

 Defense Threat Reduction Agency

 8725 John J. Kingman Road, MS

 6201 Fort Belvoir, VA 22060-6201

T
E

C
H

N
IC

A
L

 R
E

P
O

R
T

DTRA-TR-16-80

Mathematical Approaches to WMD

Defense and Vulnerability

Assessments of Dynamic Networks

Distribution Statement A. Approved for public release; distribution is
unlimited.

 July 2016

HDTRA1-10-1-0050

J. Cole Smith et al.

Prepared by:
University of Florida
339 Weil Hall
Gainesville, FL 32611

 DESTRUCTION NOTICE:

 Destroy this report when it is no longer needed.
 Do not return to sender.

 PLEASE NOTIFY THE DEFENSE THREAT REDUCTION

AGENCY, ATTN: DTRIAC/ J9STT, 8725 JOHN J. KINGMAN ROAD,
MS-6201, FT BELVOIR, VA 22060-6201, IF YOUR ADDRESS
IS INCORRECT, IF YOU WISH IT DELETED FROM THE
DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO
LONGER EMPLOYED BY YOUR ORGANIZATION.

mossr
Text Box
00-07-2016

mossr
Text Box
DTRA-TR-16-80

mossr
Text Box
Distribution Statement A. Approved for public release; distribution is unlimited.

mossr
Text Box
Peter Vandeventer

mossr
Text Box
703-767-4663

mossr
Text Box

mossr
Text Box

mossr
Text Box

mossr
Text Box

mossr
Text Box
 report

mossr
Text Box

 2015-11-16

UNIT CONVERSION TABLE

U.S. customary units to and from international units of measurement
*

U.S. Customary Units
Multiply by

International Units
 Divide by

†

Length/Area/Volume

inch (in) 2.54 × 10
–2

 meter (m)

foot (ft) 3.048 × 10
–1

 meter (m)

yard (yd) 9.144 × 10
–1

 meter (m)

mile (mi, international) 1.609 344 × 10
3
 meter (m)

mile (nmi, nautical, U.S.) 1.852 × 10
3
 meter (m)

barn (b) 1 × 10
–28

 square meter (m
2
)

gallon (gal, U.S. liquid) 3.785 412 × 10
–3

 cubic meter (m
3
)

cubic foot (ft
3
) 2.831 685 × 10

–2
 cubic meter (m

3
)

Mass/Density

pound (lb) 4.535 924

× 10
–1

 kilogram (kg)

unified atomic mass unit (amu) 1.660 539 × 10
–27

 kilogram (kg)

pound-mass per cubic foot (lb ft
–3

) 1.601 846 × 10
1
 kilogram per cubic meter (kg m

–3
)

pound-force (lbf avoirdupois) 4.448 222 newton (N)

Energy/Work/Power

electron volt (eV) 1.602 177 × 10
–19

 joule (J)

erg 1 × 10
–7

 joule (J)

kiloton (kt) (TNT equivalent) 4.184 × 10
12

 joule (J)

British thermal unit (Btu)

(thermochemical)
1.054 350 × 10

3
 joule (J)

foot-pound-force (ft lbf) 1.355 818 joule (J)

calorie (cal) (thermochemical) 4.184 joule (J)

Pressure

atmosphere (atm) 1.013 250 × 10
5
 pascal (Pa)

pound force per square inch (psi) 6.984 757 × 10
3
 pascal (Pa)

Temperature

degree Fahrenheit (
o
F) [T(

o
F) − 32]/1.8 degree Celsius (

o
C)

degree Fahrenheit (
o
F) [T(

o
F) + 459.67]/1.8 kelvin (K)

Radiation

curie (Ci) [activity of radionuclides] 3.7 × 10
10

 per second (s
–1

) [becquerel (Bq)]

roentgen (R) [air exposure] 2.579 760 × 10
–4

 coulomb per kilogram (C kg
–1

)

rad [absorbed dose] 1 × 10
–2

 joule per kilogram (J kg
–1

) [gray (Gy)]

rem [equivalent and effective dose] 1 × 10
–2

 joule per kilogram (J kg
–1

) [sievert (Sv)]
*
Specific details regarding the implementation of SI units may be viewed at http://www.bipm.org/en/si/.

†Multiply the U.S. customary unit by the factor to get the international unit. Divide the international unit by the factor to get the

U.S. customary unit.

http://www.bipm.org/en/si/

COVER PAGE: DTRA FINAL REPORT

Award Number HDTRA1-10-1-0050

Year: 2015
Federal Agency to Which Report is Submitted: DTRA
Federal Grant Number Assigned by Agency: HDTRA1-10-1-0050

Project Title: Mathematical Approaches to WMD Defense and Vulnerability
Assessments on Dynamic Networks

PI Information: J. Cole Smith, Professor and Chair
Email: jcsmith@clemson.edu
Phone: (864) 656-4716

Draft Submission Date: 7/6/2015
DUNS: 019361885
EIN Number: 59-6002052

Recipient Organization: University of Florida, Engineering
Address: 339 Weil Hall; Gainesville, FL 32611

Grant Period (mm/dd/yyyy): Start Date: 4/12/2010 End Date: 8/11/2015
Reporting Period End Date (mm/dd/yyyy): 6/30/2015
Report Term or Frequency: Final

Final	Report	for	HDTRA-10-1-0050	

Mathematical	Approaches	to	WMD	Defense	and	Vulnerability	Assessments	on	

Dynamic	Networks		

PI:		J.	Cole	Smith	

I.		Abstract	

This	research	addresses	the	study	of	Network	Adaptability	from	Weapons	of	Mass	
Destruction	(WMD)	Disruption	and	Cascading	Failures.	The	general	theme	of	the	
research	studies	the	problems	of	combating	disruptions	due	to	WMD	(C-WMD)	on	
networks,	taking	into	account	real-world	dynamics	on	critical	infrastructures	that	
are	vulnerable	to	such	attacks.	Our	research	examines	new	modes	of	attack	that	are	
relevant	to	WMD	analysis,	and	considers	networks	that	are	overlays	of	several	
individually	functioning	(but	related)	structures	such	as	telecommunications,	
transportation,	and	electricity	grids.	More	importantly,	we	analyze	network	
dynamics	that	include	cascading	failures	due	to	capacities	on	nodes	and	links,	
decentralized	behavior	due	to	independent	agents	on	these	networks,	and	adaptive	
recovery	schemes	in	telecommunications	settings.	Thus,	our	analysis	goes	far	
beyond	simple	connectivity	measures	of	graphs	as	a	metric	of	damage,	and	
considers	much	more	relevant	forms	of	disruption	that	could	occur	on	our	nation’s	
infrastructure.		

To	combat	these	attacks,	we	examine	the	prevention	and	mitigation	of	attacks	via	
intelligent	mobile	agent	deployment,	and	via	robust	system	design	and	recovery	
techniques	that	respond	to	worst-case	WMD	attacks.	As	a	result,	we	demonstrate	
how	to	most	effectively	deploy	existing	and	emerging	technologies	in	concert	with	
one	another.	Finally,	we	demonstrate	how	to	design	robustly	connected	networks	
that	efficiently	respond	to	massive	localized	outages.	The	proposing	team	utilizes	
techniques	that	hybridize	mixed-integer	programming,	approximation	theory,	and	
game	theory	in	order	to	guarantee	desired	levels	of	network	operability.		

II. Objective

The	research	seeks	to	develop	theory	and	algorithms	for	problems	that	arise	in	
combating	disruptions	due	to	Weapons	of	Mass	Destruction	(WMD)	on	networks.	
The	science	of	countering	WMD	has	shifted	in	the	last	decade,	and	now	tends	to	
focus	on	a	system-wide	integration	of	fortification	resources,	strategically	deployed	
to	combat	an	intelligent	adversary.		Despite	the	growing	threat	of	WMD	attacks,	
coinciding	with	a	recent	proliferation	of	network	interdiction	studies,	optimal	
interdiction	and	defense	studies	against	WMDs	is	still	an	area	of	vital	research	
importance	due	to	the	number	of	open	questions	that	exist	in	this	realm.		Our	
proposal	identified	several	key	goals	to	bridge	the	gap	between	current	research	
network	interdiction	studies,	and	the	theory	and	algorithms	needed	to	tackle	the	
countering	of	WMD	attacks.		

• Develop	new	interdiction	models	and	algorithms	in	which	an	interdictor
destroys	a	set	of	arcs	that	are	geographically	close	to	one	another.	In	contrast
to	previous	research,	which	assumes	that	individual	disparate	pieces	of	the
network	can	be	simultaneously	attacked,	our	approach	is	directly	applicable
to	WMD	analysis	and	provides	a	far	more	realistic	assessment	of	network
vulnerabilities.

• Study	dynamic	networks,	noting	that	the	state	of	current	and	emerging
networks	increasingly	adopts	this	paradigm.	We	also	embed	considerations
of	uncertain	attack	and	defense	effectiveness	in	our	models	for	this	goal	to
further	improve	the	realistic	nature	of	our	models.

• Examine	decentralized	recovery	techniques	that	many	critical	networks
adopt	under	disruptions.

• Synthesize	the	results	of	the	prior	goals	and	consider	fortification	problems
on	networks	under	adaptive	and	distributive	recovery	schemes.

• Focus	on	optimally	detecting	and	containing	cascading	failures,	especially	in
the	case	of	attacks	designed	to	propagate	across	networks	(including,	e.g.,
biological	agents).

• Apply	our	algorithms	on	test	beds	that	simulate	real-world
telecommunication,	transportation,	and	power	grids.

• Develop	compact	formulations	for	“generalized	network	interdiction
problems,”	in	which	clusters	having	a	special	structure	can	be	deleted	from	a
network,	rather	than	just	individual	nodes	or	links.

• Identify	new	methods	for	critical	network	(node)	element	detection	in
interdependent	systems,	especially	those	having	cascading	failures.

• Explore	dynamic	interdiction	problems,	in	which	two-stage	games	are
replaced	by	ongoing	games	in	which	an	adversary	destroys	links,	and	the
network	operator	can	rebuild	links	over	time.

• Examine	the	problem	in	which	edges	and	clusters	can	be	removed	and	are
deemed	as	critical	elements.

• Determine	how	to	couple	interdependent	networks	in	order	to	create	a
robust	system	of	networks.		Given	the	presence	of	various	networks,	this	goal
seeks	to	determine	which	edges	should	be	constructed	to	mitigate	the
deleterious	effects	of	cascading	failures.

III.		Approach	

	
The	approach	taken	in	this	proposal	uses	a	combination	of	interdiction	algorithms,	
global	optimization,	combinatorial	analysis,	approximation	algorithms,	and	
decentralized	computing.		While	the	technical	details	are	best	left	to	the	papers	
themselves,	the	general	approach	that	we	employ	to	address	these	problems	is	
explained	below.	
	
The	interdiction	problems	we	consider	involve	two	players:		An	attacker	and	a	
defender.		The	attacker	moves	first,	and	with	knowledge	of	the	attacker’s	move,	the	
defender	moves	next.		The	defender	is	usually	trying	to	optimize	some	objective	
over	the	network,	such	as	finding	a	shortest	origin-destination	path,	maximizing	
flow	between	two	terminals,	or	maximizing	network	reliability.		Therefore,	the	
attacker	seeks	to	inhibit	the	defender’s	objective,	e.g.,	by	maximizing	his	shortest	
path,	or	minimizing	his	maximum	flow.	The	defender	may	in	some	situations	act	
first	in	a	fortification	stage	(producing	so-called	defender-attacker-defender	
models).		Otherwise,	we	refer	to	the	problem	as	attacker-defender	models.	
	
If	the	defender	makes	decisions	in	a	centralized	manner	(by	controlling	all	aspects	
of	his	actions,	with	full	knowledge	of	the	system,	and	with	the	ability	to	jointly	
utilize	all	of	his	resources),	then	these	problems	can	be	stated	as	“min-max”	(or	
max-min)	optimization	problems:		The	attacker	acts	with	the	assumption	that	the	
defender	will	act	optimally	given	the	attacker’s	actions.		(Moreover,	in	some	
versions	of	our	problem,	the	defender	may	actually	pre-empt	certain	attacker	
options	with	an	initial	fortification	action.)		
	
On	the	other	hand,	the	defender	may	be	decentralized,	in	the	sense	that	network	
resources	(e.g.,	monitors	or	communication	hubs)	are	not	jointly	controlled	by	some	
unified	force,	but	instead	react	only	to	local	information	that	it	can	access.		In	this	
case,	the	defender	is	said	to	be	adaptive.		In	this	case,	the	defender	is	generally	
incapable	of	making	an	optimal	response,	but	would	instead	have	autonomous	
recovery	protocols	established	throughout	the	network	(e.g.,	as	would	be	required	
in	communication	restoration).			
	
One	aim	of	this	research	seeks	to	piece	together	network	complexity	theory	with	
nonlinear	optimization	theory	and	basic	Euclidean	geometry	analysis,	in	order	to	
tackle	the	class	of	network	interdiction	and	optimization	problems	over	continuous	
spaces.	Furthermore,	we	have	made	very	significant	findings	with	respect	to	
interdiction	and	competition	arising	in	discrete	games	over	networks.	This	includes	
the	path	planning	problems	mentioned	above	along	with	graph	disconnection	and	
clustering	challenges.	
	
Another	aim	is	to	develop	a	framework	for	designing	decentralized	algorithms	that	
recover	from	network	failures	(perhaps,	but	not	necessarily,	due	to	intentional	
disruptions).		Our	methods	are	called	adaptive	approximation	algorithms,	because	
they	do	not	assume	the	presence	of	a	centralized	optimizing	entity	(hence,	

adaptive),	but	yet	still	perform	with	some	guarantee	of	near-optimality	despite	their	
distributed	nature.		This	class	of	methods	is	particularly	vital	in	networks	that	are	
dynamic	and	evolving.			
	
	
IV.		Work	Accomplished:			

	

A	summary	of	some	of	our	primary	work	accomplishments	is	presented	in	Section	
IV.1,	with	a	list	of	specific	accomplishments	given	in	Section	IV.2.	
	

	

IV.1		Overview	

	
Geographical	interdiction.		One	major	research	thrust	regards	network	vulnerability	
assessments	with	geographical	interdiction.		In	fact,	our	proposed	geometric	
interdiction	problems	have	proven	to	be	extremely	difficult	to	solve,	and	evidently	
require	a	refine-and-partition	type	of	strategy	to	approximate.		The	tasks	at	hand	
are	to	provide	tight	lower-	and	upper-bounding	strategies	for	these	problems,	
solving	a	series	of	subproblems	that	are	relatively	tractable.		In	2013,	we	reported	
that	this	paper	was	accepted	for	publication	in	Networks,	and	it	appeared	in	2014.		
Recently,	this	paper	was	awarded	the	Glover-Klingman	prize	for	best	paper	
appearing	in	a	2014	issue	of	Networks.	
	
Also,	regarding	progress	on	geometric	optimization	problems,	a	study	on	extending	
the	lifetime	of	wireless	sensor	networks	spawned	papers	in	INFORMS	Journal	on	
Computing,	IEEE	Transactions	on	Mobile	Computing,	and	IIE	Transactions.		The	latter	
journal	is	the	flagship	journal	of	the	Institute	of	Industrial	Engineers,	and	their	
professional	magazine	featured	our	work	(Romich	et	al.	2015a)	in	the	May	2015	
issue	of	their	Industrial	Engineer	magazine.	
	
Understanding	network	structures	can	reveal	behavioral	functions	as	well	as	the	
vulnerability	of	the	network.	Knowledge	of	this	structure	provides	us	not	only	
crucial	information	about	network	principles,	but	also	key	insights	into	designing	
more	effective	algorithms	for	practical	problems.	In	particular,	fathoming	the	
interplay	of	different	network	elements	as	part	of	network	evolution	enabled	by	
dynamics	of	the	network	leads	to	better	understanding	of	the	vulnerability	of	
network	elements.	Many	practical	problems	on	complex	networks,	such	as	routing	
strategies	in	MANETs,	sensor	reprogramming	in	WSNs	and	worm	containment	in	
online	social	networks	(OSNs)	share	an	ubiquitous,	yet	interesting	feature	in	their	
organizations:	community	structure.	However,	understanding	this	interesting	
feature	is	extremely	challenging	on	dynamic	networks	where	changes	to	their	
topologies	are	frequently	introduced,	and	especially	when	network	communities	in	
reality	usually	overlap	with	each	other.	
	
We	investigate	network	vulnerability	based	on	communities	obtained	from	
underlying	topology,	which	has	not	been	investigated	in	the	literature.	To	achieve	

these	goals,	we	introduce	several	new	models	based	on	the	observation	that	most	
complex	networks	exhibit	a	network	modular	property.	A	network	module	may	
represent	a	functional	group,	a	component,	or	an	entity	within	the	network	system	
and	the	correlation	among	modules	can	model	and	describe	the	interplay	between	
network	components.		
	
We	have	included	the	dynamics	and	evolution	of	a	network	in	the	analysis	of	
inherent	modules,	which	is	a	new	task	that	has	not	yet	been	well	investigated.	The	
study	of	such	evolution	requires	computing	modules	of	the	network	at	different	
time	instances.	However,	identifying	network	modules	in	each	state	of	the	network	
from	scratch	may	result	in	prohibitive	computational	costs,	particularly	in	the	case	
of	highly	dynamic	networks.	In	addition,	it	may	be	infeasible	in	the	case	of	limited	
topological	data.	In	this	regard,	the	study	requires	us	to	solve	many	interesting	
problems	such	as:	
	

(a) How	to	devise	new	measures	and	methods	for	computing	network	modules	
that	are	robust	to	changes,		

(b) How	to	easily	update	the	modules	once	the	changes	occur	without	re-
calculating	them	from	scratch,	and		

(c) How	sensitive	the	community	structure	is	with	respect	to	the	failures	of	
nodes	and	edges.		

	
These	studies	aid	in	understanding	the	evolution	of	network	components,	and	
provide	a	robust	solution	for	many	applications	which	are	sensitive	to	the	structure	
of	network	communities.		
	
Next,	with	respect	to	critical	element	selection	in	networks,	our	team	has	published	
in	IEEE	Transactions	on	Reliability	on	the	topic	of	the	robustness	of	power-law	
networks.		Dr.	Thai	has	also	been	active	on	this	research	topic,	with	work	appearing	
in	the	INFOCOM	and	GLOBECOM	conference	proceedings.	
	
We	have	also	focused	on	the	problem	of	removing	cliques	that	maximally	disconnect	
a	network.		This	problem	is	called	the	Critical	Clique	Problem	(CCP).		We	give	special	
attention	to	variations	of	the	CCP	where	different	objectives	functions	are	used,	such	
as	the	number	of	pairwise	connections,	the	size	of	the	largest	component,	and	the	
total	number	of	residual	components,	among	others.	In	addition,	we	are	also	
interested	in	solving	this	problem	when	several	conditions	over	the	cliques	are	
required,	including	upper	and	lower	bounds	on	the	size	of	the	cliques.	Finally,	we	
are	also	adapting	the	proposed	techniques	for	detecting	other	critical	structures	as	
well.		See	Walteros	and	Pardalos	(2012)	for	more,	and	also	Shen	and	Smith	(2012a,	
2012b)	for	related	node-deletion	studies.		We	also	published	several	theoretical	and	
algorithm	results	regarding	these	problems	over	the	funding	period,	particularly	in	
a	pair	of	book	chapters	and	in	the	journal	Theoretical	Computer	Science.	
	
We	also	examine	Stackelberg	problems	(attacker-defender,	or	defender-attacker-
defender)	in	which	both	players	are	faced	with	NP-hard	problems.		These	problems	

are	notoriously	difficult	to	solve	and	have	resisted	practical	solution	efforts	thus	far.		
Our	goal	is	also	to	expand	the	scope	of	problems	that	can	benefit	from	our	research,	
especially	in	communication	and	sensor	network	settings.		Another	application	area	
arises	in	civilian	business	scenarios	that	serve	as	proxies	for	military	settings	(e.g.,	
models	that	can	equivalently	describe	marketing	challenges	or	military	defense	
strategies).		
	
Toward	this	goal,	we	have	proposed	a	substantially	new	approach	for	problems	that	
take	place	in	defender-attacker-defender	settings.		The	salient	concepts	can	be	
presented	in	the	attacker-defender	max-min	problem.		One	frequently	solves	this	
type	of	problem	by	assuming	that	the	follower’s	problem	is	convex,	taking	the	
(strong)	mathematical	programming	dual	of	the	follower’s	problem,	and	combining	
the	follower’s	problem	(now	converted	to	a	maximization	problem)	with	the	
leader’s	problem.		If	the	resulting	combined	problem	is	nonlinear,	which	is	typically	
the	case,	then	some	linearization	strategy	can	be	applied	to	convert	the	problem	to	a	
mixed-integer	linear	programming	problem	(MILP).		This	approach	suffers	from	two	
drawbacks.		One,	the	resulting	MILP	is	typically	very	difficult	to	solve.		Two,	the	
italicized	assumption	above	is	limiting,	and	precludes	the	analysis	of	interdiction	
problems	in	which	the	follower	solves,	e.g.,	a	discrete	optimization	problem.		(One	
such	study	was	accepted	for	publication	in	2015.		This	paper,	Tang	et	al.	(2015),	
regards	theoretical	foundations	for	solving	two-stage	integer	interdiction	problems,	
and	provides	provably	optimal	algorithms	for	their	solution.		Those	algorithms,	
however,	are	not	scalable	to	large-scale	instances.)	
	
We	have	invented	an	entirely	different	concept	behind	solving	these	problems,	
which	involves	sampling	potential	defender	solutions,	and	playing	the	game	only	
over	this	sample.		The	sample	space	is	then	adaptively	expanded	until	optimality	can	
be	proven.		The	algorithm	we	propose	is	not	only	capable	of	solving	problems	in	
which	the	follower’s	problem	is	an	integer	program,	but	our	computational	
experiments	show	that	it	far	more	effective	in	solving	traditional	interdiction	
problems.		For	instance,	consider	the	solution	of	shortest-path	interdiction	
problems	with	fortification	(SPIF):		The	defender	first	fortifies	arcs	against	attack,	
the	attacker	then	damages	several	undefended	arcs	(thus	extending	their	
interdiction	costs),	and	the	defender	then	selects	a	shortest	path	on	the	remaining	
network.		We	compared	our	algorithm	to	the	current	state-of-the-art	algorithm	for	
these	problems.		On	a	set	of	sixty	900-node	instances,	we	obtained	optimal	solutions	
in	1.7	seconds	on	average,	as	opposed	to	766.9	seconds	on	average	using	the	current	
state-of-the-art,	a	speedup	of	450	times.		(The	maximum	computation	times	were	
7.5	seconds	for	our	approach,	and	12,728.8	seconds	for	the	incumbent	approach.)		
These	results	are	particularly	exciting,	because	the	SPIF	is	a	very	well-studied	
problem.		The	details	are	included	in	Lozano	and	Smith	(2015).	
	
Although	it	is	early,	we	regard	this	as	a	potentially	landmark	algorithm,	with	
widespread	implications.		One,	this	algorithm	us	to	attempt	problems	that	have	been	
far	too	difficult	to	consider	prior	to	now,	such	as	interdicting	traveling	salesman	
problems.		Furthermore,	we	regard	this	as	the	key	missing	piece	that	we	needed	in	

order	to	solve	the	more	difficult	patrolling	problems	proposed	in	this	paper.		Two,	
this	idea	leads	to	new	possibilities	in	investigating	related	problems	that	are	also	
very	difficult.		These	include	bilevel	problems,	in	which	the	follower	seeks	to	
optimize	an	objective	that	does	not	necessarily	entail	hurting	the	leader,	but	such	
that	the	follower’s	decision	impacts	the	leader’s	objective.		Our	preliminary	results	
show	a	10-fold	speedup	compared	with	the	best	previous	algorithm	for	this	
problem,	when	implemented	on	the	same	machine.	
	
The	investigators	have	also	pursued	multilevel	work	on	integer	programs	using	
different	means	than	the	ones	above.		Prince	and	Smith	(2015)	consider	network	
location	problems	with	fortification	and	interdiction,	in	which	the	inner	problems	
are	integer	programs	but	can	be	reformulated	using	an	expanded	variable	set	as	
convex	optimization	problems.	Tadayon	and	Smith	(2015)	examine	robust	
optimization	problem	in	the	context	of	scheduling	problems,	which	have	heretofore	
gone	unexamined.		Hemmati	and	Smith	(2015)	actually	consider	bilevel	instead	of	
interdiction	problems,	and	use	a	technique	related	to	lifting	inequalities	to	obtain	a	
finitely	convergent	optimal	algorithm.		Another	pair	of	studies	that	we	have	
authored	on	securing	a	border	under	asymmetric	information	have	appeared	in	the	
prestigious	journals	Mathematical	Programming	and	Naval	Research	Logistics;	Dr.	
Kelly	Sullivan	was	the	key	student	on	those	papers	(supported	by	DTRA)	and	has	
taken	a	faculty	position	as	an	Assistant	Professor	at	the	University	of	Arkansas.	
	
Finally,	Drs.	Thai	and	Smith	collaborated	on	an	influence	propagation	model,	which	
has	recently	been	accepted	for	publication	in	Computational	Optimization	and	
Applications.		In	this	model,	we	consider	a	two-stage	defender-attacker	game	that	
takes	place	on	a	network,	in	which	the	attacker	seeks	to	influence	as	many	nodes	as	
possible.		The	defender	acts	first	in	this	game	by	protecting	a	subset	of	nodes	that	
cannot	be	influenced	by	the	attacker.		With	full	knowledge	of	the	defender's	action,	
the	attacker	can	then	influence	an	initial	subset	of	unprotected	nodes.		As	above,	this	
defender-attacker	game	is	difficult	to	optimize	because	the	attacker's	problem	itself	
is	NP-hard	(since	a	special	case	of	that	problem	corresponds	to	the	dominating	set	
problem).	Our	research	provides	new	mathematical	and	computational	insights	for	
solving	these	problems	within	reasonable	computational	limits.		
	
Dynamic	network	problems	can	also	be	viewed	in	the	light	of	dynamic	interdiction	
games.		Here,	the	defender	makes	a	set	of	moves,	followed	by	an	attack,	which	is	
followed	by	another	round	of	defense/attack	moves	until	the	game	is	complete.		For	
instance,	in	the	dynamic	shortest	path	interdiction	(DSPI)	game	studied	in	Sefair	
and	Smith	(2015),	the	attacker	damages	some	arcs	(possibly	none)	the	defender	
moves	on	an	arc,	and	the	game	continues	by	alternating	those	two	such	actions	until	
the	defender	reaches	the	terminal	node.		Note	that	for	this	discussion,	the	attacker	is	
assumed	to	have	some	limit	b	of	arcs	that	it	can	damage.	
	
These	problems	are	very	difficult,	and	evidently	do	not	even	belong	to	NP.		They	are	
related	to	robust	optimization	and	interdiction	as	follows.		Interdiction	puts	the	
attacker	at	a	disadvantage,	by	having	to	expend	all	of	its	possible	attacks	before	the	

defender	moves.		Robust	optimization	gives	the	attacker	an	advantage	by	allowing	
the	attacker	to	damage	arcs	after	the	defender	has	committed	to	a	path.		Dynamic	
interdiction	is	somewhere	in	between,	where	the	attacker	metes	out	its	b	attacks	in	
response	to	the	path	taken	so	far	by	the	defender,	and	where	the	defender	adapts	its	
path	in	response	to	the	remaining	attacker	budget	and	set	of	attacked	arcs.			
	
Although	optimal	solutions	to	this	problem	are	extremely	difficult	to	characterize	in	
general,	it	is	possible	to	create	various	restrictions	and	relaxations	for	the	attacker	
that	permit	bounds	on	the	optimal	objective	to	be	obtained	in	a	reasonable	amount	
of	computational	time.		
	
Interestingly,	the	DSPI	is	solvable	in	polynomial	time	when	b	is	fixed.		By	contrast,	
the	dynamic	sequential	assignment	problem	with	interdiction	(DAI)	involves	a	
defender,	who	assigns	one	project	at	a	time	in	each	period,	one	period	at	a	time,	
until	all	projects	are	assigned.		The	attacker	increases	the	assignment	cost	
(depending	on	the	project-period	pair),	and	the	game	is	played	in	a	dynamic	fashion	
as	above.		A	similarity	between	DAI	and	DSPI	is	that	when	interdiction	is	not	
present,	both	defender	problems	are	solvable	in	polynomial	time.		However,	when	
the	interdictor	is	limited	to	a	single	attack,	DAI	becomes	strongly	NP-hard	(and	in	
fact	inapproximable),	whereas	DSPI	is	solvable	in	polynomial	time.		Sefair	and	Smith	
are	producing	a	paper	on	this	topic	currently;	Sefair’s	dissertation	was	successfully	
defended	on	these	and	other	topics	in	June	2015.	
	
The	military	applications	that	we	are	developing	here	also	translate	directly	to	many	
other	areas	that	benefit	from	network	models,	such	as	marketing,	social	network	
analysis,	supply	chain	operations,	and	so	on.	The	quantitative	analysis	that	we	are	
developing	should	be	an	important	complement	to	the	principles	established	in	
mathematics,	physics,	and	other	branches	of	engineering,	since	those	methods	form	
the	cornerstone	of	algorithms	that	extend	well	beyond	our	current	study.	Perhaps	
surprisingly,	our	work	in	complex	networks	and	clique	detection	is	important	in	
computational	neuroscience,	for	instance	in	the	study	of	brain	trauma	disorders.			
	
	
	

	 	

IV.2 Technical Details
In this section of our report, we give technical details for ten of our most impactful studies sup-
ported by DTRA. These ten studies are available in the archival literature, and we are pleased to
offer data and code from these studies to our colleagues.

1 Geometric Interdiction

This discussion is taken from Sullivan and Smith (2014), with all proofs relegated to that paper.
We consider the interdiction of a capacitated network that exists in Euclidean space. Nodes in
this network exist at a point in space, and (directed) arcs connect node pairs in a straight line. An
opponent wishes to maximize flow from a source node to a sink node across the network, while
an interdictor seeks to minimize the opponent’s maximum flow by choosing multiple locations to
attack. In this problem, attacks are made at points in (Euclidean) space. Damage is inflicted on
each arc by reducing its capacity as a function of the distance from the midpoint of the arc to each
attack. We refer to this problem as the Euclidean maximum flow network interdiction problem
(E-MFNIP). While distance can be computed according to any norm, we focus on the case in
which distances are computed by L

1

-norms, which will enable us to derive mixed-integer linear
programming formulations. Also, we assume that each arc capacity is a function of the distance
from the center of the arc to the closest attack location. We provide mathematical programming-
based approaches for solving E-MFNIP.

The motivation for studying this type of problem is due to the prevalence of networks in complex
systems and the vulnerability of those systems to attack. For instance, networks that represent
real-world transportation, logistics, and power grid systems have well-defined geographical char-
acteristics. These systems are subject to disruptions that may damage multiple components in the
same geographical region. Most network interdiction research neglects any geographical charac-
teristics, focusing instead on identifying network components that are most critical to sustaining
functionality. In contrast, our methodology explicitly accounts for the simultaneous failure of
network components correlated by the physical location of an attack. Furthermore, it is not nec-
essary to restrict the scope of problems to those facing intentional attacks. Physical systems are
vulnerable to accidental disruptions due to non-malicious events such as natural disasters as well,
and must be robust enough to withstand worst-case disasters. Hence, although there is no entity
that actively seeks to maximize damage in such a setting, it is still necessary to understand the
worst-case vulnerability of the system.

Let G(N,A) be a maximum flow network having node set N = {1, . . . , n} and directed arc set
A ✓ N ⇥N , where node 1 is the source and node n is the sink. Let cij denote the capacity of arc
(i, j) 2 A.

The maximum flow (denoted ⌫) from node 1 to node n can be obtained by solving the following

model, which represents the dual of a traditional maximum flow model:

⌫ = min
X

(i,j)2A

cijvij, (1a)

s.t. ui � uj + vij � 0, 8(i, j) 2 A, (1b)
u
1

= 0, un = 1, (1c)
vij � 0, 8(i, j) 2 A. (1d)

Here, ui denotes the dual variable associated with the flow balance constraints for node i 2 N , and
vij denotes the dual variable associated with the capacity constraint on arc (i, j) 2 A. We define U
to be the feasibility set that encompasses constraints (1b)–(1d).

In our problem, the interdictor chooses an attack Z from some feasible set Z , and arc capacities
are computed according to a function �ij : Z ! R for all (i, j) 2 A.

After the leader selects an interdiction Z 2 Z , the follower maximizes flow on the resulting net-
work in which cij is replaced by �ij(Z). The interdictor’s problem is then to choose an interdiction
that minimizes the follower’s maximum flow, which can be stated as:

⌫?
= min

X

(i,j)2A

�ij(Z)vij, s.t. (u, v) 2 U , Z 2 Z. (2)

When �ij is defined nontrivially (i.e., not constant) for some (i, j) 2 A, this model is nonlinear
in the objective. However, when Z =

ˆZ is fixed, there exists an optimal solution to the reduced
version of Model (2) in which vij 2 {0, 1} for all (i, j) 2 A. Imposing these restrictions, we
can linearize the product in the objective function by defining variables wij for each (i, j) 2 A to
represent the product �ij(Z)vij , and adding the inequalities

wij � �ij(Z)�Mij(1� vij), 8(i, j) 2 A, and (3a)
wij � 0, 8(i, j) 2 A, (3b)

where Mij is an upper bound on �ij(Z) over all Z 2 Z . The resulting formulation is a MIP that is
linearly constrained when �ij is a linear function:

⌫?
= min

X

(i,j)2A

wij, (4)

s.t. Constraints (3a) and (3b), (u, v) 2 U , Z 2 Z, vij 2 {0, 1}, 8(i, j) 2 A.

Specification to E-MFNIP In previous research, Z 2 Z typically consists of |A| decisions, each
representing the amount of interdiction imparted on an arc. E-MFNIP differs in its definition of Z:
We assume that G has physical structure, residing in q-dimensional Euclidean space, and that at
most K interdictions are made at points on and around G. In what follows, we adopt the following
notational conventions:

1. For any positive integer s, we use the notation [s] to refer to the set {1, . . . , s}.

2. We use Z to refer to an element of Z . Thus Z suffices to represent all K interdiction locations.

3. We use z, ˆz, ˆzk, and any other adaptation of bold z to refer to the coordinates of a potential
interdiction location in Rq.

Hence, an element Z 2 Z may be represented as Z = [z

1| · · · |zK], where z

k 2 Rq, 8k 2 [K], is
the location of the k-th interdiction. For simplicity, we assume that the constraint set Z is given as

Z = {Z 2 Rq⇥K
: L z

k U, k 2 [K]}, (5)

where L and U are q-vectors. Each node i 2 N is located at point z(i) 2 Rq, and each arc center
(i, j) 2 A is located at the point z(i, j) = 0.5(z(i) + z(j)). (All nodes i 2 N are assumed to
satisfy L z(i) U .) We assume that the damage inflicted by an attack on an arc is a function
of the distance between the arc and the attack location. For simplicity and model tractability, we
compute distance using the Manhattan norm, i.e., kzk

1

⌘ Pq
k=1

|zk|. We observe here that the
resultsreadily extend to other convex norms with suitable modifications. However, using (e.g.)
the Euclidean norm instead of the Manhattan norm results in a nonlinear (convex) model that is
modestly more difficult to solve. Note also that the Manhattan norm can be used to approximate
Euclidean distance, but at the risk of overestimating distance by a ratio of up to (2�p

2)/
p
2.

For z 2 Rq, define dij(z) = kz� z(i, j)k
1

as the distance between z and arc (i, j). In our model,
the capacity of arc (i, j) is determined by the distance of the closest attack to z(i, j). That is,
capacity functions are of the form

�ij(Z) = fij

min

k2[K]

dij(z
k
)

�

, (6)

where fij : R+

! R
+

is a function that maps distance to capacity. When K = 1, this assumption
is intuitive. When K > 1, this assumption is possibly conservative (from the interdictor’s perspec-
tive) because only one of the K interdictions influences the capacity of each arc. This assumption
may be justifiable, though, in situations where each arc is composed of several structural compo-
nents that determine the arc’s capacity, and where each component fails due to varying thresholds
of disruptions. Thus, less severe disruptions (given by attacks that are farther away than the closest
attack) are only capable of affecting the same components that failed due to the closest attack, and
hence the arc’s capacity depends only on the closest attack location.

E-MFNIP is the problem that results when Z and � are defined as in (5) and (6), respectively. We
define ⌫?

E as the optimal objective value to E-MFNIP.

We now specialize (4) to model E-MFNIP as a MIP having a convex continuous relaxation under
a certain class of f -functions. We assume that fij is given as the minimum of some T functions,
i.e.,

fij(d) = min

t2[T]

gtij(d), (7)

where gtij : R+ ! R+ is convex and nondecreasing for each t 2 [T]. As we will demonstrate, this
model allows us to construct piecewise-convex capacity functions of distance.

Define ht
ij = gtij � dij and note that ht

ij is a convex function because gtij and dij are convex and gtij
is nondecreasing. Moreover, observe that �ij can be represented as

�ij(Z) = min

t2[T]

gtij

min

k2[K]K
dij(z

k
)

�

(8a)

= min

t2[T],k2[K]

gtij � dij(zk) (8b)

= min

t2[T],k2[K]

ht
ij(z

k
), (8c)

where (8b) follows because gtij is nondecreasing.

Define �tk
ij to equal 1 if the minimum in (8b) is achieved by t 2 [T] and k 2 [K] and �tk

ij = 0

otherwise. Using the �-variables, �ij can be expressed as

�ij(Z) = min
X

t2[T],k2[K]

⇥

ht
ij(z

k
)

⇤

�tk
ij , (9a)

s.t.
X

t2[T],k2[K]

�tk
ij = 1 and �tk

ij 2 {0, 1} 8t 2 [T], k 2 [K]. (9b)

This expression could be substituted for �ij in Model (4) to obtain a valid formulation. Fur-
thermore, observe that decreasing �ij(Z) relaxes (3a), which is the only place �ij(Z) appears in
Model (4). Thus, the minimization operator can be dropped from (9), because an optimal so-
lution will always exist in which �ij(Z) takes its smallest value allowed by (9). The resulting
mixed-integer nonlinear program (MINLP) minimizes

P

(i,j)2A wij subject to (u, v) 2 U , Z 2 Z ,
v 2 {0, 1}|A|, and (3b) as well as

wij �
X

t2[T],k2[K]

⇥

ht
ij(z

k
)

⇤

�tk
ij �Mij(1� vij), 8(i, j) 2 A, (10a)

X

t2[T],k2[K]

�tk
ij = 1, 8(i, j) 2 A, and (10b)

�tk
ij 2 {0, 1}, 8(i, j) 2 A, t 2 [T], k 2 [K], (10c)

where wij naturally takes the least possible value allowed by (10a).

To linearize (10a), let �tk
ij represent the product

⇥

ht
ij(z

k
)

⇤

�tk
ij and introduce inequalities similar to

(3) to obtain the following model, valid for any ¯M t
ij such that ¯M t

ij � ht
ij(z), 8L z U, (i, j) 2

A, t 2 [T].

