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1 Introduction

The Penn led AFOSR MURI on Control Science for Next Generation Sensing
(originally titled “CHASE: Control of Heterogeneous Autonomous SEnsors for
Situational Awareness”) ran from August, 2010, through April 2016 and brought
together a group of ten prominent university researchers along with with roughly
two dozen PhD students and postdoctoral fellows supported across four partici-
pating universities on a total budget of ∼ $7.5M over the six years of the project.
There have now appeared in the peer-reviewed literature nearly 170 papers ac-
knowledging support from this award, including 39 publications in top archival
engineering and mathematics journals. 1

Over the course of the project period and its immediate aftermath, our
faculty were recognized by a number of highly prestigious honors and awards
including

• Vijay Kumar’s 2013 election to the US National Academy of Engineering

• G. B. Giannakis’s 2015 winning the innaugural IEEE Fourier Award, the
Technical Field Award in Signal Processing

• D. E. Koditschek’s 2016 winning the IEEE Robotics and Automation So-
ciety Pioneer Award

• the 2016 award to both D. E. Koditschek and Ali Jadbababaie of the
US Office of the Secretary of Defense Vannevar Bush (National Security
Science and Engineering) Faculty Fellowship

• Claire Tomlin’s 2017 winning the IEEE Transportation Technologies Award

The team included experts in control theory, signal and information theory,
computational sciences, optimization and robotics. Our final report is organized
largely according to the accounts of the work conducted by the ten research
groups led by each of the project PIs. This introductory section continues with
an overview of how these efforts fit together along with some highlights of the
intellectual and DoD legacy.

1.1 Project Overview

The project aimed to forge a rigorous new perspective on the joint control
of multiple information sources of disparate types to simultaneously achieve
quantified information and physical objectives. New foundational methodology
for information collection and fusion that exercises rigorous feedback control
over information collection assets, simultaneously managing information and

1 As part of this scholarly dissemination of project activities, we organized and ran a full
day workshop titled “Opportunities and Challenges of Joint Inference and Control in Mobile
Robotics” http://kodlab.seas.upenn.edu/Main/WorkshopICRA2014 at the 2014 IEEE ICRA
(Interantional Conference on Robotics and Automation) devoted to the MURI and related
research topics.
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physical aspects of their states, remained the overarching goal throughout the
six years of the project’s existence. A rough guide to the main intellectual
currents running through our project (and the report itself) can be organized
along the following broad lines of PI inquiry.

1.1.1 Representation for Networked Signal Processing, Estimation,
Localization and Control

Work led by S. Sastry, summarized in Section 3 explored pricing mechanisms
as a means to achieve coordinated behavior in group settings. Work led by C.
Tomlin, summarized in Section 4 pursued reachability analysis for control in
networked settings. Work led by G. Giannakis summarized in Section 6 focused
significant effort in general signal processing, reducing communications costs
by considering various methods of compression Work led by S. Roumeliotis
summarized in Section 7 focused in substantial measure on extracting better
control of uncertainty and consistency using vestibular (e.g. inertial motion
units) and exteroceptive (e.g. cameras or laser systems) sensory systems in
centralized and distributed settings as well. Work led by V. Kumar, summarized
in Section 10 explored the use of finite set statistics and control for estimation
in networked mobile sensors.

1.1.2 Networked Coordination of Joint Physical-Information State

Work led by K. Ramchandran summarized in Section 2 focused on manag-
ing information and memory structures for networked agents. Work led by A.
Jadbabaie summarized in Section 8 concerned networked estimation and social
learning. Work led by A. Ribeiro summarized in Section 11 investigated metric
representations of network data and the connection to multi-agent systems with
incomplete information.

1.1.3 Information-Actuation Linkage

Work led by Y.Baryshnikov summarized in Section 5 addressed the configura-
tion space of multiple particles as exhibiting a joint physical-information inter-
pretation: potentially a literal system of multiple physically located agents; or
an abstract dataset of multiply recorded observations; or some conjunction of
the two. Work led by D. Koditschek summarized in Section 9 focused on the
foundations of clustering-based and other configuration-space approaches to the
coordination of sensorimotor agents.

1.2 Intellectual Legacy

1.2.1 New Applications of Mathematics

The project was particularly focused on integrating into the team’s mix of work
new ideas from nontraditional intellectual sources within the pure mathemat-
ical fields of topology and geometry. Here, we were well led by the notable

5
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insights and guidance of PI Y. Baryshnikov, whose contributions included a
new result bearing on the millenial “sphere packing” problem (see item 1 in
Section 5), as well as the proposal for a new concept of problem complexity
in reactive motion planning and related controls settings (see item 5 Section
5). Baryshnikov’s intellectual influence within the project is particularly visible
in the clustering-based navigation work reported in Section 9.1.2 wherein his
suggestion to explore the relation bewteen the topology of hierarchy in the con-
tinous space of particle configurations and in the discrete space of trees led to a
completely new abstraction for flexible but precise motion planning. The echo
of his ideas can also be seen in the new clustering-based work on classification
reported in Section 9.1.3 as well as the axiomatic approach to metric analysis
of asymmetric networks in Section 11.2.1.

In the general area of novel stochastic systems analysis it seems appropriate
to mention the pioneering work on non-Bayesian distributed learning reported
in Section 8.1. We believe the work reported in Section 10.1 represents the
very first time that finite set statistics have been applied to realtime physical
settings.

1.2.2 DoD Transition

Our team was very fortunate to be well received and supported within the
Sensor Directorate, Section RYAT, of the Air Force Research Laboratory at
Wright-Patterson Air Force Base. We were particularly lucky to be assigned a
participant from amongst that group, the mathematician J. Culbertson, whose
collaborative efforts within the team are partly represented by the work reported
in Section 9.1.3. In part because of his insights, guidance, and translational
efforts, and in part due to the intellectual boldness of the RYAT leadership, a
set of three new follow-on projects stemming from the work originating with
this MURI has been initiated within the AFRL RYAT division in collaboration
with some of the team. We are hopeful that this new effort will lead to a direct
transition of the fundamental MURI research into immediate application within
RYAT.

1.2.3 Acknowledgment

In this final communication, on behalf of the entire MURI team, it seems fitting
to end with a grateful acknowledgment and thanks to our AFOSR Program
Manager, Dr. Tristan Nguyen. Rarely will a group of researchers encounter a
PM who has the background, training, and taste to so thoroughly understand
the team’s intellectual aspirations as to continually cheer them on — and often
to seem as much an eager participant as a diligent caretaker of resources in their
pursuit of knowledge. We have been extraordinarily lucky to find ourselves in
the charge of this selfless, deeply committed, and wise steward. We owe Dr.
Nguyen a debt of gratitude that we can only hope has been partly repaid by
the accomplishments of the team whose freedom and encouragement to pursue
new horizons is in no small measure a testament to his insights and guidance.
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2 University of California Berkeley — Kannan
Ramchandran

2.1 Update Report 2015 CHASE

We have made progress on four parallel thrusts related to this project during
2012-2015:

• Sparse Signal Processing and Machine Learning

• Graph Signal Processing

• Secure and Reliable Distributed Storage

2.1.1 Sparse Signal Processing and Machine Learning

In this research thrust, we wish to usher the science of sparse signal processing
into the next generation, and explore their connections to some of the important
machine learning problems. Compressed sensing has recently emerged as a
powerful paradigm for understanding the fundamental limits of sparse signal
processing and high dimensional learning problems. While this has sparked
excitement in efficient randomized approaches to signal acquisition and recovery,
the current generation of algorithms relies predominantly on convex relaxations
that, being in the problem dimension, are difficult to scale computationally.
This forms the key intellectual motivation for this proposal: how to address the
challenge of scale in the theory and design of sparse recovery algorithms. The
goal is to achieve real-time or near-real-time processing for massive datasets
featuring sparsity, which are relevant to a multitude of practical applications.

We exploit a novel and unexplored interdisciplinary toolkit from ”modern
coding theory”, ”graph theory”, ”number theory”, and ”statistical signal pro-
cessing”. This allows for the devising of new and powerful computational prim-
itives similar in spirit to state-of-the-art codes like LDPC (Low Density Parity
Check) codes and fountain codes that have revolutionized modern communica-
tion systems. We were able establish new theoretical foundations and compu-
tationally efficient algorithms for many data-intensive applications, as detailed
below.

Discrete Fourier Transform (DFT) and Walsh-Hadamard Transform
(WHT) In [1], we addressed the problem of computing an n-length DFT of
signals that have k-sparse Fourier transform, where k << n. We proposed a
novel FFAST algorithm that cleverly exploits filterless subsampling operation
to induce aliasing artifacts, similar to parity-check constraints of good erasure-
correcting sparse-graph codes, on the spectral coefficients. Then, we formally
connected the problem of computing sparse DFT to that of decoding of ap-
propriate sparse-graph codes. This connection was further exploited to design
a sub-linear complexity FFAST peeling-style back-end decoder. Further, we
analyzed the performance of the FFAST algorithm, using well known density
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evolution techniques from coding theory, to show that our proposed algorithm
computes the k-sparse n-length DFT using only O(k) samples in O(k log k)
arithmetic operations, with high probability. The constants in the big Oh no-
tation for both sample and computational cost are small. In particular, the
sample cost is less than 4k. We also provide simulation results, that are in tight
agreement with our theoretical findings. This work further extends to the noisy
situation in [2] and [3], with applications in finite rate-of-innovation sampling
[4] and image processing applications based on the 2-dimensional case in [5].

By exploiting the idea of aliasing and sparse-graph codes similar to that in
the FFAST algorithm, we proposed a novel SPRIGHT framework in [6] and [7]
to compute an n-length WHT of signals that have k WHT coefficients (k << n)
in the presence of noise. The framework comes in two options for noisy WHT
computations, where the NSO- SPRIGHT algorithm uses O(k log2 n) samples
and O(k log3 n) operations while the SO-SPRIGHT algorithm maintains the
optimal sample scaling O(k log n) and complexity O(k log2 n) as that of the
noiseless case. Our approach is based on strategic subsampling of the input
noisy samples using a small set of randomly shifted patterns that are carefully
designed, which achieves a vanishing failure probability.

Sparse Recovery One of the most influential sparse recovery problems is
compressed sensing. In [7] and [8], we consider the problem of recovering the
support of an arbitrary k-sparse n-length vector in the presence of noise. A new
family of sparse measurement matrices is introduced with low-complexity recov-
ery algorithms, which achieves a near-optimal measurement cost O(k log4/3 n)

and sub-linear computational complexity O(k log4/3 n). The proposed method
also admits the option of using O(k log n) measurements to recover the sparse
signal with near-linear time O(n log n). Our measurement system is designed
to capture observations of the signal through sparse-graph codes, and to re-
cover the signal by using a simple peeling decoder. We formally connect general
sparse recovery problems with sparse-graph decoding in packet-communication
systems, and showcase our design in terms of the measurement cost, computa-
tional complexity and recovery performance.

Another problem we studied is the estimation of an n-by-n sparse covari-
ance matrices with k sparse off-diagonal covariance entries. In [9], we consider
the problem of recovering a sparse covariance matrix from quadratic measure-
ments. In particular, we introduce two low complexity algorithms, the first a
message-passing algorithm and the second a forward algorithm, that are based
on a sparse-graph coding framework. We show that under some simplifying
assumptions, the message passing algorithm can recover an arbitrarily-large
fraction of the k non-zero components with ck measurements, where c is a small
constant that can be precisely characterized. We further show that the for-
ward algorithm can recover all the K non-zero entries with high probability
with m = O(k) measurements and O(k log k) decoding complexity. However,
the forward algorithm suffers from significantly larger constants in terms of the
number of required measurements, and is indeed less practical despite providing

8
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stronger theoretical guarantees. We then consider the noisy setting, and show
that both proposed algorithms can be robustified to noise with m = O(k log2 n)
measurements. Finally, we provide extensive simulation results that support
our theoretical claims.

