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4. Description of the Research Progress
4.1 Ferroelectric thin film synthesis and texture analysis

Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter,
referred to as platinized Si) substrates as shown in Fig. 1. Target preparation was perfected for Zr/Ti ratios of
60/40 and 52/48 with excess Pb to compensate for Pb loss during post deposition annealing. As deposited PZT
RF (henceforth, RF refers to “RF sputtering” in this report) thin films were not well textured (i.e. with
preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre-
treated substrates and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT

sol-gel thin film of thickness 65-85nm [1].
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Figure 1: Sol-gel process flow and the RF sputter configuration for deposition of PZT thin films.

A detailed study was conducted to determine the conditions for obtaining preferred crystallite orientations
(referred as textured). The results of this study were summarized in Temperature-Time-Transformation (TTT)
diagrams. These diagrams provide two-dimensional relationships of crystalline orientation to pyrolysis and
annealing conditions. To augment our understanding of the thermal budgets required for the texturing of the
PZT sol-gel thin films, we further developed relationships between each phase and the experimental
conditions. In addition, the optical band gap, morphology and composition of highly textured sol-gel thin
films were evaluated using Variable Angle Spectroscopic Ellipsometry (VASE), Raman scattering,
piezoresponse force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). RF sputter deposition
operating space was explored using statistically designed experiments (using Design Expert software) and
ANOVA (Analysis of Variance) models were formulated. The responses were thickness, refractive index and

absorption coefficient from ellipsometric data and the elemental compositions from energy dispersive X-ray
1



analysis of the PZT thin films. These models were then utilized to predict and optimize the process conditions

necessary to obtain the preferred responses.

Temperature-Time-Transformation model for sol-gel deposited PZT (60/40) films: We conducted detailed

investigation on the texture evolution as this will directly influence the electrical response of the high
frequency sensor structure. Based on our statistically designed experiments the two parameters, annealing
temperature and time, were more significant than the pyrolysis conditions in achieving proper texture. This is
clearly evident in the half normal probability plots of the Effects (measure of the process variable’s influence
on the response) shown in Fig. 2. The responses were normalized XRD peak heights for [100], [110] and [111]

orientations at 2-theta angles of 22°, 31° and 39° respectively.
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Figure 2: Half normal probability plots of XRD responses — [100], [110] and [111] peak heights.

Based on this information, further extensive exploration of the sol-gel thermal budget operating
space was conducted. These experiments are summarized in Temperature-Time-Transformation (TTT)
diagrams shown in Fig. 3. This is similar to the diagram that was reported by Chen and Chen [2] except that
their main process variables were pyrolysis temperature and time and they had maintained constant annealing
temperature and time. However, we wanted to expand beyond these pictorial guides and decided to develop
mathematical relationships between XRD peak data and thermal processing conditions. The data utilized to
create the TTT diagrams were analyzed using JMP statistical software and the quadratic fits are shown in Fig.
4. Despite moderate R* values, the predictability of the quadratic model was found to be poor. A good hint
towards this unpredictability can be witnessed in the portion of points that do not trend with the surface plots.
The main reason for this poor fit was that we did not take into account proportionality between different

crystalline orientations (see Scatter plot matrix correlation in Figure 5).
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Figure 3: Temperature-Time-Transformation diagrams of PZT sol-gel thin films pyrolyzed at a) No pyrolysis,
b) 250°C, 1.5 minutes, and ¢) 300°C, 3 minutes.
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Figure 4: JMP contour plots of PZT sol-gel thin films pyrolyzed at
300°C for 3min, prior to annealing.

a) none, b) 250°C for 1.5min,
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Figure 5: Scatter plot matrix of the responses (XRD peak data).

We next utilized Logistic regression of the XRD peak data against the 3 process variables - pyrolysis
temperature/time, annealing temperature and annealing time. We lumped the pyrolysis variables of
temperature and time together as they were blocked experiments with both variant between the blocks. We
therefore in statistical terms made pyrolysis temperature/time as categorical variables. The normalized XRD
peak data response for three different crystalline orientations of [100], [110] and [111] were easily converted
to proportions. The final statistical responses were probabilities of occurrence of each orientation in a
particular thin film sample at the stipulated thermal conditions. These probabilities are legit transformation of
the unordered proportions of [100], [110] and [111]. These responses were modeled against a linear predictor
model of the thermal categorical and continuous factors. Unlike pyrolysis variables which were fixed as
categorical, we attempted both continuous and categorical versions of the annealing temperature and time
variables.

Probability[100] =1/ (1 + Exp( -Lin[100] ) + Exp(Lin[110] - Lin[100]))
Probability[110] = 1/ (1 + Exp( Lin[100] - Lin[110] )+ Exp(-Lin[110]))
Probability[111] =1/ (1 + Exp( Lin[100])+ Exp(Lin[110]))
= 1- Probability[110] - Probability[100]
For categorical predictor factors,

Lin[xxx] = Intercept + function of (pyrolysis time, annealing temperature, pyrolysis
time*annealing temperature, annealing time, pyrolysis time*annealing time)

For continuous predictor factors,

Lin[xxx] = Intercept + function of (pyrolysis time, annealing temperature, pyrolysis
time*annealing temperature, annealing time, pyrolysis time*annealing time, annealing

4



temperature*annealing time, pyrolysis time*annealing temperature*annealing time)

For prediction when using categorical predictor factors, only annealing factor values used in model were

permitted whilst for continuous predictor factors any annealing factor values within range were permitted.

