

ARL-TR-7728 • JULY 2016

Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator

by Dawn M Crawford, Mostafiz R Chowdhury, and Hollie A Pietsch

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-7728 • JULY 2016

Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator

by Dawn M Crawford and Mostafiz R Chowdhury Weapons and Materials Research Directorate, ARL

Hollie A Pietsch *Tank Automotive Research, Development and Engineering Center*

	REPORT D	OCUMENTATIO	N PAGE		Form Approved OMB No. 0704-0188
Public reporting burden f data needed, and complet burden, to Department of Respondents should be av OMB control number. PLEASE DO NOT F	or this collection of informat ing and reviewing the collect Defense, Washington Head ware that notwithstanding an RETURN YOUR FORM	tion is estimated to average 1 hd tion information. Send commer quarters Services, Directorate fr y other provision of law, no per A TO THE ABOVE ADD	our per response, including th tts regarding this burden estii or Information Operations an son shall be subject to any pe RESS.	ne time for reviewing mate or any other asped d Reports (0704-0188 malty for failing to con	instructions, searching existing data sources, gathering and maintaining the ct of this collection of information, including suggestions for reducing the i), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. nply with a collection of information if it does not display a currently valid
1. REPORT DATE (L	DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
July 2016		Final			August 2015–May 2016
4. TITLE AND SUBT	ITLE				5a. CONTRACT NUMBER
Mechanical Pro Warrior Injury	operties of Polym Assessment Man	ers Used for Anato ikin (WIAMan) Te	mical Component chnology Demon	ts in the strator	5b. GRANT NUMBER
					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Dawn M Crawf	ford, Mostafiz R	Chowdhury, and H	ollie A Pietsch		5d. PROJECT NUMBER
					5e. TASK NUMBER
					5f. WORK UNIT NUMBER
7. PERFORMING O	RGANIZATION NAME	(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Rese ATTN: RDRL- Aberdeen Prov	arch Laboratory DPW ing Ground, MD	21005-5069			ARL-TR-7728
9. SPONSORING/M	IONITORING AGENCY	Y NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION	/Δναιί αβιί ίτν state	MENT			
Approved for p	ublic release; dis	tribution is unlimite	ed.		
13. SUPPLEMENTA	RY NOTES				
14. ABSTRACT					
The Warrior In specifically des human-like kin component part properties rang commercially a of engineering sensitivity of th	jury Assessment igned for underb ematic responses ts that simulate hu e from soft and fl vailable. This rep strain rates. The polymers and v	Manikin was devel ody accelerative los to underbody blast uman tissue and en- exible low-durome port presents tensile mechanical tests at vas used for materia	oped to provide a ading test environ s. To achieve that able compliance i ter polyurethanes and compression numerous strain r al model validation	n instrumente iments. This f t goal, the AT n the ATD. T to rigid high properties for rates provided on.	ed anthropomorphic test device (ATD) First of its kind ATD was designed to exhibit 'D used numerous polymeric materials for 'he polymeric materials' mechanical -modulus plastics. All materials are or the 8 materials tested over a broad range I an understanding of the strain rate
15. SUBJECT TERM	S				
anthropomorph mechanical test	ic test device, Al	D, polymers, rubb pression	er, compliance, st	tress strain, lo	ading rate, strain rate, underbody blast,
			17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLAS	SIFICATION OF:		OF	OF	Dawn M Crawford
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	PAGES	19b. TELEPHONE NUMBER (Include area code)
Unclassified	Unclassified	Unclassified	UU	130	410-306-0708

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

List	of Fi	gures		v		
List	of Ta	bles		v		
Ack	nowl	edgmei	nts	vi		
1.	Intr	1				
2.	Ехр	erimen	ts	2		
	2.1	Materi	ials	2		
	2.2	Test N	1ethods	4		
		2.2.1	Durometer	4		
		2.2.2	Monotonic Tensile	4		
		2.2.3	Monotonic Compression	4		
		2.2.4	Cyclic Tension	5		
		2.2.5	Cyclic Compression	5		
		2.2.6	High-Rate-Tension Drop Tower	5		
		2.2.7	High-Rate-Compression Drop Tower	6		
		2.2.8	Split Hopkinson Pressure Bar (SHPB)	6		
		2.2.9	Failure Tests	7		
3.	Res	ults and	d Discussion	7		
4.	Sun	nmary a	and Conclusions	15		
5.	Fut	ure Wo	rk	16		
6.	Ref	erences	5	17		
Appendix A. Butyl Formulations and Test Report						
Арр	Appendix B. Manufacturer Data Sheets 37					
Арр	Appendix C. Tensile and Compression Properties 57					

Appendix D. Experiment Data	71
List of Symbols, Abbreviations, and Acronyms	121
Distribution List	122

List of Figures

Fig. 1	Tensile properties of Shore A polyurethanes at 0.1 s ⁻¹ strain rate7
Fig. 2	Tensile properties of XE 1031 at quasi-static and high strain rates8
Fig. 3	Tensile properties of Shore A polyurethanes and butyl rubber at low and high strain rates
Fig. 4	Tensile properties of Shore D polymers at 0.1-s ⁻¹ strain rate9
Fig. 5	Compression properties of Shore A polyurethanes at 0.1-s ⁻¹ strain rate
Fig. 6	Compression properties of Shore D polymers tested at 0.1-s ⁻¹ strain rate
Fig. 7	Tensile properties of Rencast 6425 as a function of engineering strain rate
Fig. 8	Compression properties of Rencast 6425 as a function of engineering strain rate
Fig. 9	Strain rate effects on Shore A and Shore D polymers in tension and compression
Fig. 10	Cyclic tension at 0.33-s ⁻¹ engineering strain rate
Fig. 11	Cyclic compression at 0.1 s ⁻¹ engineering strain rate13
Fig. 12	SHPB compression strength for Shore D polymers15

List of Tables

Table 1	WIAMan technology demonstrator polymers
Table 2	Mechanical properties at 0.01-s ⁻¹ engineering strain rate14

Acknowledgments

The authors would like to acknowledge the helpful discussions with Mr Greg Freeburn of Veryst Engineering LLC on the test apparatus and methods and observations of the materials' performance.

1. Introduction

Anthropomorphic test devices (ATDs) have been in use for automotive crash studies since the 1970s. Although automotive ATDs have evolved significantly since that time, they were designed primarily to address frontal and side impact conditions at automotive vehicle representative speeds and therefore do not address vertical loading rates of interest to the military to simulate underbody blasts (UBBs) generated from mines or improvised explosive devices. Information on early designs of ATDs for automotive uses can be found elsewhere.^{1–3}

The Warrior Injury Assessment Manikin (WIAMan) project was commissioned in 2010 by the Department of Defense to provide an instrumented ATD specifically designed for UBB test environments. The WIAMan ATD must demonstrate biofidelity with respect to kinematics and kinetics, provide reproducible responses, and exhibit durability after numerous exposures in a vehicle subjected to severe UBB loading conditions. The WIAMan is the first ATD of this type, designed specifically for the UBB test condition.

To address the anthropometry and biofidelic response required for UBB conditions, the WIAMan ATD design concept includes numerous polymeric parts. The material compliance of the polymers will better simulate a human response to UBB than existing ATDs used for automotive crash test applications. The WIAMan project is not performing research and development of new polymeric materials but rather seeks to understand the properties of commercially available materials over a broad range of strain rates to enable the optimal selection of materials for this application.

This report discusses the mechanical properties of 8 commercial polymers that are used in key components in the WIAMan ATD Technology Demonstrator (TD). Components fabricated from these polymers are designed to align with the critical load path when the ATD is in a normal seated posture and exposed to underbody accelerative loading. The WIAMan TD is the first whole body iteration of the WIAMan design and thus represents a relatively early stage in a multiyear program, with final production planned in 2021.

This report will focus on the material properties. Fabrication and testing of the actual components and the modeling of the material or component responses is beyond the scope of this report. However, successful design, fabrication, and modeling are dependent on comprehensive material characterization. This report serves as a comprehensive material property guide for these 8 commercial polymers that have been tested in tension and compression over a large range of strain rates.

2. Experiments

Knowledge of the physical properties of materials is essential to the design, fabrication, modeling, and performance of products made from them. Polymers are a broad class of materials with diverse properties that can range from liquid-like gels to very-high-modulus plastics. Their physical properties are attributed to many factors including endless variations in the chemistry and molecular weight of the base polymer as well as formulating constituents. Their properties are also highly dependent on how the material was fabricated, how the test specimens were formed, test sample dimensions, ambient conditions such as temperature, and the strain rate used for testing.⁴

The tests discussed in this report were performed by Veryst Engineering LLC, Needham Heights, Massachusetts, which is a leading testing laboratory for characterization of materials that exhibit complex nonlinear viscoelastic behavior. Veryst also provides service in material modeling and nonlinear simulation. The test protocols were customized for the WIAMan program specifically for the development of material models for modeling and simulation work. The custom test methods were designed to capture the nonlinear strain-rate-dependent response of the materials characterized. The specific details of each customized test are described in the following sections.

2.1 Materials

Of the 8 materials discussed in this report, 6 are 2-part polyurethanes, one material is a thermoplastic acetyl resin with the tradename of Delrin (a registered trademark of DuPont), and the other is a custom-formulated vulcanized elastomer. The polyurethanes and the Delrin are commercially available. The custom-formulated rubber can be reproduced with the composition provided in Appendix A. The 8 materials are listed in Table 1.

Commercial designation	Material supplier	Material type	Density (gm/cm ³)	Durometer	ATD component
Proflex 30	Mouldlife UK	2-part polyurethane elastomer	NA	29 Shore A	Pelvis flesh
XE 1031	Polymed Ltd UK	2-part polyurethane elastomer	NA	33 Shore A	Foot flesh
F-130 A/B	BJB Enterprises	2-part polyurethane elastomer	1.05	31 Shore A	Upper torso, leg, and arm flesh
Butyl rubber	SACO/RDAbbott rubber formulation ID no. XL-10216-E-1	Custom- compounded vulcanized elastomer	1.46	75 Shore A	Compliant elements in spine and tibia
FD-70	BJB Enterprises	2-part semi-rigid polyurethane elastomer	1.21	68 Shore D	Foot plate
Rencast 6425	Huntsman	2-part rigid polyurethane	1.18	67 Shore D	Соссух
TC 892	BJB Enterprises	2-part rigid polyurethane	1.16	79 Shore D	Pelvic bone
Delrin	Stock material, numerous suppliers	Rigid thermoplastic (acetyl resin)	1.41	81 Shore D	Calcaneus cap

Fable 1W	IAMan t	technology	demonstrator	polymers
----------	---------	------------	--------------	----------

The materials in Table 1 are arranged by their durometer category (Shore A or Shore D). The 6 polyurethanes are all thermosets formed by mixing 2 liquid components (referred to as parts A and B) according to the manufacturer directions and pouring the mixture into a mold to shape and cure the polymers. Polyurethanes are very versatile polymers due to variations in their base chemistry, crosslinking agent, and ratio of their 2 components, making them amenable to properties that can range widely from very soft and flexible elastomers to rigid plastics. The WIAMan ATD design required such diversity in polymer properties to meet dynamic response properties of human tissue such as low-durometer flexible flesh and high-stiffness bone. Delrin is a highly crystalline engineering thermoplastic used for applications that require high stiffness and strength needed for applications to replace metal parts. The custom-formulated vulcanized elastomer is used for numerous compliant elements in the WIAMan to provide flexibility and damping in parts of the spine and legs. The anatomical parts for each material are shown in Table 1. Manufacturing data sheets for each commercial material can be found in Appendix B.

2.2 Test Methods

2.2.1 Durometer

Hardness of polymers is defined as a measure of resistance of the material to indentation without puncturing the material. The hardness value is dependent on several factors including the indenter geometry, degree of indentation, and time of indentation.⁵ A CHECK-LINE Shore A durometer and Rex Durometer Shore D durometer were used for the measurements of the 8 polymers. Measurements were taken in accordance with ASTM D-2240-05 (Type A and Type D).⁶ The durometers of the 8 materials are shown in Table 1.

2.2.2 Monotonic Tensile

Monotonic tensile tests were performed at 3 engineering strain rates $(0.01s^{-1}, 0.10s^{-1}, and 1.0s^{-1})$ on either an Admet 2608 electromechanical test machine or an Instron 8800 servo-hydraulic test machine depending on the load capacity required for each test. The tests were controlled using crosshead displacement. Strain was measured using digital image correlation (DIC) on the gauge section of the specimen. A Point Grey Gazelle Camera was used for image acquisition. Specimen geometry conformed to ASTM D638 Type IV⁷ for engineering strain rates of 0.01 s⁻¹ and 0.10 s⁻¹ while Type V geometry was used for tests run at 1.0-s⁻¹ engineering strain rate. Tensile specimens were stamped or waterjet cut from molded sheets. Sheet thickness was measured for each specimen and varied between 2.03 and 5.08 mm depending on the material. Cross-sectional area was calculated for each specimen tested.

2.2.3 Monotonic Compression

Monotonic compression tests were performed on the same test machines as used for the monotonic tensile tests. Specimens were strained to approximately 50% using crosshead-controlled displacement. An Epsilon Technology axial extensometer was used to measure strain. Cylindrical samples were used for compression testing. The low-durometer (Shore A) material compression specimens were prepared by stacking molded cylindrical compression "buttons" 2 high to reduce friction effects and improving the aspect ratio (height/diameter). Cylindrical specimens of the butyl rubber were cut from sheets and stacked 3 high. Compression samples for the high-durometer (Shore D) materials were prepared by cutting 10.16-mm-diameter rods to the desired cylinder height (H). For all test geometries, a lubricant such as 3-in-1 multipurpose oil or Krytox performance lubricant (GPL207) was used between the specimen and the plates to reduce friction. Compression sample dimensions varied for each material but were generally in the following ranges: soft polyurethanes diameter (D) = 8.1 mm, stacked height (SH) = 9.5 mm; butyl rubber D = 11.2 mm, SH = 7.3 mm; and rigid polyurethanes and Delrin D = 9 mm, H = 9 mm. Monotonic uniaxial compression tests were conducted at 0.01 s⁻¹, 0.10 s⁻¹, and 1.0 s⁻¹ engineering strain rates.

2.2.4 Cyclic Tension

Cyclic tension tests were performed using the same test machines and sample geometries described in Section 2.2.2. Engineering strain rates used for the cyclic tension tests were 0.0033 s⁻¹, 0.033 s⁻¹, and 0.33 s⁻¹. Cyclic testing included a load/hold/unload condition. A 10-s hold segment was performed following each loading segment and a 5-s hold segment followed each unloading segment to measure stress relaxation. The sample was unloaded to a force of 0.5 N during each cycle.

