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1. Introduction 

The purpose of this report is to highlight the capabilities demonstrated during the 
US Army Research Laboratory (ARL) Robotics Collaborative Technology 
Alliance (RCTA) Capstone Experiment that took place during October 2014. The 
document succinctly presents the activities of the event and provides references for 
further reading on the specifics of those activities. Given that the experiment 
consisted of numerous technologies, platforms, and researchers, the reports on 
specific experiments will be published in various conferences and articles and can 
stand on their own. This report is an opportunity to pull together all of these 
activities in one place so that the reader can appreciate the overarching program 
goals and understand the progress to date in realizing those goals through the 
preparation, integration, and conduct of relevant, structured experimentation.  

2. Background 

2.1 Robotics CTA 

The RCTA is a fundamental research program that began in 2010 and enables 
Government, industrial, and academic institutions to address research and 
development required to enable the deployment of future military unmanned 
ground vehicle (UGV) systems ranging in size from man-portables to ground 
combat vehicles. Currently the consortium consists of the following partners: 
Carnegie Mellon University, General Dynamics Land Systems (Integration Lead), 
Florida State University (FSU), the Jet Propulsion Laboratory (JPL), Massachusetts 
Institute of Technology (MIT), QinetiQ North America, the University of Central 
Florida, and the University of Pennsylvania. The program is investing basic and 
applied research funding in 4 interdependent focus areas: Perception, Intelligence, 
Human-Robot Interaction, and Dexterous Manipulation and Unique Mobility. 
Long-term payoff for these efforts is envisioned by the following statement, which 
appears in the RCTA fiscal year 2012 Annual Program Plan (APP): “The future for 
unmanned systems lies in the development of highly capable systems, which have 
a set of intelligence based capabilities sufficient to enable the teaming of 
autonomous systems with Soldiers” (RCTA 2012). To realize these capabilities, 
progress must be made in the ability of the robot to think, look, talk, move, and 
work. The experiments described in this report include efforts that will enable 
advancements in all of these abilities. 
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The work presented here is made possible through experience attained from years 
of experimentation in relevant environments and scenarios with unmanned 
autonomous robots. A product of this experience is a technology assessment 
process that yields valuable information to the researchers, managers, and 
stakeholders of the program. Technology assessments are experiments designed by 
the government and planned and executed in cooperation with the members of the 
RCTA consortium. A detailed example of one ARL technology assessment is 
available in the journal article “Assessing Unmanned Ground Vehicle Tactical 
Behaviors Performance” (Childers et al. 2011).  

Robotics by its nature involves the integration of technologies that enable a 
capability that exceeds the sum of the parts. During the course of developing the 
skills to assess these technologies, we learned that these integrated systems must be 
evaluated using a plan that accounts for that increased capability. The result is an 
integrated research assessment (IRA) wherein the performance of multiple integrated 
technologies is evaluated. A rudimentary example would be the coupling of 
perception with navigation to enable the robot to maneuver in an environment. This 
approach has an advantage in that the forced interaction of the collected research 
components often brings system-level considerations to light, which would not 
have otherwise been identified this early in the research and development process. 

While integrating multiple technologies is often necessary to appreciate a 
capability, progress of a research program such as the RCTA varies in pace and 
maturity. In some instances the breadth of the program and goals for integration 
make it clear that some technologies will not find their way into an IRA in the near-
term. In these instances we have found value in applying the assessment process to 
technologies on a task-based level. In a task-based assessment (TBA) there is 
usually some level of integration required to evaluate performance in a given 
environment or scenario, but the capability is limited and not readily integrated into 
an IRA. Assessment data at this level help the researcher to identify things that 
require attention and accelerates development. 

2.2 Assessment During First Five Years of Robotics CTA 

During the first 5 years of the program, the RCTA conducted a number of IRAs 
and TBAs. In August 2011 we conducted a baseline assessment of autonomous 
UGV perception and intelligence. The 2-fold purpose of this event was to initiate 
the experimental component of the program and to evaluate current primitive 
robotic vehicle behaviors in a relevant environment (Bodt 2011, Bodt et al. 2012). 
It involved a Talon-based platform that could maneuver through an unknown 
environment to perform object detection and mapping. This capability represented 
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the state of the art for an autonomous unmanned vehicle to meet the look and move 
requirements. In November 2011 we conducted IRA1, which involved the detection 
and tracking of moving pedestrians from a stationary vehicle, which provided data 
for perception of moving objects. In May 2012 IRA2 assessed the ability of a 
Packbot-based autonomous vehicle to trench for buried wires. This event provided 
the opportunity to integrate a manipulator arm on the robot and obtain data on the 
ability of the system to perform work in a relevant environment (Bodt et al. 2013). 
In October 2012 we conducted IRA3 to evaluate the ability of a UGV to detect and 
classify objects using semantic perception techniques (Lennon et al. 2013). In early 
2013 the state of the technologies would not enable the fourth planned IRA to be 
conducted; however, a number of TBAs were conducted in the areas of autonomous 
grasping, terrain dependent motion planning, and whole body dynamic 
manipulation (Murphy et al. 2013). In December 2013 IRA5 addressed the ability 
to perform semantic perception and navigation in a Mounted Operations in Urban 
Terrain environment (Lennon 2015a). During the IRA5 timeframe there were also 
TBAs performed on natural language translation and the performance of a gesture 
glove (Harris and Barber 2014). 

3. Capstone Experiment 

3.1 Purpose 

The RCTA capstone experiment took place in October 2014, approximately the 
mid-point of the program timeline, and represents progress achieved in the research 
thrust areas. The event was primarily held at Fort Indiantown Gap (FTIG), PA, at 
the Combined Arms Collective Training Facility (CACTF). Four capabilities were 
evaluated as part of distinct IRAs: Human Robot Interaction Modalities, Semantic 
Navigation and Perception, Search and Observation of Doorways, and Search and 
Grasping of Objects in an Indoor Environment. Data were also achieved for a fifth 
IRA, which consisted of stringing together the first 3 listed capabilities in a series 
of end-to-end runs. Five TBAs using various platforms were also conducted during 
this timeframe, which consisted of the following capabilities: Bracing to Reach and 
Grasp an Object, Detection and Climbing of Stairs, Leaping over a Span, 
Dynamically Feasible Motion Planning, and Terrain Aware Motion Planning. 

3.2 Method 

The CACTF consists of 9 full-scale buildings with paved streets and concrete curbs 
and sidewalks (Fig. 1). The experimental design leveraged the available features 
and terrain to evaluate the capabilities in a relevant manner. The church building 



 

Approved for public release; distribution is unlimited. 
4 

and the surrounding lawn was a focal point for many of the IRA data collections. 
The room to maneuver, ability to approach features of the church exterior from 
multiple angles, and the degree to which this building was apart from the other 
structures made it attractive for detecting and navigating among various objects 
(Semantic Navigation and Perception); finding a doorway, positioning the robot to 
observe the doorway, and detect pedestrians exiting the doorway (Search and 
Observe Doorways); and exercising multiple modes of commanding and 
interacting with a robot (Human Robot Interaction Modalities). Portions of the data 
collections for some IRAs were conducted in the vicinity of additional buildings 
and features to ensure that the data would exclude biases for particular areas of the 
CACTF and include features that the church building could not provide. For 
example, one of the features used in Semantic Navigation and Perception is a gas 
pump that is located in the vicinity of the service station and bar/bank buildings. 

 

Fig. 1 Combined arms collective training facility 
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Each IRA is the result of the process required to develop an experimental design 
and plan that will provide a reasonable ability to exercise the capabilities over a 
number of variables. The purpose of these efforts is not only to see how well 
something works when used in the manner and environment for which it was 
designed but to push the performance limits in a number of ways to reveal strengths 
and weaknesses of the current instantiation. Through collaboration with the 
researchers to understand the capabilities and underlying technologies, ARL was 
able to independently construct unique data collection protocols for each capability. 
Some designs benefited from sufficient available features and objects in the 
environment to provide a balanced data set. In numerous cases, to achieve a 
reasonable data set the designs required adjustment to accommodate the given 
abilities of the platforms and sensors in a particular environment. 

4. Capstone Experiment Integrated Research Assessments 

Mission Description: 

The integrated assessments were based on a scenario in which the robot is told to 
screen the back door of a building. The scenario begins when the robot receives 
instructions, in a structured language, through a human-robot interaction (HRI) 
interface. These instructions give positions to which the robot should navigate and 
objects to be used as landmarks. If the robot successfully navigates to the correct 
position, it will detect and orient toward a door on the building, subsequently 
detecting and tracking pedestrians exiting through the door. If it is not successful, 
the HRI interface allows the operator to control the robot or to clarify ambiguous 
commands. For example, if the robot finds more than one door, or sees more than 
one possible goal building, it will give the operator an opportunity to assist it in 
choosing the correct one. This screening mission was executed as 17 complete runs 
intended to explore the combined capabilities of the system and as a larger number 
of runs testing parts of the mission in more structured, preliminary experiments. 
The mission is decomposed into a sequence of actions (e.g., navigate, search, 
observe), where each action has its own goal. This goal is generally the precondition 
of the next action in the mission plan. These experiments evaluated semantic 
navigation and perception, door detection, pedestrian detection and tracking, and 
human-robot interaction. In the following sections we summarize each IRA and 
also present performance evaluation of the first 3 listed capabilities as they 
appeared in the End-to-End Scenarios. 
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4.1 IRA: Semantic Navigation and Perception 

Robotic Platform: 

The robot used in the integrated assessment is a Clearpath Husky, equipped with 
the General Dynamics XR 3-D (3-dimensional) laser detection and ranging 
(LADAR) sensor, Bumblebee stereo camera, and Adonis camera as shown in 
Fig. 2. The XR LADAR sensor is mounted 0.7 m above ground, which creates a 
dead zone around the robot of approximately 4-m radius. A Hokuyo UTM-30LX 
scanning laser sensor is installed at 0.25 m for obstacle detection in the dead zone. 
Within the body of the robot are 4 Mac Mini machines, each with 2.3-GHz quad-
core processors and 8-GB memory. The computers run software modules from 
researchers at different institutions. These different software modules are integrated 
through the RFRAME framework developed at General Dynamics. RFRAME is a 
transport agnostic middleware, supporting multiple simultaneous protocols (e.g., 
Joint Architecture for Unmanned Systems, Robot Operating System, and Neutral 
Message Language. By abstracting and optimizing differences between 
environments, RFRAME allows researchers to work in their preferred software 
environment but as part of an integrated system. The RFRAME system, along with 
low-level planning and platform control, runs on 1 of the 4 computers.  