In the work [10], we further consider a sparse recovery problem of group test-
ing. In this work, we have proposed SAFFRON (Sparse-grAph codes Framework
For gROup testiNg), which recovers an arbitrarily-close-to-one (1− a)-fraction
of k defective items with high probability with 6c(a)k log2 n tests, where c(a)
is a relatively small constant that depends only on a. Also, the computational
complexity of the decoding algorithm of SAFFRON is order-optimal. We have
described the design and analysis of SAFFRON based on the powerful mod-
ern coding-theoretic tools of sparse-graph coding and density evolution. We
have also proposed a variant of SAFFRON, Singleton-Only-SAFFRON, which
recovers all defective items with 2e(1 + b)klogklog2n tests, with probability
1− O(1/kb). Further, we robustify SAFFRON and Singleton-Only-SAFFRON
by using modern error-correcting codes so that they can recover the set of de-
fective items with noisy test results. To support our theoretical results, we have
provided extensive simulation results that validate the theoretical efficacy and
the practical potential of SAFFRON.

Machine Learning and Big Data In the work [11], we consider the impor-
tant problem in machine learning of learning a sparse boolean polynomial, which
consists of 2n monomials of n boolean variables, in which only s << 2n coeffi-
cients are non-zero. The goal is to learn the polynomial by querying the values
of the polynomial. We introduce an active learning framework that is associ-
ated with a low query cost and computational runtime. The significant savings
are enabled by leveraging sampling strategies based on modern coding theory,
specifically, the design and analysis of sparse-graph codes, which represent the
state-of-the-art of modern packet communications. More significantly, we show
how this design perspective leads to exciting, and to the best of our knowledge,
largely unexplored intellectual connections between learning and coding.

The key is to relax the worst-case assumption with an ensemble-average
setting, where the polynomial is assumed to be drawn uniformly at random from
the ensemble of all polynomials (of a given size n and sparsity s). Our framework
succeeds with high probability with respect to the polynomial ensemble, where
the polynomial can be exactly learned using O(ns) queries in time O(ns log s),
even if the queries are perturbed by Gaussian noise. We further apply the
proposed framework to graph sketching, which is the problem of inferring sparse
graphs by querying graph cuts. By writing the cut function as a polynomial
and exploiting the graph structure, we propose a sketching algorithm to learn
the an arbitrary n-node unknown graph using only few cut queries, which scales
almost linearly in the number of edges and sub-linearly in the graph size n.
Experiments on real datasets show significant reductions in the runtime and
query complexity compared with competitive schemes.

Reducing latency in distributed computing and data storage systems is gain-
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ing increasing importance. Several empirical works have reported on the efficacy
of scheduling redundant requests in such systems. That is, one may reduce job
latency by 1) scheduling the same job at more than one server and 2) waiting
only until the fastest of them responds. Several theoretical models have been
proposed to explain the power of using redundant requests, and all of the exist-
ing results rely heavily on a common assumption: all redundant requests of a job
can be immediately cancelled as soon as one of them is completed. In [12], we
study how one should schedule redundant requests when such assumption does
not hold. This is of great importance in practice since cancellation of running
jobs typically incurs non- negligible delays. In order to bridge the gap between
the existing models and practice, we propose a new queueing model that cap-
tures such cancellation delays. We then find how one can schedule redundant
requests to achieve the optimal average job latency under the new model. Our
results show that even with a small cancellation overhead, the actual optimal
scheduling policy differs significantly from the optimal scheduling policy when
the overhead is zero. Further, we study optimal dynamic scheduling policies,
which appropriately schedule redundant requests based on the number of jobs
in the system. Our analysis reveals that for the two-server case, the optimal
dynamic scheduler can achieve 7% to 16% lower average job latency, compared
with the optimal static scheduler.

2.1.2 Graph Signal Processing

Graph-structured data is present in numerous modern applications, such as so-
cial media services (e.g. Facebook and Twitter ), wireless sensors (e.g. temper-
ature measurements ), power networks, computer graphics, and finite-element
meshes. Most of these graphs have attributes associated with the nodes or
edges. For example, sensor nodes have measurement values associated with
each node, and social media graphics have attributes like the name, age, gen-
der, or number of ad clicks associated with each node in the graph. Given such
data, problems of interest include finding patterns, predicting unobserved data,
or obtaining multiscale representations of the graph and the associated data for
efficient processing.

We explore fundamental signal processing operations on circulant graphs
to a substantive depth. In particular, we analyze the properties of the Graph
Fourier Transform (GFT) as defined in the literature for circulant graphs. We
define basic operations like shifting, sampling and graph reconnection strategies
for circulant graphs and analyze the corresponding properties in the spectral do-
main. Fundamental sampling theorems and uncertainty principles are derived.
These form the basis for filter design and multi-resolution analysis.

We design three classes of two-channel filter bank structures for signals on
circulant graphs. These are shown to satisfy different desirable properties of
multi resolution filter banks. Further they provide wavelet bases at different
levels which in turn result in a multi scale representation of the given graphical
data.

For analyzing signals on general graphs, we provide a decomposition of an
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arbitrary graph into circulant graphs [13, 14]. In particular, we show that the
adjacency matrix of a given graph can be written as a suitable linear combi-
nation of the adjacency matrices of individual circulant graphs. Fundamental
operations such as sampling and filter design are extended to general graphs
through this decomposition .

Two-channel filter bank structures are designed for general graphs that help
obtain a multi scale representation of any given data on a general graph. These
filter bank structures are shown to satisfy desirable properties like critical-
sampling and perfect-reconstruction [15, 16].

We discuss a specific application related to a class of semi-supervised ML
algorithms, known as graph semi supervised learning (GSSL) algorithms. Some
of the existing GSSL algorithms can be viewed as appropriate filter designs in
the graph domain. A wavelet based semi-supervised algorithm is proposed and
the performance is evaluated on different datasets in comparison to existing
techniques [15, 16].

2.1.3 Secure and Reliable Distributed Storage [17, 18, 19]

We design erasure codes and storage algorithms that are efficient in terms of
resource usage such as storage and network bandwidth, but also have strong
(and optimal) security guarantees. In particular, we consider the notion of
information-theoretic security where unlike cryptographic security, the adver-
sary cannot obtain any information about the data even if it has unlimited
computational power. We design algorithms for protection from various kinds
of security threats, including those of (a) preserving privacy of the data in the
presence of adversaries who may be able to read the data, (b) securing the data
from malicious corruption when an adversary can modify the data, (c) securely
transmitting data across a network, and (d) preserving privacy of any request
made to a database by the user. Our algorithm are practical from a compu-
tational complexity and implementation standpoint, and are also proven to be
theoretically optimal in terms of the various resources at hand.

2.2 Update Report 2012

We have made progress on two parallel research thrusts related to the project:

• Collaborative signal processing theory and algorithms for high-accuracy
localization of CHASE agents;

• Characterizing the fundamental information-theoretic bounds as well as
the design and construction of information-theoretically optimal network
codes for reliable and secure distributed storage of information in the
CHASE network.

• Fast and robust algorithms for compressed sensing.

A brief summary of each thrust follows.
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2.2.1 High-accuracy localization

We have developed a robust architecture as well as the accompanying theory
and algorithms for enabling high-accuracy localization of mobile CHASE agents
even in harsh 3-D indoor multipath environments. A key novelty of our local-
ization system is its use of inexpensive infrastructure comprising a redundant
collection of and easy-to-deploy RFID-supertags in the CHASE environment.
These RFID-based supertags form “virtual antenna arrays,” thereby resulting
in the seamless upgrade of simple inexpensive single-antenna narrowband radios
into sophisticated virtual multi-antenna radio systems, with the accompanying
benefits that MIMO systems bring. Specifically, we exploit the redundancy af-
forded by the high density of these RFID tags, as well as their ability to create
a virtual MIMO antenna array that can be used to distinguish multipath reflec-
tions, together with novel collaborative signal processing algorithms to overcome
the “multipath barrier” that plagues high-precision localization. Our algorithms
allow for simultaneous localization of the mobile CHASE agents and calibration
of the RFID-supertags in real-time. Our results will be presented (1) in IEEE
PLANS 2012.

We have also studied some of the key theoretical aspects of non-line-of-sight
(NLOS) localization. We cast the problem of localization in an optimization
framework and invoke results from semi-definite programming and matrix low-
rank + sparse decomposition literature to provide theoretical guarantees for
NLOS localization. Our results have been submitted (2) to IEEE SSP12, and
will be available on arxiv (3) shortly.

2.2.2 Secure and Reliable Distributed Storage

We have addressed this problem recently using an information-theoretic set-
ting. Particularly interesting are our results in the area of secure distributed
storage of state information across CHASE agents under active adversarial set-
tings. Specifically, in a distributed system architecture, it is desirable for the
local state information as well as the global state information to be reliably
stored in the network of CHASE agents. However, it is important to safeguard
the system from some of the CHASE agents being potentially compromised or
destroyed by adversarial attacks. In such a case, it is important to understand
the fundamental information-theoretic bounds on the minimum communication
cost needed to reliably and securely recover this information from the survivors
in the network. Further, it is critical for the adversary to not be able to gain any
knowledge about the state information stored in the network by compromising
only a subset of the agents. We have studied this in an information-theoretic
setting, and have developed network codes that are provably information theo-
retically optimal in achieving the optimal tradeoff between communication and
storage cost while providing information-theoretic (i.e. computationally un-
bounded) security.
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2.2.3 Compressed sensing

We use a hybrid mix of the Discrete Fourier Transform (DFT), an old workhorse
in digital signal processing, and Low Density Parity Check (LDPC) codes, a re-
cent workhorse in coding theory, to generate a linear measurement lens through
which to perform compressive sensing (CS) of sparse high-dimensional signals.
This novel hybrid DFT-LDPC framework represents a new family of sparse mea-
surement matrices, and induces a fast algorithm (dubbed the Short-and-Wide
Iterative Fast Transform based or SWIFT algorithm) for robustly recovering a
high-dimensional k-sparse signal x, in C

n, from a near-optimal number of (upto
a small constant multiple of k) linear observations, with a decoding complexity
of k steps, under high SNR.
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3 University of California Berkeley — S. Shankar
Sastry

3.1 November 2015 report

In general, we are interested in interactions between competitive agents in dy-
namic settings and how to induce cooperation among them. We study this co-
operation in multiple different contexts including coordination in multi-pursuer
pursuit-evasion games, pricing design for optimal cooperation in linear-quadratic
dynamic games, pricing design in nonlinear open-loop differential games, and
more recently optimize macroscopic traffic behavior on highways.

3.1.1 Pricing Design for Linear-Quadratic Dynamic Games [1, 2]

We investigate the use of pricing mechanisms as a means to achieve a desired
feedback control strategy among selfish agents. We study a hierarchical linear-
quadratic game with many dynamically coupled Nash followers and an uncou-
pled leader. The leader influences the game by choosing the quadratic depen-
dence on control actions for each followers cost function. We show that deter-
mining whether the leader can establish the desired feedback control as a Nash
equilibrium among the followers is a convex feasibility problem. We also discuss
methods for the leader to ensure that the prices are budget balanced as well as
robust to perturbations in the problem parameters and the followers’ strategies.
We apply the proposed method to the problem of ensuring the security of a
multi-network, controlled diffusion in a general network, and efficient energy
resource allocation in buildings.

3.1.2 Pricing for Nonlinear Open-Loop Dynamic Games [3]

We extend our results on pricing design in linear quadratic games to general
open-loop nonlinear dynamic games. We show that a leader or social planner
can design the quadratic dependence on the followers control actions to make
a set of desired control signals a local Nash equilibria of the nonlinear dynamic
game. In addition, we can ensure that the induced equilibria is isolated and
stable with respect to gradient play updates of the followers’ control strategies.
We apply these techniques to the problem of incentivizing members of a multi-
network to invest in cyber-security.

