				Form	Approved	
REP(OMB No. 0704-0188				
gathering and maintaining the collection of information. inclu	e data needed, and completing a iding suggestions for reducing t	and reviewing this collection of inf his burden to Department of Defe	ormation. Send comments re nse. Washington Headquarte	egarding this burden estima rs Services. Directorate for	te or any other aspect of this Information Operations and	
Reports (0704-0188), 1215 Je shall be subject to any penalt FORM TO THE ABOVE ADD	efferson Davis Highway, Suite 1 y for failing to comply with a col PRESS.	204, Arlington, VA 22202-4302. lection of information if it does not	Respondents should be awa t display a currently valid OM	re that notwithstanding any 3 control number. PLEASE	other provision of law, no person DO NOT RETURN YOUR	
1. REPORT DATE (D	D-MM-YYYY)	2. REPORT TYPE		3. DATES COVER	ED (From - To)	
18 March 2016		Briefing Charts		24 February 201	6 – 18 March 2016	
4. IIILE AND SUBII Predictive methods based structures	for dense polymer n	etworks: Combating b	bias with bio-	5a. CONTRACT N	UMBER	
				5b. GRANT NUME	BER	
				5c. PROGRAM EL	EMENT NUMBER	
6. AUTHOR(S) Andrew J. Guenthner; Benjamin G. Harvey; Michael D. Ford; Josiah T.				5d. PROJECT NUMBER		
Keanis, Joseph M.	Wabiy				P	
				Se. TASK NUMBE	ĸ	
				5f. WORK UNIT N O16J	UMBER	
7. PERFORMING OR	GANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING	ORGANIZATION	
Air Force Research	Laboratory (AFMC)		REPORT NO.		
AFRL/RQRP	•					
Edwards AFB, CA	93524-7680					
9. SPONSORING / M	ONITORING AGENCY	SS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Research	Laboratory (AFMC))				
AFRL/RQR			11. SPONSOR/MONITOR'S REPORT			
5 Pollux Drive				NUMBER(S)		
Edwards AFB, CA	93524-7048		AFRL-KQ-ED-VG-2016-055			
12. DISTRIBUTION <i>Approved for Publi</i>	c Release; Distributi	MENT on Unlimited.				
13. SUPPLEMENTAR	Y NOTES	G			2010	
PA Case Number: #	American Chemical #16152: Clearance D	Society 251st National ate: 3/18/2016	I Meeting; San Dieg	go, CA (16 March	2016)	
Viewgraph/Briefing	g Charts					
	-					
15. SUBJECT TERMS N/A	5					
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON A Guenthner	
a. REPORT	b. ABSTRACT	c. THIS PAGE		19	19b. TELEPHONE NO	
Unclassified	Unclassified	Unclassified	SAR		N/A	
			•		Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18	

Predictive methods for dense polymer networks: Combating bias with bio-based structures

16 March 2016

Andrew J. Guenthner,¹ Benjamin G. Harvey,² Michael D. Ford,³ Josiah T. Reams,³ Joseph M. Mabry¹

¹Air Force Research Laboratory, Rocket Propulsion Division Edwards AFB, CA 93524 andrew.guenthner@us.af.mil ²Naval Air Warfare Center, Weapons Division ³ ERC Incorporated

Integrity ***** Service ***** Excellence

FORCE RESEARCH LABORATOR

- Background: Polymer Networks / Cyanate Esters
- Architectural Bias
- Comparison of Petroleum-Based and Bio-Based Chemical Architectures
- Continuing Research on Structure-Property Relationships using Informatics Tools

Applied Materials Group

Model High-Temperature Thermosetting Polymer Networks: Cyanate Esters

Principal reaction: 3 OCN -> Selectivity: 80% - > 98% $\Delta H_f = -110 \text{ kJ / eq.}$ Conversion kinetics; Auto-catalytic (may be catalyzed) Typical conversion rate: ~50%/hr (max) at 250 °C (uncatalyzed) Extend of conversion: Limited to $T_G = T_{cure} + 30-60 \text{ °C}$

- A single, known reaction predominates.
- Methods for assessing the extent of side reactions, and for minimizing side reactions, are known.
- The structure of even fully cured networks is easily analyzed and described quantitatively.
- Samples are easy to prepare in the laboratory; cure conditions are readily manipulated over a very wide range of rates.