⌫?
h = min

X

(i,j)2A

wij (11a)

s.t. (u, v) 2 U ,
wij �

X

t2[T],k2[K]

�tk
ij �Mij(1� vij), 8(i, j) 2 A, (11b)

wij � 0, 8(i, j) 2 A, (11c)

X

t2[T],k2[K]

�tk
ij = 1, 8(i, j) 2 A, (11d)

�tk
ij � ht

ij(z
k
)� ¯M t

ij(1� �tk
ij), 8(i, j) 2 A, t 2 [T], k 2 [K], (11e)

�tk
ij � 0, 8(i, j) 2 A, t 2 [T], k 2 [K], (11f)

vij 2 {0, 1}, 8(i, j) 2 A, (11g)
�tk
ij 2 {0, 1}, 8(i, j) 2 A, t 2 [T], k 2 [K], (11h)

Z 2 Z.

As before, Model (11) is a MINLP, but this time its continuous relaxation is convex (because all
h-functions are convex). These tractable continuous relaxations can be used to solve (11) via, e.g.,
branch-and-bound so long as all f -functions can be expressed as (7).

Solving over a General Capacity Function. In many applications, the f -functions cannot be
represented in the form of (7). In the remainder of this discussion, we outline a procedure for
using Model (11) to lower-bound the optimal E-MFNIP objective value by defining appropriate
piecewise-linear g-functions.

We assume the true �-functions take the form of (6), with f being nondecreasing and concave.
These assumptions intuitively match what one would expect from the behavior of a realistic inter-
diction: Capacity increases as the interdiction moves farther away from an arc (nondecreasing),
and a small change in interdiction location is more likely to have a pronounced impact on nearby
arcs than on far away arcs (concave). If f is also piecewise-linear, Model (11) becomes an exact
model using linear g-functions. If f is not piecewise-linear, g-functions can be selected to ensure
that (11) provides a lower bound on the optimal E-MFNIP objective.

We now examine the following technique for approximating �ij-functions via piecewise-linear gij-
functions. Suppose breakpoints a

0

, . . . , aT are given such that 0 = a
0

< a
1

< · · · < aT , and
dij(z) aT for all L z U. For each t 2 [T], let gtij be the linear function that approximates
fij and is tight at at�1

and at, i.e.,

gtij(d) =
f(at)� f(at�1

)

at � at�1

(d� at�1

) + f(at�1

). (12)

Theorem 1 Let f be concave and nondecreasing, and suppose gtij is given as in (12). Then (11)
defined with ht

ij = gtij � dij provides a lower bound for E-MFNIP, i.e., ⌫?
h ⌫?

E.

Remark 1. It is possible to refine the g-functions dynamically within the solution of (11) to ob-
tain a better approximation for E-MFNIP. These functions can be dynamically adjusted by adding
breakpoints and segments to refine our approximation of the f -functions, based on solutions ob-
tained from previous relaxations (e.g., as pioneered by Falk and Soland in 1969). However, this
approach requires the iterative solution of the lower-bounding integer programs (11). Our expe-
rience indicates that each integer program (11) is itself very difficult to solve. The computational
difficulties associated with this approach motivate an alternative algorithm below. 2

Discrete Models. As an alternative, we also develop a methodology for generating solutions to
E-MFNIP based on replacing the continuous set Z ✓ Rq⇥K with a discrete set of locations, a
subset of which will be attacked by the leader. The resulting integer program is a restriction of (4);
therefore, all feasible solutions to this problem yield upper bounds on ⌫?

E. We can then propose a
modification of this model that provides a lower bound on ⌫?

E by relaxing the capacity functions.

Define R = {z 2 Rq
: L z U} and consider a model that selects K attacks from among a

finite set of candidate locations {¯zp}p2P indexed over a set P , where |P | � K and ¯

z

p 2 R, 8p 2 P .
(Henceforth, P will be used to index a set of candidate locations, and the ¯

z-notation will refer
exclusively to the coordinates of a candidate location.)

Suppose interdictions are placed at locations S ✓ P , where |S| = K. From (6), the resulting
capacity of arc (i, j) 2 A is given by fij[minp2S dij(¯zp)] = minp2S fij[dij(¯zp)], because fij :

R
+

! R
+

is nondecreasing. Given P , values cpij ⌘ fij[dij(¯zp)] can be computed a priori for each
p 2 P and treated as constants; thus, the objective is to select S ✓ P that minimizes the maximum
flow over a graph in which the capacity of arc (i, j) is minp2S{cpij}. We refer to this discretized
problem as DE-MFNIP. To formulate DE-MFNIP as a MIP, let variables yp equal one if location
p 2 P is attacked and zero otherwise. The y-variables are constrained to be elements of the set
Y = {y 2 {0, 1}|P |

:

P

p2P yp = K}. For each (i, j) 2 A, define c̄ij ⌘ maxp2P{cpij} and observe
that the capacity of arc (i, j) is minp2P{c̄ij � (c̄ij � cpij)y

p}. Given ŷ 2 Y , the follower solves
its maximum flow problem with capacity constraints replaced by xij c̄ij � (c̄ij � cpij)ŷ

p, 8p 2
P , where xij is a variable specifying how much flow traverses arc (i, j). Define ⌫DE(y) as the
maximum flow resulting from any y 2 Y . The value of ⌫DE(y) can be obtained alternatively by
solving the following dual model, where �p

ij is the dual variable associated with the new capacity
constraints:

⌫DE(y) = min
X

(i,j)2A

X

p2P

[c̄ij � (c̄ij � cpij)y
p
]�p

ij, (13a)

s.t. (u, v) 2 U , (13b)
X

p2P

�p
ij = vij, 8(i, j) 2 A. (13c)

Model (13) is a linear program given y; thus, if (13) has an optimal solution, it must have one
that is complementary slack with an optimal solution to its dual. Hence, adding the constraints
�p
ij yp, 8(i, j) 2 A, p 2 P, does not change the optimal objective value. (To see this formally,

suppose that ŷp = 0 but �̂p
ij = 1 in some optimal solution. Let p0 2 P be such that ŷp0 = 1. By

setting �̂p
ij = 0 and �̂p0

ij = 1 instead, we retain feasibility while reducing the objective value of the
solution. Hence, it is valid to set �p

ij yp.) This relationship also permits us to set �p
ijy

p
= �p

ij ,
because �p

ij yp and yp 2 {0, 1}. We now model DE-MFNIP as the following MIP:

DE(P): ⌫?
DE(P) = min

X

(i,j)2A

X

p2P

cpij�
p
ij, (14a)

s.t. (u, v) 2 U , (14b)
X

p2P

�p
ij = vij, 8(i, j) 2 A, (14c)

0 �p
ij yp, 8(i, j) 2 A, p 2 P, (14d)

y 2 Y. (14e)

Integer restrictions need not be placed on variables u, v, and � in Model (14), as proven in the
following theorem.

Theorem 2 There exists an optimal solution to Model (14) such that all u-, v-, and �-variables
are binary-valued.

Theorem 3 If ¯zp 2 R, 8p 2 P , then ⌫?
DE(P) � ⌫?

E.

For a � 0, the function cpij(a) ⌘ fij [max{0, dij(¯zp)� a}] provides a lower bound for cpij(=
fij �dij(¯zp)) because fij is nondecreasing. By replacing fij(d) in (14) with fij [max{0, d� a}], we
obtain a relaxed model that will be useful in solving E-MFNIP. The function fij [max{0, d� a}]
lower-bounds fij(d) by “stretching” the true capacity function away from the attack location by
radius a. Let radii ↵p � 0 be given for each p 2 P and consider the model DE(P,↵) that results
from replacing cpij in Model (14) with cpij(↵

p
):

DE(P,↵): ⌫?
DE(P,↵) = min

X

(i,j)2A

X

p2P

cpij(↵
p
)�p

ij, (15)

s.t. Constraints (14c)–(14e).

When ↵p
= 0, 8p 2 P , DE(P,↵) is identical to Model (14); thus, ⌫?

DE(P) = ⌫?
DE(P, 0).

DE-MFNIP is equivalent to the version of E-MFNIP that would result from restricting each z

k to
come from {¯zp}p2P instead of from R. When ↵p > 0, we have that cpij(0) � cpij(↵

p
), 8p 2 P

and (i, j) 2 A. This raises the following question: How large must ↵p be before we can guarantee
that ⌫?

E � ⌫?
DE(P,↵)? To address this question, for p 2 P and a � 0, define B(p, a) as the

(one-norm) ball around ¯

z

p with radius a, i.e., B(p, a) = {z 2 Rq
: k¯zp � zk

1

 a}. Also, given
any finite set of candidate points ˆP and a vector ↵ 2 R| ˆP |

+

, define B(

ˆP ,↵) = [p2 ˆPB(p,↵p
).

Theorem 4 Suppose {¯zp}p2P and ↵ 2 R|P |
+

are given such that ¯zp 2 R, 8p 2 P . If R ✓ B(P,↵),
then ⌫?

E � ⌫?
DE(P,↵).

Combining the results of Theorems 3 and 4, we have that ⌫?
DE(P,↵) ⌫?

E ⌫?
DE(P) for any ↵

and P such that {¯zp}p2P ⇢ R ✓ B(P,↵). Under modest assumptions on the f -functions, P and
↵ may be chosen to guarantee that ⌫?

DE(P)� ⌫?
DE(P,↵) is arbitrarily small (providing arbitrarily

tight upper and lower bounds for ⌫?
E), as proven in the following theorem.

Theorem 5 Let {¯zp}p2P and ↵ 2 R|P |
+

be given such that ¯zp 2 R, 8p 2 P , and let a > 0 be given
such that ↵p a, 8p 2 P . For each (i, j) 2 A, suppose fij is Lipschitz continuous and define
⌧ij � 0 as the corresponding Lipschitz constant. Also, define ⌧ ? as the weight of the maximum
weighted 1–n cut over G(N,A) with arc weights ⌧ij , 8(i, j) 2 A. Then ⌫?

DE(P) � ⌫?
DE(P,↵)

a⌧ ?.

Theorem 5 guarantees that, with a large enough P -set and small enough ↵-values, the lower bound
provided by ⌫?

DE(P,↵) is arbitrarily close to ⌫?
E. However, obtaining a lower bound in this fashion

is often impractical because the difficulty associated with solving DE-MFNIP grows quickly as
P increases. We propose an alternative technique for developing tight lower bounds based on
iteratively building the set P . Towards this end, we now prove a strengthened version of Theorem 5
that will be used to establish convergence of our algorithm.

Corollary 1 Let P and ↵ be given as in Theorem 5, and let (û, v̂, ŷ, �̂) be a binary-valued optimal
solution to DE(P,↵). The relationship ⌫?

DE(P) � ⌫?
DE(P,↵) a⌧ ? is valid for any a such that

a � ↵p for all p 2 P such that ŷp = 1.

From Corollary 1, we know that the optimal objective value for DE(P,↵) is within a⌧ ? of ⌫?
E,

where a is the largest radius for any candidate point that was attacked in the optimal solution
to DE(P,↵). We now prove conditions under which modification of the set P guarantees that
⌫?

DE(P,↵) will not decrease. This result, when combined with Corollary 1, gives rise to an exact
algorithm for solving E-MFNIP.

Theorem 6 Let P 1, P 2, and {p?} be disjoint index sets with ¯

z

p 2 R and ↵p � 0, 8p 2 P 1 [P 2 [
{p?}, and suppose R ✓ B(P 1 [{p?},↵). If B(P 2,↵) = B(p?,↵p?

), then ⌫?
DE(P 1 [{p?},↵)

⌫?
DE(P 1 [P 2,↵) ⌫?

E.

An implication of Theorem 6 is that the contents of P can be modified in such a way that promotes
an increase in ⌫?

DE(P,↵) without losing the property that ⌫?
DE(P,↵) ⌫?

E. This result gives rise
to a methodology for solving E-MFNIP, which we describe below.

Discretize-and-Refine Solution Methodology. We now describe how (14) can be used to solve
instances of E-MFNIP. The method described here is applicable for general q, but our focus is on
problems in which q = 2 (e.g., as would be the case in power grid, telecommunications network,
and transportation settings).

First, specify an initial set of points {¯zp}p2P0 and values ↵p
0

� 0, 8p 2 P
0

, such that R ✓
B(P

0

,↵
0

). An initial lower bound for ⌫?
E can be obtained by solving DE(P

0

,↵
0

). Solving this
problem reveals an initial set of attack locations that are optimal for the relaxed problem. Next, set
P
0

is modified (and renamed P
1

) to consider a higher density of candidate locations surrounding
locations that were optimal for DE(P

0

,↵
0

). Corresponding ↵
1

-values are assigned to the new ele-
ments of P

1

in accordance with the assumptions of Theorem 6 so that ⌫?
DE(P0

,↵
0

) ⌫?
DE(P1

,↵
1

).
In this fashion, the lower bound is iteratively improved until it is within some acceptable tolerance
gap of a known upper bound.

Upper bounds for ⌫?
E are obtained by solving DE(P) for any P (see Theorem 3). We now provide

a formal description of our discretize-and-refine algorithm.

1. Select ¯zp 2 R and ↵p
0

for each p 2 P
0

, such that R ✓ B(P
0

,↵
0

). Set UB = 1 and iteration
counter s = 0. Let " > 0 be a given tolerance parameter.

2. Solve DE(Ps) and obtain an optimal solution (ȳ, ū, v̄, �̄) and upper bound ⌫?
DE(Ps). Define

¯P = {p 2 Ps : ȳp = 1}.

3. If ⌫?
DE(Ps) < UB, then set UB = ⌫?

DE(Ps), and record an incumbent solution of {¯zp}p2 ¯P .

4. Solve DE(Ps,↵s) and obtain an optimal solution (ŷ, û, v̂, �̂) and lower bound ⌫?
DE(Ps,↵s).

Define ˆP = {p 2 Ps : ŷp = 1}.

5. If UB � ⌫?
DE(Ps,↵s) < ", then terminate the algorithm with near optimal attack locations

given by the incumbent solution.

6. Set Ps+1

= Ps \ ˆP . For each p̂ 2 Ps \ ˆP , set ↵p̂
s+1

= ↵p̂
s . For each p̂ 2 ˆP :

(a) Construct 2q new points defined over indices p̂+` and p̂�` for ` 2 [q]. For ` 2 [q], define
¯

z

p̂+
`

=

¯

z

p̂
+ (↵p̂

s/q)e`, and ¯

z

p̂�
`

=

¯

z

p̂ � (↵p̂
s/q)e`. (Note: e` is the q-vector with a one in

component ` and zeros in all other components.) Add p̂+` and p̂�` to Ps+1

for each ` 2 [q].

(b) Define ↵
p̂+
`

s+1

= ↵
p̂�
`

s+1

= ↵p̂
s(1� 1/q), 8` 2 [q].

7. Set s = s+ 1 and return to Step 2.

In moving from iteration s to iteration s + 1, the property that R ✓ B(Ps+1

,↵s+1

) is main-
tained because (i) R ✓ B(Ps,↵s) and (ii) B(p̂,↵s

) ✓ B({p̂+` }`2[q] [{p̂�` }`2[q],↵s+1

), 8p̂ 2 ˆP .

Thus, we guarantee that ⌫?
DE(Ps,↵s) ⌫?

E, 8s, by Theorem 4. Moreover, [`2[q](B(p̂+` ,↵
p̂+
`

s+1

) [
B(p̂�` ,↵

p̂�
`

s+1

)) = B(p̂,↵p̂
s); thus, ⌫?

DE(P0

,↵
0

) ⌫?
DE(P1

,↵
1

) · · · ⌫?
DE(Ps,↵s) ⌫?

E, 8s, by
Theorem 6. We now comment on the selection of P

0

and ↵
0

, followed by a proof of convergence.

For q = 2 choosing P
0

as in Remark 2 guarantees R ✓ B(P
0

,↵
0

) with no overlap between the
interior of B(p,↵p

0

) and B(p̄,↵p̄
0

), for any distinct p, p̄ 2 P
0

. (In fact, this property is preserved
by the updates in Steps 6 and 7, implying for any iteration s � 0 that there is no overlap between
B(p,↵p

s) and B(p̄,↵p̄
s), for any distinct p, p̄ 2 Ps.) For q > 2, some overlap is inevitable. (For

instance, in the case of q = 3, the of B(p, a) is 4a3/3. However, p refines into six new points with
radius 2a/3: The combined volume of the resulting six L

1

-norm balls is 6(4/3)(2a/3)3 = 64a3/27,
which is 78% greater than the volume occupied by B(p, a).) This result induces some measure of
inefficiency, but the algorithm remains convergent, as we now prove.

Theorem 7 Suppose r > 0 is fixed and P
0

is chosen as described in Remark 2. If fij satisfies
the assumptions of Theorem 5 for each (i, j) 2 A (and the definition of ⌧ ⇤ from Theorem 5 ap-
plies as well), then the discretize-and-refine algorithm converges to an "-optimal solution within
|P

0

|PB�1

k=0

(2q)k iterations, where B = dlog
1�1/q("/⌧

?r)e.

We now illustrate our discretize-and-refine algorithm by applying it to a major fiber-optic net-
work, obtained from Neumayer (2012). In the network, there are 170 nodes representing US
cities and 230 undirected arcs connecting pairs of cities. The network is depicted in Figure 1.

Figure 1: US Fiber Network.

Three nodes (Chicago, Houston, and San Francisco), indicated by large circles, are designated
as sources and three nodes (Atlanta, Orlando, and Washington, D.C.), indicated by large dia-
monds, are designated as sinks. The network is converted into a directed network by replacing
each undirected arc with two directed arcs, one in each direction. Latitude/longitude coordinates
are used to establish node coordinates z(i), and arc capacities are computed using the functions
fij(d) = min{1, 0.2d}, (i, j) 2 A, where d corresponds to the distance to the nearest attack. Note
that the nominal capacity of each arc is 1, and an arc’s capacity can be decreased to zero if an inter-
diction is placed on its midpoint. In Figure 1, the thickened arcs (in Ohio and Arkansas) represent
the arcs that would be interdicted under the classical MFNIP.

The node coordinates are all bounded within the coordinates 25�W–50�W and 70

�N–125�N. We
assume that the points within these bounds form a rectangle (which defines the feasible interdiction
location set R) and generate P

0

and ↵
0

according to Remark 2 using r = 5. We then apply the
discretize-and-refine approach to solve E-MFNIP when K = 2.

Figure 2 illustrates the initial candidate locations {¯zp}p2P0 . In this figure, the L
1

-norm ball with
radius ↵p

0

has been drawn around each candidate solution, the center (indicated by a small “plus”
symbol) of which marks the candidate solution itself. Using these candidate locations, we solve
DE-MFNIP to compute lower and upper bounds for E-MFNIP. The solution to DE(P

0

,↵
0

) yields a
lower bound of 0.084 for E-MFNIP and includes interdictions at (85�W, 40�N) and (90

�W, 35�N).
This solution is depicted in Figure 2 by stars at the optimal interdiction locations. The lower-
bounding solution is then used to refine the set of candidate solutions, producing the candidate set
P
1

that will be used in the next iteration.

Figure 3 depicts P
1

along with the obtained lower-bounding solution, which places interdictions
at (87.5�W, 40�N) and (90

�W, 32.5�N). This solution is then refined to obtained P
2

(illustrated
in Figure 4), which results in interdiction locations of (85�W, 42.5�N) and (95

�W, 30�N) and im-
proves the lower bound from 0.084 to 0.285. In each successive figure, the optimal attack locations
from the previous iteration are replaced by four new candidate locations having smaller radii.

Figure 2: Initial candidate interdiction locations (LB = 0.084, UB = 2.814).

Figure 3: Candidate interdiction locations after one iteration (LB = 0.285, UB = 2.38).

Figure 4: Candidate interdiction locations after two iterations (LB = 0.575, UB = 2.356).

Figure 5: Near-optimal interdiction locations after 62 iterations (LB = 1.941, UB = 1.957).

This process is repeated until the upper and lower bounds are sufficiently close (within 1%, re-
quiring 62 iterations). The resulting solution, illustrated in Figure 5, contains interdictions at
(85.9375�W, 41.9922�N) and (90.7812�W, 31.8359�N), and produces a lower bound of 1.941.
This example also illustrates the potential benefit of accounting for network geography in inter-
diction studies. Attacking the midpoints of the optimal MFNIP arcs (the thick arcs in Figure 1)
results in an E-MFNIP objective of 2.785, which is 42% greater than the best known E-MFNIP
solution.

2 Identifying Community Structures

We consider a network represented as an undirected graph G = (V,E) consisting of n = |V |
vertices and m = |E| edges. The adjacency matrix of G is denoted by A = (Aij), where Aij is
the weight of edge (i, j) and Aij = 0 if (i, j) /2 E. We also denote the (weighted) degree of vertex
i, the total weights of edges incident at i, by deg(i) or, in short, di.

Community structure (CS) is a division of the vertices in V into a collection of disjoint subsets of
vertices C = {C

1

, C
2

, . . . , Cl} where
Sl

i=1

Ci = V and l is the total number of identified subsets.
Each subset Ci ✓ V is called a community and we wish to have more edges connecting vertices in
the same communities than edges that connect vertices in different communities. The modularity
of C is the fraction of the edges that fall within the given communities minus the expected number
of such fraction if edges were distributed at random. The randomization of the edges is done so as
to preserve the degree of each vertex. If vertices i and j have degrees di and dj , then the expected
number of edges between i and j is d

i

d
j

2M . Thus, the modularity, denoted by Q, is then

Q(C) = 1

2M

X

ij

(Aij � didj
2M

)�ij (16)

where M is the total edge weights and the element �ij of the membership matrix � is defined as

�ij =

(

1, if i and j are in the same community

0, otherwise

The modularity values can be either positive or negative and the higher (positive) modularity values
indicate stronger community structures. Therefore, the maximizing modularity problem asks us to
find a division C which maximizes the modularity value Q(C).
This problem is different from the partition problem as we do not know the total number of parti-
tions l beforehand. Somewhat surprisingly, modularity maximization is still NP-complete on trees,
one of the simplest graph classes.

Theorem 8 Modularity maximization on trees is NP-complete.

The proof has been presented in Dinh and Thai (2015), reducing from the Subset-Sum problem.

Exact Solutions. Although the problem is in NP class, efficient algorithms to obtain optimal so-
lutions for small size networks are still of interest. We have presented an exact algorithm with a
run time of O(n5

) to the problem on uniform-weighted trees Dinh and Thai (2015). The algorithm
is based on the dynamic programming, which exploits the relationship between maximizing mod-
ularity and minimizing the sum-of-squares of component volumes, where volume of a component
S is defined as vol(S) =

P

v2S dv.

When the input graph is not a tree, we provided an exact solution based on the following Integer
Linear Programming (ILP).

max

1

2M

X

i,j

Bij(i� xij) (17)

s.t. xij + xjk + xik � 0 8i < j < k (18)
xij + xjk + xik � 0 8i < j < k (19)
�xij + xjk + xik � 0 8i < j < k (20)

xij 2 [0, 1] i, j 2 [1..n] (21)

where Bij = Aij � d
i

d
j

2M . Constraints (18), (19), and (20) are well-known triangle inequalities that
guarantee the values of xij are consistent to each other. They imply the following transitivity: if i
and j are in the same community and j and k are in the same community, then so are i and k. By
definition, xii = 0 8i and can be removed from the ILP for simplification.

Therefore, the ILP has 3

�

n
3

�

= ✓(n3

) constraints, which is about half a million constraints for
a network of 100 vertices. As a consequence, the sizes of solved instances were limited to few
hundred nodes. Along this direction, we have presented a sparse metric, which reduces the number
of constraints to O(n2

) in sparse networks where m = O(n).

Approximation Algorithms. When G is a tree, the problem can be solved by a polynomial time
approximation scheme (PTAS) with a run time of O(n✏+1

) for ✏ > 0. The PTAS is solely based
on the following observation. Removing k � 1 edges in G will yields k connected communities
and Qk � (1 � 1

k)Qopt where Qk is the maximum modularity of a community structure with k
communities, and Qopt is the optimal solution. The PTAS algorithm for maximizing the modularity
follows next.

Algorithm. PTAS for Maximizing modularity on Trees

1. Given ✏ > 0, set k = d1

✏ e
2. Qk = 0, Ck = {V }
3. for each X ⇢ E and |X| < k do

4. Find connected component C
1

, C
2

, . . . , Ck in T 0
= (V,E\X)

5. Let CS J = {C
1

, C
2

, . . . , Ck}
6. if Q(J) > Qk then

7. Qk = Q(J)

8. Ck = J
9. Return Ck

When G having the degree distribution that follows the power-law, i.e., the fraction of nodes in
the network having k degrees is proportional to k�� , where 1 < � 4, the problem can be
approximated to a constant factor for � > 2 and up to an O(1/ log n) when 1 < � 2 (Dinh
and Thai, 2013). We propose the approximation algorithm, Low-Degree Following (LDF) in this
regard.

LDF decides for each vertex u, which neighbor to follow, and if u follows a neighbor v, the
algorithm eventually assigns u and v to the same community. The algorithm follows three rules to
assign each vertex one of the three labels leader, member, or orbiter as follows:

1. All members and orbiters have degree at most d
0

, for some predefined parameter d
0

.

2. There are only two types of following: a member follows a leader and an orbiter follows a
member. This implies that members cannot follow each other and orbiters cannot directly follow
leaders.

3. All neighbors of an orbiter must be members.

The algorithm uses three sets L, M , and O to store leaders, members, and orbiters, respectively,
and an array pi to store which neighbor vertex i follows. A vertex that does not belong to any of
the sets L, M , or O is said to be unlabeled. Initially, L, M , and O are empty i.e. all vertices are
unlabeled and pi = 0 for all i.

At each step, the algorithm considers an unlabeled vertex i of degree at most d
0

. If there is a
neighbor j 2 N(i)\M of i that is a leader or an unlabeled vertex, we add i to M and j to L, if
necessary, and set i to follow j, pi = j. Otherwise, all neighbors of i must be labeled with member,
thus, we can add i to the set of orbiters O and set i to follow an arbitrary neighbor t.

Finally, two types of communities are formed. First, all the members that follow the same leader
and all the orbiters that follow those members are assigned into the same community. Second,
each unlabeled vertex forms a singleton community of size one. The union of all the communities
is returned as the community structure L.

The selection of d
0

is important to derive the approximation factor as d
0

needs to be a sufficient
large constant that is still relative small to n when n tends to infinity. In an actual implementation
of the algorithm, we have designed an automatic selection of d

0

to maximize Q. LDF can be
extended to solve the problem in directed graphs (Dinh and Thai, 2013).

The details of this LDF algorithm is presented below.

Algorithm. Low-degree Following Algorithm (Parameter d
0

2 N+)

1. L ;,M ;, O ;, pi = 0 8i = 1..n

2. for each vertex i 2 V do

3. if (ki d
0

) & (i /2 L [M) then

4. if N(i) \M 6= ; then

5. Select a vertex j 2 N(i) \M
6. Let M = M [{i}, L = L [{j}, pi = j

7. else

8. Select a vertex t 2 N(i)

9. O = O [{i}, pi = t

10. L = ;
11. for each vertex i 2 V \ (M [O) do

12. Ci = {i} [{j 2M | pj = i} [{t 2 O | pp
t

= i}
13. L = L [{Ci}
14. Return L

Furthermore, in some cases, communities are sharing some nodes between them, referred as over-
lapping communities. That is, a person or a node can belong to more than one community. There-
fore, we further designed an algorithm, namely DOCA (Detecting Overlapping Community Al-
gorithm), to find overlapping network modules which required only one parameter, indicating the
level of overlapping (Nguyen et al. 2011) denoted by the ration �.

DOCA consists of three different phases:

1. Detecting Local Communities

2. Combining Overlapping Communities

3. Revisit Unassigned Nodes

In the first phase, we identify the local communities by maximizing the internal density of each
communities (Nguyen et al. 2011). The density based function can be defined as (C) =

|Cin|
(

|C|
2)

to

identify a set C of nodes as a community. The more C approaches a clique of its size, the higher
its density value (C). C in and Cout denote the set of edges having both endpoints in C and one
endpoint in C, respectively.

The threshold on the internal density that suffices for C to be a local community is given by

⌧(C) =

�(C)

�|C|
2

�

where �(C) =

✓|C|
2

◆

1� 1

(

|C|
2) (22)

We term a group of nodes C ✓ V a local community if its internal density exceeds a threshold
determined based only on C’s size, regardless to its external connections. Of course, a clique
represents a perfect local community; however, we do not restrict our starting communities to be
only cliques. Instead, we relax them to be “quasi-cliques” which can overlap with each other and
whose detection can be done in an automatic fashion. The phase is described in Alg. 1.

Algorithm 1: Detecting Local Communities
Input : Network G = (V,E)

Output: Local (or raw) community structure C = {C
1

, C
2

, . . . , Ck}
1 C = ;;
2 for (u, v) 2 E and Com(u) \ Com(v) = ; do
3 Let Cuv = N(u) \N(v) [{u, v};
4 if �(Cuv) � ⌧(Cuv) then
5 C C [Cuv;
6 Update Com(u) and Com(v);
7 end
8 end

As soon as the first procedure finishes, the raw network community structure can be pictured as
a collection of (possibly overlapped) dense parts of the network together with outliers. As some
of those dense parts can possibly share significant common substructures, we need to merge them
if they are indeed highly overlapped. In order to do so, we introduce the overlapping score of
two communities: OS(Ci, Cj) =

|I
ij

|
min{|C

i

|,|C
j

|} +

|Iin
ij

|
min{|Cin

i

|,|Cin

j

|} where Iij = Ci \ Cj . Basically,
OS(Ci, Cj) values the importance of the common nodes and connections shared between Ci and
Cj to the smaller community.

The second phase starts out by examining raw communities identified from the first phase in a
bottom up manner. In this procedure, two communities Ci and Cj are combined if OS(Ci, Cj) � �.
The algorithm is described in Alg. 2.

Algorithm 2: Combining Overlapping Communities
Input : Local network community structure C 0

= {C 0
1

, C 0
2

, . . . , C 0
p}

Output: Combined community structure C = {C
1

, C
2

, . . . , Ct}
1 C = C 0, Done False;
2 while (! Done) do
3 Done True;
4 for Ci 2 C do
5 Let N(Ci) = {Cj 2 C|Cj \ Ci 6= ;};
6 for Cj 2 N(Ci) do
7 if OC(Cj, Ci) � � then
8 Cmin{i,j} Ci [Cj;
9 C C\Cmax{i,j};

10 Update Com(u) for all u 2 Ci;
11 Done False;
12 end
13 end
14 end
15 end

Even when the above two procedures are executed, there would still exist leftover nodes or edges
due to their less attraction to the rest of the network. Because of its size constraint, the first
procedure skips over tiny communities of sizes less than four and thus, may leave out some nodes
unlabeled. These nodes will not be touched in the second phase since they do not belong to any
local communities and consequently, will remain unassigned afterwards. Therefore, we need to
revisit those nodes to either group them into appropriate communities or classify them as outliers
based on their connectivity structures. Alternatively, this process can be thought of as a community
trying to hire adjacent unassigned nodes which are similar to the host community. To this end, we
need a community fitness function in order to quantify the similarity between a node u and a
neighbor community C. We find the fitness function FS =

|Sin|
2|Sin|+|Sout| for S ✓ V . Taking into

account this fitness function, a community C will keep hiring any unassigned adjacent vertex of
maximum similarity in a greedy manner, provided the newly joined vertex does not shrink down
the community’s current fitness value. If there is no such node, C is defined as a final network
community shown in Alg. 3. Simulations showed that this is the best one in the literature (Nguyen
et al. 2011).

3 Adaptively Updating Dynamic Community Structures

Many real world networks are dynamic in nature where elements in the network (vertices and
edges) evolve over time. In this project, We continued studying the adaptive identification of
community structures, focusing on the following question: How to update the evolving community
structures without re-computing it from scratch. In this approach, the community structure (CS) at

Algorithm 3: Revisit Unassigned Nodes
Input : The combined community structure C 0

= {C 0
1

, C 0
2

, . . . , C 0
t}

Output: The final community structure C = {C
1

, C
2

, . . . , Ck}
1 C = C 0;
2 for u 2 V and Com(u) = ; do
3 Let NC(u) = {Cj 2 C|u is adjacent to Cj};
4 for Cj 2 NC(u) do
5 if FC

j

[{u} � FC
j

then
6 Cj Cj [{u};
7 Com(u) Com(u) [{j};
8 end
9 end

10 if Com(u) = ; then
11 Classify u as an outlier;
12 end
13 end

time t is detected based on the community structure at time t� 1 and the changes in the network,
instead of recomputing it directly at time t without taking advantages of a current solution at time
t�1. Along this direction, we have devised an adaptive approximation algorithm for this problem,
published in Dinh et al. (2013). Indeed, the above LDF algorithm described in before can be
enhanced to cope with this situation. At first LDF is run to find the base CS at time 0. Then at each
time step, we adaptively follow and unfollow the nodes that violate the condition 3 in the LDF
algorithm. We provide greater detail of this proposed algorithm, namely A3CS, below.

A3CS is a meta-algorithm that first calls A-Base algorithm to find the community structure C(0)

of the first network snapshot G(0), then iteratively finds community structure C(t) at time point t by
invoking the A-Adaptive algorithm. The two algorithms A-Base and A-Adaptive construct the
community structure via assigning values for two arrays label[i] and follow[i].

Algorithm. A3CS - Adaptive Approx. Alg. for
CS

1. C

(0)

= A-Base(G(0))

2. for t = 1 to s do

3. C

(t)
= A-Adaptive(C(t�1)

,�G

(t)
)

The meaning of label and array is as follow. Each node i is labeled with either leader, follower,
or unlabeled (also denoted with ?). For a node i labeled with follower, follow[i] is the name of
the leader that i follows. Precisely, we have

follow[i] =

8

>

<

>

:

i if label[i] = leader

j 6= i if label[i] = follower & i follows j
? if label[i] = ?

At any time point t, the community structure is given by the union of two types of communities:
1) all followers that follow the same leader are assigned into the same community; and 2) each
unlabeled node forms a singleton community of size one.

At the heart of the proposed algorithms, the assigned labels satisfy the important properties stated
in the following lemma.

Lemma 1 At the end of the algorithms A-Base and A-Adaptive, the following properties hold.

1. All low-degree nodes i.e., nodes with degree at most d
0

for some predefined constant d
0

> 0, are
labeled either with leader or follower.

2. All followers are low-degree nodes.

3. Each leader is followed by at least one follower; and each follower follows exactly one leader.
Thus followers will not follow each other or unlabeled nodes.

The intuition to this lemma will be explained through the presentation of A-Base and A-Adaptive.

Algorithm. A-Base

1. label[i] = ?, follow[i] = ? 8i = 1..n

2. Sorted nodes in non-decreasing order of de-
gree.

3. for each vertex i with ki d

0

do

4. if label[i] = ? then

5. FOLLOW NEIGHBOR(i)

6. Return C

(0)

= hfollowi

A-Base. This algorithm finds the community structure of G(0) via labeling nodes in the network.
Nodes are first sorted in a non-decreasing order of degree, and then, each low-degree and unlabeled
node i selects one of its neighbors to follow using the FOLLOW NEIGHBOR algorithm, in which the
label[i] and the follow[i] are assigned accordingly. We can verify that all the properties in Lemma
1 hold at the end of A-Base.

Algorithm. A-Adaptive (C(t�1)

,�G

(t))

1. for each edge (u, v) 2 �E

(t) do

2. Update degree of nodes u and v

3. for each vertex i appears in �G

(t) do

4. if (ki d

0

) & (label[i] = ?) then

5. FOLLOW NEIGHBOR(i)

6. else if (ki > d

0

) & (label[i] = follower)

then

7. UNFOLLOW(i)

8. Return C

(t)
= hfollowi

A-Adaptive. This algorithm finds the community structure at time point t based on C(t�1) and
�G(t) - the previous community structure and the changes in the network. After updating the node
degrees (lines 1 to 2), the algorithm checks all nodes that appear in �G(t) and corrects all possible
“mis-labeling” caused by the degree changes. Two “mis-labeling” cases are 1) low-degree and
unlabeled nodes as the results of removing edges (or adding new nodes), and 2) follower nodes
with the degrees higher than d

0

as the results of adding new edges/nodes. The two “mis-labeling”
cases are corrected using FOLLOW NEIGHBOR and UNFOLLOW algorithms, as shown in lines 4 to 7.

Algorithm. FOLLOW NEIGHBOR(i)

1. label[i] = follower

2. if 9j 2 N(i) : label[j] 6= follower then

3. if label[j] = ? then label[j] = leader

4. follow[i] = j

5. else

6. Select a random j 2 N(i)

7. UNFOLLOW(j)

8. follow[i] = j, label[j] = leader

9. Update the modularity value.

FOLLOW NEIGHBOR. This is the fundamental procedure in A3CS. Given a node i, the algorithm
identifies a neighbor j so that i can follow j without violating the properties of Lemma 1. Lines 3
and 4 explore the case when we can find a non-follower neighbor j of i. When all neighbors of i
are followers, we first use the UNFOLLOW algorithm to make a neighbor j of i unlabeled or labeled
it with leader, and only then we can let i follow j (lines 6 to 8).

Algorithm. UNFOLLOW(i)

1. Let j = follow[i], label[i] = ?

2. if j has no followers then

3. if kj d

0

then

4. follow[j] = i, label[j] = follower

5. label[i] = leader

6. else label[j] = ?

7. Update the modularity value.

UNFOLLOW. As briefly mentioned, the algorithm UNFOLLOW is invoked when we need to stop
a node i from following its current leader j. This can usually be done by simply unlabeling i.
The interesting case happens when i is the only follower of j and unlabeling i will make j a
leader without followers (opposing the third property in Lemma 1). We handle this case by either
unlabeling j or swapping i and j’s labels together with making j follow i (lines 3 to 6).

Many real world networks in reality are highly dynamic and thus, their communities are not al-
ways disjoint from each other. Indeed, their communities often overlap with each other since some
active nodes can participate in multiple groups at the same time, thereby reassemble the concept
of overlapping community structure. Furthermore, most practical models for network problems
evolve frequently over time due to the high dynamics of participating nodes. Although any slight
change does not seem to have a significant effect on the network structure, the evolution of the
complex network over a long duration might lead to an unpredictable transformation of its com-
munities, particularly when they can overlap. In this context, we further investigated the evolution
in overlapping community structure and provided the first adaptive algorithm to adaptively up-
date the overlapping network modules. This work is published in Nguyen et al. (PLoS ONE and
MOBICOM).

In order to reflect these changes to a complex network, its underlying graph model is frequently
updated by either inserting or removing a node or a set of nodes, or an edge or a set of edges.
Scrutiny into these events reveals that the introduction or removal of a set of nodes (or edges) can
furthermore be decomposed as a collection of node (or edge) insertions (or removals), in which
only a node (or only an edge) is inserted (or removed) at a time. Therefore, changes to the network
at each time step can be viewed as a collection of simpler events whose details are as follow:

• newNode (V + u): A new node u and its adjacent edge(s) are introduced

• removeNode (V � u): A node u and its adjacent edge(s) are removed from the network.