3.1.3 Toll Pricing for Optimal Traffic Flow on Highways [4]

We develop a new macroscopic model of traffic flow that incorporates compet-
itive lane-changing behavior in order to study optimal toll pricing design for
high occupancy toll (HOT) lanes. We use our model to design optimal tolls
that maximize a social planner’s objective while take into account drivers’ self-
ish behavior.
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3.1.4 Decentralized Control in Pursuit Evasion Games [5]

We study a multi-player pursuit evasion game and seek to understand how
collaboration effects the outcome. We consider a scenario where we have N
pursuers and N evaders, all the pursuers are faster than all the evaders, and
the environment is unbounded. We seek to assign each pursuer to capture one
evader and to minimize the sum of all the capture times. A naive approach to
this problem is to phrase it as an optimal bipartite matching problem where the
weights are the time for pursuer i to capture evader j. We study the difference
between this naive approach and strategies that take advantage of coordination
among pursuers.
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4 University of California Berkeley — Claire Tom-
lin

4.1 November 2015 AFOSR CHASE MURI Update

Our research on CHASE has continued in the area of reachability theory as well
as applications in multi-agent systems. In the theoretical front, we have pro-
posed new Hamilton-Jacobi formulations to the reachability problem in order to
overcome the curse of dimensionality. In the applications front, we have inves-
tigated how to utilize reachability analysis in multi-vehicle systems to provide
safety and liveness guarantees.

4.1.1 Theoretical advances in addressing the curse of dimensionality
in reachability analysis

In [1], we proposed a Hamilton-Jacobi (HJ) variational inequality that allows
the computation of reachable sets in the presence of time-varying dynamics,
moving target sets, and moving obstacles.When addressing problems with time
invariant dynamics, moving target sets, and moving constraint sets, previous
methods required augmentation of the state space with time as a new variable.
Since HJ partial differential equations and variational inequalities are typically
solved numerically on a grid, the computation complexity scales exponentially
with the number of state space dimensions, and state augmentation is therefore
expensive. Our new HJ variational inequality is able to bypass state augmen-
tation and solve time-varying problems with moving target sets and constraint
sets in the state space of the original system. Future work will involve extending
our approach to hybrid systems.

In [2], we presented a special formulation of the Hamilton-Jacobi partial
differential equation for decoupled systems. Previously, solutions to some high
dimensional reachability problems can be approximated by methods involving
techniques such as projection or sampling. To address the curse of dimen-
sionality in another way, we have proposed an efficient way to solve reachability
problems involving decoupled systems. Our decoupled HJ formulation takes ad-
vantage of the problem structure to compute the solution to a high dimensional
reachability problem by performing simple computations in the lower dimen-
sional decoupled components. Unlike many previous methods, our computed
solution is exact.

4.1.2 Practical applications in multi-vehicle systems

Applications of reachability analysis are limited largely by imagination. We have
utilized our recent theoretical advances to provide different ways of guaranteeing
safety and liveness of multi-vehicle systems.

In [3], we couple reachability analysis with basic graph theory to analyze
a multiplayer reach-avoid game, in which a team of N attackers aim to reach
some target set while avoiding capture from a team of N defenders. A direct
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application of reachability analysis to this problem is intractable; however, by
considering pairwise outcomes between attackers and defenders, constructing a
graph representing the pairwise outcomes, and finding the maximum matching
of the graph, we were able to find an upper bound on the number of attackers
that can reach the target.

In [4], we present the sequential path planning of multi-vehicle systems,
which efficiently guarantees liveness and safety through priority assignment.
In the sequential path planning problem, multiple vehicles aim to arrive at
each of their destinations before a scheduled time of arrival. Such a problem
could be addressed with a high dimensional reachability approach; however,
the exponential scaling of computation complexity with the number of vehicles
makes this traditional approach intractable. By assigning priorities to each
vehicle and treating higher priority vehicles as moving obstacles, we are able
to efficiently solve the multi-vehicle path planning problem. Future with will
involve incorporating uncertainty in the vehicle dynamics and trajectories.

In [5], we present the platooning of unmanned aerial vehicles, which combines
the areas of reachability and hybrid systems to put the unmanned air space
into a safe and intuitively structured environment. With the growing interest
in using unmanned aerial vehicles (UAVs) for civil purposes such as package
delivery, thousands of UAVs could be flying simultaneously in the airspace in
the near future. Due to the curse of dimensionality, the safety and liveness of the
joint system of thousands of vehicles cannot be guaranteed without imposing
additional structure. In our platooning approach, we propose methods for air
highway placement, model vehicles as hybrid systems, and guarantee the safety
and liveness of all vehicles via reachability analysis, taking advantage of the
decoupled HJ formulation for real time computations.

4.2 April 2012 report

Our research on CHASE has focused on the computation and use of reachable
sets for aiding in human situational awareness for interacting and controlling
CHASE agents.

We first recall that a reachable set describes a subset of the state space from
which a specification may be reached. As we are interested in computing these
sets using control inputs, in the face of disturbances, we consider two model
problems:

• Given a desired target set, the backwards reachable set describes all ini-
tial conditions from which the system can reach the target set, within a
specified time horizon, despite the worst possible disturbance;

• Given an unsafe set (to be avoided), the backwards reachable set describes
all initial conditions from which, despite the best possible control action,
the system can reach the unsafe set within a specified time horizon.

We have shown in earlier work that these reachable sets may be characterized as
the sub-zero level sets of an appropriate Hamilton-Jacobi-Isaacs equation, and
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we have designed a level set toolbox to solve these equations and compute the
sets. The methods are exponential in the dimension of the continuous state,
and hence computationally intensive for large state spaces, which is typical for
large numbers of agents.

Our CHASE research has two directions:

• Fast methods for computation of sensible (not too conservative) approxi-
mations of these reachable sets.

• The use of these reachable sets as a user interface between a human con-
troller and a set of CHASE agents.

4.2.1 Fast computation methods

We have developed two new methods for reachable set computation: (a) open
loop method, and (b) open loop iterative method. In the open loop method, one
player (the control) assumes that other players (disturbances) follow their worst
possible action over the entire time horizon of the game. Thus one strategy is
fixed, and the game problem transforms into an optimal control problem which
is causal, meaning the value function solution of the Hamilton-Jacobi equation
increases monotonically along the characteristic curves (or, equivalently time-
to-reach-target should decrease monotonically along optimal trajectories.) This
allows a particular ordering of the grid nodes, thereby yielding a single pass
algorithm: we have used a Fast Marching Method to solve the problem. In the
HJI case, causality does not hold. Mathematically, this is due to the fact that
the Hamiltonian of the HJI equation is non-convex. In general, this open loop
game is more conservative for the control than the closed loop game, yet we
have found in practice that it is not too conservative. We are characterizing the
speed up and it appears that it is of several orders of magnitude over the level
set methods that we use for general HJI equations.

In addition, we are now developing an “iterative open loop” solution, which
recomputes the open loop solution at each time step, using the actual state as
the updated initial state. This still allows us to use Fast Marching, though we
reduce conservatism of the reachable sets using the iteration. We are currently
characterizing the level of approximation of both in the application described
below.

4.2.2 Use of reachable sets in situational awareness

We have formed a testbed with human interaction with our quadrotors: reach-
able sets are computed for a game played in real time, and displayed to human
players on smart phones. These sets give winning and losing regions of the
game, and also regions of uncertainty which guide the human users on where to
direct the quadrotors to search for opposing players (regions to avoid) or goal
regions (regions to go to).
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5 University of Illinois at Urbana-Champaign—
Yuliy Baryshnikov

Highlights:

1. Configuration spaces of hard disks investigated using Morse theory [1].

2. Shape formation by decentralized mechanisms studied in several context:
from variational Plateau-like problems emulating lipid films formation to
the symmetry breaking in rapidly-growing random trees [2].

3. Novel choreographies in multi-agent systems: a large number of results
deal with the existence and stability of circular choreographies (in which
the shape of the formation remains the same) - we, in a contrast, produce
a novel type of choreographies, depending on the underlying topological
properties of the formation [3, 4, 5].

4. Novel algorithms for robotic exploration, leading to provable uniform cov-
erage of a domain [6].

5. Introduction of “topological perplexity” concept as a measure of mismatch
between topology of an environment and a goal set within it [7].
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6 University of Minnesota — Georgios Gian-
nakis

6.1 December 2015, AFOSR MURI-CHASE Final Report

6.1.1 Summary of main contributions

Leveraging sparsity and low rank for decentralized and online infer-
ence [1, 2, 3, 4, 5] Inference from Big Data is rendered feasible by inherent
regularities in the data that are often contaminated by presence of anomalies
and misses. We have unveiled that most data matrices can be decomposed into
a low rank plus sparse matrix, respectively capturing the nominal regularity in
the data, and anomalies that are inherently sparse. Leveraging these proper-
ties, we have developed sparsity- and rank-regularized estimators for prediction,
imputation of missing data, and anomaly identification, with rigorously derived
recovery guarantees. In order to facilitate large-scale and real-time analytics,
we have developed online and decentralized algorithms for network data traf-
fic and anomaly prediction, robust subspace tracking, and tensor completion
and extrapolation. This contribution is relevant to the approximate robust in-
ference algorithms (Section 2.3.2.3 in the proposal), and also to robust sensing,
cooperative localization, mapping and tracking (Section 2.3.1.1 in the proposal).

Nonparametric basis pursuit via sparse kernel-based learning [6, 7]
Reproducing kernel Hilbert spaces (RKHSs) constitute a powerful framework
for nonparametric estimation and learning. We have endowed this framework
with contemporary advances in sparsity-aware modeling and processing, to de-
velop nonparametric basis pursuit tools for sparse linear regression, nuclear
norm regularization, and dictionary learning. Our sparse kernel-based learning
framework is general enough to incorporate new possibilities such as multi-
kernel selection and matrix smoothing, with test cases from wireless cognitive
radio sensing, microarray data imputation, and network traffic prediction. This
contribution is relevant to robust sensing, cooperative localization, mapping and
tracking (Section 2.3.1.1 in the proposal).

Notable Recognitions

• The conference version of [3] won the Best Student Paper Award in SPAWC-
2012 [8].

• G. Mateos (a PhD graduate supported by this MURI-AFOSR-CHASE
grant) joined the University of Rochester as an Assistant Professor of the
Dept. of ECE.

• Prof. G. B. Giannakis was the inaugural recipient of the IEEE-level Tech-
nical Field Award (IEEE Fourier Award) “For contributions to the theory
and practice of statistical signal processing with applications to wireless
communications.” The selection criteria published include: Impact on the
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field of signal processing technology, including innovation; leadership; and
seminal contributions as evidenced by publications or patents or transition
to practice.

6.1.2 Opportunities and challenges for future funding

Sparsity and low rank are attributes that naturally arise in most complex net-
works (e.g., social nets, power grids, and brain nets). For example, networks
often exhibit edge sparsity, while nodes cluster into ‘communities’ admitting
low rank matrix representations. Coupling our results with emerging trends in
network science will open up opportunities for prediction of evolving network be-
havior, or identification of anomalies in social nets due to e.g., security threats,
or cyber criminals. Furthermore, diffusion processes over complex networks are
driven by the underlying network topology through (possibly) nonlinear and dy-
namical models. Identification of such models for prediction tasks over networks
naturally lends itself to our nonparametric basis pursuit framework.

6.2 August 2012 report

Highlights of our research for the CHASE project until August 31, 2012 include:

• Incorporation of censoring theory, and its fundamental performance limits
in complementing or replacing sensor selection and quantization schemes
for data reduction in sensing, estimation and tracking using wireless sensor
networks (WSNs).