2.2.5 Cyclic Compression

Cyclic compression tests were performed using the same test machines and sample geometries described in Section 2.2.3. The specimens were tested at 0.01 s⁻¹, 0.1 s⁻¹, and 1.0 s⁻¹ engineering strain rates with the exception of TC 892, which was tested at 0.01 s⁻¹, 0.1 s⁻¹, and 0.5 s⁻¹ engineering strain rates. Cyclic compression tests included load/hold/unload cycles that varied with each material depending on properties measured in the monotonic tests. A typical compression cycle involved compression of the specimen to approximately 10% strain, hold 10 s, unload to 0.5 N, compression to approximately 30% strain, hold 10 s, unload to 0.5 N, compression to approximately 40% strain, hold 10 s, unload to 0.5 N, compression to approximately 40% strain, hold 10 s.

2.2.6 High-Rate-Tension Drop Tower

High-rate-tension tests were performed on the Veryst Engineering custom-built drop tower using custom tension fixtures. The details of the equipment and setup are proprietary and therefore are not discussed here. The test procedure involved coating the test specimen with speckled spray paint and loading the specimen into the tension grips. A weighted sled was raised to a height corresponding to the desired strain rate. The drop height was determined based on preliminary testing, equating drop height to strain rate for each material. The test commenced when the sled was released and allowed to fall, striking the test fixture, which loaded the specimen to large strains or to failure depending on the elastic or ductile nature of the material. The high-speed camera (Photron FastCam mini UX100) was focused on the speckle pattern, and the engineering strain was calculated using DIC. Sample geometry conformed to ASTM D638 Type V.⁷ Tests were performed at 3

engineering strain rates per material that ranged between 30 s⁻¹ and 400 s⁻¹. Each material strains differently based on its material stiffness. Therefore, the strain rates varied with each material, unlike the slower rate testing, which was controlled by crosshead displacement. The specific strain rates for each material and test are shown in Appendix C.

2.2.7 High-Rate-Compression Drop Tower

High-rate-compression tests were performed on the same equipment as for the high-rate-tension tests. The compression specimen was placed on the platens of the compression drop tower fixture. The crosshead was raised to a height corresponding to the desired strain rate. The test was initiated when the sled was released. The top platen came into contact with specimen, causing compression of the specimen, and the compressive force was measured using a load cell under the bottom platen. Strain was measured from the movement of fiducial markers on the platens using the Photron FastCam mini UX100 high-speed camera. Compression specimens and dimensions were prepared as described for the monotonic compression test specimens (Section 2.2.3) with the exception that the rigid (Shore D) material test specimens were cylinders with dimensions of D = 6 mm and H = 6 mm. Tests were performed at 2 engineering strain rates that varied per material (approximately 50 s⁻¹ and 150 s⁻¹) as discussed in Section 2.2.6.

2.2.8 Split Hopkinson Pressure Bar (SHPB)

The high-rate-compression tests using SHPB were performed on a Veryst Engineering custom-designed and -built instrument. The test method used a gas gun that fired a striker bar into a 90-inch-long aluminum incident bar to induce a stress wave ("incident wave") that travels the length of the bar and transmits the stress wave into the test specimen placed between the incident bar and the transmitted bar. At the bar/sample interface, a portion of the energy is transmitted to the sample and the rest is reflected ("reflected wave"). The transmitted wave travels through the specimen, inducing deformation, and into the transmitted bar. The reflected wave travels back up the incident bar. Strain caused by the stress waves was measured by strain gauges placed on the bars. Stress and strain were calculated from the amplitudes of the incident, transmitted, and reflected waves. Using properties of the aluminum bars and other data recorded during the test, properties of the tested material was calculated at high strain rates. SHPB was used to measure compression properties of the 4 Shore D materials at 2 engineering strain rates of approximately 500 s⁻¹ and 1000 s⁻¹. Cylindrical test specimens were used with dimensions of D = 6 mm and H = 6 mm.

2.2.9 Failure Tests

Specimen failure was characterized in tensile mode and used to specify a stress-, strain-, or energy-based failure condition. Failure tests were performed on the Admet 2608 electromechanical test machine at an engineering strain rate of 0.01 s⁻¹. The Shore A materials were tested using sample geometry in accordance with ASTM D624 Type C.⁸ The Shore D materials were tested in tensile mode but using the sample geometry specified in ASTM D5379.⁹ The force at failure and the crosshead displacement were recorded as well as full-field strain fields using DIC to observe local and global strain measurements.

3. Results and Discussion

The soft (Shore A)-durometer polyurethanes and the butyl rubber were tested in tension at 3 monotonic strain rates and 3 high strain rates. Due to the ductility of the soft materials, the ultimate tensile stress and strain at failure was only obtained for the monotonic strain rates. The stress strain curves tested at a strain rate of 0.1 s^{-1} for the 3 polyurethanes at similar durometer (~30 Shore A) are shown in Fig. 1. The stress strain curves show that these materials exhibit similar tensile behavior. Although the strain at failure was not recorded, it was noted by the test engineer that these materials exhibited high extensions, typically greater than 500%.

Fig. 1 Tensile properties of Shore A polyurethanes at 0.1 s⁻¹ strain rate

The effect of increasing strain rate on the tensile properties for XE 1031 is shown in Fig. 2. The tensile response to strain rate for this material was very similar to the response measured for the other 2 soft polyurethane flesh materials. The lowdurometer polyurethane material exhibited a slight but discernable strain rate dependence.

Fig. 2 Tensile properties of XE 1031 at quasi-static and high strain rates

Figure 3 shows the tensile properties of the 3 soft polyurethanes (Proflex 30, XE 1031, and F-130) at a low and high strain rates. Butyl rubber (75 Shore A) is also plotted to show the significant difference in the tensile properties of these 2 classes of elastomers. The butyl rubber exhibited much greater tensile strength and much higher strain rate dependence than the other Shore A polymers tested. The higher stiffness of the butyl rubber is required for the components where it is used in the WIAMan TD (spine- and leg-compliant elements) to enable the torso and head to stay in an upright posture when seated and provide damping properties in UBB test conditions.

Fig. 3 Tensile properties of Shore A polyurethanes and butyl rubber at low and high strain rates

The tensile properties of the Shore D polyurethanes are shown in Fig. 4. The tests for the Shore D polymers were taken to failure and the plots show their distinct differences in failure stress and failure strain. While the ultimate tensile strength of the polymers are roughly grouped according to their durometer (Delrin and TC 892 have durometers of approximately 80 Shore D; Rencast 6425 and FD-70 have durometers of approximately 68 Shore D), all 4 polymers vary distinctly in failure strain, a measure of ductility. TC 892 (pelvic bone) had the lowest strain to failure of all the materials tested and exhibited brittle failure. FD-70 (used for the foot plate) showed very high ductility. Durometer is a useful measurement to rank hardness of various polymers but does not correlate well with specific properties and should not be used as a key metric for design or manufacturing as is demonstrated by the stress strain behavior of these polymers.⁶

Fig. 4 Tensile properties of Shore D polymers at 0.1-s⁻¹ strain rate

Compression properties of the Shore A and Shore D polymers at an engineering strain rate of 0.1 s⁻¹ are shown in Figs. 5 and 6. Compression tests were performed to approximately 50% strain, and therefore differences in material ductility were not apparent as in the tensile data. However, the trends in compressive strength were similar to the trends in tensile strength. The significant difference in the compressive strength of the 80 Shore D durometer polymers compared with the 68 Shore D durometer polymers was readily seen in the data, and the high compressive strength of Delrin at 50% strain was noteworthy.

Fig. 5 Compression properties of Shore A polyurethanes at 0.1-s⁻¹ strain rate

Fig. 6 Compression properties of Shore D polymers tested at 0.1-s⁻¹ strain rate

Figures 7 and 8 show the effect of strain rate on the tensile and compression properties of Rencast 6425. The data indicate that this polymer was highly strain rate dependent. At the lower monotonic strain rates there was a slight but pronounced increase in strength with increasing strain rate; however, there was a significant jump in material response when the strain is increased from 1.0 s^{-1} to 50 s^{-1} . This relationship was seen in all of the Shore D polymers.

Fig. 7 Tensile properties of Rencast 6425 as a function of engineering strain rate

Fig. 8 Compression properties of Rencast 6425 as a function of engineering strain rate

Figure 9 shows the overall strain rate effects of all 8 polymers in tension and compression. Butyl 75A exhibited the greatest strain rate dependence of the Shore A polymers as seen in the increasing tensile and compressive response with respect to increasing strain rate. Similar conclusions were found in an earlier study of butyl rubber (unspecified formulation) used in the Hybrid III ATD neck component.¹⁰ The Shore A polyurethanes showed a greater strain rate sensitivity in compression than in tension. The Shore D materials showed significant strain rate sensitivity, which is typical for rigid thermosets and thermoplastics of this type.

Fig. 9 Strain rate effects on Shore A and Shore D polymers in tension and compression

Cyclic tension and compression tests were performed on the 8 materials. Strains for the cyclic testing were selected from various regions of the stress strain curve, such as the linear region, close to the yield point, and after the yield point. The cyclic tests included a complete unloading cycle that provided information about hysteresis and permanent set of the 8 materials.¹¹ Figures 10 and 11 show the cyclic data in tension (0.33 s⁻¹) and compression (0.1 s⁻¹), respectively, for 2 Shore A materials and 2 Shore D materials representing all 8 durometers.

Fig. 10 Cyclic tension at 0.33-s⁻¹ engineering strain rate

Fig. 11 Cyclic compression at 0.1 s⁻¹ engineering strain rate

The material response of the 4 materials followed similar trends in both cyclic tension and cyclic compression. XE 1031, the softest polyurethane, exhibited low hysteresis and low permanent set, as expected, for an unfilled polyurethane elastomer in that durometer range (approximately 30 Shore A). All of the flesh materials (XE 10310, Proflex 30, and FD-130) behaved similarly; however, the 3 materials varied slightly in hysteresis.

Butyl 75A (a carbon-black-filled vulcanized rubber) showed greater hysteresis, as seen by the larger hysteresis loops resulting from the test cycles. This material response was typical for filled elastomers. Filler such as carbon black can significantly affect material stiffness and hysteresis, increasing both properties with increasing levels of filler.^{12,13}

The Shore D polyurethanes FD-70 and TC-892 exhibited much higher strength than the low-durometer materials, as expected, based on the monotonic test results. FD-70 showed very high ductility in the monotonic testing, which was demonstrated in the cyclic testing by high hysteresis in both tension and compression. TC 892 exhibited high stiffness and low strain at failure in the monotonic tests, which correlated to low hysteresis as a result of cyclic tension because the cyclic tests had to be performed in the linear region of the stress strain curve to avoid fracture during the test. However, TC 892 did exhibit significant hysteresis in compression at strains beyond the linear range. Delrin (not shown) performed similarly to TC 892 but exhibited much higher stresses (approximately 30% higher in tension and 100% or higher in compression). Tensile and compression properties at an engineering strain rate of 0.01 s⁻¹ for all 8 materials are shown in Table 2, which compares the 8 materials at a quasi-static strain rate that better correlates to typical crosshead speeds of similar tests performed in accordance with standardized test methods. In this regard, the table serves as a general reference for comparison with other commercial material properties typically shown in manufacturer data sheets. General trends in compression and tensile strength were observed with respect to durometer. Strain to failure does not correlate well with durometer, as discussed earlier. The failure tests (tear test for Shore A polymers and tensile using v-notch shear specimen for Shore D polymers) are shown in the table as well as the crosshead displacement recorded at failure.

	Proflex 30	XE 1031	F-130 A/B	Butyl 75A	FD-70	Rencast 6425	TC 892	Delrin
Durometer	29	33	31	70	68	67	79	81
	Shore A	Shore A	Shore A	Shore A	Shore D	Shore D	Shore D	Shore D
Density (g/cm ³)	NA	NA	1.05	1.46	1.21	1.18	1.16	1.41
Tensile strength at failure (MPa)	1.56	1.81	1.71	5.98	33.6	24	40.3	52.8
Strain at failure (%)	>500	200-600	400–950	300–500	258	96	9.1	64
Tensile stress at 100% modulus (MPa)	0.57	0.633	0.625	1.67				
Tear strength (Die C)	5.3	6.1	10.1	34.57				
(N/mm)	(21.5 N)	(24.7 N)	(25.6 N)	(70.1 N)				
Failure test using v-notch specimen (N)					1041	3400	1178	2220
Crosshead displacement at failure during tear and v-notch failure tests (mm)	43–44	36–46	90–105	90–135	13–14	7–9	4–5	2–3
Yield strength (MPa)					18	18	47	61
Young's modulus					485	426	1850	2530
(MPa)								
Compression strength (MPa) at 50% strain (%)	1.47	1.66	1.28	3.8 (47% strain)	53.7	73.9	102.2	245.4

 Table 2
 Mechanical properties at 0.01-s⁻¹ engineering strain rate

High strain rate compression using SHPB was performed on the Shore D polymers.

Tests were performed at 2 strain rates for each material. The lower strain rate varied per material between 500 s⁻¹ and 700 s⁻¹. The higher strain rate (1000 s⁻¹) was used for all 4 materials. SHPB data for the 4 polymers is shown in Fig. 12. These data indicate that FD-70 showed the greatest rate dependence in the SHPB tests, while the TC 892 response did not change as a result of the increased strain rate for this method.

Tensile and compression data for all 8 materials are presented in tabular format in Appendix C. Appendix D shows the stress strain curves in tension and compression for each material.

Fig. 12 SHPB compression strength for Shore D polymers

4. Summary and Conclusions

This reports details mechanical testing of 8 candidate polymers used in the WIAMan Technology Demonstrator. The purpose of this material investigation was to gain quantitative information of the commercial materials for their unique application in the first of its kind ATD designed for UBB test events and to inform the finite element analysis model development. The test results provide a comprehensive assessment of the material performance in tension and compression over a broad range of engineering strain rates. This report also serves as a reference for future material development and to aid selection of materials for similar components and applications.

The 3 Shore A polyurethanes performed similarly in the tensile tests, showing only a slight degree of strain rate dependence. They demonstrated behavior expected for soft elastomers such as low hysteresis during cyclic tests and generally low values

in tensile strength with high elongations. The Shore A polyurethanes showed a greater degree of strain rate dependence in compression especially at strain rates greater than 1 s⁻¹. Butyl 75A rubber, which was very different in chemistry and composition than the polyurethanes, exhibited very high strain rate sensitivity in both tension and compression, which is primarily due to the level of carbon black used in the formulations (the polyurethanes discussed in this report are unfilled elastomers).