We created 4 samples shown in Table 1, SG1, SG2, RV1 and RV2 where SG and RV refers to PZT sol

mixed up by two different operators but each at four different pyrolysis and annealing conditions.

Table 1: XRD normalized data vs. model predictions for four different samples.

Categorical Model Continuous Model

[100]
[110]
[111]
SG2 [100]
[110]
[111]
RV1 [100]
[110]
[111]
RV2 [100]
[110]
[111]

0.88
0.12

0
0.896
0.104

0.91
0.09

0.042
0.083
0.875

0.924
0.076

4.29E-06
0.924
0.076

4.29E-06
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Figure 6: Comparison of prediction results for four sol-gel samples shown in Table 1 — red is Actual, Green is

Categorical and Purple is Continuous fit.

We observed that the data utilized to create the Temperature-Time-Transformation (TTT) diagrams do not

follow any simple multiple regression (like linear or multi order polynomial; Figure 7)) trends. The reason

5



being that material textured in one phase or orientation will have lesser proportion of the other phases or
orientation. For example, PZT 52/48 has three dominant textures, <100>, <110> and <111> and therefore the

TTT data for such a system is trinomial and interdependent (Figure 8).
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Figure 7: Scatter plot matrix showing the lack of a linear or higher order trends between PZT crystalline
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Figure 8: Scatter plot matrix of the responses (XRD peak data).

We utilized two multivariate regression approaches, multinomial logistic and log ratio multivariate
regressions of the XRD peak data against the 3 process variables - Pyrolysis Temperature/Time and

Annealing Temperature and Time. The constitutive equations are given below.

Lin[100] = In (p “"‘”) = Xa

Lin[110] = In (pm"]) = XB
Pl111]

Pr1oo] = (1 + exp(—Lin[100]) + exp(Lin[110] — Lin[100]))*



For Categorical Predictor Factors,

For Continuous Predictor Factors,

Pr110] = (1 + exp(—Lin[110]) + exp(Lin[100] — Lin[110]))*

P11y = (1 + exp(Lin[100]) + exp( Lin[110]))7*

-1 [100]
LR1 = Il(m)

LR2 =1In <[110]>

[111]

[100] = (1 + exp(—LR1) + exp(LR2 — LR1))1

[110] = (1 + exp(—LR2) + exp(LR1 — LR2))!

[111] = (1 + exp(LR1) + exp(LR2))!

Xa = ag+ apP + oy, Tm + ap,pyP * Tm + op.pp P+ Tp + o, Tp

XG = BO + BPP + BTme + BP*TmP *Tm + BP*TpP * TP + BTpr

Xa = ag+ apP + o, Tm + ap,rP * Tm + op,ppP * Tp + app TP + Oppurp Tm + TP + Op.pmurpP * Tm * Tp

XB = Bo+ BpP + BrmTm + Bp,rmP * Tm + Bp, 1P * Tp + BrpTPp + Brm.rpTm * TP + Bpirm.pP * Tm = Tp

Multinomial
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Figure 9: Multivariate regression fits to TTT data.

From Figure 9, we observe that multinomial categorical gave the best fit to the TTT data. For model validation,

we created 4 samples, SG1, SG2, RV1 and RV2 and the model predictions from multinomial categorical

approach was confirmed as the best (Figure 10) .
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4.2 Interfacial and structural studies of textured PZT sol-gel samples

Initially commonly used VASE analysis was utilized to study the PZT sol-gel films on platinized Si
substrates. But the analysis was complicated by poor fit between the model and data (mean square error values
in Fig. 11). Film inhomogeneities were accounted in the model and better fits were obtained by utilizing

optical non-idealities (non-uniformity in measurement spot).
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Figure 11: VASE modeling issues on PZT sol-gel thin films: (a) as-is MSE of 67.02, (b) MSE of 35.42 with
non-ideal modeling, and (c) MSE of 11.36 with aperture.

However, further investigation revealed that as VASE measurement setup utilizes an optical beam incident at
an angle to the surface (Fig. 12), we were sampling the edge bead (see Fig. 12) of the spin coated sol-gel films
and excluding this non-uniform film around the sample edges, lead to better fits. The fix was the combination

of lower angle of incidence, use of an aperture as shown in Fig. 13 and higher data averaging.
1. Known input S J.A Woollam <o., Inc.
polarization

g Pp-plane
3. Measure output

polarization

2. Reflect off sample ...

Figure 12: Angle of incidence of assaying light in VASE.
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Figure 13: Use of an aperture resolved the lack of fit issues.

