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Outline

• Background:  Polymer Networks / Cyanate Esters

• Architectural Bias

• Comparison of Petroleum-Based and Bio-Based 
Chemical Architectures

• Continuing Research on Structure-Property 
Relationships using Informatics Tools
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Model High-Temperature Thermosetting 
Polymer Networks:  Cyanate Esters

• A single, known reaction predominates.  

• Methods for assessing the extent of side reactions, and for minimizing side 
reactions, are known.

• The structure of even fully cured networks is easily analyzed and described 
quantitatively.  

• Samples are easy to prepare in the laboratory; cure conditions are readily 
manipulated over a very wide range of rates.  

Principal reaction:
3 OCN ->  

Selectivity:  80% - > 98%
∆Hf = - 110 kJ / eq.
Conversion kinetics;  Auto-catalytic 
(may be catalyzed)
Typical conversion rate:  ~50%/hr
(max) at 250 °C (uncatalyzed)
Extend of conversion:  Limited to TG = 
Tcure + 30-60 °C
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Applications of Polycyanurate 
Networks

Photo credits:  (clockwise from “chip housings” Antonio 
Pedreira, Omegatron (Wikimedia Commons), FAA, US 
Navy (Marvin E. Thompson), US Coast Guard, Gerritse 
(Wikimedia Commons).  Background image: NASA.  All 
images are public domain or freely distributed.
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Describing Polymer Networks:
Structure – Architecture – Topology

• Networks tend to be 

described by three levels of 

hierarchy

– Chemical structure usually 
refers to the number, type, 
and geometric relationship 
of atoms in repeated 
groups

– Chemical architecture
describes the number, type, 
and geometric 
interconnection of repeated 
structures

– Network topology in this 
context describes the 
number, type, and 
geometric relationship of 
repeated architectural units

Structures Architectures

Topologies

R
L

R

R

L

L
B

X XL

Most heuristic “structure-property” methods concentrate on chemical structure only
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Example:  Bias in Predictive
Parameter Sets

All samples were melted,
blended, and de-gassed for 30
min. prior to cure in silicone
molds under N2, cure schedule
for 1 hr at 150 °C followed by 24
hrs at 210 °C, with ramp rates at
5 °C / min.

ESR255BADCy

SiMCy STT3

In this case, we are 
interested in comparing 
models for two different 
architectures, one very 
common, the other 
somewhat rare
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Comparison of Predicted and 
Experimental Melting Properties

• Yalkowsky model over-predicts entropy of melting for tricyanates, in part because the rules 
for counting anisotropy do not consider star-like arrangements, and a triphenyl substituted 
sp3 is still counted as flexible.  These factors explain about 70% of the error.

• Chickos model has a similar pattern of predictive success, perhaps because “bis-like” 
prolate organic compounds are more studied than “tris-like” “pitchfork” structures

ΔSm (kJ/mol K, monomer) BADCy SiMCy ESR255 STT3

ΔSm (kJ/mol K, Yalkowsky) 84 84 98 98

ΔSm (kJ/mol K, experiment) 80.0 ± 1.4 82.1 ± 0.6 75.0 ± 1.9 74.8 ± 0.8

ΔSm0 (kJ/mol K, Chickos) 70 78 88 95

ΔSm0 (kJ/mol K, experiment) 69 ± 3 81 ± 1 50 ± 14 55 ± 3

Tm (model ΔSm  & exp. ΔHm)

Yalkowsky (°C) 66 54 24 24

Chickos (°C) 73 50 42 29

Experiment (°C) 82.1 ± 0.2 60.4 ± 0.1 115.9 ± 0.2 117.5 ± 0.1

Conversion from ∆Sm
0 to ∆Sm based on ∆cp,m = const. = ∆Sm; ∆Sm = ∆Sm

0 / [1 – ln (Tm / 298) ]
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Factors that Introduce Architectural
Bias in Structure-Property Relationships

• The vast majority of monomers containing phenol groups are made by 

catalytic coupling of phenol, either to produce bisphenol or novolac (phenol-

formaldehyde) structures, as a result of an inexpensive supply of phenol from 

petroleum refining.

Consequently, certain architectures are over-represented in a “random” sample of 
network-forming phenolic monomers.
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Bio-Based Phenols:  Wide Range of 
Sources and Methods 

• Bio-based cyanate esters have been made from anethole, resveratrol, 

eugenol, cresol, lignin, vanillin, and even creosote oils.  A much wider array of 

structures can be accessed from these sources than is available from refining 

petroleum
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Quantification of Cyanate Ester 
Structural Factors

 