• newEdge (E + e): A new edge e connecting two existing nodes is introduced.

• removeEdge (E � e): An edge e in the network is removed.

Our adaptive framework, namely Adaptive Finding Overlapping Community Structure (AFOCS)

u

Figure 6: When a new node u is introduced, u could gather some nodes from an existing commu-
nity (red) to form a new community (yellow)

initially requires a basic community structure C
0

. To obtain this basic structure, we apply DOCA
algorithm (Alg. 1, Alg. 2) at the first network snapshot, i.e. we execute DOCA on the network G

0

and then let AFOCS adaptively handle this structure as the network evolves.

Handling a new node. Let us discuss the first case when a new node u and its associated links
are introduced to the network. Possibilities are (1) u may come with no adjacent edge or (2) with
many of them connecting one or more possibly overlapped communities. If u has no adjacent edge,
we simply join u in the set of outliers and preserve the current community structure.

The interesting case happens, and it usually does, when u comes with multiple links connecting
one ore more existing communities. Since network communities can overlap each other, we need
to determine which ones u should join in in order to maximize the gained internal density. But how
can we quickly and effectively do so? By Lemma 2, we give a necessary condition for a new node
in order to join in an existing community, i.e. our algorithm will join node u in C if the number of
connections u has to C suffices: dui >

2|Cin|
|C|�1

. However, failing to satisfy this condition does not
necessarily imply that u should not belong to C, since it can potentially gather some substructure
of C to form a new community (Figure 6). Thus, we also need to handle this possibility. Alg. 4
presents the algorithm.

Lemma 2 Suppose u is a newly introduced node with dui connections to each adjacent community
Ci. u will join in Ci if dui >

2|Cin

i

|
|C

i

|�1

.

The analysis of Alg. 4 is shown by Lemma 3. In particular, we show that this procedure achieves at
least 0.83% internal density of the optimal assignment for u, given the prior community structure.

Lemma 3 Alg. 4 produces a community assignment that, prior to the community combination pro-
cess, achieves (Ct)� ⌧(4)⇥ (OPT (u)t) where OPT (u)t is the optimal community assignment
for u at time t, given the prior community structure Ct�1

.

Handling a new edge: In case where a new edge e = (u, v) connecting two existing vertices
u and v is introduced, we divide it further into two four smaller cases: (1) e is solely inside a
single community C (2) e is within the intersection of two (or more) communities (3) e is joining
two separated communities and (4) e is crossing overlapped communities. If e is totally inside a

Algorithm 4: Handling a new node u
Input : The current community structure Ct�1

Output: An updated structure Ct.
1 C

1

, C
2

, ..., Ck Adjacent communities of u;
2 for i = 1 to k do
3 if dui >

2|Cin

i

|
|C

i

|�1

then
4 Ci Ci [{u};
5 end
6 else
7 C N(u) \ Ci;
8 if (C) � ⌧(C) and |C| � 4 then
9 Ci Ci [{u};

10 end
11 end
12 end
13 /*Checking new community from outliers*/;
14 for v 2 C

0

and Com(v) \ Com(u) = ; do
15 C ⌘ N(u) \N(v);
16 if (C) � ⌧(C) and |C| > 4 then
17 Define C a new community;
18 end
19 end
20 Merging overlapping communities on C

1

, C
2

, ..., Ck and C
0

;
21 Update Ct;

(a) (b)

Figure 7: (a) The network with 4 disjoint communities (b) When the central edge is added, the
central nodes form a new community (yellow)

community C, its presence will strengthen C’s internal density and by Lemma 4, we know that
adding e should not split the current community C into smaller substructures. The same reaction
applies in the second subcase when e is within the intersection of two communities since their inner
densities are both increased. Thus, in these first two cases, we leave the current network structure
intact.

Algorithm 5: Handling a new edge (u, v)

Input : The current community structure Ct�1

.
Output: An updated community structure Ct.

1 if ((u, v) 2 a single community OR (u, v) 2 Cu \ Cv) then
2 Ct Ct�1

;
3 end
4 else if Com(u) \ Com(v) = ; then
5 C N(u) \N(v);
6 if (C) � ⌧(C) then
7 Define C a new community;
8 Check for combining on Com(u), Com(v) and C;
9 end

10 else
11 for D 2 Com(u) (or D0 2 Com(v)) do
12 if (D [{v}) � ⌧(D) (or (D0 [{u}) � ⌧(D0

)) then
13 D D [{v} (or D0 D0 [{u});
14 end
15 end
16 Merging overlapping communities on D’s (or D0);
17 end
18 Update Ct;
19 end

Handling the last two subcases is complicated since any of them can either have no effect on the
current network structure or unpredictably form a new network community, and furthermore can
overlap or merge with the others (Figure 7). However, there is still a possibility that the introduction

(a) (b)

Figure 8: (a) Two overlapped communities (b) When the central node is removed, the new structure
consists of two disjoint communities

of this new link, together with some substructure of Cu or Cv, suffices to form a new community
that can overlap with not only Cu and Cv but also with some of the others. The other subcases can
be handled similarly. Alg. 5 describe this procedure.

Lemma 4 If an new edge (u, v) is introduced solely inside a community C, it should not split C
into smaller substructures.

Removing an existing node: When an existing node u is about to be removed from the network,
all of its adjacent edges will also be removed as a consequence. If u is an outlier, we can sim-
ply exclude u and its corresponding links from the current structure and safely keep the network
communities unchanged.

In unfortunate situations where u is not an outlier, the problem becomes very challenging in the
sense that the resulting community is complicated: it can either be unchanged, or broken into
smaller communities, or could probably be merged with the other communities. To give a sense
of this effect, let’s consider two examples illustrated in Figure 8. In the first example, when C is
almost a full clique, the removal of any node will not break it apart. However, if we a remove node
that tends to connect the others within a community, the leftover module is broken into a smaller
one together with a node that will later be merged to one of its nearby communities. Therefore,
identifying the leftover structure of C is a crucial task once a vertex u in C is removed.

Algorithm 6: Removing a node u
Input : The current community structure Ct�1

.
Output: An updated structure Ct.

1 for C 2 Com(u) and (C\{u}) < ⌧(C\{u}) do
2 LC Local communities by Alg 1 on C\{u};
3 for Ci 2 LC and |Ci| � 4 do
4 Si Nodes such that (Ci [Si) � ⌧(Ci [Si);
5 Ci Ci [Si;
6 end
7 Merging overlapping communities on LC;
8 end
9 Update Ct;

To quickly handle this task, we first examine the internal density of C excluding the removed node
u. If the number of internal connections still suffices, e.g (C\{u}) � ⌧(C\{u}), we can safely
keep the current network communities intact. Otherwise, we apply Alg. 1 on the subgraph induced
by C\{u} to quickly identify the leftover modules in C, and then let these modules hire a set of
unassigned nodes (C) that help them increasing their inner densities. Finally, we locally check
for community combination, if any, by using an algorithm similar to Alg. 2.

Removing an edge: In the last situation when an edge e = (u, v) is about to be removed, we
divide it further into four subcases similar to those of a new edge (1) e is between two disjoint
communities (2) e is inside a sole community (3) e is within the intersection of two (or more)
communities and finally (4) e is crossing overlapping communities.

In the first subcase, when e is crossing two disjoint communities, its removal will make the network
structure more clear (since we now have less connections between groups), and thus, the current
communities should be keep unchanged. When e is totally within a sole community C, handling its
removal is complicated since this can lead to an unpredictable transformation of the host module:
C could either be unchanged or broken into smaller modules if it contains substructures which
are less attractive to each other, as depicted in Figure 9. Therefore, the problem of identify the
structure of the remaining module becomes the central part for not only this case but also for the
others.

Algorithm 7: Removing an edge (u, v)

Input : The current structure Ct�1

.
Output: An updated community structure Ct.

1 if (u, v) is an isolated edge then
2 Ct = (Ct�1

\{u, v}) [{u} [{v};
3 end
4 else if du = 1 (or dv = 1) then
5 Ct = (Ct�1

\C(u)) [{u} [C(v);
6 end
7 else if C ⌘ C(u) \ C(v) = ; then
8 Ct = Ct�1

;
9 end

10 else if (C\(u, v)) < ⌧(C\(u, v)) then
11 /*Here C 6= ;*/;
12 LC Local communities by Alg 1 on C\(u, v);
13 Define each L 2 LC a local community of Ct�1

;
14 Merging overlapping community on L’s;
15 end
16 Update Ct;

To quickly handle these tasks, we first verify the inner density of the remaining module and, again
utilize the local community location method (Alg. 1) to locally identify the leftover substruc-
tures. Next, we check for community combination since these structures can possibly overlap with

(a) (b)

Figure 9: (a) The original community (b) When the dotted edge is removed, the community is
broken into two overlapped communities

existing network communities. The detailed procedure is described in Alg. 7.

4 Assessing Network Structure Vulnerability

Impact of Nodes’ Failures on Network Components. In this task, we are interested in identi-
fying the set of nodes whose removal triggers a significant restruction of the current community
structure. In term of notations, given the input network, the community detection algorithm A
and a positive number k, we formulated the Community structure Vulnerability Assessment (CVA)
which aims to find a set S of k nodes whose removal maximally transforms the current network
community structure to a totally different one, evaluated via the Normalized Mutual Information
measure.

Definition 1 Given a network represented by an undirected and unweighted graph G, a specific
community detection algorithm A, and a positive integer k N , we seek for a subset S ✓ V such
that S = argmin

S0✓V,|S0|=k
{NMIX(S 0

)}, where X ⌘ A(G), and NMIX(S 0
) ⌘ NMI(X,A(G[V \S 0

]))

for any S 0 ✓ V .

Our major findings of this tasks are: (1) We analyzed conditions that can possibly lead to the
minimization of NMI on community structures. (2) We devised an approximation algorithm for
the case k = 1, and suggested multiple heuristic algorithms for CVA problem. We validated the
effectiveness of our solutions on both synthesized data with known community structures and real-
world traces including Arxiv citation network, Facebook, and Foursquare social networks. The
details can be found in Alim et al. (WI) and Nguyen et al. (ASONAM).

We have provided the basic results for the NMI analysis as follows:

Lemma 5 There is a graph G = (V,E) in which NMIX() is not a submodular function. More-
over, there are subsets L ✓ T ✓ V such that NMIX(T) � NMIX(L) (where L, T are sets of
removed nodes).

Theorem 9 Given two community assignments A ✓ B, there is s /2 A,B such that NMIX(A +

x)�NMIX(A) < NMIX(B + s)�NMIX(B).

We provided three algorithms to find a subset S. Our first heuristic algorithm is oriented based
on the modularity contributions of network communities in G. There are two versions in general,
called greedyMN and greedyMC , for this heuristic approach with different priorities given to
nodes and communities. In greedyMN , all nodes u’s in the network are ranked based on their
modularity contributions qu,C’s, and the top k nodes are selected in the solution set. The second
algorithms, greedyMC , consists of two steps: it first finds the community C having the most
modularity contribution qC , and then selects a node u that has the highest modularity portion qu,C
in C until k nodes are included in the solution set.

Our second heuristic approach genEdge for CVA problem is based on the component. Basically,
given a community structure X and the algorithm A, genEdge tries to find nodes which can poten-
tially break current communities into smaller ones of the relatively same size, where the preference
given to large-size communities. In particular, genEdge looks into communities Xi’s of X , or-
dered by their sizes, and selects nodes that can divide this community into more subcomponents.

For any nodes u, v 2 C, if edge (u, v) is not in E, we call it a missing edge in C. In addition, we
call an edge in C “negative” if it is incident to a missing edge in C, and “positive” otherwise. We
define the concept of generating edges of C as follows.

Definition 2 (Generating edge) For any edge (u, v) in C, if C = (C \N(u)\N(v))[{u, v} and
 (C) � ⌧(C), we call (u, v) a generating edge of C. We further call C a local core generated by
(u, v) and write gen(u, v) = C.

For any community C of G, a set L ✓ E is called a “generating edge set” of a C if [
(u,v)2Lgen(u, v) =

C. Since C can be generated by different generating edge sets and we are constrained on the node
budget, we would intuitively seek for the generating edge set of minimal cardinality.

Definition 3 (The Minimum Generating Edge Set) Given a community C of G, the MGES problem
seeks for a generating edge set L⇤ of C with the smallest cardinality.

The cores generated by edges in a MGES of a community C of G are tightly connected and they
all together compose C. As a result, if we delete an endpoint of every edge in a MGES, C will
be broken into smaller modules with the number of modules is at least the number of edges in a
MGES (Lemma 6). Since our goal is to break the current community structure X into as many
new communities as possible, the removal of crucial nodes defined by edges in a MGES will be a
good heuristic for this purpose. But first and foremost, we need to characterize all MGESs in the
current community structure X based only on the input network G. Lemma 7 realizes the location
of the generating edge(s) of a local core in a community C: they have to be adjacent to nodes with
the highest degree in C. Based on this result, we present in Alg. 8 a procedure that can correctly
find the MGES of a given community C (Theorem 10).

Lemma 6 Let L⇤ be a MGES of a community C. The removal of an endpoint in every edge of L⇤

will break C into at least |L⇤| subcommunities.

Algorithm 8: An optimal algorithm for finding the MGES
Input : Network G = (V,E) and a community C 2 X;
Output: Minimum generating edge set L⇤ of C;

1 Mark all nodes as “unassigned” and L⇤
= ;;

2 Remove all negative edges in C. If any edge(s) survives, they are candidate for generating
edges in their corresponding communities, include them to L⇤, go to step 3. Else, go to step
4;

3 Reconstruct local cores based on generating edges found in step 2. Mark all nodes in those
communities as “assigned”. Discard generating edges in L⇤ that fall into any newly
constructed communities. Return if all edges are assigned;

4 Find the set U as in Lemma 7. Find the edge in NE(U) that can generate a local community
having the largest size. Include this edge to L⇤ and mark all nodes in the new local
community as “assigned”. Ties are broken randomly. Return if all edges are assigned;

5 If there are still unassigned nodes, say the set I ✓ C, construct G0
= G[(I [N(I)) \ C].

Go back to step 2;

Lemma 7 Let C be a subset of V , U = {u 2 C|dCu is maximum in C} and NE(U) = {(u, v)|u 2
U or v 2 U but not both }. Then, |NE(U) \ L⇤| � 1.

Algorithm 9: genEdge - A node selection strategy for CVA based on generating edges
Input : Network G = (V,E), X = A(G);
Output: A set S ✓ V of k nodes;

1 Use Alg. 8 to find L⇤
X

i

for all communities Xi’s in X;
2 Sort all communities Xi’s in X by their sizes of MGESs;
3 Sort all nodes in G by the number of generating edges that they are incident to in Xi. If

there is a tie, sort them by their degrees in G;
4 Return top k nodes from step 3;

Theorem 10 Let dC be the maximum in-degree of a node in C. Alg. 8 takes O(dC |C|) time in the
worst case scenario and returns an optimal solution for MGES problem.

Impact of Edges’ Failures on Network Components. In this task, we are interested in identify-
ing the set of edges whose removal triggers a significant reconstruction of the current community
structure, defined as follows:

Definition 4 (DBC) Given an undirected graph G = (V,E), and a set C of k communities, find a
subset S ⇢ E of minimum cardinality such that removing S from the graph breaks every commu-
nity in C .

Our major findings of this task are:

• We defined the framework for community structure fragility. At first we introduced the density
based broken community (DBC) problem for breaking k communities with the minimum num-
ber of edge removals and provided an approximation algorithm, namely CVA, with theoretical
performance guarantee, O(log k). Its pseudo-code is shown in Algorithm 10.

• To analyze the vulnerability of the community structures in a broader sense, we extended the
problem formulation to communities produced from an arbitrary community detection algo-
rithm. We offered an efficient heuristic to break the communities and identify the set of critical
edges.

• We conducted extensive experiments with different parameters to mine interesting observations
about the behavior of broken communities after edge removal.

Algorithm 10: CVA: An approximation algorithm for finding the critical edges
Data: Network G = (V,E), DeletionV ector D, C , |C | = k
Result: A set S ✓ E edges

1 S ;;
2 C ;;
3 for each edge e 2 E do
4 compute the gain f(e);
5 end
6 while |C| < k do
7 e0 argmax

e2E
{f(e)};

8 In case of a tie, choose randomly;
9 S S [{e0};

10 for l = 1 to k do
11 if Cl /2 C then
12 if e0 2 Cl then
13 Dl Dl � 1;
14 if Dl 0 then
15 C C [{Cl};
16 f(e) = f(e)� 1 for all e 2 Cl;
17 end
18 end
19 end
20 end
21 end
22 return S;

The details can be found in Alim et al. (ASONAM).

For general definition of community structure, we extended the DBC problem to the following
one:

Definition 5 (Broken Community) Consider a community detection algorithm A , which produces
a collection C of communities on graph G (written C = A (G)). Let G0 be a new graph after
removal of a set of edges, and let C 0

= A (G0
). Let � 2 (0, 1). A community C 2 C is said to be

broken in graph G0 if there does not exist a community C 0 2 C 0 satisfying
(i) C 0 ⇢ C, and (ii) |C 0|/|C| > �

We have shown that partitioning a community C into at least c ✏-balanced subparts, where �c �
1 + ✏ makes it broken. Therefore, we developed the following Algorithm 11.

Algorithm 11: CCF: A heuristic algorithm for breaking communities
Data: Network G = (V,E), k Communities C , strictness threshold �
Result: A set S ✓ E of edges

1 S �;
2 c z : z is the smallest integer satisfying z� � 1 + ✏;
3 for each community Ci 2 C do
4 compute the c-way balanced partitioning;
5 Cuti = set of edges to cut Ci into c parts;
6 S S [Cuti;
7 end
8 return S;

5 Evacuation Modeling

The research summarized here is from a current submission by Vogiatzis and Pardalos to the Eu-
ropean Journal of Computational Optimization. Disaster management and evacuation planning
are both of utmost importance for the societal welfare of modern countries and states. On top of
its humanitarian benefits, proactive planning of a response to a natural or man-made disaster also
holds significant cost savings.

Most approaches tackling the evacuation planning problem can be categorized based on their un-
derlying methods. Typically, problems of the sort are formulated and tackled as large-scale linear
programming problems, with approaches that generalize network flow algorithms. The problem
with such methods stems from the large-scale nature of the problem, which does not enable us
to solve real-life scenarios. A second approach utilizes simulation and agent-based methods to
stochastically imitate the behaviors of drivers and unexpected delays/failures in the infrastructure.
Once more, due to the large-scale nature of the problem, these methods are very computationally
expensive, especially with the addition of more realistic constraints. Last, but not least, there exist
many approaches in literature that fall within the general spectrum of heuristics, which try to take
advantage of specific characteristics of the evacuation process.

In this work we also consider centrality indices within a transportation network. While centrality
is not a novel idea (as it has been around since the early 1950s), to the best of our knowledge it has

not been applied on the evacuation modeling field. Node centrality represents the importance, or
“criticality”, of a given node in the grand scheme of the network, and is considered fundamental in
network analysis.

Consider a simple, directed graph G(V,E), with |V | = n vertices, and |E| = m edges. Two
vertices i and j are said to be connected if there exists a path of vertices beginning at i and ending
in j, i.e. {v

0

, . . . , vk} where v
0

= i and vk = l, and for every two consecutive vertices vl, vl+1

in
the path, we have that (vl, vl+1

) 2 E. A graph G is connected if any pair of nodes i, j 2 V are
connected: it is a common assumption that transportation networks are always connected. Hence,
we also make this assumption for simplicity.

As we are considering a time expanded network, we deal with an instance of the graph G at any
given time t 2 T , where |T | is assumed to be a big enough horizon to cover our evacuation
operations. Hence, we have a graph G(t), with its node set, V (t), and edge set, E(t). Every edge
is also associated with a parameter mij that represents the amount of time it would take a vehicle
to traverse it. In transportation networks, this can be represented more accurately with a random
variable and/or a dependence on the flow currently using the street; however, for our purposes
of network decomposition for evacuation problems, it was deemed unnecessary and as such it is
treated as a parameter. A subset of nodes S ⇢ V is described as safe, and is the destination of
any vehicle in the transportation network during the evacuation process. We further assume that
vehicles do not have a preference on the node i 2 S they would like to arrive in.

Moreover, we consider that certain information is readily available on the sets of vertices and edges,
before modeling and solving the evacuation problem begins. Namely, each edge (i, j) 2 E(t) has
a capacity on the number of vehicles it can accommodate at any time t 2 T , symbolized by u(t)

ij .
For simplicity, it can be generally assumed that u(t)

ij = uij, 8t 2 T . The capacity is extended to
nodes as well, as we assume that a node i 2 V is associated with an upper bound on the number
of vehicles that can be there at a given time t, c(t)i . Nodes also have an initial, known demand, d(0)i .
Last, we assume that information on the level of danger the node is under at any given time t 2 T .
This can be provided to us by simulation of the underlying disaster. In order to help us with our
mathematical formulation, we assume l(t)i = 0 for all i 2 S; the remaining nodes i 2 V \ S take a
value l(t)i > 0, with larger values signaling the necessity for immediate evacuation.

For betweenness centrality, we use the definition typically encountered in literature, which is
shown in (23) for a node k 2 V , and in (24) for a set of nodes N ✓ V .

C(k) =
X

i2V \{k}

X

j2V \{k}:i 6=j

gij(k)

gij
(23)

C(N) =

X

i2V \N

X

j2V \N :i 6=j

gij(N)

gij
(24)

In the above expressions, gij(k) is the number of geodesic (shortest) paths connecting nodes i and
j that pass through k, whereas gij(N) the same for group of nodes N . The denominator in both

cases is the total number of geodesic paths connecting nodes i and j, which can be bigger than 1 in
the case of multiple alternate shortest paths. Observe that the group betweenness of a set N cannot
be calculated by adding the individual node betweenness of each node members.

Let x(t)
ij denote the number of vehicles traversing edge (i, j) 2 E(t) at time t. For every node i 2 V ,

let d(t)i represent the number of vehicles waiting there at time t. Notice that the demands for the
nodes at each time t > 0 are treated as variables, which enables us to instruct vehicles to wait at
their position instead of moving, whenever the decision to move them would hinder the success of
the evacuation plan. For t = 0, d(0)i is treated as an input parameter. Further, we introduce binary
variable yij as follows:

yij =

⇢

1, if edge (i, j) is reversed during the evacuation process,
0, otherwise.

From the definition of the set of y variables, it is clear that we consider only the case that a street
can be declared reversed (along with the necessary policing and precautions) from the beginning
of the evacuation process and cannot change back to its original sense until the end of operations.
Last, we assume we are given a horizon of periods T = {1, 2, . . . , |T |}, during which time a
maximum number of vehicles is to reach a safe node. Equivalently, the number of vehicles still
evacuating can be minimized. The mathematical formulation can now be presented in (17)-(34).

min

X

t2T

X

i2V

l(t)i d(t)i +

X

t2T

X

(i,j)2E(t)

l(t)i + l(t)j

2

x(t)
ij (25)

s.t. x(t)
ij (1� yij)uij + yjiuji, 8(i, j) 2 E(t), 8t 2 T (26)

yij + yji 1, 8(i, j) 2 E (27)

d(t)i ci, 8i 2 V (t), 8t 2 T \ {0} (28)

d(t+1)

i = d(t)i �
X

j:(i,j)2E(t)

x(t)
ij +

X

j:(j,i)2E(t�m

ij

)

t�m
ij

�0

x
(t�m

ij

)

ji , 8i 2 V (t), 8t 2 T (29)

X

(i,j)2E

yij k, 8t 2 T (30)

x(t)
ij = 0, 8i, j 2 V (t)

: l(t)i < l(t)j (31)

x(t)
ij � 0, 8(i, j) 2 E(t), 8t 2 T (32)

d(t)i � 0, 8i 2 V (t), 8t 2 T (33)
yij 2 {0, 1}, 8(i, j) 2 E. (34)

The objective function in (25) aims to minimize the number of people waiting to be evacuated in
the transportation network, either waiting in one of the nodes i 2 V or using an edge (i, j) 2 E.
Observe that we employ the simulation-obtained danger factors l(t)i to derive a weighted sum of

the number of demands that remain to be evacuated; for the edges we use an average estimate of
the two endpoints at that specific time t 2 T . That way, evacuees that are further away would take
priority in our operations, as they increase the value of the objective function significantly.

Constraints (26) ensure that whenever we have contraflow present in a segment of the evacuation
plan, the number of evacuees using the street can increase over its original capacity, as the capacity
of the reverse direction can be employed. Keep note that this is not necessarily double the capac-
ity of the original street, as there exist streets where the capacities are asymmetric per direction.
Moreover, when a street is reversed, then the constraint ensures that no flow can be sent employing
that same street. Constraint (27) guarantees that in an evacuation setting, at most one of the senses
of any street can be reversed at a time. Continuing with the constraints of the problem, in (28)
we enforce a capacity at every intersection of the transportation network. That way, we can avoid
having evacuees accumulate at any intersection, leading to street capacity losses. It can be assumed
that the capacity of the safety nodes is much higher than the capacity of the rest of the nodes in the
network.

Constraints (29) are the classical flow preservation constraints, adapted for the time-dynamic net-
work. They enforce that the number of evacuees waiting at an intersection i at a time t are as many
as there were in the previous time step t � 1 when considering also the number of vehicles that
are incoming and subtracting the ones outgoing. As a reminder, we have assume that each actual
street of the network has been assigned a parameter mij that stays constant throughout the process
which represents the (integer) number of periods it takes to traverse it. Of course, we also need to
add a budget constraint, as it is impossible to enable the reversal of every street in our evacuation
plan. The budget constraint is shown in (30).

Furthermore, we have constraints (31) that do not allow a vehicle to move from a less dangerous
to a more dangerous area. This constraint apart from enabling us with the islanding scheme to be
discussed in the following subsection, also guarantees that the objective function is non-increasing
from time step to time step. Finally, we guarantee nonnegativity of all variables and the binary
nature of the y variables in (32)-(34).

Simple Islanding. The above problem is indeed very hard to solve in real-life, large-scale in-
stances. As an example, it would take a commercial solver multiple hours to obtain an optimal
solution, when in fact in many situations, it is imperative that an evacuation plan is devised and
implemented much faster than that.

To tackle this issue, we propose a decomposition approach that produces a series of connected
clusters, called “islands”. For the decomposition, we assume that the number of clusters |N | is
given as an input. An initial decomposition approach is presented in Algorithm 12. For this
algorithm, it is necessary that we know the distance a vehicle needs to traverse from every node
i 2 V \S to arrive at a node j 2 S belonging to the safe zone, without crossing an edge (i, j) 2 E(t)

such that l(t)i < l
(t+m

ij

)

j . Let this function be referred to as ModifiedDijkstra(i, S), for a given
node i 2 V and the set of safe nodes in the network, S.

The modification to the original approach to finding all shortest paths from a node to a set of nodes

is pretty straightforward. We perform a preprocessing of the networks G(t) where we remove all
edges satisfying l(t)i < l

(t+m
ij

)

j ; we then proceed to calculate the shortest path from each node to a
virtual aggregate node connected to all safe nodes with 0 traversal time. Last, we assume we are
given t

1

, t
2

, . . . t|N | as threshold distances for a node to belong to cluster 1, 2, . . . , |N |, respectively.

Algorithm 12: Decomposition algorithm based on distance from safety and danger factor
1 n |N |;
2 for each node i 2 V ✓ S do
3 dist(i) modifiedDijkstra(i, S);
4 for k 2 {1, 2, . . . , n} do
5 if dist(i) tk then
6 Nk Nk [{i}
7 end
8 end
9 end

Betweenness Islanding. An extension of Algorithm 12 is presented in Algorithm 13. This one
takes into consideration the betweenness centrality of a cluster C and aims to decompose the
central hubs in several, distinct clusters. A simple description of Algorithm 13 can be the following.
We first calculate the betweenness of every node in the graph, considering though only the shortest
paths from every node i 2 V \ S to every safe node s 2 S (let this procedure be referred to as
SafeBetweenness(i) for a node i 2 V and SafeBetweenness(C) for a set of connected nodes
C ✓ V). We then calculate the group betweenness of all connected clusters N of size n, using
only the shortest paths to safety. Note that in regular betweenness calculations, the shortest paths
between every pair of nodes (i, j) in the network are considered; instead, here we only consider
the shortest paths between any node i 2 V \ S and any safe zone s 2 S. The set of size n with the
biggest betweenness centrality is selected and its nodes are now to be divided among the different
clusters of the islanding scheme. One way for this to be achieved, is to find the shortest path of
every other node in the network to the ones found: then each node can be greedily assigned to the
one that it can reach the fastest.

The first algorithm is much faster due to the fact that it relies on simple shortest path finding.
However, the second algorithm too is tractable for small values of n, as only

�|V |
n

�

possible set
nodes are to be considered.

Experiments can be found in the Vogiatzis and Pardalos submission. They were performed on
synthetic networks of varying size (100 to 10,000 nodes) and real-life transportation network in-
stances, where 10% of the nodes are selected to be safe zones. Specifically experiments focus
the city of Jacksonville, Florida, which presents a real challenge as it is represented by a huge
transportation network. In the Jacksonville network, the safe zones are pre-selected and known,
and simulated storms are obtained through the CSEVA package. Figures depicting the algorithms’
performances on the Jacksonville network are given in Figure 10 and Figure 11.

Algorithm 13: Decomposition algorithm based on betweenness
1 max 0;
2 N

0

 ;;
3 for each set of nodes N ✓ V do
4 if isConnected(N) && |N | = n then
5 btn = SafeBetweenness(N);
6 if max < btn then
7 max btn;
8 N

0

 N ;
9 end

10 end
11 end
12 for each node i 2 V \N

0

do
13 k = argmin{dik : k 2 N

0

};
14 Nk Nk [{i};
15 end

Figure 10: An example of how the first islanding scheme (Algorithm 12) works for the city of
Jacksonville, FL.

6 Multidimensional Assignment Problem

This research is published in the European Journal of Operational Research (see Walteros et al.
(2014)). The multidimensional assignment problem (MAP) aims to minimize the overall cost of
assignment when matching elements from N = {N

1

, . . . , Nn} (n > 2) disjoint sets of equal
size m. It comes as a natural generalization of the two-dimensional Assignment Problem (AP),
known to be polynomially solvable. Among all the different generalizations of the MAP, the one
considered in this study is the axial MAP (hereafter referred to as MAP). In an axial MAP, each
element of every set must be assigned to exactly one of m disjoint n-tuples, and each n-tuple must

Figure 11: An example of how the first islanding scheme (Algorithm 13) works for the city of
Jacksonville, FL.

contain exactly one element of each set. Contrary to the AP, the MAP is known to be NP-hard for
n > 2.

The MAP can be modeled as the following integer (0-1) program

(MAP) : min

X

i12N1

X

i2=N2

· · ·
X

i
n

2N
n

ci1i2...inxi1i2...in (35)

s.t.
X

i22N2

X

i32N3

· · ·
X

i
n

2N
n

xi1i2...in = 1, i
1

2 N
1

(36)
X

i12N1

· · ·
X

i
s�12Ns�1

X

i
s+12Ns+1

· · ·
X

i
n

2N
n

xi1i2...in = 1, is 2 Ns, s = 2, . . . , n� 1

(37)
X

i12N1

X

i22N2

· · ·
X

i
n�12Nn�1

xi1i2...in = 1, in 2 Nn

(38)
xi1i2...in 2 {0, 1}, is 2 Ns, s = 1 . . . n,

(39)

where, for every n-tuple (i
1

, i
2

, . . . , in) 2 N
1

⇥N
2

⇥ · · ·⇥Nn, variable xi1i2...in takes the value of
one if elements of the given n-tuple belong to the same assignment, and zero otherwise. The total
assignment cost (35) is computed as the cost of matching elements from different sets together. As
an example, an assignment which selects elements (i

1

, i
2

, . . . , in) to be grouped together would
have a cost of ci1i2...in .

Depending on the definition of the assignment costs, there are several variations of the MAP that
can be considered. These variations are mainly associated with cases where the assignment cost of
each n-tuple can be decomposed as a function of all possible pairwise assignment costs between

elements of different sets. That is, ci1i2...in = f(ci1i2 , . . . , cinin�1), where f : N
1

⇥ N
2

[· · · [
Nn�1

⇥Nn ! R and ci
s

i
t

is the cost of assigning together elements is 2 Ns and it 2 Nt, for s 6= t.
In general, the main advantage of having decomposable cost functions is that there may be ways of
tackling the problem without having to completely enumerate all of the different assignment costs,
which can be exponentially many. Moreover, most of these MAP variations can be associated
with a weighted n-partite graph, in which the elements are represented by the vertices of the graph,
each of the edges describes the decision of assigning two elements within the same n-tuple, and the
weights on the edges account for the corresponding assignment costs. In particular, we consider
the case where each n-tuple of any feasible assignment is assumed to form a star.

For the case of the stars, one element of each tuple is assigned to be a center (or representative)
and the other elements are considered to be the leafs (or legs) of the star. Note that, contrary to the
case of the cliques, each tuple can generate many different star configurations, depending on which
element is selected as the center. Assuming for example, that the center is element is, the cost of the
induced star is the sum of the pairwise costs between is and the other elements of the tuple. In view
of these multiple possible configurations, the cost of tuple (i

1

, i
2

, . . . , in) 2 N
1

⇥ N
2

⇥ · · · ⇥ Nn

is defined as the minimum cost among the costs of all the possible star configurations of the tuple.
That is,

ci1i2...in = min

i
s

2{i1,i2,...,in}

8

<

:

X

t2{1,2,...,n}\{s}

ci
s

i
t

9

=

;

(40)

The aforementioned MAP version is called the multidimensional star assignment problem (MSAP),
because of the particular structure that each feasible assignment has. There are several contexts in
which using star costs can prove beneficial when solving multi-sensor multi-target tracking prob-
lems. In particular, when the assignment costs have metric properties (i.e, nonnegativity, symmetry,
and subadditivity), it is interesting to see that in some cases, considering all pairwise costs within
the assignments (e.g., the clique case) is not necessary to obtain a valid solution. We provide two
examples with costs that satisfy those properties and show that the star cost variation is a valuable
tool to solve those problems. We would like to emphasize though, that the star costs are not always
a better or worse option compared to other versions such as the clique costs. Instead, it can be
seen as an alternative that also provides additional information, and that can contribute to a better
analysis depending on the context.

In the first example we aim to identify a set of land mines that are planted on a field. To find
the location of the mines, a drone is sent to fly over the field emitting a signal. Once the signal
reaches each of the mines, it bounces back and is analyzed by the sensors of the drone. After
the drone has flown over the field a number of times and its sensors have collected the set of
different signals (several of those associated with each of the mines), it is possible to calculate a
set of estimated locations where the mines could be located. The idea behind solving a MAP is to
associate the locations that are close to each other, which would help pinpoint the actual positions
of the mines. In this context, the assignment costs represent the Euclidean distances between the
estimated locations and, since the costs satisfy the triangle inequality, not all the costs need to be
considered to obtain a valid association.

Moreover, the expected position of the mine is often considered to be a concurrency point asso-

1, 1

2, 1

3, 1

1, 2

2, 2

3, 2

1, 3

2, 3

3, 3

1, 4

2, 4

3, 4

Figure 12: A valid star assignment for a graph with n = 4 and m = 3

ciated with the positions that are in the same n-tuple, generally the centroid. On the other hand,
if star costs are used, the region around the center of the stars can be seen as the zone where the
mines are most likely to be located. Under the triangle inequality assumption, it is easy to prove
that many of the triangle concurrency points (e.g., the centroid, the incenter, or the circumcenter)
are always closer to the center of the star.

The second example is a case where the costs do not represent Euclidean distances and hence,
the concept of the geometric center does not have a proper interpretation. Assume we have a
group of antennas that are placed to intercept a collection of encrypted messages that we want
to decode. Because of the interference and the noise of the environment, when the messages are
received by the antennas they are somehow disrupted and thus not perfect for decoding. Each
of the antennas can potentially receive a different version of each of the messages. The idea is
to identify which of the received versions are the ones that most closely resemble the correct
(transmitted) ones, so they can be sent for decoding. Here, since there is no way to compare
the disrupted versions with the correct messages, the decision of which versions are finally sent
to decode should be made by analyzing the dissimilarities between the received messages. In
many contexts like this, the decoding process could be rather difficult. Hence, it is desired to
select only one of the disrupted versions of each of the messages. Assuming that the messages
are encrypted in some kind of alphabet (e.g., binary codes), using the centroid of the disrupted
versions is not a valid approach here. In this framework, the use of the star costs could be of
benefit, because the messages associated with the centers of the stars can be the ones selected for
decoding (representative). For this problem, the costs can be assumed to be the number of different
characters between the messages, the sum of how far apart in the alphabet the different characters
of the messages are, or any desired correlation metric.

Given a collection N
1

, . . . , Nn of n disjoint node sets of equal size m and the corresponding col-
lection of pairwise arc sets E

12

, . . . En�1,n, where Est = Ns ⇥ Nt for s < t, let G = (N , E) be a
complete n–partite graph, where N =

Sn
s=1

Ns and E =

S

s<t Est. We refer to the ith node of set
Ns with the duple (i, s) and use the quadruple (i, s, j, t), to represent the edge between nodes (i, s)
and (j, t). Also, let cstij be a cost value associated with edge (i, s, j, t) that accounts for the cost of
assigning nodes (i, s) and (j, t) to the same star. Let a valid star be defined as a subgraph of G such
that, (1) it contains exactly one node from each set N

1

, . . . , Nn; (2) one of the nodes (the center) is
connected to all of the other nodes of the star (the leafs); and (3) there are no connections between
any pair of leafs. Then, the MSAP aims for a set of m disjoint valid stars that cover all the nodes
in G. An example of a valid star assignment of an instance, where n = 4 and m = 3 is given in
Figure 12. The three valid stars are colored gray, black, and white.

Continuous nonlinear formulation. Let variables z and x be defined as follows:

zsi =

⇢

1, if node (i, s) 2 N is a star center
0, otherwise,

and
xst
ij =

⇢

1, if nodes (i, s) and (j, t) 2 N belong to the same star
0, otherwise.

Observe that xst
ij = xts

ji for all (i, s, j, t), and xss
ij = 0, since (i, s, j, s) /2 E . The initial formulation is

presented in (41)-(48), where the objective function (41) aims to minimize the overall assignment
cost. Constraints (42) ensure that, if node (i, s) is a center, it must be connected to (n� 1) nodes.
Conversely, if it is not a center, then it should be connected to one node. Constraints (43)–(44)
guarantee that if node (i, s) is a center, it must be connected to exactly one node from each set Nt,
for all t 6= s. Further, constraints (45) enforce that there are exactly m stars in the optimal solution.
Nonlinear constraints (46) guarantee that each node (i, s) 2 N is either connected to a center, or
is a center itself, and hence, it can only be connected to leafs. Last, (47)-(48) define the domain of
variables z and x.

