
AFRL-AFOSR-VA-TR-2015-0266

Discovering and Analyzing Network Function and Structure

Daniel Spielman
YALE UNIV NEW HAVEN CT

Final Report
07/08/2015

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

22-06-2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

01-04-2012 to 31-03-2015

4. TITLE AND SUBTITLE
Discovering and Analyzing Network Function and Structure

5a. CONTRACT NUMBER

FA9550-12-1-0175
5b. GRANT NUMBER

FA9550-12-1-0175

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Spielman, Daniel A.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University

47 College Street, Suite 203

New Haven, CT 06510-3209

8. PERFORMING ORGANIZATION
REPORT NUMBER

L00119/12-002832

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Kenechia Clarke-Day, Manager Financial Reporting and Analysis

Grant and Contract Financial Administration Yale University

47 College Street, Suite 216

New Haven, CT 06510-3209

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

L00119

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION A

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This award has supported the development of new approaches and algorithms for inference problems on networks. These have been validated by

experiments demonstrating their utility in detecting spam web pages. It has also supported the development of faster algorithms for determining

which edges are most critical to the structure of a network.

15. SUBJECT TERMS
Network Algorithms, Spam Detection, Learning on Networks, Critical Link Detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

None

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
Spielman, Daniel A. a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)
203-436-1264

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

Reset DISTRIBUTION A: Distribution approved for public release.

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND

ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.

Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)

AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).

Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release.

Final report for
“Discovering and Analyzing Network Function and Structure”

FA955012-10175
Daniel A. Spielman

June 22, 2015

The advances supported by this award may be roughly divided into three categories:

1. the development of faster algorithms for the standard formulation of the problem of interpo-
lation on networks,

2. the development of a new approach to interpolation on networks, and

3. the development of faster algorithms for sparsifying and detecting critical edges in networks.

This report begins with a brief explanation of the problem of interpolation on networks, followed
by an explanation of these advances.

1 Interpolation on Networks

In network interpolation problems, one is given a network along with information about some of the
nodes in the network. Assuming that nodes that are connected by edges are similar, one is asked
to guess the corresponding information for the remaining nodes. A benchmark example of such a
problem is that of detecting spam webpages [CDB+06]. This problem arose in an effort at Microsoft
to detect spam webpages that are created solely to increase the ranking of the pages they point to.
The network in this problem has one vertex for every webpage, and edges representing the links
between the webpages. Researchers at Microsoft investigated many webpages, and determined for
each whether it was spam or legitimate. The interpolation problem is to use these determinations
along with the link structure to estimate the likelihood that other webpages are spam. This is
possible because legitimate webpages are unlikely to link to spam web pages, so a link to a spam
web page is evidence of spam. Similarly, a link from a legitimate webpage is evidence of legitimacy.

Network interpolation problems arise in many other contexts in Machine Learning. One of
the most famous examples comes from the work of Zhu, Ghahramani and Lafferty [ZGL+03] who
showed how to convert many problems of classification and regression in Machine Learning into
problems of interpolation on networks.

2 Faster Algorithms for the Standard Interpolation

The standard method of performing interpolation in networks, which we henceforth call l2 min-
imization, comes from Zhu, Ghahramani and Lafferty [ZGL+03], and only applies to undirected
networks. Formally, one is given a network with vertex set V and edge set E, along with a subset
S ⊂ V at which the values of the function f to be interpolated are known. The interpolation is
performed by finding the function g that agrees with f on the vertices in S and minimizes the sum
of the squares of the differences across edges:∑

(u,v)∈E

wu,v (g(u)− g(v))2 , (1)

1

DISTRIBUTION A: Distribution approved for public release.

where wu,v is the weight of edge (u, v).
The problem of finding this function g may be reduced to the problem of solving a system of

linear equations in the Laplacian matrix of the network. In fact, this problem is mathematically
identical to many problems that arise in Computational Science, including the computation of
electrical flow and heat flow.

This award supported the development of three new algorithms for solving this problem. The
first of them appears in the papers [CKP+14, CKM+14]. The randomized algorithm in this paper
solves these problems to accuracy ε in networks with m edges in expected time O(m

√
logm log 1/ε).

This is absurdly fast: for moderate ε it is less time than would be required to sort the weights of
the edges in the network.