To understand the effect of substrate on heterogeneous nucleation of PZT sol-gel thin films, we conducted
depth profiling using incremental Ar sputtering followed by X-ray photoelectron spectroscopy as shown in Fig.
14. We observed an artifact of the XPS depth profiles (knock-on effect), that is there was an unnatural large

gradient of elemental concentrations at the interface between the PZT film and platinum under layer. In an



85nm PZT thin film, 20-30 nm of grading would be easily discriminated by the VASE analysis and therefore

this gradient was unreal.
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Figure 14: XPS depth profile of PZT sol-gel sample.

We conducted the AFM analysis of the sputtered crater as shown in Fig. 15 and found 20-30nm roughness that
obliterates any sharp transition at the PZT and Pt interface. High resolution binding energy XPS depth profile

scans shown in Fig. 16 were then attempted and we were unable to discern any interfacial heterogeneity.

Figure 15: 20nm roughness at PZT-Pt interface in sputtered crater of the XPS depth profiled sol-gel sample.
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Figure 16: High resolution binding energy XPS depth profiling of PZT sol-gel thin film.




Ellipsometric data can be used to determine the optical band gap of highly textured PZT thin films using a
Tauc plot (Fig. 17) for direct band gap material where « = ﬂ;is computed from absorption coefficient (k)

and its square is plotted against incident light energy [3]. The x-axis intercept of the tangent to the sloped line
beyond the absorption edge gives us the optical band gap E,. We see the E, trends as (111) > (100) > (110).
The triangular area between the Tauc curve and the tangent is a measure of the sub-band gap density of trap
states and this trend was found to be: (110) > (111) > (100).

0.014

0.012

[100] 3.78
- 0.008
(ahv)? [111] 3.86
P [110] 3.72
0.004
0.002
0 r
34 35 3.6 7 38 39 4 4.1

Energy (eV)
Figure 17: Tauc’s plot to determine the optical band gap of highly textured PZT thin films.

The deposition process variables were — argon and oxygen flows, chamber pressure, RF power (DC Bias),
working distance, temperature, rotation speed and substrate bias. A statistically designed experiment
(SDE/DOE) for 8 variables will consist of 2° = 256 runs (# of runs = 2" where n is # of variables). This
experimentation is best conducted in one session to limit the variance and such a large number of runs will
require considerable sample preparation and time allocation. So it is best advised to decrease the number of
variables or combine them in the first screening experiment. We combined O, and Ar into varying O, flow in a
fixed Ar flow, fixed working distance and rotation speed and blocked for substrate temperature at two settings
of room temperature and 100°C. In doing so, we reduced the experiment to 2* = 16 runs + 2 temperature

blocks + 2 center runs per block = TOTAL of 18 experiments (Table 2).

DESIGN-EXPERT Plot
o Half Normal plot EES\GNVEN;‘ERT Plot Half Normal plot
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Figure 18: Half normal probability plots of VASE responses — thickness, refractive index and absorption
coefficient.
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Table 2: Full factorial statistical design of experiment in four process variables and the measured VASE

responses.
‘ Factor 1 Factor 2 Factor 3 Factor 4 Response 1 | Response 2 | Response 3
Std | Run Block A:ArO2ratio| B:Pressure | C:RF Power | D:RF1 bias thickness n@633nm k@633nm
mT w w A

I 8 1 High Temperature 4,00 7.00 200.00 0.00 761.92 1.7856 0.0033439
- 14 2 High Teqmperature 400 3.00 200.00 10.00 39817 1.8497 0013923
j_| 5 3 High Te&ersﬁwe 200 3.00 200.00 0.00 1306.32 22545 2.052E-005
| 9 4 High Temperature 200 3.00 100.00 10.00 376.88 20173 0.018048
|- 15 5 High Temperature 200 7.00 200.00 10.00 662.98 19565 16201E-010
|- 3 6 High Temperature 200 7.00 100.00 0.00 666.47 22757 0.34823
| 17 7 High Temperature 3.00 5.00 150.00 5.00 39389 16314 0.012359
- 2 8 High Temperature 4.00 300 100.00 0.00 471.82 1.8707 0.096903
_| 129 High Temperature 4.00 7.00 100.00 10.00 No deposition
=] 18 10 Room Temperature 3.00 5.00 150.00 5.00 426.24 1.8802 0.021286
_1 18 11 Room Temperature 400 7.00 200.00 10.00 442 44 1.9399 0.026216
|| 4 12 Room Temperature 4,00 7.00 100.00 0.00 39442 16124 0033182
| 6 13 Room Temperature 4.00 3.00 200.00 0.00 951 .25 20639 0.016531
! 1" 14 Room Temperature 200 7.00 100.00 10.00 355.04 1.7938 0.0061854
_| 10 15 Room Temperature 4.00 3.00 100.00 10.00 No deposition
- 13 16 Room Temperature 200 3.00 200.00 10.00 758.56 20214 1.4639E-011
|| 7 17 Room Temperature 200 7.00 200.00 0.00 1369.34 21445 000062518
|| 1 18 Room Tempersature 200 3.00 100.00 0.00 564 .54 25352 0.57916

The responses were VASE measured thin film parameters — thickness, refractive index (n @ 633nm) and
absorption coefficient (k @633nm). Despite having two thin film deposition runs being immeasurable, the
significant factors were easily decipherable as shown in the Half Normal Probability plots in Fig. 18. The
results of the analysis of variance of VASE data gave us the following models for responses (refractive index

and absorption coefficient were transformed for more linearity in the model).