(INLP) : min

m
X

i=1

m
X

j=1

n
X

s=1

X

{t=1,...,n:s<t}

cstijx
st
ij (41)

s.t.
m
X

j=1

n
X

t=1

xst
ij = 1 + (n� 2)zsi , 8i = 1, . . . ,m s = 1, . . . , n (42)

m
X

j=1

xst
ij 1, 8i = 1, . . . ,m s, t = 1, . . . , n (43)

m
X

j=1

xst
ij � zsi , 8i = 1, . . . ,m s, t = 1, . . . , n (44)

m
X

i=1

n
X

s=1

zsi = m (45)

zsi +
m
X

j=1

n
X

t=1

xst
ijz

t
j = 1, 8i = 1, . . . ,m s = 1, . . . , n (46)

zsi 2 {0, 1}, 8i = 1, . . . ,m s = 1, . . . , n (47)
xst
ij 2 {0, 1}, 8i = 1, . . . ,m s = 1, . . . , n. (48)

Let RNLP be the continuous relaxation of formulation (41)–(48). That is, both z and x are
allowed to take fractional values between zero and one. We now proceed to prove that in any
feasible solution of RNLP , all z variables take integer values. For this proof, assume we have
a feasible solution (z,x). We refer to node (i, s) as white if zsi = 0, black if zsi = 1, or gray if
zsi 2 (0, 1).

Lemma 8 In any feasible solution of RNLP , a white node can only be connected to black nodes.

Lemma 9 In any feasible solution of RNLP , a black node can only be connected to white nodes.

Based on Lemmata 8 and 9, we can deduce that, if there exist gray nodes, then they are only
connected to other gray nodes.

Lemma 10 If there exist gray nodes in a feasible solution, then the number of those is a multiple
of n.

Theorem 11 In any feasible solution of the RNLP , all z variables are binary (i.e., there cannot
exist gray nodes).

Contrary to the case of the z variables, it is easy to see that there can be feasible solutions where
some of the x variables are fractional. The following theorem states that if there exists an optimal
solution where the x are fractional, there is also an alternative integral solution.

Theorem 12 If RNLP is feasible, then there always exists an optimal solution of RNLP , where
all x variables take integer values.

As a result from Theorems 11 and 12, constraints (47) and (48) can be relaxed in INLP , leav-
ing the continuous nonlinear optimization problem RNLP , henceforth referred to only as NLP .
To solve this formulation we can use any available optimizer that handles nonlinear programs.
Although, in spite of having a continuous formulation, rather than an integer one, nonlinear con-
straints (46) still pose a difficult challenge because of their non-convex nature. As an alternative
approach, instead of solving NLP , we propose using a standard linearization technique that in-
volves introducing additional variables to replace the bilinear terms in constraints (46). Further-
more, from the results presented in Theorems 11 and 12, we derive additional valid inequalities
that strengthen the proposed linear formulation. A description of the linearization and the valid
inequalities follows.

The bilinear terms of constraints (46) represent the greatest difficulty of the NLP formulation.
Thus, we apply a standard linearization technique by replacing those terms with additional vari-
ables (w). Unfortunately, by relaxing the nonlinear constraints, we lose the integrality properties
described in Theorems 11 and 12. Hence, the resulting formulation is a mixed integer linear pro-
gram (MIP). On top of that, this reformulation comes with an overhead of O(n2m2

) variables

and constraints. The proposed reformulation follows:

(MIP) : min

m
X

i=1

m
X

j=1

n
X

s=1

X

{t=1,...,n:s<t}

cstijx
st
ij (49)

s.t. (42)� (45) (50)
wst

ij ztj, 8i, j = 1, . . . ,m s, t = 1, . . . , n (51)
wst

ij xst
ij , 8i, j = 1, . . . ,m s, t = 1, . . . , n (52)

wst
ij � ztj + xst

ij � 1, 8i, j = 1, . . . ,m s, t = 1, . . . , n (53)

zsi +
m
X

j=1

n
X

t=1

wst
ij = 1, 8i = 1, . . . ,m s = 1, . . . , n (54)

wst
ij 2 [0, 1], 8i = 1, . . . ,m s = 1, . . . , n (55)

xst
ij 2 [0, 1], 8i = 1, . . . ,m s = 1, . . . , n (56)

zsi 2 {0, 1}, 8i = 1, . . . ,m s = 1, . . . , n, (57)

where variable wst
ij represents the bilinear term xst

ijz
t
j , for all (i, s, j, t) 2 E , and constraints (51)–

(53) are the linearization inequalities. Note that, contrary to the case of the x variables, wst
ij =

xst
ijz

t
j 6= xst

ijz
s
i = wts

ji . Thus, both variables wst
ij and wts

ji must be included. Finally, using a sim-
ilar argument as in Theorem 12, it is easy to see that in the above formulation we can relax the
integrality constraints of variables x and w.

Valid Inequalities. In this subsection, we introduce five families of valid inequalities that strengthen
the MIP formulation. Since we no longer have the nonlinear set of constraints (46), it is possi-
ble (and likely) that the linear relaxation of this formulation produces fractional solutions (i.e.,
gray nodes). To cope with this issue, we can use the results from Lemmata 8 and 9 to define the
following inequalities.

Proposition 1 For any edge (i, s, j, t) 2 E , the inequality xst
ij 2� zsi � ztj is valid.

This inequality comes from the fact that in any feasible solution of the MIP there are no connec-
tions between black nodes (star centers). Clearly, if both variables zsi and ztj take the value of one,
the corresponding variable xst

ij cannot be positive.

Proposition 2 For any edge (i, s, j, t) 2 E , the inequality xst
ij zsi + ztj is valid.

Similarly as before (cf. Proposition 1), in any feasible solution of the MIP there are no connec-
tions between white nodes (leafs). Thus, if both variables zsi and ztj are zero, the corresponding
variable xst

ij must also be zero. If the foregoing constraints are included in formulation (49)–(57),
it is possible to relax constraints (54), and therefore remove the extra w variables. The resulting
formulation, referred to as MIPa, not only has less variables and constraints than MIP , but also
produces a better dual bound.

(MIPa) : min

m
X

i=1

m
X

j=1

n
X

s=1

X

{t=1,...,n:s<t}

cstijx
st
ij (58)

s.t. (42)� (45) (59)
xst
ij zsi + ztj, 8i, j = 1, . . . ,m s, t = 1, . . . , n (60)

xst
ij 2� zsi � ztj, 8i, j = 1, . . . ,m s, t = 1, . . . , n (61)

zsi 2 {0, 1}, 8i = 1, . . . ,m s = 1, . . . , n (62)
xst
ij 2 {0, 1}, 8i = 1, . . . ,m s = 1, . . . , n. (63)

Theorem 13 MIPa is a valid formulation for the MSAP.

We now describe three additional families of valid inequalities.

Proposition 3 For any node (i, s) 2 N , the inequality

zsi +
m
X

j=1

n
X

t=1

qstij � 1, (64)

where qstij 2 {xst
ij , z

t
j} is valid.

We refer to this family as the minimum sum inequalities. Note that, for each node (i, s), the number
of inequalities of this family is O(2

mn
). Thus, we propose the separation procedure presented in

Algorithm 14. Given a fractional solution (z̄, x̄), for each node (i, s), we search for the inequality
that is violated the most. For this purpose, for each (j, t) such that (i, s, j, t) 2 E , we select as qstij in
(64) the variable associated with the minimum value between z̄tj and x̄st

ij . We repeat this procedure
for all (i, s) 2 N , adding all violated inequalities.

For the last two families of valid inequalities, consider the fractional solution depicted in Figure 13.
This is an optimal solution of the linear relaxation of MIPa. First, observe the 4-cycle formed by
nodes (2, 1), (1, 3), (1, 4), (2, 2). Clearly, in a feasible integral solution the number of arcs within
the cycle cannot be greater than two. We analyze this inequality in Proposition 4.

1, 1

2, 1

3, 1

1, 2

2, 2

3, 2

1, 3

2, 3

3, 3

1, 4

2, 4

3, 4

Figure 13: Example of a fractional solution of the linear relaxation of MIPa

Algorithm 14: minSumSeparation(G, i, s, z̄, x̄)
1 sum = z̄si ;
2 cut = zsi ;
3 for (j, t) such that (i, s, j, t) 2 E do
4 if z̄tj < x̄st

ij then
5 sum sum+ z̄tj;
6 cut cut+ ztj;
7 end
8 else
9 sum sum+ x̄st

ij ;
10 cut cut+ xst

ij ;
11 end
12 end
13 if sum < 1 then
14 return cut � 1

15 end
16 else
17 return null
18 end

Proposition 4 For any 4–cycle involving nodes (i, s), (j, t), (k, u), and (l, v), xst
ij + xtu

jk + xuv
kl +

xsv
il 2 is a valid inequality.

We refer to this family as the 4-cycle inequalities. Since the number of inequalities of this family
is O(m4n4

), we can find all violations by total enumeration.

Finally, observe the triplet formed by nodes (1, 3), (2, 1), and (2, 2) in Figure 13. It is easy to see
that all three nodes cannot be black and simultaneously have any connection between them. We
analyze this inequality in Proposition 5.

Proposition 5 For any triplet of nodes (i, s), (j, t), (k, u), where node (i, s) is the center of the
triplet, xst

ij + xsu
ik + zsi + ztj + zuk 3 is a valid inequality.

We described the above inequality for the case where node (i, s) is the center of the triplet. Al-
though, note that it is possible to obtain two alternative inequalities by choosing any of the other
two nodes as the center. We refer to this family as the triplet inequalities and, since the total
number of possible triplets is O(n3m3

), we can find violations by total enumeration. Finally, note
that this family of inequalities can be easily generalized for k–tuples, where k > 3. However, in
practice they are less effective and harder to evaluate, as the total number of k-tuples if O(nkmk

).

7 Node Deletion

Consider an undirected simple graph G(V , E) having node set V = {1, . . . , n}, and edge set
E ✓ {(i, j) : i, j are distinct nodes in V}. Shen et al. (2012) examine the problem of maximally
disconnecting G by deleting a subset of no more than B < |V| nodes (and all of their incident
edges). Define a (maximal) connected component as a subgraph such that every pair of nodes in
the subgraph is connected by a path, and no path exists between a node outside the subgraph and
a node belonging to the subgraph. Another study that we conducted as a part of this grant can be
found in Shen and Smith (Networks, 2013). We consider the following network-connectivity met-
rics, which we apply to G after some subset of nodes has been deleted from it: (i) the number of
components in G, (ii) the largest component size in G, and (iii) the minimum cost to reconnect the
graph after node deletions, given a set of edge construction costs. We refer to these three problems
as MaxNum, MinMaxC, and MaxMinLR, respectively. If there exist alternative optima for these
problems, we define an optimal solution as one requiring the fewest node deletions.

An intuitive approach to solving the problems we consider is to greedily delete a node having the
largest degree in the current graph along with its adjacent edges, and reiterate until B nodes have
been deleted. However, this algorithm does not generally yield even a constant-factor polynomial-
time approximation scheme. Figure 14 depicts a MaxNum instance with B = 1, in which the
greedy algorithm removes the gray node, resulting in one component (excluding the deleted node).
However, the optimal solution removes the black node, yielding four components. (Note that by
increasing the number of leaf nodes adjacent to the black node, and the number of non-leaf nodes
adjacent to the gray node, we can arbitrarily increase the optimality gap between the heuristic and
optimal objective function values.) Figure 15 depicts a MinMaxC instance with B = 1, where
the greedy algorithm deletes the highest-degree node (colored gray), leaving a largest component
that has 16 nodes. However, the optimal solution deletes the black node, which results in a smaller
largest-component size of five; again, this optimality gap can be made arbitrarily large by suitably
expanding the graph. By contrast, we explore an exact optimization algorithm for these problems.
Our central approach for these problems is inspired by bilevel optimization techniques used in
network interdiction models. We formulate MaxNum, MinMaxC, and MaxMinLR on general
graphs as two-stage network interdiction models. We then transform each model into an integrated
mixed integer program (MIP). For MaxNum and MinMaxC, we employ results for tree structures
in the Shen and Smith (Networks, 2013) paper, and derive a class of valid inequalities designed to
improve the solvability of our MIPs, based on polynomial-time DP solutions of subgraphs derived
from G.

Complexity Analysis and MIP Formulations. We now formulate the three node deletion prob-
lems as bilevel min-max (or max-min) programs, and prove that each is strongly NP-hard. We
then demonstrate how to obtain an integrated MIP model for each node deletion problem.

MaxNum. We begin by considering MaxNum, which maximizes the number of components
after deleting a subset of nodes. Denote as MaxNum the decision version of MaxNum, which
seeks to delete a subset of no more than B nodes, such that the number of components in G is at

Figure 14: Suboptimality of the Greedy Algorithm in MaxNum for B = 1

Figure 15: Suboptimality of the Greedy Algorithm in MinMaxC for B = 1

least some given integer target value T . All proofs are contained in the published paper.

Theorem 14 MaxNum is NP-complete in the strong sense.

Now, to formulate MaxNum as an MIP, define binary variables xi, 8i 2 V , such that xi = 1 if node
i is not deleted, and xi = 0 otherwise. Also, define yij 2 {0, 1}, 8(i, j) 2 E , such that yij = 0 if
edge (i, j) 2 E is deleted (due to the deletions of nodes i, j, or both), and yij = 1 otherwise. Note
that yij = xixj , i.e., an edge is not deleted if and only if both of its incident nodes are not deleted.
Let ⌘(x, y) be the number of components remaining in G given a deletion solution (x, y). We give
MaxNum as

max ⌘(x, y)� 1

n

X

i2V

(1� xi) (65a)

s.t.
X

i2V

(1� xi) B (65b)

xi + xj � 1 yij, yij xi, yij xj 8(i, j) 2 E (65c)
xi 2 {0, 1} 8i 2 V (65d)
0 yij 1 8(i, j) 2 E . (65e)

In the objective (65a), we introduce a penalty term �1/n
P

i2V (1� xi) such that if there exists
more than one solution that maximizes the number of components, a solution having the fewest
deleted nodes is chosen as an optimal solution. (Note that 0 < 1/n

P

i2V (1� xi) 1 for any
solution values of x, and that the function ⌘(x, y) takes only integer values. Hence, the introduction
of this penalty term will not generate suboptimal solutions.) Constraint (65b) limits the number of
deleted nodes to be no more than B, and constraints (65c) force yij = 1 if xi = xj = 1, for all
(i, j) 2 E . Otherwise, if xi = 0 or xj = 0, yij will take on a value of 0.

We next formulate the problem of calculating ⌘(x, y) using an MIP model on an auxiliary network,
and show that the linear programming (LP) relaxation of this formulation yields a convex hull
representation of the problem, given that all y-values are binary-valued.

Let eG(V [{0},A) denote a transformed directed network, where node 0 will act as a dummy
source node. Set A consists of two directed arcs (i, j) and (j, i) for all edges (i, j) 2 E . Our
approach requires that a path must exist in eG from node 0 to each node i, for every i 2 V : xi = 1.
Define eV = {i 2 V : xi = 1} as the set of active nodes. Let A⇤ be a minimum-cardinality set of
arcs that can be constructed between node 0 and every node in V , such that there exists a path from
node 0 to i, 8i 2 eV , using arcs in A [A⇤. Then the number of graph components equals |A⇤|.
Define FS(i) = {j : (i, j) 2 A} as the set of nodes adjacent from node i, and RS(i) = {j :

(j, i) 2 A}[{0} as the set of nodes adjacent to node i, 8i 2 V . Also, FS(0) = V and RS(0) = ;.
We define binary variables zi for all i 2 V , such that zi = 1 if we construct arc (0, i) (i.e., if we will
use (0, i) in a path from 0 to some node in eV), and zi = 0 otherwise. The goal is to minimize the
number of arcs (0, i) constructed over all i 2 V , subject to the restriction that at least one path can
be routed from node 0 to every active node k 2 eV . We associate a different commodity with each
node pair (0, k), 8k 2 eV , and define fijk as the multi-commodity flow variable on arc (i, j) 2 A

that routes a path from node 0 to node k 2 V . The MaxNum subproblem is given by

⌘(x, y) = min
X

i2V

zi (66a)

s.t.
X

j2FS(i)

fijk �
X

j2RS(i)

fjik = aixk 8i 2 {0} [V , k 2 V , i 6= k (66b)

f
0jk zj 8j, k 2 V (66c)
fijk yij 8(i, j) 2 A, k 2 V (66d)
zi 2 {0, 1} 8i 2 V (66e)
fijk � 0 8(i, j) 2 A, k 2 V . (66f)

Constraints (66b) are multi-commodity flow balance constraints, in which we define parameters
a
0

= 1 and ai = 0, 8i 2 V , i.e., there exists one unit of flow originating at node 0 and terminating
at node k, for each k 2 eV . Note that constraints (66b) do not require any flow to reach node
k 2 V if it is not active (i.e., if xk = 0, then fijk = 0, 8(i, j) 2 A, and f

0ik = 0, 8i 2
V , is feasible). Constraints (66c) indicate that no flow is permitted on arc (0, j), 8j 2 V , if
the arc is not constructed, and constraints (66d) prevent flow on arc (i, j) 2 A if it is deleted
(where yij ⌘ yji, 8(i, j) 2 A). Constraints (66e) and (66f) require z to be binary, and f to be
nonnegative, respectively. Formulation (66) can be extended for solving the case where deleted
nodes are considered as singleton components, by simply changing the right-hand-sides (RHS) of
constraints (66b) to ai, 8i 2 {0} [V .

Next, we show that solving (66) is equivalent to solving its LP relaxation.

Proposition 6 Let P be the feasible region of the LP relaxation of (66) (in which constraints (66e)
are eliminated). Given binary x and y-values, a subproblem solution (f, z) with a fractional z- or
f -value is not an extreme point of P .

According to Proposition 6, we reformulate subproblem (66) by replacing (66e) with zi � 0 for
all i 2 V , where the upper bounds zi 1 are unnecessary noting that no z-value exceeds 1 in
any optimal solution. Let ⇡ik, �↵

0ik, and �↵ijk be dual variables associated with (66b), (66c),
and (66d), respectively. The dual of formulation (66) is given by:

⌘(x, y) = max
X

k2V

xk⇡0k �
X

(i,j)2A

X

k2V

yij↵ijk (67a)

s.t. (⇡
0k � ⇡ik)� ↵

0ik 0 8i, k 2 V , i 6= k (67b)
(⇡ik � ⇡jk)� ↵ijk 0 8(i, j) 2 A, k 2 V (67c)
X

k2V

↵
0ik 1 8i 2 V (67d)

↵
0ik � 0, 8i, k 2 V ; ↵ijk � 0, 8(i, j) 2 A, k 2 V ;

⇡kk = 0, 8k 2 V , (67e)

where (67b), (67c), and (67d) are dual constraints respectively associated with primal variables
f
0ik, fijk, and zi. By replacing ⌘(x, y) with (67a) in formulation (65), we obtain a bilinear mixed-

integer program with nonlinear terms of xk⇡0k and yij↵ijk existing in the objective function. Ob-
serve that one optimal solution to (67) is obtained by letting ⇡ik = zk, 8k 2 V , i 2 {0}[V , i 6= k,

↵
0kk = zk, 8k 2 V , and all other ⇡- and ↵-variables equal to zero. (This solution is feasible to (67)

and has the same objective function value as that to the primal, and hence must be optimal.) It is
therefore permissible to restrict our attention to solutions in which all ⇡- and ↵-values belong to
the interval [0,1].

Because all x- and y-variables are binary-valued, by letting �
0k ⌘ xk⇡0k and �ijk ⌘ yij↵ijk, we

linearize these bilinear terms using the following inequalities:

�
0k xk, �0k ⇡

0k 8k 2 V (68a)
�ijk � yij + ↵ijk � 1, �ijk � 0 8(i, j) 2 A, k 2 V , (68b)

where we omit constraints �
0k � 0, �

0k � xk + ⇡
0k � 1, �ijk yij , and �ijk ↵ijk because they

will not be violated by any optimal solution. The integrated MaxNum formulation is then given by

MaxNum: max
X

k2V

�
0k �

X

(i,j)2A

X

k2V

�ijk � 1

n

X

i2V

(1� xi) (69)

s.t. (65b)–(65e), (67b)–(67e), (68a)–(68b).

MinMaxC. Our next objective is to minimize the largest component size in the graph after node
deletions. The MinMaxC objective function is similar to the one for MaxNum:

min

(

⌘0(y) +
1

n

X

i2V

(1� xi) : (65b)–(65e)

)

, (70)

where ⌘0(y) represents the largest component size given y. (Note that we can equivalently consider
⌘0(y) as the largest component size in G including all deleted nodes, because each deleted node
is a singleton component. These cardinality-1 components do not increase the objective function
value unless B � |V| and the problem is trivial.)

Define variables �ik 2 {0, 1} such that �ik = 1 if nodes i and k belong to the same component,
and �ik = 0 otherwise. (In particular, �kk = 1, 8k 2 V .) Letting � = ⌘0(y) be a variable that
represents the largest component size, we give an integrated MIP formulation as:

MinMaxC: min �+

1

n

X

i2V

(1� xi) (71a)

s.t. (65b)–(65e)
�kk = 1 8k 2 V (71b)
�jk � �ik � yij � 1 8(i, j) 2 A, k 2 V (71c)

� �
X

i2V

�ik 8k 2 V (71d)

�ik � 0 8i, k 2 V . (71e)

Constraints (71d) indicate that � � maxk2V
�

P

i2V �ik

, where
P

i2V �ik calculates the cardinality
of the component to which node k belongs, 8k 2 V . At optimality, � takes on its minimum feasible
value, and thus equals maxk2V

�

P

i2V �ik

. Next, we establish the following proposition to show
that other constraints in (71) guarantee feasible and binary �-values as defined.

Proposition 7 Given binary y-values, there exists an optimal solution to (71) in which �ik = 1 if
and only if node i and node k belong to the same component, and �ik = 0 otherwise.

MaxMinLR. The last connectivity metric that we consider regards the minimum link construc-
tion cost for reconnecting a network. Our motivation for considering this problem is that it repre-
sents the case in which a two-stage Stackelberg game is played between an interdicting agent and
some network operator. The network operator will reconnect all surviving nodes after an attack
at minimum cost, while the interdictor’s goal is to maximize the minimum cost that the operator
incurs. Let eE be the set of edges that can be built to reconnect the graph after edge deletions, and
cij be the link construction cost associated with edge (i, j), 8(i, j) 2 eE .

We begin by showing that MaxNum is a special case of MaxMinLR. Note that any MaxMinLR
instance in which eE = E , and cij = 1, 8(i, j) 2 eE , is identical to a MaxNum instance on the same
graph: The number of components in an optimal MaxNum solution is one fewer than the number
of edges required to reconnect the graph. (This observation is true regardless of whether we treat
deleted nodes as entities that need to be reconnected in the MaxMinLR problem.) Thus, because
MaxNum is a special case of MaxMinLR, and MaxNum is strongly NP-hard, then MaxMinLR
is also strongly NP-hard. By contrast to MaxNum and MinMaxC, Theorem 15 shows that when
deleted nodes do not need to be reconnected, MaxMinLR remains hard even when G is a tree.

Theorem 15 MaxMinLR (without reconnecting deleted nodes) is strongly NP-hard, even if cij is
binary-valued for all (i, j) 2 eE , and if G is a tree.

We model MaxMinLR as an MIP by creating a directed auxiliary graph eG(V ,A), in which two
directed arcs (i, j) and (j, i) appear in A associated with each edge (i, j) 2 E . Meanwhile, two
directed arcs (i, j) and (j, i) appear in a potential arc set eA for each edge (i, j) 2 eE that may be
used to reconnect the graph. Recall that eV is the set of all active nodes. We formulate the problem
of determining the minimum connection cost on eG(V ,A) as a multi-commodity network design
problem, which routes (|eV|� 1) paths from some active node q to all other active nodes (one path
each from node q to node i, 8i 2 eV \ {q}). Without loss of generality, we specify source node
q as the smallest-indexed active node. Define binary variables wi, such that wi = 1 if node i is
the smallest-indexed node in eV , and wi = 0 otherwise. In the master problem, we establish the
definition of w by using the following inequalities:

wi xi 8i 2 V (72a)
wi 1� xk 8i, k 2 V : k < i (72b)
X

i2V

wi = 1, (72c)

where constraints (72a) ensure wi = 0 if node i has been deleted, and constraints (72b) enforce
wi = 0 if any node k having a smaller index than i (i.e., k < i) has not been deleted. Constraint
(72c) forces one eligible wi to take a value of 1. The master problem of MaxMinLR is similar
to (65) except that the objective maximizes ⌘00(w, x, y) � 1/n

P

i2V (1� xi), where ⌘00(w, x, y)

is the minimum link construction cost given binary values w, x, and y, and the constraint set
includes (72a)–(72c).

Define FS 0
(i) = {j : (i, j) 2 A [eA} as the set of nodes potentially adjacent from node i, and

RS 0
(i) = {j : (j, i) 2 A [eA} as the set of nodes potentially adjacent to i, 8i 2 V . Let fijk be

the flow on arc (i, j) 2 A [eA corresponding to paths from node q to node k, 8k 2 V . Define
binary variables zij 2 {0, 1}, such that zij = 1 if we construct arc (i, j), and zij = 0 otherwise,
8(i, j) 2 eA. The MaxMinLR subproblem is given by

⌘00(w, x, y) = min
X

(i,j)2 eA

cijzij (73a)

subject to:
X

j2FS0
(i)

fijk �
X

j2RS0
(i)

fjik � wi � (1� xk) 8i, k 2 V , i < k (73b)

fijk zij + yij 8(i, j) 2 A [eA, k 2 V (73c)

zij yij 8(i, j) 2 eA (73d)

zij 2 {0, 1} 8(i, j) 2 eA (73e)

fijk � 0 8(i, j) 2 A [eA, k 2 V , (73f)

where constraints (73b) represent multi-commodity flow balance conditions at each node i 2 eV ,
which require the existence of a path from node q to node k for all active k 2 eV . Note that these
constraints are only stated for all i, k 2 V , i < k, because if wi = 1, then x

1

= · · · = xi�1

= 0 due
to (72b). Constraints (73c) force fijk = 0 if (i, j) 2 A [eA is neither connected (i.e., yij = 0) nor
constructed (i.e., zij = 0), where yij ⌘ 0 if (i, j) 62 A and zij ⌘ 0 if (i, j) 62 eA. Constraints (73d)
stipulate that no arc incident to any deleted node is constructed. Constraints (73e) and (73f) state
logical conditions on the variables.

Proposition 8 Let P 0 be the feasible region of the LP relaxation of (73) in which integrality con-
straints (73e) are eliminated. Given binary values of w and y, a subproblem solution (f, z) with
fractional f or z is not an extreme point of P 0.

The proof of Proposition 8 is similar to the proof of Proposition 6 and is hence omitted. Therefore,
to formulate MaxMinLR as a single MIP, we replace ⌘00(w, x, y) in the master problem by the dual
of the LP relaxation of (73), and rewrite all bilinear terms as a series of linear inequalities similar
to (68a) and (68b).

Let ⌧ik, �✓ijk, and �µij be dual variables associated with (73b), (73c), and (73d), respectively. In
particular, define ⌧ik ⌘ 0 for all i, k 2 V , i � k. We present the integrated MaxMinLR MIP
model as follows.

max
X

i2V

X

k2V,k>i

�

↵0
ik + �0

ik � ⌧ik
��

X

(i,j)2A[eA

X

k2V

�0
ijk �

X

(i,j)2 eA

�0ij �
1

n

X

i2V

(1� xi) (74a)

s.t. (65b)–(65e), (72a)–(72c)
⌧jk � ⌧ik � ✓ijk 0 8(i, j) 2 A [eA, k 2 V (74b)

X

k2V

✓ijk � µij cij 8(i, j) 2 eA (74c)

↵0
ik wi, ↵

0
ik ⌧ik 8i, k 2 V , i < k (74d)

�0
ik xk, �

0
ik ⌧ik 8i, k 2 V , i < k (74e)

�0
ijk � yij + ✓ijk � 1, �0

ijk � 0 8(i, j) 2 A [eA, k 2 V (74f)

�0ij � yij + µij � 1, �0ij � 0 8(i, j) 2 eA (74g)

⌧ik � 0 8i, k 2 V , i < k; ✓ijk � 0 8(i, j) 2 A [eA, k 2 V ;
µij � 0 8(i, j) 2 eA. (74h)

Constraints (74b) and (74c) are dual constraints associated with primal variables fijk, 8(i, j) 2 A[
eA, k 2 V and zij, 8(i, j) 2 eA, respectively. We define ↵0

ik ⌘ wi⌧ik, �0
ik ⌘ xk⌧ik, �0

ijk ⌘ yij✓ijk,
and �0ij ⌘ yijµij in the objective, and enforce these relationships via constraints (74d), (74e), (74f),
and (74g), respectively, as before.

Bounds and Inequalities for MaxNum and MinMaxC. We now discuss strategies for bounding
the optimal objective function values for MaxNum and MinMaxC, and using the obtained bounds
to tighten the MIP formulations for these problems. Shen and Smith (2012, Networks) prescribe
polynomial-time optimal DP algorithms for MaxNum and MinMaxC on k-hole-graphs (where k
is a constant). We do not carry out this analysis for MaxMinLR, as Theorem 15 indicates that it is
not solvable (in general) in polynomial time, even when G is a tree, unless P = NP .

We begin by describing mechanisms for bounding the connectivity objectives, i.e., the number
of components in MaxNum, and the largest component size in MinMaxC. Denote xG and x0

G as
optimal solutions to MaxNum and MinMaxC on G, respectively. Also, let ⌘G(x) equal the number
of components, and ⌘0G(x) equal the largest component size, after we delete a subset of nodes
(and their incident edges) associated with solution x on graph G. We first establish the following
proposition.

Lemma 11 For any subgraph GS(V , ES) of G, we have:

⌘G(xG
S

) ⌘G(xG) ⌘G
S

(xG
S

) (75a)
⌘0G(x

0
G

S

) � ⌘0G(x
0
G) � ⌘0G

S

(x0
G

S

). (75b)

In our implementation, we specify a priori some value kmax that denotes the maximum number
of holes that we allow in any induced subgraph of G, and generate a series of m subgraphs of G,
denoted as H1, . . . , Hm, in which H l is a kl-hole-graph (kl kmax), 8l = 1, . . . ,m. According to
Lemma 11, the following bounds are valid:

max

l=1,...,m
{⌘G (xHl)} ⌘G(xG) min

l=1,...,m
{⌘Hl (xHl)} (76a)

min

l=1,...,m
{⌘0G (x0

Hl

)} � ⌘0G(x
0
G) � max

l=1,...,m
{⌘0Hl

(x0
Hl

)} . (76b)

Given the bounds established in (76a) and (76b), we now turn our attention to employing these
bounds within a graph partitioning strategy that generates valid inequalities for MaxNum and Min-
MaxC. Given G(V , E), we partition V into m nonempty subsets V

1

, . . . , Vm, such that Vi \ Vj = ;
for all i, j = 1, . . . ,m, i 6= j and

Sm
i=1

Vi = V . Each partition Vi yields a subgraph Gi(Vi, Ei), in
which Ei = {(u, v) 2 E | u, v 2 Vi} is induced by nodes in Vi. (Note that if G is connected and
m � 2, then

Sm
i=1

Ei ⇢ E .) Let ki be the number of holes in each subgraph Gi, 8i = 1, . . . ,m.

We then execute the DP algorithm of Shen and Smith on each ki-hole subgraph Gi given a node
deletion budget of B. As is typical in DP schemes, we obtain the optimal connectivity objective
values corresponding to every node deletion budget value Bi = 0, . . . , B. These values allow us to
construct functions that reflect relationships between the connectivity objective values and budgets
in MaxNum and MinMaxC over Gi, which yield valid inequalities for their respective MIPs.

We first present the development of our valid inequalities in the context of the MaxNum problem.
Let ⌘i(Bi) be the maximum number of components that we can obtain in Gi given deletion budget
Bi = 0, . . . , B. Let variable ⌘ represent the optimal connectivity objective value for solving
MaxNum on G, and let ⌘i be a variable representing the optimal connectivity objective value
for solving MaxNum on Gi, 8i = 1, . . . ,m. We construct a piecewise-linear concave envelope
function gi(Bi) of ⌘i(Bi), such that ⌘i(Bi) gi(Bi) for each Bi = 0, . . . , B. We use the tightest
such function possible, in which every linear segment of gi(Bi) touches at least two points on the
function ⌘i(Bi), assuming that B � 1. We append the following system of valid inequalities into
the MaxNum formulation, where Bi is now released as a variable representing the number of node
deletions that take place over Vi.

⌘ �
m
X

i=1

⌘i 0 (77a)

⌘i � gi(Bi) 0 8i = 1, . . . ,m (77b)

Bi =

X

j2V
i

(1� xj) 8i = 1, . . . ,m, (77c)

where (77a) is due to the fact that the partition procedure automatically eliminates all edges be-
tween each pair of Gi, 8i = 1, . . . ,m, and thus it creates at least as many components as solving
the original problem on G. Constraints (77b) are nonlinear constraints that can be substituted by
a set of linear functions, each of which corresponds to a segment of gi(Bi), for all i = 1, . . . ,m.
Constraints (77c) define Bi as the number of node deletions taking place in set Vi.

8 Defending and Interdicting NP-hard Problems

Lozano and Smith (2015) consider defender-attacker-defender problems that are modeled as three-
level, two-player Stackelberg games. In the first stage a defender (also known as the “owner” or
“operator”) can fortify a subset of assets, while in the second stage an attacker (often called the
“interdictor”) destroys a subset of the unprotected assets. The attacker’s goal in the second stage is
to maximize damage to the defender’s objective, which is determined by solving an optimization
problem in the third stage, using the surviving assets from the initial system.

Formally, let w, x, and y be the decision variables for the first-, second-, and third-stage problems,
respectively. We assume that the third-stage problem can take any general form, while the first-
and second-stage problems include only binary variables, i.e., w 2 {0, 1}nw and x 2 {0, 1}nx ,
where n

w

(n
x

) is the number of variables required to model asset fortification (attack). Let W be
the set of feasible solutions to the first-stage problem. Let X (w) be the set of feasible second-stage
solutions given a defense vector w, and let Y(x) be the set of feasible third-stage solutions for a
given attack vector x. Also, define X =

[

w2W

X (w) and Y =

[

x2X

Y(x), i.e., X and Y are the

set of all possible second- and third-stage feasible solutions, respectively. Finally, let f(y) be the
defender’s objective function. We study problems of the form:

P : z⇤ = min

w2W
max

x2X (w)

min

y2Y(x)

f(y), (78)

We refer to the first-, second-, and third-stage problems as fortification, attack, and recourse prob-
lems, respectively.

These problems have multiple applications in areas such as military and homeland security opera-
tions, facility protection, survivable network design, and power grid protection. At a more abstract
level, interdiction problems can often be modeled as games that take place over networks having
well-studied recourse problems. Some of these network interdiction problems include shortest
path, maximum flow, and multicommodity flow studies. Of particular interest are previous studies
on defender-attacker-defender problems that fit within our problem framework.

We present a novel backward sampling framework for solving three- (and two-) stage interdiction
problems in which the recourse problem can take any form (e.g., it can be nonlinear, and can have
integer variables), provided that all variables in the first two stages are restricted to be binary-
valued. This framework is primarily designed to improve the solution of the interdiction problem,
by solving relatively easy interdiction problem relaxations in which the defender is restricted to
choose its recourse actions from a sample of the third-stage solution space. These problems pro-
vide upper bounds on the optimal interdiction solution; lower bounds can then be obtained by
fixing an interdiction solution and optimizing the (original) recourse problem as a function of the
fixed interdiction actions. This framework avoids linearizing a (potentially large) bilinear pro-
gram, and also eliminates the need for applying combinatorial Benders’ cuts at the interdiction
stage (although we still require them to solve the fortification problem).

Using our framework, we construct an algorithm for the shortest path interdiction problem with for-
tification (SPIF) that compares favorably to the current state-of-the-art algorithm, finding optimal
solutions over random grid networks having up to 3,600 nodes and 17,000 arcs, and over real-road
networks having up to 300,000 nodes and more than 1,000,000 arcs. We also consider the capac-
itated lot sizing interdiction problem with fortification (CLSIF), in which the NP-hard third-stage
problem is modeled as a MIP. We extend our framework to solve the CLSIF, and demonstrate its
ability to solve instances of this new problem class.

The Backward Sampling Framework. The core idea behind the backward sampling frame-
work is to iteratively sample the third-stage solution space so that instead of solving the original

problem P directly, we solve restricted problems defined over smaller recourse solution spaces.
The sampling procedure selects a subset of third-stage solutions ˆY ✓ Y , and throughout the algo-
rithm augments ˆY with new third-stage solutions from Y . The sampling procedure would ideally
be able to quickly identify several near-optimal solutions; however, we do not require this proce-
dure to guarantee the generation of any new solutions in order for our framework to converge to an
optimal solution. An appropriate strategy would tailor the sampling procedure for the problem at
hand, as would be done for heuristic approaches.

For any attack vector x and third-stage solution sample ˆY , we denote by ˆY(x) ⌘ ˆY \ Y(x) the
subset of solutions that belong to ˆY and are feasible given the attack vector x. Anticipating the case
for which there exists an attack x 2 X for which ˆY(x) = ;, we seed ˆY with an artificial third-stage
solution y

a that cannot be interdicted and has objective value f(ya
) = 1. This artificial solution

ensures that ˆY(x) 6= ; for any x 2 X .

Consider any feasible defense vector w 2 W and let

Q(w) : zI(w) = max

x2X (w)

min

y2Y(x)

f(y) (79)

be its associated two-level interdiction problem. Note that if there exists a defense w 2 W such
that X (w) = ;, then problem (79) is not defined. Hence, without loss of generality, we assume
that X (w) 6= ;, 8w 2 W .

Let ˆY ✓ Y be any third-stage solution sample and

Q(w, ˆY) : zI(w, ˆY) = max

x2X (w)

min

y2 ˆY(x)

f(y) (80)

be the restricted problem in which recourse (third-stage) decisions are restricted to ˆY . The fol-
lowing result establishes that solving a restricted problem Q(w, ˆY) yields a valid upper bound on
zI(w), which is in turn a valid upper bound on z⇤.

Proposition 9 Consider any w 2 W and third-stage solution sample ˆY ✓ Y . Then we have
zI(w, ˆY) � zI(w) � z⇤.

All proofs can be found within the work of Lozano and Smith (2015).

We now establish conditions under which we can obtain an optimal solution to Q(w), for some
w 2 W , from a restricted problem Q(w, ˆY). First, let (x̂, ŷ) be an optimal solution to the restricted
problem Q(w, ˆY). We say that zI(w, ˆY) is the perceived damage of x̂ given ˆY , because the
interdictor perceives that the recourse decision must come from ˆY . However, the defender may
instead select from uninterdicted solutions in Y , and so we define the real damage of attack x̂ over
the original third-stage solution space Y as

zR(x̂) = min

y2Y(x̂)

f(y). (81)

Observe that zR(x̂) zI(w) zI(w, ˆY) for any x̂ 2 X (w). Proposition 10 states a condition in
which an optimal solution to Q(w, ˆY) also optimizes Q(w).