 

Fig. 2 Husky UGV configuration for semantic perception and navigation IRA 

4.1.1 Common World Model 

The intelligence architecture is built around a Common World Model (CWM) 
(Dean 2013). This world model combines data that is metric (e.g., sensor data and 
aggregates), and semantic (e.g., class descriptions and instances), with the robot’s 

Adonis 
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self-knowledge (e.g., position, mission status, goal). The world model is an 
intelligent data store and not just a database. Internally, the world model knows 
how the various data sources inter-relate, and, when appropriate, propagates 
changes between the metric, semantic, and self-levels. At the metric level, CWM 
efficiently represents and updates sensor data taken from a robot's environment. At 
the semantic level, objects represent symbolic information, enabling the abstract 
reasoning needed for intelligent behavior. Finally, self-information contains data 
relative to the robot itself. Tracking self-knowledge such as current capability, 
component status, and task execution states, enables the robot to reason, and to 
adapt its performance.  

4.1.2 Perception Method 

The detection of different types of objects requires different perceptual algorithms. 
First, a semantic classifier is used to classify regions of camera images (Munoz 
2013). Each pixel of the 2-dimensional (2-D) image is labeled as being one of 
several types: building, traffic barrel, car, fire hydrant, grass, tree, sky, asphalt, 
concrete, or unknown. This semantic labeling of objects was tested, and found to 
be successful, in an earlier IRA (IRA3). 

Figure 3 shows a 2-D image fused with 3-D LADAR data to create colorized, 
semantically labeled 3-D point clouds, based on which an object label is chosen 
(Oh et al. 2015). Such fusing, applied to a traffic barrel and fire hydrant, is shown 
in Fig. 4. 

 

Fig. 3 A front view of a building, with pixels colored according to semantic label. The 
building, car, and traffic barrel are labeled with text, and the green triangle shows the position 
and orientation of the robot. 
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Fig. 4 Semantic object detection, with actual objects on the left, and the labeled points of 
the 3-D point cloud on the right 

For detecting objects with distinctive shape features, like the gas pumps shown in 
Fig. 5, an Active Deformable Part Models (ADPM) method is used (Zhu et al. 
2014). This detector was used for the gas pumps and was used in combination with 
the semantic classifier for traffic barrels, cars, and fire hydrants. Figure 5 shows 
successful detections of gas pumps and a traffic barrel at the gas station: the 
numbers are the detection score, the blue dash boxes are false positive boxes in the 
detection stage, and the red boxes are final detections, which passed the verification 
stage. 

 

Fig. 5 ADPM object detection finding gas pumps and a traffic barrel (outlined in pink) 

I.   
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4.1.3 Navigation Method 

Navigation begins with a command issued to the robot through the HRI interface. 
This command, called a Tactical Behavior Specification (TBS), is in a structured 
language that is used for communication among software modules within the 
intelligence architecture. The TBS language supports a rich set of constraints that 
leverage spatial relationships among objects in an environment. As an example, 
consider the command “stay left of the building; navigate to a traffic barrel that is 
behind the building.” The robot searches the world model for a building in front of 
it, predicts parts of the building it cannot observe, predicts a position for the traffic 
barrel behind the building, and plans a path to that goal.  

Figure 6 shows the robot’s world model based on the labeled image in Fig. 3. The 
front walls (in blue) were perceived, as was the traffic barrel in front of the building. 
The grey walls, and the traffic barrel in back of the building, are predicted objects. 
In this example, the command includes 2 landmarks, a building and traffic barrel, 
but the robot’s current world model contains only a set of walls and a predicted 
building. This inconsistency causes low grounding confidence, which, in turn, 
enables geometric spatial reasoning. Based on the context in the command, a traffic 
barrel must be behind the building, so an object is hypothesized behind the building. 
Now, the world model includes a building and a traffic barrel, both predicted. After 
symbol grounding is done with sufficiently high confidence, the robot computes a 
navigation cost map that best satisfies the action constraint to “stay left of the 
building,” and plans a path accordingly. The representation of the world model 
chosen in Fig. 6 was chosen because it was easy to interpret. Perception and 
prediction of buildings during the complete runs was generally not as accurate or 
complete as in Fig. 6. Consider the representation of the world model shown in 
Fig. 7. 
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Fig. 6 Features in the world model produced by the semantically labeled image in Fig. 3. 
The blue walls are observed, and the grey walls are predicted. The robot is represented as a 
red arrow, and the planned path as a green curve leading to the predicted traffic barrel. 

 

Fig. 7 The rear of the bar, from the robot’s perspective, at the completion of run 15. 
Perceived walls are dark blue, and predicted walls are grey. Also shown is a fire hydrant and 
the misperceptions of a traffic barrel and car. 
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Figure 7 shows the model of the world at the end of run 15, when the robot 
navigated from in front of the gas station to a position behind the bar. The porch of 
the bar has been represented as an inner and outer wall. A door has been perceived 
against a predicted wall, and a car and traffic barrel have been misperceived as 
being next to the bar. Despite this confused view of the world, the robot did 
complete the run, getting to the correct position and detecting a pedestrian exiting 
through the door it was facing. The system appears to be relatively robust to the 
type of misperception images shown here, as long as the misperception is not an 
object being used as a landmark or goal. 

An assessment of performance of the robot in preliminary semantic navigation and 
perception experiments, and in door and pedestrian detection, is in Lennon et al. 
2015b.   

4.2 IRA: Search and Observe Doorways 

A different detector was used for detecting doors. In this instance, the search was 
sped up by the knowledge that a door can only be located on the vertical surface of 
a building. Thus the door detection algorithm first detects facades, using input from 
the semantic classifier, and then searches for doors on those facades. An example 
of the results of door detection is shown in Fig. 8. An examination of perception in 
the preliminary experiments is contained in Lennon 2015b. 

 

Fig. 8 Doors detected on the church 
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There was also perception software running on the system for detecting pedestrians, 
but that is discussed later in the section on pedestrian detection. Semantic objects, 
such as buildings, doors, and pedestrians, detected through these perception 
approaches are added to the robot’s world model and are updated as the robot’s 
viewpoint changes over time. All mission commands and planning are interpreted 
according to the robot’s model of the world, which we now describe.  

4.2.1 Search 

The search action positions and orients the robot, relative to an object of interest to 
the human teammate. For example, with the command to “screen the back of the 
building”, the detected building in the world model is the goal and the robot would 
reorient toward the center of the building to complete the navigate action. Once this 
orientation was achieved, the mission planner directs the search action to begin and 
provides the type of object to search for (a door, in this assessment). The door 
detection algorithm is always running as part of the perception system, so doors in 
the scene might already be registered in the world model. In case they are not, the 
action provides a fixed amount of time for the door detection algorithm to report 
new detections. After this time expires, the search action will report the number of 
doors that it found within a configurable field of view. The intention is to have the 
human teammate choose an object from among the multiple options that would be 
displayed in the HRI (i.e., all doors found within the allotted time). Once the human 
teammate selects an object, the robot would then reorient toward that object to 
begin the observe action. This interaction was not tested as part of these preliminary 
experiments. Instead, the robot was programmed to orient toward the closest door 
to its current heading vector. Once this orientation was complete, the search action 
sent a message to the mission planner, and the mission planner directed the observe 
action to begin. 

4.2.2 Observe 

The observe action registers pedestrian detections and reports them to the world 
model. This action assumes that a previous action has positioned and oriented the 
robot relative to the object that is being observed. When the mission planner directs 
the observe action to start, the action begins listening to the output from the pedestrian 
detector that is already sending pedestrian detection messages. Pedestrian detection 
messages contain pixel locations for a box that encapsulates the individual parts of 
the detected person (Yang and Ramanan 2011), and LADAR points within the box 
are clustered together (Rusu and Cousins 2011). If there are no previous pedestrian 
tracks of the same shape close by, a new “person” object is added to the world  
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model. Otherwise, if there is a track nearby that matches in shape, that track is 
updated. For this assessment, the robot continued to observe in this state until the 
system was shut down. 