• Establishment of a neat link between the emerging theories of compres-
sive sampling and sparsity-aware signal processing with a basic aspect of
statistical inference, namely that of universal robustness against outliers,
even when the signals involved are not sparse.

• Joint exploitation of the low intrinsic-dimensionality of origin-destination
flows and the sparse nature of anomalies, to formulate a convex program
capable of unveiling traffic anomalies across flows and time due to denial
of service attacks or jamming.

6.2.1 Distributed Data Censoring for Estimation and Tracking via
WSNs [9].

Using interval censoring as a data-reduction tool, we have developed a dis-
tributed approach to select judiciously a subset of sensors, each deciding sep-
arately whether to censor its acquired measurements, so as to save communi-
cation resources while minimally impacting performance of the inference task
at hand. Quantization of the uncensored measurements offers an additional
degree of freedom in the rate resource conservation versus estimator error re-
duction trade-off, which we have rigorously delineated through the development
of benchmark bounds assessing the performance of joint censoring-quantization
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for WSN-based estimation. This line of work is relevant to the resource-aware
nonlinear cooperative localization, mapping, and tracking tasks involved in lay-
ered sensing (Section 2.3.1.1 in the proposal), as well as to those required for
sensory awareness (Section 2.3.2.1 in the proposal). Furthermore, it directly
addresses the rate-performance tradeoffs involved by the underlying network
affordances (Section 2.4.2.2 in the proposal).

6.2.2 Sparsity Control for Universally Robust Inference [10, 11, 12,
13, 14].

The recent upsurge of research toward compressive sampling and parsimonious
signal representations hinges on signals being sparse, either naturally, or, after
projecting them on a proper basis. Interestingly, we have unveiled that by con-
trolling sparsity of model residuals enables computationally affordable statistical
inference that is universally robust to outliers (even when the underlying signals
are not sparse), thus establishing a surprising link between sparsity and robust
statistics. Universality pertains to criteria (loss functions and regularizing com-
plexity controlling terms), signal and outlier models, as well as WSN-based
inference tasks including robust parameter batch, nonparametric [10] and re-
cursive estimation [11], distributed tracking, principal component analysis [14],
classification, clustering, and multidimensional scaling [15, 13]. This contribu-
tion is relevant to the approximate robust inference algorithms (Section 2.3.2.3
in the proposal), and it is also instrumental for robust sensing, cooperative
localization, mapping and tracking (Section 2.3.1.1 in the proposal).

6.2.3 Network-Compressive Coding for WSNs with Correlated Data [16].

In large-scale WSN deployments, relaying information over several hops becomes
increasingly energy inefficient. On the other hand, observations from nearby sen-
sors may be highly correlated; for instance, in chemical contaminant monitoring
or intrusion detection systems. For such settings, we jointly exploited the net-
work graph along with the underlying communication graph to leverage spatial
correlation for in-network data compression, thus effecting significant energy
savings and prolonged network lifetime. Capturing statistical dependencies via
factor graphs, we demonstrated how inference can be achieved at sink nodes
based on compressed data, and using the method of types we derived error ex-
ponents for cyclic and acyclic factor graphs. Interestingly, the latter revealed
that sensory observations can be recovered with arbitrarily low probability of
error as the network scale grows. The resultant network- compressive coding
framework addresses the fundamental resource-performance tradeoffs depend-
ing on network affordances (Section 2.4.2.1 in the proposal), along with the
required sensory coordination efforts (Section 2.4.2.1 in the proposal), as well
as the compressive sensing tasks for distributed inference (Section 2.2.2.1 in the
proposal).
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6.2.4 Unveiling Anomalies in Large-Scale Networks via Sparsity and
Low Rank [17, 18, 4, 19, 8, 20, 21].

In the backbone of large-scale networks, traffic flows experience abrupt unusual
changes which can result in congestion, and limit the extent to which end-
user quality of service requirements are met. Diagnosing such traffic volume
anomalies is crucial towards engineering the network traffic. This is challenging
however, since the available data are the superposition of unobservable origin-
to-destination (OD) flows per link. Leveraging the low intrinsic-dimensionality
of OD flows and the sparse nature of anomalies, a convex program is formu-
lated to unveil anomalies across flows and time. A centralized solver is put
forth using the proximal gradient algorithm, which offers provable iteration
complexity guarantees. An equivalent nonconvex but separable criterion en-
ables in-network processing of link-load measurements, when optimized via the
alternating-direction method of multipliers. The novel distributed iterations
entail reduced-complexity local tasks, and affordable message passing between
neighboring nodes. Interestingly, under mild conditions the distributed algo-
rithm approaches its centralized counterpart.
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7 University of Minnesota — Stergios Roume-
liotis

7.1 November 2015, FINAL REPORT

7.1.1 Active Sensing for cooperative localization and target tracking

A fundamental problem we have address during this project is that of using
mobility for maximizing the information acquired by a team of robots/sensors.
To this end, we have studied the problem of determining the location that a
mobile sensor should move to in order to acquire the most informative mea-
surements (distance and/or bearing) for estimating the position of a moving
target, while considering motion constraints, imposed by the kinematics of the
sensor and/or obstacles in the environment. Despite the fact that this is a
non-convex optimization problem, we were able to determine nonlinear trans-
formations of the optimization variables that allowed us to compute the global
minimum analytically. Also, we extended this approach to the case of teams of
mobile sensors collaborating to track a target where we have introduced appro-
priate relaxations that have only linear (instead of exponential) in the number
of sensors cost, while at the same time achieving performance indistinguishable
from that of exhaustive-search-based approaches [1]. Lastly, we have extended
this approach to determine the minimal deviation of robot teams motion from
a desired formation that maximizes the information gain from inter-robot mea-
surements while considering motion constraints [2].

7.1.2 Sparsity-aware information compression

One of the main limitations of cooperative localization (i.e., the problem of
jointly estimating the poses of N robots from proprioceptive and inter-robot
observations) is that MMSE estimators have computational cost up to O(N4).
Existing alternatives invoke, often ad hoc, approximations whose impact on
performance cannot be quantified. To address this problem we introduced loss-
less information compression at the sensor fusion center in the form of a sparsity-
aware QR algorithm that reduces the processing cost by an order of magnitude
[i.e., to O(N3)] [3].

7.1.3 Hybrid (analog/quantized) estimators

Previously, we had introduced MMSE and MAP estimators that are able to op-
erate under stringent communication bandwidth constraints where each mea-
surement is represented and broadcasted using one or few bits. We had also
shown that using 4-5 bits per (scalar) measurement suffices for achieving per-
formance very close to that of the corresponding estimator processing analog
observations. These approaches, however, suffer from a fundamental limita-
tion: In order to ensure consistency between all estimators in a sensor net-
work (as required), they discard the analog measurements locally available to
each sensor/robot; instead they only consider their quantized versions. This
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requirement results in information loss, which, if properly addressed, can lead
to significant performance improvement even when each measurement is quan-
tized using a single bit. We achieved this objective by introducing ‘hybrid’
estimators that process both locally-available analog observations, as well as
remotely-communicated quantized measurements. This was possible by design-
ing new quantization rules that explicitly consider information metrics for char-
acterizing the estimators’ performance [4].

7.1.4 Analytically-guided-sampling-based particle filtering

A long-standing problem in particle filtering is that of particle depletion. Fur-
ther, it is well-known that the optimal (in the sense that it maximizes the
variance of the particles weights and hence reduces the probability of particle
depletion) proposal distribution for drawing samples from is the posterior prob-
ability density function (pdf). The posterior pdf, however, is, in general, not
available or easy to compute. Previous efforts to approximate the posterior pdf
have often used uni-modal distributions and seldom considered the structure of
the measurement equations, or their impact on the posterior pdf. In our work,
we addressed the most challenging case where non-linear measurement functions
cause the posterior pdf to be multi-modal and introduced an efficient method
for determining all its modes analytically. This allowed us to draw samples from
a significantly more accurate parametric approximation of the posterior pdf (us-
ing mixtures of Gaussians) and thus reduce the impact of particle depletion [5,
6].

7.1.5 On the observability, consistency, and erroneous information
acquisition of linearized systems

Previously, we had investigated the inconsistency for mobile robots navigating
in 2D and determined that the main cause of this problem is that the linearized
system and measurement models, employed by a linearized estimator [e.g., the
extended Kalman filter (EKF)] often (and erroneously, since their Jacobians can
only be evaluated at the current state estimate instead at the true state) have
fewer unobservable directions than the corresponding nonlinear system. This
mismatch in the observability properties of the two systems leads to erroneous
information acquisition along unobservable directions, which causes the esti-
mator to become overly confident, loose accuracy, and eventually diverge. To
address this problem, we had introduced a systematic approach that, given the
unobservable modes of the system, can efficiently (i.e., at negligible processing
cost) modify the systems Jacobians so as to guarantee that the observability
properties of the nonlinear system are preserved in the linearized one. For
the purposes of this project, we extended this work to the significantly more
challenging case of 3D navigation using visual (e.g., camera or RGBD) and in-
ertial sensors, such as an inertial measurement unit (IMU). In particular, we
introduced a systematic methodology for analytically determining the observ-
able and unobservable modes of any nonlinear system [7] (note: to the best of
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our knowledge, no such methodology existed before and, as a result, proving
that a system is unobservable and finding its unobservable modes, was possible
for only relatively simple systems). Moreover, we employed and applied this
methodology to the problems of monocular-camera-based navigation [8], IMU-
RGBD [9] and IMU-camera and based navigation using point [10, 11, 12, 7], or
line features [13, 14], and considered special cases of motion, such as restricted
on a plane [15]. Furthermore, we extended our analysis of linearized estimator
inconsistency to address the case of nonlinear systems that although they are
observable, they exhibit the same erroneous information acquisition when each
measurement provides information for only part of the estimated state (e.g.,
two radars each measuring its distance to a moving target) [16]. Lastly, and
with the aim to extend our investigation to more complex systems that provide
sensor information over a wider spectrum, we addressed and analytically solved
the problem of extrinsic calibration of a 3D laser scanner with respect to an
omnidirectional-camera [17].

7.1.6 High-efficiency vision-aided inertial navigation systems (VINS)

In addition to consistency (see 2.5), in this project, we focused on improving
the efficiency and robustness of estimators used for 3D localization and map-
ping. In particular, we introduced a new form of estimator, the square-root
inverse sliding window filter (SR-ISWF) [18], that employs the measurements
available during a sliding time window to optimally determine the 3D pose of
an IMU-camera system at half the time as compared to the current state of
the art. This was possible by meticulously investigating and exploiting the par-
ticular structure of the problem to realize efficiencies in the numerical parts of
the estimation algorithm, but also by wisely selecting and processing the most
informative measurements [19]. Additionally, we considered the case of 3D map-
ping and introduced a new methodology for designing approximate estimators
that create maps using a sparse, “island-like” representation of the space, thus
realizing significant savings and allowing for the first time ever, real-time consis-
tent mapping on mobile devices [20, 21]. Furthermore, and in order to increase
the robustness and accuracy of the aforementioned estimators, we introduced
methods for explicitly modeling and compensating for the lack of time syn-
chronization between the systems sensors [22], the effect of the camera rolling
shutter [22], and conditions where the motion becomes unobservable (hovering
over the same scene) [23]. Lastly, we extended our work on VINS for the case
of multiple aerial vehicles flying over the same scene [24].