Given the speed of this algorithm, one may wonder why we would need another. The answer
is that this algorithm is not well-suited to parallelization. This means that we do not know how
to accelerate it substantially using multi-core processors, and that it is ill-suited for problems
whose magnitude requires computation by clusters. For this reason we began the development of
algorithms that have efficient parallel implementations.

Previously, all algorithms that solved Laplacian linear systems in nearly linear time employed
two graph theoretic primitives: low stretch spanning trees and graph sparsifiers. While we had no
idea how to compute low stretch spanning trees efficiently in parallel, we thought that it might
be possible to compute graph sparsifiers this way. This motivated us to design an algorithm for
solving Laplacian linear equations that only relies of graph sparsification. The resulting algorithm
appeared in the paper [PS14].

This paper presented the first algorithm for solving Laplacian linear systems in polylogarithmic
parallel time and nearly-linear work. That is, the algorithm requires little computation and is
efficient in parallel. However, the algorithm in this paper is better viewed as a proof of concept
than something that one should really implement: it requires time cubic in the logarithm of the
condition number of the system to be solved. While this is asymptotically fast in theory, it is too
slow for practical use. The advantage of the algorithm presented in this paper are that:

1. it introduced an entirely new approach to the fast solution of Laplacian linear systems,

2. this approach is very easy to understand,

3. it introduced the first efficiently parallelizable algorithms for graph sparsification, and

4. it inspired the development of even better parallel algorithms for graph sparsification [Kou14,
CLM+14].

The simplicity of the algorithm presented [PS14] has enabled us to improve it to obtain re-
markably fast and efficient parallel algorithms in [LPS]. In this most recent work, we develop
algorithms for solving Laplacian linear systems that run very quickly in parallel. They develop
something that the numerical linear algebra community has been seeking for a long time: sparse
approximate inverses. To explain these, I recall that the classical Gaussian Elimination algorithm
for solving linear equations in a matrix A constructs triangular matrices L and U so that LU = A.
One can then solve a system of linear equations in A by solving equations in L and U . This can
be done quickly if L and U are sparse, as linear equations in triangular matrices can be solved
with a number of computations proportional to their number of nonzero entries. We prove that
every Laplacian matrix A has an approximate LU-factorization in which both L and U have O(n)

2

DISTRIBUTION A: Distribution approved for public release.

entries, where n is the dimension of A. This provides the first linear time sequential algorithm for
approximately solving systems of equations in Laplacian matrices. Moreover, the matrices L and
U we produce are very special: systems of equations in these matrices can be solved in parallel
time O(log n log log n) and linear work. This is within an O(log log n) factor of the best possible.

As is the case with Gaussian Elimination, it takes us longer to compute these matrices L and U
than it does to use them to solve systems of linear equations. However, if we are willing to settle for
slightly worse L and U , we can accelerate the computation. Our presently best algorithm computes
the matrices L and U and applies them to solve a linear system in parallel time O(log6 n). While
this is still too slow to be practical, we are optimistic that it will eventually be possible to improve
it to make it practical.

3 Sparsification and Significant Edge Detection

The fast parallel algorithms that we describe for solving systems of equations in Laplacian matrices
requires fast parallel algorithms for network sparsification. Sparsification is the process of finding
a sparse network that approximates a given network. We use the notion of spectral sparsification.
Thus, the sparse networks we produce have approximately the same community structures as the
original, and the solutions to interpolation problems in the sparse approximations are similar to
those in the original (at least for the l2 minimization described above).

Sparse approximations of networks are often diserable because they take less space to store.
One may wonder why this is useful, as the networks we encounter are often sparse. The answer is
that sparsification allows us to compactly store information about a network that can take a long
time to compute. For example, we might want to keep track of all pairs of vertices that are within
distance 2, 3, or even 4 of each other. In [PS14], we quickly compute sparsifiers that enable us to
approximate all of these distance-k networks.

Our sparsification algorithms have two steps: we first assign a significance to every edge in a
network, where we measure the significance of an edge by how useful it is to communication in a
network. The most significant edges are those whose removal would disconnect the network. We
then construct a sparse approximation of the network by randomly sampling the edges according to
their significance. Thus, the first step of our algorithm is a fast parallel procedure for approximating
the significance of every edge.

