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Final report for
“Discovering and Analyzing Network Function and Structure”

FA955012-10175
Daniel A. Spielman

June 22, 2015

The advances supported by this award may be roughly divided into three categories:

1. the development of faster algorithms for the standard formulation of the problem of interpo-
lation on networks,

2. the development of a new approach to interpolation on networks, and

3. the development of faster algorithms for sparsifying and detecting critical edges in networks.

This report begins with a brief explanation of the problem of interpolation on networks, followed
by an explanation of these advances.

1 Interpolation on Networks

In network interpolation problems, one is given a network along with information about some of the
nodes in the network. Assuming that nodes that are connected by edges are similar, one is asked
to guess the corresponding information for the remaining nodes. A benchmark example of such a
problem is that of detecting spam webpages [CDB+06]. This problem arose in an effort at Microsoft
to detect spam webpages that are created solely to increase the ranking of the pages they point to.
The network in this problem has one vertex for every webpage, and edges representing the links
between the webpages. Researchers at Microsoft investigated many webpages, and determined for
each whether it was spam or legitimate. The interpolation problem is to use these determinations
along with the link structure to estimate the likelihood that other webpages are spam. This is
possible because legitimate webpages are unlikely to link to spam web pages, so a link to a spam
web page is evidence of spam. Similarly, a link from a legitimate webpage is evidence of legitimacy.

Network interpolation problems arise in many other contexts in Machine Learning. One of
the most famous examples comes from the work of Zhu, Ghahramani and Lafferty [ZGL+03] who
showed how to convert many problems of classification and regression in Machine Learning into
problems of interpolation on networks.

2 Faster Algorithms for the Standard Interpolation

The standard method of performing interpolation in networks, which we henceforth call l2 min-
imization, comes from Zhu, Ghahramani and Lafferty [ZGL+03], and only applies to undirected
networks. Formally, one is given a network with vertex set V and edge set E, along with a subset
S ⊂ V at which the values of the function f to be interpolated are known. The interpolation is
performed by finding the function g that agrees with f on the vertices in S and minimizes the sum
of the squares of the differences across edges:∑

(u,v)∈E

wu,v (g(u)− g(v))2 , (1)
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where wu,v is the weight of edge (u, v).
The problem of finding this function g may be reduced to the problem of solving a system of

linear equations in the Laplacian matrix of the network. In fact, this problem is mathematically
identical to many problems that arise in Computational Science, including the computation of
electrical flow and heat flow.

This award supported the development of three new algorithms for solving this problem. The
first of them appears in the papers [CKP+14, CKM+14]. The randomized algorithm in this paper
solves these problems to accuracy ε in networks with m edges in expected time O(m

√
logm log 1/ε).

This is absurdly fast: for moderate ε it is less time than would be required to sort the weights of
the edges in the network.

Given the speed of this algorithm, one may wonder why we would need another. The answer
is that this algorithm is not well-suited to parallelization. This means that we do not know how
to accelerate it substantially using multi-core processors, and that it is ill-suited for problems
whose magnitude requires computation by clusters. For this reason we began the development of
algorithms that have efficient parallel implementations.

Previously, all algorithms that solved Laplacian linear systems in nearly linear time employed
two graph theoretic primitives: low stretch spanning trees and graph sparsifiers. While we had no
idea how to compute low stretch spanning trees efficiently in parallel, we thought that it might
be possible to compute graph sparsifiers this way. This motivated us to design an algorithm for
solving Laplacian linear equations that only relies of graph sparsification. The resulting algorithm
appeared in the paper [PS14].

This paper presented the first algorithm for solving Laplacian linear systems in polylogarithmic
parallel time and nearly-linear work. That is, the algorithm requires little computation and is
efficient in parallel. However, the algorithm in this paper is better viewed as a proof of concept
than something that one should really implement: it requires time cubic in the logarithm of the
condition number of the system to be solved. While this is asymptotically fast in theory, it is too
slow for practical use. The advantage of the algorithm presented in this paper are that:

1. it introduced an entirely new approach to the fast solution of Laplacian linear systems,

2. this approach is very easy to understand,

3. it introduced the first efficiently parallelizable algorithms for graph sparsification, and

4. it inspired the development of even better parallel algorithms for graph sparsification [Kou14,
CLM+14].

The simplicity of the algorithm presented [PS14] has enabled us to improve it to obtain re-
markably fast and efficient parallel algorithms in [LPS]. In this most recent work, we develop
algorithms for solving Laplacian linear systems that run very quickly in parallel. They develop
something that the numerical linear algebra community has been seeking for a long time: sparse
approximate inverses. To explain these, I recall that the classical Gaussian Elimination algorithm
for solving linear equations in a matrix A constructs triangular matrices L and U so that LU = A.
One can then solve a system of linear equations in A by solving equations in L and U . This can
be done quickly if L and U are sparse, as linear equations in triangular matrices can be solved
with a number of computations proportional to their number of nonzero entries. We prove that
every Laplacian matrix A has an approximate LU-factorization in which both L and U have O(n)

2
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entries, where n is the dimension of A. This provides the first linear time sequential algorithm for
approximately solving systems of equations in Laplacian matrices. Moreover, the matrices L and
U we produce are very special: systems of equations in these matrices can be solved in parallel
time O(log n log log n) and linear work. This is within an O(log log n) factor of the best possible.

As is the case with Gaussian Elimination, it takes us longer to compute these matrices L and U
than it does to use them to solve systems of linear equations. However, if we are willing to settle for
slightly worse L and U , we can accelerate the computation. Our presently best algorithm computes
the matrices L and U and applies them to solve a linear system in parallel time O(log6 n). While
this is still too slow to be practical, we are optimistic that it will eventually be possible to improve
it to make it practical.