Thickness =-158.01581+906.09265* O2 :Ar ratio+7.51601* RF Power+21.59485* RF1 bias-14.30249*
02 :Arratio * RF Power+100.05294* O2 :Ar ratio * RF1 bias-0.43622* RF Power * RF1 bias

1.0/(n@633nm) = +0.47896+0.21585* O2 :Ar ratio

Ln(k@633nm) = +11.25209-21.87405* O2 :Ar ratio-0.75347* Pressure-0.11680* RF Power+0.71603*
RF1 bias-2.33929* O2 :Ar ratio * Pressure+0.25293* O2 :Ar ratio * RF Power-13.45737* O2 :Ar ratio * RF1
bias+6.79026E-003* Pressure * RF Power-0.010910* RF Power * RF1 bias+0.098354* O2 :Ar ratio * RF
Power * RF1 bias

[Pb] =-5.15252+17.71069 * O2 :Ar ratio+0.092922 * RF Power+0.34365* RF1 bias-0.28374 * O2 :Ar ratio *
RF Power+3.57606* O2 :Ar ratio * RF1 bias-7.58598E-003* RF Power * RF1 bias

Ln(Ti) =+1.09901-2.93732 * O2 :Ar ratio
[Zr] =-0.12168+5.48020 * O2 :Ar ratio-0.13771 * Pressure+0.025982 * RF Power+0.12614 * RF1 bias-
0.10126 * O2 :Arratio * RF Power+1.12925 * O2 :Ar ratio * RF1 bias-1.91314E-003 * RF Power * RF1 bias
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Sqrt(Pb/(Ti+Zr)) =+0.59938+3.76765E-003 * RF Power-0.075642* RF1 bias

The above equations were then used to predict the thickness at various conditions (shown in red box below)
and there is good match between the actual and predicted values for film thickness. Refractive index depends
only on the oxygen content of the film and absorption coefficient is affected by any plasma variation (Table 3).
But these ANOVA models are still useful in predicting the conditions to get high deposition rate PZT thin

films without sacrificing its optical properties.

Table 3: Validation (top box) and Prediction (bottom box) of optimal operating conditions for a RF sputtering
of PZT thin films.

Using these settings in equations on previous slide to predict

"_h“““———h______q_h
Thickness (t) . Refractive Iridex (n) Absorption(k)

Actual Predicted Actual Predicted Actual Predicted

52/48 { 3mT/12 Ar/200W F 141039  1345.19 2.2758 2.083 8.126-05 3.40E-05
52/48 3mT/12 Ar/200W + 10W RF1 708.62 688.7 2.0353 2.083 1.64E-12 1.46E-11
52/48 3mT/12 Ar/200W + 3sccms 02 Pt 918.31 856.58 2.0285 1.89 5.87E-03 0.007673
Constraints
Lower Upper Lower Upper
Hame Goal Limit Limit weight Weight  Importance
(02 :Ar ratio is in range o 0s 1 1 3
Pressure is in range 3 7 1 1 3
RF Power s inrange 100 200 1 1 3
RF1 bias iz inrange 0 10 1 1 3
o Jrickness madmize 35504 1369.34 1 1 3
Optimization |}, o0 o633m)  isinrenge 0394446 0620194 1 1 3
Criteria Ln(kg@633nm) minimize -24.9473 0546177 1 1 3
Solutions
Predicted Number O2:Arratic  Pressure  RF Power RFibias  thickness 1.0(n@633nm)Ln(k@633nm)  Desirability
process +—>] o 200 20000 500 101702 0479 A7612 0876
conditioqs f_‘” 2 0.00 350 200,00 378 1097 11 0479 15533 0670
above criteria

A 2" DOE was conducted to ensure that we have more robust models around the preferred operating point

and the resultant responses are shown in Table 4.

Table 4: 2™ full factorial statistical design of experiment in 3 process variables and the measured VASE

responses.
| Factor 1 Factor 2 Factor 3 Response 1 | Response 2 | Response 3
Std | Run Block A:02 flow | B:RF Power | C:RF1 bias thickness n@633nm k@633nm
sccm w w A

I 3 1 Block 1 0.00 200.00 0.00 1179.71 23469 0.010492
=1 4 2 Block 1 0.00 200.00 2.00 1025.72 22847 00018355
L 8 3 Block 1 200 200.00 200 5059 21958 0.011107
1! 1 4 Block 1 0.00 150.00 0.00 81754 22963  0.0088137
| 5] 5 Block 1 200 150.00 200 25621 2.2466 0.020467
1] 9 6 Block 1 1.00 175.00 1.00 556.29 20687  0.0097767
1 2 T Block 1 200 150.00 k 0.00 380.71 2097 0.044156
e 4 8 Block 1 2.00 200.00 0.00 719863 2me1 0.0098381
= 5 9 Block 1 0.00 150.00 200 64292 22615 00020284

The results of analysis of variance of VASE data gave us the following models for responses (this time only
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absorption coefficient had to be transformed for more linearity in the model). Noticeably, most of the
interaction terms have dropped out of the model. The expected effect of plasma variables on refractive index

and absorption coefficient is more evident and realistic.