Proposition 10 Let w 2 W be a feasible defense, ˆY be a third-stage solution sample, and (x̂, ŷ)
be an optimal solution to Q(w, ˆY). If zI(w, ˆY) = zR(x̂), then (x̂, ŷ) optimizes Q(w).

Our algorithm uses these results to solve Q(w), given w 2 W , by iteratively solving restricted
problems Q(w, ˆY i

) defined over different third-stage samples ˆY i ✓ Y . Algorithm 15 presents this
approach, in which each iteration i yields an upper bound UBi on zI(w) from solving Q(w, ˆY i

),
and a lower bound LBi on zI(w) by obtaining zR(x̂), for some x̂ 2 X (w). As we will demonstrate,
the sequence of UBi-values is nonincreasing, although the LBi-values need not be monotone. The
main while-loop (line 2) is executed until the optimality condition described in Proposition 10 is
met. Line 4 solves the restricted problem Q(w, ˆY i

) defined over the current sample ˆY i. Line 5
calculates the real damage zR(x̂) for attack x̂ and sets LBi equal to this value (see Remark 1 for
additional explanation). Line 6 creates ˆY i+1 by including solutions in ˆY i along with ŷ

⇤, i.e., an
optimal third-stage response to attack x̂.

If the perceived damage obtained is less than the upper bound at the previous iteration, then a new
upper bound on zI(w) has been obtained, and the algorithm executes lines 8–9. Line 8 removes
from ˆY i+1 solutions whose objective value is greater than UBi, and line 9 attempts to add new
solutions to ˆY i+1 from YUB

i

⌘ {y 2 Y | f(y) UBi}. If the optimality condition in line 11 is
satisfied, then line 12 returns an optimal solution.

Algorithm 15: Solving bilevel interdiction problem Q(w) via backward sampling
Input : Problem P and a feasible defense w 2 W
Output: An optimal solution to Q(w)

1 Initialize UB
0

= 1 and LB
0

= �1, select ˆY1 ✓ Y as a sampling of the third-stage solution
space, and set counter i = 0;

2 while LBi < UBi do
3 Set i = i+ 1;
4 Solve UBi = zI(w, ˆY i

) = max

x2X (w)

min

y2 ˆYi

(x)

f(y) and obtain an optimal solution (x̂, ŷ);

5 Solve LBi = zR(x̂) = min

y2Y(x̂)

f(y) and obtain an optimal solution ŷ

⇤;

6 Set ˆY i+1

=

ˆY i [{ŷ⇤};
7 if UBi < UBi�1

then
8 Remove from ˆY i+1 all solutions having objective value greater than UBi;
9 Add to ˆY i+1 a subset of new solutions in YUB

i

;
10 end
11 if LBi = UBi then
12 Terminate with solution (x̂, ŷ);
13 end
14 end

Proposition 11 shows that the sequence of UBi-values obtained is nonincreasing, and Proposition
12 states the finiteness and correctness of the proposed algorithm.

Proposition 11 The upper bounds UBi produced by Algorithm 15 are nonincreasing, and at iter-
ation i, ˆY1

UB
i

✓ ˆY2

UB
i

✓ · · · ✓ ˆY i+1

UB
i

, where ˆYj
UB

i

⌘ {y 2 ˆYj | f(y) UBi}.

Proposition 12 Algorithm 15 terminates finitely with an optimal solution.

Optimizing the Defense Decisions. We now propose an approach to solve the three-level prob-
lem P . This approach is based on the identification of critical attacks, i.e., attacks that must be
blocked in order to improve the defender’s incumbent objective value. Formally, we define a criti-
cal attack as any attack x̂ such that its real damage zR(x̂) is greater than or equal to a target upper
bound z̄. Our approach adds a covering constraint w|

x̂ � 1 to the fortification problem for each
critical attack x̂, which states that at least one of the assets attacked by x̂ must be fortified.

Proposition 13 For problem P having optimal objective value z⇤, consider any attack x̂ 2 X . If
z⇤ < zR(x̂), then any optimal solution (w

⇤,x⇤,y⇤
) satisfies w⇤|

x̂ � 1.

These covering constraints can be seen as a general case of the combinatorial Benders’ cut (Codato
and Fischetti, 2006) where the fortification problem acts as a master problem and Q(ŵ) as a
subproblem. Similar so-called supervalid inequalies were introduced by Israeli and Wood (2002)
for a two-level shortest path interdiction problem.

Our approach explores different defense vectors ŵ 2 W and solves the associated interdiction
problems Q(ŵ) with a variation of Algorithm 15 that stops whenever it identifies a critical attack.
When such an attack is identified, the algorithm adds a covering constraint to the fortification prob-
lem, forcing the defender to block each identified critical attack. When the fortification problem be-
comes infeasible, the algorithm terminates with the incumbent solution being optimal. This process
must eventually terminate with an infeasible first-stage problem because X (w) 6= ;, 8w 2 W , by
assumption.

Algorithm 16 presents the proposed approach. Let C be the set of covering constraints added to
the fortification problem and W(C) ⌘ {w 2 W | w satisfies all constraints in C}. The algorithm
starts with C = ; and a global upper bound z̄ = 1. The main while-loop (in line 2) is executed
until the fortification problem becomes infeasible. The two main steps inside this while-loop are
selecting a feasible defense ŵ 2 W(C) (in line 4), and solving its associated interdiction problem
Q(ŵ) with a variation of Algorithm 15 (lines 5–22). The inner while-loop (in line 6) is executed
until LBi = zR(x̂) � z̄, for some x̂ 2 X (

ˆ

w), indicating that x̂ is a critical attack. At this
point, Algorithm 16 stops solving Q(ŵ) and adds a covering constraint to C. Finally, lines 7–21
replicate Algorithm 15, except for updating the global upper bound z̄ (in line 12), adding a covering
constraint to C if a critical attack is identified (in lines 16–18), and updating the incumbent solution
when an optimal solution to Q(ŵ) has an objective value equal to z̄ (in lines 19–21).

Algorithm 16 terminates finitely because each critical attack x̂ 2 X triggers the generation of a
covering constraint to C, which excludes the fortification action ŵ from W(C). Finite termination
of the algorithm then follows from the finiteness of W and from Proposition 12.

Algorithm 16: Backward sampling framework
Input : Problem P
Output: An optimal solution to P

1 Initialize the global upper bound z̄ =1 and covering constraints set C = ;;
2 Select ˆY1 ✓ Y as a sampling of the third-stage solution space and set counter i = 0;
3 while W(C) 6= ; do
4 Select ŵ 2W(C);
5 Initialize UBi =1 and LBi = �1;
6 while LBi < z̄ do
7 Set i = i+ 1;
8 Solve UBi = zI(w, ˆY i

) = max

x2X (w)

min

y2 ˆYi

(x)

f(y) and obtain an optimal solution (x̂, ŷ);

9 Solve LBi = zR(x̂) = min

y2Y(x̂)

f(y) and obtain an optimal solution ŷ

⇤;

10 Set ˆY i+1

=

ˆY i [{ŷ⇤};
11 if UBi < z̄ then
12 Update global upper bound z̄ UBi;
13 Remove from ˆY i+1 all solutions having objective value greater than UBi;
14 Add to ˆY i+1 a subset of new solutions in YUB

i

;
15 end
16 if LBi � z̄ then
17 Add the covering constraint w|

x̂ � 1 to C;
18 end
19 if LBi = UBi = z̄ then
20 Update the incumbent solution (w̄, x̄, ȳ) (ŵ, x̂, ŷ);
21 end
22 end
23 end
24 Return (w̄, x̄, ȳ);

The correctness of Algorithm 16 results directly from Propositions 9 and 13. Note that the upper
bound z̄ is nonincreasing throughout the execution of the algorithm. Proposition 13 states that
each of the covering constraints is necessary in order to achieve an objective value less than z̄. As
a result, once W(C) becomes empty we conclude that z⇤ � z̄. Since z̄ is an upper bound, we also
have that z⇤ z̄, which guarantees that the algorithm terminates with the optimal value z̄ = z⇤.
For any ŵ that reduces z̄, the algorithm solves Q(ŵ) to optimality, i.e., until LBi = UBi = z̄, and
updates the incumbent solution. As a result, the algorithm terminates with an optimal incumbent
solution since its objective value is equal to z̄ = z⇤.

Accelerating the Algorithm. We now describe a mechanism designed to reduce the number of
restricted interdiction problems that are solved to optimality. The idea is to “pause” the exploration
of any ŵ 2 W whenever the potential relative improvement to the current global upper bound is
sufficiently small. At this point, we add a tentative covering constraint to the fortification problem,

guessing that the best known attack x̂ corresponding to ŵ is critical (which it will indeed be if the
global upper bound is reduced by a relatively small amount). We store ŵ in a waiting list to be
revisited later in the execution of the algorithm, at which time we either confirm that x̂ was critical
and discard ŵ from the waiting list, or conclude that the attack may not be critical and continue
exploring ŵ.

Formally, let C be the set of covering constraints derived from (known) critical attacks and C be the
set of tentative covering constraints. Let L be a waiting list that stores triples (ŵ, zR(x̂), ˆ), where
ŵ is a defense vector that must be revisited, zR(x̂) is the real damage for an attack x̂ 2 X (ŵ) that
we guess is critical, and ˆ is the corresponding covering constraint. Algorithm 17 formally states
the accelerated backward sampling algorithm. If W(C [C) 6= ;, then line 4 selects a defense
ŵ 2 W(C [C) and lines 5–21 explore problem Q(ŵ) as in Algorithm 16. When x̂ has not been
shown to be critical, line 22 computes the ratio (z̄ � LBi)/z̄, assuming that z̄ > 0, to measure
the percent reduction to z̄ that could be achieved by continuing to solve Q(ŵ). If this ratio is not
greater than some parameter ✏ > 0, then lines 23–24 store (ŵ, zR(x̂),w|

x̂ � 1) in L, add the
corresponding tentative covering constraint to C , and stop the exploration of the current ŵ. When
W(C [C) = ;, if C 6= ;, then lines 29–38 reconsider the items stored in the waiting list. The
first for-loop (in lines 29–33) iterates over L and moves from C to C all the covering constraints
corresponding to attacks with zR(x̂k

) > z̄, discarding the associated w

k from further exploration.
Note that if zR(x̂k

) = z̄, then we cannot yet discard w

k: even if z̄ = z⇤, the algorithm might
not have updated the incumbent (w̄, x̄, ȳ). The second for-loop (in lines 34–38) iterates over the
remaining items in L and resumes exploration for any w

k that is still in W(C), but with ✏ = 0.
Finally, line 39 discards the remaining constraints in C , empties the waiting list, and returns to the
main while-loop.

Algorithm 17: Backward sampling framework with waiting list
Input : Problem P and a threshold parameter ✏ > 0

Output: An optimal solution to P
1 Initialize z̄ =1, covering constraints sets C = ;, C = ;, and waiting list L = ;;
2 Select ˆY1 ✓ Y as a sampling of the third-stage solution space and set counter i = 0;
3 while W(C [C) 6= ; do
4 Select ŵ 2W(C [C);
5 Initialize UBi =1 and LBi = �1;
6 while LBi < z̄ do
7 Set i = i+ 1;
8 Solve UBi = zI(w, ˆY i

) = max

x2X (w)

min

y2 ˆYi

(x)

f(y) and obtain an optimal solution (x̂, ŷ)

Solve LBi = zR(x̂) = min

y2Y(x̂)

f(y) and obtain an optimal solution ŷ

⇤;

9 Set ˆY i+1

=

ˆY i [{ŷ⇤};
10 if UBi < z̄ then
11 Update global upper bound z̄ UBi;
12 Remove from ˆY i+1 all solutions having objective value greater than UBi;
13 Add to ˆY i+1 a subset of new solutions in YUB

i

;
14 end
15 if LBi � z̄ then
16 Add the covering constraint w|

x̂ � 1 to C;
17 end
18 if LBi = UBi = z̄ then
19 Update the incumbent solution (w̄, x̄, ȳ) (ŵ, x̂, ŷ);
20 end
21 if (z̄ � LBi)/z̄ ✏ and LBi < z̄ then
22 Add (ŵ, zR(x̂),w|

x̂ � 1) to the waiting list L;
23 Add the covering constraint w|

x̂ � 1 to C and go to line 4;
24 end
25 end
26 end
27 if C 6= ; then
28 for (w

k, zR(x̂k
), k

) 2 L do
29 if zR(x̂k

) > z̄ then
30 A
31 end
32 dd k to C, remove k from C , and remove (w

k, zR(x̂k
), k

) from L;
33 end
34 for (w

k, zR(x̂k
), k

) 2 L do
35 if wk 2W(C) then
36 R
37 end
38 esume solving Q(w

k
) with a threshold ✏ = 0;

39 end
40 Reset C ;, L ;, and go to line 3;
41 end
42 Return (w̄, x̄, ȳ);

Shortest Path Interdiction Problem with Fortification. The SPIF is formally defined on a di-
rected graph G = (N ,A), where N is the set of nodes and A ✓ N ⇥ N is the set of arcs, s is
the source node, and t is the destination node. For each arc (i, j) 2 A there are two nonnegative
attributes: the cost cij � 0 of traversing the arc, and the delay (or penalty) dij � 0 incurred when
traversing an interdicted arc (so that crossing an interdicted arc costs cij + dij). Let w be the
fortification decision variables defined over the arcs, where W ⌘ �

w : e

|
w Q, w 2 {0, 1}|A|

enforces a cardinality constraint on the number of fortified arcs and ensures that the variables are
binary. Similarly, let x 2 X (w) be the second-stage attack decision variables, where X (w) ⌘
�

x : e

|
x B, xij 1� wij 8(i, j) 2 A, x 2 {0, 1}|A| ensures that a maximum of B unpro-

tected arcs are attacked, and forces the x-variables to be binary. Finally, let y be the third-stage
arc-flow variables. The SPIF can be formally stated as:

min

w2W
max

x2X (w)

min

X

(i,j)2A

(cij + dijxij)yij (82)

s.t.
X

{j|(i,j)2A}

yij �
X

{j|(j,i)2A}

yji =

8

>

<

>

:

1, for i = s

0, for i 2 N\{s, t}
�1, for i = t

(83)

yij � 0, 8(i, j) 2 A, (84)

where in the objective function (82), the original cost of any arc is increased by dij when the arc is
attacked (i.e., xij = 1). Constraints (83) define the shortest path flow conservation constraints, and
(84) restrict the y-variables to be nonnegative.

The implementation of the backward sampling framework for the SPIF requires a sampling scheme,
an algorithm for solving two-level shortest path interdiction problems restricted over a sample of
s-t paths, and a method to solve third-stage shortest path problems. The latter is simply accom-
plished via Dijkstra’s algorithm. We discuss the first two components of our approach in the
following subsections.

We adapt the pulse algorithm for the constrained shortest path problem to sample s-t paths from
G. The pulse algorithm conducts a recursive implicit enumeration of the solution space, supported
by pruning strategies that efficiently discard a vast number of suboptimal solutions. The algo-
rithm conducts a depth-first search beginning at s. When a partial path is pruned or the search
reaches node t, the algorithm backtracks and continues the search through unexplored regions of
the solution space.

We implemented two pruning strategies: bound and arc-usage pruning. The bound pruning strat-
egy discards any path whose cost exceeds the current upper bound z̄. To do so, we first obtain the
minimum cost needed to reach node t from any node i, denoted by cit. Then, we prune any partial
path from node s to node i with cost csi, such that csi + cit > z̄.

In the arc-usage pruning strategy, we define an upper limit ū on the number of paths in ˆY that
can use any arc (i, j). Let uij be the number of paths in ˆY that use arc (i, j). When the search
reaches node t, we add an s-t path to ˆY and increase uij by one, for each arc (i, j) traversed in the
path. Once uij = ū, we eliminate arc (i, j), forcing the pulse algorithm to explore paths that do
not traverse arc (i, j). This strategy yields a diverse sample of s-t paths, which is desirable in our

backward sampling framework. Finally, we stop the sampling procedure once a maximum sample
size limit is reached or once a time limit is exceeded.

We formulate the restricted problem Q(ŵ, ˆY) as a MIP. Let Pk be the set of arcs corresponding to
the kth path in sample ˆY , and let c(Pk

) denote its cost. We formulate Q(ŵ, ˆY) as follows:

max z (85)

s.t. z c(Pk
) +

X

(i,j)2Pk

dijxij, 8Pk 2 ˆY , (86)

x 2 X (ŵ). (87)

The objective function (85) maximizes z, which is constrained by (86) to be no more than the least
cost path in ˆY , after considering delays caused by arc interdiction. Finally, constraints (87) ensure
that we only consider feasible attacks in X (ŵ).

Observe that if our algorithm generates an attack x̂ 2 X (ŵ) having a perceived damage greater
than z̄, then z̄ cannot be improved in the current iteration. In this case, our algorithm does not
utilize the precise perceived damage value (beyond establishing that it exceeds z̄). It is thus not
necessary to optimize model (85)–(87) if we have proven that its objective exceeds z̄, and so we
add the objective target constraint z z̄ + �, for a small constant � > 0, to model (85)–(87). This
ensures that any attack x̂ 2 X (ŵ) with perceived damage strictly greater than z̄ is sufficient to
allow the overall algorithm to continue, even though x̂ may not optimize Q(ŵ, ˆY).

Furthermore, because the x-variables are binary-valued and dij � 0, 8(i, j) 2 A, the addition of
the objective target constraint allows us to revise (86) as follows, where (•)+ = max{0, •}:

z c(Pk
) +

X

(i,j)2Pk

min{dij, (z̄ + � � c(Pk
))

+}xij, 8Pk 2 ˆY . (88)

Constraints (88) are at least as tight as (86). (Note that (88) corresponding to some Pk may persist
in our interdiction model for a few iterations after z̄ + � c(Pk

). We therefore require the
coefficients of the x-variables to be nonnegative in order to ensure the validity of (88).)

Capacitated Lot Sizing Interdiction Problem with Fortification. The capacitated lot sizing
problem (CLSP) is a well-known NP-hard problem in which a facility manufactures a single prod-
uct to satisfy a known demand over a finite planning horizon subject to production capacity con-
straints. In the CLSIF production capacity at any time period could be lost (e.g., due to machine
failures). The system operator can ensure that capacity is protected against loss for some time pe-
riods (e.g., by performing preventive maintenance). In this context, an “attack” is not necessarily
due to a malicious adversary, but represents some bounded worst-case scenario on capacity loss.

Formally, we define the CLSIF as the problem of finding a subset of time periods to fortify, in order
to minimize the total cost resulting from a worst-case attack that disables production capacity on
some of the unprotected time periods. Let T be the set of time periods in the planning horizon. For
each time period t 2 T , let dt be the demand, Ct be the production capacity, and let ct, ft, ht, and

qt be the production, setup, holding, and shortage cost, respectively. All parameters are assumed
to be nonnegative.

Let w 2 W be the fortification decision variables and x 2 X (w) be the attack decision variables,
where W ⌘ �

w : e

|
w Q, w 2 {0, 1}|T | establishes the defender’s budget and ensures that the

fortification variables are binary, and X (w) ⌘ �

x : e

|
x B, xt 1� wt 8t 2 T , x 2 {0, 1}|T |

ensures that a maximum of B unprotected time periods are attacked, and forces the attacker vari-
ables to be binary. Finally, let y, v, I, and s be the third-stage decision variables modeling produc-
tion, setup, inventory, and shortage, respectively. The CLSIF can be formally stated as:

min

w2W
max

x2X (w)

min

X

t2T

ctyt + ftvt + htIt + qtst (89)

s.t. I
0

= y
0

+ s
0

� d
0

, (90)
It = It�1

+ yt + st � dt, 8t 2 T \{0}, (91)
yt Ctvt, 8t 2 T , (92)
vt 1� xt, 8t 2 T , (93)
yt, It, st � 0, 8t 2 T , (94)
vt 2 {0, 1}, 8t 2 T . (95)

The objective function (89) minimizes the total cost after interdiction. Constraints (90)–(91) are
inventory constraints, constraints (92) enforce production capacity limits, and constraints (93) for-
bid production on interdicted time periods. Constraints (94) and (95) place bounds and logical
restrictions on the decision variables.

In the following we discuss the three components required for solving the CLSIF: a sampling
scheme, an approach for solving two-level CLSP interdiction problems restricted over a sample of
third-stage solutions, and a method to solve third-stage CLSP problems.

Let S denote a production plan (third-stage recourse solution) that specifies values for y, v, I, and
s. To obtain a sample of production plans, we propose a simple random search that iteratively
generates a random attack plan x

r, and solves a MIP to compute the optimal recourse response
given x

r. In particular, xr interdicts K time periods randomly selected among {0, . . . , |T |}. We
then solve the following MIP given x

r:

min

(y,v,I,s)2Y(x

r

)

X

t2T

ctyt + ftvt + htIt + qtst, (96)

where Y(x

r
) is the third-stage feasible region defined by inserting x

r in constraints (90)–(95).

Let production plan S⇤
= {y⇤,v⇤, I⇤, s⇤} be an optimal solution to the MIP given an attack plan

x

r, and let c(S⇤
) denote its cost. If c(S⇤

) z̄, then we add S⇤ to the sample, and otherwise
we discard S⇤. We repeat this procedure for a prescribed number of iterations (regardless of how
many production plans are added to the sample). Note that the repeated solution of MIPs in the
sampling phase of this algorithm may ultimately be too computationally intensive to justify its use.
We will demonstrate that the solution of MIPs in this phase is justified. However, an alternative to
this scheme would simply generate heuristic recourse solutions in response to randomly sampled

attacks. The tradeoff thus involves the quality of sampled solutions (where higher quality samples
tend to speed overall convergence) versus the time required to generate them.

As in the SPIF, we formulate the restricted problem Q(ŵ, ˆY) as a MIP. Let Sk
= {yk,vk, Ik, sk}

denote production plan k in ˆY and T (Sk
) ⌘ {t 2 T | ykt > 0} be the set of time periods in which

plan Sk produces a positive amount of items. We formulate Q(ŵ, ˆY) analogously to (85)–(87):

max z (97)

s.t. z c(Sk
) +

X

t2T (Sk

)

Mk
t xt, 8Sk 2 ˆY , (98)

x 2 X (ŵ). (99)

We use a suitably large cost Mk
t to penalize attacked production plans. To determine this cost, we

decompose yk into values aktt, . . . , akt|T |, 8t 2 T , where aktj denotes the amount produced at period
t that satisfies demand at period j, for j � t. One possible way of adjusting a solution if an attack
occurs at period t is to simply retain the previous solution, but with ykt = 0. As a result, there will
be a savings of ft + ctykt due to eliminated fixed and variable costs, plus any holding costs that
were incurred due to production in period t. However, without adjusting production at any other
period, we would incur additional shortage costs of qjaktj for each j � t. Accordingly, we define
the cost penalty for any production plan Sk at time period t as

Mk
t =

X

j2T :j�t

qja
k
tj

!

� ft � cty
k
t �

X

j2T :j>t

j�1

X

l=t

hla
k
tj

!

. (100)

Proposition 14 shows that (98) remains valid when Mk
t is defined as in (100).

Proposition 14 Consider any x 2 X and let S⇤ 2 Y(x) be its corresponding optimal recourse
response. For any production plan Sk, we have that c(Sk

) +

X

t2T (Sk

)

Mk
t xt � c(S⇤

), where the

M -values are defined in (100).

We use the objective target strategy introduced for the SPIF. Following the same logic, we add the
constraint z z̄ + � to model (97)–(99), which allows us to tighten (98) as follows:

z c(Sk
) +

X

t2T (Sk

)

min{Mk
t , (z̄ + � � c(Sk

))

+}xt, 8Sk 2 ˆY . (101)

Calculating the real damage of an attack x̂ requires solving a CLSP in which the production ca-
pacity for time periods attacked by x̂ is set to zero. One simple approach solves the classical MIP
model for the CLSP given attack plan x̂ stated in (96). Because the backward sampling framework
does not require a specific solution method for the third-stage problem, we could employ any of
the well-established methods for solving the CLSP, including the standard dynamic programming
approach in which inventory at time t is used as state variable.

Computational Experiments. This section presents computational results on the SPIF (for the
CLSIF, see Lozano and Smith (2015)). We assess the performance of our algorithm on the SPIF
using randomly generated grid networks and real road networks. We coded our algorithm in Java,
using Eclipse SDK version 4.4.1, and executed the experiments on a machine having an Intel Core
i7–3537U CPU (two cores) running at 2.00 GHz with 2 GB of RAM allocated to the Java Virtual
Machine memory heap on Windows 8. We impose a time limit of four hours (14,400s) and solve
all mathematical optimization problems using Gurobi 5.6. All instances and source code used in
this section are available from the authors.

We generate directed grid networks having a source node s, a sink node t, and m⇥n nodes arranged
in a grid of m rows and n columns. There exists an arc from s to every node in the first column
and an arc from every node in the last column to t. Also, arcs exist from each node in grid row r
and column c to (existing) nodes in positions (r + 1, c), (r � 1, c), (r, c + 1), (r + 1, c + 1), and
(r � 1, c+ 1) provided that these are not vertical arcs in the first or last columns.

We build networks with sizes ranging from 10⇥ 10 to 60⇥ 60. For each network size we explore
different (cost, delay) configurations in which arc costs (delays) are random integers uniformly
distributed between [1, c] ([1, d]), where c (d) denotes the maximum cost (delay). We explore the
following (c, d) configurations: (10, 5), (10, 10), (10, 20), (100, 50), (100, 100), and (100, 200).
For a fixed network size and (c, d) configuration, we generate ten instances with different random
arc attributes for a total of 360 = 6 ⇥ 6 ⇥ 10 different instances. For each instance we solve six
problems with different Q values in {3, 4, 5, 7} and B values in {3, 4, 5}, for a total of 2160 =

360 ⇥ 6 experiments. After tuning the algorithm parameters, we set the maximum sample size to
100, the sampling time limit to 1 second, the arc-usage upper limit to 20, threshold ✏ to 0.1, and �
to 1.

Tables 1 and 2 show the computational results for medium- and large-sized grid networks, respec-
tively. The first five columns show grid size, number of nodes and arcs, and the defender’s and
attacker’s budget (Q and B), respectively. For each of the six (c, d) configurations, the tables de-
pict the average CPU time obtained over ten runs (Avg) and the largest CPU time obtained over
those runs (Max).

Table 1 shows that on average, our algorithm finds optimal solutions for the 10 ⇥ 10 and 20 ⇥ 20

networks in just a few seconds, and requires less than one minute to solve the 30 ⇥ 30 networks,
which have more than 4000 arcs. The maximum execution times are close to the average times;
even in the worst case (30 ⇥ 30 grids with Q = 7, B = 5, and (c, d) = (10, 20)), the algorithm
terminates in just over two minutes.

Table 1: Computational time in CPU seconds for solving the SPIF over medium-size grid networks

Cost–delay configuration (c, d)

Instance Nodes Arcs Q B (10, 5) (10, 10) (10, 20) (100, 50) (100, 100) (100, 200)

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
10⇥ 10 102 416 3 3 0.1 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.3 0.1 0.2

4 3 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2
3 4 0.1 0.2 0.2 0.5 0.2 0.5 0.3 0.5 0.3 0.7 0.3 0.7
5 4 0.2 0.3 0.3 0.5 0.3 0.6 0.3 0.4 0.4 0.7 0.4 0.8
4 5 0.3 0.4 0.5 1.1 0.8 2.2 0.6 1.5 1.0 2.9 1.1 2.8
7 5 0.7 1.0 0.9 1.6 1.0 2.3 0.8 1.2 1.3 2.9 1.3 1.9

20⇥ 20 402 1826 3 3 0.3 0.9 0.5 1.9 0.6 3.3 0.7 2.0 0.7 1.3 0.8 2.0
4 3 0.4 1.2 0.6 2.2 0.8 4.3 0.9 2.3 0.8 1.6 0.9 2.0
3 4 0.6 1.5 1.1 3.2 1.1 5.1 2.2 5.1 2.4 5.9 2.4 8.0
5 4 1.0 2.7 2.2 10.8 2.2 12.8 2.1 4.4 2.9 6.1 2.9 9.1
4 5 1.8 5.6 4.2 18.2 4.1 16.8 6.5 16.1 8.3 22.4 9.7 33.4
7 5 3.6 10.8 5.7 13.1 6.7 28.3 7.3 13.3 9.8 21.3 12.5 36.8

30⇥ 30 902 4236 3 3 0.8 1.1 1.2 3.6 1.9 7.3 1.8 7.5 2.0 3.9 2.3 6.0
4 3 0.9 1.2 1.4 3.7 2.0 6.9 2.3 11.2 2.6 6.1 2.4 5.7
3 4 1.6 2.6 3.8 14.9 6.0 25.6 4.4 15.0 5.5 13.3 6.3 15.5
5 4 2.7 4.1 6.1 27.4 8.1 36.4 6.2 21.5 10.0 31.0 10.2 36.9
4 5 5.2 11.8 15.9 77.2 23.2 94.8 15.9 60.2 24.2 61.1 27.1 73.2
7 5 11.7 22.7 26.7 108.2 30.1 131.7 21.9 62.7 35.8 101.1 36.7 91.2

Ta
bl

e
2:

C
om

pu
ta

tio
na

lt
im

e
in

C
PU

se
co

nd
s

fo
rs

ol
vi

ng
th

e
SP

IF
ov

er
la

rg
e-

si
ze

gr
id

ne
tw

or
ks

C
os

t–
de

la
y

co
nfi

gu
ra

tio
n
(
c,
d
)

In
st

an
ce

N
od

es
A

rc
s

Q
B

(
1
0
,5

)
(
1
0
,1

0
)

(
1
0
,2

0
)

(
1
0
0
,5

0
)

(
1
0
0
,1

0
0
)

(
1
0
0
,2

0
0
)

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

4
0
⇥

4
0

16
02

76
46

3
3

3.
0

7.
6

6.
3

26
.5

8.
8

48
.3

4.
3

6.
7

7.
8

26
.6

6.
8

21
.2

4
3

3.
5

8.
1

7.
5

35
.2

9.
6

51
.4

5.
2

8.
2

9.
3

37
.6

7.
9

26
.7

3
4

3.
9

8.
2

24
.5

14
5.

5
45

.7
32

1.
7

12
.7

24
.6

18
.6

58
.2

16
.3

39
.1

5
4

6.
8

12
.9

34
.2

19
6.

6
54

.0
37

6.
6

16
.0

31
.4

28
.3

12
7.

2
24

.4
91

.8
4

5
9.

8
23

.0
21

2.
6

17
86

.3
19

4.
0

11
03

.3
39

.0
94

.8
75

.6
21

7.
7

64
.0

18
5.

8
7

5
23

.4
61

.7
21

1.
4

14
00

.6
33

0.
2

21
53

.0
56

.9
10

1.
2

18
1.

4
11

55
.0

11
1.

0
49

7.
8

5
0
⇥

5
0

25
02

12
,0

56
3

3
6.

7
16

.7
10

.2
18

.5
15

.6
43

.0
19

.3
45

.6
38

.3
14

1.
7

47
.6

13
0.

1
4

3
7.

6
17

.2
11

.9
25

.7
16

.2
43

.4
20

.1
45

.9
38

.1
13

2.
6

47
.6

13
4.

9
3

4
10

.5
50

.1
30

.8
12

6.
3

35
.7

19
0.

2
28

.0
61

.8
11

4.
6

71
7.

4
80

.7
16

6.
0

5
4

13
.2

59
.8

33
.4

12
2.

8
43

.3
23

1.
1

44
.5

11
6.

4
24

4.
7

19
79

.0
11

7.
2

44
4.

0
4

5
24

.2
14

7.
3

12
1.

6
58

8.
7

11
2.

5
78

7.
0

16
1.

3
97

3.
0

19
7.

1
71

5.
6

31
7.

7
10

49
.9

7
5

44
.0

20
8.

1
21

0.
8

13
55

.7
14

2.
1

84
7.

1
34

4.
8

17
02

.7
52

7.
7

36
14

.9
37

5.
1

13
85

.0

6
0
⇥

6
0

36
02

17
,4

66
3

3
13

.3
23

.2
24

.3
53

.9
38

.8
64

.7
29

.5
46

.6
60

.6
23

0.
6

82
.3

23
6.

8
4

3
14

.2
22

.1
32

.8
12

2.
8

50
.5

14
6.

8
32

.4
47

.4
64

.8
25

9.
4

86
.7

27
3.

8
3

4
17

.0
32

.2
64

.5
27

2.
4

79
.8

29
1.

9
34

.6
52

.5
10

7.
2

33
9.

8
14

9.
7

51
2.

6
5

4
24

.0
65

.2
11

9.
8

72
3.

0
12

5.
5

66
3.

6
55

.0
12

2.
0

14
2.

0
46

0.
0

20
2.

8
91

0.
8

4
5

35
.6

67
.5

22
3.

5
12

63
.4

23
6.

3
10

70
.4

15
5.

9
57

8.
8

14
79

.0
81

03
.9

15
87

.3
11

,0
52

.4
7

5
81

.2
27

3.
9

34
6.

0
14

77
.3

49
1.

8
33

82
.5

31
7.

1
10

56
.6

15
75

.9
80

79
.2

17
33

.4
11

,1
77

.9

Table 2 shows that, on average, the algorithm terminates in less than six minutes for the 40 ⇥ 40

networks, in less than nine minutes for the 50 ⇥ 50 networks, and in less than 29 minutes for the
60 ⇥ 60 networks, for any combination of c, d, Q, and B examined. The maximum execution
times are larger relative to the average CPU times on these instances, and some of them require
roughly four hours of computational time over the 60 ⇥ 60 networks. This behavior is expected,
considering that these networks have more than 3000 nodes and 17,000 arcs. Table 2 suggests that
the instances become more difficult as d grows larger relative to c and when the cost (delay) values
increase (implying that (c, d) = (100, 200) are typically the most challenging instances). Finally,
an increase in the attacker’s budget tends to have a greater impact on the computation time than an
increase in the defender’s budget.

We compare our approach (Sampling) to the current state-of-the-art algorithm by Cappanera and
Scaparra (2011) over medium-sized instances, who graciously provided their code for the purposes
of this comparison. Table 3 shows the results for this comparison. Here, the “Avg” column depicts
the average CPU time in seconds, computed only among the instances solved within the time limit.
As before, “Max” refers to maximum CPU seconds out of the 60 instances solved for the row, and
“# solved” gives the number of instances solved within the four-hour time limit.

Table 3: Comparing the backward sampling algorithm to the state-of-the-art algorithm for SPIF

Instance Nodes Arcs Q B Sampling SPI

Avg Max # solved Avg Max # solved
3 3 0.1 0.3 60 1.9 4.6 60

10⇥ 10 102 416 5 4 0.3 0.8 60 30.9 162.8 60
4 5 0.7 2.9 60 67.5 284.2 60

3 3 0.6 3.3 60 26.7 305.1 60
20⇥ 20 402 1,826 5 4 2.2 12.8 60 1128.4 7723.4 60

4 5 5.8 33.4 60 2495.2 >14,400 56

3 3 1.7 7.5 60 766.9 12,728.8 60
30⇥ 30 902 4,236 5 4 7.2 36.9 60 4857.3 >14,400 45

4 5 18.6 94.8 60 4256.8 >14,400 26

Table 3 shows that our algorithm compares favorably to SPI, consistently reducing computational
time by more than two orders of magnitude both in terms of average and maximum execution
times, for any combination of (Q,B) examined. Moreover, our sampling algorithm solves all
instances within the time limit while SPI solves 56 instances when (Q,B) = (4, 5) on the 20⇥ 20

networks, 45 instances when (Q,B) = (5, 4) on the 30 ⇥ 30 networks, and 26 instances when
(Q,B) = (4, 5).

We now use the road networks from Washington (DC), Rhode Island (RI), and New Jersey (NJ)
presented by Raith (2009). These networks range from 9559 nodes and 39,377 arcs to 330,386
nodes and 1,202,458 arcs. For each road network, there are nine randomly selected s-t pairs. We
define cij as the arc distance and set dij = 10,000, 8(i, j) 2 A. For each network and s-t pair we
explore six budget configurations for a total of 162 = 3 ⇥ 9 ⇥ 6 experiments. Table 4 shows the
results for these experiments.

Table 4 shows that the algorithm solves all DC instances to optimality within the time limit. The
average CPU time for these instances is less than nine minutes and the worst execution time is
well under one hour. On the RI network, the algorithm solves all instances with B 4 and solves

Table 4: Computational time in CPU seconds for solving the SPIF over road networks

Instance Nodes Arcs Q B Avg Max # solved
DC 9559 39,377 3 3 45.8 124.9 9

4 3 50.6 127.1 9
3 4 92.2 402.9 9
5 4 103.0 374.8 9
4 5 492.8 2829.5 9
7 5 450.1 1906.4 9

RI 53,658 192,084 3 3 284.5 756.0 9
4 3 295.6 817.3 9
3 4 800.7 4925.1 9
5 4 946.2 5974.9 9
4 5 560.1 >14,400 8
7 5 754.0 >14,400 8

NJ 330,386 1,202,458 3 3 6743.8 10,551.9 9
4 3 6345.8 >14,400 8
3 4 6526.8 >14,400 8
5 4 6964.3 >14,400 8
4 5 7354.6 >14,400 8
7 5 8452.6 >14,400 8

all but one instance each when (Q,B) = (4, 5) and (7, 5). Average CPU times are less than 15

minutes among the instances solved to optimality within the time limit, for any choice of (Q,B).
On the NJ network, the algorithm solves all instances with Q = B = 3 and solves all but one
instance in each set corresponding to the other (Q,B) combinations. Average times are roughly
two hours among the instances solved to optimality.

9 Defender-Attacker Influence Spread Games

In the study of Hemmati, Smith, and Thai (2014), we consider a network whose nodes can be
influenced somehow by competing agents. These networks may model social or geographical
interactions among entities, and influence can represent the spread of rumors, infections, or other
types of transmissions over the nodes. A key question related to competition over such networks
seeks to identify vital nodes in the network with the aim of protecting them from being the source
of influence propagation from competing agents.

We consider a scenario in which two players, a defender and an attacker, compete on a directed
network G(V,A), where V is the set of nodes and A is the set of arcs. Initially, the defender owns
every node in the network, and can protect a subset of nodes against an impending action by the
attacker. The attacker then acts, with full knowledge of the defender’s action, to capture a set of
unprotected nodes. For consistency with prior related studies, we say that captured nodes have
been influenced by the attacker. This initial action takes place at time 0, and the game continues
for T (discrete) time periods according to the following rules.

1. An influenced node remains influenced for the remainder of the time horizon.

2. A node that was protected by the defender cannot be influenced at any time.

Figure 16: An instance with Q = 3 and T = 2, in the absence of protected nodes.

3. Consider an unprotected node j 2 V that is not influenced at time t 2 {0, . . . , T � 1}. Then
node j 2 V becomes influenced at time t + 1 if and only if there are some Q nodes i 2 V such
that i is influenced at time t, and (i, j) 2 A.

4. The attacker earns a reward of rti if node i is influenced at time t (but not at time t� 1, if t � 1).

The goal of the defender is to minimize the maximum sum of rewards that the attacker can earn
(e.g., minimizing the maximum amount of damage that the attacker could possibly inflict on the
defender’s network).

