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Final Report 
Title: Potential Energy Surfaces and Dynamics For Energetic Ionic Liquids 
Grant/Contract Number: FA9550-09-1-0059 

The main focus of this research is on the design and study of highly energetic species that 
have the potential to be novel new fuels. Of special importance are energetic ionic 
liquids. Progress was made in both theory/code development and applications. The 
theory/code developments include advances in ab initio quantum chemistry and 
dynamics and in novel computational approaches.  
Quantum Chemistry and Dynamics1-4,18,19. There are several ways that one can expand 
the sizes of molecular systems that are amenable to accurate quantum mechanics (QM) 
methods. Two such approaches are to subdivide the system into tractable pieces 
(“fragments”) and the development of highly scalable (parallel) algorithms. Two 
successful fragmentation methods, the fragment and molecular orbital (FMO) 
method1,3,18,19 and the symmetric fragmentation method1,2,18 (SFM) have been developed 
and applied to a variety of interesting problems. The FMO approach, which has been 
implemented for most levels of electronic structure theory, avoids arbitrary procedures 
like hydrogen atom capping and employs distance cut-offs as criteria for invoking 
approximations for expensive two-electron integrals. We have extended the method to 
open shell species3,19. The method can include all two-body (FMO2), three-body 
(FMO3), etc., interactions explicitly, as computer resources allow. Because each 
fragment can be assigned to a different compute node, the method scales linearly with 
system size, and it can take advantage of multi-level parallelism. The FMO method has 
also been interfaced with both implicit and explicit solvent methods. A very important 
application is to energetic ionic liquids (EIL). The EILs of interest to us are fairly 
complicated: polynitrogen cyclic cations combined with oxygen-rich anions. To obtain a 
realistic connection with experiments requires the simulation of at least large clusters, if 
not the actual condensed phase. The FMO method is proving to be invaluable for this 
effort1. The SFM1,2, which was designed for the study of large molecule dynamics 
employs hydrogen capping and is similarly extensible to 2-, 3-, etc., body interactions. 
SFM is also inherently parallel. The Grow program, which uses a modified Shepard 
interpolation to construct potential energy surfaces for ground and excited electronic 
states, has been interfaced with the MCSCF method in GAMESS, in order to enable 
multi-state dynamics studies. The EFP method, discussed below, has been interfaced with 
the FMO method4. 
Solvent Effects and Intermolecular Interactions4-6. The EFP method5 is among the 
most sophisticated methods for treating intermolecular interactions, including solvent 
effects. The general (EFP2) method includes all important interaction types, including 
Coulomb, induction, exchange repulsion, dispersion, and charge transfer. This has been 
accomplished without the use of any empirically fitted parameters, so an EFP can be 
generated for any type of system, including charged species. Many-body effects are 
incorporated via the induction term that is iterated to self-consistency. The ground state 
EFP2-QM interaction is partially complete, with the energy and analytic gradient 
implemented for the Coulomb and induction terms, and the energy for the exchange 
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repulsion. The modified Fock operator and the gradient have been derived for the 
exchange repulsion-QM gradient. The EFP2-QM dispersion energy has been derived and 
the coding is in progress. The EFP and FMO methods have been interfaced6.  We have 
demonstrated that the EFP method is able to capture both 2- and 3-body interactions very 
well. This means EFP can greatly reduce the computational cost of calculating 3-body 
interactions rather than the correlated methods. In the SFM, for example, one can 
calculate all inter-fragment interactions with EFP and maintain high accuracy1,2.  
Novel Computational Methods11-16,21. One way to increase the applicability of ab initio 
electronic structure methods to more complex species is to develop novel algorithms that 
take advantage of modern computer technology. Our new advances in this direction 
include a parallel analytic Hatree-Fock Hessian9, parallel analytic gradients for restricted 
open shell second order perturbation theory7, and parallel closed shell coupled cluster 
CCSD(T) theory10,11. Our recent advances in scalable electronic structure have been 
summarized in a review paper.8 New advances will include improved scalable coupled 
cluster algorithms for both open and closed shells, including completely renormalized 
methods that are capable of breaking single bonds, and our novel, new multi-reference 
methods. A major new direction is the development and implementation of electronic 
structure methods that can take advantage of modern computing architectures. One such 
architecture, embodied in the BlueGene series and the Cray XT series, combines low-cost 
cores with low heat output to engineer computer systems with tens of thousands of cores. 
We have demonstrated that the MP2 code in GAMESS can take great advantage of such 
architectures12. Very recently, we have implemented the FMO method on the BG/P 
system at Argonne National Laboratory, demonstrating that we can efficiently use 20,000 
cores. We are also in the process of developing many features of GAMESS on graphical 
processing unit (GPU) technology. We have developed and implemented new GPU code 
for the high angular momentum two-electron integrals13 that are so important for high-
level ab initio calculations. We have also developed a new Hartree-Fock code with much 
improved efficiency on both CPU and GPU architecture21. Imilar efforts are under way 
for second order perturbation theory and coupled cluster codes. An important side benefit 
of these developments is that we have significantly improved the original CPU codes.  
 
The applications that were addressed include studies of ionic liquids, novel anionic 
species, and electrospray processes. An important aspect of studying ionic liquids is that 
simple models, such as small clusters, cannot realistically model the liquid. Earlier 
studies in our group showed, for example, that one cation combined with one anion is 
unstable, with a proton typically jumping spontaneously from the cation to the anion to 
form a neutral pair. As noted above, studying multiple cation-anion pairs is 
computationally challenging. However, we performed a high-level calculation of the 
double pair with 1,2,4-triazolium as the cation and dintiramide as the anion15. We 
showed, using a combination of MP2 and CCSD(T), that this species forms a π−stacked 
arrangement, with the two positively charged rings facing each other like a benzene 
dimmer sandwich compound. This species, at the CCSD(T) level of theory, is fully 6 
kcal/mol lower in energy than the corresponding neutral formed by a double proton 
transfer. This suggests that two ion pairs at least begin to show some resemblance to the 
liquid. We are now using the FMO method to examine larger clusters18,20.  We have also 
used the EFP method to systematically study benzene-benzene interactions, in which one 
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benzene ring has one substituent16. The interaction energies and geometries are in good 
agreement with experiment. Castleman has proposed that Al13

- behaves as a 
“superhalide” that might functions as an appealing anion. The only previous studies of 
this species have employed density functional theory, which is an inappropriate method 
for such species. We have therefore employed MP2 and CCSD(T) to explore the potential 
energy surfaces of both Al13

- and Al13 neutral. This allows us to calculate the ionization 
potential with high accuracy and to predict the structures of both anion and neutral, at a 
much reliable level of theory than heretofore reported17. 
 
 In a joint experiment-theory study14, we analyzed the clustering of I- with 1-4 formamide 
molecules in order to interpret field-ion evaporation of these species. 
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