The Shore D polyurethanes exhibited significant differences in their material response to the loading conditions. TC 892 was stronger than the other 2 Shore D polyurethanes in both tension and compression and exhibited very low ultimate strain and brittle failure. Rencast 6425 and FD-70 showed similar strength in tension and compression, but FD-70 exhibited much greater elongation and highly ductile failure, demonstrating how materials of similar durometer can vary tremendously in performance. All of the Shore D polymers showed strain rate sensitivity and high hysteresis when deformed beyond their yield point. Delrin, an acetyl resin, showed the highest compressive strength at all engineering strain rates tested.

The mechanical behavior of the 8 commercial materials demonstrate the diversity of properties needed to meet the requirements of the novel WIAMan ATD.

5. Future Work

Further development and testing of the WIAMan ATD may result in changes to the materials used for specific anatomical components. System-level ATD tests may reveal a need to modify materials to achieve a specific modulus, ultimate strain, or other factors to meet durability requirements or performance corridors. New materials will undergo similar testing as described in this report. Materials selected for the final WIAMan ATD will undergo a series of ASTM tests to define all material properties necessary to define material requirements and will become part of the WIAMan technical data package.

6. References

- 1. Melvin JW, Robbins DH, Weber K, Campbell KL, Smrcka J. Review of dummy design and use: task D. Ann Arbor (MI): University of Michigan Transportation Research Institute; 1985 Feb. Final Report No.: UMTRI-85-13.
- 2. North Atlantic Treaty Organization. Anthropomorphic dummies for crash and escape system testing: aerospace medical panel of AGARD. Hull, Quebec (Canada): Canada Communication Group; 1996.
- 3. Jeong DY, Kwok P, Canha JV. Characterization of deformable material in the THOR dummy: injury science research. Presented at the 28th International Workshop; 2000 Nov; Atlanta, GA.
- 4. Brown R. Handbook of polymer testing. Shawbury (UK): Rapra Technology Ltd.; 2002. p. 9–10.
- 5. Brown R. Handbook of polymer testing. Shawbury (UK): Rapra Technology Ltd.; 2002. p. 87.
- 6. ASTM D-2240-05. Standard test method for rubber property–durometer hardness. West Conshohocken (PA): ASTM International; 2005.
- 7. ASTM D638. Standard test method for tensile properties of plastics. West Conshohocken (PA): ASTM International; 2014.
- 8. ASTM D624. Standard test method for tear strength of conventional vulcanized rubber and thermoplastic elastomers. West Conshohocken (PA): ASTM International; 2010.
- 9. ASTM D5379. Standard test method for shear properties of composite materials by the v-notched beam method. West Conshohocken (PA): ASTM International; 2004.
- 10. Bergstrom JS. Mechanics of solid polymers: theory and computational modelling. Burlington (MA): Elsevier Science; 2015. p. 47–49.
- Sanborn B, Moy M, Mrozek R, Weerasootiya T. Effect of strain rates on the compressive response of neck rubber from humanetics HIII 50th percentile male dummy under different loading sequences. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2013 Feb. Report No.: ARL-TR-6336.
- 12. Bergstrom JS. Mechanics of solid polymers: theory and computational modelling. Burlington (MA): Elsevier Science; 2015. p. 26.

- 13. Morton M. Rubber technology. Malabar (FL): Robert E Krieger Publishing Company, Inc.; 1973. p. 56.
- 14. Bergstrom JS. Mechanics of solid polymers: theory and computational modelling, Burlington (MA): Elsevier Science; 2015. p. 25.

Appendix A. Butyl Formulations and Test Report

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

	XL-10216-E-	XL-10216-E-	XL-10216-E-
Formulation ID	1	2	3
Test Date	7/31/15	7/31/15	7/31/15
Cure	15min@330F	15min@330F	15min@330F
Test Results			
Tensile Strength (psi)	840	933	829
Elongation %	542	596	456
Durometer, Shore A	75	70	79
Modulus @ 25%	195	175	234
Modulus @ 50%	228	206	274
Modulus @ 100%	313	278	367
Formulation Ingredients			
Butyl 101-3 (Base)	100.00	100.00	100.00
Calcium Carbonate (Non-reinforcing			
Filler)	100.00	100.00	100.00
Carbon Black N550 (Reinforcing Filler)	78.00	66.00	92.00
Carbon Black N990 (Reinforcing Filler)	25.00	25.00	25.00
Zinc (Activator)	4.00	4.00	4.00
Stearic Acid (Processing Aid)	1.00	1.00	1.00
MBTS (Accelerant)	2.00	2.00	2.00
TMTD (Accelerant)	1.00	1.00	1.00
Sulfur (Curative)	0.50	0.50	0.50
Aflux 12 (Processing Aid)	1.00	1.00	1.00
Rhenofit OCD (Antioxidant)	1.00	1.00	1.00

Butyl Rubber Compound Formulation, SACO Research/R.D. Abbott

RD Abbott

8/4/2015 8:36:08 AM		Result & Grap	h			Page 1 of 5	
Selection Parameter	<u>s:</u>	2	340000 1000	10			
Compound = XL-10	0216-E-1		Order =	1			
Batch = 245281a-0	01		Test = \$	SACO			
Compound:	XL-10216-E-1			Order:	1		
Test:	SACO 0 - Read	ly00					
<u>Batch</u> 245281a-001	Specification			<u>Da</u> 7/3	te/Time 1/2015 9:5	5 AM	<u>Status</u> Completed
Variable	Resu	ılt Unit	LSL	LWL	UWL	USL	Status
Ready Temp	330.	0 F					Setpoint
Sample Preheat Time	0.	.0 s					Setpoint
Ready Temp Range	0.	.5 F					Setpoint
Ready Time	30.	.0 s					Setpoint
Compound:	XL-10216-E-1		C	Order:	1		
Test:	SACO 1 - Cure	01					
<u>Batch</u> 245281a-001	Specification			<u>Dat</u> 7/3	te/Time 1/2015 9:5	5 AM	<u>Status</u> Completed
Variable	Resu	It Unit	LSL	LWL	UWL	USL	Status
AEOC Min Time	36000.	0 s					Setpoint
AEOC tanD Limit	0.00	2[]					Setpoint
AEOC S' Rate Limit	0.06	0 lb-in/s					Setpoint
AEOC Enabled	1.00	0[]					Setpoint
AEOC Addl Time	60.	0 s					Setpoint
Smoothing	9.00	0[]					Setpoint
I-Filter	0.	0 s					Setpoint
Stop at Scorch	100.00	0 lb-in					Setpoint
Interpolate	0.00	0[]					Setpoint
Rate Window	11.00	[] 0					Setpoint
Time	1500.	0 s					Setpoint
Temp	330.	0 F					Setpoint
Freq	1.0	0 Hz					Setpoint
Angle	1.0	0 Deg					Setpoint
Min S' (ML)	3.07	6 lb-in					Tested
Max S' (MH)	17.79	9 lb-in					Tested
tc2	202.4	4 s					Tested
tc90	438.	6 s					Tested

RD Abbott

8/4/2015 8:36:08 AM		Res	ult & Grap	h				Pa	ige 3 of 5
Temp@330.0 F	330.0	F			1	1	1	Setpoint	
Temp@300.0 F	300.0	F						Setpoint	1
Temp@250.0 F	250.0	F						Setpoint	
Temp@200.0 F	200.0	F					-	Setpoint	
Temp@150.0 F	150.0	F						Setpoint	
Temp@100.0 F	100.0	F						Setpoint	
Temp@86.0 F	86.0	F				1	1	Setpoint	
Freq	1.00	Hz						Setpoint	
Angle	1.00	Deg						Setpoint	
45 - 40 - 35 - 30 - - - - - - - - - - - - - - - - - - -								•	
0 300 60	0 900 1200	D 1500	1800 2100 Time [s]	2400	2700	3000	3300	3600	3900
Compound: XL-1	0216-E-1		O	rder:	1				
Test: SAC	O 3 - Freq03	3							
Batch	Specification			Det	o/Time o		Chatria		
2452812-001	operation			7/2/		E ANA	Game		
			1	115	1/2010 9.0		Compl	eleu	
Variable	Result	Unit	LSL	LWL	UWL	USL		Status	
Sweep Length	11.000	[]						Setpoint	
Number of Readings	1.000	[]						Setpoint	-
	86.0	F						Setpoint	
Freq@1.00 Hz	1.00	Hz				<u> </u>		Setpoint	
Freq@1.55 Hz	1.55	Hz			ļ		_	Setpoint	
Freq@2.10 Hz	2.10	Hz						Setpoint	
Freq@2.65 Hz		Hz	_					Setpoint	
Freq@3.20 Hz	3.20	Hz					<u> </u>	Setpoint	
Freq@3./5 Hz	3.75	Hz						Setpoint	
Freq@4.30 Hz	4.30	Hz						Setpoint	
Freq@4.85 Hz	4.85	Hz						Setpoint	
Freq@5.40 Hz	5.40	Hz	_					Setpoint	
Freq@5.95 Hz	5.95	Hz						Setpoint	
Freq@6.50 Hz	6.50	Hz						Setpoint	
Angle	7 201	Dea	1 1				1	Coincial	

RD Abbott

8/4/2015 8:36:08 AM

Result & Graph

Page 4 of 5

		11000010	er erapn	 	1 490 1 61 0
G'@1.00 Hz	83.27	psi			Tested
G'@1.55 Hz	81.48	psi			Tested
G'@2.10 Hz	80.68	psi			Tested
G'@2.65 Hz	79.97	psi			Tested
G'@3.20 Hz	79.27	psi			Tested
G'@3.75 Hz	78.44	psi			Tested
G'@4.30 Hz	77.62	psi			Tested
G'@4.85 Hz	76.63	psi			Tested
G'@5.40 Hz	75.75	psi			Tested
G'@5.95 Hz	74.86	psi			Tested
G'@6.50 Hz	74.10	psi			Tested
G"@1.00 Hz	43.80	psi			Tested
G"@1.55 Hz	44.10	psi			Tested
G"@2.10 Hz	44.65	psi			Tested
G"@2.65 Hz	45.09	psi			Tested
G"@3.20 Hz	45.41	psi			Tested
G"@3.75 Hz	45.57	psi			Tested
G"@4.30 Hz	45.72	psi			Tested
G"@4.85 Hz	45.73	psi			Tested
G"@5.40 Hz	45.62	psi			Tested
G"@5.95 Hz	45.55	psi			Tested
G"@6.50 Hz	45.42	psi			Tested
G*@1.00 Hz	94.09	psi			Tested
G*@1.55 Hz	92.65	psi			Tested
G*@2.10 Hz	92.21	psi			Tested
G*@2.65 Hz	91.80	psi			Tested
G*@3.20 Hz	91.35	psi			Tested
G*@3.75 Hz	90.72	psi			Tested
G*@4.30 Hz	90.08	psi			Tested
G*@4.85 Hz	89.24	psi			Tested
G*@5.40 Hz	88.43	psi			Tested
G*@5.95 Hz	87.63	psi		1 m 1	Tested
G*@6.50 Hz	86.91	psi			Tested
tanD@1.00 Hz	0.526	[]			Tested
tanD@1.55 Hz	0.541	[]			Tested
tanD@2.10 Hz	0.553	[]			Tested
tanD@2.65 Hz	0.564	[]			Tested
tanD@3.20 Hz	0.573	[]		к.	Tested
tanD@3.75 Hz	0.581	[]			Tested
tanD@4.30 Hz	0.589	[]			Tested
tanD@4.85 Hz	0.597	[]			Tested
tanD@5.40 Hz	0.602	[]			Tested
tanD@5.95 Hz	0.608	[]			Tested
tanD@6.50 Hz	0.613	[]			Tested

RD Abbott **Result & Graph** 8/4/2015 8:39:38 AM Page 1 of 5 Selection Parameters: Order = 1 Compound = XL-10216-E-2 Batch = 245282A-001 Test = SACO XL-10216-E-2 Compound: Order: 1 Test: SACO --- 0 - Ready00 Specification Batch Date/Time Status 245282A-001 7/31/2015 12:22 PM Completed Variable Result Unit LSL LWL UWL USL Status 330.0 F Ready Temp Setpoint Sample Preheat Time 0.0 s Setpoint Ready Temp Range 0.5 F Setpoint Ready Time 30.0 s Setpoint XL-10216-E-2 Compound: Order: 1 Test: SACO --- 1 - Cure01 Specification Batch Date/Time Status 245282A-001 7/31/2015 12:22 PM Completed Variable Result Unit UWL LSL LWL USL Status AEOC Min Time 36000.0 s Setpoint AEOC tanD Limit 0.002 [] Setpoint 0.060 lb-in/s AEOC S' Rate Limit Setpoint AEOC Addl Time 60.0 s Setpoint AEOC Enabled 1.000 [] Setpoint Smoothing 9.000 [] Setpoint I-Filter 0.0 s Setpoint Stop at Scorch 100.000 lb-in Setpoint Interpolate 0.000 [] Setpoint Rate Window 11.000 [] Setpoint Time 1500.0 s Setpoint Temp 330.0 F Setpoint 1.00 Hz Freq Setpoint Angle 1.00 Deg Setpoint Min S' (ML) 3.181 lb-in Tested Max S' (MH) 18.270 lb-in Tested tc2 202.0 s Tested tc90 458.2 s Tested

RD Abbott

8/4/2015 8:39:38 AM		Resu	ult & Grap	h				Pa	age 3 of t
Temp@330.0 F	330.0	F		1	1	1	Setpoint		
Temp@300.0 F	300.0	F				-		Setpoin	t
Temp@250.0 F	250.0	F						Setpoin	t
Temp@200.0 F	200.0	F						Setpoin	t
Temp@150.0 F	150.0	F						Setpoin	t
Temp@100.0 F	100.0	F						Setpoin	t ·
Temp@86.0 F	86.0	F						Setpoin	t
Freq	1.00	Hz						Setpoin	t
Angle	1.00	Deg						Setpoint	t
35 - 30 - 25 - 5 - 15 - 10 - 5 -									
0 300 60 Compound: XL-1	0 900 120 10216-E-2	0 1500	1800 2100 Time [s] O	2400 Order:	2700 1	3000	3300	3600	3900
Test: SAC	:O 3 - Freq0:	3							
<u>Batch</u> 245282A-001	Specification Date/Time 7/31/2015 1 7				e/Time 1/2015 12	:22 PM	<u>Status</u> 2 PM Completed		
Variable	Result	Unit	LSL	LWL	UWL	USL		Status	
Sweep Length	11.000	[]						Setpoint	
Number of Readings	1.000	[]						Setpoint	
Temperature	86.0	F						Setpoint	
Freq@1.00 Hz	1.00	Hz						Setpoint	
Freq@1.55 Hz	1.55	Hz					Setpoint		
Freq@2.10 Hz	2.10	Hz					Setpoint		
Freq@2.65 Hz	2.65	Hz					Setpoint		
Freq@3.20 Hz	3.20	Hz					Setpoint		
Freq@3.75 Hz	3.75	Hz					Setpoint		
Freq@4.30 Hz	4.30	Hz					Setpoint		
Freq@4.85 Hz	4.85	Hz						Setpoint	
Freq@5.40 Hz	5.40	Hz						Setpoint	
Freq@5.95 Hz	5.95	Hz						Setpoint	
Freq@6.50 Hz	6.50	Hz						Setpoint	
Angle	7.20	Deg						Setpoint	

Approved for public release; distribution is unlimited.
RD Abbott

.

