensure that data transfers took place in parallel with data evaluation. In this process, once 

the data required for the first iteration of a loop has been transferred, the first iteration of the loop can be 

evaluated simultaneously with the DMA data transfer for the second iteration of the loop. Mailboxes were 

used for synchronization between SPEs. In case of the GPGPU implementation, each neuron was 

processed as a separate thread. Figure 8 shows the steps involved in the execution of the network on a 

cluster of GPUS.  
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Figure 8. Steps involved in the execution of the spiking neural network on a cluster of GPUS. 

 

3.2 HTM Model 

3.2.1 Network parallelization 

 

All the nodes in a particular layer are independent of each other and can therefore be evaluated in parallel. 

Therefore in this study, the HTM network was parallelized by assigning groups of nodes in a particular 

layer to separate processing cores. Nearly all computations in equations 15 through 20 are element-by-

element matrix multiplies and divides (thus there are no addition operations needed). In order to 

accelerate the computations, the matrix values were converted into logarithmic form so that more 

expensive multiplies and divides could be replaced by less time consuming additions and subtractions. 

The comparisons involved in equations 17 and 18 could still be performed in logarithmic form and were 

thus unaffected by this change. 
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3.2.2 Pxu matrix compression and model vectorization 

 

The Pxu matrix in equation 16 is large enough that it needs special consideration when examining the 

vectorization of the nodes. These matrices themselves are extremely sparse, being made up almost 90% 

zeroes. The computations in equations 15 through 20 are element-by-element rather than dot products. 

Compressing the Pxu matrices can significantly speed up the algorithm computation by skipping over 

strings of zeros. Thus any vectorization approach needs to consider the compression of the Pxu matrix. 

Two possible approaches to utilize vectorization for the George Hawkins model were examined. The first 

involves vectorizing the code to process a single image more efficiently. The second approach involves 

vectorizing the code to process multiple images simultaneously.  

 

Single image vectorization: In this case, equations 15 through 20 need to be vectorized for a single image. 

Equations 15, 19, and 20 can be vectorized easily if the variables for the equations are padded to be 

multiples of the vector width. Equation 16, however, cannot be vectorized as easily, given that the Pxu 

matrix is sparse. We examined the feasibility of block compression [45] of the Pxu matrix to vectorize the 

computations in equation 16. In order to be efficient, there should be on high density of non zero elements 

in uncompressed blocks. 

 

Two possible approaches for block compression are to compress along the rows or along the columns of 

the target matrix. Tables 4 and 5 show the density of non zero blocks for both row and column wise 

compression with block sizes of 4 and 8 respectively. Several network sizes are examined. The results 

indicate that with a vectorization factor of four, the average Pxu uncompressed block contains less than 

two non-zero elements per block, while a vectorization factor of eight yields at most 2 elements per block 

on average. Thus vectorizing the equations for single images is not very efficient.  

 

 

Table 4. Block compression of Pxu with a block size of 4. 
 Compression along rows Compression along columns 

Network 

Size 

Percentage 
of non-zero 

blocks 

Average non-zero 
elements in non-

zero blocks 

Percentage of non-

zero blocks with 

more than two 
non-zero elements 

Percentage 
of non-zero 

blocks 

Average non-zero 
elements in non-

zero blocks 

Percentage of non-

zero blocks with 

more than two 
non-zero elements 

81 3.84 1.2531 20.06 3.97 1.2605 17.72 

181 5.17 1.3035 22.82 5.02 1.3891 24.89 

321 6.23 1.3935 27.47 5.96 1.4940 28.79 

501 7.41 1.4624 30.53 6.72 1.6483 34.48 

721 7.82 1.4848 31.4 7.12 1.6659 35.02 

 

 

Table 5. Block compression of Pxu with a block size of 8. 
 Compression along rows Compression along columns 

Network 

Size 

Percentage 
of non-zero 

blocks 

Average non-zero 
elements in non-

zero blocks 

Percentage of non-

zero blocks with 

more than two 

non-zero elements 

Percentage 
of non-zero 

blocks 

Average non-zero 
elements in non-

zero blocks 

Percentage of non-

zero blocks with 

more than two 

non-zero elements 

81 6.44 1.4587 27.89 6.97 1.4374 22.74 

181 8.32 1.5837 32.66 8.38 1.6506 29.77 

321 9.75 1.7418 36.69 9.73 1.8270 33.35 

501 11.31 1.8754 39.91 10.75 2.0571 38.98 

721 11.88 1.9125 40.38 11.36 2.0851 39.45 
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Multiple image vectorization: The computations for any input image are identical throughout the network 

because each node in the network processes any input given in exactly the same manner. Therefore 

multiple images can also be evaluated in parallel using vectorization. In this case any compression 

scheme can be adopted for the Pxu matrices. We compress the matrix by providing a coordinate for each 

nonzero value in the Pxu matrix. Two approaches for dealing with this are to treat the Pxu matrix as a linear 

vector (see Figure 9(b)) or to treat it as a two dimensional matrix (see Figure 9(c)). In the former case, 

only one coordinate is needed per nonzero element, while in the latter case, two coordinate values are 

needed. The first approach results in a higher compression level and thus lower data transfer time. It 

however does require the generation of a two dimensional (x,y) coordinate for each linear coordinate (for 

equation 16). Our studies indicate that a two dimensional representation provides the lowest overall 

execution time. For example, for the 721 node HTM model, the single dimensional approach required 

18.26 ms on a Playstation 3, while the two dimensional approach required 10.96 ms. 

 

The two dimensional representation utilized is very similar to the Yale Sparse Matrix Format. The Yale 

format utilizes three vectors: a list of the non-zero elements (A), the column index of each non-zero 

element (JA), and the index in vector A which correspond to the first non-zero element of each row (IA). 

In our case, the last vector is replaced with a row index of each element. The last vector of Yale format 

(IA) would make loop unrolling more difficult, as there would be extra overhead in calculating the row 

index needed in the calculations (from vector IA). Our tests show that the Yale format leads to at most 

20% extra compression of the matrices compared to our approach, but increased runtime by 19% due to 

the overhead mentioned. 
 

(a) 

1 0 2 0 0 

0 4 0 0 0 

0 6 0 0 0 

1 0 0 0 0 

0 0 0 0 9 

(b) 

1 0 2 2 4 

6 6 11 1 15 

9 24    

     

     

1 0 0 2 0 

2 4 1 1 6 

1 2 1 3 0 

9 4 4   

     

(c) 

Figure 9. Restructuring the Pxu matrix. (a) Original Pxu Matrix. (b) Single dimensional 

position representation, [p :value, x :coordinate].  (c) Two dimensional position 

representation, [p :value, x,y : coordinates] 

 

3.3 Dean Model 

Algorithm 4 shows the overall set of steps in processing the Dean model. The first step is to preprocess 

the input image (line 1). For any given input image, the network is processed through multiple bottom-to-

top (line 3) and top-to-bottom (line 8) passes. In each pass, all the subnets for a certain layer are processed 

before moving to the next layer. The process has to be repeated at least twice to check for output 

convergence (line 2). The output is generated by the top level subnet during the upward pass. The 

processing inside a subnet is similar for both the upward and downward passes (described by lines 5-7 for 

the upward pass and lines 10-12 for the downward pass).  

 

In order to process a subnet, it is first converted to its equivalent junction-tree representation (see Figure 

10). The subnet to junction tree mapping is carried out during training and does not have to be redone 

during inference (as the mapping is reused). A junction-tree consists of a set of nodes called cliques, 

where each clique is based on a collection of nodes in the original subnet. Each clique has a potential 

based on the conditional probability tables of the nodes in the subnet it is composed of.  The connection 

between two cliques is called a separator and has a separator potential based on a reduced form of one of 

the clique potentials (with the clique chosen being the one sending information to the other). The 
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operations in the junction tree processing consist primarily of element by element multi-dimensional 

matrix adds, multiplies, and divides.  