M
on

om
er

O
CN

K M
e‐
m
p

M
e‐
o

O
CH

3

FB RB FS RS A

BAD 0 0 0 0 0 1 0 0 2 0
LE 0 0 0 0 0 1 0 0 1 1

AN‐1 0 0 0 0 0 3 0 1 2 1
AN‐2 0 0 0 0 0 0.5 0.5 1.5 3.5 1
CS‐1 0 1 1 0 1 1 0 0 0 0
CS‐2 0 1 1 0 1 1 0 0 0 0
CS‐3 0 1 1 0 1 1 0 0 1 1
CS‐4 0 1 1 0 1 1 0 1 1 1
DC‐1 0 0 1 0 0 1 0 0 0 0
DC‐2 0 0 1 0 0 1 0 0 1 1
DC‐3 0 0 1 0 0 1 0 1 1 1
EUG‐1 0 0 0 0 1 4 0 0 0 0
RV‐1 1 0.5 0 0 0 0 2 0 0 0
RV‐2 1 0.5 0 0 0 2 0 0 0 0
SA‐1 0 0 0 1 0 1 0 0 1 1
SA‐2 0 0 0 1 0 1 0 0 2 0
VL‐1 0 0 0 0 1 0 2 0 0 0
VL‐2 0 0 0 0 1 2 0 0 0 0
VL‐3 0 1 1 0 1 0 0 0 0 0
AN‐U 0 0 0 0 0 1 2 1 2 1
EUG‐U 0 0 0 0 1 2 0 0 0 0

The structure of bio-based monomers 
and networks with an X-L-X 
architecture (X = phenyl cyanate ester 
/ phenyl cyanurate) is quantified using 
10 parameters
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Property Data for Cyanate Ester
Monomers and Networks

Although this data set is 
not large by informatics 
standards, it nonetheless 
represents a significant 
amount of synthetic effort.

Because the data is 
limited, minimizing bias by 
investigating a wide 
variety of structures is 
important.

Four properties that have 
been measured and 
published using a well-
defined, robust, and 
identical technique for all 
examples were chosen to 
examine predictive 
models.

Monomer/net
work

Tm (°C)a TG‐fc 
(°C)b

Char 
Yield 
(N2, %)

Char 
Yield 
(Air, %)

BAD 83 323 47 25
LE Liquidc 295 54 24
AN‐1 Liquidc 223 31 9
AN‐2 72 313 48 6
CS‐1 151 236 33 8
CS‐2 125 240 35 11
CS‐3 98 206 28 11
CS‐4 120 238 27 11
DC‐1 88 259 53 30
DC‐2 105 283 43 4
DC‐3 Liquidc 273 43 3
EUG‐1 104 167 31 1
RV‐1 156 >340 74 71
RV‐2 123 334 70 66
SA‐1 73 236 48 11
SA‐2 82 237 43 8
VL‐1 237 n/a n/a n/a
VL‐2 190 n/a n/a n/a
VL‐3 205 n/a n/a n/a
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Predictive Models:
Partial Least Squares Approach
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Informatics techniques like partial least squares provide methods to avoid 
issues associated with over-prediction when many structural variables are 
present

In this instance, cross-validation (leave-one-out) is utilized to establish the 
number of factors needed for prediction of melting points of X-L-X type 
cyanate ester monomers
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Effect of Over-Prediction on Model 
Regression Coefficients

Generally, the structural changes represented by each 
unit change in each parameter are relatively minor.  
Their effect on melting point, as represented by the 
value of the regression coefficient, is also expected to 
be minor.

Analysis of the regression coefficient values therefore 
provides a way to detect over-prediction.

Factor PLS OLS

Constant 145.88 144.97
OCN ‐7.64 142.86
K ‐3.44 ‐123.97
Me‐o ‐13.73 ‐0.42
Me‐mp ‐18.07 12.73
OCH3 40.74 154.55
FB ‐15.17 ‐50.97
RB 24.92 ‐30.87
FS 6.21 2.37
RS ‐20.27 ‐5.86
A ‐15.69 ‐14.60
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Actual Melting Point Predictions

Useful models should indicate a low melting point for monomers that are 
liquids (often supercooled with a melting point of up to 70 °C) at ambient 
temperature.  

The compounds “EUG-U”  and “AN-U” were not synthesized prior to model
construction, and are being used as tests of genuine predictive power.
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Actual Melting Point Predictions
with Experimental Data

Method for Predicting Melting 
Point …

Prediction for LECy Prediction for EUG‐U

Partial Least Squares 95 206

Ordinary Least Squares 74 242

Measured (Lit. / DSC) 29 107

LECy
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Summary

•Property prediction in polymer networks involves consideration of

chemical structure, chemical architecture, and network topology

•The effectiveness of traditional chemical structure-property

relationships for prediction of properties is often compromised by bias

toward certain chemical architectures, a factor which is not adequately

captured in the usual structural parameters

• The use of biologically-derived chemical structures in building

structure-property relationships can often help to ensure that a wide

range of structures, architectures, and even network topologies are

incorporated in the correlations

• The use of informatics techniques on relatively small data sets used to

build improved structure-property correlations for polymer networks is

an area of continuing research
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