8/4/2015 8:39:38 AM		Result & Gra	ph	Page 4 of 5
G'@1.00 Hz	82.63	psi		Tested
G'@1.55 Hz	81.62	psi		Tested
G'@2.10 Hz	81.31	psi		Tested
G'@2.65 Hz	80.96	psi		Tested
G'@3.20 Hz	80.60	psi		Tested
G'@3.75 Hz	80.22	psi		Tested
G'@4.30 Hz	79.54	psi		Tested
G'@4.85 Hz	78.90	psi		Tested
G'@5.40 Hz	78.25	psi		Tested
G'@5.95 Hz	77.44	psi		Tested
G'@6.50 Hz	76.70	psi		Tested
G"@1.00 Hz	37.87	psi		Tested
G"@1.55 Hz	38.96	psi		Tested
G"@2.10 Hz	40.06	psi		Tested
G"@2.65 Hz	40.81	nsi		Tested
G"@3,20 Hz	41.40	psi		Tested
G"@3.75 Hz	41.79	osi		Tested
G"@4.30 Hz	42.10	nsi		Tested
G"@4,85 Hz	42.24	nsi		Tested
G"@5,40 Hz	42.22	psi		Tested
G"@5,95 Hz	42.25	psi		Tested
G"@6.50 Hz	42.20	nsi		Tested
G*@1.00 Hz	90.90	psi		Tested
G*@1.55 Hz	90,44	nsi		Tested
G*@2.10 Hz	90.64	nsi		Tested
G*@2.65 Hz	90.66	nsi		Tested
G*@3.20 Hz	90.61	nsi		Tested
G*@3.75 Hz	90.45	nsi		Tested
G*@4,30 Hz	89.99	nsi		Tested
G*@4.85 Hz	89.50	nsi		Tested
G*@5.40 Hz	88.91	nsi		Tested
G*@5.95 Hz	88.22	nsi		Tested
G*@6.50 Hz	87.55	nsi		Tested
tanD@1.00 Hz	0.458	[]		Tested
tanD@1.55 Hz	0.477	11		Tested
tanD@2.10 Hz	0.493	ri		Tested
tanD@2.65.Hz	0.504	r1		Tested
tanD@3.20 Hz	0.514	11		Tastad
tanD@3.75 Hz	0.521	1 <u>1</u>		Tastad
10000.70112	0.529			Tostod
	0.525			Tested
	0.535			Tested
	0.540			lested
tanD@5.95 Hz	0.546			lested
tanD@6.50 Hz	0.550			Tested

					2		
8/4/2015 8:40:14 AM		Result & Graph			Page 1 of		
Selection Parameter	<u>3:</u>						
Compound = XL-10	216-E-3		Order =	= 1			
Batch = 245283A-0	01		Test =	SACO			
Compound:	XL-10216-E-3			Order:	1		
Test:	SACO 0 - Rea	dy00					
<u>Batch</u> 245283A-001	Specification			<u>Dat</u> 7/3	te/Time 1/2015 1:4	4 PM	<u>Status</u> Completed
Variable	Res	ult Unit	LSL	LWL	UWL	USL	Status
Ready Temp	33	0.0 F					Setpoint
Sample Preheat Time		0.0 s					Setpoint
Ready Temp Range		0.5 F					Setpoint
Ready Time	30	0.0 s					Setpoint
Compound:	XL-10216-E-3			Order:	1		
Test:	SACO 1 - Cure	e01					
Batch 245283A-001	Specification			<u>Dat</u> 7/3	te/Time 1/2015 1:4	4 PM	<u>Status</u> Completed
Variable	Res	ult Unit	ISI	IWI		USI	Status
AFOC Min Time	36000	2015					Setpoint
AEOC tanD Limit	0.0	02 [1		-			Setpoint
AEOC S' Rate Limit	0.0	60 lb-in/s		1			Setpoint
AEOC Addl Time	60	0.0 s					Setpoint
AEOC Enabled	1.0	00[]					Setpoint
Smoothing	9.0	00 []					Setpoint
I-Filter	(0.0 s					Setpoint
Stop at Scorch	100.0	00 lb-in					Setpoint
Interpolate	0.0	[] 00					Setpoint
Rate Window	11.0	[] 00					Setpoint
Time	1500	0.0 s					Setpoint
Гетр	330	0.0 F					Setpoint
Freq	1.	00 Hz					Setpoint
Angle	1.	00 Deg					Setpoint
Min S' (ML)	3.3	22 lb-in					Tested
Max S' (MH)	21.1	59 lb-in					Tested
tc2	17	1.2 s					Tested
tc90	438	3.0 s					Tested

RD Abbott

.

RD Abbott

8/4/2015 8:40:14 AM		Result	& Grap	h				Pa	age 3 of 5
Temp@330.0 F	330.0	F	1		1	1	1	Setpoin	t
Temp@300.0 F	300.0	F						Setpoin	t
Temp@250.0 F	250.0	F						Setpoin	t
Temp@200.0 F	200.0	F						Setpoin	t
Temp@150.0 F	150.0	F						Setpoin	t
Temp@100.0 F	100.0	F						Setpoin	t
Temp@86.0 F	86.0	F						Setpoint	t
Freq	1.00	Hz						Setpoin	t
Angle	1.00	Deg						Setpoin	t
55 50 45 40 35 5 30 5 5 10 5						-			
0 300 60	0 900 120	0 1500 180	00 2100 Time [s]	2400	2700	3000	3300	3600	3900
Compound: XL-1	10216-E-3		0	rder:	1				
Test: SAC Batch 245283A-001	C 3 - Freq0: Specification	3		<u>Date</u> 7/31	e/Time 1/2015 1:4	44 PM	<u>Statu</u> Comp	<u>s</u> pleted	
Variable	Result	Unit	LSL	LWL	UWL	USL		Status	
Sweep Length	11.000	[]						Setpoint	
Number of Readings	1.000	[]						Setpoint	
Temperature	86.0	F						Setpoint	:
Freq@1.00 Hz	1.00	Hz						Setpoint	
Freq@1.55 Hz	1.55	Hz					_	Setpoint	
Freq@2.10 Hz	2.10	Hz	-			-	_	Setpoint	
Freq@2.65 Hz	2.65	Hz				_	_	Setpoint	
Freq@3.20 Hz	3.20	Hz				_		Setpoint	
Freq@3.75 Hz	3.75	Hz				_		Setpoint	5
Freq@4.30 Hz	4.30	Hz	-				_	Setpoint	
Freq@4.85 Hz	4.85	Hz			-			Setpoint	
Freq@5.40 Hz	5.40	Hz						Setpoint	
Freq@5.95 Hz	5.95	Hz						Setpoint	
Freq@6.50 Hz	6.50	Hz						Setpoint	
Angle	7.20	Deg						Setpoint	

RD Abbott 8/4/2015 8:40:14 AM

Page 4 of 5

Tested

Tested

Tested

Tested

Tested

Tested

Tested

G'@1.00 Hz 106.72 psi G'@1.55 Hz 104.04 psi G'@2.10 Hz 102.91 psi G'@2.65 Hz 102.33 psi G'@3.20 Hz 101.85 psi G'@3.75 Hz G'@4.30 Hz 101.55 psi 101.13 psi G'@4.85 Hz 100.94 psi

G'@4.85 Hz	100.94	psi			Tested	1
G'@5.40 Hz	100.80	psi			Tested	l
G'@5.95 Hz	100.45	psi			Tested	1
G'@6.50 Hz	100.29	psi			Tested	ĺ.
G"@1.00 Hz	63.14	psi			Tested	1
G"@1.55 Hz	64.34	psi			Tested	
G"@2.10 Hz	65.81	psi			Tested	
G"@2.65 Hz	66.82	psi			Tested	
G"@3.20 Hz	67.53	psi			Tested	
G"@3.75 Hz	68.01	psi			Tested	
G"@4.30 Hz	68.16	psi			Tested	
G"@4.85 Hz	68.27	psi			Tested	
G"@5.40 Hz	68.07	psi			Tested	
G"@5.95 Hz	67.56	psi			Tested	
G"@6.50 Hz	66.91	psi			Tested	
G*@1.00 Hz	124.00	psi			Tested	
G*@1.55 Hz	122.33	psi			Tested	
G*@2.10 Hz	122.15	psi			Tested	
G*@2.65 Hz	122.21	psi	2010		Tested	
G*@3.20 Hz	122.21	psi			Tested	
G*@3.75 Hz	122.22	psi		1	Tested	1
G*@4.30 Hz	121.96	psi			Tested	
G*@4.85 Hz	121.86	psi			Tested	
G*@5.40 Hz	121.63	psi			Tested	
G*@5.95 Hz	121.05	psi			Tested	
G*@6.50 Hz	120.56	psi			Tested	
tanD@1.00 Hz	0.592	[]			Tested	
tanD@1.55 Hz	0.618	[]			Tested	
tanD@2.10 Hz	0.639	[]			Tested	
tanD@2.65 Hz	0.653	[]			Tested););
tanD@3.20 Hz	0.663	[]			Tested	
tanD@3.75 Hz	0.670	[]			Tested	
tanD@4.30 Hz	0.674	[]			Tested	
tanD@4.85 Hz	0.676	[]			Tested	
tanD@5.40 Hz	0.675	[]			Tested	
tanD@5.95 Hz	0.673	[]			Tested	
tanD@6.50 Hz	0.667	[]			Tested	

Result & Graph

INTENTIONALLY LEFT BLANK.

Appendix B. Manufacturer Data Sheets

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

Mouldlife Misteriel Information

PRO FLEX 30

30K

DESCRIPTION:

Pro Flex 30 Liquid Rubber is a flexible 30 shore A, fast-curing rubber, which has been developed specifically for prototyping and model making applications. It is excellent for casting decorative objects, production parts, tools, models, patterns, duplicate masters and more. With the addition of Poly Colour Dyes, **Pro Flex 30** can be used to cast parts of any colour.

PRODUCT HIGHLIGHTS:

- Very easy to use
- Quick de-mould time
- Good tear strength
- Easley pigment-able
- Can be vacuum cast or hand poured

PHYSICAL PROPERTIES:

Property		Typical Value	Units
Colour	Part A	Clear Yellow	~
	Part B	Clear Yellow/Amber	-
Mix Ratio	By Weight	100A:94B	-
	(By Volume)	1A:1B	-
Specific Gravity	Mixed	1.04	-
Mix Viscosity		1300	cP
Pot Life	(100g @25oC)	15	Minutes
De-mould time	(100g @25oC)	2-3	Hours
Linear Shrinkage		0.0004	
Tensile Strength		675(4.20)	psi (MPa)
Elastic Modulus		N/A	psi (MPa)
Shore Hardness		A30	
Die C Tear Strength		484 (85)	pli (kN/m)
Elongation		950	%

100 Part A to 94 Part B

Mix Ratio

Key Data

PRO CAST RANGE

Gel Time (100g @ 25°C)

15Min

De-mould

Time (100g @ 25°C)

2-3 Hours

(Shore A)

Colour

Translucent Amber

Mouldlife, Tollgate Workshop, Bury Road, Kentford, Suffolk CB8 7PY t. +44(0) 1638 750679 f. +44(0) 1638 751779

MOLD PREPARATION:

Pro Flex 30 reproduce minute details from moulds or patterns, but may stick or foam when poured on improperly prepared surfaces. To avoid damaging a valuable mould, perform a trial casting on a similar surface. Polyethylene and platinum silicone rubber (i.e., Platsil®) moulds do not require release agents. Latex, polyurethane rubber or metal moulds must be dry and coated with a suitable release agent, such as Spray Wax or Release Extra

MIXING: Prior to mixing, be sure that all moulds, equipment and Pro Flex liquids are ready at room temperature (i.e., $>23^{\circ}$ C).

Shake or stir Parts A and B if directed by product label. Over time, sediment may accumulate on the container bottom of **Pro Flex 30**

Part B. Normally, gentle mixing is all that is required to disperse the sediment. Use metal or plastic mixing vessels and spatulas to avoid introducing moisture (i.e., with paper or wood tools). Measure or weigh Parts A and B into a mixing container, such as a polyethylene pail. Mix immediately, thoroughly scraping sides and bottom for one minute. Pour mix into cavity as quickly as possible. Once the containers of Parts A and B are opened, they should be used or resealed tightly since atmospheric moisture contamination may cause foaming. Poly Purge™, a dry-gas product, can be sprayed into opened containers to displace moist air before resealing containers to extend shelf life.

SAFETY PRECAUTIONS:

Use in a well-ventilated area. Avoid contact with skin. Repeated or prolonged contact may cause an allergic reaction.

Eye protection is very important. Always use approved safety glasses or goggles when handling this product

PACKAGING:

1.94kg (1kg A + 940g B, 9.7kg (5kg A + 4.7kg B)

Suitability for Use:

The information in this data sheet is given to the best of our knowledge and belief but without warranty or liability. The user must establish the suitability of the material for the intended application by carrying out any appropriate tests. No liability will be accepted for direct or consequential losses arising from the use of this material.

Mouldlife, Tollgate Workshop, Bury Road, Kentford, Suffolk CB8 7PY t. +44(0) 1638 750679 f. +44(0) 1638 751779

PRODUCT DATA SHEET

Polymed Limited 1 & 2 Clos Menter Western Avenue Cardiff CF14 3AY Tel 029 2052 1234 Fax 029 2052 1221

Polymed XE1031 Polyurethane Elastomer

1 INTRODUCTION

Polymed XE1031 is a polyether compound which reacts with Polymed 11000 isocyanate to form a polyurethane elastomer with good resistance to hydrolysis and good overall mechanical properties.

This material is one of a series of products ranging in hardness from 35 Shore A to 95 Shore A.

The range of polyols use a common isocyanate and the required grade of polyol should be selected to produce the required hardness.

This material complies with the following legislation:-1. End of Life Vehicles Regulations(SI2003/2635) ELVs Regulations 2. EC Directive 2000/53/EC ELVs Directive

 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (SI2012/3032) RoHS Regulations.
 EC Directive 2011/65/EU (and amendments) RoHS Directive.

PLEASE NOTE:

These notes are for guidance only. This material is a development product and the formulation has not been proved in all circumstances. Therefore customers are strongly advised to satisfy themselves as to the suitability of the material for use in their process and for their application. No liability will be accepted for direct or consequential losses arising from using this material.

