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1. Background and Scope of Effort 
 
There were two main goals proposed for this project on transport theory for propagation 
and reverberation. The first goal was to make data-model comparisons with TREX13 
results for propagation and reverberation to further verify transport theory predictions. A 
second goal was to use transport theory results to support the development of the 
TOTLOS model (an effective reflection loss for the total field) that will allow effects of 
sea surface forward scattering to be incorporated into standard ray-based, mode-based, or 
energy flux propagation and reverberation models. (Some additional goals were 
originally proposed, but the reduction in the funds awarded compared to the original 
amount proposed led to some reduction in goals.) 
 
Propagation or reverberation modeling is typically accomplished using ray tracing, 
normal mode, or energy flux methods, with PE a common option for propagation. 
However, these methods usually rely on approximating the effects of forward scattering 
from roughness at the sea surface or sea floor by using a boundary reflection loss, or by 
simply ignoring these effects. In order to more accurately treat the full complexity of the 
environment, full wave methods (which can include mode methods) could be employed, 
and a “Monte Carlo” approach can in principle be used with realizations of 
environmental variability, e.g., rough boundaries or water column variability such as 
internal waves. The average field or average intensity, as well as higher statistics of the 
field, can then be obtained through averaging results over an ensemble of realizations. 
The computational burden, however, makes such an approach only suitable for obtaining 
“benchmark” solutions for comparison with other methods.  
 
The term transport theory applies to any method that attempts to develop evolution 
equations for the moments (or averages) of the field, and it has been applied to diverse 
topics quite separate from acoustics. Our approach is based on expanding the acoustic 
field in modes, and therefore would most readily apply at mid-frequencies and below, 
and in relatively shallow water environments such as on the continental shelf.  
 
Transport theory, a fast computational method, has been under continuing development 
in our most recent project, and as implemented it can accurately account for the effects of 
forward scattering from the sea surface in both propagation and reverberation for 
frequencies up to the mid-frequency range (e.g., at least up to 3 kHz). We have shown 
that when applied to reverberation at 3 kHz the effects of surface forward scattering can 
be quite significant, and without a method such as transport theory that accounts for 
effects of boundary roughness there can be prediction uncertainties of 10 dB or even 
greater using traditional modeling methods. 
 
Because of the magnitude of the uncertainty that surface forward scattering introduces 
into present reverberation modeling, and because transport theory appears to be able to 
model these effects correctly, it is important to obtain experimental confirmation of 
transport theory predictions of reverberation. A major focus of the present project has 
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been to employ reverberation results from TREX13 as a test of transport theory 
predictions. 
 
The need to account for surface forward scattering with traditional reverberation 
modeling approaches readily accessable for naval applications is also being addressed. A 
separate project initially supported by PMW-120 (M. Speckhahn) has been ongoing with 
this particular goal in mind. The effect of surface forward scattering is treated with an 
effective surface reflection loss model for the total field (referred to as TOTLOS), where 
the total field is the combination of the coherent (or reflected) component, and the 
incoherent (or scattered) component. The original approach in developing TOTLOS was 
to base it on the results of Monte Carlo rough surface PE results, but as transport theory 
became available it became clear that results from it were much more suitable to support 
TOTLOS development. As a result TOTLOS development became an important 
secondary goal of the present project. 
 
2. Transport Theory Comparisons with PE 
 
Before describing transport theory comparisons with TREX13 results, validations studies 
of transport theory accuracy using comparisons with parabolic equation (PE) results will 
be summarized. Past comparisons of propagation field plots between transport theory and 
PE results have shown excellent agreement. However, that agreement may not be 
sufficient to validate reverberation predicitions, since the field plots are dominated by the 
lowest modes, while higher modes excited by surface forward scattering make important 
contributions to the reverberation level. Thus, a more definitive comparison can be make 
by comparing the mode amplitudes as a function of range between transport theory and 
PE. The mode amplitudes are a direct output from transport theory, while more effort is 
required to obtain the corresponding results with PE. The method used was to make 50 
rough surface PE runs with independent realizations of the rough sea surface. For each 
run the PE field is projected onto modes as a function of range. The absolute square of 
these mode amplitudes is averaged over realizations and the square root taken to yield 
rms mode amplitudes as a function of range, which can be compared directly with 
transport theory mode amplitudes.   
 