Figures 16 and 17 illustrate a problem instance in which Q = 3 and T = 2. The r-values are
stated for each time period next to each node. Consider the case in which no nodes are initially
protected, and the attacker influences nodes 1, 2, 6, 8, and 9 at t = 0 (Figure 16a). As the result of
this action, nodes 3 and 5 become influenced at t = 1, because nodes 1, 2, and 8 are influenced at
t = 0 (Figure 16b). Nodes 4 and 7 become influenced at t = 2 (Figure 16c). Hence, the attacker
earns a reward of 480. Next, suppose that the defender protects nodes 6 and 9. Then an optimal
response from the attacker is to influence nodes 1, 2, and 8 (Figure 17a). Although nodes 3 and 5
become influenced at t = 1 (Figure 17b), only node 7 will be influenced at t = 2 (Figure 17c). In
this case, the attacker’s reward reduces to 310.

For each node i 2 V , define the set of incoming neighbors of i as V �
(i) = {j 2 V : (j, i) 2 A},

and the set of outgoing neighbors of i as V +

(i) = {j 2 V : (i, j) 2 A}. Let T = {1, . . . , T} be
the set of time periods. Recall that an unprotected node i 2 V that is not influenced at time t � 1

becomes influenced at time t 2 T if at least Q nodes in V �
(i) are influenced at time t� 1, where

we refer to Q as the threshold influence parameter. Also, recall that the attacker earns a reward of
rti if node i 2 V is influenced at time t 2 T [{0} for the first time, where r0i � · · · � rTi . There
exists a cost of ci, i 2 V , for the attacker to influence node i at time zero. Similarly, the defender

Figure 17: An instance with Q = 3 and T = 2, with nodes 6 and 9 protected by the defender.

incurs a cost of bi, i 2 V , to protect node i. In our model, the defender (attacker) has a budget of
B (D) to protect (initially influence) nodes.

In order to formulate this problem, we first define two sets of binary decision variables xi, i 2 V ,
and y0i . In our model, xi = 1 if the defender protects node i 2 V , and xi = 0 otherwise. Also,
y0i = 1 if node i 2 V is influenced by the attacker at time zero, and y0i = 0 otherwise. Additionally,
we introduce binary decision variables yti = 1, t 2 T , if node i 2 V is influenced at time t, and
yti = 0 otherwise. Note that we have separated y0-variables from yt-variables to emphasize the
difference between influence at t = 0 and t > 0, because the latter results from the spread of
influence. The defender’s problem can be formulated as follows.

min z(x) (102a)
s.t. bTx B (102b)

xi 2 {0, 1} 8i 2 V, (102c)

where z(x) is the optimal objective value of the attacker’s problem, which can be computed by
solving the following integer program given some fixed value of x = x̄:

ATT1(x̄) : z(x̄) = max

X

i2V

r0i y
0

i +

T
X

t=1

rti(y
t
i � yt�1

i)

!

(103a)

s.t. yti 1� x̄i 8i 2 V, t 2 T [{0} (103b)

Qyti Qy0i +
X

j2V �
(i)

yt�1

j 8i 2 V, t 2 T (103c)

cTy0 D (103d)
y0i 2 {0, 1} 8i 2 V (103e)
yti 2 {0, 1} 8i 2 V, t 2 T . (103f)

The objective function (102a) reflects the defender’s goal of minimizing the maximum reward
earned by the attacker (computed by solving (103)). The defender’s budget limit and the binari-
ness of the x-variables are enforced by constraints (102b) and (102c), respectively. The objective
function (103a) represents the attacker’s reward, noting that y0i = 1 if node i 2 V is initially influ-
enced, and yti � yt�1

i = 1 if node i 2 V is influenced for the first time at time t 2 T . Constraint
(103b) implies that a protected node can never be influenced by the attacker. Constraints (103c)
governs the spread of influence: If node i 2 V is initially influenced, then the right-hand-side
(RHS) of constraints (103c) will be at least Q for all t 2 T , implying that node i will remain in-
fluenced at all time periods. Now, suppose that node i 2 V is not initially influenced, and consider
constraint (103c) for node i and time t 2 T . The constraint implies that node i can be influenced
at time t if and only if

P

j2V �
(i) y

t�1

j � Q, i.e., if and only if at least Q nodes adjacent to node i
are influenced at time t� 1. Note that for any node-time pair i 2 V and t 2 T , yti is present with a
nonnegative coefficient in the objective function (due to nonincreasing values for node i’s rewards
over time). Therefore, there exists an optimal solution in which yti = 1 if and only if either node i
is initially influenced, or at least Q nodes adjacent to node i are influenced at time t � 1. Finally,
constraint (103d) enforces the attacker’s budget limit, and constraints (103e) and (103f) restrict the
y-variables to be binary-valued.

In the rest of this discussion, we define X = {x 2 {0, 1}|V |
: bTx B} as the set of possible

actions for the defender. Given x̄ 2 X , we also define Y (x̄) = {y0 2 {0, 1}|V |
: cTy0 D, y0i

1 � x̄i, 8i 2 V } as the set of available actions for the attacker at time zero when the defender
chooses x̄.

We may also wish to consider the case in which the influence threshold value depends on the
node being influenced, and so node i becomes influenced at time t if some Qi nodes in V �

(i)
are influenced at time t � 1. This case can be transformed to the case in which all nodes have a
common threshold value, Q. To see this, let Q = maxi2V {Qi}. Create a set of Q dummy nodes
that are impossible to protect and free for the attacker to initially influence, and let the reward for
influencing these nodes equal 0 at all time periods. For each i 2 V , create an arc from Q � Qi

of the dummy nodes to node i. Because an optimal solution exists in which all of these dummy
nodes would be initially influenced, only Qi more nodes in V �

(i) from the original graph must
be influenced in order to influence node i, as desired. Hence, for simplicity, we use the common
threshold value of Q in this paper.

We finish this section by observing that the attacker’s problem is strongly NP-hard. To see this,
we sketch a (polynomial) reduction from the dominating set problem to a variant of the attacker’s
problem. In the dominating set problem, we seek a subset D of nodes in an undirected graph
¯G(

¯V , ¯E) such that each node in ¯V \D is adjacent to at least one node in D, and such that |D| �
for some given positive integer �. Now, consider the attacker’s problem with Q = 1 and T = 1.
Let the attacker’s problem network G(

¯V ,A) consist of the same node set as in the dominating set
instance, and let A contain two directed arcs, (i, j) and (j, i), for each (i, j) 2 ¯E. Also, define
B = � and bi = r0i = r1i = 1, 8i 2 ¯V . There exists a dominating set having � nodes if and only
if there exists a solution to the attacker’s problem with reward | ¯V |. Hence, the attacker’s problem
is strongly NP-hard. Moreover, the defender’s problem is also NP-hard, because evaluating z(x)
cannot be done in polynomial time unless P = NP.

Exact Solution Method. We now provide a cutting-plane scheme to solve the problem consid-
ered here. The inherent difficulty in solving model (102) is due to the nonconvexity of the attacker’s
problem, which prohibits us from readily obtaining a strong (minimization) dual to model (103)
and employing standard interdiction models. In order to devise a cutting-plane algorithm, we start
by proposing a reformulation of the foregoing problem.

We reformulate (102) by introducing a variable z, and minimizing z subject to the restriction that
x 2 X and z � z(x). We refer to a pair (x̄, z̄) as a two-stage feasible solution if x̄ 2 X and
z̄ � z(x̄). Defining ⌦ as the set of all two-stage feasible solutions, we obtain the following
reformulation for the defender’s problem:

DEF : min z (104a)
s.t. x 2 X (104b)

(x, z) 2 ⌦. (104c)

Note that an optimal solution (x?, z?) to (104) satisfies z? = z(x?
), because (104) is a minimization

program.

Let ¯

⌦ ◆ ⌦ be a feasible region induced by a set of affine inequalities, and define DEF-R as the
relaxation of (104) obtained by replacing ⌦ with ¯

⌦. The motivation for introducing DEF-R stems
from the fact that exponentially many inequalities may be required for the explicit definition of ⌦.
Hence, our approach starts with an initial ¯⌦ defined by a small (polynomial-size) set of inequalities.
If an optimal solution (x̄, z̄) to DEF-R is two-stage feasible, then it must be also optimal to (102),
because DEF-R is a relaxation of (102). Otherwise, we can augment DEF-R with a cutting plane
(as discussed below) and re-solve DEF-R in an iterative fashion until a two-stage feasible solution
is found. We start by computing lower and upper bounds for the optimal objective value of the
attacker’s problem.

Lemma 12 Let i
(j), 1 j |V |, be the node having the j th largest reward at t = 0. Denote by

q
1

the largest integer such that
P

i2V 0 ci D, 8V 0 ✓ V : |V 0| = q
1

. Also, denote by p
2

the largest
integer such that

P

i2V 0 bi B for some V 0 ✓ V : |V 0| = p
2

. Define:

z
min

=

min{|V |, p2+q1}
X

j=p2+1

r0i(j) .

We have:
z(x) � z

min

8x 2 X. (105)

The proof of this and other lemmas are contained in Hemmati et al. (2014).

Lemma 13 Let q
2

be the largest integer such that
P

i2V 0 ci D for some V 0 ✓ V : |V 0| = q
2

.
Given a defender’s decision vector x̄, an upper bound on the attacker’s optimal objective value is
obtained by solving the following problem.

z
max

(x̄) = max

X

i2V

(1� x̄i)
�

r0i y
0

i + r1i (1� y0i)
�

(106a)

s.t.
X

i2V

y0i q
2

(106b)

0 y0i 1 8i 2 V (106c)

Note that problem (106) can be optimized in O(|V | log(|V |)) steps by sorting the (1� x̄i)(r0i �r1i)-
values in nonincreasing order, and setting y0i = 1 for each node i 2 V corresponding to the
q
2

-largest such coefficients.

The bound z(x̄) z
max

(x̄) is valid for any x̄ 2 X , and so one strategy may enumerate several
candidate solutions x̄ 2 X , compute z

max

(x̄) for each vector, and obtain the minimum such value
as a valid upper bound. Additionally, we can solve the following optimization problem.

z
max

= min z
max

(x) (107a)
s.t. x 2 X. (107b)

Observe that (107) is a two-stage program in which the feasible region of the inner problem is
independent of x-variables. This allows us to state (107) as a linear mixed-integer program by
dualizing the inner problem. Let ↵ and �i, i 2 V, be the dual variables corresponding to constraints
(106b) and (106c), respectively. We obtain the following reformulation of (107).

z
max

=

X

i2V

r1i +min q
2

↵ +

X

i2V

�

�i � r1i xi

�

(108a)

s.t. ↵ + �i + (r0i � r1i)xi � (r0i � r1i) 8i 2 V (108b)
↵ � 0 (108c)
�i � 0 8i 2 V (108d)
x 2 X. (108e)

Note that problem (108) has to be solved only once in order to obtain an upper bound for the
problem, and hence will not likely represent a substantial portion of the time required to solve the
overall model we investigate here.

An alternative strategy is to heuristically select some x̄ 2 X , e.g., by using the following greedy
algorithm. Initialize x̄i = 0, 8i 2 V , and set a “remaining budget” value ¯B = B. Find an
index i such that r0i is maximized over all i 2 V such that x̄i = 0 and bi is not more than ¯B. If
no such index i exists, then set the upper bound to z

max

(x̄). Else, set x̄i = 1, reduce ¯B by bi,
and reiterate. In our initial computational experiments, we compare the effectiveness of the exact
formulation (108) versus the use of this greedy algorithm, and employ the most effective one in
our computational study.

Cutting-plane Algorithm. We now provide valid inequalities for DEF-R, and we propose a
cutting-plane scheme for identifying an optimal solution to (102).

Consider x̄ 2 X and suppose that ȳ = (ȳ0, . . . , ȳT) is optimal to ATT1(x̄). We define ⌧̄i, i 2 V ,
as the earliest time that node i is influenced in the solution ȳ. We use the convention ⌧̄i = T + 1

if node i 2 V is never influenced by the attacker, and we let rT+1

i = 0. Consider the vector

⌧̄ = (⌧̄
1

, . . . , ⌧̄|V |), and for all i 2 V , define R⌧̄
i as the set of all unprotected nodes j 2 V such that

there exists a directed path from node i to node j using ⌧̄j or fewer arcs in A (and hence, i 2 R⌧̄
i).

Lemma 14 Consider a solution x̄ 2 X in which x̄i = 0 for some node i 2 V . Let ȳ = (ȳ0, . . . , ȳT)
be an optimal solution to ATT1(x̄), with corresponding vector ⌧̄ . Suppose that the solution x̂, which
is identical to x̄ with the exception of setting x̂i = 1, is feasible to (102). Then we have:

z(x̂) � z(x̄)�
X

j2R⌧̄

i

r
⌧̄
j

j . (109)

For any given x̄ 2 X , define Px̄ as the set of protected nodes in x̄. Furthermore, let ȳ =

(ȳ0, . . . , ȳT) be an optimal solution to ATT1(x̄), and define Vx̄ as the set of all influenced nodes in
solution ȳ. We introduce our first valid inequality for (104) in the next theorem.

Theorem 16 Let (x̄, z̃) be an optimal solution to DEF-R, and suppose that z̃ < z(x̄). Let ȳ be an
optimal solution to ATT1(x̄), with corresponding vector ⌧̄ . The following inequality:

z � z(x̄)�
X

i2V
x̄

0

@

min

8

<

:

z(x̄)� z
min

,
X

j2R⌧̄

i

r
⌧̄
j

j

9

=

;

1

Axi, (110)

is valid to (104) and cuts off (x̄, z̃).

The following cutting-plane algorithm, which we call CPA, is then given as follows.

Step 0 (Initialization). Set the upper bound UB = z
max

and the lower bound LB = z
min

. Let
¯

⌦ = {(x, z) : x 2 X, z � z
min

}.

Step 1 (Lower Bound). Identify an optimal solution (x̄, z̃) to DEF-R. Set LB = z̃, and proceed to
Step 2.

Step 2 (Upper Bound). Solve ATT1(x̄). If z(x̄) < UB, then set UB = z(x̄), and let x̄ be the
incumbent solution to (102). In either case, proceed to Step 3.

Step 3 (Termination/Cut Routine). If LB = UB, then terminate with the incumbent solution
being optimal. Otherwise, add (110) to ¯

⌦, and return to Step 1.

At each iteration, CPA either terminates with an optimal solution in Step 3, or the identified solution
(x̄, z̃) in Step 1 will be cut off by the inequality added in Step 3. Note that X is a finite set, and that
if some solution x0 is encountered as the optimal solution in Step 1 in two different iterations k

1

and
k
2

of CPA, then LB = UB after iteration k
2

. This behavior is due to the fact that inequality (110)
was added for x = x0 after iteration k

1

; hence, at iteration k
2

, this inequality forces z � z(x0
). As

a result, CPA converges to an optimal solution in a finite number of steps.

Spread Network Inequalities .

For x̄ 2 X , consider an optimal solution ȳ = (ȳ0, . . . , ȳT), and its associated vector ⌧̄ . Define
V t
x̄ = {i 2 V : ⌧̄i = t}, t 2 T [{0}, and observe that Vx̄ =

ST
t=0

V t
x̄ . We denote by Gx̄(Vx̄, Ax̄) an

acyclic time-expanded network, called the spread network, with T +1 time levels. For node i 2 V t
x̄

at time t 2 T , there exist at least Q nodes h such that (h, i) 2 A and ⌧̄h t� 1. Let S 0, |S 0| = Q,
be any subset of such nodes. Then, for each i 2 V t

x̄ , t 2 T , add Q arcs (h, i), 8h 2 S 0, to the
spread network. Note that our construction implies that the spread network for x̄ is not necessarily
unique, because more than one such set S 0 may exist (see Figure 18 for an example).

For all i 2 Vx̄, define:

Oi = {h 2 Vx̄ : there exists a directed path on Gx̄ from node h to node i},

and hence, i 2 Oi. Next, consider any x̂ 2 X and define:

Ix̂ = {i 2 Vx̄ : Oi \ Px̂ 6= ;},

i.e., Ix̂ is the set of all nodes i 2 Vx̄ that are either protected in x̂, or such that there exists a directed
path on Gx̄ from some node h 2 Px̂\Vx̄ to node i. In the following lemma and theorem, we derive
alternative valid inequalities for (104) by using the idea of the spread network.

Figure 18: Two possible spread networks for Figure 17.

Lemma 15 Given x̄ 2 X , let (ȳ0, . . . , ȳT) be optimal to ATT1(x̄) with corresponding vector ⌧̄ .
For any x̂ 2 X , we have:

z(x̂) �
X

j2V
x̄

\I
x̂

r
⌧̄
j

j . (111)

Theorem 17 Let (x̄, z̃) be an optimal solution to DEF-R, and suppose that z(x̄) > z̃. Also, let
G be any (undirected) acyclic graph that is constructed over Vx̄, and denote by A its set of arcs.
Finally, define Aj, 8j 2 Vx̄, as the set of arcs (u, v) 2 A such that u 2 Oj and v 2 Oj . Then, the
following inequality:

z �
X

j2V
x̄

r
⌧̄
j

j

0

@

1�
X

i2O
j

xi +

X

(u,v)2A
j

xuxv

1

A , (112)

is valid to (104) and cuts off (x̄, z̃).

Corollary 2 Let (x̄, z̃) be an optimal solution to DEF-R, and suppose that z(x̄) > z̃. If A = ; in
Theorem 17, then the following inequality:

z � z(x̄)�
X

i2V
x̄

0

@

min

8

<

:

z(x̄)� z
min

,
X

j2V
x̄

: i2O
j

r
⌧̄
j

j

9

=

;

1

Axi, (113)

is valid to (104) and cuts off (x̄, z̄).

Using Theorem 17 and Corollary 2, we can employ CPA equipped with valid inequalities of the
form (112) or (113) instead of (110) in Step 3 of CPA. The motivation for using these inequalities
stems from the following theorem that compares (110) to (113).

Theorem 18 Inequality (113) is at least as strong as (110).

A similar theorem cannot be stated that compares the strength of inequalities (112) and (113). If
inequality (113) was weakened by replacing the coefficients of xi with

P

j2V
x̄

: i2O
j

r
⌧̄
j

j (instead of
the minimum of that term and z(x̄)� z

min

), then (112) would be at least as strong as (113) due to
the subtraction of quadratic terms present in (112).

A further consideration in implementing CPA with valid inequalities (112) regards the linearization
of the quadratic terms in these inequalities. By restricting the set of arcs that can belong to the set
A, over all generated inequalities (112), we can limit the number of quadratic terms that must
be linearized. We linearize each quadratic term xixj by substituting it with a continuous variable
xL
ij � 0, and including the inequality xL

ij � xi + xj � 1 in DEF-R. (The inequalities xL
ij xi and

xL
ij xj usually required to linearize this quadratic term are not necessary, because optimization

forces each xL
ij-variable to take its smallest value allowed by xi and xj .)

Recall that multiple spread networks can be derived for a given x̄ 2 X and its optimal response
ȳ = (ȳ0, . . . , ȳT), each of which might correspond to a different valid inequality of the form (112)
or (113). Given a candidate spread network, Gx̄, corresponding to x̄ and ȳ, we seek a mechanism
for modifying Gx̄ to an alternative spread network, G0

x̄, such that the inequality (113) generated
corresponding to G0

x̄ is at least as strong as the one corresponding to Gx̄.

Theorem 19 Consider a spread network Gx̄(Vx̄, Ax̄) for which there exist nodes i, j, k 2 Vx̄ such
that i 2 V �

(k), (i, k) /2 Ax̄, (j, k) 2 Ax̄, and a path exists from i to j on Gx̄. Let eGx̄ be a modified
spread network obtained by replacing arc (j, k) in Gx̄ with arc (i, k). The valid inequality (113)
induced by eGx̄ is at least as strong as that induced by Gx̄.

Figure 19 illustrates an instance of the problem with T = 2 and Q = 3 in which all rewards equal
1 and z

min

= 1. For a given x̄, let Gx̄ be a spread network presented in Figure 19a. Note that
z(x̄) = 7. Then, the following inequality

z � 7� 3x
1

� 4x
2

� 4x
3

� 3x
4

� 2x
5

� 2x
6

� x
7

,

is induced by Gx̄ from Corollary 2. Next, suppose that there exists an arc (4, 7) 2 A and note
that (4, 6) 2 Ax̄. Using Theorem 19, we obtain a modified spread network eGx̄ from Gx̄ by adding
arc (4, 7) and removing arc (6, 7). (See Figure 19b.) By using Corollary 2 for eGx̄, we obtain the
inequality

z � 7� 3x
1

� 4x
2

� 4x
3

� 3x
4

� 2x
5

� x
6

� x
7

,

which is stronger than the inequality induced by Gx̄ due to the x
6

-coefficients in these inequalities.

It is worth noting that the inequality (112) induced by eGx̄ may not necessarily be as strong as that
induced by Gx̄ in general. Let A = {(2, 6), (3, 6)} be the set of arcs used to generate the quadratic
terms in (112). Inequalities

z � 7� 3x
1

� 4x
2

� 4x
3

� 3x
4

� 2x
5

� 2x
6

� x
7

+ 2x
2

x
6

+ 2x
3

x
6

, (114)

and
z � 7� 3x

1

� 4x
2

� 4x
3

� 3x
4

� 2x
5

� x
6

� x
7

+ x
2

x
6

+ x
3

x
6

, (115)

are induced by Gx̄ and eGx̄, respectively, from Theorem 17. To see that (114) and (115) do not
dominate one another, we show that the RHS for one constraint need not always be larger than the
RHS for the other constraint. For x0

= (0, 0, 0, 0, 0, 1, 0), note that the RHS of inequality (114) is
5, while the RHS for (115) is 6. However, for x00

= (0, 1, 1, 0, 0, 1, 0), the RHS of (114) is 1, and
the RHS of (115) is 0.

Algorithm 18 describes our method for modifying a given spread network using the idea of Theo-
rem 19 in order to strengthen valid inequality (113).

Algorithm 18 examines all candidates for node k (as defined in Theorem 19) from among the
nodes in V T

x̄ , . . . , V 2

x̄ , in that order. Given a choice of k, the algorithm starts by creating a list Lk,
containing all nodes j 2 V �

(k) that are influenced at some time earlier than ⌧̄k. The algorithm
examines each arc (j, k) 2 Ax̄ in nonincreasing order of arc lengths (i.e., nodes j are considered
in nonincreasing order of their ⌧̄j-values). Algorithm 18 seeks a node i 2 Lk, (i, k) /2 Ax̄,
having the smallest value of ⌧̄i such that there exists a path from node i to node j (i.e., such that
ADJ(i, j) = 1). In case such node is found (with ⌧̄i < ⌧̄j), nodes i, j, and k satisfy the criteria of
Theorem 19, and so we replace arc (j, k) with arc (i, k) in Ax̄. This process repeats until no more
arcs can be replaced.

Figure 19: Spread network modification using Theorem 19.

Note that as Algorithm 18 proceeds, the spread network might be modified by “add” or “remove”
operations performed in Step 15. However, the elements of matrix ADJ are never updated through-
out the execution of Algorithm 18. This is due to the fact that ADJ(i, j) correctly indicates the
existence of a path between nodes i and j whenever it is examined in Step 14, even though the
spread network might have been modified in earlier stages of Algorithm 18. To see this, suppose
that at some stage of Algorithm 18, the value of ADJ(i, j) is examined while visiting node k 2 Vx̄

in the for-loop at Step 4. Because this for-loop examines candidate nodes k in nonincreasing or-
der of their ⌧̄ -values, Algorithm 18 could have only modified the spread network by adding arcs
(i0, k0

) for some node i0 2 Vx̄ and k0 2 V t
x̄ , t � ⌧̄k, or removing arcs (j0, k0

) for some node j0 2 Vx̄

and k0 2 V t
x̄ , t � ⌧̄k. Recall that the spread network contains no arcs (u, v) such that ⌧̄u � ⌧̄v.

Therefore, the addition or deletion of arcs in Step 15 cannot create a new path, or disconnect an
existing path, from node i to node j.

To analyze the complexity of Algorithm 18, observe that the construction of matrix ADJ takes
O(Q|Vx̄|2) steps. For each node k examined in the for-loop at Steps 3 and 4, Algorithm 18 performs
one sorting operation (Step 6), which is O(|Vx̄| log |Vx̄|). For each node j examined in the for-loop
in Step 7, Algorithm 18 executes O(|Vx̄|) operations in the while-loop at Step 11 corresponding to
each candidate node i. (Note that an arc (i, k) that is added to Ax̄ after removing some arc (j, k)
might be replaced later by some other arc (i0, k) as the algorithm proceeds, which implies that a
total of O(|Vx̄|) nodes might be examined in the for-loop in Step 7). Therefore, for each node k
examined in the for-loops at Steps 3 and 4, Algorithm 18 performs O(|Vx̄|2) operations, and hence,
the overall complexity of Algorithm 18 is O(Q|Vx̄|2 + |Vx̄|3). In fact, the complexity can be more
specifically stated as O(|Vx̄|3): If Q |Vx̄|, then this is obviously true, and if Q > |Vx̄|, then
every node in the spread network was influenced at time 0, Ax̄ would necessarily be empty, and
the algorithm would terminate in constant time.

Attacker’s Problem Solution Approach. In order to generate the valid inequalities introduced
before, we must solve the (NP-hard) attacker’s problem. Therefore, the efficiency of our solution
method is highly dependent on the time required to solve instances of the attacker’s problem.
This motivates further investigation of the attacker’s problem with the aim of devising alternative
formulations that can be more efficiently solved by mathematical optimization techniques.

Note that once the y0-variables are fixed, the optimal value of each yti-variable for t 2 T can be
readily determined via a polynomial-time procedure, which starts from time 1 and identifies the
number of influenced nodes adjacent to node i at time 0. Then, y1i = 1 if xi = 0 and at least Q
nodes adjacent to node i are influenced at time 0, and y1i = 0 otherwise. By repeating the same
operation for all other time periods, the optimal value of each yti-variable will be either zero or one.

This observation suggests that a mathematical programming formulation for the attacker’s problem
that includes only |V | binary variables may be attainable. However, the constraint (103f) cannot
be relaxed in model (103), which indeed requires O(T |V |) binary variables. We investigate two
alternative formulations for the attacker’s problem that allow us to relax the binariness restriction
on yti-variables for t 2 T .

Exponential Model. For each i 2 V , define Si = {S : S ⇢ V �
(i), |S| = |V �

(i)|� (Q� 1)}. The
following is a reformulation for model (103).

ATT2(x̄) : z(x̄) = max

X

i2V

r0i y
0

i +

T
X

t=1

rti(y
t
i � yt�1

i)

!

(116a)

s.t. yti y0i +
X

j2S

yt�1

j 8i 2 V, t 2 T , S 2 Si (116b)

yti 2 {0, 1} 8i 2 V, t 2 T (116c)
Constraints (103b), (103d), and (103e). (116d)

Note that the only difference between models (103) and (116) lies in the constraints that govern the
spread of influence. According to constraints (116b), if node i 2 V is initially influenced, then the
RHS of constraints (116b) will be at least one for all t 2 T and S 2 Si, implying that node i will
remain influenced at all time periods. Now, suppose that node i 2 V is not initially influenced, and
examine constraints (116b) at time t 2 T . If fewer than Q nodes adjacent to node i are influenced
at time t� 1, then there exists a subset ¯S 2 Si such that no node in ¯S is influenced at time period
t � 1. In this case, yti = 0 due to constraint (116b) corresponding to ¯S. Otherwise, the RHS of
constraints (116b) for all S 2 Si will be at least one for node i at time period t, and hence, yti = 1 at
optimality if x̄i = 0. The following theorem demonstrates that constraint (116c) can equivalently
be relaxed to take continuous values.

Theorem 20 Consider Problem ATT2(x̄) for any x̄ 2 X , in which constraints (116c) are replaced
with 0 yti 1, 8i 2 V, t 2 T . There exists an optimal solution (ŷ0, . . . , ŷT) to this relaxation
in which ŷti 2 {0, 1}, 8i 2 V, t 2 T .

Using Theorem 20, we henceforth relax constraint (116c) to 0 yti 1, 8i 2 V, t 2 T , in
ATT2(x̄).

We now investigate the application of Benders’ decomposition in solving model (116). Observe
that model (116) reduces to the following linear program for given vectors x̄ and ȳ0:

max

X

i2V

T�1

X

t=1

(rti � rt+1

i)yti + rTi y
T
i

!

(117a)

s.t. y1i ȳ0i +
X

j2S

ȳ0j 8i 2 V, S 2 Si (117b)

yti �
X

j2S

yt�1

j ȳ0i 8i 2 V, t 2 T \{1}, S 2 Si (117c)

yti 1� x̄i 8i 2 V, t 2 T (117d)
yti � 0 8i 2 V, t 2 T . (117e)

Let ⇡1

i,S , ⇡t
i,S , and µt

i be the dual variables associated with (117b), (117c), and (117d), respectively.
Defining Sj,i = {S : S 2 Sj, i 2 S} as the set of all sets S 2 Sj that include node i, we obtain
the dual problem to (117) given x̄ and ȳ0:

min

X

i2V

T
X

t=2

X

S2S
i

ȳ0i ⇡
t
i,S +

X

i2V

X

S2S
i

(ȳ0i +
X

j2S

ȳ0j)⇡
1

i,S +

X

i2V

T
X

t=1

(1� x̄i)µ
t
i (118a)

s.t.
X

S2S
i

⇡t
i,S �

X

j2V +
(i)

X

S2S
j,i

⇡t+1

j,S + µt
i � rti � rt+1

i 8i 2 V, t 2 T \{T} (118b)

X

S2S
i

⇡T
i,S + µT

i � rTi 8i 2 V (118c)

⇡t
i,S � 0 8i 2 V, S 2 Si, t 2 T (118d)

µt
i � 0 8i 2 V, t 2 T . (118e)

Note that an optimal solution must exist to problem (118), because the objective function value is
always nonnegative, and a feasible solution can be obtained by setting µt

i = rti � rt+1

i , 8i 2 V, t 2
T , with all ⇡-variables equal to zero. Letting ⌅ denote the set of all extreme points to problem
(118), the Benders’ master problem is given as:

max (119a)

s.t.
X

i2V

(r0i � r1i)y
0

i +

X

i2V

X

S2S
i

⇡̄1

i,S(y
0

i +

X

j2S

y0j)

+

X

i2V

T
X

t=2

X

S2S
i

⇡̄t
i,Sy

0

i +

X

i2V

X

t2T

(1� x̄i)µ̄
t
i 8(⇡̄, µ̄) 2 ⌅ (119b)

y0 2 Y (x̄), (119c)

with problem (117) being the Benders’ subproblem. The restricted master problem (RMP) is
given by (119) with only a limited set of dual extreme points, denoted by ¯

⌅, and corresponding
constraints (119b).

Note, however, that problem (117) has an exponential number of constraints (117c). Therefore, we
aim to solve this subproblem using methods other than linear programming techniques.

Let ȳ = (ȳ1, . . . , ȳT) be an optimal solution to problem (117), and suppose ȳti = 0 for some
unprotected node i 2 V and time t 2 T . Then, there must exist some ¯St

i 2 Si such that no node
in ¯St

i is influenced at time t � 1. We refer to ¯St
i as a safe subset for node i 2 V and time t 2 T .

It is worth noting that a safe subset for node i such that yt0i = 0 is a safe subset for all time t t0.
We will thus discard the t-index from ¯St

i , and simply refer to ¯Si as a safe subset for node i for all
time periods t such that yti = 0. We provide a dual recovery algorithm (DRA) for identifying an
optimal solution to problem (118) as follows.

Step 1 For all i 2 V , if x̄
1

= 1 or yTi = 1, then set µ̄T
i = rTi and ⇡̄T

i,S = 0, 8S 2 Si. Otherwise,
set µ̄T

i = 0, ⇡̄T
i, ¯S

i

= rTi , and ⇡̄T
i,S = 0, 8S 2 Si\{ ¯Si}. Initialize t = T .

Step 2 If t = 0, then terminate. Otherwise, set t = t� 1 and proceed to Step 3.

Step 3 For every i 2 V :

a. If x̄i = 1, then µ̄t
i = rti � rt+1

i +

P

j2V +
(i)

P

S2S
j,i

⇡̄t+1

j,S and ⇡̄t
i,S = 0, 8t 2 T \{T}, S 2 Si.

b. If x̄i = 0 and ȳti = 0, then set µ̄t
i = 0, ⇡̄t

i, ¯S
i

= rti � rt+1

i +

P

j2V +
(i)

P

S2S
j,i

⇡̄t+1

j,S , and
⇡̄t
i,S = 0, 8S 2 Si\{ ¯Si}.

c. If x̄i = 0 and ȳti = 1, then set µ̄t
i = rti � rt+1

i and ⇡̄t
i,S = 0, 8S 2 Si.

Proceed to Step 2.

In the following lemma, we establish the optimality of the solution identified by DRA.

Lemma 16 Suppose that the solution ȳ = (ȳ1, . . . , ȳT) is optimal to problem (117). Let ¯Si be
a safe subset for each unprotected node i 2 V such that yti = 0 for some t 2 T . Then, DRA
constructs an optimal solution (⇡̄, µ̄) to problem (118).

An immediate result from Lemma 16 is that we only need to identify a single safe subset ¯Si for
each unprotected node i 2 V that is not influenced at time 1. This allows us to discard S-indices
from the ⇡-variables when referring to problem (118), and to rewrite constraints (119b) as:

X

i2V

(r0i � r1i)y
0

i +

X

i2V

⇡̄1

i (y
0

i +

X

j2 ¯S
i

y0j) +
X

i2V

T
X

t=2

⇡̄t
iy

0

i +

X

i2V

X

t2T

(1� x̄i)µ̄
t
i,

or equivalently,

X

i2V

0

@r0i � r1i + ⇡̄1

i +

X

j:i2 ¯S
j

⇡̄1

j +

T
X

t=2

⇡̄t
i

1

A y0i +
X

i2V

X

t2T

(1� x̄i)µ̄
t
i. (120)

Inequality (120) can be strengthened by a standard coefficient tightening procedure as follows. Let
⌘i be the coefficient of variable y0i , i 2 V , in (120). The following inequality:

X

i2V

min{⌘i, zmax

(x̄)�
X

i2V

X

t2T

(1� x̄i)µ̄
t
i}
!

y0i +
X

i2V

X

t2T

(1� x̄i)µ̄
t
i, (121)

is valid to (119), because ⌘i � 0 and ȳ0i 2 {0, 1}, 8i 2 V ; z
max

(x̄) �Pi2V
P

t2T (1� x̄i)µ̄t
i � 0

(noting that
P

i2V
P

t2T (1 � x̄i)µ̄t
i is the optimal attacker’s objective in the last inequality, which

is no more than z
max

(x̄)); and z
max

(x̄). Thus, when solving the Benders’ master problem, we
replace (119b) with (121).

We can also consider an alternative compact (polynomial-size) formulation for the attacker’s prob-
lem, in which the binary restrictions on the yti-variables can be relaxed. For each i 2 V , arbitrarily
order the nodes in V �

(i) as {i
1

, . . . , i|V �
(i)|}. Define vtimk = 1 if at least k of first m nodes in V �

(i)
are influenced at time t � 1, and vtimk = 0 otherwise. By convention, we let vtimk = 0, k > m.
Letting Np = {1, . . . , p} for any positive integer p, the following is a reformulation for model
(103), given x̄:

ATT3(x̄) : max

X

i2V

r0i y
0

i +

T
X

t=1

rti(y
t
i � yt�1

i)

!

(122a)

s.t. vtimk vti,m�1,k�1

8i 2 V, t 2 T , m 2 N|V �
(i)|, k 2 N

min{m,Q} (122b)
vtimk vti,m�1,k + yt�1

i
m

8i 2 V, t 2 T , m 2 N|V �
(i)|, k 2 N

min{m,Q} (122c)
yti y0i + vti,|V �

(i)|,Q 8i 2 V, t 2 T (122d)

yti 1� x̄i 8i 2 V, t 2 T (122e)
vtimk 2 {0, 1} 8i 2 V, t 2 T , m 2 N|V �

(i)|, k 2 N
min{m,Q} (122f)

yti 2 {0, 1} 8i 2 V, t 2 T (122g)
y0 2 Y (x̄). (122h)

The objective function (122a) is the same as the objective function in model (103). Constraints
(122b) and (122c) enforce the definition of vtimk. To see this, suppose that fewer than k of the first
m nodes in V �

(i) are influenced at time t� 1. If node im is influenced at time t� 1, then at most
k�2 of first m�1 nodes in V �

(i) can be influenced at time t�1. This implies that vti,m�1,k�1

= 0,
and constraints (122b) force vtimk = 0. Otherwise, if im is not influenced at time t�1, then at most
k�1 of the first m�1 nodes in V �

(i) are influenced at time t�1, i.e., vti,m�1,k = 0, and constraints
(122c) force vtimk = 0. On the other hand, if at least k of the first m nodes in V �

(i) are influenced
at time t�1, then at least k�1 of the first m�1 nodes were influenced at time t�1. Furthermore,
either at least k of the first m � 1 nodes were influenced, or node im itself was influenced at time
t� 1. Hence, vti,m�1,k�1

= 1 and vti,m�1,k�1

+ yt�1

i
m

� 1, which allows vtimk � 1 (as will be the case
at optimality). Constraints (122d) imply that node i cannot be influenced at time t unless either it
has been initially influenced or at least Q of its adjacent nodes are influenced at time t � 1. The
binariness of the v- and y-variables and the budget limit are enforced by constraints (122f)–(122h).
However, the following theorem demonstrates that constraints (122f) and (122g) can equivalently
be relaxed to take continuous values.

Theorem 21 Consider the relaxed version of ATT3(x̄) in which constraints (122f) and (122g) are
replaced with the following constraints:

0 vtimk 1 8i 2 V, t 2 T , m 2 N|V �
(i)|, k 2 N

min{m,Q} (123a)
0 yti 1 8i 2 V, t 2 T . (123b)

There exists an optimal solution (ŷ, v̂) to the relaxed problem in which v̂timk 2 {0, 1}, 8i 2 V, t 2
T , m 2 N|V �

(i)|, k 2 N
min{m,Q}, and ŷti 2 {0, 1}, 8i 2 V, t 2 T .

We thus replace (122f) and (122g) with (123a) and (123b), respectively. Note that while only |V |
binary variables are needed in model (122), the formulation requires the addition of O(TQ|V |2)
continuous variables. Table 5 compares the size of the proposed three formulations for the at-
tacker’s problem.

Computational Summary. Recall that ATT2 is designed to combat the growth of mathematical
programming models as a function of T , wherein the DRA method executes a low-polynomial-time
routine to calculate the impact of an attacker’s action and generate a Benders’ cut. The tradeoff is
that ATT2 requires the solution of a (mixed-integer) master problem that may require the addition
of many cuts. Let � be the ratio of the number of nodes that cannot be initially attacked to |V |.
We observe that when � = 40%, ATT1 still outperforms the other two variants. However, ATT2
outperforms ATT1 and ATT3 for � = 70%. Evidently, when � changes from 40% to 70%, the
Benders’ master problem becomes less difficult to solve, and solving ATT2 becomes the most
efficient approach.