In the observe action example shown in Fig. 9, two people exited from the middle 
and right doors on the back of a building and stood stationary for approximately 
5 s, allowing the pedestrian detection algorithm to publish detection boxes and 
correlate LADAR points in 3-D. They then walked adjacent to the back of the 
building until they were out of the LADAR’s field-of-view. As shown in Fig. 9, the 
lighting during this portion of the assessment provided challenges to the pedestrian 
detection. Figures 10a and 10b show the pedestrians in the world model as point 
clouds on the metric level (Fig. 10a) and as semantic objects (Fig. 10b). 

 

Fig. 9 Correctly placed detection boxes from the pedestrian detection algorithm 

    
 a) b) 

Fig. 10 These images show representations of pedestrians on the a) metric and b) symbolic 
level 

The sequential execution of the navigate, search, and observe actions constitutes a 
complete mission.  
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4.3 IRA: Human Robot Interaction Modalities 

This effort was a collaboration of RCTA partners at the University of Central 
Florida, MIT, and ARL, which took place at the CACTF site in the vicinity of the 
church building. It consists of an assessment in communications, where data were 
collected using a multimodal interface comprised of speech, gesture, touch, and a 
visual display to command a robot to perform semantically based tasks. Prior to the 
data collection, a multimodal user interface (MMI) was used to integrate several 
research products into a usable means of bi-directional communication with a robot 
(Fig. 11). The robot incorporated RCTA research software and sensors for 
planning, navigation, and semantic perception and understanding.  

 

Fig. 11 The tablet and glove used for and HRI interface. The left side of the tablet’s screen 
displays a view combining an a priori map from OpenStreetMap (open) with objects in its own 
world model. The right side, from top to bottom, shows a view through the robot’s camera, 
the command it is executing, and the activity it is trying to perform.  

The human commanded the robot using speech to navigate to different goal 
locations using, for example, the directive to “…navigate quickly to the traffic 
barrel near the car”. The robot then used its semantic perception to identify traffic 
barrels and the car, determine which barrel was near the car, and then navigate to 
the desired goal location (Fig. 12). 

 

Fig. 12 Speech is used to command the robot to maneuver in the environment 
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While the robot navigated, the participant used speech or gestures to convey 
commands to pause, reorient the robot, or abort and reissue a new directive. 
Multiple vignettes, all involving complex speech directives and simple commands, 
were used to examine both the usability of the multimodal interface and the 
expectations of the human with respect to the behavior of the robot as it carried out 
the command. In one vignette, an ambiguous situation was purposefully presented. 
Two barrels were placed equidistant from the building, and the robot was 
commanded to “navigate to the traffic barrel near the building”. When the robot 
could not identify which barrel was nearest, it would ask the human to disambiguate 
the command and choose the correct barrel, currently performed by choosing the 
correct barrel on the visual interface. 

The effort was successful in that the independent research results were integrated 
into a usable interface that performed some level of bi-directional communication 
with the robot. Observations on usability and participant expectations with respect 
to the interaction with the robot were obtained (Hill et al. 2015; Barber et al. 2015). 
Initial results reveal that there are several usability issues that must be addressed 
related to the display, speech, and gestures. First, the tablet should provide 
additional drag and drop capabilities, particularly for map functions. Speech 
commands are currently constrained, so movement toward more natural military 
communication styles would enhance the usability. Gestures were considered easy 
to learn but might be fatiguing over time. Expectations regarding robot behaviors 
were also obtained, with analysis still in progress.  

Suggested improvements are planned to be incorporated in the MMI. Information 
on human expectations of robot performance will be shared with the robot 
intelligence developers as a basis for improvements to robot behaviors and to the 
MMI developers for improvements to bi-directional communications between 
humans and robots. 

4.4 End-to-End Scenarios 

In addition to the previously described 4 IRAs of Human Robot Interaction 
Modalities; Semantic Navigation and Perception; Search and Observation of 
Doorways; and Search and Grasping of Objects in an Indoor Environment, a fifth 
IRA was conducted to examine the performance when these capabilities are 
concatenated. This stringing together of mission steps provides a 2-fold benefit: an 
appreciation of the performance in a more realistic application and the opportunity 
to discover if any benefits or shortcomings arise in the interaction or hand-off 
between segments.  
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4.4.1 Evaluating the System 

The complete runs were performed at the CACTF, around the church, bar, and gas 
station, which are labeled in the overhead view of the CACTF in Fig. 1. The bar 
has a complicated facade, with doors and windows set back from the street by 
several feet. It is also surrounded by other buildings, requiring the semantic 
navigation system to use landmarks or HRI if the robot starts far enough back from 
the bar to have several buildings in view. The back of the bar is simple, but the 
doors are of a color different from the red brick of the building. The space between 
the gas pumps and the building behind it is used as a storage area for metal lockers, 
concertina wire, and metal barrels, providing a cluttered environment within which 
perception was difficult. We used a starting position in front of the gas station to 
create a situation in which HRI was needed to select the appropriate building. The 
church is a simple building without clutter, except for trash cans in one front corner. 
It stands apart from other buildings, is made of cinderblocks, and has tall windows 
with grey wooden shutters, and grey doors. While it is a simple building to 
distinguish, we expected that door detection might be more difficult with doors and 
tall shutters of similar color, and both of a color similar to that of the building.  

4.4.2 Design for the Experiment 

There was time for 17 complete runs. Table 1 summarizes details of the runs, while 
Fig. 13 shows positions referenced in that table and in the following descriptions. 
During runs 1–6, the robot started in front of the bar (B1) and was expected to end 
behind the bar (BR), with the robot facing a door at the back of the bar. These runs 
were intended to provide a simple mission executed on a complicated building. 
Once in back of the bar, however, the search was expected to be easy, as the 3 doors 
were of distinctly different color than the building. In all runs, we sent the 
pedestrian out through whichever door the robot was oriented toward, expecting 
only that the robot would choose a door on the correct building. With the system 
positioned in front of the bar, no landmarks were expected to be needed, so in each 
run, the TBS was “screen the back of the building.” 

Table 1 End-to-end scenario run details 

Runs TBS Start Goal 
1–6 Screen the back of the building B1 BR 

7–9, 14 Screen the back of the building behind the car B2 (run 7 only), B3 C1 
10–13 Screen the front of the building C2 C1 

15–17 Screen the right of the building that is left of 
the gas pump G BR 
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Fig. 13 Test site positions referenced in Table 1. The position of the HMMWV in runs 7–9 
and 14 is denoted as H. 

For runs 7–9 and 14, the robot started from a position near the bar (B2 for run 7, 
and B3 for the rest) and was expected to end on the side of the church (C1). For 
these runs, a landmark was needed to remove ambiguity about which building the 
robot should go toward, so a High Mobility Multipurpose Wheeled Vehicle 
(HMMWV) was placed in the street (H) between the bar and the church, and the 
robot was directed to “screen the back of the building behind the car.” Here, the 
mission was complicated, but the building at the objective was simple. We thought 
the robot might have trouble distinguishing between doors and shuttered windows 
at the church, as both were of similar size and color, so we considered the church 
to be potentially more challenging for door detection.  

In runs 10–13, the robot was placed on the side of the church (C2), and directed to 
screen that same side (C1) (i.e., “screen the front of the building”). These runs were 
expected to be straightforward, and easy for the robot, except possibly for the door 
detection. 

For runs 15–17, the robot started in front of the gas station (G) and was expected to 
go to a position behind the bar (BR). Given the angle of the robot to the bar, the 
position BR was considered as being on the right of the bar. With several buildings 
in view, a navigation landmark was needed, so the TBS was “screen the right of the  
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building that is left of the gas pump”. Even with this command, 2 buildings would 
have been reasonable choices, and the HRI interface was used to disambiguate the 
command, directing the robot to the correct building. 

4.4.3 Evaluation Criteria 

Semantic navigation was evaluated by a human observer, who graded each run on 
a scale of 0–100, with gradations of 20 (i.e., 0, 20, 40, 60, 80, and 100). The 
completion score is the subjective assessment of the degree to which the platform 
accomplished the mission. In Table 2, a score for each run is presented, and for runs 
scoring less than 100, the reason for the score is listed. In addition, the weather is 
noted. Runs 1–3 took place on 29 October, during a light rain. As the rain became 
heavier, the experiment was halted and resumed with run 4 on 30 October.  

Table 2 Scores, weather, and the reason given by the evaluator for scores less than 100 

Run 
no. Weather Score Reasons for scores less than 100 

1 rain 40 Ran into building, may not have seen the wall. 
2 rain 100  

3 rain 80 Moved to the correct position, but wrong door. Comms failed on 
HRI 

4 sun 100  
5 sun 100  
6 sun 100  
7 sun 20 Robot went off course and was stopped 
8 sun 100  
9 sun 100  

10 sun 100  
11 cloud 40 Software crash during the navigation behavior 
12 cloud 60 Software restarted after navigation and before façade detection. 
13 cloud 100  
14 cloud 100  
15 cloud 100  
16 cloud 100  

17 cloud 80 In correct position, but pedestrian detection computer had 
battery failure. 

 
In the Fig. 14 overview, the subjective scores are treated qualitatively to show the 
variation in performance over the 17 runs. Approximately 65% of the runs were 
completely successful, achieving a score of 100. Of the remaining 6 runs, there 
were 2 crashes/restarts of the software (runs 11 and 12) running the platform, one 
battery failure (run 17), and one communications failure (run 3). During run 1, the 
robot was stopped because it was going to run into the building. Researchers 
ascribed this to the network being too slow for updates to the world model to be 
done in a timely fashion and reduced the quality of the video feed for subsequent 
runs. The problem did not recur. During run 7, the robot went completely off the 
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course. Researchers reported that this was because the robot chose to go to a 
different building than the church. For the subsequent runs from the bar to the 
church, the robot was moved closer to the church so as to see the church more 
clearly. 