Notwithstanding the above any comments or suggestions customers may have with a view to improving the characteristics or processing of the material will be favourably received.

Polymed Limited

Issued: 15072015

Page 1 of 6

2 APPLICATIONS

XE1031 has been formulated for applications requiring a 35 Shore A polyurethane elastomer with good mechanical properties and good resistance to hydrolysis. These properties are obtained using moderate moulding and postcure temperatures.

Typical applications include: the manufacture of dunnage equipment; the encapsulation of sonar transducers and arrays; cable termination and sheath reinstatement; the manufacture of tough flexible moulds; general moulding of tough flexible components.

3 SPECIFICATION

Specification	Units	Min	Max
Gel Time 100g at 25C	minutes	6.00	10.00
Hardness	Shore A	30.00	40.00
Appearance	Smooth off white/pale straw hazy liquid		

This is a PROVISIONAL Test Specification as the material is UNVERIFIED

4 MIX RATIOS

Mix Ratios with	11000 lsocy	yanate.
By weight	5.70 : 1.00	Parts polyol to parts isocyanate

The quantity of each component should be measured to an accuracy of within 2%. Measurement by volume is usually highly inaccurate unless carried out using specialist measuring equipment and we do not recommend it. Measurement should be by weight using a balance of suitable capacity and accuracy.

5 TYPICAL PROPERTIES

Pot Life @	25C		100g	4-5 minutes
			1kg	Not measured
Gel Time @	25C		100g	7-9 minutes
			1kg	Not measured
Demould Time @	D	25C	100g	15-20 minutes
			1kg	Not measured

Polymed Limited

Issued: 15072015

Page 2 of 6

Approved for public release; distribution is unlimited.

PRODUCT DATA SHEET

Hardness	35	Shore A
Elongation At Break	945.1	%
Tensile Strength	2,95	MN/m2
Tear Strength	7.24	N/mm

6 PREPARATION OF COMPONENTS

The polyof component should be warmed to 20-30C and thoroughly mixed before any material is removed from the container. The recommended method of mixing is by means of a mechanical drum roller. The material should then be checked to ensure that it is free from lumps or sediment or from separated pigment before use.

The isocyanate component does not require any mixing prior to use. However it should be warmed to 20-30C and checked to ensure that it is free fom crystals lumps or cloudiness.

Both components should be prewarmed to 20-30C before using. Refer to the PREPARATION OF MOULDS section for details of any elevated mould temperatures which may be required and to the METHOD OF USE section for any postcure requirements.

7 PREPARATION OF MOULDS

Moulds should be clean and dry and unless made of silicone rubber should be sprayed lightly with a good quality release agent such as MACSIL or MACWAX. Allow sufficient time for release agents to dry fully before moulding. This is particularly important when water based release agents are used.

Moulds should be warmed to 60-80C prior to moulding. If this is not done the mould will slow the cure of the material in contact with the mould surface. This results in an increased demould time and may also cause differential shrinkage rates between the edges and the bulk of the material. In addition the material may not cure correctly.

8 METHOD OF USE

WEIGHING

The two components should be weighed on an accurate balance to an accuracy of 1-2% for each component. The polyol should be weighed into a clean dry vessel large enough to allow isocyanate to be added thoroughly mixed and degassed. Wherever possible use a vessel two to three times the volume of the mixed materials.

Polymed Limited

Issued: 15072015

Page 3 of 6

Weigh the isocyanate directly into the polyol. Do not weigh the isocyanate into a separate container and decant into the polyol as this will lead to insufficient isocyanate being added. This will result in poor cure and low hardness in the finished material.

MIXING

Mix the materials thoroughly either by hand using a flat blade such as a palette knife or by drill using a Jiffy type mixer. Care should be taken to avoid trapping air during mixing and to ensure that the sides and bottom of the vessel are scraped to remove polyol which should then be mixed in.

To be sure of avoiding patches of unmixed polyol in the cured material the mix may be poured into a second mixing vessel and mixed thoroughly again before degassing or pouring into the mould. However this can only be done if the gel time is sufficiently long and trials should be carried out to establish the viability of this second mixing stage.

DEGASSING

For best results and void free casting we recommend degassing immediately after mixing. Please discuss the need for degassing with your supplier. The degassing chamber must be large enough to accomodate the mixing vessel and the vacuum pump should be able to evacuate the chamber and start degassing within one minute.

Degassing should continue until the violent bubbling ceases. Further degassing removes only a tiny proportion of air and is not usually necessary. The vacuum should be released and the material poured into the mould as soon as possible to maximise the working time before the material gels.

Increasing the amount of material or the processing temperature will reduce the gel time. Trials should therefore be carried out using production quantities and conditions to ensure that there is sufficient time to degass and pour into the mould before the material gels.

POURING

The material should be poured carefully into the prepared mould to avoid entrapment of air. The material should flow slowly over the mould surface to allow reproduction of fine detail and to fill narrow channels and cavities. Pouring the material quickly may trap air causing voids and bubbles in the finished moulding.

Polymed Limited

Issued: 15072015

Page 4 of 6

Do not scrape the sides of the mixing container in order to use the last of the material. This frequently introduces poorly mixed material giving defects in the finished product. The amount of material weighed and mixed should include a small excess to allow for that left behind in the mixing container.

POSTCURE

This material will postcure at ambient temperature. However to obtain maximum physical properties and especially where sections below 5mm are moulded the material should be postcured at 70-80C for 1-2 hours.

9 HANDLING & STORAGE

Refer to the section HEALTH AND SAFETY below and also to the relevant Safety Data Sheets for details regarding the safe handling of this material.

Good housekeeping is important when using this material. Spillages and drips should be cleaned up immediately and the drums wiped clean after use. Isocyanate spillages are especially hazardous and the procedures given in the Safety Data Sheet should be followed as soon as a spillage occurs.

Both components are sensitive to atmospheric moisture and should be handled in such a way as to minimise exposure to the atmosphere. The containers should not be left open and must be resealed as soon as possible after use. Purging the airspace above the material with dry nitrogen prior to resealing the container is recommended.

The polyol component should be stored in the original container and in a dry environment at a MINIMUM of 15C. Note however that storage at temperatures below 20C may result in some solidification of the material. If this occurs the material should be raised to the processing temperature and mixed well before use.

The isocyanate component should be stored in tightly sealed containers in a dry environment at a temperature of 25 - 35C. Storage below the recommended minimum temperature may result in freezing of the isocyanate. Contact Polymed for advice on re-melting. Avoid contact with moisture.

Polymed Limited

Issued: 15072015

Page 5 of 6

The polyol has a shelf life of 12 months from the original date of manufacture when stored as described above in the original unopened container. The expiry date is shown on the product label.

The isocyanate has a shelf life of 6 months from the original date of manufacture when stored as described above in the original unopened container. The expiry date is shown on the product label.

10 HEALTH & SAFETY

The Safety Data Sheet provides details of the Health and Safety aspects of this product. This should be read carefully before the containers are opened and before storage or use. Please contact us immediately if you are not in possession of a Safety Data Sheet for this product.

The polyol component is not classified as hazardous under current classification legislation. However gloves goggles and overalls should be worn to minimise unnecessary contact with the material. In addition the polyol should not be swallowed. Refer to the Safety Data Sheet for details. If in doubt please contact your supplier.

Isocyanates are classified as hazardous by inhalation and contact with the skin. They are also sensitising. Adequate ventilation must be provided wherever isocyanates are handled and used. Refer to the Safety Data Sheet for details. If in doubt please contact your supplier.

11 ADDITIONAL INFORMATION

This product is available in 5kg 25kg and 250kg packs. Other pack sizes are available including 1kg Pre-Weighed Kits.

12 SUITABILITY FOR USE

Information is given to the best of our knowledge and belief but without warranty or liability. Materials must be tested for suitability of application by the user. Finished products produced from any batch of our materials must be subjected to comprehensive standards of quality control by the user.

Polymed Limited

issued: 15072015

Page 6 of 6

SHORE A POLYURETHANES

"Dedicated to QUALITY, SERVICE, SAFETY, and INNOVATION"

F-130 A/B **30 SHORE A POLYURETHANE ELASTOMER**

BJB's "F-1 Series", with its 3 to 10 minutes of work time, addresses the need for shorter processing times and higher part production. These 5-95 Shore A products exhibit excellent physical properties and easily process at room temperature. You'll also find the easy mix ratio to be extremely convenient and cartridge dispense friendly. For longer work times consider our M Series or L Series of elastomers.

RoHS/REACH Compliant . Special Effects & Props

.

- Popular for Parts & Molds . Over Molding .
- High Tensile & Tear Strength • Easy to Pigment .

PHYSICAL PROPERTIES	TEST METHOD	7 DAY AMBIENT CURE	21 DAY AMBIENT CURE	ELEVATED TEMPERATURE CURE*
Hardness, Shore A	ASTM D2240-04e1	30 ± 5	30 ± 5	30 ± 5
Density (g/cc)	ASTM D792-00	1.029	1.029	1.029
Cubic Inches per Pound	N/A	26.98	26.98	26.98
Color/Appearance	Visual	Translucent Amber	Translucent Amber	Translucent Amber
Tensile Strength (psi)	ASTM D412-98a(2002)e1	810	795	935
Tensile Modulus (psi)	ASTM D412-98a(2002)e1	165	145	210
Elongation (%)	ASTM D412-98a(2002)e1	970	1,170	1,230
Tear Strength (pli)	ASTM D624-00e1	80	80	92
Shrinkage (in/in) linear	ASTM D2566 @ 1" depth	0.0030*	TBD	TBD
Dielectric Constant, 1 MHz	ASTM D150-87	5.769	5.769	5.769
Dissipation Factor, 1 MHz	ASTM D150-87	0.058	0.058	0.058

*Note: Reported physical properties are based on test specimens cured 1-3 hours at room temperature then 16 hours at 160°F (71°C). [†]Shrink test specimens are cured for 24 hours at room temperature and then 16 hours at 160°F (71°C).

HANDLING PROPERTIES	Part A	Part B	
Mix Ratio by weight	100	100	
Mix Ratio by volume (cartridge dispense friendly)	100	100	
Specific Gravity @ 77°F (25°C)	1.030	1.026	
Color	Pale Yellow	Amber	
Viscosity (cps) @ 77°F (25°C) Brookfield	780	1,075	
Mixed Viscosity (cps) @77°F (25°C) Brookfield	1,50	00	
Work Time, 100g mass @ 77°F (25°C)	8 – 9 minutes		
Gel Time	12 – 13 minutes		
Demold Time @ 77°F (25°C)	2 – 3 h	ours	

Properties above are typical and not for specifications.

Quality Management System Registered to ISO 9001:2008

F-130 A/B Page 1 of 2 For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 734-8929 www.bjbenterprises.com Date: 08/21/2014

CURE SCHEDULE/HEAT CURING:

Most of the physical properties can be achieved in 5-7 days at 77°F (25°C). You may use your own post-cure schedule but the physical properties may vary from BJB's cure schedule of 1-3 hours at 77°F (25°C) followed by 16 hours at 160°F (71°C). Do not exceed curing temperature of 200°F (93°C).

ACCESSORIES:

BJB offers silicone RTV mold making materials along with a wide range of accessory items. These include de-airing agents, pigments, mold releases, and Jiffy[®] Mixers. Visit BJB's website at www.bjbenterprises.com or consult a BJB representative for more information.

COLOR VARIATIONS:

The color of the base material may vary slightly from batch to batch due to raw ingredients. Color variations will not affect the cured physical properties. Exposing the material to various conditions such as heat and UV light will alter the color of the cured system. Color stability is not guaranteed. This product can be pigmented, but you may see more color shift when using lighter pigments.

UV RESISTANCE:

This product is not classified as UV resistant. BJB offers an additive called UV-100, a UV inhibitor and anti-oxidant blend that will help slow down the effects of UV degradation and color change. The level of effectiveness varies from product to product.

STORAGE:

Store at ambient temperatures, 65-80°F (18-27°C). Unopened containers will have a shelf life of 6 months from date of shipment when properly stored at recommended temperatures. Purge opened containers with dry nitrogen before re-sealing.

PACKAGING	Part A	Part B	Cubic Inches Per Kit
Gallon Kits	8 lbs.	8 lbs.	431.7
5-Gallon Kits	40 lbs.	40 lbs.	2,158.4
55-Gallon Drum Kits	440 lbs.	440 lbs.	23,742.4

SAFETY PRECAUTIONS:

Use in a well-ventilated area. Avoid contact with skin using protective gloves and protective clothing. Repeat or prolonged contact on the skin may cause an allergic reaction. Eye protection is extremely important. Always use approved safety glasses or goggles when handling this product.

IF CONTACT OCCURS:

- Skin: Immediately wash with soap and water. Remove contaminated clothing and launder before reuse. It is *not* recommended to remove resin from skin with solvents. Solvents only increase contact and dry skin. Seek qualified medical attention if allergic reactions occur.
- Eyes: Immediately flush with water for at least 15 minutes. Call a physician.
- Ingestion: If swallowed, call a physician immediately. Remove stomach contents by gastric suction or induce vomiting only as directed by medical personnel. Never give anything by mouth to an unconscious person.

Refer to the Material Safety Data Sheet before using this product.

Quality Management

F-130 Part B SDS

stem Registered ISO 9001:2008	F-130 A/B Page 2 of 2 For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 7	Date: 08/21/2014
NON-WARRANTY "E compliance is to be dete to merchantability, fitne Manufacturer's sale pri-	xcept for a warranty that materials substantially comply with the data presented in Manufacture's latest bulletin describing the prod minised by the standard quality complexity performed by Manufacture), all materials are sold "AS IS" and without any v ass for a particular purpose, patent, trademark or copyright infimument, or as to any other matter. In no event shall Manufacture's er of the normical requestion sub-meet to a whee for an enongement, or as to any other matter. In no event shall Manufacture's	luct (the basis for this substantial warranty express or implied as liability for damages exceed

SHORE D SEMI-RIGID URETHANES

"Dedicated to QUALITY, SERVICE, SAFETY, and INNOVATION"

FD-70 A/B 70 SHORE D POLYURETHANE ELASTOMER

BJB's FD Series of semi rigid, fast reacting urethane elastomers exhibit great flexibility and excellent durability. These tough, abrasion resistant systems easily process at room temperature and range in hardness from 45 Shore D to 70 Shore D. The FD Series offers superior performance in many applications such as rollers, foundry tooling and high impact semi rigid parts. For longer work times consider BJB's MD Series of elastomers.

