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Final AFOSR Project Performance Report 

DeLiang Wang 
(Principal Investigator) 

The Ohio State University 

July 2016 

This PI was awarded the AFOSR grant “Speech segregation based on binary 
classification” (Grant No.: FA9550-12-1-0130). The project was funded for the period of 
5/1/12 to 4/30/16 with the total amount of $932,284. This report summarizes the progress 
made throughout the 4-year project period. 

1. RESEARCH PROGRESS

One of the biggest challenges in speech and audio processing is speech segregation, 
which is the problem of separating target speech from its acoustic background. The goal 
of this AFOSR project was to develop a speech segregation system that can potentially 
improve speech intelligibility in noise for human listeners. Motivated by the perceptual 
principles of auditory scene analysis and the speech intelligibility studies of ideal time-
frequency masking, the project sought to develop a classification-based approach to 
tackle the speech segregation challenge. The supervised approach is in sharp contrast to 
traditional speech segregation approaches. 

Consistent with the stated objectives, the project made substantial advances along the 
following four directions. First, we have developed a supervised approach to pitch 
tracking in very noisy conditions on the basis of neural networks. Second, we have 
investigated different training targets for supervised speech segregation, leading to the 
adoption of the ideal ratio mask (IRM). A subsequent listening evaluation shows 
increased intelligibility in noise for human listeners following IRM estimation. Third, we 
have proposed an algorithm for recognizing speakers in cochannel (two-talker) 
conditions. This algorithm uses deep neural networks (DNNs) for cochannel speaker 
identification, and achieves the state-of-the-art results in both anechoic and reverberant 
conditions. Fourth, we have developed a spectral mapping method to address the issue of 
robustness to room reverberation. This supervised method learns a mapping from the 
magnitude spectrogram of reverberant speech to that of anechoic speech, as well as from 
the spectrogram of reverberant-noisy speech to that of anechoic-clean speech. Although 
not highlighted in this report, this project has also contributed to considerable progress in 
the development of an unsupervised approach to cochannel speech separation, 
generalization of the binary classification approach, and the study of acoustic-phonetic 
features other than pitch for the purpose of supervised speech segregation. 

The major findings along each of above four directions are described in more detail in 
the following subsections. 

DISTRIBUTION A: Distribution approved for public release.
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1.1 Neural Network Based Pitch Tracking in Very Noisy Speech 

Pitch, or fundamental frequency (F0), is one of the most important characteristics of 
speech signals. A pitch tracking algorithm robust to background interference is critical to 
many applications, including speaker identification and speech separation. Although pitch 
tracking has been studied for decades, it is still challenging to estimate pitch from speech 
in the presence of strong noise, where the harmonic structure of speech is severely 
corrupted. In this work, we perform pitch estimation or tracking using supervised 
learning, where probabilistic pitch states are directly learned from noisy speech data. 
More specifically, we proposed two alternative neural networks modeling pitch state 
distribution given noisy observations. The first one is a feedforward DNN that is trained 
on static frame-level acoustic features. The second one is a recurrent deep neural network 
(RNN) that is trained on sequential frame-level features and capable of learning temporal 
dynamics. Both DNNs and RNNs produce accurate probabilistic outputs of pitch states, 
which are then connected into pitch contours by Viterbi decoding as part of a hidden 
Markov model (HMM).  

The proposed pitch tracking algorithms first extract spectral domain features in each 
frame; specifically, we compute the log power spectrogram and then normalize it to the 
long-term speech spectrum in order to attenuate background noise. To simplify the 
representation of pitch, we quantize the plausible F0 range into M frequency bins, 
corresponding to M pitch states. DNNs and RNNs are then employed to compute the 
posterior probability of the pitch state for each frequency bin. To train a DNN, each 
training sample is the feature vector extracted from the current time frame (plus its 
neighboring frames), and the target is an (M+1)-dimensional vector of the pitch states 
whose element is 1 if the ground-truth pitch falls into the corresponding frequency bin, 
and 0 otherwise. One more state is used to designate unvoicing. 

An RNN is a natural extension of a feedforward DNN. In an RNN, the depth comes 
from not only multiple hidden layers employed in a DNN but also unfolding layers 
through time. As a result, RNN is capable of capturing the long-term dependencies 
through connections between hidden layers. These considerations motivated us to use 
RNN to model pitch dynamics. One of the key challenges for using RNN is that training 
with long-term dependencies can be quite difficult. In our study, we use a classic RNN 
and learn the model with truncated backpropagation through time.  