 

Algorithm 4. Processing in the Dean model 

 1.  Preprocess inputs: find mixture of Gaussian for each 4×4 pixel patch 

 

 2.  Repeat till output convergence: 

 3.   Upward pass (from layers 1 to 3): 

 4.   For all subnets in a layer: 

 5.    Incorporate evidence (from below) and initialize junction tree 

 6.    Process junction tree (collecting and distributing evidence) 

 7.    Calculate evidence to send to upper layer of subnets (lambda values) 

 8.  Downward pass (from layers 3 to 1): 

 9.   For all subnets in a layer: 

 10.    Incorporate evidence (from above) and initialize junction tree 

 11.    Process junction tree (collecting and distributing evidence) 

 12.    Calculate evidence to send to lower layer of subnets (pi values) 

 

 13. Read output 

  

 

 

(a) 

 

(b) 

Figure 10. A subnet and its corresponding junction tree. Part (a) shows a subnet similar to the lowest level 

subnets in Figure 2 (nodes are labeled a through g). Part (b) shows the corresponding junction tree of this 

subnet. Cliques are labeled with the corresponding nodes in the subnet that they are composed of.  

 

The processing inside a subnet takes place through the following three parts: 

 

Part 1 (lines 5 and 10): Incorporate evidence and initialize junction tree. All the nodes in the network 

receive π or λ belief values (soft evidence) from the subnets above or below them respectively. All the λ 

values are initialized to one. Additionally, the bottom layer nodes see the preprocessed input image as 

hard evidence (E). The junction tree corresponding to a subnet has its clique potentials ( C ) initialized 

based on the subnet node potentials (P(Xi)) and the input evidence: 

 

C  = 
i

(P(Xi|E)   λi   kC,i), where kC,i = 0 or 1  

The values of kC,i are determined through the training process (here C represents the clique being 

examined). A kC,i value of zero denotes that the potential of the node i in clique C should not be 

a b

d fc e g

a b

d fc e g

a,c

a,d

a,b,eb,f b,g

a,c

a,d

a,b,eb,f b,g
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considered while calculating the clique potentials. In the downward pass (line 10), the potential of upper 

nodes in each subnet get their potentials replaced by the π belief received from above (P(X)= πX). 

 

Part 2 (lines 6 and 11): Process junction tree. The Lauritzen and Spiegelhalter's junction-tree algorithm 

[39] is utilized for exact inference in the tree. The junction tree derived from a subnet is evaluated in a 

single bottom-to-top (collect evidence) and then top-to-bottom pass (distribute evidence). 

 
(a) 

 
(b) 

Figure 11. Processing in a junction tree using the Lauritzen Spiegelhalter algorithm. Part (a) shows the 

evidence being collected from children to a parent node. Part (b) shows the evidence being distributed 

back to the children after the parent has been updated.  

  

In the collect evidence pass, separator potentials (
iS ) are first calculated based on the child clique 

potentials (
iC ) as shown in equation 25. The parent clique potential is then updated ( P ) based on the 

separator potentials (
iS ) as shown in equation 26. This process is illustrated in Figure 11 (a) and 

continues recursively until the root is updated. 


ii

ii

SC

CS

\

    (25) 


i

SPP i
 *

  (26) 

The distribute evidence pass starts once the root clique in the junction tree has been updated through the 

collect evidence phase. In this pass, new separator potentials (
*

iS ) are calculated by reducing the 

potentials of the parent clique (as shown in equation 27). The children are then updated using both the old 

and updated separator potentials (
iS  and 

*

iS  respectively as shown in equation 28). The updated values 

are propagated downward recursively until all leaf cliques are updated. The process is illustrated in Figure 

11 (b). 
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Part 3 (lines 7 and 12): Calculate evidence to be sent. Evidence to be sent to the next layer of subnets is 

calculated in this phase. While going through the upward pass (line 7), these are the λ values, and while 

going down (line 12) these are the π values. Lambda values are updated based on equation 29. Here P(I) 

is a prior distribution of the training classes generated during the training process, while P(E) is the sum 

of all the clique potentials in the junction tree. During the downward pass, π values are generated based 

on equation 30.  
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if kc,x = 1, λX =  ( P(E) / P(I) )   
CX

C

\

    (29) 

if kc,x = 1, πX = 
CX

C

\

      (30) 

 

3.3.1 Network parallelization 

 

The nodes in a network in the Dean model can be grouped into subnets and the network would be 

processed by evaluating subnets rather than individual nodes. Also, as shown in the same section, each 

subnet was evaluated by processing its junction-tree representation. Each node of the junction tree is 

called a clique and has a clique potential associated with it. This potential is derived by combining the 

conditional probability tables of each node in the subnet that forms the clique (these tables are multi-

dimensional with a maximum of five dimensions in our study).  

 

There are two possible approaches to parallelize the evaluation of the Dean model: the first is at the 

subnet granularity (Figure 12a) and the second is at the clique granularity (Figure 12b). This latter 

approach will yield a higher level of parallelism as there are more cliques than subnet (given that a subnet 

can be decomposed into multiple cliques). Dependencies between the cliques may limit the number of 

cliques that can be evaluated in parallel at any given level within a junction tree. In this study we 

evaluated both approaches and found that for the networks examined, the clique based approach had a 

better utilization of the available processing cores. In both approaches the order in which the subnets or 

cliques will be evaluated is predetermined and does not vary with the network inputs.  
 

 

(a) 

 

(b) 

Figure 12. Parallelization of the Dean model by (a) subnets (b) cliques onto multiple cores of a processor. 

 

 

3.3.2 Vectorization 

 

As with the HTM model, there are at least two approaches to vectorization for this model: vectorizing the 

operations for a single image and vectorizing to evaluate multiple images simultaneously. In the former 

case, matrix operations would have to be vectorized as a large portion of the junction tree evaluations 

consist of multi-dimensional matrix operations. In the networks examined, these matrices had up to five 

dimensions with each dimension being up to 16 elements wide. The matrix operations included element-

by-element matrix multiplies and divides. There were also matrix dimension reductions which essentially 
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were summations along a given dimension of the matrix. Not all of these operations can be vectorized 

efficiently, particularly as the matrix dimensions were of small widths (that were not always multiples of 

the vectorization factor). 

 

Since the model evaluates any input data in precisely the same way, multiple inputs can be evaluated in 

parallel through vectorization. In case of a vectorization factor of four, there will be four versions of each 

matrix (one for each image). The same set of operations will be carried out for all four versions of each 

matrix. In this case vectorization can be applied to almost 100% of all the operations.  

 

3.4 CSRN 

To perform the CSRN processing, we want to take advantage of both the task-level and data-level 

parallelism in the computations. As previously noted, we took advantage of the task-level parallelism 

within the CSRNFF and CSRNFB stages of the application and the data-level parallelism in the CCA and 

UWK stages. For the CSRNFF and CSRNFB stages, we map the operations of each CSRN cell element 

(GMLP) to a thread block. Additionally, we map the operations of each node within the GMLP to a 

thread within the processing block. For the CCA and UWK stage computations, we map the matrix/vector 

operations to a grid, such that each element within the matrix/vector operations would be processed by a 

thread. The matrix inversion of Γt is performed using a parallel Gauss-Jordan elimination technique on the 

GPGPU adapted from [46].  

We observed that we can dramatically reduce the number of accesses to global memory in our GPGPU 

implementation of Gauss-Jordan elimination. Given an initial matrix (matrix to be inverted), it is 

appended with the Identity matrix. After an iteration of Gauss-Jordan elimination, only the shaded 

columns are modified. This is because of the zeros present in the remaining columns offer no change to 

the unobserved rows. Using this knowledge, we modified our GPGPU Gauss-Jordan elimination routine 

to only access global memory during the times in which there will be modification to the unobserved 

rows. By doing this, we were able to decrease the amount of time necessary to compute UWK 

computation stage by approximately 57 %.  

We also observed another method to further reduce the number of global memory accesses. During the 

computation of the Gauss-Jordan elimination routine, the observed row is normalized by the diagonal 

value every iteration. This normalization actually can be postponed until after all iterations have been 

completed. We modified our GPGPU implementation to normalize only after all iterations of the Gauss-

Jordan routine have completed. By doing this, the number of memory global accesses during UWK stage 

were reduced which resulted in a reduction in the computation time.   

Figure 13. Flow chart for GPGPU CSRN mapping for MSEKF training. The shaded regions 

representation processing modules placed on GPGPU. 
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Figure 13 shows a representative flow chart for the GPGPU operations for training one CSRN within the 

network. The flow chart shown in Figure 13 would be used to train all CSRNs within the network for 

their respective inputs. 

3.4.1 Using Multiple GPGPUs 

 
Given the amount of inherent parallelism within the face recognition application, we wanted to more 

effectively take advantage of this within our processing. Therefore, we increase the amount of parallelism 

within our implemented CSRN based face recognition application by distributing the CSRN computation 

across multiple processing cores and/or GPGPUs.  