Figure 1 shows an example at 3 kHz of the mode amplitude decays obtained from 
transport theory, where the initial mode amplitudes are all taken equal for convenience of 
display. Mode coupling occurs from a rough sea surface corresponding to a fully 
developed sea with a wind speed of 7.7 m/s (15 knots). With a flat sea surface, the mode 
amplitudes would decrease as straight lines on this plot with a slope that increases 
monotonically with mode number. The higher mode amplitude density and decrease in 
slope in the lower part of the plot is due to forward scattering from the surface that leads 
to mode coupling. 
 
To obtain mode amplitudes with PE, it most convenient to use a point source, which does 
not yield initial equal amplitudes, and the same point source is used with transport theory. 
By placing the point source at mid depth (at 25 m depth with a todal depth of 50 m over a 
sand bottom with attenuation of 0.5 dB/wavelength), the odd numbered modes do begin 
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with approximately equal amplitudes, while the amplitudes for the even modes are more 
variable. Thus, plots for odd and even mode numbers are considered separately. Figure 2 
gives the comparison for the first 10 odd mode amplitudes showing quite good 
agreement. 
 

 
Figure 1. Mode ampitudes for 3 kHz example with initial equal amplitudes. The mode 1 
amplitude is the top blue line and the mode numbers increase in order moving down the 
plot. 
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Figure 2. Odd mode decays at 3 kHz comparing transport (smooth dashed lines) and PE 
(fluctuating lines). Odd mode amplitudes in the range 119 are shown. 
 
Figure 3 gives the corresponding comparison for the first 10 even modes, and again the 
agreement is quite good. However, the comparisons in Figures 2 and 3 are for the lowest 
modes that corresond to the lowest grazing angles. The algorithm used in our transport 
theory for mode coupling due to surface roughness is based on first-order perturbation 
theory, and this method would become the most suspect for higher modes corresponding 
to higher grazing angles. And these higher modes can make important contributions to 
reverberation when a rough sea surface leads to mode coupling. Thus it is important as 
well to verify transport theory accuracy for the highest modes of interest. Figure 4 makes 
such a comparison, and once again the agreement is quite good. Including even higher 
modes does not change the reverberation prediction, since convergence with respect to 
number of modes has been obtained. Thus, the agreement shown in Figure 4 gives strong 
support to transport theory reverberation predictions up to 3 kHz for a given sea surface 
roughness spectrum and bottom scattering model. Recall that the PE model does not 
invoke perturbation theory when treating surface scattering.  

 

 
 
Figure 3. Even mode decays at 3 kHz comparing transport (smooth lines) and PE 
(fluctuating lines). Even mode amplitudes in the range 220 are shown. 
 
3. Data/Model Reverberation Comparisons 

 
TREX13 provided excellent reverberation data sets in a well-characterized environment, 
and transport theory was used to model the measured reverberation in this shallow water 
environment at mid frequencies. In doing this, it was necessary to confront the issue of 
the directional nature of the wave field relative to the “reverberation track,” a region of 
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about 2 degrees in azimuth from which the reverberation was measured with a horizontal 
array. It must be mentioned that our transport theory method is essentially 2-D (range and 
depth), so that out-of-plane forward scattering (a 3-D effect) is not treated directly. This 
fact is important when attempts are made to verify the accuracy of transport theory 
reverberation predictions by comparisons with measurements. As will be discussed, the 
reverberation levels can be quite different when the surface waves are closely aligned 
with the reverberation track compared to when the waves are approximately 
perpendicular to the reverberation track.  
 