Thickness = -157.05500-224.18000* O2 flow+6.61790*RF Power-84.60500 * RF1 bias

N@633nm = +2.32160-0.15185 * O2 flow-0.024250 * RF1 bias+0.062950 * O2 flow * RF1 bias
1.0/(k@633nm) = +104.38522-21.11945 * O2 flow +207.25991* RF1 bias- 101.80498 * O2 flow * RF1 bias

Based on the SDE’s, we targeted a 1 micron PZT film with Pb/(Zr+Ti) ratio of 1 and low absorption
coefficient. SEM cross-section in Fig. 19 shows a film of 989 nm whilst our VASE measurement was 903nm.
The slight discrepancy is due to low magnification of the SEM picture. On careful perusal, one can observe a
thin initiation layer. This is a high deposition rate thin layer of 80-100nm PZT that will provide nucleation for

creating crack free films.

WD= 7mm EWT= 800K/ Date 7 Oct2010
Mupe KR sy SignalA s inlens

Figure 19: SEM cross section of the PZT film over a 260nm sputtered Pt/ 50nm Ti/500nm SiO2/Si substrate.

We also conducted an EDX scan of the PZT thin film and evidently as shown in Fig. 20, we did obtain the
Pb/(Zr+T1i) ratio of 1. The individual elemental concentrations [Pb], [Zr] and [Ti] were incongruent with the
ANOVA models as the EDS analysis equipment and software were dissimilar. Earlier EDX data was

quantitative whilst this is qualitative due to the standard less nature of the analysis.

Element \\'ﬂghi Atomic

Figure 20: EDX stoichiometry results of the PZT film in the blue box.
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Figure 21 shows the ferroelectric response of the deposited films exhibiting remnant polarization of P, = 28.04
uC/ecm® and 22.38 pC/cm’ which is close to that obtained for a sol-gel seed layer textured RF sputtered thin
film. The coercive field was E. = 444.7 kV/cm & 475.6 kV/cm.
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Figure 21: Ferroelectric hysteresis loops for ~0.9um thick PZT sputtered film.

Two measurements as shown in Fig. 22 were attempted to isolate the effect of substrate clamping — in plane
measurement depicted as ‘dot2dot’ and out of plane depicted as ‘top2bottom’. The dot2dot loop is more

symmetric due to the lack of residual stress and substrate clamping effects.

Dot2dot Top2bottom

Figure 22: Test probe configuration for in-plane vs. out-of-plane measurements.
The results of the 2™ DOE Analysis of Variance of VASE data gave us the following models for responses:
Thickness = -157.05500-224.18000* O2 flow+6.61790*RF Power-84.60500 * RF1 bias
n@633nm = +2.32160-0.15185 * 02 flow-0.024250 * RF1 bias+0.062950 * 02 flow * RF1 bias
1.0/(k@633nm) = +104.38522-21.11945 * 02 flow +207.25991* RF1 bias- 101.80498 * 02 flow * RF1 bias

We also conducted EDX scans of the PZT thin films generated by these 2 SDE’s. The ANOVA models for the
same are shown below. But we decided to proceed further and investigate a method to correlate the optical

properties of these films with the elemental composition (as in Figure 22).

[Pb] =-5.15252+17.71069 * O2 :Ar ratio+0.092922 * RF Power+0.34365* RF1 bias-0.28374 * 02 :Ar ratio * RF

Power+3.57606* 02 :Ar ratio * RF1 bias-7.58598E-003* RF Power * RF1 bias
15



Ln(Ti) =+1.09901-2.93732 * 02 :Ar ratio

[Zr] =-0.12168+5.48020 * O2 :Ar ratio-0.13771 * Pressure+0.025982 * RF Power+0.12614 * RF1 bias-0.10126
* 02 :Arratio * RF Power+1.12925 * 02 :Ar ratio * RF1 bias-1.91314E-003* RF Power * RF1 bias

Sqrt(Pb/(Ti+Zr)) =+0.59938+3.76765E-003 * RF Power-0.075642* RF1 bias

Aborptien Cos Tl ket (k)

Optical Dispersion Data

|
baal ]

e

Elemental Analysis Data

Figure 22: Typical Optical properties vs. wavelength for a particular PZT film and its elemental composition
as measured by Energy Dispersive X-ray Analysis.