- RoHS/REACH compliant
- Production oriented
- High tear and tensile strength
- Exceptional abrasion resistance

<sup>Used for molds and cast parts
Easy processing</sup>

PHYSICAL PROPERTIES	TEST METHOD	7 DAY AMBIENT CURE	21 DAY AMBIENT CURE	ELEVATED TEMPERATURE CURE*
Hardness, Shore D	ASTM D2240-04e1	70 ± 5	70±5	70 ± 5
Density (g/cc)	ASTM D792-00	1.17	1.17	1.17
Cubic Inches per Pound	N/A	24.55	24.55	24.55
Color/Appearance	Visual	Clear Amber	Clear Amber	Clear Amber
Tensile Strength (psi)	ASTM D412-98a(2002)e1	4,631	5,176	6,205
Tensile Modulus (psi)	ASTM D412-98a(2002)e1	121,700	140,054	86,375
Elongation (%)	ASTM D412-98a(2002)e1	310	325	357
Tear Strength (pli)	ASTM D624-00e1	748	759	715
Flexural Strength (psi)	ASTM D790-03	3,111	2,766	3,148
Flexural Modulus (psi)	ASTM D790-03	76,243	69,653	76,460
Shrinkage (in/in) linear	ASTM D2566 @ 1" depth	0.0076 [†]	TBD	TBD
Izod Impact (ft-lb/in) notched	ASTM D256-05	>16.5	>16.5	>16.5
Heat Deflection Temperature (66 psi)	ASTM D648-04	117°F (47°C)	122°F (50°C)	161°F (72°C)
Dielectric Constant, 1 MHz	ASTM D150-87	4.1	4.1	4.1
Dissipation Eactor 1 MHz	ASTM D150-87	0.0383	0.0383	0.0383

*Note: Reported physical properties are based on test specimens cured I-3 hours at room temperature then 16 hours at 160°F (71°C). *Shrink test specimens are cured for 24 hours at room temperature and then 16 hours at 160°F (71°C).

HANDLING PROPERTIES	Part A	Part B
Mix Ratio (by weight)	100	40
Mix Ratio (by volume)	100	38
Specific Gravity @ 77°F (25°C)	1.111	1.175
Color	Pale Yellow	Amber
Viscosity (cps) @77°F (25°C) Brookfield	3,460	385
Mixed Viscosity (cps) @77°F (25°C) Brookfield	2,1	50
Work Time, 100g mass @ 77°F (25°C)	ss @ 77°F (25°C) 7 - 8 minutes	
Gel Time	9 - 10 minutes	
Demold Time @ 77°F (25°C)	1-2h	ours

Properties above are typical and not for specifications.

Quality Management System Registered to ISO 9001:2008

FD-70 A/B Page 1 of 2 Date: 07/11/2014 For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 734-8929 www.bjbenterprises.com

CURE SCHEDULE/HEAT CURING:

Most of the physical properties can be achieved in 5-7 days at 77°F (25°C). You may use your own post-cure schedule but the physical properties may vary from BJB's cure schedule of 1-3 hours at 77°F (25°C) followed by 16 hours at 160°F (71°C). Do not exceed curing temperature of 200°F (93°C).

PREPARATION AND RELEASING:

When FD-70 A/B is used to produce molds or parts from plaster, wood or other porous substrates, we would first recommend that they be sealed. Release agents may then be applied over the sealed surface.

<u>NOTE</u>:

Prolonged direct exposure to sunlight can affect the surface of this product. Cover molds or other products when storing outdoors.

ACCESSORIES:

BJB offers silicone RTV mold making materials along with a wide range of accessory items. These include de-airing agents, pigments, mold releases, and Jiffy[®] Mixers. Visit BJB's website at www.bjbenterprises.com or consult a BJB representative for more information.

STORAGE:

Store ambient temperatures, 65-80°F (18-27°C). Unopened containers will have a shelf life of 6 months from date of shipment when properly stored at recommended temperatures. Purge opened containers with dry nitrogen before re-sealing.

PACKAGING	Part A	Part B	Cubic Inches Per Kit
Gallon Kits	8 lbs.	3.2 lbs.	274.96
5-Gallon Kits	40 lbs.	16 lbs.	1,374.8
55-Gallon Drum Kits	440 ibs.	176 lbs.	15,122.8

SAFETY PRECAUTIONS:

Use in a well-ventilated area. Avoid contact with skin using protective gloves and protective clothing. Repeated or prolonged contact on the skin may cause an allergic reaction. Eye protection is extremely important. Always use approved safety glasses or goggles when handling this product.

IF CONTACT OCCURS:

Skin: Immediately wash with soap and water. Remove contaminated clothing and launder before reuse. It is *not* recommended to remove resin from skin with solvents. Solvents only increase contact and dry skin. Seek qualified medical attention if allergic reactions occur.

Eyes: Immediately flush with water for at least 15 minutes. Call a physician.

Ingestion: If swallowed, call a physician immediately. Remove stomach contents by gastric suction or induce vomiting only as directed by medical personnel. Never give anything by mouth to an unconscious person. Refer to the Material Safety Data Sheet before using this product.

FD-70 Part B SDS

Quality Management System Registered to ISO 9001:2008

Enriching lives through innovation

Advanced Materials

RenCast 6425 A / RenCast 5425 B

Density at 23°C

FOR THE PRODUCTION OF CASTINGS AND IN APPLICATIONS REQUIRING HIGH LEVELS OF TOUGHNESS AND DURABILITY

KEY PROPERTIES	 Withstand moista High tear strengt High abrasion re 	ure well, thu h and elong sistance	s also suitable for thin la lation	ayers	
APPLICATIONS	 Foundry Patterns Core boxes Abrasion and impact-resistant parts Percussion tools Impact protection Conveyor rollers Machinery Parts Assembly jigs 				
PRODUCT DATA	Property	Unit	RenCast 6425 A	PonCast 5425 B]
	Appearance Colour	visual	Liquid brown	Liquid pale yellow	
	Viscosity at 25°C	mPas	1800 - 3200	250 - 550	

PROCESSING

Mix ratio	Parts by weight
RenCast 6425 A	100
RenCast 5425 B	24

g/cm³

Mix the two components thoroughly in the ratio indicated. Evacuated materiel will improve properties. Post-curing will improve final properties.

1.11

1.13

October 2010

RenCast 6425 A_RenCast 5425 B

Page 1 of 3

Enriching lives through innovation

PROPERTIES

Resin/Hardener mix:	Volume	Unit	RenCast 6425 A RenCast 5425 B
Appearance			brown
Mix viscosity 25°C		mPas	1900 - 2100
Pot life at 25°C	1000 ml	min	15 - 20
Max. layer thickness		mm	10 - 12
Demoulding time* at 23°C		hours	20 - 24

Density	ISO 1183	g/cm ³	1.20
Hardness	ISO 868	Shore D	60 - 65
Tear propagation resistance	DIN 53356	kN/m	28 - 30
Tensile strength	ISO 527-2	MPas	30 - 35
Elongation at break	ISO 527-2	%	130 - 170
Linear shrinkage**		mm/m	1.8
Abrasion***	Taber	mg	1600

* For parts with uniform face-cast layers of 8-12 mm, allow 20 - 24 hours of final cure time prior to demoulding. To avoid creep, always store parts on a flat surface without stressing. Follow recommendation for curing before subjecting the parts to loading.
 **Shrinkage measurement using test specimen size 500 x 50 x 10mm
 *** Lost weight by 4000 cycles, 60 rpm, 1kg load, S 60 sandpaper strips

STORAGE	The resin and hardeners described in this instruction sheet have the shelf lives shown provided they are stored at $6 - 28^{\circ}$ C in a dry place and sealed containers, preferably those in which they are supplied.		
WORKING CONDITIONS	The product should be used when in the temperature range 18-25°C		
PACKAGING	,		
	System	RenCast 6425 A	RenCast 5425 B

System	RenCast 6425 A	RenCast 5425
Quantity and Weight	4 x 5 kg	4.8 kg
Quantity and Weight		

October 2010

RenCast 6425 A_RenCast 5425 B

Page 2 of 3

Enriching lives through innovation

HANDLING PRECAUTIONS

Caution

Our products are generally quite harmless to handle provided that certain precautions normally taken when handling chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleansed at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided. Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual products and should be referred to for fuller information.

IMPORTANT LEGAL NOTICE

Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the user. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications.

The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is not implied by this publication.

While all the information and recommendations in this publication are, to the best of Huntsman Advanced Material's knowledge, information and belief, accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT WITHOUT LIMITATION, AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.

The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof.

Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures, and should comply with all applicable safety and environmental standards.

Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users.

Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong Kong) Ltd.

Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the USA and Huntsman Advanced Materials (Europe) BVBA in Europe. RenCast is a registered trademark of Huntsman Corporation or an affiliate thereof.

Copyright © 2007 Huntsman Corporation or an affiliate thereof. All rights reserved.

Main Office : Huntsman Advanced Materials (Switzerland) GmbH Klybeckstrasse 200 CH-4057 BASEL Switzerland +41 61 299 1111

October 2010

RenCast 6425 A_RenCast 5425 B

Page 3 of 3

RIGID FILLED & UNFILLED URETHANES

"Dedicated to QUALUY, SERVICE, SAFETY, and INNOVATION"

TC-892 A/B **RIGID 80 SHORE D URETHANE CASTING SYSTEM**

PRODUCT DESCRIPTION:

TC-892 A/B incorporates a non-mercury based catalyst system that produces a tough 80 shore D material with a 20-minute work time. This system can be used to hand pour large electronic housing, models of all kinds, and point of purchase items. This system is also available in a 5-minute work time (TC-890), and a 12-minute work time (TC-891)

PRODUCT HIGHLIGHTS:

- ✓ Non-mercury
- RoHS compliant
 Convenient mixing ratio: 1 to 1 parts by weight

- Convenient mixing ratio, r to r parts by weight
 Long working time: 20 minutes
 Low viscosity, flows easily
 Demold time: 5-6 hours at ambient temperature in a silicone rubber mold (1/8" thick section)

PHYSICAL PROPERTIES:

	우리는 승규는 것을 가지 않는 것을 하는 것을 수가 있다. 물건을 하는 것을 수가 있는 것을 수가 않았다. 귀에서 가 있는 것을 수가 있다. 것을 수가 있는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 있는 것을 수가 있다. 않았다. 것을 것을 것 같이 않았다. 않았다. 않았는 것 않았다. 않았는 것 않았다. 않았는 것 않았다. 것 않았는 것 않았다. 않았는 것 않았다. 않았는 것 않 않 않았다. 않았다. 않았다. 않았다. 것 않았다. 않았다. 않 않았다. 않았다. 않 않았다. 않았다. 않 않았다	
Hardness, Shore D ASTM D2240	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Density, (g/cc) ASTM D792		
Cubic Inches per Pound		
Color/Appearance		White/Opaque
Tensile Strength, (psi) ASTM D638		
Tensile Modulus, (psi) ASTM D-638	<u> </u>	
Elongation, (%) ASTM D638		
Flexural Strength, (psi) ASTM D790		
Flexural Modulus, (psi) ASTM D790		
Shrinkage, (in/in) linear 12" x 1/2" x 1/2"		
Izod Impact, notched (ft-lb/in) ASTM D256		
Heat Deflection Temperature, ASTM D648:		
66 psi		195°F (91°C)
264 psi		
••••••••••••••••••••••••••••••••••••		

Note: Reported physical properties are based on test specimens cured at an elevated temperature, 180°F (82°C).

HANDLING PROPERTIES:

Mix Ratio (by weight):		
Part A		100 parts by weight
Part B		100 parts by weight
Mix Ratio (by volume):		
Part A		88 parts by volume
Part B		100 parts by volume
Specific Gravity @ 77°F (2	25°C):	• •
Part A	14/21/1/19/14/14/14/14/21/21/21/21/21/21/21/21/21/21/21/21/21/	1.18
Part B		i.04
Quality Management System Registered to ISO 9001/2008	TC-892 A/B Page 1 of 2 For more information call BIB Enterprises, Inc. (714) 734-8450 Fax (714) 734-8929	Date: 07/09/2012

HANDLING PROPERTIES (continued):

Viscosity, (cps) @ 77°F (25°C) Brookfield:	
Part A	
Part B	
Mixed	
Color:	
Part A	
Part B	Whit
Work Time, 100g mass @ 77°F (25°C)	
Gel Time	
Demold Time @ 77°F (25°C)	

CURE SCHEDULE/HEAT CURING:

Most of the physical properties can be achieved in 5-7 days at ambient temperature, 77°F (25°C), In order to achieve maximum physical properties, a post cure with heat is required. BJB recommends 24 hours at ambient temperature, 77°F (25°C), followed by 16 hours at 150-180°F (66-82°C). Support of the part may be required to prevent part deformation during heat cure.

NOTE:

v

It is advisable whenever possible to evacuate entrapped air prior to casting this system. The use of a de-airing agent can It is advisable whenever possible to evaluate outapped an profile to tamping the speed up the process. BJB's AF-7 antiform works best as the de-airing agent. In conjunction with these support products BJB offers pigments in a wide variety of colors and stainless steel mixers called "Jiffy Mixers." If help is required call BJB for assistance. For additional information on the use of this product, refer to BJB Guidelines for Handling Polyurethane Products.

STORAGE:

Store in a cool dry place. Unopened containers will have a shelf life of 6 months from date of shipment when properly stored at room temperatures. Purge opened containers with dry nitrogen before re-scaling. 4.

PACKAGING:

Gallon Kits	<u>i</u> 198	
5-Gallon Kits		
55-Gallon Drum Kits	and an and a second	400 lbs A 400 lbs B
	4 <u>8</u> 9	

SAFETY PRECAUTIONS:

Use in a well-ventilated area. Avoid contact with skin using protective gloves and protective clothing. Repeated or prolonged contact on the skin may cause an allergic reaction. Eye protection is extremely important. Always use approved safety glasses or goggles when handling this product.

IF CONTACT OCCURS:

Qui

- Immediately wash with soap and water. Remove contaminated clothing and launder before reuse. It is not Skin: recommended to remove resin from skin with solvents. Solvents only increase contact and dry skin. Seek qualified medical attention if allergic reactions occur.
- Immediately flush with water for at least 15 minutes. Call a physician. Eves:
- Ingestion: If swallowed, call a physician immediately. Remove stomach contents by gastric suction or induce vomiting only as directed by medical personnel. Never give anything by mouth to an unconscious person.

Refer to the Material Safety Data Sheet before using this product.