 

 
Figure 4. Comparison of mode amplitudes from transport theory (dot-dash lines) and 
from PE (fluctuating lines) for every tenth mode from mode 80 (top) to mode 140 
(bottom). For this case the frequency is 3 kHz, the water depth is 50 m, and there are 70 
trapped modes.  
 
To appreciate the complexity that is present when dealing with a 2-D roughness spectrum, 
it is useful to consider scattering based on perturbation theory in some detail with a plane 
wave incident on the rough surface. The situation with normal modes will be essentially 
the same, and perturbation is used to model the coupling of modes. In perturbation theory 
(also known as Bragg scattering), the horizontal component of an acoustic wave is 
changed when scattering from a water wave by vector addition and subtraction of the 
wave vector for the water wave. Let an incident acoustic plane wave have wave vector ki 
= kiH + kiz, where kiH denotes the horizontal component and kiz denotes the vertical 
component. If the plane wave scatters from a single sinusoidal wave with wave vector k, 
which necessarily is in the horizontal plane, then in lowest-order perturbation theory, 
there are two scattered waves and the horizontal components of the scattered waves are 
given by ksH+/- = kiH  k. The full scattered wave vector for each of these scattered 
waves is given by ks = ksH + ksz. Because Doppler effects can be ignored in this context, 
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the magnitudes of the incident and scattered wave vectors can be taken as the same, |ki| = 
|ks|, which is sufficient to determine ksz for each of the two scattered waves. 
 
How this works out in practice is illustrated first in Figure 5 for the familiar case where 
the incident wave vector is in the x-z plane and the water wave vector is parallel to the x-
axis. This is an example where the water roughness spectrum is 1-D, the scattering 
problem is 2-D (in x and z), and there is no out-of-plane scattering. The horizontal 
component of the incident wave vector is shown in the upper left in Figure 5 with the 
water wave crests shown with blue lines. In general there will be both a reflected wave 
and the two scattered waves. The reflected wave has the same horizontal component of 
the wave vector as the incident wave as shown in the upper right in Figure 5, while the 
horizontal components of the wave vectors for the two scattered waves will differ from 
the reflected component by  k. The situation in the vertical plane is shown in the lower 
right in Figure 5. Since the wave vectors all have the same magnitude, they all lie on a 
common circle. For the scattered wave with an increased horizontal component 
(increased by k), the vertical component must decrease to maintain the same vector 
magnitude, so the grazing angle of the scattered wave is decreased. For the scattered 
wave with a decreased horizontal component (decreased by k), the vertical component 
must increase to maintain the same vector magnitude, so the grazing angle of the 
scattered wave is increased. While these results are familiar for the case of a 1-D surface 
spectrum (2-D scattering problem), the same considerations apply to the case of a 2-D 
surface spectrum (3-D scattering problem) where the results are not as familiar and 
indeed can be surprising.  

 
 
Figure 5. Wave vectors associated with scattering from a water wave traveling in the 
same direction as the horizontal component of the incident wave. 

7



Distribution Statement A. Approved for Public Release: Distribution is Unlimited 
 

 
Figure 6 shows the wave vector diagrams for the more general case where the 
propagation direction of the water wave (shown in the upper left in Figure 6) is not 
parallel to the horizontal component of the incident acoustic plane wave, which is again 
taken to be parallel to the x-axis. The horizontal components of the two scattered acoustic 
waves (shown in the upper right in Figure 6) are again determined by vector addition of 
the horizontal component of the incident wave vector and the water wave vector, in this 
case leading to out-of-plane scattering. For the case shown, one scattered horizontal wave 
vector, denoted with a plus sign, will lead to a smaller z component than the incident 
wave, and thus to a smaller grazing angle in the scattered wave. The other scattered wave 
will have a higher grazing angle than the incident wave. 
 