With the posterior probability distribution at each time frame learned by a DNN or 
RNN, Viterbi decoding utilizes the likelihood and the transition probability to generate an 
optimal sequence of pitch states for a sentence. We convert the sequence of pitch states to 
a sequence of pitch frequencies and then use a 3-point moving average for smoothing to 
generate final pitch contours.  

Figure 1 illustrates pitch tracking results using the proposed methods. The example is 
a female utterance from the TIMIT corpus: “Readiness exercises are almost continuous”, 
mixed with a factory noise at -5 dB SNR. Fig. 1(a) and (b) show the spectrograms of 
clean speech and noisy speech from 0 to 2000 Hz respectively. Comparing Fig. 1(b) to 
Fig. 1(a), the harmonics are severely corrupted by noise, leading to a major difficulty in 
pitch tracking. Fig. 1(c) shows the ground-truth pitch states extracted from the clean 
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speech using Praat, a standard pitch tracking algorithm for clean speech. As shown in the 
figure, Praat even makes a few pitch doubling or halving errors at around 160 ms and 280 
ms. But since these errors are not serious, we do not correct them and still treat them as 
the ground-truth. The probabilistic outputs of the DNN and the RNN are shown in Figs. 
1(d) and 1(e), respectively. Comparing to Fig. 1(c), the probabilities of the correct pitch 
states dominate in most time frames in both Figs. 1(d) and (e), demonstrating that the 
neural networks successfully predict pitch states from noisy speech. In some time frames 
(e.g., 100 ms to 120 ms), the RNN yields better probabilistic outputs than the DNN, 
because the RNN can better capture the temporal context and its outputs are smoother 
than those of the DNN. Figs. 1(f) and (g) show extracted pitch contours after Viterbi 
decoding. Both the DNN and the RNN produce accurate pitch contours. A few errors 
occur from 260 ms to 280 ms due to severe interference.  

Figure 1. Neural network based pitch tracking. Noisy speech is a female utterance mixed 
with factory noise in -5 dB SNR. (a) Spectrogram of clean speech from 0 to 2000 Hz. (b) 
Spectrogram of noisy speech from 0 to 2000 Hz. (c) Ground-truth pitch states. In each 
time frame, the probability of a pitch state is 1 if it corresponds to the ground-truth pitch 
and 0 otherwise. (d) Probabilistic outputs from the DNN. (e) Probabilistic outputs from 
the RNN. (f) DNN based pitch contours. The circles denote the generated pitches, and 
solid lines denote the ground-truth. (g) RNN based pitch contours. 
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We have systematically evaluated our pitch tracking approach and compared it with 
four leading algorithms, two of them supervised and the other two unsupervised.  The 
evaluation results demonstrate that the proposed pitch tracking algorithms are robust to 
different noise conditions and can even be applied to reverberant speech. The proposed 
approach significantly outperforms the four comparison algorithms. Furthermore, our 
system generates strong results across multiple unseen conditions, including different 
speakers, SNRs, noises, and room impulse responses. A paper describing our neural 
network based pitch tracking algorithms was published in a 2014 paper by K. Han and 
D.L. Wang, entitled “Neural network based pitch tracking in very noisy speech,” in 
IEEE/ACM Transactions on Audio, Speech and Language Processing. More details about 
this work can be found in this publication.  
 

 
1.2 Analysis of Training Targets for Supervised Speech Separation 

 
In the simplest form of supervised speech separation, acoustic features are extracted 

from noisy mixtures to train a supervised learning algorithm, such as a DNN. 
Traditionally, the training target (or the desired signal) is set to the ideal binary mask 
(IBM), which turns speech separation into a binary classification problem – a well studied 
machine learning task. Although the IBM is the optimal binary mask, it may not 
necessarily be the best target for training and prediction. In addition, speech quality is a 
persistent issue for binary masking. The supervised separation framework, however, is 
not limited to binary targets. So what training targets are appropriate for supervised 
speech separation? This is clearly an important question with potentially major 
implications for separation performance. We have addressed this question systematically.   