For the multi-core and multi-GPGPU implementations, we use the Message Passing Interface (MPI) 

protocol to communicate between various multiple CPUs/GPGPUs. In this fashion, we elected to separate 

operations into one master process and multiple worker processes. The master process directed the 

operations of the worker processes while the worker processes performed the CSRN network 

computations. The number of CSRNs that each worker process computes varies depending upon the 

number of worker processes available and the number of CSRNs that are within the CSRN network. The 

master process will divide the work among the worker processes. The master process reads in the input 

and generates a work schedule for all worker processes. Then the master process uses MPI to send a 

personalized schedule as well as necessary inputs to each worker process. Once a worker process receives 

its input, it can begin operation. Once finished, the worker process will signal the master process. The 

master process will then retrieve the output data from the worker process. If more CSRN data needs to be 

processed, the master process will send the worker task a new work schedule as well as more CSRN data. 

The master process will continue in this fashion until all data has been processed and collected.  In this 

fashion, both training and testing is performed.  

In the multi-core implementation, a single core was used to perform the operations of a worker process. In 

the multi-GPGPU implementation, the worker process was performed by a single GPGPU using a core to 

transmit data via MPI to the master process and other worker processes. The system that we used was the 

Condor cluster.  Access to the Condor cluster was provided by Air Force Research Laboratory (AFRL) 

Rome Research Site.  

3.5 Implementation of RBF network on GPU Platform 

 
3.5.1 The Cholesky decomposition algorithm 
 
We need to invert the matrix multiplication GTG to calculate the output/linear-weights of the RBF neural 
network, a relatively time consuming process. Since the resultant matrix is symmetric and positive definite, 
it appears that the Cholesky decomposition [47] algorithm is applicable for the inverse operation. For a 
given generic matrix A and its sub-matrices Aij, the Cholesky decomposition algorithm can be described as 
follows: 
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   (31) 

 

The Cholesky decomposition algorithm can be implemented recursively and has been found to 

significantly reduce the computation complexity of the inversion process. In our experiment, we have 

employed the CUDA code developed by Volkov et al. [48] for Cholesky dcomposition. 

In our experiment, we take advantage of the GPU’s architecture by parallelizing some facets of the 

presented algorithm. The algorithm running on the GPGPU will be divided into thousands of sub-tasks and 

distributed to thousands of threads [49]. For calculating the distance matrix, we let each thread compute 

one element of the matrix. For the matrix operations (i.e., matrix multiplication for the inversion process 

using Cholesky’s decomposition), we let each thread calculate one element of the corresponding output 

matrix. 

Figure 14 shows the flow chart of our program. The flow chart describes a complete procedure of RBF 

network training on GPGPU with cross-validation (at certain spread value).  The procedure can be 

described as follow: step 1, the program transfers the position data points from the host memory (i.e. 

memory of CPU platform) to the device memory (i.e. the memory of GPU platform). Step 2, to meet the 

requirement of cross validation algorithm, the program will divide the input position data points into two 

separate data sets: “the training dataset” and “the testing dataset”. Step 3, after determining the training 

and testing datasets, the program will calculate the distance matrix based on the parallel algorithm 

mentioned above. Step 4, when the distance matrix is ready, the program will use the parallel matrix-

multiplication algorithm to generate the GGT matrix. Step 5, the program will continue to invert the GGT 

matrix using Cholesky decomposition. Step 6, when the inverse operation is finished, the inverted matrix, 

the matrix G, and the output vector are multiplied using a parallel matrix multiplication algorithm. As 

discussed above, this operation will optimize the linear-weights of the RBF network. Step 7, the program 

will set “testing dataset” as the input position data points and start the validation by calculating the errors 

(the difference between the desired position and the RBF network’s outputs). The program will repeat 

steps 2 to 7 based on new “training dataset” and “testing dataset” until the 7-fold cross-validation is 

completed. After the cross validation procedure is finished, we can calculate the average errors and set the 

average errors as the error of RBF network on this spread value. 
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Figure 14. Flow chart of GPGPU implementation. 

 

4. Acceleration results 
 

4.1 SNN 

 

4.1.1 Recognition of noisy images 

 

The four networks were tested with all 48 training images and were able to recognize all the input images 

correctly. Figure 15 lists an additional set of test images (labeled 1 to 10) that were applied to the two 

networks. These include some original and partially modified versions of the first four training images 

(‘A’, ‘B’, ‘C’, and ‘D’). The images were applied sequentially to the inputs of all the four models. The 

membrane potentials of the level two neurons for the four models corresponding to these test images are 

shown in Figure 16. In all cases, a membrane potential of above 30 mV represented a neuron firing (and 

thus recognition). The Wilson and Morris-Lecar models were able to recognize all of the images except 

for images 5 and 6. These images were heavily modified versions of the training image ‘A’. The 

Izhikevich and Hodgkin-Huxley model are able to recognize all images except for image 6. The spikes 

produced by image 6 did not cross the 30 mV threshold needed for a proper recognition. Based on the 

model parameters utilized, the Izhikevich, Wilson, Morris-Lecar and the Hodgkin Huxley models 

required at most 14.00 ms,  3.75 ms, 0.43 ms and 1.20 ms of simulation time respectively to produce 
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output spikes at the level two neurons. The input images were presented to the models as inputs for these 

simulation times for the respective models.  

 

  

     
(1) (2) (3) (4) (5) 

     
(6) (7) (8) (9) (10) 

Figure 15. Additional test images. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 16. Level 2 neuron membrane potentials for a serial presentation of the images in Figure 8 for (a) 

Izhikevich, (b) Wilson, (c) Morris-Lecar, and (d) Hodgkin-Huxley models. The red line represents the 

membrane potential of the neuron for detecting an ‘A’, blue for ‘B’, green for ‘C’, and cyan for ‘D’.  
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4.1.2 Run time performance 

 

Figure 17 shows the throughput in neurons per second of the spiking neural network models on different 

computing platforms for both the Euler and the Runge-Kutta methods. As expected from the flops per 

neuron shown in Table 1, it is seen that the Izhikevich model had the highest throughput while the 

Hodgkin Huxley model is slowest. In all cases, the GPU provided the highest performance. The Euler 

model was faster than the Runge Kutta method. Figure 18 shows the performance of the models on the 

AFRL PS3 cluster.  

 
(a) 

 
(b) 

 
(c) 

  

(d) 

Figure 17. The Throughput of different platform at different image size and node number 
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(a) 

 

(b) 

 

(c) 

Figure 18. Scaling of the model on the AFRL PS3 cluster. 

 

 

1.0E+05

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

0 50 100 150 200 250 300

PS3s

N
e
u

ro
n

s
/s

e
c

Izhikevich
Wilson
Morris-Lecar
Hodgkin-Huxley

0

50

100

150

200

250

0 50 100 150 200 250 300

PS3s

Number of synapses (x1E8)
Number of neurons (x1E7)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

0 50 100 150 200 250 300

PS3s

M
a
x
im

u
m

 n
u

m
b

e
r 

o
f 

n
o

d
e
s

DISTRIBUTION A: Distribution approved for public release.



27 

 

4.2 HTM and Dean models 

 

4.2.1 Speedup 

 

Figures 19 and 20 present the performance of the HTM and Dean models respectively on the architectures 

examined. The speedups of the single core and multicore implementation of the models over a serial PPU 

implementation on the Cell processor are shown. The single core performances of the Cell SPU and Xeon 

are higher than the Cell PPU, while the performance of the Sun UltraSPARC T2 Plus processor was 

lower than on the PPU (here the UltraSPARC ran only one thread on one core). From these figures it is 

seen that the parallel implementations of the models provide a significant performance gain over their 

serial implementations. This is mainly due to the use of multiple cores and the use of vectorization on the 

Intel and Cell architectures. There is sufficient parallelism in the models examined, so that for all of the 

platforms, use of more cores provided higher speedups. Our experiments showed that increasing the 

number of threads on the Intel Xeon blade beyond 8 provided no further improvement in performance. 

The Dean model produced a higher speedup than the HTM model for all the platforms examined. It is 

possible that the larger number of training categories in the HTM model produces larger potential tables, 

which translates to more data transfers, thus limiting its speedup over the Dean model. 