We plotted and computed Tauc and Wemple-DiDomenico parameters from the optical dispersion data (Figure
23). We then regressed any correlation between elemental composition and these parameters. But we needed
another parameter to equate with the number of unknowns in the resultant model equations. From Figure 24,
electronic polarizability affects the optical properties of a thin film and so we computed it using 3 different

approaches (as plotted in Figure 25).

* Tauc plots * Wemple-DiDomenico relationship
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Figure 23: Tauc and Wemple-DiDomenico plots for 1* SDE PZT thin films.
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Figure 24: Electronic Polarizability and Optical dielectric response of a thin film

Lorentz-Lorenz Polarizability

Figure 25: Electronic polarizabilities calculated using 3 different approaches.

Using the Tauc, Wemple-DiDomenico and Polarizability correlations to composition, we can predict the
composition of a thin film from the same system by substituting the measured optical dispersion parameters.
The model equations for the 1** SDE and the model predictions using this methodology are shown below. This
methodology translates into a lab scale non-destructive compositional prediction model for multi component

thin films.

* Using values for Eo or Ed or Eg from sample and previously derived =
correlations (shown below), solve for fyy, £, | £ and gouf i
A feses + foro EEE: gnm
V2 (fzetzr + frirn+ foro) i E
fri= —0132151 + 0.0375312 « Eo f:::ir' z.m; L L
fzr = —0.066168 + 0.0193297 « Eo T gy ey
fpp = 0.3855925 — 0.0586112 = Eo ig:ii
a, = —6.59% —25 + 4.01e — 24« tf g::
Gy = 1821 — 24 + 0.452158 = a,,
Uy = 1.348e — 24 + 0.7085994 = a,, B

Figure 26: The correlations(left) and the predictability (right) of the new methodology.

4.3 Magnetic Field Sensor Fabrication

The single layer transformer structure is shown in Fig. 27. It consists of a nickel ferrite (NFO) dot over a
patterned platinum electrode which in turn is over a patterned or un-patterned PZT thin film. A diffusion

barrier layer might be incorporated between the PZT and Si so as to prevent SiO, formation. It could a layer of
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Pt which can serve as the ground for both input (ring) and output (dot) electrodes.

Figure 27: Schematic of a single layer transformer-based sensor structure.

We have utilized photo etched metal shadow masks to deposit patterned thin films (see Table below for
process sequence). We also used magnets (shown in blue in Figure 28) to protect the underlying layer’s

electrical pads from deposition.

Process Mash

5i02 deposition

Ti deposition

Blanket bottom Pt deposition

PITmask

PZT deposition

PZT annealing

1stRing pattern/mask

Prdeposition

1 Pad protection 1
PZT deposition 1
PZT annealing

2ol Ring pattem/mask Rotate90deg

Pt deposition

2 Pad protection )
PZT deposition 1
PZT annealing

3nd Ring pattem/mask Fotated0deg

Pt deposition

3 Pad protection 3
PZT deposition 3
PZT annealing

Ath Ring pattern/mask Fotatedideg

Ptdeposition

4 Pad protection 4
PIT deposition 4
PIT annealing

Final Ring+Dot pattern/mask

Pt deposition
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Figure 28: Shadow mask processing using metal shadow mask and magnets (to protect electrical pads from
deposition).

We had to develop custom testing capability for testing our ME devices. We procured a Agilent E4991A
Impedance Analyzer, Jmicro Technology probe station and GGB Picoprobes with special wire tethers (to

create common ground between input and output). Figure 29 shows the measurement system.

® 2 devices — square and round 1

* Greenis conductor

# Brownis dielectric

short | G lmpedance analyzer
* Ground plane is common for both devices

::::::

. % ://. S

Input(output short)

| S Inpzdance analyzer G | short
a 1 G o 1 @ a) | / b) C)
* Agilent E4991 RF analyzer ¢ JmicroTechnology KRN-095
o JmicroTechnology LMS-2709 Positioners
Probe station * GGB Picoprobe ECP18 GS &5G

Figure 29: Electrical connections and equipment for High Frequency ME testing — a) DUT (device under
test), b) impedance testing schematic, ¢) Gain testing schematic, d) test bench and €) probe tip with special
wired tethers for common ground.

We first fabricated the multilayer piezoelectric transformer based on tape-casting technique and low

temperature co-firing process. The advantage of this technique is low cost and availability for industry

manufacture. With optimized inner electrode composition and co-firing process, we were successful in

achieving high density and crack free co-fired PZNT (0.8PZT (52:48)-0.2PZN) multilayer transformer at
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930°C. On the co-fired multilayer transformer, we attached two layers of Met-glass on both side of the output

section with dimension of 4x4 mm? to fabricate the laminated ME transformer as shown in Fig. 30. With Met-

glass attached on the output area, we were able to tune the performance of the transformer under external DC

magnetic bias as shown in Fig. 31 and Fig. 32.