7.1.7 Autonomous quadrotor navigation through image-defined paths

We addressed the problem of autonomous quadrotor navigation within GPS-
denied, and in particular indoor spaces. Specifically, we introduced an algo-
rithm for constructing (offline) a visual map of the area, represented as a graph
of linked images, based on visual and inertial data collected beforehand. This
topological/appearance-based representation of the space is then used for spec-
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ifying visual paths for the quadrotor to follow (e.g., during a patrol task). The
path-relevant information, compressed to a binary representation of the features
that will be seen along the quadrotors path, is then provided to the quadrotor
which employs a geometric/probabilistic approach to determine the type of mo-
tion it needs to follow (e.g., moving on an arc versus rotating in place) in order
to visually servo between successive reference images towards its goal. More-
over, and in order to improve the robustness of the system, we empowered the
quadrotor with place recognition capabilities which employ a highly efficient
data structure for querying and retrieving matches between the current image
and previously mapped images. Lastly, we introduced an adaptive optical-flow
algorithm that can accurately estimate the quadrotors horizontal velocity under
adverse conditions (e.g., when flying over dark, texture-less areas) by progres-
sively using additional information from the available images [25].
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8 University of Pennsylvania — Ali Jadbabaie

8.1 October 2015 report

Our Research on distributed estimation and social learning has continued in the
following directions:

We have shown that a variant of the social learning model presented at the
last review and discussed in [1] has a very interesting interpretation in terms
of a new techniques for distributed estimation. In other words, the problem of
finding a true state of the world in a network of agents receiving a sequence of
signals that are partially informative about the true state can be formulated as
a distributed optimization problem called distributed dual averaging [2].

In [3, 4], we have characterized the rates of convergence for the learning
model presented in [1]. We have shown that the naive updating used lets
agents learn the unknown state exponentially fast—as if they are sophisticated
Bayesian agents. We also have characterized the exponent in terms of the infor-
mation contained in agents’ observations and their centralities in the network.
As we argued in [3], for the learning process to be efficient, agents with the
most informative observations (as measured by Kullback-Leibler divergence)
need to also be the ones most centrally located in the network (as measured by
eigenvector centrality).

We have extended the Bayesian learning framework discussed in Section 5
of [1] to the case where agents play a game with other agents in the network.
We have argued that when agents have a coordination motive, in addition to the
estimation motive, even if they play according to the selfishly and myopically
optimal strategies, they will eventually reach consensus on the (socially) optimal
action. We also have shown that when agents signals are Gaussian and their
utility functions are quadratic, the belief update can be carried out in a tractable
fashion similar to a Kalman filter.

In [5] we analyze a social learning model in which agents follow Bayes rule
yet they do not recall their history of past observations and cannot reason about
how other agents’ beliefs are formed. They do so by making rational inferences
about their observations which include a sequence of independent and identically
distributed private signals as well as the beliefs of their neighboring agents at
each time. Successive applications of Bayes rule to the entire history of past
observations leads to forebodingly complex inferences due to lack of knowledge
about the global network structure that causes those observations. To address
these complexities, in [5] we consider a Bayesian without Recall (BWR) model
of inference, which in addition to providing a tractable framework for analyzing
the behavior of rational agents in social networks, can also provide a behavioral
foundation for the variety of non-Bayesian update rules in the literature.

In [6] we study the problem of non-Bayesian learning over social networks
by taking an axiomatic approach. As our main behavioral assumption, we
postulate that agents follow social learning rules that satisfy imperfect recall,
according to which they treat the current beliefs of their neighbors as sufficient
statistics for all the information available to them. We establish that as long as
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imperfect recall represents the only point of departure from Bayesian rationality,
agents social learning rules take a log-linear form. Our approach also enables
us to provide a taxonomy of behavioral assumptions that underpin various non-
Bayesian models of learning, including the canonical model of DeGroot. We then
show that for a fairly large class of learning rules, the form of bounded rationality
represented by imperfect recall is not an impediment to asymptotic learning, as
long as agents assign weights of equal orders of magnitude to every independent
piece of information. Finally, we show how the dispersion of information among
different individuals in the social network determines the rate of learning.

We have developed a family of distributed algorithms for transshipment
problems that rely on local information and exhibit quadratic convergence rates.
More recently, we have shown in [7] that this approach can also be used in
network flow problems where the demand vector is uncertain

In [8], we have extended our work on single time scale distributed parameter
estimation to the case where the dynamics of the parameter is unstable. We
have characterized bounds that relate the mixing properties of the network to
instability of the dynamics parameter to be estimated, leading to the notion
of network tracking capacity. A journal version of this result plus optimality
bounds is submitted for publication in [8].

In [9] we consider the problems of optimal scheduling and estimation for mea-
surements that are subject to latency of data acquisition. The latency in data
acquisition refers to the time-delay between measurement and processing and it
is inherent to dynamic and decentralized measurement architectures, where the
processing is contingent upon acquisition of several data points each of which
is spaced in time. Our aim in [9] is to investigate a design framework under
which the deteriorating effect of data acquisition latency on the estimation per-
formance is minimized. To this end, we consider a measurement scenario where
the designer aims to estimate the unknown state of a discrete-time linear time-
invariant (LTI) system but she is constrained to measure only one of the ’m’
scalar outputs at every point in time. Subsequently, the designer would have
a choice to make of which output to measure each time. We use an appropri-
ate adaption of the Kalman filter and proffer efficient semi-definite programs to
design the output measurement schedules that optimize the estimation perfor-
mance. We consider both periodic and random schedules and in each case offer
numerical examples to test the performance of optimally designed schedules.
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9 University of Pennsylvania —Daniel E. Koditschek

9.1 October 2015 KodLab AFOSR CHASE MURI update

9.1.1 Learning and navigation in uncertain spaces (Reverdy, Ilhan
and Koditschek)

Motivated by the notions from ecology that the fitness of an embodied au-
tonomous system is a function of 1) the body, 2) the environment, and 3) the
task(s) which the body must perform, [1], we have focused on developing formal
notions of environments. We seek to develop tractable representations of the
task-relevant and learnable features of environments that would afford embodied
autonomous systems the ability to improve their performance over time.

In [2], we consider a navigation task along the lines of [3] take the viewpoint
that the environment is fixed but cluttered with obstacles of unknown shape and
location. We develop a stochastic control policy that permits a natural mapping
of the obstacles into two categories depending on their geometry, which carries
direct implications into the degree of difficulty of avoiding them with the control
policy.

In [4], we consider the problem of understanding the spatial distribution of
objects of interest in a domain. We adopt a statistical model of object distri-
bution based on the Poisson point process from spatial point process theory [5],
for which the single parameter represents the mean density of objects in the do-
main. We then consider the estimation problem for this parameter and develop
a method to produce reliable parameter estimates using a mobile robot as the
platform for a sensor that can detect and register the objects.

Acknowledgements Items [2] and [4] represent original work funded in part
by AFOSR CHASE MURI.

9.1.2 Clustering-Based Robot Navigation and Control (Arslan, Gu-
ralnik and Koditschek)

Clustering is traditionally an unsupervised learning method aimed at discovering
coherent groups (clusters) in a given unlabeled dataset to model its unknown
global organizational structure and/or to determine a local neighborhood of
every data point [6].

Inspired by its use for modelling global organizational structure, we intro-
duce a novel application of clustering to the problem of coordinated robot nav-
igation [7]. The notion of hierarchical clustering offers a natural abstraction for
ensemble task encoding and control in terms of precise yet flexible organizational
specifications at different resolutions, by relating the continuous space of con-
figurations to the combinatorial space of trees. Based on this new abstraction,
we propose a provably correct, computationally effective generic hierarchical
navigation framework for collision-free motion design towards any given des-
tination via a sequence of hierarchy preserving controllers. More precisely, as
intrinsically suggested by our hierarchical abstraction, we introduce a two-level
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navigation strategy for coordinated motion design: (i) at the low-level perform
finer adjustments on configurations using hierarchy preserving vector fields [8],
(ii) and at the high-level resolve structural conflicts between configurations us-
ing a discrete transition policy in tree space [9]; and the connection between
these two levels is established by an optimal selection of a portal configuration
supporting two adjacent hierarchies [10, 11]. Work now in progress targets a
distributed implementation of our navigation framework based on our results
on anytime hierarchical clustering [12, 13].

Inspired by the use of clustering for locality identification, we introduce
a new application of generalized Voronoi diagrams to identify collision free
(multi)robot configurations [14, 15]. In [14] we consider distributed mobile
sensing applications of heterogeneous agents and propose a provable correct,
collision free coverage and congestion control algorithm for heterogeneous disk-
shaped robots. We are currently exploring another extension of Voronoi-based
coverage control for hierarchical settings, based on nested partitions of convex
environments. What is more, we also reconsider the problem of reactive nav-
igation in sphere worlds and propose a convex optimization framework whose
continuous evaluation is used to solve the collision free robot navigation problem
with a unique attractor at a designated goal location [15]. Work now in progress
targets navigation among convex obstacles using separating hyperplanes of con-
vex bodies and robot navigation using a fixed radius sensory footprint [16].

Acknowledgements Items [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] represent orig-
inal work funded in part by AFOSR CHASE MURI.

9.1.3 Classification and Representation

Functorial Hierarchical Overlapping Clustering (Guralnik, Culbert-
son and Stiller) Much of the practice of clustering is based on geometric
ideas regarding the role ought to be played by proximity, distribution, shape
and relative position among members of a set of data points (usually “feature
vectors”) in a Euclidean space [6]. More recently (though some methods are
with us from the 1960s [17]), the emergent need for unsupervised clustering
in so-called “big data” applications has put an emphasis on the need for a
principled approach to clustering in settings where, instead of embedding the
data set in some normed space (thereby exposing the data to unknown, poorly
understood biases), a practitioner prefers to express their domain expertise in
weighting pairs, triples etc. of data points with quantities representing an em-
pirically assigned “degree of dissimilarity” / “degree of proximity”, and derive
the latent classification (hard/soft/hierarchical...) directly from that structure
while “letting the data speak for itself”. A great variety of methods of the
latter kind have been engineered over the years, starting from classical agglom-
erative neighbor-joining methods [17, 18, 19] to the more statistically motivated
ones [20, 21], just to name a few. Overall, however, the practice of clustering –
especially that of dissimilarity clustering – has become more of an art of fitting a
method to a problem, often through much trial and error, rather than a science
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assigning appropriate methods to satisfy a set of specifications. This difficulty
has brought into sharp focus the need for a notion of consistency for cluster-
ing methods, producing a string of “impossibility theorems” for constructing
various axiomatic frameworks for dissimilarity-based partitioning (and the eval-
uation of results thereof) one might find intuitively plausible [22, 23]. This
has given rise to one of the two notable exceptions to the state of affairs just
described: work by Carlsson and Mémoli [24, 25, 26] convincingly establishes
the category-theoretic notion of functoriality as a first decent candidate for a
notion of consistency of a clustering method, though they limit themselves to
hard (flat and hierarchical) clustering. The second of these exceptions is the
notion of metric clustering pioneered by Bunemann [27, 28] and developed into
a full-blown field (see [29, 30] for a review) of applied mathematical research
following the seminal work of Bandelt and Dress on split decompositions [31,
32], studying hard clustering with overlaps, with roots in Isbell’s enquiries [33]
into the geometry and topology of injective metric spaces from the point of view
of studying the category of metric spaces with non-expansive maps.

Our work [34, 35, 36] represents an attempt to (1) unify these two schools
of thought (functorial clustering) while (2) leveraging the deep connections be-
tween injectivity in metric spaces, non-positive curvature and cut decomposi-
tions of metric spaces [34, 37] in order to (3) study and construct functorial
clustering methods which allow overlaps, thus potentially overcoming the lim-
itations of the “chaining phenomenon” which turns most practitioners away
from single linkage hierarchical clustering. Extending the results of [26] from
partitions to the class of “flag covers”, we establish that all functorial (with re-
spect to non-expansive maps) distance-based flat clustering methods are refined
by the Rips complex [35]. Furthermore, passing to a persistent version of flag
covers called ‘sieves’, we provide a framework generalizing the observations of
Kleinberg [22] and Carlsson-Mémoli [24] to a characterization of the possible
‘ranges’ of distance-based functorial clustering maps [36]. Unfortunately, one
outcome of this generalization is the conclusion that the Bandelt-Dress approach
to clustering is irreconcilable with a functorial approach within the framework
of the category of metric spaces with non-expansive maps.