For the defender’s problem, recall that Step 2 of CPA requires the solution of the attacker’s problem
given a defender’s decision vector. We employ formulation ATT1 to solve the attacker’s problem,
and find that CPA3 outperforms all other variants. In particular, CPA3 outperforms CPA1 as pre-
dicted by Theorem 18. Full results are given in Hemmati et al. (2014).

10 Dynamic Shortest Path Interdiction

Most contemporary network interdiction problems can be described as Stackelberg games in which
two agents (a user and an attacker) with opposed interests interact in a network. In these games
the user wishes to optimally transmit flows through the network, while the attacker optimally
compromises some limited set of network elements to disturb the user operation. The shortest-
path interdiction (SPI) problem is a two-stage game in which the attacker acts first, and the user
acts second with full knowledge of the attacker’s actions. Knowing that the user will select a
shortest path between two known nodes, the attacker interdicts a subset of arcs by increasing their
cost, or perhaps by preventing travel on those arcs. The SPI is typically formulated as a max-min
optimization problem, in which the attacker’s actions cannot change as the user travels the network.

In the SPI the user has the advantage of seeing the attacker’s decisions before selecting its path.
An alternative approach is taken in the robust shortest path (RSP) problem (Bertsimas and Sim,

2003), in which the user first selects (and commits to) a path, and then the attacker interdicts arcs
to maximally increase the path’s cost, given a budget constraint on the number of arcs that can
be interdicted. In comparison to the SPI, the attacker is at an advantage in the RSP, having full
knowledge of the user’s path before taking any action.

To illustrate the interaction between the user and attacker, consider the graph depicted in Figure
20. Uninterdicted traversal costs are shown alongside each arc. If an arc is interdicted, its cost
increases by the value shown in parentheses. (For instance, traversing arc (1, t) has a cost of 4
if the arc is not interdicted, and a cost of 12 if it is interdicted.) Suppose that the user wants to
move from node s to node t and that the attacker can interdict two arcs. Figure 20a illustrates the
optimal SPI solution. In this case the optimal strategy for the attacker is to interdict arcs (s, 1)
and (2, t). Given these attacks, the user follows the path s ! 1 ! t, which has an optimal cost
of z⇤SPI = 8. Figure 20b illustrates the optimal solution for the RSP, in which the optimal user’s
path is s ! 1 ! 3 ! t. Given this path, the attacker interdicts arcs (1, 3) and (3, t), producing
an optimal objective of z⇤RSP = 13. Not surprisingly, z⇤RSP � z⇤SPI , because the user has the
advantage of knowing the interdicted arcs in the SPI, whereas the attacker has the advantage of
knowing the user’s path in the RSP.

In this article we propose a dynamic shortest path interdiction (DSPI) problem, in which a cardinality-
constrained attacker can interdict arcs whenever the user reaches a node in its path. The user sees
all interdicted arcs, and is aware of the attacker’s remaining budget. Accordingly, the user can
adjust its path dynamically at any point in response to arc interdictions. Hence, the DSPI proceeds
in multiple stages, where each stage consists of a (possibly empty) subset of arcs that are inter-
dicted by the attacker, followed by an arc traversed by the user. These stages continue until the
user reaches the destination node.

Figure 20c illustrates the DSPI. Initially, the attacker decides not to interdict any arc, and the user
moves from s to 1. At this point, the attacker interdicts arc (1, t), and the user moves from 1

to 3. Upon arrival at node 3, the attacker interdicts arc (3, t) and the user decides to move back
to 1. Because the attacker has no remaining budget, the user reaches the destination node by
following the path 1 ! 2 ! t. The optimal DSPI objective is thus given by z⇤DSPI = 10. This
instance illustrates two insights into the nature of DSPI solutions. First, because the user knows the
attacker’s budget at all times, the user realizes upon visiting node 1 for the first time (and seeing
the interdiction of (1, t)) that the attacker can interdict one more arc. Thus, using arc (1, 2) at this
point would induce the attacker to interdict arc (2, t), trapping the user into traversing an expensive
path to t. Second, note that unlike many other flow problems with nonnegative costs, it may be
optimal for the user to return to previously visited nodes, as in this example.

The DSPI has received almost no attention in the literature, with the notable exception of a study
by Khachiyan et al. (2008). This work examines a simplified version of the DSPI in which the
attacker can remove up to a fixed number of outgoing arcs at each node. This simplified problem
is proven to be polynomially solvable.

Problem Formulation. Consider a directed graph G = (N ,A), where N is the set of nodes
and A is the set of arcs. The user seeks to travel from source node s 2 N to destination node

Figure 20: Shortest-path interdiction, robust shortest path, and dynamic shortest-path interdiction

t 2 N , s 6= t, at the minimum cost, considering that some arcs can be interdicted as the graph is
traversed. In the context of this paper, the user’s path might involve repeated traversals of some
nodes. The cost of traversing arc (i, j) 2 A is given by cij � 0, which is increased by dij � 0

units if interdicted. The attacker can interdict up to b arcs while the user traverses the graph. For
a feasible interdiction set S (i.e., a subset of interdicted arcs with |S| b), c̃ij(S) denotes the cost
of traversing arc (i, j) 2 A. Formally,

c̃ij(S) =

(

cij + dij if (i, j) 2 S,
cij if (i, j) 62 S.

Let ˜C(S) be a vector whose entries are given by c̃ij(S), for all (i, j) 2 A, and define A(i) as the
set of arcs leaving node i, for each i 2 N . We assume without loss of generality that A(t) = ;.
At every node in the user’s path, the attacker must decide whether to expand the interdiction set S.
As the following observation shows, the attacker needs to only consider interdicting those arcs in
A(i).

Observation 1 Suppose that the user is at node i 2 N \{t} in the current path. Then, it is optimal
for the attacker to interdict only a subset of arcs in A(i).

This observation holds because if it were optimal to interdict some arc (j, k) 62 A(i) while the
user is at node i, then an optimal solution exists in which the attacker simply waits for the user to
reach node j before interdicting (j, k). Revealing future attacks outside of A(i) allows the user to
effectively avoid (or mitigate) the impact of the interdiction.

Consider a shortest-path tree to t, computed using the uninterdicted arc costs. The following lemma
demonstrates that if the attacker uses its entire interdiction budget, it is optimal to interdict at least
one arc in this shortest-path tree.

Lemma 17 Let T be the set of arcs in some all-to-t shortest-path tree computed with costs ˜

C(;).
If it is optimal for the attacker to interdict b arcs, then it is optimal for the attacker to interdict at
least one arc in T .

Observation 2 Lemma 17 requires the condition that the attacker’s optimal solution exhausts the
entire interdiction budget. The proof of this lemma utilizes the fact that the attacker exits the game
after the last arc is interdicted, leaving the user to select a shortest path on the remaining network.
If the optimal attack does not involve b interdictions, then Lemma 17 is no longer valid, as shown
by the example depicted in Figure 21 where b = 2. The optimal strategy for the attacker is to
interdict arc (s, 2) when the user is at node s. The user then follows the path s ! 2 ! t with no
further interdictions: When the user reaches node 2, the attacker withholds action to prevent the
user from traversing the cheaper route 2 ! 3 ! t. As a result, the attacker does not interdict any
arc in the unique shortest path tree T = {(s, 1), (1, t), (2, 3), (3, t)}.

Figure 21: Optimal DSPI solution including no arcs from T when b = 2

To formally describe the attacker’s optimization problem, define z⇤(S, i) as the optimal value of
the game if the user is at node i and the attacker has already interdicted arcs in S. Intuitively,
z⇤(S, i) is the cost of the optimal path from i to t, given that the attacker has interdicted arcs in S,
and can still interdict b� |S| additional arcs. Mathematically,

z⇤(S, i) = max

{S0|S0✓A(i)\S, |S[S0|b}

⇢

min

j2FS(i)
{z⇤(S [S 0, j) + c̃ij(S [S 0

)}
�

, (124)

where FS(i) = {j 2 N | (i, j) 2 A}. The attacker maximizes the value of the game in (124)
by selecting additional arcs to interdict, denoted by S 0, so that |S [S 0| b (note that S 0

= ; is
allowed). Given the updated interdiction S [S 0, the user then decides which node to visit next
among those in FS(i). To make this decision, the user examines each j 2 FS(i) and considers
both the optimal value of the game at node j (given by z⇤(S [S 0, j)) and the cost of traversing arc
(i, j) (given by c̃ij(S [S 0

)). Note therefore that the optimal value of the game is given by z⇤(;, s),
i.e., the optimal cost when the user is at node s and no arcs have yet been interdicted.

Define z̄(S, i) as the best achievable value of the game if the attacker strictly expands the interdic-
tion set S while the user is at node i, i.e., if |S 0| > 0 in (124). Mathematically,

z̄(S, i) =

8

>

<

>

:

max

{S0|S0✓A(i)\S, |S[S0|b, S0 6=;}

⇢

min

j2FS(i)
{z⇤(S [S

0
, j) + c̃ij(S [S

0
)}
�

if i 6= t, |S| < b, and S 6= A(i),

0 if i = t, or |S| = b, or S = A(i).
(125)

Define z̄(S) as the |N |-dimensional vector whose entries are given by z̄(S, i), for all i 2 N .
Observe that if the user is at node t, or if the attacker has no remaining interdiction budget, or if

the attacker has previously interdicted all arcs in A(i), then we simply define z̄(S, i) = 0. Using
(125) we can rewrite (124) as

z⇤(S, i) =max

⇢

z̄(S, i), min

j2FS(i)
{z⇤(S, j) + c̃ij(S)}

�

. (126)

Exact Algorithm for the DSPI. To solve the DSPI on a general network, we propose a dynamic-
programming algorithm that calculates z⇤(S, i) for all i 2 N and for all feasible interdiction sets
S. Suppose that vector z̄(S) is known, for some feasible interdiction set S. We first show how
to calculate z⇤(S, i), for all i 2 N , using a modified version of Dijkstra’s algorithm. Consider
the algorithm FIS (which stands for “fixed interdiction set”), whose inputs are the graph G, the
observed interdiction set S, and the vector ¯z(S). Algorithm FIS follows similar logic as used in
Dijkstra’s algorithm. However, in this case, we require the use of two labels per node. At node i 2
N , ˇ`i represents the user’s shortest-path cost if the attacker takes no action when the user reaches
node i. Thus, ˇ`i will equal the minimum value of z⇤(S, j) + c̃ij(S), over all j 2 FS(i). Also,
`i represents the node label from the attacker’s perspective, and will thus be the maximum of ˇ`i
and z̄(S, i). Note that when `i becomes permanently labeled (and is “correct”), then `i = z⇤(S, i),
allowing it to be employed in subsequent iterations of the algorithm.

We initially set ˇ`t = `t = 0 and ˇ`i = `i = 1 for all i 2 N\{t}. We use a priority queue, Q, to store
the temporarily labeled nodes (initially Q = N) and iteratively remove a node j having the smallest
value of `j in Q. Once we remove a minimum-labeled node j from Q (declaring `j = z⇤(S, j)), we
update ˇ`i for all nodes i 2 N such that (i, j) belongs to A. The label updates are done in the form
ˇ`i = min{ˇ`i, `j + c̃ij(S)}, as done in Dijkstra’s algorithm, and `i = max{ˇ`i, z̄(S, i)} by definition
of `i. In particular, note that if ¯z(S) = 0, then FIS becomes Dijkstra’s algorithm.

The complexity of FIS is the same as Dijkstra’s algorithm, because the computations in FIS only
differ by one comparison in line 6 and one assignment in line 7. This complexity is given by
O(|N | log |N | + |A|) if a Fibonacci heap is used to handle the priority queue Q. The correctness
of FIS is proven in Sefair and Smith (2015).

Consider the dynamic-programming algorithm DP-DSPI, whose inputs are the graph G and the
attacker’s budget b. Define �(k) as the set of all cardinality-k subsets of A, 8k = 0, . . . , b. Algo-
rithm DP-DSPI initially calculates z⇤(S, i) for all cardinality-b interdiction sets that include at least
one arc from T (see Lemma 17). Because the graph costs cannot be altered again by the attacker
if b arcs have already been interdicted, this step can be done by solving an all-to-t shortest-path
problem, for each S 2 �(b) such that S \ T 6= ;. The algorithm then considers all possible sizes
for an interdiction set (in decreasing order) from b� 1 to 0. At iteration k (0 k b� 1), z̄(S, i)
is calculated for all cardinality-k sets in line 3. (Observe that at this step z⇤(¯S, i) has already been
calculated for all ¯S 2 �(k0

), 8k0 > k.) Thus, z̄(S, i) can be calculated using (125). In line 4,
z⇤(S, i) is calculated for all cardinality-k sets, which is possible because z̄(S, i) was calculated in
line 3. The algorithm returns z⇤(;, s) upon termination in line 5.

Although exact, DP-DSPI(G, b) is exponential in running time and memory. Lines 1 and 4 of DP-
DSPI(G, b) require the solution of

Pb
k=0

�|A|
k

�

total shortest-path problems. Line 3 requires the
computation of (125) for every possible combination of interdiction set S, |S| < b, and node i.

Each such calculation requires O(|FS(i)|) steps in the inner minimization loop and no more than
O(2

|FS(i)|
) iterations over the outer maximization loop, for a total of O(|FS(i)|2|FS(i)|

) computa-
tions. Because |FS(i)| < |N |, the total number of computations required in line 3 of the algorithm
is O(

Pb�1

k=0

�|A|
k

�|N |22|N |
). Noting that |N |22|N | > max{|N | log |N |, |A|}, the time complexity

of this algorithm is given as:

O

b�1

X

k=0

✓|A|
k

◆

|N |22N +

✓|A|
b

◆

(|N | log |N |+ |A|)
!

.

The space complexity is governed by the required calculations in line 3 of the algorithm. For a
given value of k, it is necessary at line 3 to refer to supersets S [S 0 when computing z̄(S, i) for
some S 2 �(k) and i 2 N . We therefore retain each computed value of z⇤ in our algorithm. (In
fact, if k decreases beyond b�|N |, then it would be permissible to “forget” z⇤-values corresponding
to larger interdiction sets. However, we would retain either those values, or at least the appropriate
predecessor information, in order to recover the optimal combination of interdiction and user path
at the end of the algorithm.) All other storage requirements (e.g., storing z̄-values within DP-
DSPI or `-values within FIS) are dominated by the space needed to store the z⇤-values. The space
complexity required by this algorithm is therefore given by number of node-and-interdiction-set
combinations:

O

b
X

k=0

✓|A|
k

◆

|N |
!

.

DSPI on Acyclic Graphs. The complexity of DP-DSPI(G,b) is exponential because its state
space tracks the set of interdicted arcs. If no cycles are present in G, then only the number of
arcs that have been interdicted must be recorded. This claim follows from the fact that all arcs that
have been interdicted during the game emanate from nodes previously visited by the user, recalling
Observation 1. These nodes cannot be revisited by the user because the graph is acyclic, and so the
dynamic programming state space no longer needs to record which arcs have been interdicted.

Define v⇤(k, i) as the optimal value of the game if the attacker’s remaining budget equals k and the
user is at node i. We can determine this value as:

v⇤(k, i) =

8

<

:

max

{S0|S0✓A(i), |S0|min{k,|FS(i)|}}

⇢

min

j2FS(i)
{v⇤ (k � |S 0|, j) + c̃ij(S

0
)}
�

if i 6= t,

0 if i = t.
(127)

In (127), the attacker maximizes the value of the game by selecting a subset S of arcs to interdict
from A(i), given the remaining budget, k. Based on the set S 0, the user then decides which node
j 2 FS(i) to visit next, considering the value of the game at j (given by v⇤(k � |S 0|, j)) and the
cost of traversing arc (i, j) (given by c̃ij(S 0

)).

To calculate v⇤(k, i), we begin by examining the optimal user strategy, given that the attacker
decides to interdict arcs S 0 ✓ A(i). Let m = |S 0|, and assume that m k. If the user selects an

arc (i, j) that does not belong to S 0, then the user visits node jU , determined by

jU 2 argmin

j:(i,j)2A(i)\S0
{v⇤(k �m, j) + cij} ,

where jU is not defined if S 0
= A(i). If the user selects an arc (i, j) 2 S 0, then the user would visit

a node jI such that
jI 2 argmin

j:(i,j)2S0
{v⇤(k �m, j) + cij + dij} .

Again, jI is undefined if S 0
= ;. Define vU(k, i, S 0

) = v⇤(k � m, jU) + cijU if jU exists, and
vU(k, i, S 0

) = 1 otherwise. Likewise, define vI(k, i, S 0
) = v⇤(k�m, jI)+ cijI + dijI if jI exists,

and vI(k, i, S 0
) = 1 otherwise. We then have that v⇤(k, i, S 0

) = min{vU(k, i, S 0
), vI(k, i, S 0

)} is
the value of the game if the attacker interdicts arcs in S 0 when the user is at node i and k more arcs
can be interdicted.

We now turn our attention to the attacker’s problem of maximizing v⇤(k, i, S 0
) over all sets S 0

:

|S 0| = m. Suppose that the values of v⇤(k � m, j) + cij are sorted in nondecreasing order for
j = jk�m

1

, . . . , jk�m
|FS(i)|, such that v⇤(k �m, jk�m

1

) + cijk�m

1
 · · · v⇤(k �m, jk�m

|FS(i)|) + cijk�m

|FS(i)|
.

The following lemma states an optimal interdiction strategy.

Lemma 18 Consider a DAG G = (N ,A), a node i 2 N , and a positive integer k. Suppose that if
the user reaches node i and the attacker has a remaining interdiction budget of k arcs, the attacker
chooses to interdict m arcs, where 0 m min{k, |FS(i)|}. Then an optimal interdiction
solution exists in which arcs (i, jk�m

p) are interdicted, for p = 1, . . . ,m.

We now use Lemma 18 to derive a polynomial-time dynamic-programming algorithm, which we
call DP-DSPI-DAG. Algorithm DP-DSPI-DAG calculates v⇤(k, i) by processing nodes in N \ {t}
in reverse topological order. That is, if (i, j) 2 A, then DP-DSPI-DAG processes j before i.
(Recall that a topological ordering always exists when G is acyclic.) This strategy ensures that
when calculating v⇤(k, i) using (127), for some i 2 N \ {t} and k = 0, . . . , b, all values v⇤(k0, j),
8j 2 FS(i) and k0

= 0, . . . , b, have been precomputed. For each node i 2 N \ {t}, algorithm
DP-DSPI-DAG uses the labels v̌(k �m, i) to represent the user’s shortest-path cost from i to t if
the attacker’s remaining budget is k �m (after m arcs in A(i) are interdicted) and the user leaves
i using one of the interdicted arcs.

Algorithm DP-DSPI-DAG first sets v⇤(k, t) = 0, 8k = 0, . . . , b. Then, the algorithm selects
the next node i 2 N \ {t} to examine, and for each possible budget k = 0, . . . , b, computes
the value for v⇤(k, i) in lines 4–12. For node i and budget k, we initialize v⇤(k, i) = 0 and
v̌(k, i) = 1 (because no arcs in A(i) have yet been interdicted). In line 5, the algorithm sorts
the values of v⇤(k, j) + cij , 8j 2 FS(i), in nondecreasing order. This sorting is used in both
the current and in future iterations to reduce computational effort in determining optimal attacks
according to Lemma 18. The for-loop in line 6 calculates the attacker’s best strategy by varying the
number, m, of interdicted arcs, from 0 to min{k, |FS(i)|}. If m > 0 then v̌(k �m, i) is updated
in lines 7–8 in the form v̌(k � m, i) = min{v̌(k � m, i), v⇤(k � m, jk�m

m) + cijk�m

m

+ dijk�m

m

}.
Prior to executing line 8, v̌(k � m, i) represents the minimum value of v⇤(k � m, j) + cij + dij
over the m � 1 interdicted arcs (i, j) : j 2 {jk�m

1

, . . . , jk�m
m�1

}. Thus, the second if-condition

in line 7 seeks to update vik�m by examining the updated traversal cost of arc (i, jk�m
m), i.e., the

next arc to be interdicted in the sorted list. The algorithm updates v⇤(k, i) in lines 9–12 in the
form v⇤(k, i) = max{v⇤(k, i),min{v̌(k � m, i), v⇤(k � m, jm+1

) + cij
m+1}}, if m < |FS(i)|,

or v⇤(k, i) = max{v⇤(k, i), v̌(k � m, i)}, if m = |FS(i)|. The algorithm returns v⇤(b, s) as the
optimal objective upon termination in line 13.

To calculate the time complexity of DP-DSPI-DAG, note that the topological order required in line
2 can be obtained in O(|N |+ |A|) time by using a depth-first-search (DFS) algorithm. Moreover,
the sorting procedure required in line 5 can be done in O(|FS(i)| log |FS(i)|) time. (If b is small
relative to |FS(i)|, then we could instead perform a partial sorting to find the (b + 1)-smallest
values of v⇤(k�m, j)+ cij , 8j 2 FS(i). This method could be performed in O(|FS(i)|+ b log b)
time.) The overall complexity is given by

O

0

@|N |+ |A|+
X

i2N\{t}

b
X

k=0

(|FS(i)| log |FS(i)|+min{k, |FS(i)|})
1

A

 O

0

@|N |+ |A|+ (b+ 1)

X

i2N\{t}

|FS(i)| log |FS(i)|+
X

i2N\{t}

b
X

k=0

|FS(i)|
1

A

 O (|N |+ |A|+ (b+ 1)|A| log |N |+ (b+ 1)|A|)
 O(|A|2 log |N |).

The first inequality holds given that min{k, |FS(i)|} |FS(i)|. The second inequality is obtained
by observing that

P

i2N\{t} |FS(i)| log |FS(i)| log |N |Pi2N\{t} |FS(i)| and
P

i2N\{t} |FS(i)| =
|A|. Because b |A|, the algorithm’s complexity is O(|A|2 log |N |). In terms of space, the bot-
tleneck is the storage of the v⇤-values, which results in O(|N ||A|) storage.

Lower and Upper Bounds. First, suppose that we select a subset of arcs, ˆS, that the attacker
must interdict before the game begins, thus allowing the attacker to interdict only k� | ˆS| more arcs
while the user traverses a path from s to t. We denote this game DSPI(ˆS), and define zLB(ˆS) as the
optimal value of this game. Note that zLB(ˆS) zLB(S) holds true for any ˆS ◆ S. This inequality
is due to the fact that the attacker’s problem in DSPI(ˆS) is a restriction of that in DSPI(S), and
moreover, the user has more information in DSPI(ˆS) as to the attacker’s planned interdictions than
in DSPI(S).

Hence, consider a priori sets ˆS0, . . . , ˆSb, where ˆS0

= ;, and for m = 1, . . . , b, we have ˆSm �
ˆSm�1 and | ˆSm| = | ˆSm�1|+1, i.e., ˆSm has one arc in addition to those in ˆSm�1. Clearly, zLB(ˆS0

) =

z⇤DSPI , since this corresponds to the case in which no arcs are interdicted in an a priori phase, just
as in the DSPI. At the other end of the spectrum, zLB(ˆSb

) corresponds to the situation in which the
attacker exhausts the entire interdiction budget before the user acts. Hence, zLB(ˆSb

) z⇤SPI , with
equality holding only if ˆSb optimizes SPI. This analysis yields the bound hierarchy

zLB(ˆS
b
) zLB(ˆS

b�1

) · · · zLB(ˆS
1

) zLB(ˆS
0

) = z⇤DSPI .

Also, if S⇤
SPI optimizes the SPI and ˆSm ✓ S⇤

SPI for some m 2 {0, . . . , b}, then z⇤SPI zLB(ˆSm
)

z⇤DSPI .

Consider now the algorithm DSPI-LB, whose inputs are the graph, G, the attacker’s budget, b, and
the number of arcs to interdict in advance, �. Algorithm DSPI-LB initially selects any set of arcs
ˆS of size �. Then, the costs of arcs in ˆS are revised to reflect the fact that those arcs are already
interdicted. The algorithm finishes by solving the DSPI with the updated budget and arc costs,
obtaining zLB(ˆS).

Although DSPI-LB produces a valid lower bound for any ˆS, our implementation strategy chooses
a set ˆS ✓ S⇤

SPI to guarantee bounds that are at least as tight as z⇤SPI . After solving the SPI to
identify S⇤

SPI , we construct ˆS by choosing the � arcs in S⇤
SPI that are as close to s as possible

(as measured by the shortest unweighted path from node s to an arc’s from-node). In doing so,
the attacker reveals as little information as possible regarding future interdiction plans, which then
tends to yield a tighter lower bound.

As an alternative of DSPI-LB, consider problem DSPI-EXP (where EXP stands for “expired at-
tacks”). Problem DSPI-EXP essentially modifies the game as follows. When the user is at some
node i 2 N , the cost of an interdicted arc (i, j) 2 A(i) becomes cij + dij during the user’s next
move, as in the DSPI. However, after the user traverses some arc in A(i), the cost of arc (i, j)
reverts to cij , i.e., the interdiction expires after the user’s next arc traversal. Define z⇤EXP as the
optimal value of DSPI-EXP. The motivation behind studying DSPI-EXP is twofold. One, because
interdictions last for only one arc traversal instead of over the remainder of the game, we have that
z⇤EXP z⇤DSPI . Two, because interdictions expire, then just as in the case in which G is a DAG,
the state space for a dynamic program needs to record only the remaining number of attacks rather
than the set of previously attacked arcs.

We now describe an algorithm, DP-DSPI-EXP, for solving this modified game. As in DP-DSPI-
DAG, we define v⇤(k, i) as the optimal value of the game, given that the user is at node i and the
attacker has a remaining budget of k. Moreover, define ukim as the optimal value of the game if
the user is at node i and the attacker, having a budget of k, decides to interdict m arcs in A(i).
If m > |A(i)|, then ukim is not defined. Algorithm DP-DSPI-EXP also uses v̌(k, i), the user’s
shortest-path cost from i to t if the attacker’s remaining budget is k after arcs in A(i) have been
interdicted, and the user leaves i using one of the interdicted arcs.

The algorithm proceeds in b + 1 stages, computing all values of v⇤(k, i) in stage k, for each i 2
N \ {t} and k = 0, . . . , b. Stage 0 is performed by executing Dijkstra’s algorithm, because no
interdictions can occur when k = 0. At every subsequent stage, we execute two phases: Phase
one, which consists of lines 4–15, and phase two, which consists of lines 16–23.

Phase one calculates ukim, for each i 2 N \{t} and m = 1, . . . ,min{k, |FS(i)|}, using previously
computed values of v⇤(k, j), for j 2 FS(i) and k = 0, . . . , b. The for-loop in line 4 iterates over
all non-terminal nodes in N , while line 5 sorts the v⇤(k � 1, j) + cij values as done in DP-DSPI-
DAG. After initializing v⇤- and v̌-values, the for-loop starting on line 7 iterates over every possible
number m of interdictions that the attacker could choose at node i with a budget of k. Lines 8 and
9 update v̌, while lines 10–13 calculate ukim, and lines 14 and 15 update v⇤ as appropriate. Hence,
v⇤(k, i) equals maxm2{1,...,min{k,|FS(i)|}}{ukim} after the inner for-loop (indexed by m) is complete.

In phase two, we execute a modified Dijkstra’s algorithm similar to FIS in order to obtain the
remaining uki0-values, and to finalize v⇤(k, i), 8i 2 N . In this case, node labels are given by
max{v⇤(k, i), uki0}, 8i 2 N , where v⇤(k, i) is initially computed in phase one and u-values are
initialized as uki0 = 1, 8i 2 N \ {t}, and ukt0 = 0. The label updates are done in the form
uki0 = min{uki0, v⇤(k, j) + cij} and v⇤(k, j) = max{v⇤(k, j), ukj0}.

The time complexity of DP-DSPI-EXP is driven by the steps in lines 2 to 15, which is essentially
the same complexity as DP-DSPI-DAG. The complexity of phase two is given by O(|N | log |N |+
|A|), which is the same as in FIS. Because |A|2 log |N | � |N | log |N |+|A|, the overall complexity
of DP-DSPI-EXP is given by O(|A|2 log |N |). In terms of space, the bottleneck is the storage of
the sorted values in line 5, which results in O(|N |2|A|) storage.

Computing an upper bound on z⇤DSPI is performed by restricting the user rather than the attacker.
This restriction is performed by simply removing arcs from G to form a graph G0

= (N ,A0
),

with A0 ✓ A. By choosing A0 so that G0 is a DAG, we can then solve the DSPI to optimality in
polynomial time using DP-DSPI-DAG over G0. Letting zUB equal the optimal DSPI objective over
G0, we then have that z?DSPI zUB.

To choose G0, we select a simple path from node s to node t, which we denote by P . We then
eliminate arcs other than those in P until the resulting graph is acyclic. By doing so, we guarantee
that G0 contains at least one path from s to t. Algorithm DSPI-UB formally states the upper
bounding method.

The transformation of G into a DAG in line 2 can be done in O(|N | + |A|) time by using a
modification of a DFS algorithm in which all arcs in P are visited first, and then all arcs (i, j) 2 A
that connect a node i to an ancestor j in the DFS tree (i.e., “back arcs”) are eliminated.

Note that by randomizing either the generation of P and/or the way in which G is transformed
to G0, we could obtain several upper bounds by solving DP-DSPI-DAG over alternative acyclic
subgraphs of G, and retain the best (lowest) bound. A natural question then arises as to whether
or not there exists an “ideal” subgraph G0 that yields a tight upper bound of z⇤DSPI . The answer
to this question is no, as evidenced by the example depicted in Figure 20c. In that example the
unique optimal solution requires the user to visit node 1 twice, which would not be allowed in
any DAG. Also, while we may intuitively seek a subgraph having as many arcs in G as possible,
the problem of eliminating the fewest arcs in G so that G0 becomes acyclic is equivalent to the
minimum feedback arc set problem, which is NP-hard.

All computational results of our procedures and proofs can be found in Sefair and Smith (2015).
Additionally, the same authors recently submitted another portion of this work on the Dynamic
Assignment Interdiction problem, which was initiated due to DTRA support.

Algorithm 18: Revising an existing spread network using Theorem 19
1 Let Gx̄ = (Vx̄, Ax̄) be a spread network with corresponding vector ⌧̄ ;
2 Define ADJ as a |Vx̄|⇥ |Vx̄| matrix, where ADJ(i, j) = 1 if there exists a path from node i to

node j on Gx̄, and ADJ(i, j) = 0 otherwise;
3 for t = 0 to T � 2 do
4 for all nodes k 2 V T�t

x̄ do
5 Initialize Lk as an array of all nodes j 2 V �

(k) such that ⌧̄j < T � t;
6 Sort nodes in Lk based on nonincreasing values of ⌧̄ ;
7 for p = 1 to |Lk| do
8 Let j be the pth node in Lk;
9 if (j, k) 2 Ax̄ then

10 Set q = |Lk|, and let i be the qth node in Lk;
11 Set flag repeat = true;
12 while (repeat == true) do
13 if (i, k) /2 Ax̄ then
14 if ADJ(i, j) = 1 then
15 Remove arc (j, k) from Ax̄ and add arc (i, k) to Ax̄;
16 Set repeat = false;
17 end
18 else
19 Set q = q � 1, and let i be the qth node in Lk;
20 if ⌧̄i � ⌧̄j then
21 Set repeat = false;
22 end
23 end
24 end
25 end
26 end
27 end
28 end
29 end

Table 5: Size comparison of attacker’s problem formulations.

Model Binary Variables Continuous Variables Constraints
ATT1 O(T |V |) 0 O(T |V |)

ATT2 O(|V |) O(T |V |) O(T |V |�|V |
Q

�

)

ATT3 O(|V |) O(TQ|V |2) O(TQ|V |2)

Algorithm 19: FIS(G, S, ¯z(S))
1 Initialize `i = ˇ`i = 1, for each i 2 N \ {t}, and `t = ˇ`t = 0;
2 Let Q be the set of temporarily labeled nodes, with Q = N initially;
3 for h = 1, . . . , |N | do
4 Let j be a node having the minimum (temporary) label `j in Q, and remove j from Q;
5 for nodes i : (i, j) 2 A do
6 if ˇ`i > `j + c̃ij(S) and ˇ`i > z̄(S, i) then
7 Set ˇ`i = `j + c̃ij(S) and `i = max{ˇ`i, z̄(S, i)};
8 end
9 end

10 end

Algorithm 20: DP-DSPI(G, b)
1 Calculate z⇤(S, i) for each S 2 �(b), such that S \ T 6= ;, and i 2 N via FIS(G, S, 0);
2 for k = b� 1 down to k = 0 do
3 Calculate z̄(S, i), 8S 2 �(k) and 8i 2 N , via the recursion given by (125);
4 Calculate z⇤(S, i), 8S 2 �(k) and 8i 2 N , via FIS(G, S, ¯z(S));
5 end
6 Return z⇤(;, s);

Algorithm 21: DP-DSPI-DAG(G, b)
1 Initialize v⇤(k, t) = 0, 8k = 0, . . . , b;
2 for i 2 N \ {t} taken in reverse topological order do
3 for k = 0, . . . , b do
4 Initialize v⇤(k, i) = �1 and v̌(k, i) = 1;
5 Sort v⇤(k, j) + cij , 8j 2 FS(i), such that

v⇤(k, jk
1

) + cijk1 · · · v⇤(k, jk|FS(i)|) + cijk|FS(i)|
;

6 for m = 0, . . . ,min{k, |FS(i)|} do
7 if m > 0 and v̌(k �m, i) > v⇤(k �m, jk�m

m) + cijk�m

m

+ dijk�m

m

then
8 v̌(k �m, i) = v⇤(k �m, jk�m

m) + cijk�m

m

+ dijk�m

m

;
9 end

10 if m < |FS(i)| and v⇤(k, i) < min{v̌(k�m, i), v⇤(k�m, jk�m
m+1

)+ cijk�m

m+1
} then

11 v⇤(k, i) = min{v̌(k �m, i), v⇤(k �m, jk�m
m+1

) + cijk�m

m+1
};

12 end
13 if m = |FS(i)| and v⇤(k, i) < v̌(k �m, i) then
14 v⇤(k, i) = v̌(k �m, i);
15 end
16 end
17 end
18 end
19 Return v⇤(b, s);

Algorithm 22: DSPI-LB(G, b,�)
1 Select a set of arcs ˆS ✓ A such that | ˆS| = �;
2 For all (i, j) 2 ˆS, revise cij to equal cij + dij , and revise dij = 0;
3 Compute zLB(ˆS) by solving the DSPI with attacker’s budget b�� and revised arc costs

computed above;

Algorithm 23: DP-DSPI-EXP(G, b)
1 Compute v⇤(0, i), 8i 2 N , via Dijkstra’s algorithm using costs cij , 8(i, j) 2 A;
2 for k = 1, . . . , b do
3 Set v⇤(k, t) = 0;
4 for i 2 N \ {t} do
5 Sort v⇤(k � 1, j) + cij , 8j 2 FS(i), such that

v⇤(k � 1, ji,k�1

1

) + ciji,k�1
1

 · · · v⇤(k � 1, ji,k�1

|FS(i)|) + ciji,k�1
|FS(i)|

;

6 Initialize v⇤(k, i) = �1 and v̌(k � 1, i) = 1;
7 for m = 1, . . . ,min{k, |FS(i)|} do
8 if v̌(k �m, i) > v⇤(k �m, ji,k�m

m) + ciji,k�m

m

+ diji,k�m

m

then
9 v̌(k �m, i) = v⇤(k �m, ji,k�m

m) + ciji,k�m

m

+ diji,k�m

m

;
10 end
11 if m < |FS(i)| then
12 ukim = min

n

v̌(k �m, i), v⇤(k �m, ji,k�m
m+1

) + ciji,k�m

m+1

o

;
13 end
14 else
15 ukim = v̌(k �m, i);
16 end
17 if v⇤(k, i) < ukim then
18 v⇤(k, i) = ukim;
19 end
20 end
21 end
22 Let Q be the set of temporarily labeled nodes, with Q = N initially;
23 Initialize uki0 = 1, 8i 2 N \ {t}, and ukt0 = 0;
24 for h = 1, . . . , |N | do
25 Let j be a node having the minimum value of max{v⇤(k, j), ukj0} in Q;
26 and remove j from Q;
27 v⇤(k, j) = max{v⇤(k, j), ukj0};
28 for nodes i : (i, j) 2 A do
29 if uki0 > v⇤(k, j) + cij then
30 Set uki0 = v⇤(k, j) + cij;
31 end
32 end
33 end
34 end
35 Return v⇤(b, s);

Algorithm 24: DSPI-UB(G, b)
1 Select a simple path P from s to t in G;
2 Transform G into a DAG, G0, by eliminating arcs from G other than those in P;
3 Compute zUB as the output of DP-DSPI-DAG(G0,b);

V.		Papers	Published	
	
REFEREED	JOURNAL	PUBLICATIONS	
Behdani,	B.,	Yun,	Y.,	Smith,	J.C.,	and	Xia,	Y.,	“Decomposition	Algorithms	for	
Maximizing	the	Lifetime	of	Wireless	Sensor	Networks	with	Mobile	Sinks,”	Computers	
and	Operations	Research,	39(5),	1054-1061,	2012.	
	
Behdani,	B.,	Smith,	J.C.,	and	Xia,	Y.,	“The	Lifetime	Maximization	Problem	in	Wireless	
Sensor	Networks	with	a	Mobile	Sink:		MIP	Formulations	and	Algorithms,	IIE	
Transactions,	45(10),	1094-1113,	2013.	
	
Behdani,	B.	and	Smith,	J.C.,	“An	Integer-Programming-Based	Approach	to	the	Close-
Enough	Traveling	Salesman	Problem,”	INFORMS	Journal	on	Computing,	26(3),	415-
432,	2014.	
	
Buchanan,	A.,	Walteros,	J.L.,	Butenko,	S.,	and	Pardalos,	P.M.,	“Solving	Maximum	
Clique	in	Sparse	Graphs:	An	O(nm+	n2^{d/4})	algorithm	for	d-degenerate	graphs,”	
Optimization	Letters,	8(5),	1611-1617,	2014.	
	
Buke,	B.,	Smith,	J.C.,	and	Thomas,	S.A.,	“On	a	Random	Walk	Reliability	Problem	with	
Arc	Memory,”	Networks,	to	appear,	2015.	
	
Buyuktahtakin,	I.E.,	Smith,	J.C.,	Hartman,	J.C.,	and	Luo,	S.,	“Parallel	Asset	Replacement	
Problem	under	Economies	of	Scale	with	Multiple	Challengers,”	The	Engineering	
Economist,	59(4),	237-258,	2014.	
	
Dinh,	T.N.,	Nguyen,	N.P.,	Alim,	M.A.,	and	Thai,	M.D.,	“A	Near-optimal	Adaptive	
Algorithm	for	Maximizing	Modularity	in	Dynamic	Scale-free	Networks,”	Journal	of	
Combinatorial	Optimization,	30(3),	747-767,	2015.	
	