4 A Better Approach to Interpolation

The biggest advance supported by this award is the development of a new approach to performing
interpolation in networks that we call “Lipschitz Learning” that overcomes three disadvantages of
l2 minimization:

1. l2 minimization can only be applied in undirected networks,

2. empirically, l2 minimization has been shown to have poor performance in large networks when
the set of values at which the function is known is small, and

3. in l2 minimization there is no easy way to compensate for errors in the edges of the network.

Lipschitz learning overcomes all three of these problems.

3

DISTRIBUTION A: Distribution approved for public release.

In our paper on Lipschitz learning [KRSS15a], we both define this new approach to interpolation
on networks and develop reasonably fast algorithms. While these algorithms are not nearly as fast
as those that we have developed for l2 minimization, they are a good start: we can perform the
interpolation on networks with millions of nodes in a few minutes. We have made an implementation
of our algorithms available on GitHub [KRSS15b]. Our algorithms for dealing with errors in the
input network and function values actually use the Laplacian linear system solvers.

4.1 Lipschitz Learning

There are three distinct ways of defining our approach to Lipschitz learning. The easiest way to
think of it is that instead of minimizing (1), it begins by finding the function g that agrees with f
on S that minimizes

max
(u,v)∈E

w(u,v) |g(u)− g(v)| . (2)

As this does not lead to a unique function g, we seek the function that minimizes the second-to-
maximum of these quantities among those that minimize the maximum, and so on. The result is
sometimes called the Absolutely Minimal Lipschitz Extension. We call it the lex minimizer.

Another way of defining it is to consider the problem of minimizing Laplacian p-norms intro-
duced in [BZ13]: ∑

(u,v)∈E

(wu,v |g(u)− g(v)|)p , (3)

over all functions that agree with f on g. The lex minimizer is the limit as p grows large of the
function g that agrees with f on S that minimizes (3). However, we can compute the lex minimizer
much faster than one can solve (3).

The third way of defining it is by analogy to one of the characterizations of the solution to (1).
The minimizer of (1) for an unweighted network is the function g that agrees with f on S such
that for every vertex not in S, the value of g at that vertex is the average of the value of g at its
neighbors. In unweighted networks, the lex minimizer is the function g such that at every vertex
not in S, the value of g is the average of the minimum and maximum values at its neighbors.

All these definitions can be naturally extended to directed networks.

4.2 Algorithms and Results

We observe experimentally that lex minimizers give much better predictions than l2 minimization
when the label set S is small. The most interesting example is the webspam data set, for which we
obtain much better results than the previous algorithms [ZBT07].

One of the big advantages of lex minimizers over the standard approach of minimizing (1) is
that they allow us to easily compensate for noise both in the values of f on S and in the actual
edges of the network. We develop a fast algorithm to minimize (2) subject to a budget of changes
to edge weights and values of f on S. We do this by formulating the resulting problem as a linear
program, and by then designing a custom interior point method for solving the linear program. We
prove that the interior point method requires few iterations, and that the dominant cost of each
iteration is the solution of a system of linear equations in a Laplacian matrix.

We also show how to perform a rather surprising outlier removal in polynomial time: we can
minimize (2) subject to the removal of a given number of vertices from S. That is, we can com-
pensate for the possibility that some of the values are extremely wrong. While we do not yet know

4

DISTRIBUTION A: Distribution approved for public release.

a fast polynomial time algorithm for this task, we are optimistic that we may one day find one. It
is particularly surprising that such an algorithm exists, as we show that the analogous problem for
(1) is NP-complete.

5 Isotonic Regression

We have built on the techniques we developed in our work on Lipschitz learning to design the
fastest algorithms for isotonic regression [KRS], a problem that has been studied since the 1950’s.
Isotonic regression problems are another type of inference problem on networks. They are specified
by a directed acyclic network in which every node is associated with a real variable. The directed
edges specify inequalities which it is known the nodes must satisfy: an edge from node u to node v
indicates that the variable at node v must exceed the variable at node u. In addition, an estimate
of every variable is provided. The isotonic regression problem is to compute values of the variables
that come as close as possible to the given estimates subject to the inequalities dictated by the
network.

Different measures of “close” provide very different computational problems. For measures of
close in infinity norm or lexicographic infinity norm, we reduce the problem to that of computing
lex minimizers. For lp norms, we solve the problem by specially designed interior point methods.
In fact, these are the first fast algorithms for the problem for p other than 1 and 2.