Applications of Polycyanurate Networks

Describing Polymer Networks: Structure – Architecture – Topology

- Networks tend to be described by three levels of hierarchy
 - Chemical structure usually refers to the number, type, and geometric relationship of atoms in repeated groups
 - Chemical architecture describes the number, type, and geometric interconnection of repeated structures
 - Network topology in this context describes the number, type, and geometric relationship of repeated architectural units

Most heuristic "structure-property" methods concentrate on chemical structure only

Example: Bias in Predictive Parameter Sets

Distribution A: Approved for public release; distribution is unlimited. PA Clearance 16152

Comparison of Predicted and Experimental Melting Properties

				•
ΔS _m (kJ/mol K, monomer)	BADCy	SiMCy	ESR255	STT3
ΔS _m (kJ/mol K, Yalkowsky)	84	84	98	98
ΔS_{m} (kJ/mol K, experiment)	80.0 ± 1.4	82.1 ± 0.6	75.0 ± 1.9	74.8 ± 0.8
ΔS _m ⁰ (kJ/mol K, Chickos)	70	78	88	95
ΔS_m^0 (kJ/mol K, experiment)	69 ± 3	81 ± 1	50 ± 14	55 ± 3
T_m (model ΔS_m & exp. ΔH_m)				
Yalkowsky (°C)	66	54	24	24
Chickos (°C)	73	50	42	29
Experiment (°C)	82.1 ± 0.2	60.4 ± 0.1	115.9 ± 0.2	117.5 ± 0.1

• Yalkowsky model over-predicts entropy of melting for tricyanates, in part because the rules for counting anisotropy do not consider star-like arrangements, and a triphenyl substituted *sp*³ is still counted as flexible. These factors explain about 70% of the error.

• Chickos model has a similar pattern of predictive success, perhaps because "bis-like" prolate organic compounds are more studied than "tris-like" "pitchfork" structures

Conversion from ΔS_m^0 to ΔS_m based on $\Delta_{cp,m} = \text{const.} = \Delta S_m; \Delta S_m = \Delta S_m^0 / [1 - \ln (T_m / 298)]$

 The vast majority of monomers containing phenol groups are made by catalytic coupling of phenol, either to produce bisphenol or novolac (phenolformaldehyde) structures, as a result of an inexpensive supply of phenol from petroleum refining.

Consequently, certain architectures are over-represented in a "random" sample of network-forming phenolic monomers.

 Bio-based cyanate esters have been made from anethole, resveratrol, eugenol, cresol, lignin, vanillin, and even creosote oils. A much wider array of structures can be accessed from these sources than is available from refining petroleum

Quantification of Cyanate Ester Structural Factors

	Monomer	OCN	Х	Me-mp	Me-o	оснз	FB	RB	FS	RS	٩
	BAD	0	0	0	0	0	1	0	0	2	0
	LE	0	0	0	0	0	1	0	0	1	1
	AN-1	0	0	0	0	0	3	0	1	2	1
	AN-2	0	0	0	0	0	0.5	0.5	1.5	3.5	1
	CS-1	0	1	1	0	1	1	0	0	0	0
CN	CS-2	0	1	1	0	1	1	0	0	0	0
	CS-3	0	1	1	0	1	1	0	0	1	1
	CS-4	0	1	1	0	1	1	0	1	1	1
	DC-1	0	0	1	0	0	1	0	0	0	0
	DC-2	0	0	1	0	0	1	0	0	1	1
	DC-3	0	0	1	0	0	1	0	1	1	1
	EUG-1	0	0	0	0	1	4	0	0	0	0
	RV-1	1	0.5	0	0	0	0	2	0	0	0
	RV-2	1	0.5	0	0	0	2	0	0	0	0
	SA-1	0	0	0	1	0	1	0	0	1	1
	SA-2	0	0	0	1	0	1	0	0	2	0
	VL-1	0	0	0	0	1	0	2	0	0	0
	VL-2	0	0	0	0	1	2	0	0	0	0
3	VL-3	0	1	1	0	1	0	0	0	0	0
	AN-U	0	0	0	0	0	1	2	1	2	1
	FUG-U	0	0	0	0	1	2	0	0	0	0