Dinh,	T.N.	and	Thai,	M.T.,	“Community	Detection	in	Scale-free	Networks:	
Approximation	Algorithms	for	Maximizing	Modularity,”	IEEE	Journal	on	Selected	
Areas	in	Communications,	31(6),	997-1006,	2013.	
	
Dinh,	T.N.	and	Thai,	M.T.,	“Towards	Optimal	Community	Detection:	From	Trees	to	
General	Weighted	Networks,”	Internet	Mathematics	11(3),	181-200,	2015.	
	
Dinh,	T.N.,	Xuan,	Y.,	Thai,	M.T.,	Pardalos,	P.M.,	and	Znati,	T.,	“On	New	Approaches	of	
Assessing	Network	Vulnerability:	Hardness	and	Approximation,”	IEEE/ACM	
Transactions	on	Networking	(ToN),	20(2),	609-619,	2012.			
	
Fan,	N.,	Pardalos,	P.	M.,	and	Zheng,	Q.	P.,	“Robust	Optimization	of	Graph	Partitioning	
Involving	Interval	Uncertainty,”	Theoretical	Computer	Science,	447,	53-61,	2012.			
	
Georgiev,	P.	G.,	Luc,	D.	T.,	and	Pardalos,	P.	M.,	“Robust	Aspects	of	Solutions	in	
Deterministic	Multiple	Objective	Linear	Programming,”	European	Journal	of	

Operational	Research,	229(1),	29-36,	2013.	
	
Granata,	D.,	Behdani,	B.,	and	Pardalos,	P.	M.,	“On	the	Complexity	of	Path	Problems	in	
Properly	Colored	Directed	Graphs,”	Journal	of	Combinatorial	Optimization,	24,	459-
467,	2012.	
	
Hemmati,	M.	and	Smith,	J.C.,	“A	Mixed-Integer	Bilevel	Programming	Approach	for	a	
Competitive	Prioritized	Set	Covering	Problem,”	under	revision	for	Discrete	
Optimization,	2015.	
	
Hemmati,	M.,	Smith,	J.C.,	and	Thai,	M.T.,	“A	Cutting-plane	Algorithm	for	Solving	a	
Weighted	Influence	Interdiction	Problem,”	Computational	Optimization	and	
Applications,	57(1),	71-104,	2014.	
	
Lozano,	L.	and	Smith,	J.C.,	“A	Backward	Sampling	Framework	for	Interdiction	
Problems	with	Fortification”,	submitted	to	INFORMS	Journal	on	Computing,	2015.	
	
Mishra,	S.,	Dinh,	T.	N.,	Thai,	M.	T.,	Seo,	J.,	Shin,	I.,	“Optimal	Packet	Scan	Against	
Malicious	Attacks	in	Smart	Grids,”	Theoretical	Computer	Science,	to	appear,	2015.	
	
Nguyen, N.P., Dinh, T.N., Shen, Y. and Thai, M.T., “Dynamic Social Community
Detection and its Applications,” PLoS ONE 9(4), e91431, 2014.
	
Nguyen, N.P., Alim, M.A., Dinh, T.N. and Thai, M.T., “A Method to Detect
Communities with Stability in Social Networks,” Social Network Analysis and Mining
4(1), 10.1007/s13278-014-0224-2, 2014.
	
Nguyen,	D.T.,	Shen,	Y.,	and	Thai,	M.T.,	“Detecting	Critical	Nodes	in	Interdependent	
Power	Networks	for	Vulnerability	Assessment,”	IEEE	Transactions	on	Smart	Grid,	
4(1),	151-159,	2013.	
	
Penuel,	J.,	Smith,	J.C.,	and	Shen,	S.,	“Models	and	Complexity	Analysis	for	the	Graph	
Decontamination	Problem	with	Mobile	Agents,”	Networks,	61(1),	1-19,	2013.	
	
Prince,	M.,	Geunes,	J.,	and	Smith,	J.C.,	“Procurement	Allocation	Planning	with	
Multiple	Suppliers	under	Competition,”	International	Journal	of	Production	Research,	
51(23-24),	6900-6922,	2013.	
	
Prince,	M.	and	Smith,	J.C.,	“Capacitated	Facility	Interdiction	Problems	with	
Fortification	under	Median	and	Center	Objective	Functions,”	under	revision	for	
Transportation	Science,	2015.	
	
Prince,	M.,	Smith,	J.C.,	and	Geunes,	J.,	“A	Three-Stage	Procurement	Optimization	
Problem	Under	Uncertainty,”	Naval	Research	Logistics,	60(5),	395-412,	2013.	
	
Romich,	A.,	Lan,	G.,	and	Smith,	J.C.,	“Optimizing	Placement	of	Stationary	Monitors,”	

IIE	Transactions,	47(6),	556-576,	2015a.	
	
Romich,	A.,	Lan,	G.,	and	Smith,	J.C.,	“A	Robust	Sensor	Covering	and	Communication	
Problem”,	under	revision	for	Naval	Research	Logistics,	2015b.	
	
Sefair,	J.	and	Smith,	J.C.,	“Dynamic	Shortest-Path	Interdiction”,	submitted	to	
Networks,	2015.	
	
Shen,	S.	and	Smith,	J.C.,	“A	Decomposition	Approach	for	Solving	a	Broadcast	
Domination	Network	Design	Problem,”	Annals	of	Operations	Research,	210(1),	333-
360,	2013.	
	
Shen,	S.	and	Smith,	J.C.,	“Polynomial-time	Algorithms	for	Solving	a	Class	of	Critical	
Node	Problems	on	Trees	and	Series-Parallel	Graphs,”	Networks,	60(2),	103-119,	
2012.	
	
Shen,	S.,	Smith,	J.C.,	and	Goli,	R.,	“Exact	Interdiction	Models	and	Algorithms	for	
Disconnecting	Networks	via	Node	Deletions,”	Discrete	Optimization,	9(3),	172-188,	
2012.	
	
Shen,	Y.,	Nguyen,	D.T.,	Xuan,	Y.,	and	Thai,	M.	T.,	“New	Techniques	for	Approximating	
Optimal	Substructure	Problems	in	Power-Law	Graphs,”	Theoretical	Computer	
Science,	447,	107-119,	2012.	
	
Sorokin,	A,	Boginski,	V.,	Nahapetyan,	N.,	and	Pardalos,	P.M.,	“Computational	Risk	
Management	Techniques	for	Fixed	Charge	Network	Flow	Problems	with	Uncertain	
Arc	Failures,”	Journal	of	Combinatorial	Optimization,	25,	99-122,	2013.	
	
Sullivan,	K.M.,	Morton,	D.P.,	Pan,	F.,	and	Smith,	J.C.,	“Securing	a	Border	under	
Asymmetric	Information,”	Naval	Research	Logistics,	61(2),	91-100,	2014.	
	
Sullivan,	K.M.	and	Smith,	J.C.,	“Exact	Algorithms	for	Solving	a	Euclidean	Maximum	
Flow	Network	Interdiction	Problem,”	Networks,	64(2),	109-124,	2014.			
	
Sullivan,	K.M.,	Smith,	J.C.,	and	Morton,	D.P.,	“Convex	Hull	Representation	of	the	
Deterministic	Bipartite	Network	Interdiction	Problem,”	Mathematical	Programming,	
145(1-2),	349-376,	2014.	
	
Syed,	M.	N.,	Georgiev,	P.	G.,	and	Pardalos,	P.	G.,	“A	Hierarchical	Approach	for	Sparse	
Source	Blind	Signal	Separation	Problem,”	Computers	and	Operations	Research,	41,	
386-398,	2014.	
	
Tadayon,	B.	and	Smith,	J.C.,	“Algorithms	for	an	Integer	Multicommodity	Network	
Flow	Problem	with	Node	Reliability	Considerations,”	Journal	of	Optimization	Theory	
and	Applications,	161(2),	506-532,	2014.	
	

Tadayon,	B.	and	Smith,	J.C.,	“Algorithms	and	Complexity	Analysis	for	Robust	Single-
Machine	Scheduling	Problems,”	Journal	of	Scheduling,	to	appear,	2015.	
	
Tang,	Y.,	Richard,	J.-P.,	and	Smith,	J.C.,	“A	Class	of	Algorithms	for	Mixed-Integer	
Bilevel	Min-Max	Optimization,”	Journal	of	Global	Optimization,	to	appear,	2015.	
	
Tiwari,	T.,	Dinh,	T.	N.,	and	Thai,	M.	T.,	“On	Centralized	and	Localized	Approximation	
Algorithms	for	Interference-Aware	Broadcast	Scheduling,”	IEEE	Transactions	on	
Mobile	Computing,	12(2),	233-247,	2013.	
	
Vogiatzis,	C.	and	Pardalos,	P.M.,	“Evacuation	Modeling	and	Betweenness	Centrality,”	
European	Journal	on	Computational	Optimization,	under	review,	2015.	
	
Vogiatzis,	C.,	Pasiliao,	E.,	and	Pardalos,	P.M.,	“Graph	Partitions	for	the	
Multidimensional	Assignment	Problem,”	Computational	Optimization	and	
Applications,	58(1),	205-224,	2014.	
	
Vogiatzis,	C.,	Yoshida,	R.,	Aviles-Spadoni,	I.,	Imamato,	S.,	and	Pardalos,	P.M.,	
“Livestock	Evacuation	Planning	for	Natural	and	Man-made	Emergencies,”	
International	Journal	of	Mass	Emergencies	and	Disasters,	31(1),	25-37,	2013.	
	
Walteros,	J.L.,	Vogiatzis,	C.,	Pasiliao,	E.L.,	and	Pardalos,	P.M.,	“Integer	Programming	
Models	for	the	Multidimensional	Assignment	Problem	with	Star	Costs,”	European	
Journal	of	Operational	Research,	235(3),	553-568,	2014.	
	
Xuan,	Y.,	Shen,	Y.,	and	Nguyen,	N.	P.,	“Efficient	Multi-Link	Failure	Localization	in	All-
Optical	Networks,”	IEEE	Transactions	on	Communications,	61(3),	1144-1151,	2013.	
	
Yun,	Y.,	Xia,	Y.,	Behdani,	B.,	and	Smith,	J.C.,	“Distributed	Algorithm	for	Lifetime	
Maximization	in	Delay-Tolerant	Wireless	Sensor	Network	with	Mobile	Sink,”	IEEE	
Transactions	on	Mobile	Computing,	12(10),	1920-1930,	2013.	
	
Zhang,	H.,	Shen,	Y.,	and	Thai,	M.T.,	“Robustness	of	Power-Law	Networks:	Its	
Assessment	and	Optimization,”	Journal	of	Combinatorial	Optimization,	to	appear,	
2015.	
	
	
BOOKS	
Goldengorin,	B.	and	Pardalos,	P.	M.,	Data	Correcting	Approaches	in	Combinatorial	
Optimization,	Springer,	2012.	
	
Xanthopoulos,	P.,	Pardalos,	P.	M.,	and	Trafalis,	T.	B.,	Robust	Data	Mining,	Springer,	
2013.	
	
	
EDITED	BOOKS	

Boginski,	V.,	Commander,	C.,	Pardalos,	P.M.,	and	Ye,	Y.,	Sensors:	Theory,	Algorithms,	
and	Applications,	Springer,	2012.	
	
Oliveira,	C.	and	Pardalos,	P.M.,	Mathematical	Aspects	of	Network	Routing	
Optimization,	Springer,	2011.	
	
Sorokin,	A.,	Rebennack,	S.,	Pardalos,	P.M.,	Iliadis,	N.,	and	Pereira,	M.,	Handbook	of	
Networks	in	Power	Systems	I,	Springer,	2011.	
	
Sorokin,	A.,	Rebennack,	S.,	Pardalos,	P.M.,	Iliadis,	N.,	and	Pereira,	M.,	Handbook	of	
Networks	in	Power	Systems	II,	Springer,	2011.	
	
Thai,	M.T.	and	Pardalos,	P.M.,	Handbook	of	Optimization	in	Complex	Networks:	
Communication	and	Social	Networks,	Springer,	2011.	
	
Thai,	M.T.	and	Pardalos,	P.M.,	Handbook	of	Optimization	in	Complex	Networks:	Theory	
and	Applications,	Springer,	2011.	
	
Vogiatzis,	C.,	Walteros,	J.L.,	and	Pardalos,	P.M.,	Dynamics	of	Information	Systems:		
Computational	and	Mathematical	Challenges,	Springer,	2014.	
	
	
REFEREED	BOOK	CHAPTERS	
Arulsevan,	A.,	Commander,	C.W.,	Shylo,	O.,	Pardalos,	P.M.,	“Cardinality-Constrained	
Critical	Node	Detection	Problem,”	in	Performance	Models	and	Risk	Management	in	
Communications	Systems,	(N.	Gülpınar,	P.	Harrison	and	B.	Rüstem,	editors),	46,	79-
91,	2011.	
	
Nguyen,	N.P.,	Xuan,	Y.,	and	Thai,	M.T.,	“On	Detection	of	Community	Structure	in	
Dynamic	Social	Networks,”	in	Handbook	of	Optimization	in	Complex	Networks:	
Communication	and	Social	Networks,	(M.	T.	Thai	and	P.	Pardalos,	editors),	Springer,	
2011.	
	
Pappu,	V.	and	Pardalos,	P.M.	,	“High	Dimensional	Data	Classification,”	in	Clusters,	
Orders,	and	Trees:	Methods	and	Application	(F.	Aleskerov,	B.	Goldengorin,	and	P.M.	
Pardalos,	editors),	119-150,	2014.	

Pardalos,	P.M.,	Yatsenko,	V.A.,	Fenn,	M.B.,	and	Chikrii,	A.A.,	“Bilinear	Markovian	
Processes	of	Search	for	Stationary	and	Moving	Objects,”	in	Examining	Robustness	
and	Vulnerability	of	Networked	Systems	(S.	Butenko,	E.L.	Pasiliao,	and	V.	Shylo,	
editors),	209-230,	2014.	
	
Walteros	J.L.	and	Pardalos,	P.M.,		“Selected	Topics	in	Critical	Element	Detection,”	in	
Applications	of	Mathematics	and	Informatics	in	Military	Science	(N.	J.	Daras,	editor),	
9-26,	2012.	
	

	
REFEREED	PROCEEDINGS	
	
	
Alim, Md A., Kuhnle, A., and Thai, M.T., Are Communities As Strong As We Think?,
Proceedings of IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 2014.

Alim, Md A., Nguyen, N.P., Dinh, T.N., and Thai, M.T., Vulnerability Analysis of
Overlapping Communities in Complex Networks, in Proceedings of the 2014
IEEE/WIC/ACM International Conference on Web Intelligence (WI), 2014.
	
Buchanan,	A.,	Walteros,	J.L.,	Butenko,	S.,	and	Pardalos,	P.M.,	“Solving	Integer	
Programs	with	Dense	Conflict	Graphs,”	XII	Global	Optimization	Workshop,	2014.	
	
Dinh,	T.N.,	Nguyen,	N.P.,	and	Thai,	M.T.,	“An	Adaptive	Approximation	Algorithm	for	
Community	Detection	in	Dynamic	Scale-Free	Networks,”	INFOCOM,	2013.	
	
Dinh,	T.N.	and	Thai,	M.T.,	“Assessing	Attack	Vulnerability	in	Networks	with	
Uncertainty,”	IEEE	INFOCOM	2015.	
	
Dinh,	T.N.	and	Thai,	M.T.,	“Finding	Community	Structures	with	Performance	
Guarantees	in	Complex	Networks",	Proceedings	of	IEEE	International	Conference	on	
Social	Computing	(SocialCom),	2011.	
	
Kuhnle,	A.,	Li,	X.,	and	Thai,	M.T.,	“Online	Algorithms	for	Optimal	Resource	
Management	in	Dynamic	D2D	Communications,”	Proceedings	of	the	IEEE	10th	
International	Conference	on	Mobile	Ad-hoc	and	Sensor	Networks	(MSN),	130-137,	
2014.	
	
Mishra,	S.,	Li,	X.,	Kuhnle,	A.,	Thai,	M.	T.,	and	Seo,	J.,	“Rate	Alteration	Attacks	in	Smart	
Grid,”	IEEE	INFOCOM	2015.	
	
Mishra,	S.,	Li,	X.,	Thai,	M.T.,	and	Seo,	J.,	“Cascading	Critical	Nodes	Detection	with	Load	
Redistribution	in	Complex	Systems,”	Proceedings	of	the	8th	Annual	International	
Conference	on	Combinatorial	Optimization	and	Applications	(COCOA),	2014.	
	
Nguyen, D.T., Alim, M.A., Shen, Y., and Thai, M.T., “Assessing Network Vulnerability
in a Community Structure Point of View,” Proceedings of IEEE/ACM Int Conf on
Advances in Social Networks Analysis and Mining (ASONAM), 2013.
	
Nguyen,	D.T.,	Das,	S.,	and	Thai,	M.T.,	“Influence	Maximization	in	Multiple	Online	
Social	Networks,”	Proceedings	of	the	IEEE	Global	Communication	Conference,	3060-
3065,	2013.	
	

Nguyen,	D.T.,	Zhang,	H.,	Das,	S.,	Thai,	M.T.,	and	Dinh,	T.N.,	“Least	Cost	Influence	in	
Multiplex	Social	Networks,”	Proceedings	of	the	IEEE	International	Conference	on	
Data	Mining,	567-576,	2013.	
	
Nguyen,	N.P.,	Dinh,	T.N.,	Nguyen,	D.T.,	and	Thai,	M.T.,	“Overlapping	Community	
Structures	and	their	Detection	on	Social	Networks,”	Proceedings	of	IEEE	
International	Conference	on	Social	Computing	(SocialCom),	2011.	
	
Nguyen,	N.P.,	Dinh,	T.N.,	Tokala,	S.,	and	Thai,	M.T.,	“Overlapping	Communities	in	
Dynamic	Networks:	Their	Detection	and	Mobile	Applications,”	Proceedings	of	ACM	
International	Conference	on	Mobile	Computing	and	Networking	(MobiCom),	2011.	
	
Nguyen,	N.P.,	Dinh,	T.N.,	Xuan,	Y.,	and	Thai,	M.T.,	“Adaptive	Algorithms	for	Detecting	
Community	Structure	in	Dynamic	Social	Networks,”	Proceedings	of	the	IEEE	
Communications	Society	(INFOCOM),	2011.	
	
Nguyen,	N.P.	and	Thai,	M.T.,	“Finding	Overlapped	Communities	in	Online	Social	
Networks	with	Nonnegative	Matrix	Factorization,”	in	Proceedings	of	the	IEEE	
Military	Communications	Conference	(MILCOM),	2012.	
	
Nguyen,	N.P.,	Dinh,	T.N.,	Xuan,	Y.,	and	Thai,	M.T.,	“A	Novel	Method	for	Worm	
Containment	on	Dynamic	Social	Networks,”	Proceedings	of	the	IEEE	Military	
Communications	Conference	(MILCOM),	2010.	
	
Pardalos,	P.M.,	Resende,	M.G.C.,	Vogiatzis,	C.,	and	Walteros,	W.L.	,	“Learning	and	
Intelligent	Optimization,”	8th	International	Conference,	LION	8,	2014.	 	
	
Shen,	Y.,	Dinh,	T.N.,	and	Thai,	M.T.,	“Adaptive	Algorithms	for	Detecting	Critical	Links	
and	Nodes	in	Dynamic	Networks,”	Proceedings	of	the	IEEE	Military	Communications	
Conference	(MILCOM),	2012.	
	
Shen,	Y.,	Li,	X.,	and	Thai,	M.T.,	“Approximation	Algorithms	for	Optimization	Problems	
in	Random	Power-Law	Graphs,”	Proceedings	of	the	8th	Annual	International	
Conference	on	Combinatorial	Optimization	and	Applications	(COCOA),	2014.	
	
Shen,	Y.,	Nguyen,	D.T.,	and	Thai,	M.T.,	“Adaptive	Approximation	Algorithms	for	Hole	
Healing	in	Hybrid	Wireless	Sensor	Networks,”	INFOCOM,	2013.	
	
Shen,	Y.,	Nguyen,	N.P.,	and	Thai,	M.T.,	“Exploiting	the	Robustness	on	Power-Law	
Networks,	in	Proceedings	of	the	17th	Int	Computing	and	Combinatorics	Conference	
(COCOON),	2011.	
	
Shen,	Y.,	Xuan,	Y.,	and	Thai,	M.T.,	“On	Local	Approximation	of	Minimum-Latency	
Broadcast	Scheduling	in	3D	MANETs,”	Proceedings	of	the	IEEE	Military	
Communications	Conference	(MILCOM),	2011.	
	

Walteros,	J.	L.	and	Pardalos,	P.M.,	“A	Decomposition	Approach	for	Solving	Critical	
Clique	Detection	Problems,”	Proceedings	of	the	10th	International	Symposium	on	
Experimental	Algorithms.	Springer	Lecture	Notes	in	Computer	Science,	v7276,	pp.	
393-404,	2012	
	
	
VI.		Presentations	(in	addition	to	conference	proceedings	above)	
Smith,	J.C.,	"Tutorial:		Teaching	DP	and	duality	via	games,	interdiction,	and	robust	
optimization,"	Invited	Lecture,	10/20/12,	INFORMS	2012	Conference,	Phoenix,	AZ.	
	
Smith,	J.C.,	"Revisiting	fortification	algorithms	for	facility	interdiction	problems,"	
Invited	Lecture,	11/15/12,	Naval	Postgraduate	School,	Monterey,	CA.	
	
Smith,	J.C.,	"Defense	algorithms	for	capacitated	facility	interdiction	problems,"	
Invited	Lecture,	01/07/13,	INFORMS	Computing	Society	Conference,	Santa	Fe,	NM.	
	
Pardalos,	P.M.,	"Detecting	critical	subsets	in	networks,"	Invited	Lecture,	02/08/13,	
Mechanical	and	Industrial	Engineering	Seminar,	Toronto.	
	
Pardalos,	P.M.,	"Assessing	the	vulnerability	of	evacuation	plans	via	critical	element	
detection,"	Invited	Lecture,	02/14/13,	AAAS	Annual	Meeting,	Boston,	MA.	
	
Pardalos,	P.M.,	"Optimization	and	modeling	in	energy	systems,"	Keynote	Lecture,	
03/23/13,	Systems	and	Optimization	Aspects	of	Smart	Grid	Challenges,	Tucson,	AZ.	
	
Smith,	J.C.,	"A	robust	sensor	covering	and	communication	problem,"	Invited	Lecture,	
05/24/13,	Industrial	and	Systems	Engineering	Research	Conference,	San	Juan,	PR.	
	
Pardalos,	P.M.,	"Networks	everywhere,"	Invited	Lecture,	06/03/13,	NATO	advanced	
research	workshop	on	examining	robustness	and	vulnerability	of	critical	
infrastructure	networks,	Kyiv,	Ukraine.	
	
Pardalos,	P.M.,	"Global	optimality	conditions	in	non-convex	optimization	and	related	
issues,"	Keynote	Lecture,	06/19/13,	Numerical	Computations:		Theory	and	
Algorithms,	Calabria,	Italy.	
	
Pardalos,	P.M.,	"Cliques	and	quasi-cliques	in	large	graphs:		Theory	and	applications,"	
Keynote	Lecture,	06/24/13,	Discrete	Optimization	and	Operations	Research,	
Novosibirsk,	Russia.	
	
Pardalos,	P.M.,	"General	Optimization	Discussion,"	Invited	Lecture,	07/10/13,	
International	Conference	on	OR	for	Development,	Lleida,	Spain.	
	
Thai,	M.T.,	"Least	Cost	Influence	in	Multiplex	Social	Networks:	Model	Representation	
and	Analysis,"	Invited	Lecture,	12/01/13,	IEEE,	Dallas,	TX.	
	

Thai,	M.T.,	"Influence	Maximization	in	Multiple	Online	Social	Networks,"	Invited	
Lecture,	12/10/13,	IEEE,	Atlanta,	GA.	
	
Smith,	J.C.,	"Revisiting	Fortification	Algorithms	for	Facility	Interdiction	Problems,"	
Invited	Lecture,	02/01/14,	University	of	Buffalo,	Buffalo,	NY.	
	
Smith,	J.C.,	"Revisiting	Fortification	Algorithms	for	Facility	Interdiction	Problems,"	
Invited	Lecture,	03/01/14,	Southern	California	University,	Los	Angeles,	CA.	
	
Smith,	J.C.,	"Revisiting	Fortification	Algorithms	for	Facility	Interdiction	Problems,"	
Invited	Lecture,	04/01/14,	University	of	Tennessee,	Knoxville,	TN.	
	
Sefair,	J.,	"Dynamic	Shortest-Path	Interdiction	,"	Invited	Lecture,	11/11/14,	
INFORMS	Annual	Meeting,	San	Francisco,	CA.	
	
Lozano,	L.,	"A	backward	sampling	framework	for	interdiction	problems	with	
fortification,"	Invited	Lecture,	11/11/14,	INFORMS	Annual	Meeting,	San	Francisco,	
CA.	
	
Thai,	M.T.,	"Online	Algorithms	for	Optimal	Resource	Management	in	Dynamic	D2D	
Communications,"	Invited	Lecture,	12/19/14,	IEEE	10th	International	Conference	
on	Mobile	Ad-hoc	and	Sensor	Networks	(MSN),	Maui,	HI.	
	
Thai,	M.T.,	"Heterogenous	Interdependent	Networks:		Critical	Elements	and	
Cascades	Analysis,"	Keynote	Lecture,	12/19/14,	8th	Annual	International	
Conference	on	Combinatorial	Optimization	and	Applications	(COCOA),	Maui,	HI.	
	
Thai,	M.T.,	"Cascading	Critical	Nodes	Detection	with	Load	Redistribution	in	Complex	
Systems,"	Invited	Lecture,	12/20/14,	8th	Annual	International	Conference	on	
Combinatorial	Optimization	and	Applications	(COCOA),	Maui,	HI.	
	
Thai,	M.T.,	"Approximation	Algorithms	for	Optimization	Problems	in	Random	
Power-Law	Graphs,"	Invited	Lecture,	12/20/14,	8th	Annual	International	
Conference	on	Combinatorial	Optimization	and	Applications	(COCOA),	Maui,	HI.	
	
Walteros,	J.L.,	"A	mathematical	framework	for	detecting	Sybil	communities	in	online	
social	networks,"	Invited	Lecture,	01/11/15,	INFORMS	Computing	Society	
Conference,	Richmond,	VA.	
	
Smith,	J.C.,	"Dynamic	Shortest	Path	Interdiction,"	Invited	Lecture,	01/11/15,	
INFORMS	Computing	Society	Conference,	Richmond,	VA.	
	
Vogiatzis,	C.,	"Assessing	the	Vulnerability	of	Evacuation	Plans	via	Critical	Element	
Detection,"	Invited	Lecture,	03/14/15,	56th	Annual	Transportation	Research	
Forum,	Atlanta,	GA.	
	

Pardalos,	P.M.,	"Cricitcal	element	selection	in	large	networks,"	Invited	Lecture,	
04/26/15,	Seminar	Series:		Anhui	University	of	Finance	and	Economics,	Bengbu,	
China.	
	
Pardalos,	P.M.,	"Clustering	and	search	techniques	in	networks,"	Invited	Lecture,	
04/30/15,	Seminar	Series:		Hefei	University	of	Technology,	Hefei,	China.	
	
Thai,	M.T.,	"Rate	Alteration	Attacks	in	Smart	Grid,"	Invited	Lecture,	04/30/15,	IEEE	
INFOCOM	2015,	Hong	Kong,	China.	
	
Dang,	T.N.,	"Assessing	Attack	Vulnerability	in	Networks	with	Uncertainty,"	Invited	
Lecture,	04/30/15,	IEEE	INFOCOM	2015,	Hong	Kong,	China.	
	
Smith,	J.C.,	"A	backward	sampling	framework	for	interdiction	problems	with	
fortification,"	Invited	Lecture,	05/04/15,	Seminar	Series:		Bogazici	University,	
Istanbul,	Turkey.	
	
Smith,	J.C.,	"A	backward	sampling	framework	for	interdiction	problems	with	
fortification,"	Invited	Lecture,	05/05/15,	Seminar	Series:		Sabanci	University,	
Istanbul,	Turkey.	
	
Smith,	J.C.,	"A	backward	sampling	framework	for	interdiction	problems	with	
fortification,"	Invited	Lecture,	05/06/15,	Seminar	Series:		Koc	University,	Istanbul,	
Turkey.	
	
Curry,	R.,	"A	Semi-Continuous	Formulation	to	Maximize	Wireless	Sensor	Network	
Lifetime,"	Invited	Lecture,	05/31/15,	Industrial	and	Systems	Engineering	Research	
Conference,	Nashville,	TN.	
	
Lozano,	L.,	"A	backward	sampling	framework	for	interdiction	problems	with	
fortification,"	Invited	Lecture,	05/31/15,	Industrial	and	Systems	Engineering	
Research	Conference,	Nashville,	TN.	
	
Sefair,	J.,	"Dynamic	Shortest-Path	Interdiction	Games,"	Invited	Lecture,	06/02/15,	
Industrial	and	Systems	Engineering	Research	Conference,	Nashville,	TN.	
	
Pardalos,	P.M.,	"Evacuation	modeling	and	betweenness	centrality,"	Invited	Lecture,	
06/29/15,	Dynamics	of	Disasters	2015,	Kalamata,	Greece.	
	
VII.		Students	Graduated	with	DTRA	Support		
Academic	Affiliations	are	listed	here	if	applicable.	
	
Ph.D.	student	Behnam	Behdani	graduated	in	2012.	
	
Ph.D.	student	Thang	Dinh	graduated	in	2013	and	now	serves	as	an	assistant	
professor	at	Virginia	Commonwealth	University.		

	
Ph.D.	student	Neng	Fan	graduated	in	2011	and	now	serves	as	an	assistant	professor	
at	the	University	of	Arizona.	
	
Ph.D.	student	Vijay	Pappu	graduated	in	2013.	
	
Ph.D.	student	Dung	Nguyen	graduated	in	2014.	
	
Ph.D.	student	Nam	Nguyen	graduated	in	2013	and	now	serves	as	an	assistant	
professor	at	Towson	University.	
	
Ph.D.	student	Michael	Prince	graduated	in	2013.	
	
Ph.D.	student	Jorge	Sefair	defended	his	dissertation	in	June	2015	and	will	begin	an	
academic	career	as	a	(tenure-track)	assistant	professor	at	Arizona	State	University	
in	August	2015.	
	
Ph.D.	student	Siqian	Shen	graduated	in	2011	and	now	serves	as	an	assistant	
professor	at	the	University	of	Michigan.	
	
Ph.D.	student	Siqian	Shen	graduated	in	2013.	
	
Ph.D.	student	Sibel	Sonuc	graduated	in	2012	and	now	serves	as	a	postdoctoral	
assistant	at	Northeastern	University.	
	
Ph.D.	student	Kelly	Sullivan	graduated	in	2012	and	now	serves	as	an	assistant	
professor	at	the	University	of	Arkansas.	
	
Ph.D.	student	Yu-Song	Syu	graduated	in	2012.	
	
Ph.D.	student	Bita	Tadayon	graduated	in	2014.	
	
Ph.D.	student	Yen	Tang	graduated	in	2013.	
	
Ph.D.	student	Chrysafis	Vogiatzis	graduated	in	2014	and	will	begin	an	academic	
career	as	a	(tenure-track)	assistant	professor	at	North	Dakota	State	University	in	
August	2015.	
	
Ph.D.	student	Jose	Walteros	graduated	in	2014	and	now	serves	as	an	assistant	
professor	at	the	University	at	Buffalo.	
	
Ph.D.	student	Hongsheng	Xu	graduated	in	2012.	
	
Current	Ph.D.	students	who	have	received	DTRA	support:		Md	Abdul	Alim,	Robert	
Curry,	Xiang	Li,	Subhankar	Mishra,	Ioannis	Pappas,	Jiaxing	Pi,	Huiling	Zhang,	
Huiyuan	Zhang	

	
	

VIII.		Impacts	
	
Dr.	Pardalos	was	named	the	first	Paul	and	Heidi	Brown	Preeminent	Professor	of	
Industrial	and	Systems	Engineering	at	the	University	of	Florida.	
	
Dr.	Smith	was	named	Professor	and	Chair	of	the	Industrial	Engineering	department	
at	Clemson	University.	
	
Dr.	Pardalos	won	the	following	awards	for	his	contributions	to	the	field	of	
operations	research	during	the	award	period:	
	

• “Numerical	Computation:		Theory	and	Algorithms”	conference	award	for	
contributions	to	optimization	

• Medal	in	honor	of	broad	contributions	to	science	and	engineering,	University	
of	Catania	

• EURO	Gold	Medal	Award	
	
Dr.	Thai	won	the	following	awards	due	to	her	DTRA-sponsored	work.	
	

• Provost’s	Excellence	Award	for	Associate	Professors	at	the	University	of	
Florida,	2010.	

• Early	promotion	to	Full	Professor	in	2015.	
• Her	student,	Thang	Dinh,	received	UFIC	Outstanding	International	Student	

Award.	
• Best	conference	paper	award	for	“Online	Algorithms	for	Optimal	Resource	

Management	in	Dynamic	D2D	Communications,”	in	Proceedings	of	the	IEEE	
10th	International	Conference	on	Mobile	Ad-hoc	and	Sensor	Networks	(MSN).	

	
Sullivan,	K.M.	and	Smith,	J.C.,	“Exact	Algorithms	for	Solving	a	Euclidean	Maximum	
Flow	Network	Interdiction	Problem,”	Networks,	64(2),	2014	won	the	Glover-
Klingman	Prize	for	best	paper	in	Networks.	
	
Romich,	A.,	Lan,	G.,	and	Smith,	J.C.,	“Optimizing	Placement	of	Stationary	
Monitors,”	IIE	Transactions,	47(6),	556-576,	2015	was	a	featured	article	in	the	
Industrial	Engineering	magazine.	
	
DTRA-research-related	topics	were	incorporated	into	five	Ph.D.-level	classes	at	the	
University	of	Florida:	
	

• Advanced	Network	Optimization	
• Linear	Programming	Extensions	
• Optimization	in	Adaptive	Complex	Systems	and	Social	Networks	
• Approximation	Algorithms	

• Data	Mining		
	

The	latter	class	was	prepared	by	Co-PI	Pardalos,	who	taught	this	as	an	honors	level	
course	as	a	part	of	his	Dunlevie	Professorship	award,	which	he	won	during	the	
2013-14	academic	year.	
	
	
IX.		Tech	Transition	
	
The	PI	for	the	DTRA	grant	was	awarded	a	grant	by	the	Office	of	Naval	Research	
(ONR),	running	from	January	2013	through	the	end	of	December	2015,	The	title	of	
the	ONR	grant	is,	“Dynamic	and	Adaptive	Sensor	Operations	Under	Uncertainty,”	
and	was	awarded	to	Dr.	Smith	and	to	a	Co-PI,	Dr.	Guanghui	Lan.		The	grant	is	funded	
under	the	ONR	program	12-SN-0009,	and	is	under	the	6.2	funding	category.			
	
The	subject	of	our	DTRA	grant	examines	cascading	failures	in	defender-attacker-
defender	settings.		For	instance,	a	problem	we	would	investigate	in	the	DTRA	
proposal	might	examine	a	situation	in	which	an	attacker	destroys	links	in	order	to	
maximize	the	shortest	possible	path	a	defender	could	take	in	some	network.		The	
objective	would	then	be	to	fortify	links	first,	so	that	the	attacker's	objective	is	as	
small	as	possible	(i.e.,	the	defender	minimizes	the	maximum	possible	shortest	path	
length	induced	by	the	attacker).		Of	particular	interest	are	those	problems	in	which	
the	network	is	multi-layered	and	complex.	
	
As	a	result	of	the	theoretical	and	methodological	advances	made	in	the	DTRA	grant,	
we	were	able	to	explore	sensor	operations	arising	in	the	defender-attacker-
defender	setting,	for	the	ONR	proposal.		An	example	of	the	type	of	problem	
considered	in	the	ONR	program	would	be	similar	to	the	one	described	above,	but	in	
which	the	“attacker”	is	not	necessarily	an	adversary,	and	the	“defender”	is	not	
necessarily	the	protagonist.		Hence,	it	makes	more	sense	to	refer	to	these	agents	as	
“leader”	and	“follower”	to	better	fit	the	problem	context.		For	instance,	suppose	that	
the	follower	is	a	terrorist	that	seeks	to	gain	access	to	sensitive	infrastructure.		The	
leader	would	place	sensors	(or	monitors)	in	a	continuous	region	in	order	to	
minimize	the	maximum	probability	with	which	the	follower	could	reach	the	
infrastructure	undetected.		This	problem	was	inspired	by	the	defense	of	a	nuclear	
power	plant	with	access	to	public	waterways,	which	might	be	exploited	by	a	
terrorist.	
	
In	another	setting,	a	set	of	targets	may	need	to	be	covered	by	sensors.		The	sensors	
also	must	communicate	with	one	another	wirelessly,	suffering	some	degradation	
that	occurs	as	a	function	of	distance	between	the	sensors.		Complicating	matters	is	
the	observation	that	once	sensors	are	placed,	they	might	drift	by	some	vector.		
Drifting	could	occur	due	to	placement	error,	or	in	the	case	of	unmanned	(aerial	or	
underwater)	vehicles,	due	to	physical	currents.		To	model	the	robustness	of	our	
sensor	placement,	we	bound	placement	error	by	a	parameter,	and	conceptually	
envision	that	an	adversary	moves	each	sensor	by	a	vector	of	length	no	more	than	

this	parameter.		Hence,	the	game	proceeds	as	follows	(in	the	defender-attacker-
defender	language):		The	defender	first	places	its	sensors,	the	attacker	perturbs	the	
sensors,	and	then	the	defender	performs	optimal	communication	among	each	pair	
of	sensors	in	their	adjusted	locations.		This	is	a	max-min-max	model,	where	the	
inner	minimization	problem	represents	the	realization	of	a	worst-case-scenario	
(which	is	defined	relative	to	each	possible	first-stage	sensor	location	decision)	
rather	than	an	actual	malicious	entity.		

DISTRIBUTION LIST

DTRA-TR-16-80

 DL-1

DEPARTMENT OF DEFENSE

DEFENSE THREAT REDUCTION

AGENCY

8725 JOHN J. KINGMAN ROAD

STOP 6201

FORT BELVOIR, VA 22060

 ATTN: P. VANDEVENTER

DEFENSE TECHNICAL

INFORMATION CENTER

8725 JOHN J. KINGMAN ROAD,

SUITE 0944

FT. BELVOIR, VA 22060-6201

 ATTN: DTIC/OCA

DEPARTMENT OF DEFENSE

CONTRACTORS

QUANTERION SOLUTIONS, INC.

1680 TEXAS STREET, SE

KIRTLAND AFB, NM 87117-5669

 ATTN: DTRIAC

	Final Report HDTRA1-10-1-0050.pdf
	Final Report HDTRA1-10-1-0050
	Final Report HDTRA1-10-1-0050
	Smith Thai Pardalos HDTRA-10-01-0050 FINAL Part 2.pdf

	Smith Thai Pardalos HDTRA-10-01-0050 FINAL Part 3.pdf