Score 100 80 60 40 20 0 
No. runs 11 2 1 2 1 0 

Fig. 14 Number of runs achieving each score 

4.4.4 Conclusions 

The end to end runs differed in purpose from the experiment described in Lennon’s 
research (Lennon 2015b). While that experiment was intended to explore the limits 
of the system's ability to reliably understand varying levels of complexity in 
perception and navigation commands, detect doors, and track pedestrians, the runs 
presented here were intended to explore the system's ability to execute sequences 
of different behaviors. The robot performed a chain of tasks, each of which had 
been determined by the results of Lennon’s work (Lennon 2015b) to be within its 
capabilities. Consequently, the navigation commands and perceptual environments 
presented to the robot were not as complicated as those presented to the system in the 
assessment (Lennon 2015b), and none of the failures in Table 2 were attributed to 
failures of semantic navigation, nor to failures in door detection or pedestrian 
detection. This was not because of improvements in the capability of the robot 
between the experiments but because it was being given tasks that were known to 
be within its present capabilities. The system was generally successful in 
transitioning from one behavior to the next, and we expect that, if it had been given 
more complicated tasks (as in the assessment [Lennon 2015b]), it would still have 
transitioned successfully if it had been able to complete those tasks. We intend to 
test this in the future in the context of evaluating improvements in HRI, which we 
expect would allow the robot to recover from a failure in one task (e.g., navigation) 
and continue on with the rest of the screening mission.   

4.5 IRA: Indoor Search and Grasp 

4.5.1 Mission and Site 

One notional mission, the “Get Object from Inside Building” scenario, is an 
autonomous indoor search and grasp activity that draws upon research subtasks 
from the RCTA Annual Program Plan in perception (locating objects within a scene 
and relative to a manipulator arm), intelligence (room search and approach of 
objects), and dexterous manipulation and unique mobility (DMUM)(control of 
mobile manipulators). This section reports the experimental conduct and 
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summarizes the performance results for the indoor search and grasp capability. 
Further detail on the experiment and results can be found in a conference paper 
(Bodt et al. 2015). That paper is excerpted in this section for the purpose of 
providing an overview of this IRA activity. 

We investigated the “Indoor Search and Grasp” capability to establish a baseline of 
performance for this first instantiation of the integrated technologies while 
providing an experimental record to support detailed failure analysis to assist 
researchers in making system improvements. The Indoor Search and Grasp IRA 
represents the first time the component technologies were integrated; consequently, 
IRA conditions as to the notional mission and the challenge of the relevant 
environment are devised to span an anticipated easy-to-hard space of run conditions 
where the most can be learned from the assessment. The integrated system searches 
the room for a specific object, identifies the object, positions the robot so the object 
can be grabbed by the arm/end effector, and then grasps, lifts, and stows the object 
to return to start. Observational data on mission outcome along with automatic data 
collection on the time spent in each subtask of the mission whole were recorded to 
support the assessment. 

All experimentation was performed at the CACTF and the High Bay area of the 
adjacent ARL Robotics Research Facility. The exploratory runs comprising the 
bulk of the testing were performed in the High Bay area (Fig. 15) with several 
confirmatory runs following in the CACTF Firehouse. The walls augmented by 
plywood and posters constituted a natural boundary for the experiment, and the 
room-mapping software provided a software boundary keeping the robot within the 
approximate 30- × 30-ft experimental area where no wall was present. A schematic 
(Fig. 16) shows the sets of nominal locations and orientations for the gas canister 
and potential clutter within the room. 

 

Fig. 15 FTIG High Bay experimental area 
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Fig. 16 Schematic of High Bay experimental area 

4.5.2 Physical System 

The key features of the physical system consist of the hardware identified within 
Fig. 17. The Clearpath Robotics Husky serves as the mobile platform.* Hokuyo 
LADAR (UTM-30LX-EW) located in the front of the platform provides sensing 
for obstacle detection and room mapping.† An ASUS Xtion PRO LIVE (RGBD 
sensor) supports fine-grained 3-D localization of the target object, which is the red 
gas can also shown in Fig. 17.‡ A Point Grey monocular camera (CMLN-13S2C-
CS) captures images used for initial detection of the target object and coarse 
localization.§ An HDT Global arm (MK2 Family-Semi Custom 7-DOF Arm w/o 
Hand) reaches to the target object and lifts after the grasp has been made.** Finally, 
a RobotIQ gripper (2-Finger 85, Adaptive Gripper) executes the grasp of the gas 
canister.†† 

 

                                                 
* www.clearpathrobotics.com/husky/tech-specs/ 
† www.autonomoustuff.com/hokuyo-utm-30lx-ew.html 
‡ www.asus.com/us/Multimedia/Xtion_PRO_LIVE/specifications/ 
§ www.ptgrey.com/chameleon-usb-cameras 
** www.hdtglobal.com/services/robotics/adroit-manipulator-arm/ 
†† robotiq.com/products/industrial-robot-gripper/ 
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Fig. 17 Experimental system components 

4.5.3 Experimental Design 

A 22 × 4 factorial design in 2 blocks was constructed in 4 variables: orientation, 
occlusion, clutter, and location, with location serving as blocks. 

Two locations for placement of the gas can were used: middle of the room and 
against a wall. They were fundamentally different locations. Placement of the 
search object (gas can) against a wall would significantly affect the ability of the 
robot to locate and grab the gas can. Against a wall creates 2 challenges: 1) it makes 
the depth determination more difficult and 2) it reduces the number of potential 
grab locations available to the robot. 

Four gas can orientations were used and defined by the orientation of the spout as 
seen from the starting position (Fig. 16). Position 1 is with the spout pointing 
toward the starting location; position 2 is with the spout pointing to the right 
perpendicular to the line of sight from the starting location; position 3 is with the 
spout pointing away from the starting location; position 4 is with the spout pointing 
to the left perpendicular to the line of sight from the starting location. The 
orientation was expected to present a challenge to the robot for 2 reasons: 1) the 
gas can identification requires the spout in sight to determine the can azimuth, and 
2) because there is a preferred grab location to the left rear of the can that would 
obviously change with each can orientation. 
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Occlusion objects were solid objects placed within 12 inches of the gas can, which 
would occlude the ASUS view of the gas can if it was in line with the approach 
taken by the robot. This challenged the robot in 3 regards: 1) in identifying the gas 
can when it was occluded to some degree, 2) by presenting an obstacle to achieving 
a suitable grab position, and 3) by presenting an obstacle that would potentially 
interfere with the planned arm trajectory to grab the can, thereby reducing the 
number of sufficient grasp locations. 

Clutter consisted of barrels and chairs placed within the search area but at least 8 ft 
away from the gas can so that the clutter would not interfere with the ASUS vision 
system or the grab location calculations when the robot was in close proximity to 
the gas can. Clutter objects challenged the robot as an obstacle to be avoided and 
by making the mapping movements more difficult and time consuming. What path 
the robot chose to avoid clutter during room search did have the potential to 
influence the perspective of camera shots. Otherwise, it was thought that the clutter 
variable (clutter/no clutter) would not influence the final outcome (success/fail). 

4.5.4 Metrics 

There were 3 possible outcomes for each run. A success was recorded if the robot 
identified the gas can, grasped it, and lifted it up. A partial success was recorded if 
the robot identified the gas can, moved to a viable grab location but failed to grasp 
the can because it was still too far away or because something potentially interfered 
with the planned robot arm path. After several repeated attempts with the same 
result the test director ended the mission. A failure was recorded if the robot failed 
to see the gas can, or having identified the gas can, failed to move to a good grab 
position. Each run recorded as a failure was ended at the discretion of the test 
director when it was clear that no successful grab was likely.  

In addition to the 3 run outcomes, a number of response variables were collected 
when the run was successful or partially successful. For all successful runs, we 
collected 5 additional variables: 1) mission run time from start to can grab, 2) time 
taking pictures and processing the data, 3) time planning and moving to map the 
room, 4) time positioning the robot to a grab position, and 5) time spent grabbing 
the gas can. For all successful and partially successful runs, we collected the 
following data: 1) time to first identification (ID) of gas can, and 2) time from first 
ID to first grab attempt. 

4.5.5 Results Commentary 

The highlights of the investigation follow. Of 25 runs performed as part of the 
principal experiment, the system accomplished 15 (60%) complete successes, 7 
(28%) partial successes, and saw only 3 (12%) failures. An excursion in a more 
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realistic, cluttered environment, saw 7 of 8 runs as complete success and one 
failure. The orientation of the gas can with respect to the robot does affect the gas 
can identification. Specifically, the spout is an important feature in making the 
target determination. Objects near the gas can reduce the number of successful 
grabs, not because of visual occlusion but because of difficulty in achieving a 
suitable grab location close enough to the can to grasp it and yet free of interference 
with the planned arm movement. Room clutter, other than altering the path of the 
robot during search, did not have an impact on performance. The current 
configuration of the camera and arm, along with algorithm decisions on how many 
pictures were taken and frequently created blind spots over the ‘right shoulder’ of 
the robot, did impact its ability to clearly see the target object when navigating 
counterclockwise around the room. For successful runs when the gas can was in the 
middle of the room, the completed run time was on average approximately  
3 1/2 min and near the wall approximately 8 min. The longer time for the wall runs 
was due to the search required; once the gas can was identified, there was no 
appreciable difference in times associated with positioning for and executing the 
grasp. 