 

For both models, it is seen that the Cell processor outperformed both the Intel Xeon and the Sun 

UltraSPARC T2 Plus processors. The Playstation 3 with 6 available SPU cores outperforms the Intel 

Xeon processor (with 4 cores) by about 1.9 times for the HTM model and by 2.4 times for the Dean 

model. As a result the Playstation 3 also outperformed the blade with two Intel Xeon processors. The 

speedup of the Cell processor on the QS20 with all 8 SPU cores available over a single Intel Xeon 

processor was about 2.3 times for the HTM model and about 3 times for the Dean model. Utilizing both 

Cell processors on the QS20 (16 threads) provides only a 11% performance gain for HTM model and a 

22% performance gain for the Dean model over one Cell processor (8 threads). We believe this is due to 

the memory accesses becoming a bottleneck as calculation times become close to data access times (as 

shown in Table 6). This effect is not seen on the Sun processor when going from 8 to 16 threads as the 

calculations take much longer on that system. 
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(a) 

 
(b) 

Figure 19. Speedup over the Cell PPU for the HTM model on different multicore architectures. Part (a) 

shows the speed ups for single thread implementations. Part (b) shows the speed ups for multi-thread 

implementations. The numbers in parenthesis in the legend represent the number of threads utilized on 

each platform. 
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(a) 

 
(b) 

Figure 20. Speedup over the Cell PPU for the Dean model on different multicore architectures. Part (a) 

shows the speed ups for single thread implementations. Part (b) shows the speed ups for multi-thread 

implementations. The numbers in parenthesis in the legend represent the number of threads utilized on 

each platform. 
 

On the UltraSPARC processor, the Dean model provides speedups of about 2 when going from 8 to 16 

threads and when going from 16 to 32 threads. The speedup from 32 to 64 threads is minor (about 1.1 

times for the 186 node network). The HTM model provided lower speedups than the Dean model: 1.9 

times for the largest model tested when going from 8 to 16 threads, 1.7 times when going from 16 to 32 

threads, and 1.3 times when going from 32 to 64 threads.  

 

The Sun processor provides a lower speedup than the Xeon and Cell processors because of a lower clock 

frequency and a lack of vector capabilities. If multiple images were not available to process 

simultaneously (such as if there were only one small camera source), then we would not be able to take 

advantage of the vectorization utilized. In this case the performance of the Intel and Cell architectures 

would be about one fourth of their current values. Since the Sun does not support vector operations, its 

performance would not be affected. In this situation, the Sun processor with 64 threads would actually be 

faster than the Xeon processor with 4 threads; about 2 times for the largest HTM model and 1.6 times for 

the largest Dean model. 
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4.2.2 Runtime breakdown of models 

 

Figures 21 and 22 show the runtime breakdowns of the HTM and Dean models respectively on the Cell 

processor (on the Playstation 3) and the Intel Xeon processor (4 thread implementation).  The runtime 

break downs are given for the smallest and the largest network sizes for both the models. This is done to 

compare the change in each part of the algorithm with the scaling of the model. The time for signaling 

between the different threads on all the platforms was insignificant due to the pre-assigning of nodes to 

different threads at the start of the program. Therefore this time is not listed separately in the timing 

breakdown.  

 

For the Cell platform, the non-overlapped memory access time is calculated by taking the difference 

between the overall runtime of the application and the runtime with DMA data transfers commented out 

of the code. This is the part of the DMA accesses that could not be overlapped with computations 

(generally through double buffering). On the Intel Xeon platform, this time was calculated by taking the 

difference between the overall runtime and a version of the code with all global variables in the threads 

converted to local variables (synchronization barriers between threads were kept intact). The number of 

computations (array accesses and other operations) was kept the same in both cases. 

 

The results show that on the Cell processor, DMA transfers that could not be overlapped can be a 

significant percentage of the overall runtime. However this fraction decreases as the network sizes 

increase since the nodes in the network become more complex and thus have more computations to be 

carried out per node. This is seen by the increase in the computation percentage for equations 2, 3, and 4 

in the HTM model and in the percentage of time for getting evidence in the Dean model. Stalls due to 

global variable accesses on the Xeon processor (listed as non-overlapped memory access in Figures 21 

and 22) showed similar trends as well. 

 

 
Figure 21. Runtime breakdowns for the HTM model on the PS3 and Xeon processors (a) Runtime 

breakdown for the 81 node network on the Playstation 3. (b) Runtime breakdown for the 721 node 

network on the Playstation 3. (c) Runtime breakdown for the 81 node network on the Xeon Processor. (d) 

Runtime breakdown for the 721 node network on the Xeon Processor.  
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Figure 22. Runtime breakdowns for the Dean model on the PS3 and Xeon processors (a) Runtime 

breakdown for the 59 node network on the Playstation 3. (b) Runtime breakdown for the 186 node 

network on the Playstation 3. (c) Runtime breakdown for the 59 node network on the Xeon Processor. (d) 

Runtime breakdown for the 186 node network on the Xeon Processor. 

 

The overall DMA is unlikely to change with the number of cores used on the Cell processor as these 

accesses go to a centralized memory system. However the overall computation time is likely to decrease 

with more cores due to increased parallelism. Hence, as the number of cores increase, the DMA time can 

exceed the computation time, thus limiting the speedup seen with increasing cores. This effect is seen in 

Figures 19 and 20: the speedup does not double when going from 8 to 16 cores. Although this could be 

due to the impact of off-chip memory buses, the results in Table 6 seem to indicate that it is due to a 

memory bottleneck. Table 6 shows the runtime breakdown of the largest HTM and Dean model networks 

on the Cell processor platforms examined: Playstation 3 with 6 SPU, and QS20 with both 8 and 16 SPUs. 

While the computation time decreased with increasing numbers of cores, the non-overlapped DMA time 

increased slightly (since the computations started taking less time than data transfers). To alleviate this 

issue, a higher memory bandwidth would be needed. This would be seen by having each cell processor 

have access to its own dedicated memory. 

 

Table 6. Run time break down of the largest HTM and Dean models on the QS20 with 6, 8, and 16 

threads. All times are in ms. 

 HTM Dean 

SPUs 6 8 16 6 8 16 

Computation only (ms) 7.51 5.45 3.50 12.10 8.10 4.50 

Non-overlapped DMA (ms) 3.45 3.60 4.45 4.10 4.34 5.12 

Total (ms) 10.96 9.05 7.95 16.20 12.44 9.62 

% of DMA in runtime 31.47 39.77 55.97 25.30 34.88 53.22 
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4.2.3 Parallelization strategy for the Dean model 

 

 
Figure 23. Parallelization of the Dean model by cliques vs. subnets. The 59 and 110 node networks are 

using only 4 SPUs because of the limited set of subnets on those networks. The other two are using six 

SPUs. 

 

Figure 23 compares the two parallelization approaches examined for the Dean model: clique based and 

subnet based. All the subnets in a layer can be evaluated in parallel. The networks with 59 and 110 nodes 

had fewer subnets in level 1 than the 98 and 186 node networks. Thus the former set of networks provided 

lower speedups than the latter set when parallelized by subnets. For all the networks, there were more 

cliques that could be evaluated in parallel than subnets (since each subnet could be decomposed into 

multiple cliques). Thus the clique based parallelization approach provided higher speedups for all the 

network sizes evaluated. 

 

4.2.4 MPI Implementations 

Figure 24. Performance scaling of the MPI based implementations with increasing number of machines 

used. The largest version of the models examined.  

 
Figure 24 shows the performance scaling of the MPI implementation of each model. Two clusters 

consisting of PS3s and Xeon blades were utilized with all the cores on each machine being used. The 

largest network for each model was implemented (721 nodes for the HTM model and 186 nodes for the 

Dean model). The performance of both models scaled with the increase in the number of cores used. The 

Dean model however has a lower performance gain than the HTM model. This is because 1) the HTM 
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model has more computation units (576 nodes in layer 1 of HTM vs. 225 cliques in layer 1 of Dean), and 

2) the Dean model has higher connectivity between its cliques than the HTM model has between its 

nodes. This leads to lower parallelism and higher communication in the Dean model compared to the 

HTM model.  

 

Figure 25. Comparison of multithreading versus MPI implementations of the HTM model on the (a) 

ARSC PS3 cluster, and (b) Palmetto Xeon cluster. The number of cores were varied with all core being 

either on one machine (multithreaded implementation) or one core per machine (MPI implementation). 
 

 

Figure 26. Comparison of multithreading versus MPI implementations of the Dean model on the (a) 

ARSC PS3 cluster, and (b) Palmetto Xeon cluster. The number of cores were varied with all core being 

either on one machine (multithreaded implementation) or one core per machine (MPI implementation). 