References

[BZ13] Nick Bridle and Xiaojin Zhu. p-voltages: Laplacian regularization for semi-supervised
learning on high-dimensional data. In Eleventh Workshop on Mining and Learning with
Graphs (MLG2013), 2013.

[CDB+06] Carlos Castillo, Debora Donato, Luca Becchetti, Paolo Boldi, Stefano Leonardi, Mas-
simo Santini, and Sebastiano Vigna. A reference collection for web spam. SIGIR Forum,
40(2):11–24, December 2006.

[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time.
In 46th Annual ACM Symposium on Theory of Computing, STOC ’14, pages 343–352,
2014.

[CKP+14] Michael B. Cohen, Rasmus Kyng, Jakub W. Pachocki, Richard Peng, and Anup Rao.
Preconditioning in expectation. CoRR, abs/1401.6236, 2014.

[CLM+14] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. arXiv preprint
arXiv:1408.5099, 2014.

[Kou14] Ioannis Koutis. Simple parallel and distributed algorithms for spectral graph sparsifica-
tion. In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’14, pages 61–66, New York, NY, USA, 2014. ACM.

5

DISTRIBUTION A: Distribution approved for public release.

[KRS] Rasmus Kyng, Anup Rao, and Sushant Sachdeva. Provable fast algorithms for isotonic
regression in all norms. submitted to NIPS.

[KRSS15a] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman. Algorithms
for Lipschitz learning on graphs. In Journal of Machine Learning Research, 2015. to
appear. Available at http://arxiv.org/abs/1505.00290.

[KRSS15b] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman. YINSlex.
https://github.com/danspielman/YINSlex, 2015.

[LPS] Yin-Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified cholesky solvers for sdd
linear systems. in preparation.

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In ACM Symposium on Theory of Computing, pages 333–342, 2014.

[ZBT07] Dengyong Zhou, Christopher J. C. Burges, and Tao Tao. Transductive link spam
detection. In 3rd International Workshop on Adversarial Information Retrieval on the
Web, AIRWeb ’07, pages 21–28, New York, NY, USA, 2007. ACM.

[ZGL+03] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning using
Gaussian fields and harmonic functions. In Twentieth International Conference on
Machine Learning, pages 912–919, 2003.

6

DISTRIBUTION A: Distribution approved for public release.

Response ID:4702 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

spielman@cs.yale.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

203-436-1264

Organization / Institution name

Yale University

Grant/Contract Title
The full title of the funded effort.

Discovering and Analyzing Network Function and Structure

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0175

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Daniel A. Spielman

Program Manager
The AFOSR Program Manager currently assigned to the award

James Lawton

Reporting Period Start Date

04/01/2012

Reporting Period End Date

03/31/2015

Abstract

This award has supported the development of new approaches and algorithms for inference problems on
networks. These have been validated by experiments demonstrating their utility in detecting spam web
pages. It has also supported the development of faster algorithms for determining which edges are most
critical to the structure of a network.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

Spielman_form298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
DISTRIBUTION A: Distribution approved for public release.

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/75-f444d28e29300be1af9a69fe2db34bf6_Spielman_form298.pdf

maximum file size for the Report Document is 50MB.

finalReport.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B. Rao, and
Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time. In 46th Annual ACM Symposium on
Theory of Computing, STOC ’14, pages 343–352, 2014.

Michael B. Cohen, Rasmus Kyng, Jakub W. Pachocki, Richard Peng, and Anup Rao. Preconditioning in
expectation. CoRR, abs/1401.6236, 2014.

Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman. Algorithms for Lipschitz learning on
graphs. In Journal of Machine Learning Research, 2015. to appear. Available at
http://arxiv.org/abs/1505.00290.

Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems. In ACM
Symposium on Theory of Computing, pages 333–342, 2014.

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

The program manager is now James Lawton. When this award began, it was Robert Bonneau.

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jun 29, 2015 11:16:04 Success: Email Sent to: spielman@cs.yale.edu

DISTRIBUTION A: Distribution approved for public release.

http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/218-6a669072ca4080d6992ce999555b1fb7_finalReport.pdf

	DTIC_Title_Page_-_Discovering_and_Analyzing_Network_Function_and_Structure[1]
	FA9550-12-1-0175 SF298
	FA9550-12-1-0175 FINAL REPORT
	FA9550-12-1-0175 SURV

