
REPORT DOCUMENTATION PAGE
I

. ,...,..,
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this colle:tion of information , including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (00-MM- YYYY) 12. REPORT TYPE

07/05/2016 Final Technical Report
I 3. DATES COVERED (From - To)

04/01/2012-03/31/2016
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Early Student Support for Appl ication of Advanced Multi-Core Processor N00014-12-1-0298
Technologies to Oceanographic Research Sb. GRANT NUMBER

Sc. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Sd. PROJECT NUMBER

Alex Wiggins

Se. TASK NUMBER

Sf. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Oregon State University REPORT NUMBER

308 Kerr Administration Building ONRBD025

Corvallis, OR 97331-8507

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

ONR Regional Office Seattle-N63374 ONE ON it.
300 Fifth Avenue, Suite 710
Seattle, WA 981 04 11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

N63374
12. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited Distribution

13. SUPPLEMENTARY NOTES

I

14. ABSTRACT

1S. SUBJECT TERMS

I

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF
William Dillon PAGES

UN CLASS UN CLASS UNCLASS 19b. TELEPHONE NUMBER (Include area code)

4 541-737-5629

Optimizing Resource Use and Resilience in an Embedded Heterogeneous Cluster

We created an intelligent, reliable, and efficient compute scheduling and management
system aboard an AV by employing a cluster of embedded computing systems to improve upon
the following areas: Vehicle adaptability (i.e. re-planning and reconfiguration), computing, and
technology adaptation. This work deviates from the current methods of using independent
systems that are activated as needed for vehicle sensing and computing. Instead, a centralized
system where resources are placed in a shared pool and tasks are dispatched and executed when
availability and functionality permits, according to the task classifications and user described
priorities.

This system provides the ability for rapid validation and upgradability of new hardware
for vehicle computing systems. Using OpenCL task execution is not necessarily dependent on
specific hardware, therefore computing resources are treated as a commodity and not a set of
discrete devices. This change improves the ability of the cluster scheduler to handle performance
measurements and task distribution. For each task a user provided description of the performance
requirements, dependencies, and importance are used in conjunction with a self-classification to
help the scheduler decide which tasks can and will be executed. These descriptions also help in
determining which resources to use to maximize compute power and battery efficiency. This
allows for domain scientists to spend their time and effort working on the science behind the
sensing and measurements while the classifier and scheduler determines when and where the
computation is performed.

This work also improves vehicle reliability by self-managing compute device failures and
configuration based on resource availability. When a device is discovered that has failed or isn't
performing as expected, it is removed from service and a new optimal computing setup is
calculated and applied. Being able to recalculate and redistribute in-situ allows for improved
vehicle deployment durations. As long as the resources are available to continue performing the
tasks at hand, the new layout is used and the mission continues as expected without the need to
any user intervention. This re-configurability also allows for re-planning on mission
modifications and other vehicle changes that can impact a deployment. The following sections
explore the current state-of-the-art research in the areas described above and how this work
improves upon them in regards to embedded AV computing.

The intelligence and adaptability of this platform was realized by utilizing a Q-Learner
(an AI based algorithm) coupled with a simulator for exploring device and kernel interactions.
Using a "kernel classifier" that characterizes the performance and energy characteristics of an
arbitrary algorithm a device vs kernel interaction description is automatically built. Coupling this
characterization with a programming language (of sorts) that lets end-users define their tasks in a
way that can generate the necessary structures, interrelationships, and ML constants
automatically. Feeding this into the simulator and Q-Learning algorithm produces and state­
action table that is used to enhance the reliability and performance of a computing cluster aboard
an A V. Using this information, the scheduler can then compute a schedule in-situ and reconfigure

the compute system to match the expected layout using a custom set of hardware power sensing
and relay boards.

Sensor Stream

We also created a near real-time data-store and data-distribution platform for devices
streaming time-series data (i.e. temperature, audio, and video) . We are called this system

SensorStream. SensorStream was created to provide a pipeline for data collection, storage,

processing, and distribution, allowing researchers to easily work with remote data acquisition

devices. This platform is intended for sensor driven data collection and observation. This system

can be utilized by devices ranging from simple environmental sensors measuring temperature

and humidity, to complex Unmanned Aerial Vehicles (UAV) and Unmanned Underwater

Vehicles (UUV) with side-scan sonar, high-definition video, and image sensors, or even phone

applications that facilitate citizen science.

Currently, this workflow follows the typical pipeline; sense, analyze, model, and respond

- all conventionally done by experts, offline, or using expensive proprietary software, and

requiring large investments in hardware infrastructure and administration. This workflow

becomes even more complicated with the number of devices and sensors researchers are using

now. Current strategies for remote data collection call for new code solutions for each new

sensor or platform. Each sensor and associated driver output their data in different formats using

different specifications. This is not a scalable state of affairs for deploying large numbers of

homogenous sensor platforms, let alone large numbers of heterogeneous platforms.

The SensorStream framework aims to simplify this process end to end, by presenting a unified

cross-platform architecture, coupled with remotely accessible self-describing data. SensorStream

accelerates the research process by reducing the latency in provisioning and deploying sensor

packages and by moving from an offline only data collection and processing model to a near­

real-time acquisition and analysis paradigm.

There are three key pieces to this project: the software for sensor systems to create data

collection devices, the data store and distribution infrastructure, and the visualization and data

exploration for the collected data. This follows the same path of sense, analyze, model, and

respond, but attempts to do it in near real-time, eliminating the need for offline processing and

expensive software packages that are used in today 's pipelines.

For the device software, we developed two different types of packages. The first was a set of

libraries in a variety of languages (Ruby, C#.NET, JavaScript, and C to date) to interface with

our data storage and distribution application programming interfaces (APis). The second is a

complete software package for use on almost any system running Linux, from desktops systems

to embedded devices (ARM, x64, and x86 processor architectures). This software handles

everything from data collection, using an abstraction allowing for the creation of custom drivers

that can utilize variety of communications protocols (i.e. UART, I2C, and SPI), through the

, ' .

handing off of the data to the server APis. By providing a common set of tools for constructing

sensor platforms and rapidly collecting data we allow scientists to spend more time extracting

meaning from the data that they collect. This could significantly improve the rate of expansion of

scientific knowledge, and with less cost.

The server side APis handle all the metadata, data storage, backups, and distribution. This

architecture is the heart of our SensorStream system. The front-end APis for this service run in
Windows Azure on liS 8. The liS instance is responsible for interacting with the backend data
store, caching, and processing as well as distributing data in clients in near real-time. The

backend data store was implemented using Cassandra in order to enable this services to be
scalable and redundant. Cassandra is a distributed database management system that allows for
the service to scale out as needed, adding more servers to increase overall capacity and

throughput in the cluster, and increasing the replication factor if needed to increase the

throughput for "hot" data that is continually being accessed. In addition to scaling out with large
distributed systems, Cassandra can also be used on smaller embedded systems and single nodes

(at the cost of redundancy) allowing the service to deployed to micro-instances.

The final piece of this work is the visualization and analysis tools. These are implemented as a
website in order to allow the largest number of people to access them from a wide variety of

devices. This site includes the ability to retrieve data in tabular and graph form helping

researches and users make sense of the collected data. This site also implements streaming data
allowing users to create real-time dashboards and monitor their deployed sensor platforms.

Personalized and shareable dashboards are the next step in this section, which will enable
researchers to share their view ofthe data in real-time.