Quality Management		
System Registerod		
to ISO 9001:2008	TC-892 A/B Page 2 of 2	Date: 07/09/2012
	For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 734-8929	
NON-WAR	RANTY "Except for a warranty that materials substantially comply with the data presented in Manufacturer's latest bulletin destabling the product	(the basis for this substantial
as mailine as	is to be determined by the standard and the entering tests and the strength of the	

and a to a second and the analysis of the second se

ENGI	NEERING PLA	ASTIC FOR MAN	Y APPLICATIONS
DNS utomoti alve dis	ve, textile and cs, impellers, seals,	PRODUCT ATTRIBUTES Range of grades availa	CUSTOMER BENEFITS ble. Correct grade selection for application is
ents, val bearing devices	ve bodies, snap-on g cages, clutch and	High mechanical stren & stiffness.	optimised. gth
⊻= and trai	nsformer housings.	Able to resist very high impact loads.	h
		High surface hardness.	Very good all-round product for diverse
on pose e	ngineering plastic	Good chemical resista	engineering applications.
and fo	oxymethylene. It's orms to suit many	Natural product may b used in contact with foodstuffs (subject to	e
tal inclu	udes the following	Very good dimensiona stability.	1
natural blue, on	Purpose Component identification	Good resistance to crea Minimal absorption of moisture.	Stability when ep. dimensional accuracy is important.
with ibre	Increased strength and	Good sliding propertie High wear resistance.	Good wear life in many industrial bearing and gear applications.
o ctrical y or	To prevent uncontrolled static discharge	Product sourced from standing manufacturer ISO accreditation.	ong- with uniform characteristics in machining and performance.
с	electronic environments or	PRODUCT AVA	ILABILITY*
	in explosive atmospheres. Certified	Extruded round bar	Natural colour made up to 500mm dia, black to 350mm. Modified grades – please call for a quotation
and biocompatibility our to USP Class VI and cytotoxicity to DIN EN ISO		Extruded sheet/plate	Natural and black colours made to 200mm thk and in a range of area formats. Modified grades – please call for a quotation.
on.	10993-5	Tubular bar	Natural up to 450mm o/d.
1	Improved	Strip	Natural from 0.30mm thk.

Sizes not stocked are available on relatively short delivery time. 1, 2 or 3m lengths supplied or cut to customer requirements.

DATA

CHEMICAL RESISTANCE

Acetal co-polymer has chemical resistance similar to nylon 66, but is slightly more prone to attack - having good resistance to many common solvents, lubricant, esters, ketones and aqueous solutions of acids and alkalis between ph5 and ph11. The co-polymer is not resistant to phenols, cresols, formic acid, concentrated mineral acids and alkalis, and strong oxidising agents including halogens.

The homo-polymer has slightly reduced resistance to alkalis and hot water compared with co-polymer.

POM-C iss3-0512

A VERSATILE **TYPICAL APPLICATI**

Mechanical engineering foodstuff industries-

E.g. gears, meter components, v bearings, sliding & spring eleme connections, pump components, gearbox parts, sorting & feeding

Electrical & electronic industry

E.g. coil bodies, insulators, relay Medical technology-

E.g. instrument handles, adapters

PRODUCT DESCRIPT

A high-quality general purp material; the chemical name available in a range of grades applications.

TECHNICAL DESCRIP

Smiths' range of extruded Ace grade options -

Grade	Modification	Purpose		
Acetal co-polymer (POM-C)	Colours, natural black, blue, others on application.	Component identification		
Acetal co-polymer +25% glass (POM-C GF25)	Reinforced with 25% glass fibre	Increased strength and stiffness		
Acetal co-polymer (ESD60 & ESD90)	Additives to provide electrical conductivity or electro-static dissipation.	To prevent uncontrolled static discharge in sensitive electronic environments or in explosive		
Acetal co-polymer - Medical grade	Special production and testing. Colour coded for component identification.	Certified biocompatibility to USP Class VI and cytotoxicity to DIN EN ISO 10993-5		
Acetal co-polymer – GLD160	Tribological modification.	Improved bearing & wear properties.		
Acetal homo- polymer (POM-H)	Colours, natural and black.	Component identification		

MACHINABILITY

The machinability of un-modified acetal is excellent. Good chip forming leads to fine surface finishes.

As with all plastic materials, experience has shown that extra care must be taken with larger diameters, especially in the colder months when plastic materials lose some of their toughness and so have less resistance to machining stresses. It's therefore important that these materials are not machined while in a chilled condition.

Full machining instructions may be supplied on request.

TYPICAL PROPERTIES							
	<u>Natural or</u> <u>Black un-</u> <u>modified</u>	Acetal-C +25% Glass	<u>Acetal-C</u> <u>+ PTFE</u>	<u>Acetal-C</u> <u>ESD60,</u> <u>conductive</u>	<u>Acetal-C</u> <u>ESD90,</u> dissipative		
MECHANICAL							
Density at 20°C	1.41	1.58	1.52	1.40	1.34	g/cm ³	
Tensile strength @ yield	67	65	50	40	42	MPa	
Elongation @ break	30	3.0	16	30	20	%	
Tensile modulus of elasticity	2,800	4,500	2,500	1,900	1,800	MPa	
Notched impact strength (Charpy)	6	4	4	5	5	kJ/m ²	
Ball indentation hardness	150	195	120	100	90	N/mm ²	
Hardness (Shore D)	81	85	80	-	76	Scale D	
A service and sold of Victorian							
ELECTRICAL			AL TABLE	the Barry Anna	1. 19 . 11	mar the state	
Volume resistivity	1013		-	10 ³	$10^9 - 10^{12}$	Ohm cm	
Surface resistivity	10 ¹³	-		10 ³	$10^9 - 10^{11}$	Ohm	
Dielectric constant, 50 Hz	3.8	-	3.7	-	1 -	-	
Dielectric dissipation factor, 50 Hz	0.002	-	0.002	-	14	-	
Dielectric strength	40	-	33	-	-	Kv/mm	
Comparative tracking index (CTI) – solution A	600		600	-	-	-	
	1.1840						
THERMAL	A PROPERTY OF A PROPERTY OF	and the state of the	Constant of the second second				
Melting temperature	165	165	165	165	165	°C	
Heat deflection temperature - method A, 1.8 MPa	110	160	98	89		°C	
Coefficient of thermal expansion (Ave. between 20 - 60 °C)	110	30	120	130	170	10 ⁻⁶ .K ⁻¹	
Specific thermal capacity at 100°C	1.50	-	-	-		$kJ/(kg \cdot K)$	
Thermal conductivity at 20°C	0.31	- 11	-	0.31		W/(m · K)	
Service temperature – long term – short term (max)	-50 to +100 +140	-20 to +100 +140	-50 to +100 +140	-20 to +100 +140	-50 to +85 +140	°C	
OTHED DUVSICAL DDODED	TIFS		-				
Moisture absorption	TILS				March 1971	HILL BUCK	
Saturation in air @ 23°C and 50% RH	0.20	0.15	0.65	0.25	0.20	%	
Friction coefficient – min. dynamic	0.42	-	0.28		-	ISO 7148	
(3mm/6mm thick)	<u> </u>		HB / HB			-	
CHEMICAL RESISTANCE		-				and the state	
Acid resistance	+	+/0		+/0	+		
Alkali resistance	+	+		+	+		
Hydrocarbon resistance	+	+		+	+		
Chlorinated hydrocarbon resistance	0	0		0	0		
Aromatic resistance	+	+		+	+		
Ketone resistance	+	+		+	+		
Resistance to hot water	+	+		+	+		
Key: + yes 0 limited	- no	655	31				
TECHNICAL SALES ASSIST	ANCE	ars will be ple	ased to assist fu	ther on any tea	hpical topic	N. S. Salar	
Biggleswade Birmingham 01767 604704 01889 576117	Bristo 0117 971	1 (2800 0	Chelmsford 1245 466664	Verwood 01202 8243	I Ga	teshead 469 5428	
Horsham Leeds 01403 261981 0113 307 5167 www.smithmetal.com All information in this data sheet is based on a constitute obligations and does not constitute warranties and liabilities are stated exclusively in	Londo 020 7241 : approximate testin any guarantee a o our terms of tradi	n I 2430 01 g and is stated of properties or ng.	01245 466664 01202 824347 0191 46 Manchester Nottingham Norv 0161 794 8650 0115 925 4801 01603 7 sales@smithmetal.com d to the best of our knowledge and bellef. It is presented ap r of processing or application possibilities in individual cas © Smiths Metal Centres Ltd 2010				

POM-C iss3-0512

Appendix C. Tensile and Compression Properties

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

Tensile Properties: Proflex 30, Polyurethane Elastomer, Pelvis Flesh (Mouldlife, UK)								
		-					Per	
Tensile	Strain Rate						Product/Mfg	
Property							Data Sheet	
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	90 s ⁻¹	200 s ⁻¹	300 s ⁻¹		
Failure Stress	1.56 <u>+</u> 0.18	2.06 <u>+</u>	2.15 <u>+</u>				4.2	
(MPa)		0.31	0.19	Failur	e stress ar	nd strain		
ASTM D 638	ASTM D			was n	ot recorde	d due to		
	638	ASTM	ASTM D	the hi	gh ductilit	y of the		
	Type IV	D 638	638		material			
		Type IV	Type V					
Failure Strain	>500 *	>500*	>500*				950	
(%)								
ASTM D 638								
* Samples stretche	d beyond digit	al camera ra	ange thus ult	imate str	ain at brea	ık was not	recorded	
Tensile Stress @	0.57	0.60	0.66	0.62	0.64	0.64		
100% Strain								
(MPa)								
				ASTM	D 638 Ty	pe V		
				using c	ustom bui	lt drop		
				tower				
Tensile Stress @	1.02	1.13	1.29					
200% Strain				1	Not record	led		
(MPa)								
Tear Strength	5.3						85	
ASTMD 624							This is likely a	
(Die C)							typo n the data	
(N/mm)							sheet, 8.5	
							N/mm is more	
							realistic for	
							this material.	
Durometer			29 measure	ed			30 data sheet	
(Shore A)								
Some voids were r	noticed in the d	ie cut speci	men cross-se	ctions. S	amples w	ith voids w	vere not used.	
High strain rate da	ta exhibited hig	gh scatter di	ue to the soft	ness of the	he materia	ıl.		
This material exhil	bits a weak stra	in rate depe	endence.					

Tensile Properties: XE 1031, Polyurethane Elastomer, Foot Flesh (Polymed LTD, UK)										
	Per Product/Mfg									
Property	Strain Rate	Strain Rate Data Sheet								
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	30 s ⁻¹	100 s ⁻¹	275				
						S ⁻¹				
Failure Stress	1.81 <u>+</u>	2.11 <u>+</u>	3.52 <u>+</u>				2.95			
(MPa)	0.15	0.30	0.49	Fail	ure stress	and				
ASTM D 638				strain v	was not re	corded				
	ASTM D	ASTM D	ASTM D	du	e to the h	igh				
	638 Type	638	638 Type	du	ctility of	the				
	IV	Type IV	V		material.					
Failure Strain	200-600*	200-	200-600*				945			
(%)		600*								
ASTM D 638										
* Samplas stratab	ad havend d	igital comor	o rongo thus	ultimata	strain at 1	aroolz mic	a not recorded			
* Samples stretch						1 02	is not recorded			
a 100% Strain	0.055	0.716	0.858	0.905	0.940	1.02				
(MP_{2})										
(IVII a)				ASTN	4 D 638 T	wpo V				
					g custom	built				
				usin	dron towe	r				
Tensile Stress	1.05	1 19	1 38	N	Int record	ed				
@ 200% Strain	1.05	1.17	1.50	1		cu				
(MPa)										
Tear Strength	6.1						7.24			
ASTMD 624	011						, . <u> </u>			
(Die C)										
(N/mm)										
Durometer			33 measure	d			35 data sheet			
(Shore A)										
Some voids were	noticed in th	ne die cut sp	ecimen cross	-section	s. Sample	s with v	oids were not			
used. High strain	rate data exh	nibited high	scatter due to	the soft	tness of th	ne materi	ial. The noise is			
caused by the low	v force in the	soft specim	ens. This ma	terial ex	hibits a w	eak stra	in rate			
dependence, but a	a slightly gre	ater strain ra	ate dependen	ce comp	ared to Pr	oflex30.				

Tensile Properties: FD70, Hard Polyurethane Elastomer, Foot Plate (BJB Enterprises)									
Property		,	Stra	in Rate	/ (1	Per Product/Mfg		
			Data Sheet						
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	75 s ⁻¹	125 s ⁻¹	400 s ⁻¹			
Young's Modulus (MPa)	485	525	598	551	491	450	839 ASTMD 412		
Failure Stress (MPa)	33.6	29.4	31.5	33.1	36.1	39.7	31.9		
ASTM D 638	ASTM D	ASTM D	ASTM D				ASTMD 412		
	IV	IV	V	AST using cu	FM D 638 Typ Istom built dro	e V p tower			
Failure Strain (%) ASTM D 638	258	251	264	194	199	198	300		
							ASTMD 412		
Tensile Strength @ Yield (MPa)	18	23	26	35.2	37.5	42.5			
Failure Test (tensile test to failure using V- notch specimen (N)	1041* Highly ductile failure								
Tear Strength		Not tested A:							
Durometer (Shore D)		68 Measured							
Some voids were Yield stress increa	noticed in th ases with stra	e die cut spe ain rate. Stroi	cimen cross- ngly strain ra	sections. Sam te dependent.	ples with void E' trends decr	s were not us rease with str	ed. ain rate unlike		

Yield stress increases with strain rate. Strongly strain rate dependent. E' trends decrease with strain rate unlike slower strain rates. This may be due to test instrumentation differences (i.e. drop tower vs. MTS/crosshead displacement method).

Tensile Properties: Delrin, Rigid Thermoplastic (Acetyl Resin), Calcaneus Cap								
Property		Strain Rate						
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	50 s ⁻¹	100 s ⁻¹	200 s ⁻¹		
Young's Modulus (GPa)	2.53	2.56	2.69	2.30	2.83	2.97	2.80	
Failure Stress (MPa)	52.8	58.4	64	75.7	79.5	80.7		
ASTM D 038	ASIMD	ASIMD	ASIMD					
	US8 Type	US8 Type	V V	AST	M D 638 T	ype V		
	1 V	1 V	v	Using	custom dro	p tower		
Failure Strain (%) ASTM D 638	64	49	36	13	11	11	30	
Tensile Strength @ Yield (MPa)	61	65	67	75.6	77.6	83.0	67	
Failure Test (tensile test to failure using V-notch	3400 Brittle		I	I	I	I		
specimen (N)	Failure							
Tear Strength	Not tested						01	
Durometer (Shore D)			91 maaa	rad			81 data shaat	
(Shore D) Strongly strain	rata dapandari	ŧ	or measu	ireu			uata sheet	
Strongly strain rate dependant.								