 
 

Figures 25 and 26 examine the impact of a purely MPI based parallelization scheme over a purely 

multicore parallelization approach. The MPI based parallelization scheme used only one compute node 

per machine, with the machines communicating through MPI. The multicore approach utilized only the 

cores available on a single machine. The results show that in all cases, the MPI based approach had a 
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lower performance than a multicore based approach. This is primarily due to the higher communication 

cost of MPI (communications have to go through multiple network interface cards and the network 

connecting the different machines).  

 

In the MPI implementation of a model, the data needed for computation on a machine can come either 

from the machine’s local memory (a local transfer) or from another machine (an MPI transfer). As the 

number machines is increased, the total amount of data needed for a model will not change, but the 

fraction of data coming over MPI could vary. This effect is shown in Table 7, where the models are run 

on varying numbers of PS3s, with only one core utilized per PS3. It is seen that fraction of MPI transfers 

increases for the Dean model, but not for the HTM model. This is because the nodes in the HTM model 

are not as densely connected as the cliques in the Dean model. In fact, on the HTM model, the network 

can be split at a single point (the root layer), thus making the fraction of MPI transfers constant. As a 

result of this trend, the drop in performance of the MPI approach over the multicore approach was higher 

for the Dean model. 

 

Table 7. Distribution of data transfers from local memory and between PS3s (MPI transfers) for the: (a) 

HTM model, and (b) Dean model with variation in number of machines used. 

PS3s 1 2 4 6 8 

Local transfers 3605 3317 3317 3317 3317 

MPI transfers 0 288 288 288 288 

Total transfers 3605 3605 3605 3605 3605 

% MPI of total 0 7.99 7.99 7.99 7.99 

(a) 

 

PS3s 1 2 4 6 8 

Local transfers 1112 976 932 902 888 

MPI transfers 0 136 180 210 224 

Total transfers 1112 1112 1112 1112 1112 

% MPI of total 0 12.23 16.19 18.88 20.14 

(b) 

 

4.3 CSRN Acceleration results 

 

4.3.1  Maze traversal 

 

4.3.1.1  Single-core CPU versus GPGPU 

Two initial designs were implemented: an optimized CPU version using the C programming language and 

OpenCV library [50,51] and a GPGPU version using both the C programming language and CUDA [52]. 

The CPU implementation was performed on a 2.67 GHz Intel Xeon X5550 processor, and the GPGPU 

implementation was performed using a combination of the same Intel Xeon processor and an NVIDIA 

Tesla C2050 GPGPU. The GPGPU performed the CSRN operations while the Intel Xeon processor was 

used for setup and communication purposes. The CPU implementations were compiled using GCC 

version 4.1.2 (GCC).  

 

Figure 27 shows the timing results of both implementations being used for the CSRN maze traversal 

training phase. In this set of tests, the number of rows and columns for the maze input samples were 

varied as shown along the x-axis. For each input maze size, five samples were used. The total runtime to 

perform the training is shown along the y-axis. All other parameters remained fixed. As can be seen in 

Figure 27, the GPGPU implementation is slightly faster than the CPU implementation. For this set of 
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tests, the best observed speedup was 3.04 times with an average speedup of 2.13 in favor of the GPGPU 

implementation. 

  

  

Figure 27. Maze traversal CPU vs GPGPU training runtimes. 

Figure 28 shows the timing results of both implementations being used in the CSRN maze traversal 

testing phase. As in the set of tests for training, the number of row and columns for the maze input 

samples were varied as shown along the x-axis, while all other parameters remained constant. In addition, 

15 samples were used for each input maze size. The total runtime to perform the testing is shown along 

the y-axis. Akin to the results shown in Figure 27, the GPGPU implementation is faster than the CPU 

implementation. For this series of tests, the best observed speedup was 4.39 times with an average 

speedup of 3.55 in favor of the GPGPU implementation.  

  

Figure 28. Maze traversal CPU vs GPGPU testing runtimes. 
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4.3.1.2  GPGPU design extensions 

To achieve higher speedups, several design extensions were examined. Specifically, the speedup 

performance of the training phase was closely examined as it is the limiting factor when processing larger 

datasets. For example, to train a CSRN using five 30×30 maze input samples required 5,143.12s while 

testing using five 30×30 maze input samples required 13.82ms on the GPGPU. Therefore, the average 

time required to compute each stage was measured to capture the most time consuming part of the 

training phase. For these measurements, the rows and columns of the input samples were varied (5×5 to 

15×15 in 5×5 increments), and the number of input samples was fixed at five. Table 8 shows these results 

of our measurements.  

 

Table 8. Timing breakdown for computation stages of GPGPU design 

 
 

As highlighted in bold in Table 8, the limiting factor is clearly the UWK stage as it takes up the bulk of 

the computation. This result is not surprising as the UWK stage includes a time consuming matrix 

inversion within its computations. In order to achieve improved speedup performance, the UWK stage 

must be examined carefully for possible modification. Therefore, the initial GPGPU implementation was 

modified following three extensions. 

 

1) Data caching of specific variables:  

 One method of decreasing the computation time of the UWK stage is to incorporate caching. The 

slowest part of many GPGPU applications is the time required to access global memory. By 

caching the data acquired from global memory accesses, one can save time. From Equations 

(Error! Reference source not found.) – (Error! Reference source not found.) of the UWK 

stage, the variables C
t
, G

t
, α

t
, and K

t
 can be cached because of their repeated use. The initial 

GPGPU implementation was modified to incorporate caching for the aforementioned variables in 

the UWK stage. Unfortunately, the UWK stage showed insignificant improvement from taking this 

action. This is mainly a result of the additional computation required to processing 64-bit data 

(which we required to maintain precision). Caching works better for data memory elements of 32 

bit-width or less. 

2) Reducing global memory accesses:  

 Since adding data caching showed little effect, another method of decreasing the computation time 

of the UWK stage was tried. As can be observed in the GPGPU implementation of Gauss-Jordan 

elimination, one can dramatically reduce the number of accesses to global memory. After an 

iteration of Gauss-Jordan elimination, only the shaded regions are modified. This is because of the 

zeros present in the remaining areas offer no change to the non-pivot rows. Using this knowledge, 

the GPGPU Gauss-Jordan elimination routine was modified to only access global memory during 

the times in which there will be modification to the non-pivot rows. By doing this, the amount of 

time necessary to compute UWK computation stage decreased by approximately 57% when 

compared to the initial implementation.  
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3) Saving Gauss-Jordan normalization until end of computation:  

 During the computation of the Gauss-Jordan elimination routine, the pivot row is normalized by 

the diagonal value every iteration. This normalization actually can be postponed until after all 

iterations have been completed. Therefore, the GPGPU extension 2 implementation was updated to 

normalize only after all iterations of the Gauss-Jordan routine were completed. By doing this, the 

number of global memory accesses during the UWK stage were reduced which resulted in a slight 

reduction in the computation when compared to extension 2 alone.  

Figure 29 shows the effect that each extension had on the overall time when compared against the CPU 

implementation. The most significant overall speedup occurs as a result of extension 3. The best observed 

speedup acquired from extension 3 is 8.32 times with an average speedup of 7.28 times. 

  

  

Figure 29. CPU vs GPGPU with extensions training runtimes. Initial refers to our original GPGPU 

implementation. Ex 1, 2, and 3 refer to our incorporation of extensions 1, 2, and 3 into our original 

GPGPU design. 

4.3.2  Face recognition 

4.3.2.1  Improving the GPGPU design 

For developing the face recognition GPGPU CSRN implementation, the extension 3 maze traversal 

GPGPU CSRN design was used as a base. In that design, only one CSRN cell computation was 

performed per thread block. Given the small size of the maze traversal CSRN cell GMLP (17 nodes), 

many threads were left idle. To improve the GPGPU utilization, the number of CSRN cell computations 

performed per thread block was increased.  

 

Since the face recognition CSRN cell GMLP is a 27 node network, the operations of one GMLP can be 

performed using the threads associated with one warp (32 threads). Given that a thread block can process 

multiple warps, one thread block can be utilized to process several different CSRN cells simultaneously 
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exploiting instruction-level parallelism. For the face recognition GPGPU CSRN design, four different 

CSRN cells were processed per thread block as this was observed to achieve optimal design performance.  