3 Sparsification and Significant Edge Detection

The fast parallel algorithms that we describe for solving systems of equations in Laplacian matrices
requires fast parallel algorithms for network sparsification. Sparsification is the process of finding
a sparse network that approximates a given network. We use the notion of spectral sparsification.
Thus, the sparse networks we produce have approximately the same community structures as the
original, and the solutions to interpolation problems in the sparse approximations are similar to
those in the original (at least for the l2 minimization described above).

Sparse approximations of networks are often diserable because they take less space to store.
One may wonder why this is useful, as the networks we encounter are often sparse. The answer is
that sparsification allows us to compactly store information about a network that can take a long
time to compute. For example, we might want to keep track of all pairs of vertices that are within
distance 2, 3, or even 4 of each other. In [PS14], we quickly compute sparsifiers that enable us to
approximate all of these distance-k networks.

Our sparsification algorithms have two steps: we first assign a significance to every edge in a
network, where we measure the significance of an edge by how useful it is to communication in a
network. The most significant edges are those whose removal would disconnect the network. We
then construct a sparse approximation of the network by randomly sampling the edges according to
their significance. Thus, the first step of our algorithm is a fast parallel procedure for approximating
the significance of every edge.

4 A Better Approach to Interpolation

The biggest advance supported by this award is the development of a new approach to performing
interpolation in networks that we call “Lipschitz Learning” that overcomes three disadvantages of
l2 minimization:

1. l2 minimization can only be applied in undirected networks,

2. empirically, l2 minimization has been shown to have poor performance in large networks when
the set of values at which the function is known is small, and

3. in l2 minimization there is no easy way to compensate for errors in the edges of the network.

Lipschitz learning overcomes all three of these problems.

3
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In our paper on Lipschitz learning [KRSS15a], we both define this new approach to interpolation
on networks and develop reasonably fast algorithms. While these algorithms are not nearly as fast
as those that we have developed for l2 minimization, they are a good start: we can perform the
interpolation on networks with millions of nodes in a few minutes. We have made an implementation
of our algorithms available on GitHub [KRSS15b]. Our algorithms for dealing with errors in the
input network and function values actually use the Laplacian linear system solvers.

4.1 Lipschitz Learning

There are three distinct ways of defining our approach to Lipschitz learning. The easiest way to
think of it is that instead of minimizing (1), it begins by finding the function g that agrees with f
on S that minimizes

max
(u,v)∈E

w(u,v) |g(u)− g(v)| . (2)

As this does not lead to a unique function g, we seek the function that minimizes the second-to-
maximum of these quantities among those that minimize the maximum, and so on. The result is
sometimes called the Absolutely Minimal Lipschitz Extension. We call it the lex minimizer.

Another way of defining it is to consider the problem of minimizing Laplacian p-norms intro-
duced in [BZ13]: ∑

(u,v)∈E

(wu,v |g(u)− g(v)|)p , (3)

over all functions that agree with f on g. The lex minimizer is the limit as p grows large of the
function g that agrees with f on S that minimizes (3). However, we can compute the lex minimizer
much faster than one can solve (3).

The third way of defining it is by analogy to one of the characterizations of the solution to (1).
The minimizer of (1) for an unweighted network is the function g that agrees with f on S such
that for every vertex not in S, the value of g at that vertex is the average of the value of g at its
neighbors. In unweighted networks, the lex minimizer is the function g such that at every vertex
not in S, the value of g is the average of the minimum and maximum values at its neighbors.

All these definitions can be naturally extended to directed networks.

4.2 Algorithms and Results

We observe experimentally that lex minimizers give much better predictions than l2 minimization
when the label set S is small. The most interesting example is the webspam data set, for which we
obtain much better results than the previous algorithms [ZBT07].

One of the big advantages of lex minimizers over the standard approach of minimizing (1) is
that they allow us to easily compensate for noise both in the values of f on S and in the actual
edges of the network. We develop a fast algorithm to minimize (2) subject to a budget of changes
to edge weights and values of f on S. We do this by formulating the resulting problem as a linear
program, and by then designing a custom interior point method for solving the linear program. We
prove that the interior point method requires few iterations, and that the dominant cost of each
iteration is the solution of a system of linear equations in a Laplacian matrix.

We also show how to perform a rather surprising outlier removal in polynomial time: we can
minimize (2) subject to the removal of a given number of vertices from S. That is, we can com-
pensate for the possibility that some of the values are extremely wrong. While we do not yet know

4
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a fast polynomial time algorithm for this task, we are optimistic that we may one day find one. It
is particularly surprising that such an algorithm exists, as we show that the analogous problem for
(1) is NP-complete.

5 Isotonic Regression

We have built on the techniques we developed in our work on Lipschitz learning to design the
fastest algorithms for isotonic regression [KRS], a problem that has been studied since the 1950’s.
Isotonic regression problems are another type of inference problem on networks. They are specified
by a directed acyclic network in which every node is associated with a real variable. The directed
edges specify inequalities which it is known the nodes must satisfy: an edge from node u to node v
indicates that the variable at node v must exceed the variable at node u. In addition, an estimate
of every variable is provided. The isotonic regression problem is to compute values of the variables
that come as close as possible to the given estimates subject to the inequalities dictated by the
network.

Different measures of “close” provide very different computational problems. For measures of
close in infinity norm or lexicographic infinity norm, we reduce the problem to that of computing
lex minimizers. For lp norms, we solve the problem by specially designed interior point methods.
In fact, these are the first fast algorithms for the problem for p other than 1 and 2.
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