An interesting case occurs when the direction of water wave propagation is perpendicular 
to the horizontal component of the incident acoustic wave as illustrated on the left in the 
middle of Figure 6. The wave vector addition shown on the right in the middle of Figure 
6 gives a symmetric result with the two scattered horizontal wave vectors having the 
same length that is longer than the horizontal component of the incident and reflected 
wave vectors. This means that both scattered waves will have a smaller grazing angle 
than the incident wave and will be symmetrically out-of-plane, one with a positive y-
component, and the other with an equal but negative y-component. Viewed in the vertical 
x-z plane (shown in the lower right on Figure 6), the two scattered wave vectors will be 
co-incident and lie above the reflected x-z component and with the same x-component. 
The magnitude of the full scattered wave vectors will again be unchanged from the 
magnitude of the incident wave vector, but their projections on the x-z plane are smaller, 
since the y-component is not evident in this view.  
 
This observation leads to important predictions about how the reverberation level will 
differ between the cases when the dominant waves are roughly parallel to the 
reverberation track compared to when they are approximately perpendicular to the 
reverberation track. In the first (parallel) case, surface scattering will lead to enhanced 
energy loss into the bottom reducing the expected reverberation, but the higher grazing 
angles incident on the bottom because of the surface scattering will mitigate that 
reduction to some extent. In the second (perpendicular) case, surface scattering will 
reduce the energy loss into the bottom, even compared to a calm surface, which should 
increase the energy that reaches longer ranges with a tendency to increase the longer 
range reverberation. But at the same time, the surface scattering will have the effect of 
decreasing the grazing angles at the bottom, which will mitigate the expected increase to 
some extent. How these contrary tendencies play out will be best understood with 
reverberation measurements and simulations. 
 
The situation with modes is analogous. Scattering that increases the grazing angle causes 
coupling from a mode n to mode m, where m > n. Conversely, scattering the decreases 
the grazing angle causes coupling from a mode n to mode m, where m < n. So, in the 
ideal case where the water waves are all perpendicular to the reverberation track, surface 
scattering will only cause conversion to lower modes, producing a lower mode 
distribution than if the surface had been flat. This ideal case should lead to propagation to 
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longer ranges than if the surface was calm, and probably higher reverberation at longer 
ranges. Usually, however, the wave spectrum is spread over a range of azimuthal angles, 
and such an ideal case is not likely to occur. 
 

 
 
Figure 6. Wave vectors associated with scattering from a water wave traveling about 45 
(top) and 90 (middle and bottom) from the direction of the horizontal component of the 
incident wave. 
 
TREX13 provided several reverberation data sets that could be used for data/model 
comparisons. Figure 7 shows the reverberation level on three days when it was 
determined that there was no significant scattering from schools of fish. The two-way 
travel time has been converted to range using the average sound speed in the water. These 
curves are 10-ping averages, and the obvious spikes in the reverberation were found to be 
not statistical fluctuations, but deterministic returns from the regions with mud 
concentrations in the low points (the swales) in the gentle ridge and swale structure in the 
region of the experiment site. The spikes are likely the result of scattering from inclusions, 
such as clumps of sand or shell pieces, in the mud. This complicates making data/model 
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comparisons, since our modeling of the reverberation is confined to the sand on the 
ridges where there is information on the sediment roughness that can be used to model 
backscattering from the bottom. Ideally, then, the modeled reverberation curves should 
lie along the lowest portion of the data curves, not influenced by the spikes in the data. 
 
 
 

 
 
Figure 7. TREX13 measured reverberation level in the 3.4-3.5 kHz band on three days 
with different surface roughness. 
 
It was also determined that the sediment changed character to become a softer sediment 
at a range greater than about 5 km, and in this region the reverberation level was also 
approaching the background noise level. Thus, the portion of the reverberation data out to 
a range of about 5 km is the best for making data/model comparisons.  
 