Tensile Properties: F-130 A/B, Polyurethane Elastomer, Flesh (BJB Enterprises)									
	Per								
Property	Strain Rate						Product/Mfg		
	1					1	Data Sheet		
	0.01 s^{-1}	0.10 s ⁻¹	1.0 s ⁻¹	25 s ⁻¹	75 s ⁻¹	225 s ⁻¹			
Failure Stress	1.71 <u>+</u>	2.13 <u>+</u>	2.30 <u>+</u>				2.75		
(MPa)	0.13	0.07	0.06						
ASTM D 638									
	ASTM D	ASTM D	ASTM D	Failure st	tress and st	rain was			
	638 Type	638 Type	638 Type	not recor	ded due to	the high			
F 1 0/ 1	IV	IV	V	ductilit	y of the m	aterial.	000		
Failure Strain		400.050 *					800		
(%)	*Commlos	400-950 *	and disital						
ASTM D 038	· Samples s	thus ultime	ond digital						
	break	was not reco	arded						
	bicak	was not rect	nucu						
Tensile	0.625	0.724	0.746	0.910	0.962	1.03			
Stress @									
100% Strain									
(MPa)									
				ASTM	1 D 638 Ty	pe IV			
				(type V	specimens	too soft			
				fo	r these test	s)			
				used c	custom bui	lt drop			
					tower				
Tensile	1.03	1.19	1.27	Ν	lot recorde	d			
Stress @									
200% Strain									
(MPa)	10.1						11.2		
A STMD 624	10.1						11.2		
(Die C)									
(N/mm)									
Durometer			31 measu	ed			30 data sheet		
(Shore A)			51 measu				55 data Broot		
No voids were	noticed in the	e samples. Hi	gh rate tests	exhibit osc	illations d	ue to mate	rial softness that		
causes elastic v	vaves to refle	ct within the	material. We	ak strain r	ate depend	ence simil	ar to XE 1031.		

Tensile Properties: Butyl Rubber Custom Compound, Compliant Elements in Spine and Legs (SACO Research/ RD Abbott)									
Property		Per Product/Mfg Data Sheet							
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	50 s ⁻¹	100 s ⁻¹	200 s ⁻¹			
Failure Stress	5.98 <u>+</u>	6.34 <u>+</u>	5.98 <u>+</u>				5.79		
(MPa)	0.03	0.1	0.01						
ASTM D 638									
	ASTM D	ASTM D	ASTM D	Failure	e stress and	d strain			
	638 Type	638 Type	638 Type	was no	ot recorded	l due to			
	IV	IV	V	the high	gh ductility	of the	5.40		
Failure Strain		250 500 *			material.		542		
(%) ASTM D 638	*Samples s	550-500 ·	ond digital						
ASTM D 050	camera rar	ore thus ultir	nate strain						
	at brea								
Tensile Stress	1.67	1.74	2.73	3.06	3.28	4.25	2.15		
@ 100%									
Strain (MPa)									
Tensile Stress	3.05	3.37	4.04	N	ot Record	ed			
@ 200%									
Strain									
(MPa)	0.002	1.04	1.06	2.02	1.05	6.40			
Yield Stress	0.992	1.26	1.86	3.83	4.25	6.49			
(MPa)	24.57								
A STMD 624	54.57								
(Die C)									
(N/mm)									
Durometer			70 measu	ed			75 data sheet		
(Shore A)							70 measured		
No voids were 1	noticed in the	samples. H	igh rate data	exhibits o	scillations	due to so	ftness similar to		
other soft materials. Yield stress is strongly rate dependent. Material exhibits softening after yield									
point in high rate tests that may be the result of increased temperature due to energy dissipation.									

Tensile Properties: Rencast 6425, Hard Polyurethane, Tail Bone (Huntsman)											
Property	Strain Rate						Per Product/Mfg Data Sheet				
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	50 s ⁻¹	140 s ⁻¹	300 s ⁻¹					
Young's Modulus (MPa)	426	485	535	777	934	1137					
Failure Stress	24	26	30	36	41	40	30-35				
ASTM D 638	ASTM D	ASTM D	ASTM D				ISO 527-2				
	638 Type IV	638 Type IV	638 Type V	ASTM D 638 Type V Using custom built drop tower							
Failure Strain (%) ASTM D 638	96	87	80	67	62	63	130-170				
							ISO 527-2				
Tensile Strength @ Yield (MPa)	18	21	26	40	43	49					
Failure Test (tensile test to failure using V-notch specimen (N)	1178										
Tear Strength	Not tested										
Durometer (Shore D)	67 measured						60-65				
Tensile Properties: TC 892, Rigid Polyurethane, Pelvic Bone (BJB Enterprises)											
---	--	----------------------------------	---------------------	--------------------	-------------------------------------	---------------------	-----------------------	--	--	--	--
Property		Per Product/Mfg Data Sheet									
	0.01 s ⁻¹	0.10 s ⁻¹	1.0 s ⁻¹	30 s ⁻¹	80 s ⁻¹	150 s ⁻¹					
Young's Modulus (GPa)	1.85	1.96	1.98	2.08	2.54	2.70	1.6 ASTM D 638				
Failure Stress (MPa) ASTM D 638	40.3 ASTM D	53.3 ASTM D	61.3 ASTM D	80.5	83.4	86.8	52.4 ASTM D 638				
	IV	IV	V V	AS using o	STM D 638 Type custom built drop	e V p tower					
Failure Strain (%) ASTM D 638	9.1	5.5	4.1	5.0	4.9	4.9	10 ASTM D 638				
Tensile Strength @ Yield (MPa)	47.8	54.5	59.0	n/a	n/a	n/a					
Failure Test (tensile test to failure using V-notch specimen (N)	2220 Very Brittle Failure										
Tear Strength	Not tested										
Durometer (Shore D)				79 measured			80 <u>+</u> 2				
No voids were r maximum strair	No voids were noticed in the specimens. Due to acceleration limits of the material and low strain to failure, a maximum strain rate of 150 s^{-1} was the highest strain rate tested										

Compression	pression Properties: Proflex 30, Polyurethane Elastomer, Pelvis Flesh (Mouldlife, UK)										
Property		Strain Rate (s ⁻¹)									
	0.01	0.10	1.0	50	150	225	400	625	750	950	
Compression											
Strength @	1.47	1.46	1.61	1.52	1.63	1.75	1.94	2.00	2.03	2.32	
50% Strain											
(MPa)											
MAX strain	50	50	50	82	91	90	87	87	86	85	
of test (%)											
Compression											
Strength @	1.47	1.46	1.61	31	76	70	70	68	74	66	
Max Strain											
of Test											
Modulus at											
initial part of	1.38	1.47	1.56	1.72	1.91	1.92	2.33	2.21	n/a	2.66	
curve (MPa)											
Durometer											
(Shore A)	29										

Compression F	Compression Properties: XE 1031, Polyurethane Elastomer, Foot Flesh (Polymed								
LTD, UK)									
Property			Str	ain Rate (s ⁻¹)				
	0.01	0.10	1.0	60	150	600	950		
Compression									
Strength @	1.66	1.77	1.80	2.94	3.40	4.05	4.29		
50% Strain									
(MPa)									
MAX strain	50	50	50	83	80	82	77		
of test (%)									
Compression									
Strength @	1.66	1.77	1.80	28.5	24	43.8	27.9		
Max Strain of									
Test									
Modulus at									
initial part of	1.79	2.07	2.27	n/a	n/a	4.42	4.95		
curve (MPa)									
Durometer	33								
(Shore A)									

Compression	Compression Properties: FD70, Hard Polyurethane Elastomer, Foot Plate (BJB								
Enterprises)									
Property			St	rain Rate (s ⁻¹)				
	0.01	0.10	1.0	50	150	500	1000		
Compression Strength @ 50% Strain (MPa)	53.7	62.4	76.8	n/a	105.8	n/a	n/a		
MAX strain of test (%)	50	50	50	38	67	8.2	16		
Compression Strength @ Max Strain of Test	53.7	62.4	76.8	69.0	163.9	49.4	69.4		
Modulus at initial part of curve (MPa)	432.3	520.0	591.1	743.3	749.5	n/a	n/a		
Durometer (Shore D)	68	formed		hon town					
50 s ⁻ and 150 s	50 s^{-1} and 150 s^{-1} tests performed on custom drop tower.								

500 s⁻¹ and 1000 s⁻¹ performed using Split Hopkinson Pressure Bar (SHPB).

Compression Properties: Delrin, Rigid Thermoplastic (Acetyl Resin), Calcaneus											
Property		Strain Rate (s ⁻¹)									
	0.01	0.10	1.0	40	150	500	600	1000			
Compression											
Strength @	245.4	230.1	n/a	n/a	238.1	256.3	n/a	n/a			
50% Strain											
(MPa)											
MAX strain	50	50	45	15	66	82	10	15			
of test (%)											
Compression											
Strength @	245.4	230.1	219.6	151.0	286.2	497.5	158.0	176.1			
Max Strain of											
Test											
Modulus at											
initial part of	2941	2737	2741	2686	2820	n/a	> 10K	> 10K			
curve (MPa)											
Durometer											
(Shore D)	81										
40 s ⁻¹ and 150 s ⁻¹	¹ tests per	formed of	n custom o	drop tower	r.						
600 s ⁻¹ and 1000	0 s ⁻¹ perfo	rmed usin	g Split Ho	opkinson H	Pressure B	ar (SHPB)				

Compression Properties: F-130 A/B, Polyurethane Elastomer, Flesh (BJB Enterprises)										
Property		Strain Rate (s ⁻¹)								
	0.01	0.10	1.0	75	160	500	850			
Compression Strength @ 50% Strain (MPa)	1.28	1.39	1.62	2.26	2.55	3.36	3.43			
MAX strain of test (%)	50	50	52	86	84	88	83			
Compression Strength @ Max Strain of Test	1.28	1.39	1.83	40.8	33.6	65.1	47.85			
Modulus at initial part of curve (MPa)	1.22	1.28	1.38	n/a	n/a	13.1	31.2			
Durometer (Shore A)	31									
75 s ⁻¹ , 160 s ⁻ , 50	75 s^{-1} , 160 s ⁻ , 500 s ⁻¹ and 850 s ⁻¹ tests performed on custom drop tower. Weak strain rate									

er strain rates. Strong strain dependence at high strain rates (>75 s⁻¹). dependen

Compression Properties: Butyl Rubber Custom Compound, Compliant Elements in Spine and											
Property	Strain Rate (s ⁻¹)										
rioperty	0.01	0.10	1.0		(8)	500	050				
	0.01	0.10	1.0	50	150	500	850				
Compression											
Strength @	n/a	n/a	7.8	n/a	46.4	76.2	84.1				
50% Strain											
(MPa)											
MAX strain	47	47	53	31	63	65	64				
of test (%)											
Compression											
Strength @	3.8	5.0	8.9	13.5	49.1	110.7	127.0				
Max Strain of											
Test											
Modulus at											
initial part of	14.9	16.4	15.2	123.3	185.8	337.3	n/a				
curve (MPa)											
Durometer	70	•	•	•	•	•	•				
(Shore A)											
Strain rates > 50) s ⁻¹ were j	performed of	on custom d	rop tower. V	Weak strain	rate depende	ence at				
slower strain rat	tes. Strong	strain depe	endence at h	igh strain ra	tes (>50 s ⁻¹)						

Compression Properties: Rencast 6425, Hard Polyurethane, Tail Bone (Huntsman)										
Property		Strain Rate (s ⁻¹)								
	0.01	0.10	1.0	50	160	700	1100			
Compression										
Strength @	73.9	80.2	91.2	n/a	134.7	n/a	n/a			
50% Strain										
(MPa)										
MAX strain	50	50	50	33	61	10	17			
of test (%)										
Compression										
Strength @	73.9	80.2	91.2	73.7	171.7	69.5	80.8			
Max Strain of										
Test										
Modulus at	445.7	502.1	509.8	802.2	859.5	>6000	>11000			
initial part of										
curve (MPa)										
Durometer	67									
(Shore D)										
Strain rates of 5	$0 s^{-1} and 1$	60 s ⁻¹ were	performed of	on custom dr	op tower. St	rain rates of	700 s ⁻¹			
and 1100 s ⁻¹ we	re perform	ed using a	Split Hopkir	son Pressur	e Bar (SHPE	B). Rencast 6	5425			
exhibits strong	strain depe	ndence at h	igh strain ra	$(>50 \text{ s}^{-1})$						

Compression Properties: TC 892, Rigid Polyurethane, Pelvic Bone (BJB Enterprises)										
Property		Strain Rate (s ⁻¹)								
	0.01	0.10	1.0	50	190	550	1000			
Compression										
Strength @	102.2	98.2	120.0	n/a	163.5	n/a	n/a			
50% Strain										
(MPa)										
MAX strain	50	50	51	23	52	8.0	14			
of test (%)										
Compression										
Strength @	102.2	98.2	117.0	87.0	173.5	117.5	116.9			
Max Strain of										
Test										
Modulus at										
initial part of	1950.1	1847.2	1887.5	2283.7	2317.4	>5000	>4000			
curve (MPa)										
Durometer	79									
(Shore D)										
Strain rates of 5	Strain rates of 50 s ⁻¹ and 190 s ⁻¹ were performed on custom drop tower. Strain rates of 550 s ⁻¹									
and 1000 s ⁻¹ we	re perform	ed using a S	Split Hopkir	nson Pressur	e Bar (SHPE	3). TC 892 e	xhibits			
strong strain dependence at high strain rates (>50 s ⁻¹).										

INTENTIONALLY LEFT BLANK.

Appendix D. Experiment Data

Proflex 30 Tension

Cyclic Tension Strain History

Proflex 30 Cyclic Tension

Proflex 30 High Rate Tension

Proflex 30 All Tension Data

Proflex 30 Compression

Proflex 30 High Rate Compression

All Compression Data

XE 1031 Tension

XE 1031 High Rate Tension

Compression

All Compression Data

F-130- All Compression Data

FD-70

FD-70

FD-70

All Compression Data

TC 892

TC 892

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

ATD	anthropomorphic test device
D	diameter
DIC	digital image correlation
Н	height
SH	stacked height
SHPB	Split Hopkinson Pressure Bar
TD	Technology Demonstrator
UBB	underbody blast
WIAMan	Warrior Injury Assessment Manikin

- 1 DEFENSE TECHNICAL
- (PDF) INFORMATION CTR DTIC OCA
 - 2 DIRECTOR
- (PDF) US ARMY RESEARCH LAB RDRL CIO L IMAL HRA MAIL & RECORDS MGMT
- 1 GOVT PRINTG OFC
- (PDF) A MALHOTRA
 - 2 TARDEC
- (PDF) RDTA RS R SCHERER H PIETSCH
- 6 DIR USARL
- (PDF) RDRL DPW
 D CRAWFORD
 M CHOWDHURY
 J TICE
 RDRL WMM G
 J LENHART
 RDRL WMP F
 N GNIAZDOWSKI
 E FIORAVANTE