During the CSRNFF and CSRNFB stages, shared memory is used to store repeatedly used data such as W 

and ww during computation. This reduces the number of times that global memory is accessed by copying 

the data down into shared memory at the start of the process. The use of multiple warps benefits from this 

because the shared W and ww data can be used among the various CSRN cells being computed within a 

thread block thus reducing the amount of traffic seen by global memory. Using these CSRN cell 

computation advancements in addition to using better GPGPU memory management, the CSRN GPGPU 

design improved.  

 

4.3.2.2  Single-core CPU verses GPGPU  

Two initial designs were implemented to examine how well CSRN based face recognition maps to a 

GPGPU system. Akin to the maze traversal designs, the two initial face recognition designs were an 

optimized CPU version using the C programming language and OpenCV library and a GPGPU version 

using both the C programming language and CUDA. The CPU implementation was performed on a 2.67 

GHz Intel Xeon X5650 multi-core processor and the GPGPU implementation was performed on a 

combination of the same Intel Xeon multi-core processor and the NVIDIA Tesla C1060, C2050, and 

C2070 GPGPUs.  

 

One GPGPU design was developed for use among the three GPGPU platforms. One expects the 

performance between the C2050 and C2070 GPGPUs to be identical because the architectures are the 

same with the exception of global memory. The C2070 GPGPU has twice the amount of global memory. 

However, using the newer generation GPGPUs (C2050s and C2070s) can be expected to result in better 

performance than the older generation GPGPUs (C1060s). A contributing reason is because the C2050 

and C2070 have more SPs (the C2070 and C2050 have 208 more SPs than the C1060). In addition, the 

C2050 and C2070 have the ability to perform up to four concurrent streams of independent processing, 

while the C1060 performs one stream. Within the GPGPU design, large numbers of SPs as well as 

multiple concurrent streams are utilized whenever possible. All three GPGPU implementations will offer 

improvements over an equivalent CPU implementation; a significant edge will go to the C2050 and 

C2070.  

 

During the experiments, the CPU implementation was tested using both the GNU compiler 4.1.2 (GCC) 

and Intel compiler version 12.0.0 (ICC). The Intel compiler further optimizes code to take advantage of 

SIMD (single instruction multiple data) instructions. Lastly, the face sequences for the experiments were 

taken from the Sheffield face database [53]. 

 

For using CSRN based face recognition, only the CSRN training phase of the algorithm is accelerated 

since this portion is the most time consuming. In doing so, four experiments were conducted exercising 

how changes in the CSRN network parameters affect GPGPU acceleration. The CSRN network 

parameters observed were number of people classes, PCA components, samples per face sequence, and 

number of face sequences. 

 

Experiment 1: Varying people classes 

 

The first experiment involved testing the single-core CPU and single GPGPU implementations using an 

increasing number of people classes. The number of classes varied from one to 10. Each people class 

consisted of a group of 10 CSRNs (10 PCA components) using face sequences that have been sampled 

nine times. Only one face sequence per people class was used during training. The training was performed 

using MSEKF. The training times for the experiment are shown in Table 9.  
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Table 9. Training times for increasing number of people classes. The implementations shown are GCC 

single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 GPGPU, and C2070 

GPGPU. 

 
 

From the training times shown in Table 9, the average speedup for the ICC single-core CPU, C1060 

GPGPU, and C2050/C2070 GPGPU versions over the GCC single-core CPU compilation is 5.73, 18.13, 

and 30.34 times respectively. Furthermore, the C1060 GPGPU and the C2050/C2070 GPGPU carry an 

average speedup over the ICC single-core CPU of 3.17 and 5.30 times respectively. Given that the 

C2050/C2070 GPGPU implementations are faster than the C1060 implementation over all scenarios, the 

inclusion of the C1060 GPGPUs will play a limiting factor in multi-GPGPU experiments. As the number 

of people classes increased, the performance benefit achieved from using GPGPUs stayed mostly the 

same. This can be expected since increasing the number of classes is equivalent to adding more CSRNs to 

the network. 

 

Experiment 2: Varying PCA components 

 

The second experiment varied the number of PCA components. In varying the number of PCA 

components, the total number of CSRNs used to represent a person changed. Therefore, varying the 

number of PCA components should have the same effect as varying the number of classes. For this 

experiment, the number of PCA components varied from 10 to 25 in increments of five for five people 

classes. As in the first experiment, one face sequence sampled nine times per people class was used. The 

training times for this experiment are shown in Table 10.  

  

Table 10. Training times for increasing the number of PCA components. Implementations shown are for 

GCC single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 GPGPU, and 

C2070 GPGPU. 
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From the results shown in Table 10, the average speedup performances are nearly identical to the average 

speedups observed in the previous experiment. The average speedup for the ICC single-core CPU, C1060 

GPGPU, and C2050/C2070 GPGPU versions are 5.73, 18.33, and 30.44 times respectively over the GCC 

single-core CPU. Likewise, the C1060 GPGPU and C2050/C2070 GPGPU versions are 3.20 and 5.31 

times greater than the ICC single-core CPU compilation.  

 

Experiment 3: Varying samples per face sequence 

 

The third experiment observed how the number of samples per face sequence changed the runtime 

performance of the application. As the number of samples per face sequence increases, the number of 

cells per CSRN increases. Also, the size of Γ
t
 (from Equation (Error! Reference source not found.)) is a 

square of the number of samples per face sequence. Therefore, increasing the number of samples per face 

sequence will increase the time needed to perform the required matrix inversion. To evaluate this, a third 

experiment was performed where the number of samples per face sequence varied (25, 36, 49, 81, 100, 

121 and 144). There are not enough samples per face sequence in the Sheffield face database to support 

sampling the sequence 64, 81, 100, 121, and 144 times; therefore, randomly generated data was used for 

those data points across different classes. In this experiment, 25 PCA components were used. Table 11 

shows the runtime results of this experiment as well as the increasing Γ
t
 size. Table 12 shows the resultant 

speedups associated with the runtime results shown in Table 11. 

  

Table 11. Training times for increasing number of samples per face sequence. The implementations 

shown are GCC single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 

GPGPU, and C2070 GPGPU. In addition, the row×column size of Γ
t
 is shown as the number of sample 

per face sequence increases. 
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Table 12. Speedup comparison using the runtimes shown in Table 11. The implementations shown are 

GCC single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 GPGPU, and 

C2070 GPGPU. 

 

Here, the trend is that the performance benefit offered by the GPGPU implementation improves as the 

face sequence sampling increases. There is a moderate performance benefit for the C1060 GPGPU 

implementation. However, there is a significant performance benefit for the C2050/C2070 GPGPU 

implementation. The speedup performance shown in the GPGPU implementations is expected because 

the number of CSRN cells computations increase one-to-one with the number of samples per face 

sequence. For the single-core CPU implementations, these additional CSRN cell computations are 

performed serially whereas they are performed in parallel for the GPGPU implementations.  

 

Furthermore, the inversion of Γ
t
 for the GPGPU implementations can be performed much faster than the 

single-core CPU implementations. This is a direct result of the parallelism involved in the GPGPU matrix 

inversion scheme. The larger the size of Γ
t
, the greater the advantage will be in favor of the GPGPU 

implementations.  

 

Experiment 4: Varying face sequences 

 

Lastly, a fourth experiment observed how varying the number of face sequences affects runtime 

performance. In this experiment, increasing the number of face sequence increases the size of Γ
t
 

proportionately. Specifically, the number of rows and columns both increase by a multiple of the number 

of face sequences. Thus, the duration of the UWK stage becoming longer as the time to invert Γ
t
 becomes 

longer. In addition, multiple face sequences must be processed by the CSRN network serially. This 

multiplies the time to perform the CSRNFF, CSRNFB, and CCA stages by the number of face sequences to 

process.  

 

To evaluate the fourth experiment, the number of different face sequences per people class used during 

training varied from one to five. Also, five people classes, 49 samples per sequence, and 25 PCA 

components were used. Table 13 shows the results of this experiment. Also, Table 13 shows the size of Γ
t
 

as the number of face sequences increased. Table 14 shows the resultant speedup performance.  
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Table 13. Training times using an increasing number of face sequences. The implementations shown are 

GCC single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 GPGPU, and 

C2070 GPGPU implementations using an increasing number of face sequences. In addition, the 

row×column size of Γ
t
 is shown as the number of face sequences increases. 

 

  

Table 14. Speedup comparison using runtimes shown in Table 13. The implementations shown are GCC 

single-core CPU (G-CPU), ICC single-core CPU (I-CPU), C1060 GPGPU, C2050 GPGPU, and C2070 

GPGPU. 