5. Capstone Experiment Task-Based Assessments (TBA) 

In addition to the previously described IRAs, during the timeframe of the Capstone 
Experiment, 5 TBAs using various platforms were also conducted: Bracing to 
Reach and Grasp an Object, Detection and Climbing of Stairs, Leaping over a Span, 
Dynamically Feasible Motion Planning, and Terrain Aware Motion Planning. 

5.1 TBA: Self-Anchored Reaching (JPL) 

5.1.1 Introduction: Overview 

This section highlights results from TBA of Sensor-Based Dexterous Manipulation 
and High Performance Visual Range and Motion Estimation for Small Platforms. 
These activities were administered partially at JPL and partially at FTIG. 

The capabilities addressed in these assessments will enable robots to perform 
advanced behaviors in finding objects of interest hidden in hard to reach places. In 
particular, the pieces relating to an operator specifying (talk) gaze goals for 
exploration (look) followed by the robot navigating and moving its body into 
configurations that interact with the world (think, move) are highly relevant to the 
RCTA vision. 
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The focus of the Sensor-Based Dexterous Manipulation assessment is to interact 
with the environment by closing a kinematic chain on the surrogate platform 
(Fig. 18) by anchoring one hand with the environment and extending the other to 
reach and grab an object (Fig. 19). The objective is to enable the robot to perform 
coordinated whole-body movements while anchored to the world at 2 points. 
Without compliance in control using force-torque sensor measurements, the system 
would be too stiff and any whole body movement can either disturb the world or 
inflict self-damage to the robot. 

      

Fig. 18 The surrogate platform and the 360° field of view sensor head 

 

Fig. 19 Extended reaching (~5 ft) in a bracing maneuver 

The objective of the High-Performance Visual Range and Motion Estimation for 
Small Platforms assessment is to enable the operator to specify end-effector and 
gaze goals a large distance away (>5 m) from the experimental setup. In the absence 
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of a motion estimation module from perception, the reference frame in which the 
goals are specified would be invalidated over time with subsequent robot motions 
due to visual odometry drift. The objective of maintaining a common reference 
frame for use within the manipulation task will be achieved by integrating 1) path 
planning and path following for the base to achieve navigation goals and 2) whole 
body motion planning and control given end effector and gaze (look-at) goals from 
an operator. 

5.1.2 Experimental Design and Task-Based Assessment Criteria and 
Metrics 

At the gap we performed about 8 runs of self-anchored pick and place of an object 
of interest. Table 3 outlines the task outcomes, execution times and specific failures. 

Table 3 Self-anchored reaching run details 

Run Execution 
time Outcome Comments 

Oct 5th run 1 10 min Success with 1 
grasp failure 

Grasp failed first time, had to re-
grasp. Fingers hit the ground. 

Oct 5th run 2 7 min Success . . . 
Oct 5th run 3 9 min Success . . . 

Oct 6th extended run1 18 min Success with 1 
grasp failure 

Run included removing a gas canister 
out of view and then picking up an 
object of interest. The initial grasp of 
the gas canister was unsuccessful as 
the grip was not tight enough. A 
second attempt succeeded but with 
only a 2-fingered grasp. 

Oct 6th run 2 at test range 9 min Success . . . 
Oct 6th run 3 at test range 8 min Success . . . 

Oct 7th run 1 12 min Partial success 
Initial grasp failed due to stale maps 
(operator error). The second grasp 
succeeded. 

Oct 7th run 2 7 min Success . . . 
 
The Sensor-Based Dexterous Manipulation task was assessed with 2 metrics: 
Reachability Gain and Disturbance Rejection 

For the High-Performance Visual Range and Motion Estimation for Small 
Platforms task, the goal was to assess in terms of repeatability of the experiment 
from different starting positions and validity of motion goals over time which is 
measured via motion drift. It is anticipated that successful DMUM operation would 
require motion drift on the order of 10 cm. 
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Metric 1: Reachability Gain with Anchoring 

The increase in torso range with and without anchoring. This will be measured in 
terms of how far the center of mass can be outside the base support. 

Without bracing: The robot tips over when the center of mass (estimated) is greater 
than 0.35 m from the center of the base. 

With bracing: The robot can extend to edge of the kinematic reachability gain 
beyond which the planners fail. In practice we were able to extend the center of 
mass to 0.5 m from the center of the base before the planners did not return 
solutions. This is a 30% increase in position of the center of mass relative to the 
center of pressure (Fig. 19). 

Metric 2: Setup for Disturbance Rejection Experiments 

For assessing disturbance rejection, the robot was started in a bracing position and 
a select torso joint was actuated to apply a step disturbance. 

Perception Metric 1: End-to-End Navigation Error Experiments with LADAR 
Odometry Navigation error, at the end of plan, of the robot, and commanded goal 
locations. Repeatability is a strong function of how often the robot can navigate to 
a fixed goal reliably with state estimation.  

5.1.3 Results 

The mobility tests consisted of 5 separate runs with the robot placed at a known 
start location, manually driven approximately 5 m away, and commanded to 
autonomously navigate back to the origin while using only the LADAR pose 
solution. Figure 20 shows the robot path taken during the 5 mobility test runs, 
overlaid with LADAR point clouds. 
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Fig. 20 Multiple navigation runs with the a goal of {0,0} and different start locations 

The drift of the navigation solution was measured by the displacement between the 
origin of the trajectory and the pose of the robot after navigating back to the origin. 
The 5 runs resulted in the drift shown in Table 4. The paths taken were 
approximately each 5m long. The average drift across the runs in the table is 10 cm. 
The threshold for the mobility planner on reaching the goal was 5 cm, and the grid 
size used in the map for planning was 5 cm as well, so the pose accuracy was likely 
better than 10 cm. These results capture system-level navigation capabilities since 
several modules were run to produce these results, including track control, D-star 
navigation, perception, mobility, manipulation, and pose estimation. 

Table 4 End-to-end navigation error, at the end of plan, of the robot and commanded goal 
locations  

Run no. Distance 
(cm) 

1 12 
2 10 
3 8 
4 9 
5 13 

 
These tests were conducted with the vision pipeline turned off, that is, without 
stereo computation and visual odometry (VO) running. When full integration was 
tested, including stereo and VO in the main perception loop, the overall rate of the 
perception stack went down from above 10 Hz to about 2 Hz. This caused an 
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increased drift in the LADAR-based odometry compared with the results shown 
previously. This is due to the larger displacement of the robot between 2 perception 
updates (since the perception rate was then slower). This is not due to a fundamental 
limitation of the approach and can be solved through software engineering. We are 
in the process of reorganizing the perception code so that LADAR-based odometry 
runs in its own process and does not compete for central processing unit time with 
the rest of the perception pipeline. This will allow the same level of accuracy as 
described in Table 4 while running the full perception algorithms suite. Figure 21 
shows an instance of large displacement between 2 consecutive scans due to a lower 
perception rate. In that case, the perception module had dropped a number of scans 
between these 2 scans (due to the low update rate) resulting in a large displacement 
between the 2 scans processed. The white segments indicate the point associations 
found by the alignment algorithm. As can be seen, these are incorrect due to the 
initial large displacement. This can be solved by processing incoming scans faster 
and thus processing more scans with smaller displacements between them. The aim 
of the current software updates is to allow such faster LADAR processing. 

 

Fig. 21 Example of large displacement between 2 LADAR scans when running the 
perception pipeline at low rate. The reference scan is shown in red, the current scan that will 
be aligned to the reference scan is colored by segmentation. As can be seen, the main structures 
in the scene are off by about 45° between the 2 scans. 
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5.1.4 Conclusion 

The TBA tested the integrated semi-autonomous capabilities for grasping a target 
object with bracing using the surrogate mobile manipulation robotic platform. The 
tests were broken into 1) the repeatability of the manipulation tasks, 2) the 
robustness of bracing behaviors as a function of force and current loads that build 
in the joints segments, and 3) the end-to-end navigation accuracy of system. The 
current maturity of the technologies evaluated in the TBA is not yet at a level that 
would enable fully autonomous mobile systems. A human operator is still required 
to make high-level decisions and judgments for successful task completion. 
However, results and performance look promising, and the semi-autonomous 
grasping implementation assessed here may be an attractive alternative to complete 
teleoperation of a robotic system. Semiautonomous robotic systems would allow 
the operator to expend more of his energy and focus on his safety and surroundings 
than traditional teleoperation. 

5.2 TBA: Stair-Climbing with XRHex 

5.2.1 Introduction: Autonomous Stair Climbing Overview 

This report highlights results from a TBA that was administered at FTIG. The TBA 
evaluated performance of XRHex, the robot hexapod, as it carried out a semi-
autonomous stair climbing behavior.   

This TBA was largely used as a test of a new stair detector algorithm utilizing an 
RGBD camera and a switching behavior written to begin a previously implemented 
stair climbing gait upon stair detection. The behavior is considered to be semi-
autonomous because it still requires an operator to position the robot in an 
acceptable starting point with respect to a flight of stairs for the autonomous 
behavior to trigger. Successful trials during this TBA would encourage further 
development of the switching behavior to a point where XRHex is capable of 
positioning itself in the appropriate location to begin stair climbing regardless of 
the range at which the stair case is detected (effectively enlarging the basin of 
attraction for this behavior). 