For the three reverberation curves shown in Figure 7, the sea conditions varied from a 
quite small wave height on 24 April to somewhat higher sea states on 1 May and 8 May, 
all in 2013. Directional frequency spectra for the latter two days are shown in Figure 8, 
where the 2 wide reverberation track at a bearing centered on 129 is shown by the 
magenta line. These wave spectra show the direction the waves are traveling from, and it 
can be seen that on 1 May the waves are traveling from southeast to northwest relatively 
close to the reverberation track, and on 8 May they are closer to perpendicular to the 
reverberation track. In both cases there appears to substantial angular spread in the wave 
spectrum.  
 
Simply from a comparison of Figures 7 and 8, some qualitative agreement with the 
discussion related to Figures 5 and 6 can be observed. With waves traveling 
approximately along the track, surface forward scattering should lead to a reduced 
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reverberation level for 1 May compared to the relatively calmer conditions for 24 April, 
and that is indeed the case in going from the red to the blue data curves in Figure 7. For 8 
May the sea state was higher than for 1 May (the RMS height nearly twice as great), and 
if the wave direction were similar to that for 1 May, the reverberation level should be 
even lower than that for 1 May. But the wave direction is closer to perpendicular to the 
reverberation track, and according to the discussion related to Figure 6, that should lead 
to less reduction in reverberation level than if along the track, and in fact the reduction is 
even less than for the 1 May case. This shows qualitatively the importance of the 
directional nature of the wave field when modeling reverberation, and the need to account 
for such 3-D effects. 
 

 
 
Figure 8. Directional frequency spectra for 1 May and 8 May 2013 at the TREX13 site 
from wave buoy data obtained by Peter Dahl and David Dall’Osto. 
 
To proceed with modeling the reverberation, the 2-D frequency spectra as in Figure 8 
where converted to 2-D wave number spectra, where the gravity wave dispersion relation 
was employed. Scattering from the bottom was modeled as scattering from only the 
rough water-sediment interface using roughness spectra obtained with a laser line scanner 
by Todd Hefner at APL-UW. The sound speed profile was very close to uniform with 
depth, and was taken as isovelocity. Finally, the known source level was used. With the 
scattering and propagation properties determined, there were no adjustable parameters 
when modeling the reverberation level. 
 
It was first shown that adequate data-model comparisons were not obtained by starting 
with the 2-D wave number spectrum and then obtaining an equivalent 1-D roughness 
spectrum for use in transport theory by taking the marginal spectrum along the track, that 
is, integrating over the 2-D spectrum in the direction perpendicular to the direction of the 
reverberation track. In retrospect, this is not surprising, since the use of the marginal 1-D 
spectrum is not based on scattering physics.  
 
To improve on the use of a marginal 1-D spectrum, a new approach was implemented 
based on the following hypothesis: For reverberation modeling, the 2-D propagation 
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model should be formulated such that surface forward scattering leads to the same 
amplitude distribution in vertical scattering angles as for the full 3-D case. That is, in 
going from 3-D to 2-D, the vertical scattering distribution should be preserved, since this 
is the most important element in determining the distribution of grazing angles on the 
bottom that will affect loss into the bottom and backscattering from the bottom. The out-
of-plane horizontal component of the scattering (i.e., the y-component in Figure 6) is 
assumed to largely cancel out and is not treated. This hypothesis allows the full 3-D 
scattering problem to be reduced to a set of 2-D scattering problems along each radial for 
which the wave spectrum provides information. These radials are at 4 intervals, giving 
90 radials. However, rough surface scattering theory generally assumes the wave spectra 
have been symmetrized, meaning that here the spectra are made symmetric with respect 
to the origin in the polar representation being used, and the same is true for the mode 
coupling formalism used with our transport theory. With this convention, it is necessary 
to only take into account 45 radials that span 180 in azimuth. To implement this 
approach, the 2-D wave spectrum is decomposed into 45 1-D spectra, one for each radial. 
Then a mode coupling matrix is found by adding the contributions from each radial to 
each matrix element. The resulting coupling matrix is used for the transport theory run. 
Because the source and receiver are at slightly different depths, transport theory runs are 
made from each location and are combined with the bottom bistatic scattering cross 
section when computing the reverberation level.  
 