In our study, we have analyzed a number of different training targets, including the 
IBM, the target binary mask (TBM), the IRM, the short-time Fourier transform spectral 
magnitude (FFT-MAG) and its corresponding mask (FFT-MASK), and the gammatone-
frequency power spectrum (GF-POW). An illustration of different training targets is 
shown in Figure 2. Among them, the IRM is defined as 
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where ),(2 ftS  and ),(2 ftI  denote the target speech energy and interference energy, 
respectively, in a given time-frequency (T-F) unit. The IRM can be viewed as the square 
root of the Wiener filter, which is the optimal estimator of the power spectrum of the 
target speech signal. With the IRM as the training target, the learning task becomes a 
problem of regression (or function approximator), rather than classification associated 
with the IBM. 
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Figure 2. Various training targets for a TIMIT utterance mixed with a factory noise at -5 
dB SNR. 
 
Throughout our analysis, we use a fixed set of complementary features and a fixed 

DNN as the discriminative learning machine. For evaluation metrics, besides SNR, we 
use the Short-Time Objective Intelligibility (STOI) to measure predicted speech 
intelligibility and the Perceptual Evaluation of Speech Quality (PESQ) to measure 
objective speech quality. The STOI score ranges from 0 to 1, and the PESQ score from -
0.5 to 4.5. Both STOI and PESQ are shown to be highly correlated to human speech 
perception.  

Table 1 shows the comparisons between different targets when input SNR is -5 dB; 
the performance trends at other input SNR levels are similar. Regardless of the target of 
choice, the supervised speech separation framework provides substantial improvements 
compared to unprocessed mixtures. For the two binary masking targets, the IBM appears 
to be a better choice than the TBM, probably because the TBM is defined by completely 
ignoring the noise characteristics in the mixture. 

Going from binary masking to ratio masking improves all objective metrics, as 
exemplified by the performance of the IRM. Although predicting the IRM achieves 
slightly better or equal STOI results than predicting the IBM, the IRM seems to be 
especially beneficial for improving objective speech quality. For example, the PESQ 
score improves by 0.64 and 0.76 in the engine noise compared to the IBM and 
unprocessed mixtures, respectively. 

Interestingly, FFT-MASK produces comparable STOI and PESQ results to the IRM, 
but significantly better results than FFT-MAG. This contrast with FFT-MAG appears 
surprising, considering that the DNNs in both cases are essentially trained to estimate the 
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same underlying target: the clean magnitude. Our further analysis shows that the 
estimation of spectral magnitudes magnifies estimation errors, and the one-to-one 
mapping in T-F mask estimation is easier to learn than the many-to-one mapping in 
spectral magnitude estimation.  

We have also compared with recent methods in supervised NMF (nonnegative matrix 
factorization) and speech enhancement, and the comparison shows clear performance 
advantages of DNN-based supervised speech separation. Our analysis of training targets 
was published in a 2014 paper by Y. Wang, A. Narayana and D.L. Wang, entitled “On 
training targets for supervised speech separation,” in IEEE/ACM Transactions on Audio, 
Speech and Language Processing. 

 
Table 1. Separation performance comparisons among various training targets for speech 
utterances mixed with five noises at -5 dB SNR. The best STOI and PESQ scores for 
each noise are highlighted by boldface. 
 

 
 
A tangible benefit of this training target analysis is a recent successful intelligibility 

test conducted on both normal-hearing (NH) and hearing-impaired (HI) listeners. The 
speech segregation algorithm tested here employs a DNN to estimate the IRM, rather than 
the IBM as done in an earlier test (Healy et al., 2013; see Section 2.4). Besides different 
training targets, the current algorithm uses a noise perturbation technique to generate new 
noise samples to expand the training set. Unlike Healy et al.’s 2013 study where noise 
samples were drawn from the same short segments of two noises, in the current study, we 
evaluated the algorithm on noise samples drawn from novel segments of nonstationary 
noises.  

The DNN-based IRM estimator was used to segregate IEEE sentences from two 
nonstationary noises: multi-talker babble and a cafeteria noise. Each noise is 10 minutes 
long, and the first 8 minutes were used in training and the last two minutes in testing to 
ensure no overlap between training and test noise segments. The speech utterances used 
in the test were also different from those used in training. Ten HI listeners and ten NH 
listeners participated in this experiment. The tested SNRs were 0 and 5 dB for the HI 
listeners, and -5 and -2 dB for the NH listeners. 