Acknowledgements Items [34, 35, 36] represent original work funded by in
part by AFOSR CHASE MURI.

Universal Memory Architectures (Guralnik and Koditschek) A ma-
jor obstacle on the way to producing general autonomous agents is the problem
of maintaining a scalable internal representation of the agent’s experiences and
predictions. Settled, accepted approaches to this problem in AI [38, 39, 40, 41,
42, 43, 44] are challenged [45, 46, 47] by: (1) the necessity to provide a-priori lim-
ited models of the interactions between the agent and its environment; (2) high-
dimensional data structures incurring prohibitive maintenance costs, and/or (3)
mathematical opacity of the representation denying the designer any ability to
provide ‘formal’ performance guarantees for the agent being constructed. The
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direction of research by Guralnik and Koditschek into UMAs, emerging from the
CHASE MURI and of interest to AFRL/RY in this context [48], is focused on
an agnostic, modality-independent approach to the extraction and aggregation
of semantics from multiple heterogeneous binary data streams while (a) avoid-
ing bias from prior modeling assumptions, (b) keeping the maintenance costs
of the internal representation in check and, at the same time, (c) optimizing
the internal representation for provable greedy planning [49, 50]. Moreover, the
mathematical theory underlying UMA agents holds much promise in the way
of its potential to support the ”formal” characterization of application domains
where autonomous agents of this kind could bring a task to successful comple-
tion despite being provided with only vague a-priori knowledge of the possible
obstacles.

Directions for ongoing and future research are: (1) the development of a
principled, decision-theoretic approach to the control of learning architecture
parameters in UMA agents; (2) the characterization of sufficient descriptor sets
for specific complex application domains; and (3) the introduction of a capa-
bility for self-enrichment through autonomous learning of meaningful binary
descriptors.

Acknowledgements Items [49, 50] represent original work funded by in part
by AFOSR CHASE MURI and in part by National Science Foundation grant
CDI-II-1028237.

Statistical Estimation and Information Theory of Hierarchical Clus-
tering (Guralnik, Moran and collaborators) Distance-based hierarchical
clustering (DHC) methods are widely used in unsupervised data analysis [6].
Essentially all applications of distance-based clustering occur in highly uncer-
tain domains: This uncertainty can be an inherent ‘noise’ in the measurement
process but in many applications might just be a technique for modeling the un-
knowns in the weight assignment process. Conventional approaches to statistical
estimation of partitions and hierarchies view the objects to be clustered as ran-
dom samples of certain distributions over a prescribed geometry (e.g. Gaussian
mixture model estimation using expectation-maximization in Euclidean spaces).
Instead, we propose to directly attribute uncertainty to the process of obtaining
values for the pairwise distances rather than distort the data by mapping it into
one’s ‘favorite space’. To the best of our knowledge, very little work has been
done in this vein, e.g. [51, 52]. We incorporate a statistical model of the uncer-
tainty through corruption or noise in the pairwise distances and investigate the
problem of estimating the DHC as unknown parameters from measurements.
With work by Carlsson and Mémoli [24, 25, 26] establishing the primacy of
Single Linkage Hierarchical Clustering as the only natural candidate for DHC,
we focus on single linkage hierarchical clustering (SLHC). Statistical estimation
of SLHC is of particular importance due to evidence that the negative effects of
the so-called ‘chaining phenomenon’ which tends to turn users away from SLHC
(which otherwise would be a preferred tool in their toolkit) may be mitigated
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by the introduction of noise (‘dithering’) [53]. In [54], we study the geometry of
SLHC point-pre-images and uncover the inherent super-exponential complexity
of maximum likelihood estimation (MLE) of SLHC. We find conditions on the
distance measurement noise guaranteeing that SLHC is equivalent to maximum
partial profile likelihood estimation (MPPLE) ignoring certain measured dis-
tances. At the same time, we show that direct evaluation of SLHC on noisy
data yields a consistent estimator. Consequently, a full maximum likelihood
estimation (MLE) is expected to perform better than SLHC in getting the cor-
rect HC results for the ground truth metric – a claim supported by our work on
numerical approximation of the MLE estimator of SLHC [55, 56].

A statistical outlook on HC motivates additional questions. It must be noted
that various measures of separation and commutation (e.g. medians) have been
considered for hierarchies/dendrograms for a long while [57, 58, 59], mostly on
”ad-hoc” combinatorial and geometric grounds having little to do with the sta-
tistical nature of the applications for which they are needed. A fundamental
problem in this field is then: Is there a principled way to extend the notions
of Shannon entropy and relative entropy, already employed in non-hierarchical
clustering, from the domain of partitions to the domain of hierarchies (den-
drograms) while retaining their qualities as statistically meaningful notions of
diversity and divergence? The usefulness of this kind of approach has already
been verified in the non-hierarchical setting [60] and managed to extend it to
a fully information-theoretic soft clustering tool in [20]. Using a well-known
equivalence between dendrograms and ultra-metrics, we extend the Statisti-
cal Mechanics approach to defining the entropy of a partition to ultra-metrics,
showing how to view the (weighted) collection of minimum spanning trees of an
ultra-metric as a measure of diversity. Computing the weights has turned out
to be the crux of the project: direct methods are intractable due to a very tight
relationship between this problem and the long open problem of enumerating
the extremal directions of the metric cone [61]. Still, progress has been made
towards a solution using the theory of Multivariate Splines [62]. The current
focus of the project is on computing what appears to be a new integration kernel
that will allow one to bypass the combinatorial complexity of the boundary of
the metric cone, and enable at least the verification of the standard axiomatic
properties of entropy for the diversity measure we have defined, and perhaps
even the computation of useful approximations thereof [63].

Acknowledgements Items [54, 55, 56, 63] represent original work funded in
part by AFOSR CHASE MURI, by AFOSR grant FA2386-13-1-4080 and in part
by the China Scholarship Council.
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9.2 April 2012 KodLab AFOSR CHASE MURI Update

9.2.1 Project RCA.1(i) Control and Estimation of Hierarchy (with
Baryshnikov)

On the Homotopy Type of Point Cluster Hierarchies In [64] we ad-
dress the homotopy problem for point cluster hierarchies. Namely, we introduce
the configuration space of n distinct points in R

d and consider the homotopy
type of a ‘stratum’ - a subset of configurations whose clusters give rise to the
same hierarchy. Here, the term ‘hierarchy’ denotes a tree whose edges repre-
sent nested subsets of the index set J := 1, .., n. Namely, these subsets arise
as the lattice of successively refined partitions of J , whose ‘top’ partition is the
singleton of all indices, whose ‘bottom’ partition is the set of singleton indices,
and whose intermediate partitions are defined by the manner in which subsets of
‘closest neighbors’ form and coalesce as the geometric scale of ‘close’ is gradually
increased from 0 to the diameter of the entire point cloud.

There are many different ways to define a subset of ‘closest neighbors’ and
we consider two distinct mechanisms. First, we examine a bottom up mecha-
nism called ‘single linkage’ clustering whose lattice of partitions is defined by
connected components formed from unions of particle-centered disks of increas-
ing radii. Alternatively, we consider a top down mechanism called ‘barycentric’
clustering whose partition lattice arises from nested subgroupings that are max-
imally separated. Here, ‘maximal separation’ is interpreted to mean that the
disjoint subsets comprising the sub-partition within a given cluster yield cen-
troids that are as mutually far separated as possible given any other possible
sub-partition.

The central result of this analysis is that the non-degenerate strata have
the homotopy type of a product of spheres - essentially the epicycles of clas-
sical cosmology. This is established formally for the barycentric hierarchical
clusterings. In contrast, while sufficiently ‘scale separated’ single linkage hier-
archical clusters enjoy the same property, it is not clear (and seems unlikely)
that this homotopy type persists over an entire stratum. Thus, whereas single
linkage clustering gives rise to dendrograms (well studied objects accompanied
by a formalism for endowing the set of combinatorial trees with the structure
of a continuous metric space) and lends itself to strongly decentralized applica-
tions, barycentric clustering, which has a more centralized construction, seems
to reveal its topological structure a bit more readily.

Hierarchical Formation Control We leverage and apply to the problem
of relaxed formation control in [8] the results of [64] as follows. We pose the
problem of navigating a swarm of fully actuated, non-intersecting point robots
in R

d to a specified configuration. We design a centralized (two-stage) hybrid
controller whose basin of attraction is the entire barycentric-cluster hierarchy
stratum of the specified goal as follows.

A simple R
nd-Euclidean distance-gradient vector field centered on the goal

configuration induces a basin around that attractor whose intersection with
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the stratum leaves positive invariant a conical neighborhood from the origin
spreading out to include that goal along the way toward including its increas-
ingly scale-separated projections. This gradient-like field represents the second
stage of the hybrid controller. The first stage targets a scale-separated projec-
tion of the goal configuration guaranteed to lie within the basin of the second.
This first stage controller is systematically designed to rotate and narrow each
successively refined cluster of a hierarchy in the goal’s stratum toward the cor-
responding rigid formation of the goal’s corresponding cluster in its the scale
separated projection. In essence, this first stage controller imposes orbits along
the epicycles prescribed by the goal stratum’s homotopy type, known according
to [64]. It can be shown that this first stage controller leaves the stratum posi-
tive invariant and attracts all but a zero measure set of initial configurations to
the scale-separated projection of the goal, whereupon the second controller can
be engaged via a sequential composition [65].

9.2.2 Project RCA.3(iii) Sensor and Actuator Planning (with Moran
& Howard)

Localization over Partitions We have introduced a new approach to highly
uncertain motion estimation and control based upon histogram filters over cel-
lular decompositions of a state space. In the very simplest problem we consider
the task of a commanding a one degree of freedom ‘robot’ to approach and
grab a one degree of freedom ‘object’ and bring it to a specified ‘nest’ config-
uration. As a deterministic problem this is the simplest example we know of
a (non-classical) non-holonomically constrained control system, a class of prob-
lems for which smooth stabilization is known to be impossible, but which in this
elementary setting admits of an obvious hybrid stabilizing controller [66].

The simplest partition-based stochastic version of this problem, introduced
in [67], assumes that the robot has a perfect sense of its own position but only
a noisy view of the object which improves with relative proximity. For exam-
ple, the simple measurement model we are presently working with assumes an
unbiased Gaussian distribution whose variance is affine in the relative distance.
The novelty of this work arises from our estimator’s design as a histogram filter
over a simple partition of the event space. For example, because the initial
measurement model is unimodal, it seems clear that we should be able to work
with a three cell approximation to the posterior distribution, throwing away any
other detail about past measurements. Extensive simulations with this model
suggest that such filters will converge unless the variance of the measurement
model is ‘outlandishly’ pessimistic. However, developing a proof that this is cor-
rect has been challenging exactly because the measurement model’s sensitivity
to relative position implies that the succession of measurements will be neither
identically distributed nor independent. In fact, we know of no existing result
in the localization estimation literature where convergence has been proven ab-
sent an iid assumption on the measurements. We expect that a formal result
in even this very simple case will suggest a general pattern of how to conceptu-
alize the quality of piecewise constant approximations to the posterior required
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to achieve convergence in localization problems. This would, in turn, begin to
inform our broader thinking about how to select and parametrize the class of
cellular decompositions over which these piecewise constant approximations are
to be developed.

Optimal Action Policies for Localization over Partitions A variant of
the robot-grab-object task just described focuses attention on the longstand-
ing question of direct vs. indirect control. The localization approach, above,
presumes a pre-existing deterministic controller respecting which estimates of
whatever kind available are applied to that controller, yielding a methodology
known as “certainty equivalence” in the controls literature. The phrase “what-
ever kind available” bespeaks the proliferation of disparate loss functions relative
to which the estimator might be optimal.