Figure 9 shows the data/model comparison for the measured reverberation in the 3.4-3.5 
kHz band on 24 April, the day with a very low sea state with an RMS height of just 0.03 
m. As would be expected for this case, there is very little difference between ignoring 
surface forward scattering (red) and accounting for surface forward scattering (blue). 
Even for this nearly calm sea, there is enough loss at short range in the coherent field to 
give a noticeably lower reverberation prediction when the coherent field is used, 
equivalent to using a coherent reflection loss at the surface. The agreement between the 
measured reverberation and the transport theory result with forward scattering (blue 
curve) is reasonably good, given that this is an absolute comparison with no adjustable 
parameters. As mentioned previously, an ideal model result should lie along the low end 
of the measured reverberation, since the data spikes due to scattering from inclusions in 
the mud regions are not being modeled. Even so, a “perfect result” for the modeled curve 
would likely be a dB or two higher than what is shown in Figure 9. But since there are 
many uncertainties that enter into such a calculation, such as the exact source level, 
receive sensitivity, bottom roughness spectrum at the time of the measurement, and so on, 
the level of agreement is reasonably good. There does appear to be a more significant 
discrepancy in the first 1 km of range, with the model curve being too low. This 
discrepancy is not presently understood, and may be related to the lack of including a 
sediment volume contribution to bottom scattering. 
 
Figure 10 shows the data/model comparison for the measured reverberation in the 3.4-3.5 
kHz band on 1 May, and the corresponding frequency spectrum is shown on the left hand 
side of Figure 8. For all of these cases the red curve gives the result with no forward 
scattering (i.e., taking the sea surface as flat) and is the same. Thus in comparison to 
Figure 9, the reduction in measured reverberation level is evident, as is the reduction in 
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the modeled reverberation level when forward scattering is included. It does follow from 
Figure 10 that ignoring forward scattering altogether leads to a reverberation level that is 
too high, and using the coherently propagated field leads to a reverberation level that is 
too low, even for this rather modest sea state with an RMS surface height of 0.13 m. The 
significant wave height is greater by about a factor of 4, or is about 0.52 m (1.7 ft), not 
very large. When surface forward scattering is included (blue curve in Figure 10), the 
data/model comparison is reasonably good. However, if Figure 9 is used to fix any offsets 
due to a systematic error, then the blue curve in Figure 10 should also just skim the lower 
extent of the data curve, but it comes in higher than that. Thus, the combined agreement 
in Figures 9 and 10 is not as good as the apparent agreement in Figure 10 alone. 

 
Figure 9. Data/model comparison for 24 April where the measured reverberation is 
shown with the black fluctuating curve. For the red curve, there is no forward scattering, 
for the blue curve, the 2-D spectrum is used to model the forward scattering, and for the 
green curve the coherent field is propagated, equivalent to the use of the coherent loss at 
the surface. 
 
Figure 11 shows the data/model comparison for the measured reverberation in the 3.4-3.5 
kHz band on 8 May, and the corresponding frequency spectrum is shown on the right 
hand side of Figure 8. Note that in this case the reverberation level is higher than the flat 
surface case out to a range of about 2.5 km, and then is about the same as the flat surface 
case at greater range. This is the type of behavior that might be expected if the wave field 
was narrowly confined in direction close to perpendicular to the direction of the 
reverberation track, as mentioned previously. However, the model curve with forward 
scattering (blue) differs significantly from the measured reverberation. 
 