 
 

The data shown in Table 13 and Table 14 reveal the advantage of the GPGPU implementations. When 

compared to both single-core CPU implementations, the GPGPU implementations continue to maintain a 

speedup advantage. Similar to previous results, the achieved speedup can be attributed to the parallel 

processing of the increasing CSRNFF and CSRNFB computations and the CCA and UWK vector/matrix 

operations.  

 

In the case of the GCC compilation, the C1060 and C2050/C2070 GPGPU implementations show a 

decrease in the available speedup. This is likely due to the increasing amount of memory transfers. The 

increase in memory transfers result from the CPU needing to send additional face sequence input data to 

the GPGPU. Memory transfers between the CPU and GPGPU are very costly and decrease the amount of 

acceleration benefit seen. The additional parallel resources within the C2050/C2070 GPGPU 

implementation allows for a much slower decrease in acceleration when compared to the C1060 GPGPU 

implementation. 

 

In the case of the ICC compilation, the C1060 GPGPU implementation continues to show this trend of 

decreasing speedup. However, the C2050/C2070 GPGPU shows a gradual increase in speedup. The ICC 

compilation has a much faster decrease in acceleration in comparison to the C2050/C2070 GPGPU 

implementation resulting in the gradual increase in speedup.  
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4.3.2.3  Multi-core and multi-GPGPU 

 
Multi-core and multi-GPGPU implementations of the algorithm were explored. The main objective 

behind the multi-core and multi-GPGPU implementations was to observe how CSRN based face 

recognition scales as more CPU core/GPGPU resources are added. For these experiments only the ICC 

compilation results are shown as they are much faster than the GCC compilation.  

 

Given that the Condor cluster is a heterogeneous cluster composed of three different kinds of GPGPUs 

(94 C2050, 14 C2070, and 48 C1060), this study utilizes the most optimal combinations possible when 

adding GPGPU resources. Since computations are bound by the C1060s, the C2050s and C2070s are 

scheduled prior to the C1060s to ensure optimal productivity. Specifically, the C2050s are added first and 

then the C2070s. At the time of these experiments, only 10 of the 14 C2070 were available. Therefore, 

after adding 10 C2070s, C1060s are added. The workload used for these experiments were one CSRN per 

primary to secondary process transmission.  

 

Figure 30 shows the runtime performance of CSRN network designed to classify five people classes using 

five face sequences, 49 samples per face sequence, and 25 PCA components. For this CSRN network, 

Figure 30 shows the MSEKF training time decrease as the number of secondary processes increased from 

10 to 150 by increments of 10. In the case of the multi-core implementation, the training time decreased 

from 254.26s to 20.58s using 10 to 150 secondary processes, respectively. For the multi-GPGPU 

implementation, the training time decreased from 43.08s to 9.07s using 10 to 150 secondary processes, 

respectively.  

  

  

Figure 30. Graph of training time for multi-core and multi-GPGPU implementations. 

Figure 31 shows the speedup for both the multi-core and multi-GPGPU implementations over the single-

core ICC compiled CPU version. While both implementations offer vast improvement over the single-

core version, the advantage of the multi-GPGPU implementation exceeds the multi-core. However, the 

multi-core implementation appears to scale better as the multi-GPGPU implementation levels off after 70 

secondary processes. With the inclusion of the slower C1060 GPGPUs, the scaling of the multi-GPGPU 

implementation is hindered as expected. Once the number of secondary processes goes beyond the 
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number of available C2050 (94) and C2070 (8) GPGPUs, the total efficiency of the multi-GPGPU 

implementation declines as the C1060 GPGPUs are used. This is shown by the decrease in speedup 

performance after 100 GPGPUs. As previously established, the C1060 GPGPUs processes data slower 

than the C2050 and C2070 GPGPUs for this application.  

  

  

Figure 31. Graph of speedup for multi-core and multi-GPGPU implementations. 

 
Table 15. Training runtime performance for multi-core and multi-GPGPU. The multi-core and multi-

GPGPU implementations are compared to GCC (G-CPU), ICC (I-CPU), C1060 GPGPU, and 

C2050/C2070 GPGPU implementations. 

 
 

Table 15 shows the MSEKF training time and speedup performance for the multi-core and multi-GPGPU 

implementation to the previously discussed implementations (GCC and ICC single-core CPU 

implementations and the C1060 and C2050/C2070 single GPGPU implementations) for the experiment of 

five people classes, 49 samples per face sequence, five face sequences, and 25 PCA components. The 

timing results of the multi-core and multi-GPGPU implementations use 150 secondary processes. The 

speedup shown is a comparison between all implementations to both GCC and ICC single-core CPU 

implementations. From using the multi-GPGPU implementation, significant speedups of approximately 

1,283.62 and 265.50 times are observed when compared against the GCC and ICC single-core CPU 

compilations respectively. Table 15 demonstrates the merits of the multi- GPGPU implementation.  
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4.3.2.4  Combining multi-core and multi-GPGPU 

 
Given the limited GPGPU resources of the Condor cluster in comparison to the ample amount of Intel 

multi-core processors available, the computational capabilities of both multi-core and multi-GPGPU 

implementations need to combine to take greater advantage of cluster resources. Since each processor in 

the Condor cluster has six cores, only two cores per processor were used in the multi-GPGPU 

implementation. The remaining four cores were idle. To fully utilize each core in the system, the idle 

cores should perform CSRN computations concurrently with the GPGPUs. Using both multi-core and 

multi-GPGPU together, one can expect to achieve even greater runtime performance than using each 

alone.  

 

For the multi-core, multi-GPGPU, and multi-core/GPGPU implementations, 75 of the total 78 multi-core 

processors on the system were utilized. In this fashion, 450 cores (one core for the primary process and 

449 for the secondary processes) were used for the multi-core implementation. The multi-GPGPU 

implementation used 150 (94 C2050s, 8 C2070s and 48 C1060s) GPGPUs operating as secondary 

processes and one core as the primary process. Lastly, the multi-core/GPGPU implementation used one 

core as the primary process and 299 cores as secondary processes. The remaining cores 150 cores used 

GPGPUs as secondary processes. As before, the multi-core implementations were compiled using ICC.  

 

Also, more resources of the Condor cluster should be utilized to get an idea of the Condor cluster’s 

computational capability for CSRN based face recognition. Therefore, two additional experiments were 

conducted to demonstrate the significant impact on runtime performance a system such as the Condor 

cluster has for this application. Additionally, the runtime performance of the the multi-core, multi-

GPGPU,and multi-core/GPGPU implementations are compared. In these experiments, the number of 

samples per face sequence and number of face sequences were varied.  

 

Experiment 5: Varying samples per face sequence using large networks 

 

This experiment observed the effect varying the number of samples per face sequence has on runtime 

performance for the multi-core, multi-GPGPU, and multi-core/GPGPU implementations. For this 

experiment, a randomly generated CSRN network to classify 1,000 people classes using 10 PCA 

components and one face sequence per people class was created. The number of times the face sequence 

was sampled varied using the following sample rates: 25, 36, 49, 81, 100, 121 and 144. This resulted in a 

full network of 10,000 CSRNs. Figure 32 shows the training time results of this experiment, and 

Figure 33 shows the speedup performance over the ICC single-core compilation.  
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Figure 32. Graph showing varying number of samples per face sequence. Shows the training timing for 

the ICC compiled multi-core, multi-GPGPU, and multi-core/GPGPU. 

  

  

Figure 33. Speedup graph for varying the number of samples per face sequence. Shows the speedup 

performance for the ICC compiled multi-core, multi-GPGPU, and multi-core/GPGPU. 

 
As seen in Figure 32 and Figure 33, both implementations incorporating GPGPUs are faster than the 

multi-core implementation as the number of samples per face sequence increases. The multi-core 

implementation speedup is shown to decrease as face sequence sample increase. The multi-GPGPU and 
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multi-core/GPGPU implementations speedup performance improves while the samples per face sequence 

increase.  

 

Another result of significance is that the multi-GPGPU implementation is faster than the multi-core 

implementation using much less resources. The multi-GPGPU implementation uses 150 GPGPU to act as 

secondary processes compared to the 449 cores that the multi-core implementation uses. As expected, the 

multi-core/GPGPU implementation is faster than the multi-GPGPU implementation as the the former 

uses the additional processing power of cores during computation. As seen in Figure 33, the multi-

core/GPGPU implementation displays a speedup performance of approximately 823 to 996 times for 25 

to 100 samples per face sequence, respectively.  