The structure of bio-based monomers and networks with an X-L-X architecture (X = phenyl cyanate ester / phenyl cyanurate) is quantified using 10 parameters

Property Data for Cyanate Ester Monomers and Networks

Monomer/net work	T _m (°C)ª	Т _{G-fc} (°С) ^ь	Char Yield (N ₂ , %)	Char Yield (Air, %)
BAD	83	323	47	25
LE	Liquid ^c	295	54	24
AN-1	Liquid ^c	223	31	9
AN-2	72	313	48	6
CS-1	151	236	33	8
CS-2	125	240	35	11
CS-3	98	206	28	11
CS-4	120	238	27	11
DC-1	88	259	53	30
DC-2	105	283	43	4
DC-3	Liquid ^c	273	43	3
EUG-1	104	167	31	1
RV-1	156	>340	74	71
RV-2	123	334	70	66
SA-1	73	236	48	11
SA-2	82	237	43	8
VL-1	237	n/a	n/a	n/a
VL-2	190	n/a	n/a	n/a
VL-3	205	n/a	n/a	n/a

Although this data set is not large by informatics standards, it nonetheless represents a significant amount of synthetic effort.

Because the data is limited, minimizing bias by investigating a wide variety of structures is important.

Four properties that have been measured and published using a welldefined, robust, and identical technique for all examples were chosen to examine predictive models.

Distribution A: Approved for public release; distribution is unlimited. PA Clearance 16152

Informatics techniques like partial least squares provide methods to avoid issues associated with over-prediction when many structural variables are present

In this instance, cross-validation (leave-one-out) is utilized to establish the number of factors needed for prediction of melting points of X-L-X type cyanate ester monomers

Effect of Over-Prediction on Model Regression Coefficients

Generally, the structural changes represented by each unit change in each parameter are relatively minor. Their effect on melting point, as represented by the value of the regression coefficient, is also expected to be minor.

Analysis of the regression coefficient values therefore provides a way to detect over-prediction.

-	Factor	PLS	OLS	
	Constant	145.88	144.97	
מו	OCN	-7.64	142.86	
}	К	-3.44	-123.97	
	Me-o	-13.73	-0.42	
	Me-mp	-18.07	12.73	
	OCH3	40.74	154.55	
	FB	-15.17	-50.97	
ו	RB	24.92	-30.87	
	FS	6.21	2.37	
)	RS	-20.27	-5.86	
	Α	-15.69	-14.60	

Useful models should indicate a low melting point for monomers that are liquids (often supercooled with a melting point of up to 70 °C) at ambient temperature.

The compounds "EUG-U" and "AN-U" were not synthesized prior to model construction, and are being used as tests of genuine predictive power.

Actual Melting Point Predictions with Experimental Data

Method for Predicting Melting Point	Prediction for LECy	Prediction for EUG-U		
Partial Least Squares	95	206		
Ordinary Least Squares	74	242		
Measured (Lit. / DSC)	29	107		

Summary

- •Property prediction in polymer networks involves consideration of chemical structure, chemical architecture, and network topology
- •The effectiveness of traditional chemical structure-property relationships for prediction of properties is often compromised by bias toward certain chemical architectures, a factor which is not adequately captured in the usual structural parameters
- The use of biologically-derived chemical structures in building structure-property relationships can often help to ensure that a wide range of structures, architectures, and even network topologies are incorporated in the correlations
- The use of informatics techniques on relatively small data sets used to build improved structure-property correlations for polymer networks is an area of continuing research