) Output
l J, 7 Polarization
Met-glass T T = direction
(4xd mm?) -
Py
v ¥
Input
Figure 30: Schematic of ME transformer structure.
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Figure 30: (a) ME transformer voltage gain as a function of frequency at varying external DC magnetic field

from 0 Oe to 3000 Oe, (b) Variation of resonance frequency as a function of external DC magnetic field, (c)

Change in maximum voltage gain with respect to change in the DC magnetic field.
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Figure 31: ME transformer characterization showing the change of voltage gain in the frequency range of

110 kHz~113 kHz with and without applied DC magnetic field.
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When the transformer was operated under external magnetic field range of 400 Oe to 3000 Oe, the
value of maximum voltage gain and its working frequency were found to increase first with increasing Hy. and
then decrease with increasing Hy.. Also, we can notice that the voltage gain tunability (Gy-Go/Gy) of the
transformer is small at low magnetic field below 1000 Oe but increased at high magnetic field. The trend of
resonance frequency shift was found to be as expected from the equivalent circuit models. The data clearly

demonstrates our hypothesis of tunable performance of ME transformer under external magnetic field.

Graded transformer: Since the piezoelectric transformer can be seen as a combination of actuator (input)
and transducer (output), we experimented with a new transformer structure with different materials at input
and output section. Materials which possess higher d;; are suitable for actuator and those with higher Qm are
suitable as a transducer. This design provides the potential of achieving better performance and new structure
of ME tunable transformer. Figure 32 shows the structure of graded transformer. This figure shows
comparison of voltage gain and efficiency performance between single phase piezoelectric transformer and
graded transformer. Further analysis has to be conducted on this new design with aim of improving

piezoelectric transformer performance.
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Figure 32: Graded piezoelectric transformer with ring-dot structure.

4.4 Hybrid deposition process

We developed hybrid deposition process to achieve high quality films by combining pulsed laser
deposition (PLD) and sol-gel. Pulsed laser deposition has high deposition rate and flexibility in target material
but as-deposited films are not well textured. So by taking the advantage of orientation control in sol-gel
process and high deposition rate of PLD process, we expect to achieve high quality textured film. The sol
preparation, gelation process and perovskite crystallization process were optimized for (100) orientation.

Pulsed laser deposition with parameter (9E-4 Torr ambient oxygen pressure, 90 min, room temperature) was
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conducted. Film were grown at room temperature on as deposited PZT seed layer (sol-gel). In-situ annealing

temperature was varied in the range of 250°C to 650°C. Crystallization was determined by using X-ray

diffraction (XRD) as shown in Fig. 33. We can notice that this process provides <100> preferred orientation.

The fraction of texturing increased 20% from 58.7% (seed layer) to 79.12% (2™ deposited film) by using this

hybrid process.

PZT (100) Sol-gel & PLD hybrid deposition
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Figure 33: XRD pattern of <100> textured PZT film on platinized Si via hybrid deposition.

Using the films deposited through this combinatory process, we started to fabricate the unipoled

transformer structure. Figure 34 shows a series of image of the first prototype. Ring-dot silver electrode was

printed by aerosol jet deposition system. Further investigation on voltage gain will be conducted in the near

future.

Gap:0.2mm

Figure 34: Unipoled PZT thin film transformer.

Sliver electrode
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Figure 35 shows the developed hybrid deposition process by combining pulsed laser deposition (PLD) and
sol-gel. High deposition rate can be achieved by this process for thick film growth. In addition, high fraction

of texture can be obtained via optimized deposition parameter.

*  Hybrid deposition method have been used to achieve highly _~7
textured PZT thick film with high growth rate. Optimized growth
condition need to be further studied. Sol-gel
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Figure 35: Schematic of hybrid deposition process, XRD evolution of hybrid deposited PZT films under
varied annealing temperature, microstructure and piezoelectric properties of (100) highly textured
Pb(Zr0.6Ti0.4)03 thick film.

Hetero-structure growth of BaTiO3(BTO) & CoFe,04(CFO)

We studied the growth and microstructure of BaTiO; (BTO) thick films on platinized silicon substrate
synthesized by pulsed laser deposition as shown in Fig. 36. We investigated the evolution of microstructure
and piezoelectric response for as-grown BTO film as a function of thickness. Interestingly, the surface
morphology of the films adopted the symmetry of underlying layer and evolved from pyramid to hexagram
shape columnar structure with (111)-preferred orientation as the film thickness was increased. The
piezoelectric properties were also found to increase with thickness. We expect that the structure-property
relationship described for the thick BTO piezoelectric film in this study will strengthen the integration of BTO

with silicon.

For thin film ME tunable transformer, it is advantageous to study the magnetoelectric heterostructure
that offers the potential of magnetic or electric field induced tunabality. We have not only developed
conventional 2-2 type structure to study the interaction between two different phases, but also created a new
magnetoelectric structure which might possesses better performance on ME coupling. Figure 37 shows TEM

image of ion bombardment assisted as-grown BaTiOs/CoFe,O, heterostructure and its ferroelectric properties.
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Ion bombardment induced defect were found as a result of merged columnar structure which could provide us

a new method to tune ferroelectric properties via modulation of defect density.
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Figure 36: Morphology evolution and piezoelectric properties of as-grown BaTiOs thick film.