In contrast, a direct controls approach would instead impose a loss function
over the allowed control actions at any state, and seek to develop sensory reac-
tion policies that are optimal with respect to that grading of outcomes. Now,
rather than discretizing the space of sensory inputs, the problem is to quantize
effectively the space of control actions that are allowable at any state. We are
presently exploring numerically the sort of robot localization behavior obtained
in this simple robot-grab-object task by partitioning the action set with a simple
three cell decomposition on which we impose a reasonable loss function whose
appropriately discounted iterates are to be minimized. The resulting ‘direct’
optimal control policy appears to perform at least as well as the previously
discussed indirect scheme.

An immediate next open question under investigation in this branch of the
problem include, of course, the prospects for provable convergence properties as
mediated by the choice of partition. Longer term, this problem domain presents
an appealingly simple setting within which to explore the tradeoffs bewteen di-
rect and indirect control - now with a component of information-action linkage.
We suspect that complicated controls problems (e.g, the complete robot-grab-
object-and-bring-to-nest problem which is a non-classical non-holonomically
constrained problem and, hence, does not admit any smooth point-stabilizing
feedback controller even in the deterministic setting [66]) may be harder to solve
with direct than with indirect approaches.

Acknowledgements References [64, 8, 67] represent original work funded in
part by the CHASE MURI.
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10 University of Pennsylvania — Vijay Kumar

10.1 October 2015 report

We have focused on developing novel active information gathering strategies
for teams of robots, focusing on the tasks of exploring unknown environments
and detecting, localizing, and tracking multiple targets. Such tasks arise in a
variety of real-world situations, including security and surveillance, search and
rescue, infrastructure inspection, environmental monitoring, mapping, and first
responder. In particular, first responder scenarios require robots to be able to
successfully navigate through unknown environments while searching for objects
of interest, combining the tasks of exploration and target tracking.

In [1] we proposed an entropy-based information gathering strategy for multi-
robot exploration and coverage in unknown, indoor environments. The under-
lying mathematical principle involved was to model the Shannon entropy of the
occupancy probability (a measure of uncertainty) as a Riemannian metric, and
thus perform an optimal coverage and exploration in this abstract Riemannian
manifold by minimizing a generalized coverage functional. The formal mathe-
matical backbone was formalized, and convergence and stability of the algorithm
were analyzed in [2]. This also let us develop algorithms for collaborative ex-
ploration and coverage of unknown environments by heterogeneous teams of
humans and robots, as demonstrated in [2].

We also explored the application of topological reasoning in partially known
environments for effective deployment of multi-agent teams for the task of infor-
mation gathering. In [3] we showed how a group of autonomous agents can split
into subgroups, based on the knowledge of existing topological classes of trajec-
tories in a partially-known environment, for effective collaborative information
gathering and exploration. Upon exhausting all available topological classes of
trajectories to explore, a subgroup would rejoin a different subgroup in order
to maximize exploration. We applied this fundamental principle of topological
exploration and information gathering in [4] for the purpose of human-robot
collaborative topological exploration and information gathering in context of
search and rescue missions. In this research robots would identify topologi-
cal classes of trajectories that are complementary to the classes that are being
followed by human team members in order to maximize information gain.

In [5, 6] we use an information-based control law to explore unknown en-
vironments and to create high-quality 3D maps. The robots plan paths over
a long time horizon, considering the effects of taking multiple measurements
rather than adopting a myopic strategy. We use Cauchy-Schwartz Quadratic
Mutual Information (CSQMI) to greatly increase the speed of the control comp-
tutations. In [6] we also use a gradient-based optimization technique to locally
refine the trajectories. This leads the robots to complete the exploration task
significantly faster, on par with human performance. The control law in [5, 6]
takes into account the mobility and sensing contraints of the robot to select
useful locations to visit and to determine when a robot will not be able to make
more progress. This also allows the same control law to be used on a variety of
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robots, including on a team of aerial and ground robots.
We have also used the same type of information-based control law to detect,

localize, and track targets. In [7, 8, 9] we use a team of robots to detect and
localize a small, but unknown, number of targets in an environment. The robots
are equipped with binary sensors that provide only a single bit of information:
if there is any object of interest within the sensor footprint or not. The sensor
is also susceptible to false positive and false negative detections. Despite this,
the team is able to successfully determine both the number of targets and their
locations using a hierarchical decomposition of the environment. In [10, 11, 12]
we extend our prior work to be able to localize an unknown and arbitrarily large
number of target and to use arbitray sensors. In [12] we provide experimental
results of a team of ground robots exploring an office environment in search
of reflective markers using bearing-only sensors. Again, the robots are able
to successfully determine the number of targets and their locations. In [13]
we extend this work to tracking an unknown number of moving targets, with
simulation results of a team of 2-4 fixed-wing aircraft tracking upwards of 80
taxis in a city. We also have work on tracking a single moving target using a
team of robots equipped with range-only sensors in [14, 15, 16]. In all of this
target tracking work we develop realistic sensor models, and the robots use these
to both the estimate the target positions and to make control decisions. Other
than the sensor and robot motion models, the estimation and control algorithms
are platform-independent. This flexibility is one of the strongest features of our
estimation and control framework.

10.2 April 2012 report

In [7] we propose a decentralized algorithm for driving a team of resource-
constrained robots to localize an unknown number of targets in an environment,
while simultaneously avoiding failures due to unknown hazards. Robots are
equipped with noisy, binary sensors which could describe, for example, whether
a radio receives a signal. Each robot then uses the measurements from its own
sensor, and those shared by neighboring robots, to maintain an estimate of
target locations using a recursive Bayesian filter over an adaptive discretization
of the environment, where areas that are likely to contain targets are given
higher resolution. Robots then follow an approximation to the analytic gradient
of mutual information between the sensor readings and target locations, which is
based on the fact that real sensors have a finite field of view in the environment
and the intuition that robots which see the same region of the environment
should coordinate their actions while those that are sufficiently far away may
act as independent agents. This provides a methodology for selecting which
robots to coordinate in order to fit a given computational budget. Finally we
present results from numerical simulations, showing that our approximation
method performs favorably compared to other existing methods in terms of
accuracy and speed, and that a team of robots running this algorithm is able
to successfully localize an unknown number of targets.

This algorithm is based on finite set statistics, which provides a rigorous
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probabilistic framework for multi-target tracking. This was first developed for
use in the radar-based tracking community but has since been used in simul-
taneous localization and mapping with mobile robots. Then in [8] we extend
our previous work to include more complex sensors, such as cameras, for esti-
mation, which have non-isotropic fields of view, can return multiple detections,
and provide position information. A binary approximation of the sensor is used
for the mutual information gradient calculations for numerical tractability. We
present numerical simulations showing the successful localization of an unknown
number of targets in several example environments, and are currently working
to collect experimental results.
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11 University of Pennsylvania — Alejandro Ribeiro

11.1 October 2015 report

11.1.1 Metric Representations of Network Data

Networks are data structures that encode relationships between elements and
can be thought of as signals that, instead of having values associated with el-
ements, have values associated with pairs of elements. As such, they play an
important role in our current scientific understanding of problems in which rela-
tionships between elements are important. These problems include interactions
between proteins or organisms in biology, individuals or institutions in sociology,
and neurons or regions in the brain.

Despite their pervasive presence, tools to analyze networks and algorithms
that exploit network data are not as well developed as tools and algorithms for
processing of conventional signals. Although some of this lag can be attributed
to different developmental stages, there is also the matter of the complexity of
network data. To understand this latter point it is instructive to observe that
particular cases of signals that encode relationships between elements are well
understood and pose little challenge for analysis and algorithm design. E.g., a
correlation matrix is a representation of the proximity between components of
a random signal and a finite metric space defines distances between elements
of a space. Both can be considered as particular cases of networks and the
understanding of both is on par with the understanding of signals. Since corre-
lation matrices and metric spaces have been studied for longer, the relative lag
of network analysis can be again attributed to different developmental stages.
However, the available evidence suggests otherwise.

Indeed, consider a problem of proximity search in which we are given a
network and an element whose dissimilarity to different nodes of the network
can be determined. We are asked to find the element that is least dissimilar.
In an arbitrary network finding the least dissimilar node requires comparison
against all nodes and incurs a complexity that is linear in the size of the network.
In a metric space, however, the triangle inequality encodes a transitive notion
of proximity. If two points are close to each other in a metric space and one
of them is close to a third point, then the other one is also close to this third
point. This characteristic can be exploited to design efficient search methods
using metric trees whose complexity is logarithmic in the number of nodes [1,
2]. Likewise, many hard combinatorial problems on graphs are known to be
approximable in metric spaces but not approximable in generic networks. The
traveling salesman problem, for instance, is not approximable in generic graphs
but it is approximable in polynomial time to within a factor of 3/2 in metric
spaces [3]. In either case, the advantage of the metric space is that the triangle
inequality endows it with a structure that an arbitrary network lacks. It is this
structure that makes network analysis and algorithm design tractable.

If metric spaces are easier to handle than arbitrary networks, a possible route
for network analysis is to design projection operators to map arbitrary networks
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into the subset of networks that represent metric spaces. The design of the
aforementioned projection operators is the subject of current work. The main
efforts are being focused on how to utilize these projections to efficiently search
a network as well as their utility in generating approximations for combinatorial
optimization problems on graphs.

Current results are reported in [4].

11.1.2 Other Types of Network Metrics

The purpose of this research is to develop network discrimination tools that can
be applied to network comparison problems that appear in neuroscience, biology,
and the social sciences. As a prototypical example consider neurodegenerative
diseases for which ultimate causes remain unknown but for which proximate
causes are alterations in the pattern of brain connectivity. Memory, cognitive,
coordination, and behavioral changes associated with Parkinsons, Alzheimers,
and Huntingtons diseases have all been related with patterns of brain activity
that have distinct markers when compared with the activity patterns of healthy
individuals [5]. Knowing these alterations in brain connectivity is not only
useful to foster our understanding of these disorders but also as a diagnostic
tool. The outcome of these research effort is a network discrimination tool that
can solve this diagnostic question and other similar questions such as discerning
collaboration mores of research communities [6] and predicting the mortality of
an emergent virus by studying the shape of its evolutionary tree [7].

Irrespectively of the application, the challenge in making network compar-
isons is the difficulty of computing proper distances between networks. In neu-
rodegenerative disorders the changes in brain activity tend not to be specific to a
region of the brain but more about global properties of the network. Alzheimers
disease is not characterized by, say, a decreased connectivity between the frontal
and parietal lobes, but by decreases in the richness of the connectivity between
areas of the brain that differ from patient to patient. This means that networks
have to be compared as unlabeled entities so that a decrease in connectivity is
identified as a marker of the disease irrespectively of whether it occurs in the
frontal lobe or the occipital lobe. In this specific example the alteration can
be identified by the average node degree the average number of connections
between brain regions , but the question remains of how to identify more sub-
tle changes and of what improvement can be gleaned from a more thorough
comparison.

Our technical approach to resolving this conundrum is to define and estimate
distances between unlabeled networks. This is an improvement upon the current
practice of comparing heuristic network features such as node degrees, centrality
measures, motifs, and cuts. Network features that are relevant to a specific
discrimination problem are likely irrelevant for others and features can yield
conflicting comparative judgements, like two participants being close to a third
person but far from each other because the triangle inequality is not necessarily
valid. A proper distance between networks would overcome these drawbacks.
Distances are universal and avoid conflicting judgements because the triangle
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inequality is valid.
We have defined two families of valid metrics in the space of networks by

associating the ideas of the Gromov-Hausdorff distance between point sets and
searching mappings among nodes between networks[6, 8]. As for the current
work, Instead of searching mappings between nodes, network discrimination
problems can also be solved by considering that each network represents a space.
Under such setup, network distances can be evaluated as the difference between
the first network and the embedding of the second network onto the space
defined by the first network. We have proved that this formulation yields valid
network metric. Our current work focuses on the efficient implementation of
the algorithms.