5.2.2 Experimental Protocol 

Experiments were conducted indoors at the hotel and police station. Some initial 
trials were attempted outside, but the sunlight washed out the depth sensor to the 
point where stair detection would not be possible. A trial consisted of enabling the 
stair detection behavior and then having the operator drive XRHex. To test the 
robustness of the stair detector, XRHex was driven around a full loop of each floor, 
including going into at least one room, before approaching any flight of stairs to 
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ensure that we did not have a high rate of detecting false positives. After finishing 
the initial exploration, the operator drove the robot to a suitable starting position 
(roughly 50 cm from the base of a staircase with the robot’s heading within ±7° of 
the axis of the stairs). From there, the switching behavior activated the stair 
climbing gait, XRHex climbed to the top of the stairs, detected when it reached a 
landing, and then re-enabled operator control while looking for more stairs.  

The physical setup of the robot can be seen in Fig. 22, and the mass of the robot 
and sensor payload are listed in Table 5. The payload accounts for roughly 20% of 
the total mass of the system in this configuration. For all successful trials, the 
payload was shifted as far forward as possible on the robot’s rail mounts. If the 
payload was located further back, the robot would occasionally pitch backwards 
and fall while attempting to climb. 

 

Fig. 22 Experimental setup. An RGBD camera and Mac Mini are mounted on XRHex. Off 
screen, an operator is holding a joystick used to drive the robot when away from stairs. 

Table 5 xRhex Experimental setup mass measurements 

Component Mass 
Robot + 1 battery 9.057 kg 
Mac mini (with mount) 1.897 kg 
RGBD camera (with mount) .325 kg 
IMU .052 kg 
Total mass 11.327 kg 

Note: IMU = Inertial Measurement Unit 

The stairs in the 2 test buildings (and across the rest of the test site) were nearly 
identical, differing only in the number of stairs per flight and shape of the landing 
between flights. In the hotel, there was an L-shaped landing between flights, and in 
the police station the single landing was a narrow rectangle. The stairs themselves 
were made of smooth poured concrete, had rounded noses, and were coated with a 
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significant amount of dust. All of these factors significantly reduced traction, 
making stair climbing somewhat difficult. The rise and run of each step can be seen 
in Table 6. The “ground truth” values were taken with a measuring tape, and all 
other values were measured by the RGBD camera. The camera measurements were 
not used for these experiments but they were taken to get calibration data for the 
sensor.  

Table 6 Stair measurements and robot measurements taken from depth camera 

Measurement method Rise  
(cm) 

Run  
(cm) 

Ground truth 18.0 28.0 
Robot sitting, 1.15 m from 1st step 16.2 26.2 
Robot standing, 1.15 m from 1st step 15.5 26.0 
Robot sitting, 0.5 m from 1st step 15.5 26.8 
Robot standing, 0.5 m from 1st step 16.0 27.0 

5.2.3 Results and Analysis 

Six trials were conducted for the assessment: 3 at the hotel and 3 at the police 
station. These trials showed that the stair detection algorithm and the behavior as a 
whole are quite reliable. A summary of the tests can be found in Table 7. The 6 
trials took slightly under an hour altogether, during which time the robot saw a 
variety of furniture including desks, chairs, beds, and tables. None of these objects 
triggered a false positive stair detection. In an attempt to force the detector to fail 
after all trials were completed, a robot handler held the robot on its side near a set 
of vertical bars for a jail cell in the police station. This did cause a false positive, 
but it only triggered when the robot was held at an angle such that the gaps between 
the cell bars could not be seen. This implies that parallel bars (like for a sewer grate) 
may cause trouble for the detector, but the test site did not have any other similar 
features to test on. 
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Table 7 xRhex stair-climbing experimental results 

Trial 
Stairs 

per 
flight 

Flights 
per 

floor 

Total 
stairs 

climbed 

Stair 
slips 

Trial 
duration 

(min) 
Notes 

Hotel 1 7 3 63 8 12 

Transition to stairs failed once, 
behavior automatically 
reacquired stairs and was 
successful on second attempt 

Hotel 2 7 3 63 8 12.5 

Robot scraped along wall for one 
flight of stairs due to poor 
positioning (operator error), 
behavior successful 

Hotel 3 7 3 63 4 12 
Transition out of stair climbing 
stalled once, requiring operator to 
manually resume walking phase 

Police 1 10 2 20 2 6 

One stair detection failure due to 
sensor timing after making a 
sharp turn, one transition failure 
where RHex nearly walked off 
open edge of stairwell 

Police 2 10 2 20 0 4 Route for this trial avoided sharp 
turn, no errors 

Police 3 10 2 20 4 9 Same route taken as in Police 1, 
stair detection successful 

 
Apart from false positives, the stair detector did fail one time when a set of stairs 
was located immediately after a sharp turn. This was likely due to the sampling 
time of the sensor. If the robot sampled during the turn, it is possible that the camera 
was too close to the stairs to allow for acquisition by the next sampling time. In 
total, 33 individual flights of stairs were climbed with only one detection failure. 
Additionally, when the robot was repositioned after the detection failure, the stair 
detector was able to acquire the stairwell. 

The stair climbing behavior also proved to be robust, despite the significant weight 
of the payload and the condition of the stairs. In normal operation, the robot 
transitions from walking to stair climbing by finding the first stair with either of its 
front legs. The single leg should catch on the edge of the first step and then help 
align the robot’s body with the stairs. This part of the behavior did not work as 
intended because a single leg could not support the combined weight of the robot 
and payload causing it to slip off of the step (assisted by the low friction of the steps 
themselves). Despite this, the transitions were still successful because when the legs 
began to move in pairs, they were strong enough to lift the robot onto the first step. 
While on the stairs, the robot occasionally slipped as a result of poor leg 
positioning. This resulted in the robot falling back by one step, catching itself, and 
then continuing to climb. There was one instance where the robot slipped off the 
stairs completely, but this was not during one of the recorded trials. 
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5.2.4 Conclusion 

This TBA demonstrated that the stair detection algorithm and switching behavior 
are robust enough to be developed further. The main failures of the assessment dealt 
with slipping on stairs (both as a result of the stair characteristics and a gait untuned 
for the specific stairs used) and the transition to the first step. Tuning (possibly 
automated) of the stair climbing parameters for the specific set of stairs used in the 
demonstration would likely further improve performance; however, the goal was to 
demonstrate the generality of the stair climbing behavior to any set of stairs. The 
trials provided good insight into areas that could be improved and have encouraged 
us to explore implementing an adaptable stair climbing gait, as opposed to the 
current one that uses predetermined set points. This adaptable behavior will likely 
need to use some information about the stairs themselves, such as the rise and run, 
which can come from the sensor, as shown in Table 6. As we improve the stair 
climbing gait itself, we will be able to get closer to a platform that allows for 
autonomous multi-floor building exploration. 

5.3 TBA: Gap-Crossing with Canid Quadruped 

5.3.1 Introduction 

This report highlights results from the 2014 Capstone TBA that was administered 
at FTIG. The TBA evaluated the performance of the quadrupedal robot Canid 
performing gap crossing maneuvers. This Capstone TBA represented a 
continuation of the July 2014 TBA that began investigating outdoor gap crossing. 
While the July TBA investigated the role of Canid’s rear legs in forward leaping, 
the Capstone TBA investigated the sensitivity of forward leaping behavior to the 
elevation difference and compactness of terrain. 

During the 2014 Capstone TBA, Canid was recorded leaping from a Pelican case 
onto the bank building ledge at the Fort Indiantown Gap, and—for the first time in 
a natural outdoor environment—at a drainage ditch nearby as pictured earlier. 
Canid performed well in leaping onto the bank ledge; however, it was not 
successful in fully crossing the drainage ditch. Valuable lessons were learned from 
the failures and will help to improve future performance. 

5.3.2 Experimental Protocol 

A series of 14 experiments were completed in which the Canid robot (Pusey et al. 
2013) leapt from a Pelican case to a concrete ledge in front of the bank building at 
FTIG. This was only the second time Canid has been tested in an outdoor 
environment, the first being the previous TBA in July 2014. While the distance 
between the jumping and landing platform was varied at the previous TBA in July, 
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at the 2014 Capstone TBA the elevation difference was varied so as to examine the 
sensitivity in Canid’s open-loop leaping behavior to terrain disturbances. Pictures 
of the test setup are shown in Fig. 23. Details regarding the leaping testing 
procedure are similar as provided in a paper presented at the International 
Symposium on Experimental Robotics (Duperret et al. 2014). 

 

Fig. 23 Canid leaping a span 

Canid leapt from the Pelican case to the ledge over the course of 14 runs. The height 
of the pelican case compared with the ledge was varied over the course of the runs 
to investigate Canid’s sensitivity to leaping conditions.   

Canid was also taken to a nearby drainage ditch (Fig. 24) for additional gap-crossing 
experiments with permission of the on-duty range officer. This test was intended to 
investigate the effects of loose terrain on Canid’s leaping behavior, in contrast with 
the rigid structure of the Pelican case and concrete Bank landing. Until this point, 
Canid had never been tested on natural outdoor terrain such as dirt or grass.  