It can also be observed in Figure 11 that while the model result with forward scattering 
(blue curve) does not have a good match with the data, it does have a nearly uniform 
offset. Also, the coherent curve (green) lies much lower than the corresponding curve in 
Figure 10, consistent with the greater RMS surface height on 8 May. 
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The data/model discrepancy for 8 May seems to superficially lie with the wide angular 
extent of the frequency spectrum given on the right hand side of Figure 8, while the 
measured reverberation seems more consistent with a wave field that is confined more 
narrowly about a bearing perpendicular to the reverberation track. At least, that is how it 
appears based on the qualitative arguments discussed related to Figure 6. This led to 
considering the possibility that the angular spectrum given by the wave buoy might be 
inappropriately broadened. If so, that might explain the discrepancy. 
 

 
Figure 10. Data/model comparison for 1 May where the measured reverberation is 
shown with the black fluctuating curve. For the red curve, there is no forward scattering, 
for the blue curve, the 2-D spectrum is used to model the forward scattering, and for the 
green curve the coherent field is propagated, equivalent to the use of the coherent loss at 
the surface. 
 
To pursue this idea Todd Hefner helped obtain an independent set of frequency spectra 
measured with the Acoustic Wave and Current Profiler (AWAC) system during TREX13 
and obtained by Joe Calantoni at NRL-SSC and Alex Sheremet at the University of 
Florida. This system is capable of measuring the direction frequency spectrum using a set 
of upward looking sonars. The directional frequency spectrum for the 8 May time period 
is shown in Figure 12. Initially, this directional frequency spectrum appeared promising, 
because the higher spectral levels appear more concentrated about a bearing closer to 
perpendicular to the reverberation track than in Figure 8 (right side). However, soon after 
Figure 12 became available, a more revealing version of the wave buoy spectrum for 8 
May also became available and is given in Figure 13. In retrospect, the color scale chosen 
in Figure 8 did not fully represent the relative spectral levels and gave the impression that 
the spectrum had a broader angular range than it actually did.  
 
While the spectra in Figures 12 and 13 are not in perfect agreement, the differences are 
modest. Figure 14 shows a comparison of the reverberation level with forward scattering 
using the wave buoy spectrum (blue) and the AWAC spectrum (yellow). The modeled 
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reverberation shows some difference between the two spectra, with slightly better 
data/mode agreement with the AWAC spectrum, but the difference does not remove the 
basic data/model discrepancy, which remains an open question. The difference shown 
can be viewed as one measure of modeling uncertainty as a result of environment 
uncertainty.  

 
 
Figure 11. Data/model comparison for 8 May where the curves have the same meaning 
as in Figures 9 and 10. 
 
Another possible contributor to the data/model difference for the reverberation on 8 May 
is suggested by a comparison of the reverberation data curves given by Figure 7. On 8 
May the spikes in the data have reduced level in comparison to 24 April and 1 May. It 
may be that in the rougher conditions of 8 May the forward scattering leads to a smearing 
in time for the energy scattered from the mud regions, and this appears to increase the 
reverberation level in between the spikes that is being modeled as from only sand. This 
could be one reason the modeled curve is too low. 
 
The results so far from TREX13 data/model comparisons can be summarized as follows: 
The importance of properly accounting for surface forward scattering and the directional 
nature of the wave field in reverberation modeling is evident in the measured 
reverberation itself. This shows the importance of taking into account the full 3-D nature 
of the forward scattering process when modeling the reverberation. The attempt to 
account for these effects by converting from 3-D to 2-D with an approximate method that 
preserves the vertical distribution of scattering angles shows some promise, but is not 
sufficiently accurate at this time. It should be noted that the TREX13 reverberation data 
were taken with relatively modest sea states, and at higher sea states these effects are 
predicted to be substantially greater. 
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Figure 12. Directional frequency spectrum for 8 May obtained with the AWAC system by 
Joe Calantoni and Alex Sheremet. The colors are arbitrary and normalized to the 
maximum value. 