For the babble noise, the average recognition improvement from algorithm processing 
was 27.8 and 44.4 percentage points for the HI listeners (at 5 and 0 dB SNR, respectively) 
and 21.5 and 26.8 percentage points for the NH listeners (at -2 and -5 dB SNR). For the 
cafeteria noise, the average improvement from algorithm processing was 18.2 and 26.9 
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percentage points for the HI listeners (at 5 and 0 dB SNR). Unlike the HI listeners, the 
NH listeners did not benefit from algorithm processing in the cafeteria noise, likely 
because NH listeners typically benefit less from algorithm processing due to their already 
remarkable segregation ability.  

The current study demonstrates that a supervised segregation algorithm designed to 
estimate the IRM can successfully generalize to novel segments of nonstationary noises 
and produce substantial speech intelligibility improvements for HI listeners, as well as 
NH listeners. This test was published in a 2015 paper by E. Healy et al., entitled “An 
algorithm to increase speech intelligibility for hearing-impaired listeners in novel 
segments of the same noise type,” in the Journal of the Acoustical Society of America. 

 
 

1.3 Cochannel Speaker Identification in Reverberant Conditions 
 
Speaker identification (SID) in cochannel speech, where two speakers are talking 

simultaneously over a single recording channel, is a well-recognized challenge. Previous 
studies address this problem in the anechoic environment in the Gaussian mixture model 
(GMM) framework. On the other hand, cochannel SID in reverberant conditions has not 
been addressed at all. Partly driven by the need for speech separation in multi-talker 
conditions, we have investigated cochannel SID in both anechoic and reverberant 
conditions. In fact, we are the first to employ DNN for cochannel SID.  

We formulate cochannel SID as a discriminative learning problem, where we directly 
learn a mapping from cochannel observations to the corresponding speaker identities. 
Thus, cochannel SID is treated as a multi-class classification problem and DNN is 
employed as the learning machine. More specifically, our method trains a DNN using 
frame level features. The output layer has the same number of nodes as speakers; for 
cochannel SID, only the two nodes corresponding to the underlying speakers have non-
zero training labels. During testing, the frame level outputs are aggregated across time to 
generate the final output. 

To encode temporal context, we splice a window of 11 frames of log-spectral features 
to train the DNN. The training target of the DNN is the true speaker identities. We use 
soft training labels where the two underlying speakers each have a probability of 
generating the current frame. The sum of their probabilities equals one, whereas the other 
speakers have zero probabilities. We compare frame level energy of two speakers and use 
their ratio for the soft labels. More specifically, we construct the IBM during training, and 
the frame level energy of each speaker is calculated from the mixture cochleagram 
according to the IBM. 

To evaluate cochannel SID performance, we randomly select 100 speakers from the 
2008 NIST Speaker Recognition Evaluation (SRE) dataset (short2 part of the training 
set). The telephone conversation excerpt of each speaker is roughly 5 minutes long. Large 
chunks of silence in the excerpt are removed. Then we divide the recording into 5 second 
pieces. Two pieces with the highest energies are used for tests in order to provide 
sufficient speech information. The rest is used for training. Overall each speaker has 
about 20 training utterances.  

Figure 3 shows the systematic cochannel SID results with respect to the size of the 
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speaker set. It should be noted that, in the accuracy results of Fig. 3, SID is considered 
correct only when both speakers are correctly identified. The cochannel GMM results are 
included in the figure as a strong baseline for comparison. For evaluation with 
reverberant cochannel speech, speech utterances from the NIST dataset are convolved 
with room impulse responses with the reverberation time of 600 ms.  

There are a number of observations from Figure 3. GMM and DNN-based approaches 
both work very well with the small speaker set of 10, even in the reverberant conditions. 
Both approaches show a decline of performance with the increase of speaker set size. 
This is to be expected as SID is more prone to error with more speaker models to choose 
from. However, reverberation exacerbates the degradation. Overall, the DNN-based 
approach declines at a much slower pace than the GMM-based approach in the anechoic 
condition, indicating better scalability to speaker set size. However, none of them scale 
well in the reverberant conditions, although the DNN-based approach still holds a 
sizeable advantage over the GMM-based method. 