 

Fig. 24 Canid leap at drainage ditch 
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5.3.3 Results and Analysis 

The results for the 12 Bank runs are shown in Table 8. The measured distances 
were done by hand and suffer from the associated measurement inaccuracies as 
compared with motion capture data that are usually collected. Additionally, the 
placement of Canid on the starting Pelican case varied between runs, which likely 
accounts for the majority of the failure cases not related to the malfunctioning 
power board or leg bearing failure. 

Table 8 Gap crossing data detailing Canid leaps from a Pelican case to the bank ledge 

Trial 
no. 

Initial to landing 
platform 
elevation 

(cm) 

Distance from 
platform to 

platform 
(cm) 

Crossed or not 
(yes/no) Notes 

1 +4 cm 42 Yes … 

2 +4 cm 42 No Failure likely due to incorrect 
placement on case. 

3 +4 cm 42 No Failure likely due to incorrect 
placement on case. 

4 +4 cm 42 Yes  
5 +4 cm 42 No Hit front ridge 

6 +4 cm 42 No 

Rear legs didn’t kick. Later 
this was attributed to a 
malfunctioning power 
management board. 

7 +4 cm 42 No 

Rear legs didn’t kick. Later 
this was attributed to a 
malfunctioning power 
management board. 

8 +4 cm 42 Yes New batteries, replaced 
power management board.  

9 +4 cm 42 Yes  
10 +4 cm 42 No  

11 –6.5 35 No 

Realized later that a bearing 
had broken in Canid’s rear 
left leg in trial 10 failure that 
likely accounted for this 
failure.  

12 –6.5 35 Yes Performed jump even though 
rear left leg crank fell off. 

13 –6.5 35 Yes Performed jump even though 
rear leg caught. 

14 –6.5 35 Yes … 
 
Not including the instances of incorrect placement (trials 2 and 3) and issues with 
power electronics (trials 6 and 7), Canid was able to complete 4 out of 6 leaps onto 
a higher ledge. Likewise, not accounting for a mechanical failure related to a 
previous crash, Canid was able to complete 3 out of 3 leaps onto a lower ledge. 
This indicates that Canid is not overly sensitive to minor variations in the height of 
its landing zone and suggests a degree of stability in its leaping. Like the previous 
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TBA, while Canid suffered multiple leaping failures it never suffered 
catastrophically, and the required repairs to incorrect landings on concrete were 
minor, showcasing its mechanical robustness.   

After the tests at the range’s Bank, Canid was brought to a drainage ditch (with the 
permission of the on-duty range officer) and attempted to leap across it 4 times with 
varying terrain conditions. To vary the terrain, Canid was run separately in areas 
where it was very grassy, where it was primarily dirt, and where there was a mixture 
of grass and dirt. None of the leaps were successful; however, high-speed video 
analysis indicated that all of the failures were due to Canid’s legs slipping on the 
loose terrain. The right panel of Fig. 25 shows an example of where Canid’s rear 
right leg lost traction and kicked up dirt and grass instead of propelling the body 
forwards. As Canid was being run with a “cleated” leg design featuring bolts jutting 
from its legs to increase ground friction, it is unlikely that these terrain failures 
resulted from an inherently inadequate coefficient of friction with the ground. It is 
more likely that there was insufficient normal force for these bolts to catch or 
compact the loose terrain so as to push off in a successful leap. 

 

Fig. 25 Canid after failing to cross the drainage ditch (left) and the ground scuffmarks from 
insufficient traction in Canid’s rear legs while jumping (right) 

The results of Canid’s first foray into realistic, loose outdoor terrain suggest that if 
Canid is to operate effectively outdoors it must be able to generate varying degrees 
of normal forces to account for a variety of terrains. Currently Canid possesses 
single degree of freedom legs and is only able to vary its toe trajectory through 
mechanical changes to its 4-bar linkages, making on-demand changes to the leg 
normal forces difficult. One possible solution would be to add an extra degree of 
leg freedom as to be able to separately control normal force and forwards force 
throughout the leap. Coupled with a transparent transmission, this could allow for 
Canid to “feel” ground slippage and adjust its downward leg force as needed to 
accommodate looser terrain.  
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5.3.4 Conclusion 

The TBA tested the gap crossing ability of the Canid platform in an outdoor 
environment. A total of 14 open-loop runs were conducted in which the elevation 
between Canid’s leaping and landing platform was varied. When discounting 
failures unrelated to the difference in heights, Canid was able to successfully leap 
the majority of the time indicating a lower sensitivity to landing height conditions 
than previously thought. Canid was also run in dirt and grass for the first time when 
it attempted to leap across a drainage ditch. It was unsuccessful during these runs, 
likely due to an inability of its rear legs to generate sufficient normal forces to gain 
traction in the loose dirt and grass. This motivates the investigation into using  
2-degree-of-freedom legs for future testing. 

5.4 TBA: Efficient Motion with Dynamic and Power Models 

5.4.1 Description of Capability 

A skid-steered vehicle can be either tracked, legged (e.g., XRhex type), or wheeled 
and is characterized by 2 features. First, the vehicle steering depends on controlling 
the relative velocities of the left and right side tracks, legs, or wheels. Second, all 
joints remain parallel to the longitudinal axis of the vehicle and vehicle turning 
requires slippage of the tracks, legs, or wheels. However, as with any real platform, 
skid-steered vehicles have some important limitations. These platforms must slip 
and/or skid to turn, which makes them less predictable than, for example, 
differentially driven vehicles. Also, while performing sharp turns, the required 
motor torques increase significantly when compared with straight-line motion, 
which can lead to actuator saturation and result in degraded performance. 

The primary focus of this assessment was to evaluate terrain and payload dependent 
slip (Seegmiller et al. 2013) and dynamic and power models for skid-steered 
vehicles and show their application in energy efficient motion planning (Gupta 
2014; Gupta et al. 2015; Ordonez et al. 2015). As part of the assessment, it was 
shown that when these models are ignored and traditional minimum distance 
planning is performed, it is possible to develop trajectories that violate the torque 
constraints of the actuators. For example, this may occur due to high friction 
between the running gear and surface when making a sharp turn. These trajectories 
can lead to vehicle stall or poor tracking of the vehicle commands. 

The assessed methodology performs online adaptation of vehicle models by 
combining detailed slip and terramechanics-based dynamic models of wheel terrain 
interaction with online learning via an efficient neural network formulation. The 
slip-enhanced kinematic models are used to efficiently provide estimates of robot 
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pose and the dynamic models are employed to generate energy estimates and 
minimum turn radius constraints. The assessment was developed in 2 parts. Part 1 
focused on the FSU-BOT platform shown in Fig. 26, and part 2 was performed on 
the Husky robot shown in Fig. 27. For details about the methodology refer to Gupta 
2014, Gupta et al. 2015, and Ordonez et al. 2015. 

   

Fig. 26 FSU-BOT equipped with JPL visual odometry and FSU low-level data logging. In 
addition, the robot has a bay to modify the payload during experimentation using steel slabs.  

 

 

Fig. 27 Husky robot equiped with JPL’s visual odometry and FSU’s low-level data logging 
system (located in the lower bay of the robot). The computer runs the real-time operating 
system QNX and logs motor currents, IMU data, and odometry. 
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5.4.2 Description of Experiments 

The experiments were performed in 2 stages; the first part consisted of commanding 
the vehicles to follow spiral-type trajectories. Logged data from these diagnostic 
trajectories were employed to calibrate vehicle slip and dynamic models. 

From the developed dynamic models, power models and minimum turn radius 
constraints were then derived. The second part of the experiments focused on 
validation of energy efficient motion planning on different surfaces. In the case of 
the FSU-BOT, experiments were performed on asphalt, concrete, and short grass. 
For the Husky robot, all experiments were conducted on asphalt. The experiments 
took place in areas of 10 × 10 m with different obstacle configurations. Visual 
Odometry was used to provide ground truth.  

5.4.3 Results and Analysis 

A typical result comparing energy efficient and traditional minimum distance 
planning is shown in Fig. 28. This experiment was performed on the Husky robot 
on the asphalt surface shown in Fig. 29. Notice how traditional minimum distance 
planning results in an obstacle collision while energy efficient planning translates 
into dynamically feasible robot trajectories that the robot is able to execute. 

  

Fig. 28 Comparison of minimum distance and minimum energy trajectories. (E represents 
energy and D represents distance). The execution of the minimum distance trajectory resulted 
in an obstacle collision. 
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Fig. 29 Husky robot executing energy-efficient motion planning on asphalt 

5.4.4 FSU-BOT 

Energy-efficient motion planning yielded trajectories that resulted in the robot 
reaching the proximity of the goal and avoiding obstacles as follows: 

• Asphalt: Involved 8 successful trajectories out of 9 with an average distance 
from the robot end pose to the goal of 0.27 m. 

• Concrete: Involved 6 successful trajectories out of 9 with an average 
distance from the robot end pose to the goal of 0.48 m. 

• Grass: Involved 6 successful trajectories out of 9 with an average distance 
from the robot end pose to the goal of 0.71 m. 

Payload effects: The motion planner and the dynamic and power models were 
able to generalize properly to changes in payload from 0 to 8kg on 3 out of 3 runs 
on asphalt, 3 out of 3 on concrete, and 1 out of 3 on grass. 

Computation time: The average computation time for distance optimal motion 
planning was 0.0266 s and 0.245 s for energy efficient motion planning. 