 

Experiment 6: Varying face sequences using large networks 

 

This experiment observed the behavior of the multi-core, multi-GPGPU, and multi-core/GPGPU 

implementations while varying the number of face sequences from one to five. To do this, another 

randomly generated 1,000 people class CSRN network using 10 PCA components was created. The face 

sequences used in this network were sampled 25 times. Figure 34 and Figure 35 show the training time 

results and speedup performance of the ICC compiled multi-core, multi-GPGPU, and multi-core/GPGPU 

implementations, respectively. The speedup performance shown in Figure 35 uses the ICC single-core 

compilation as a base.  

  

  

Figure 34. Graph of varying the number of face sequences. Shows the training timing for the ICC multi-

core, multi-GPGPU, and multi-core/GPGPU implementations. 
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Figure 35. Speedup graph for varying the number of face sequences. Shows the speedup performance for 

the ICC multi-core, multi-GPGPU, and multi-core/GPGPU implementations. 

 
In Figure 34 like the previous experiments, the multi-GPGPU implementation maintains a lower training 

runtime when compared to the multi-core. As before, the multi-core/GPGPU implementation achieved the 

lowest runtime time. In Figure 35, the speedup performance of the multi-core implementation remains 

relatively fixed at approximately 431 times. While higher than the multi-core, the speedup performance of 

the multi-GPGPU gradually decreases from 596 times to 520 times as the number of face sequences 

increases from one to five. As expected, the speedup performance of the multi-core/GPGPU is greater 

than both multi-core and multi-GPGPU as it fluctuates between 824 and 792 times as the number of face 

sequences increase. This fluctuation is likely the result of load balancing the decreasing GPGPU 

processing times with the relatively stable multi-core processing times. 

 

4.4 RBFNN Acceleration 

 

The training and testing data used for the experimentation were acquired using a CompuGauge tool [54]. 

The training data consisted of 1989 position data points and the testing dataset contained 192 positions 

points (separate and independent datasets). The objective of our RBF network is to map the actual position 

data points/coordinates to that of the corresponding desired position data points/coordinates.  Our goal is to 

find the optimal spread value of the non-linear activation functions (i.e., Radial Basis Functions).  As a 

result, we train the network using different spread values (range: 100 to 5000 in steps of 50).  For a specific 

spread value, we perform a 7-fold cross validation analysis [55].  The performance of the network is then 

computed by examining the difference between the network’s output and the corresponding desired data 

(i.e. error). Based on such error information, the optimal spread value is found to be 3200 (spread value 

yielding minimum error). Note that the optimal spread value is obtained using only the training dataset.  

The performance of the network (i.e., error discussed in the latter) versus the range of increasing spread 

values is depicted in Figure 36.  The curve is generated using a 7-fold cross validation performance 

analysis working on the training data only.  As expected the error decreases as the spread value increases. It 

is important to note that after a certain threshold/spread-value there is no significant performance 

improvement. Also note that as the spread value gets extremely large, the distance matrix approaches a 

singularity (i.e., the matrix inversion process appears unstable for larger spread values). 
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Figure 36. Performance/error versus increasing spread values. 

 

After completing the training process, we validated the robustness of the network by testing it on the 

separate and independent testing dataset that consisted of the 192 position points. Figure 37 shows the 

testing performance results. The figure shows the performance in terms of error (i.e., difference between 

desired output and the actual network’s output) versus testing point indices. Figure 37a shows the 

error/performance for the x-dimension. Figure 37b and Figure 37c show the performance results for y and z 

dimensions respectively. The figure also shows two curves, one illustrating the discrepancy between the 

desired and measured/actual position data points (uncalibrated), and the other showing performance after 

employing the RBF network (i.e., calibrated/filtered performance). Based on Figure 37, we can safely 

assume that the RBF-network/filter did indeed improve the accuracy of the MA1400 MOTOMAN 

manipulator (the network/filter has significantly reduced the original discrepancy between the desired and 

actual data). Table 16 shows the average testing error(s).  As shown in the table, the average error before 

calibration is 0.706 mm and the average error after calibration is 0.076 mm (or 76 microns). Our approach 

shows an accuracy/precision improvement in the order of 88%. 
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(a) 

 
(b) 

 
(c) 

 

Figure 37. Performance results (error vs. testing point indices): (a) error in the x-dimension, (b) error in 

the y-dimension, (c) error in the z-dimension. 
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The initial implementation of this algorithm was in MATLAB R2010 installed on a Core Duo 8600, 4-GB 

memory desktop computer. It required about one week to train the dataset described. The GPGPU 

implementation of the algorithm ran in about 10 minutes, corresponding to a speedup of about 300 times. 

Figure 38 depicts the speedup performance when comparing the two platforms. 

 
Table 16. Calibration results (average error[s]/performance). 

 
x (mm) y (mm) z (mm) 

Overall 
Average 

Error 

Average error 
before calibration 

 
0.177±0.171 

 
1.005±0.646 

 
0.936±0.326 

 
0.706 

Average error 
after calibration 

 
0.062±0.04 

 
0.067±0.049 

 
0.1±0.068 

 
0.076 

 

 
Figure 38. Speed up performance (GPGPU versus MATLAB). 

5. Conclusion 

This study examined the parallelization and acceleration of several different neuromorphic computing 

algorithms using a variety of multicore architectures. The results indicate that these algorithms have a 

high degree of parallelism and are well suited multicore architectures. Some of the models exhibit high 

degrees of data level parallelism and so are suitable for acceleration on GPGPU platforms. These are the 

neural network based models (SNN, CSRN, and RBFNN). The Bayesian network based models (HTM 

and Dean model) do have significant thread level parallelism but not much data level parallelism. Thus 

they are well suited to non-SIMD multicore platforms (such as Intel Xeon processors) but not suited for 

GPGPU like platforms. All the algorithms examined scaled well on multiprocessor computing clusters. 
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2011 (Invited paper). 

 T. Messay, C. Chen, R. Ordóñez and T. M. Taha, “GPGPU Acceleration of a Novel Calibration 

Method for Industrial Robots,” IEEE National Aerospace & Electronics Conference, July 2011. 

 K. L. Rice, T. M. Taha, K. M. Iftekharuddin, K. Anderson, and T. Salan, “GPGPU Acceleration 

of Cellular Simultaneous Recurrent Networks Adapted for Maze Traversals,” IEEE International 

Joint Conference on Neural Networks (IJCNN), August 2011. 

 T. Taha and C. Chen, “Spiking Neural Networks on High Performance Compute Clusters,” SPIE 

Optics and Photonics for Information Processing V, August 2011. 

 K. Rice, T. M. Taha, K. M. Iftekharuddin, K. Anderson, and T. Salan, “Multicore Cluster 

Acceleration of Cellular Simultaneous Recurrent Network Based Face Recognition,” 

International Journal of Parallel Programming, to be submitted. 

 C. Chen, T. M. Taha, M. Bhuyian, and R. Jalasutram, “Acceleration of Spiking Neural Network 

Based Character Recognition Models on Multicore Architectures,” IEEE Transactions on 

Parallel and Distributed Systems, to be submitted. 

 T. Messay, C. Chen, R. Ordóñez and T. M. Taha, “Hardware Accelerated Calibration for 

Industrial Robots,” IEEE Transactions on Robotics, to be submitted. 

 

The insights gained from this study using existing multicore platforms are currently being utilized by 

Dr. Taha’s team to develop novel multicore architectures for neuromorphic algorithms. In particular 

we are examining the design of novel memristor [56] based computing platforms through detailed 

circuit and system level simulations. Our studies have shown potential for over a 1000 times speedup 

over the latest Intel Xeon processors, while utilizing a fraction of the power of the Xeon processors 

[57]. Such systems have broad military applications, including new lightweight, low power, 

intelligent devices for use by soldier on the battleground.  

In these follow-on studies we utilized detailed memristor SPICE models we developed [58] and 

memristor circuits we designed [59], to design each computing core. These follow-on studies would 

not be possible without the insights gained from the AFOSR funded study outlined in this report. The 

final conclusion for this study would be that neuromorphic algorithms are well suited to 

parallelization on mulicore architectures, and that significant scope exists for the design of even more 

specialized multicore architectures to achieve higher performances. Given the broad range of military 

applications for these algorithms (in data mining, data fusion, etc), further study is needed into the 

design of such novel architectures. 
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