With its excellent performance of cochannel SID, DNN represents a promising 
direction to pursue noise-robust and reverberation-robust SID, which should play an 
important role in speech separation, particularly in multi-talker conditions. This SID 
contribution was published in a 2015 paper by X. Zhao, Y. Wang, and D.L. Wang, 
entitled “Cochannel speaker identification in anechoic and reverberant conditions,” in 
IEEE/ACM Transactions on Audio, Speech and Language Processing. 
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Figure 3. Cochannel SID accuracy of DNN- and GMM-based approaches with respect to the 
number of speakers in both anechoic and reverberant conditions.  
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1.4 Spectral Mapping for Speech dereverberation and Denoising 
 

In real-world environments, speech is usually distorted by both reverberation and 
background noise, which have negative effects on speech intelligibility and speech 
quality. They also cause performance degradation in many speech technology 
applications, such as automatic speech recognition. Therefore, the dereverberation and 
denoising problems must be dealt with in daily listening environments. Reverberation 
corresponds to a convolution of the direct sound and a room impulse response (RIR), 
which distorts the spectrum of speech in both time and frequency domains. Thus, 
dereverberation may be treated as inverse filtering. The magnitude relationship between 
an anechoic signal and its reverberant version is relatively consistent in different 
reverberant conditions, especially within the same room. Even when reverberant speech is 
mixed with background noise, it is still possible to restore speech to some degree from 
the mixture, because speech is highly structured. These properties motivate us to utilize 
supervised learning to model the reverberation and mixing process. 

 

 
 
Figure 4. Diagram of DNN based spectral mapping for speech dereverberation. The 
inputs are the log spectrogram of the current frame and its neighboring frames of 
reverberant speech, and the outputs are the log spectrogram of the current frame of clean 
(anechoic) speech. 
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We have proposed to learn the spectral mapping from reverberant speech to its 
anechoic version. The mapper is trained where the input is the spectral representation of 
reverberant speech and the desired output is that of anechoic speech. We then extend the 
spectral mapping approach to perform both dereverberation and denoising. Specifically, 
we train a DNN to learn the spectral mapping from reverberant, or reverberant and noisy, 
signals to clean signals. The input for each training sample is the log magnitude 
spectrogram in a window of frames, and the number of input units is the same as the 
dimensionality of the feature vector. The output is the log magnitude spectrogram of 
clean speech in the current frame. Our approach for speech dereverberation is illustrated 
in Figure 4.  

We use cross validation on a development set to choose the number of hidden layers 
and the number of units in each hidden layer. The objective function for optimization 
during training is based on mean square error. The activation function in the hidden layers 
is the rectified linear function and the output layer uses the sigmoid function. The 
optimization technique uses gradient descent along with adaptive learning rates and a 
momentum term. With the capacity of learning internal representations, DNN is able to 
encode the spectral transformation from corrupted speech to clean speech and help to 
restore the magnitude spectrogram of the clean signal. 

Figure 5 shows an example of spectral mapping for dereverberation for a female 
sentence. Figures 5(a) and (b) show the log magnitude spectrogram of the clean speech 
and the reverberant speech with reverberation time T60 = 0.6 s. The corresponding DNN 
output is displayed in Fig. 5(c). As shown in Fig. 5(c), the smearing effect caused by 
reverberation is largely removed or attenuated, and the boundaries between voiced and 
unvoiced frames are considerably restored, showing that the DNN output is a very good 
estimate of the spectrogram of the clean speech. 

 

  
        (a)         (b) 

 

 
     (c) 

 
Figure 5. Spectral mapping for speech dereverberation. (a) Log magnitude spectrogram 
of clean speech. (b) Log magnitude spectrogram of reverberant speech with T60 = 0.6 s. 
(c) Log magnitude spectrogram of dereverberated signal. 
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When dealing with both dereverberation and denoising, the only change to the 

spectral mapping approach is that the input to the DNN is now the log magnitude 
spectrogram of reverberant and noisy speech, and the output is the log magnitude 
spectrogram of anechoic clean speech. Figure 6 illustrates the result of spectral mapping 
for both dereverberation and denoising. Fig. 6(a) copies Fig. 5(a) showing the same clean 
utterance. Fig. 6(b) shows the spectrogram of the reverberant version of Fig. 6(a) with 
T60 = 0.6 s that is further mixed with a factory noise at 0 dB SNR. The DNN output is 
shown in Fig. 6(c). It is clear from this figure that DNN-based spectral mapping does a 
very job at restoring the time-frequency structure of speech that is corrupted both room 
reverberation and background noise.  