Energy prediction: Figure 30 summarizes the energy prediction errors for 
different surfaces. The negative signs indicate over prediction of energy by the 
models, which can be used as a safety factor. 
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Fig. 30 Energy prediction error for the different surfaces. Asphalt is represented in red, 
concrete in blue, and grass in green. 

5.4.5 HUSKY ROBOT 

For this platform all experiments were conducted on the asphalt surface shown in 
Fig. 29. Four different obstacle scenarios were considered. Energy prediction errors 
for both minimum distance and minimum energy efficient planning are summarized 
in Table 9. 

 

Table 9 Energy Prediction Errors (negative signs represent over estimation) 

Scenario Energy prediction error 
1-min distance planning No data (Collision) 
1-min energy planning –12.09% 

2-min distance planning –20.99% 
2-min energy planning –6.04% 

3-min distance planning –26.5% 
3-min energy planning –11.31% 

4-min distance planning –28.6% 
4-min energy planning –15.73% 

5.4.6 Comments 

It was clear from the assessment that energy-efficient motion planning that respects 
the system dynamics results in far better performance than traditional distance 
optimal motion planning (i.e., proximity to desired goal, better velocity tracking, 
and less obstacle collisions).  
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An important achievement of the assessment was the successful integration on the 
FSU-Bot and Husky robots of detailed slip, dynamic, and power models.  

Future work will concentrate on the inclusion of replanning strategies to alleviate 
some of the unexpected robot collisions experienced during the assessment. It is 
expected that replanning rates demanded by energy efficient planning would be 
significantly lower than those required by traditional minimum distance planning. 

5.5 TBA: Improved Contact Sensors for Terrain Classification 

5.5.1 Description of Capability 

The current state-of-the-art proprioceptive terrain classification techniques measure 
a vehicle’s reaction to a terrain via motor current sensing, vibration sensing, and/or 
by measuring various system states. These methods have demonstrated the ability 
to obtain terrain information rich enough to train a pattern recognition-based 
classifier capable of achieving high classification accuracies. However, these 
accuracies suffer when vehicle dynamics (e.g., speed, load) change because the 
terrain signatures used for identification are attenuated by the system dynamics. 
Experimental work with the XRL (Ordonez et al. 2013) addressed this behavior and 
suggested that terrain signatures from various operating modes (gaits) must be used 
to train a robust classifier.  

5.5.2 Platform configuration 

As part of RCTA work in perception, a new terrain identification technique was 
developed. The approach measures terrain signatures through direct contact with 
the surface and in this way the measurements are independent of vehicle dynamics. 
Taking cues from the touch sensitive nerves in biological skin, a pressure sensitive 
robot skin (PreSRS) was developed, which featured a pressure sensing array 
containing 1,952 individual sensors arranged evenly across a 2.2- × 2.2-inch area. 
Adhering layers of compliant materials that emulate human skin biology around the 
sensing array proved to not only protect the sensor but also enhanced captured 
pressure image measurements. 

As shown in Fig. 31, the skin was integrated onto a SLIP type 1-legged hopping 
robot underneath the foot. In this fashion, various terrains were measured from the 
ground contact occurring at each step taken by the hopper. A Parzen Window 
Estimation classifier was trained to identify 4 terrains (wood, carpet, clay, and 
grass) with features extracted from the magnitude frequency response of the 
PreSRS measurements. As shown in Table 10, the trained classifier exhibited 
almost perfect classification accuracies even if the dynamics of the robot were 
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changed. The robot dynamics were varied by changing the control parameters 
governing the robot’s leg gait. These results demonstrated the effectiveness of the 
PreSRS terrain measuring technique at generating terrain signatures independent of 
the robot dynamics (Shill et al. 2014). 

     

Fig. 31 (left) The experimental setup for terrain classification using PreSRS on the Hopper. 
(right) A computer-aided design schematic of the Hopper with PreSRS attached to the bottom 
of the robot foot. 

Table 10 Terrain classification accuracies 

 

5.6 Results 

The need for such a high-resolution sensor was questioned. Experiments described 
in Shill et al. 2015 suggest that indeed a high-resolution sensor is not necessary for 
identification of very distinct terrain. However, when distinguishing between very 
similar terrains, high-resolution sensing is required. For example, an experiment 
was done on classifying various grits of sand paper, which achieved a 96% 
accuracy. The findings showed that having multiple sensors provides redundant 
information, which can be used to supplement for damaged areas of the sensing 
grid. Sensor damage can occur when traversing rough terrain such as rocks. The 
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results displayed in Fig. 32 demonstrate that the classifier’s accuracy significantly 
drops once the sensor has suffered 16% damage. However, when using a technique 
that uses the data from functioning sensors to fill in for the lost data in neighboring 
damaged cells, the classifier accuracy is sustained until almost 90% of the sensor 
is damaged (152 of the 1,952 sensors operating). The findings suggest that a high-
resolution sensor will have a longer life span than a lower resolution sensor. 

 

 
Fig. 32 Plots of terrain classification accuracy vs. sensor damage attained from the damaged 
image sets (dashed line) and the repaired image sets (red line). The accuracy drops below 90% 
at 13% damage with no repairing, and at 90% damage with repair. 

6. Conclusion 

This report describes numerous experiments that the ARL RCTA conducted in 
2014, which assessed and evaluated performance of technologies developed during 
the first 5 years of the program. These efforts were organized into 2 levels of 
assessment based on whether the capabilities were integrated to perform across 
scenarios and environments (IRAs) or limited by the breadth of capability (TBAs). 
The capabilities examined by the IRAs included semantic perception and 
navigation, doorway detection, pedestrian detection and tracking, object 
recognition and grasping, and human-robot interaction. TBAs evaluated 
capabilities in self-anchored reaching, stair-climbing by a hexapod, crossing a gap 
by a quadruped, efficient motion with dynamic and power models, and improved 
contact sensors for terrain classification. The technologies and experiments are 
described and references provided to enable further reading. The experimental 
results and lessons learned from this experimentation will be used to advance the 
ability of robots to think, look, talk, move, and work. 
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The interaction of the collected research components of the IRAs revealed some 
system-level considerations. In the Indoor Search and Grasp IRA, the placement of 
the manipulator arm relative to the navigation sensors had some detrimental effects. 
In some instances the arm blocked the line of sight between the perception system, 
and the objects in the room could not be detected during those times. Also, this 
instantiation of the planning for grasping included the accommodation of a 
preferred grasp position, which was a factor in the navigation behavior. The 
geometry of the gas can combined with the limitations of manipulator arm 
movement required the robot to approach the can from certain directions, which in 
some instances, due to nearby walls or objects, were not available. Future work in 
autonomous grasping calls for the ability of the robot to move the object into an 
acceptable orientation prior to attempting a grasp. This will likely require the robot 
to make assumptions about the ability to move an object. In the End-to-End IRA 
where semantic navigation and perceptions was coupled with door detection and 
pedestrian classification, the integration of components also revealed some 
considerations. During the Semantic Navigation and Perception IRA, classification 
of the building was enabled by ensuring that at the beginning of the run the robot 
was facing and relatively near the building of interest. For the End-to-End runs 
where the robot was expected to traverse a longer distance in the vicinity of multiple 
structures, building disambiguation required introducing landmarks into the 
commands or placing the robot in an orientation or proximity to the building of 
interest to prevent the robot from wandering. Future work in navigation should 
address the decisions required to disambiguate object detections when the robot has 
multiple sensors that are intended to provide information at distinct ranges yet the 
ranges of those sensors overlap. 

The results from the TBAs also highlighted areas that call for focused efforts. The 
assessment on self-anchored reaching demonstrated some benefits of autonomy and 
underscored the need for increased processing of perception inputs. The assessment 
of semi-autonomous stair climbing by a hexapod affirmed the functionality of the 
stair detection algorithm and switching behavior and called for the pursuit of an 
adaptable gait for climbing applications. When a quadruped with flexible spine 
(CANID) was evaluated for its ability to leap across gaps, this revealed a relatively 
lower sensitivity to landing height conditions for rigid surfaces and the need to 
investigate additional degrees of leg freedom to improve performance on loose 
terrain. The assessment for dynamic power models of wheeled skid-steered 
vehicles showed benefits of efficient motion planning and called for continued 
effort in replanning strategies. Evaluation of a novel contact sensor demonstrated 
the ability to generate terrain signatures independent of robot dynamics. 
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List of Symbols, Abbreviations, and Acronyms 

2-D  2-dimensional 

3-D  3-dimensional 

ADPM  Active Deformable Part Model 

APP  Annual Program Plan 

ARL  US Army Research Laboratory 

CACTF  Combined Arms Collective Training Facility 

CWM  Common World Model 

DMUM  dexterous manipulation and unique mobility 

FTIG  Fort Indiantown Gap 

HMMWV  High Mobility Multipurpose Wheeled Vehicle 

HRI  human-robot interaction 

ID  identification 

IMU Inertial Measurement Unit 

IRA integrated research assessment 

JPL Jet Propulsion Laboratory 

LADAR laser detection and ranging 

MIT Massachusetts Institute of Technology 

MMI multimodal user interface 

PreSRS pressure sensitive robot skin 

RCTA Robotics Collaborative Technology Alliance 

TBA task-based assessment 

TBS Tactical Behavior Specification 

UGV unmanned ground vehicle 

VO visual odometry 
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