11.1.3 Multi-agent systems with incomplete information

In many multi-agent systems a team of autonomous agents want to complete a
task but each agent has different and incomplete information about the task.
In these settings, the systems can be modeled by an underlying environment,
knowledge about the state of the environment that the agents acquire, and
a state dependent global objective that agents affect through their individual
actions. The optimal action profile maximizes this global objective for the
realized environment’s state with the optimal action of an agent given by the
corresponding action in the profile. The problem we address in this work is the
determination of suitable actions when the probability distributions that agents
have on the state of the environment are possibly different. These not entirely
congruous beliefs result in mismatches between the action profiles that different
agents deem to be optimal. As a consequence, when a given agent chooses an
action to execute, it is important for it to reason about what the beliefs of other
agents may be and what are the consequent actions that other agents may take.
In this work, we pose this problem as an incomplete information network game
[Ch. 6, [9]] with aligned interests [10].

For further intuition consider the target covering problem where a team of
robots wants to cover the entrances to an office floor. The environmental in-
formation gives the position of the doors as well as the positions of the robots.
The goal of the robots is to cover all the entrances while minimizing the total
work - which is proportional to the sum over all robots of the path integrals
of the norms of the robots accelerations - required to do so. If there is per-
fect environmental information available, the robots can solve the global work
minimization problem locally. Since there is nothing random on this problem
formulation this is a relatively straightforward assignment and path planning
problem. When there is uncertainty about the environment but the robots have
sufficient time to coordinate, they can share all of their environmental observa-
tions. Once this is done all agents have access to the same information and can
proceed to minimize the expected work. Since all base their solutions in the
same information, their trajectories are compatible and the robots just proceed
to move according to the computed plans. The problem arises when the envi-
ronment’s information is not perfect and the coordination delay is undesirable.
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In that scenario robots make an estimate of the path they expect other agents
to choose and minimize the expected total work based on these expected paths.
Even though the interests of the members of the autonomous team are aligned,
they have to resort to strategic reasoning and end up playing a game against
uncertainty.

The solutions that we propose to the problem above are variations of the
fictitious play algorithm that take into account the distributed nature of the
multi-agent system and the fact that the state of the environment is not perfectly
known [11]. In conventional fictitious play, agents build beliefs on others’ future
behavior by computing histograms of past actions and best respond to their
expected payoffs integrated with respect to these histograms [12]. In a game
of incomplete information, expected payoff computation in traditional fictitious
play consists of integrating the payoff with respect to both the local belief on
the state of the environment and the local beliefs on the behavior of other
agents. However, in a networked setting only local information can be available
and agents need to reason about the behavior of non-neighboring agents based
on past observations of its neighbors only. In the variations developed here
histograms are built using knowledge of actions taken by nearby agents and best
responses are further integrated with respect to the local beliefs on the state
of the environment. This algorithmic behavior is shown to be asymptotically
optimal in the sense that if agents move towards a common belief, the actions
they select are optimal with respect to the corresponding expected utility.

These results are reported in [11].
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11.2 April 2012 report

11.2.1 Hierarchical Clustering in Asymmetric Networks

Miranda trusts Billy who trusts Ariel who trusts Miranda, but there has not
been enough interactions in the opposite direction to establish trust. When these
three people meet, shall they trust each other? I.e., are they part of a circle of
trust? The objective of this project is to develop an axiomatic theory to provide
an answer to this question. In general, we start with a network were nodes
represent individuals and directed edges represent a trust dissimilarity from the
originating node to the end node. Small values of this dissimilarity signify large
amounts of trust of the edge’s source node on the edge’s destination. Our goal is
the study of the formation of trust groups in the network. I.e., the determination
of the level of trust at which two individuals are integrated in a trust cluster
given not only their direct interactions but their indirect interactions through
other members of the network. It may make sense for Miranda, Billy, and Ariel
to trust each other, because they all either trust each other directly, or have
trust on someone that trusts the person they don’t know.
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Once the problem is written in this language it is clear that determining
circles of trust is akin to finding clusters in an asymmetric network for a given
resolution level. The determination of a family of clusterings indexed by this
resolution parameter is a problem known as hierarchical clustering. Simple as
this sounds, the problem is that clustering in general and clustering using asym-
metric data in particular is a poorly understood problem. There are plethora of
methods that can be chosen to perform clustering, but these methods are based
on heuristic intuition, not fundamental principles. Beyond purist concerns, lack
of theoretical understanding is also a practical problem for clustering of asym-
metric data because the intuition backing clustering methods is drawn from
geometric point clouds. This intuition does not carry when the given data is
not metric as in the case of asymmetric trust dissimilarities.

Even though asymmetric clustering intuition is difficult in general, there are
some particular specks of intuition that we can exploit to gain insight into the
general problem. These intuitive statements can be postulated as axioms that
restrict the space of allowable asymmetric hierarchical clustering methods. To
the extent that the axioms are true, the properties of this reduced space of
methods are fundamental properties of asymmetric hierarchical clustering and
by extension fundamental properties of the formation of circles of trust. In our
investigations we have postulated three axioms that we call the axioms of value,
influence, and transformation. These axioms are stated formally in [13] but they
correspond to the following intuitions:

*(A1) Axiom of Value. For a network with two nodes the nodes are clustered
together at the resolution at which both trust each other, namely, the maximum
of the two trust dissimilarities between them.

*(A2) Axiom of Influence. There cannot be any circles of trust formed at
resolutions that do not allow formation of bidirectional, possibly indirect, trust
relationships.

*(A3) Axiom of Transformation. If we consider a network and reduce all
pairwise trust dissimilarities, the level at which two nodes become part of the
same circle of trust is not larger than the level at which they were clustered
together in the original network.

Despite their apparent weakness, axioms (A1)-(A3) are a source of strong
structure. Our first result is the derivation of two asymmetric hierarchical clus-
tering methods that abide to these axioms. The first method insists that trust
propagate only through arcs in which there is bidirectional trust and is there-
fore termed reciprocal clustering. The second method allows trust to propagate
unidirectionally and is thus termed nonreciprocal clustering. That these meth-
ods comply with (A1)-(A3) is not particularly surprising. However, we have
proved that any clustering method that satisfies axioms (A1)-(A3) lies between
reciprocal and nonreciprocal clustering in a well defined sense. Specifically, any
clustering method that satisfies axioms (A1)-(A3) forms circles of trust at reso-
lutions larger than the resolutions at which they are formed with nonreciprocal
clustering, and smaller than the resolutions at which they are formed with recip-
rocal clustering. These preliminary result endows reciprocal and nonreciprocal
clustering with special meaning. For a given resolution level, nodes that do not
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cluster together with nonreciprocal clustering cannot be part of a circle of trust.
Nodes that do cluster together with reciprocal clustering are definitely part of a
circle of trust. In between, the answer depends on the extent to which reciprocal
trust propagation is required or nonreciprocal trust propagation is acceptable.

This work has been reported in [13].

11.2.2 Distributed Network Optimization with Heuristic Rational
Agents

Network optimization problems entail a group of agents with certain underlying
connectivity that strive to minimize a global cost through appropriate selection
of local variables. Optimal determination of local variables requires, in prin-
ciple, global coordination of all agents. In distributed network optimization,
agent coordination is further restricted to neighboring nodes. The optimization
of the global objective is then achieved through iterative application of local
optimization rules that update local variables based on information about the
state of neighboring agents. Distributed network optimization is a common
solution method for estimation and detection problems in CHASE networks.

Beyond its use in engineered systems, distributed network optimization is
also used to model the emergence of global behavior in biological and social net-
works. In this context, the optimization cost models global network behavior
that emerges through the application of the local optimization rules. In biolog-
ical systems, network optimization models that mimic natural phenomena like
bird flocking or animal swarming have been introduced. Bird flocking models
posit that individual birds try to optimize total drag by adjusting their individ-
ual positions and velocities based on the observed behavior of neighboring birds
within their field of vision. Similarly, the foraging behavior of animal herds and
fish schools can be explained as the optimization of an objective that includes
terms to account for the value of food, the value of cohesion and the cost of
excessive proximity. As in the case of bird flocks, members of the herd or school
adjust their positions with respect to the observed positions of nearby peers.
Notice how these models exhibit the three hallmarks of distributed network op-
timization. They start from a global objective that the network agents want to
optimize - like total drag for bird flocks - through the selection of local variables
- birds’ positions and velocities - while restricting interactions to neighboring
agents - positions and velocities are updated relative to the closest neighboring
birds on the field of vision. Consensus formation and opinion propagation in
social networks can also be understood in terms of distributed network opti-
mization. In this case network nodes represent social agents having differing
opinions that they update over time based on the observed opinions of neigh-
boring nodes. Agents determine these updates by minimizing a local measure
of disagreement with their neighbors. As a result, the network as a whole is
minimizing a global measure of disagreement. The difference between consen-
sus and opinion propagation models is that in the former all nodes attempt to
increase harmony, while in the latter some stubborn agents do not change their
opinions.
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The goal of this project is to propose and study more realistic models
whereby agents execute actions that are optimal in an average sense only. We
name these rules and the agents that use them as heuristic rational, since we
think of them as the application of a heuristic rule that is intent on being op-
timal even though it may not be so. We show that models commonly used
to study propagation of opinions in social networks foraging of animal herds
and quantization and communication issues in field estimation using WSNs can
be cast in the language of heuristic rational optimization. We also study the
behavior of networks composed of heuristic rational agents and show that: (i)
The global network behavior visits a neighborhood of optimality infinitely often.
(ii) The probability of straying away from this neighborhood by more than a
given amount is exponentially bounded. These results can be interpreted as an
explanation for the emergence [cf. (i)] and sustenance [cf. (ii)] of global network
behavior that is close to optimal despite imperfect decision making of individual
agents in natural and social systems.

This work has been reported in [14, 15, 16].

11.2.3 Distributed Maximum a Posteriori Probability Estimation of
Dynamic Systems

In this project we consider the problem of estimating a time-varying signal
with a distributed sensor network which collects noisy observations of the sig-
nal of interest. Our goal is to implement a distributed and adaptive estimation
algorithm to track this dynamical system relying on local observations and com-
munication with neighboring nodes. To meet this goal we utilize maximum a
posteriori probability (MAP) estimates and design a mechanism to incorporate
global information into local estimates. We want sensors to compute estimates
at the current time estimating the state of the system at the same time while
coming close to the optimal centralized MAP that could be computed if all the
observations were available at a central location. This algorithm is instrumental
to the implementation of distributed data aggregation algorithms for CHASE
systems.

The first idea proposed to mediate the incorporation of global informa-
tion within local estimates is the consensus algorithm in which sensors update
their estimates through iterative averaging of neighboring values. Consensus
algorithms are well studied for static estimation problems and have also been
adapted for dynamic estimation. An alternative approach to mediate the incor-
poration of global information is through the introduction of Lagrange multipli-
ers, effectively setting a price on disagreement which sensors try to minimize; a
feat which can be accomplished in a distributed manner using dual subgradient
descent techniques.

Most work on distributed estimation for time-varying parameters assumes
that communications occur in a time scale separate from the timeline of the
dynamic system. This assumption is necessary because the algorithms are it-
erative. Thus, their implementation in a dynamic setting requires the assump-
tion that an infinite number of communication steps occur between subsequent
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states of the dynamic system. We have generalized price mediation algorithms
to nonlinear dynamic estimation problems while using a common time scale for
communications and the evolution of the process. When using a single time
scale, each iteration of the price update algorithm brings the sensors closer to
agreement on the MAP estimate, while at the same time the process, and thus
the MAP estimate, drifts to a new value. Our technical contribution is to char-
acterize this tradeoff by showing that local estimates approach the centralized
MAP estimator with a small error which we characterize in terms of problem-
specific constants.

This work has been reported in [17] and [18].
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