 
 
Figure 13. Frequency spectrum for 8 May from the wave buoy. The frequency range has 
been chosen to match the AWAC spectrum in Figure 12, and the colors indicate relative 

16



Distribution Statement A. Approved for Public Release: Distribution is Unlimited 
 

spectral level. The white line indicates a bearing due west. 
 

 
Figure 14. Data/model comparison for 8 May where the red, blue, and green curves were 
obtained with the wave buoy spectrum and where for the yellow curve the 2-D AWAC 
spectrum is used to model the forward scattering. 
 
 
4. TOTLOS Model Development 
 
Because transports theory has shown the importance of accounting for sea surface 
forward scattering in accurately modeling shallow water reverberation at mid 
frequencies, it becomes imperative to develop as approximate way to include these 
effects into traditional ray-based or mode-based reverberation codes. As mentioned in 
Section 1, a separate project initiated with support from PMW-120 (M. Speckhahn) has 
been ongoing with this particular goal in mind.  
 
The approach being used in the development of TOTLOS will be summarized briefly. 
Because our transport theory is mode-based, it readily provides mode amplitudes as a 
function of range for any particular shallow water environment of interest. Each mode 
amplitude can be associated with a particular grazing angle at the sea surface. The decay 
of each mode amplitude over a cycle distance (the distance between surface interactions 
assuming reflected rays) is first determined, and the contribution of loss at the bottom is 
removed. What remains is identified as a loss in a single surface interaction, and in many 
cases that loss is negative, which means that there is a gain. In such a case more energy is 
being forward scattered into a particular mode than is being lost into the bottom in one 
cycle distance. With this information determined as a function of range for each mode, it 
is possible to form an effective reflection loss (the TOTLOS model) that will replicate the 
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transport theory results for propagation when surface forward scattering occurs. The 
model can then be tested in reverberation geometries using TOTLOS in a ray-based code 
such as CASS-GRAB and making comparisons with transport theory reverberation 
results.  
 
The TOTLOS model depends not only on the sea surface roughness and frequency, but 
on range and on the water column and bottom properties, i.e., the TOTLOS model is 
scenario dependent. To avoid the need to tune the model to each scenario with 
appropriate transport runs, the approach is to develop an algorithm using quasi-analytic 
expressions for the model parameters based on a selection of transport runs, and then use 
that algorithm to define the parameters for the model in general 
 
Continued progress has been made in developing the TOTLOS model for an effective 
reflection coefficient that leads to reverberation predictions in close agreement with 
transport theory results. At the present time, the TOTLOS model has been specialized to 
the case of an isovelocity sound speed profile with a 1-D roughness spectrum obtained by 
taking the marginal spectrum from an isotropic Pierson-Moskowitz roughness spectrum. 
Under these conditions the TOTLOS model can now handle variations in frequency, 
wind speed, water depth, sediment sound speed, sediment attenuation, and sediment 
density. We anticipate that when methods are perfected to treat the directional nature of 
the wave field with transport theory modeling of reverberation, then it should be possible 
to generalize the TOTLOS model to account for the same effects. 
 
As part of an ongoing STTR Phase II supported by NAVAIR, TOTLOS is being 
implemented into ASPM. While the implementation of TOTLOS into CASS-GRAB was 
straightforward and effectively trivial, the case of ASPM is not as simple, and it has been 
an important component of the STTR project. As part of that effort, methods are being 
developed to obtain ground truth for reverberation in an environment with a range-
dependent water depth based on a rough surfare PE method for reverberation developed 
by Tang and Jackson. When that method is available, expected shortly, TOTLOS will be 
tested in range-dependent environments to determine the conditions under which the 
present version can be employed by using the local water depth in the model, while 
letting the depth vary with range. 
 
A proposal has been submitted to ONR Code 322 to extend TOTLOS to account for 
general sound speed profiles (FY17) and to account for general 2-D surface roughness 
spectra (FY18). The latter effort would be based on the culmination of the work 
described previously to account for 2-D roughness spectra with transport theory. 
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