The interaction between these two phases was studied with varying deposition temperature and BTO
thickness. Deposition parameter for single layer BTO and CFO film was optimized as 100mTorr ambient
oxygen pressure and deposition temperature of 700-850°C. Further study on effect of variables such as BTO
thickness and growth temperature was conducted as shown in Fig. 38. Grain size and thickness were found to
be quite sensitive to the BTO thickness and growth temperature. Triangular topology was found to dominate

grain shape SEM which reflect film growth on (111) oriented Pt as shown in Fig. 39.
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Figure 37: TEM image and ferroelectric properties of as grown BaTiOs/CoFe,O,4 heterostructure.
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Figure 38: Effect of thickness and temperature variable during heterostructure growth.
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Figure 39: SEM image of IBAD-CFO(left) and BTO on as-grown IBAD-CFO film.

We have quantified magnetization and polarization as a function of ion bombardment time as shown
in Fig. 40. As expected, saturation magnetization decreased with increasing ion bombardment time. The
reason for this trend was related to decrease in CFO film thickness with increase in ion bombard time. P-E
loop in this heterostructure shows better hystersis than simply BTO/CFO and BTO films. The reason for this
change still under investigation. We also measured ferroelectric properties change as a function of magnetic
field as shown in Fig. 41. We can clearly notice the variation of ramanent polarization change which

demonstrates the existence of coupling between magnetic and ferroelectric components.
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Figure 40: (a) M-H loop of IBAD-CFO films; (b) P-E loop of BTO/IBAD-CFO films; (c) Comparision of
magnetization of IBAD-CFO film and (d) Comparision of ferroelectricity as a function of lon-bombardment
time.
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Figure 41: Ramanent polarization change as a function of magnetic field for as-grown IBAD heterostructures.

Complex 3D ME composites

In order to break the conventional phase connectivity, we investigated novel composite structures that can
overcome the limitations imposed by material symmetry as shown in Fig. 42. In this process, we start with a
pattern deposited by aerosol deposition (AD) on a platinized silicon substrate and then use pulsed laser
deposition (PLD) to grow multilayers of BaTiO; and CoFe,04. After in-situ annealing at high temperatures,
the deposited films self-assemble into complex structures. Lastly, we use sol-gel to achieve homogeneous top
surface. A combination of these three techniques can be used to fabricate large-area arrays of magnetoelectric
structures. This synthesis method not only helps in achieving a well-ordered arrangement of the nanoscale
magnetoelectric structures but also simplifies the classical top-down patterning and multi-step processing. We
have been focusing on synthesis of these structures and further would like to conduct detailed investigation on
understanding of their static and dynamic ferroelectric and ferromagnetic behavior at nanometer scale,
ferroelastic domain structures, and magnetoelectric coupling.
Sol-gel-PIT 5 ==_cmm emm cmm =Pt 4 Design and synthesis Complex 3D ME composites
e s e R —

AD-ETO 4 + Highly anisotropic structure may bring tailored ferroelectric
properties and enhanced magnetoelectric coupling.

Figure 42: Design and synthesis of complex 3D ME composites.
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Using this process, we designed and synthesized a new structure of CFO/PZT ME composite array with multi-
orientation as shown in Fig. 43. With highly textured buffered array pattern (aerosol jet deposited PZT) and
optimized growth condition of CFO/PZT heterostructure, we successfully obtained composite array with
multiorientation. CFO inside the pattern shows highly (111) prefered orientation while outside the pattern

shows hihgly (100) prefered orienteation with smaller grain size.
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Figure 43: CFO/ PZT ME composite array with multi-orientation.

Interestingly, MFM image of as grown film shows different magnetic response closely related with
grain size and orientation at different area of the array. CFO with larger grains possesses larger magnetic
response, while small grains possess relative smaller response. The reason for the response variation might be
grain size and orientation difference. This provide us the information that we might be able to tune magnetic
response by modifying grain size and orientation during heterogeneous growth. Moreover, we can obverse
higher piezoresponse on small CFO grains which show relative small magnetic response inside the pattern.
This might be explained through magnetoelectric coupling. With applied bias voltage, PZT film below will

transfer strain to the magnetic layer which in return shows high piezoreponse amplitude on the surface.
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Figure 44: Magnetic force microscopy (MFM) images and Piezoresponse force microscopy (PFM) images of
as grown film.
Conclusions

We have developed textured PZT thin films using two different deposition techniques, sol-gel and RF

sputtering. We have characterized these films for their composition, structure and crystallinity. An upshot of
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the detailed characterization was the development of prediction models for texturing of PZT sol-gel thin films,
an understanding of the analytical techniques that can discriminate between the highly textured films,
optimization of the RF sputtered PZT thin film properties using design of experiments methodology and
finally the establishment of a lab scale non-destructive compositional analysis methodology for PZT RF
sputtered thin films using Ellipsometry. We have conceived a unipoled thin film transformer device utilizing
the existing toolset at VT’s MicrON clean room facility (for mask alignment) and our sputtering capability.

We have fabricated single layer transformer structure and characterized its performance.
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