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6. Spectral mapping for speech dereverberation and denoising. (a) Log magnitude 
spectrogram of clean speech. (b) Log magnitude spectrogram of reverberant and noisy 
speech. (c) Log magnitude spectrogram of dereverberated and denoised signal. 
 
Extensive evaluations demonstrate that the spectral mapping approach leads to 

significant improvements of objective speech intelligibility and quality, as well as 
automatic speech recognition in reverberant noisy conditions. In addition, systematic 
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comparisons show that our approach substantially outperforms related methods. To our 
knowledge, this is the first study employing supervised learning to address the important 
problem of speech dereverberation. This work was published in a 2015 paper by K. Han, 
et al., entitled “Learning spectral mapping for speech dereverberation and denoising,” in 
IEEE/ACM Transactions on Audio, Speech and Language Processing. 

 
 
2. OTHER INFORMATION 
 
2.1 Development of Human Resources 

 
The project in various stages has supported four doctoral students as graduate 

research assistants: Kun Han, Xiaojia Zhao, Yuxuan Wang, and Jitong Chen.  The 
support enabled Han, Zhao and Wang to complete their doctoral studies. Chen is a Ph.D. 
candidate and is expected to finish in a year. Chen’s research addresses feature extraction, 
noise perturbation to expand training samples, and large-scale training to address 
generalization in supervised speech separation.  

Kun Han’s dissertation work helped to establish the classification-based approach to 
speech separation. In addition, he addressed the generalization issue in the support vector 
machine framework. His later work employed DNN for pitch tracking in adverse 
conditions, and developed the spectral mapping approach to deal with dereverberation 
and denoising. Two pieces of his work are described in Sections 1.1 and 1.4. Han’s 
dissertation was completed in 2014. An executive summary of the dissertation is given in 
Appendix 1. His dissertation is available online at: 

https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1407865723 
Xiaojia Zhao’s doctoral research deals with robust speaker identification. His research 

has made several contributions. First, he proposed a robust SID algorithm based on 
computational auditory scene analysis. He then proposed an SID method that is robust to 
both additive noise and room reverberation. Finally, he put forward methods to deal with 
SID in cochannel speech in reverberant conditions. As described in Sect. 1.3, he was the 
first to introduce DNN to address robust SID. An executive summary of Zhao’s 
dissertation is given in Appendix 2. His dissertation is available online at: 

https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1402620178 
Yuxuan Wang’s dissertation work is the first to introduce deep neural networks to the 

domain of speech separation or enhancement. He has made influential contributions to a 
number of important topics, including feature design, training targets, generalization via 
extensive training, and time-domain signal construction to improve speech quality. His 
DNN-based separation algorithm was the first monaural method to substantially improve 
intelligibility of noisy speech for hearing-impaired listeners.  In short, his dissertation has 
played a pivotal role in establishing DNN-based supervised speech separation. His 
training target work is described in Sect. 1.2. An executive summary of Wang’s 
dissertation is given in Appendix 3. His dissertation is available online at: 

https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1426366690  
This grant has helped the PI to update a graduate-level course entitled "Computational 

audition", and enhance the existing graduate-level courses “Introduction to Neural 
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Networks" and "Brain Theory and Neural Networks". Additionally, the PI has 
participated in a great deal of curriculum and seminar activity for training undergraduate 
students.  
 
2.2 Awards/Honors 

 
The PI received the 2014 Distinguished Scholar Award from the Ohio State 

University (OSU). This award s annually recognizes and honors up to six faculty 
members who have made exceptional achievements in their fields. 

Yuxuan Wang, the PI’s doctoral student, received the 2015 Starkey Signal Processing 
Research Award. This award honors the student(s) of an outstanding paper in the areas of 
assisted listening technologies, speech enhancement, noise suppression and low power 
real-time embedded design for hearing instruments, accepted for publication in the 
International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 
sponsored by the IEEE Signal Processing Society. He also received the OSU Presidential 
Fellowship in Autumn 2013, the highest honor bestowed to about a dozen students by the 
OSU Graduate School in each competition. In addition, he received the Chandrasekaran 
and Mamrak Graduate Research Award in Spring 2015 from the OSU Department of 
Computer Science and Engineering.  
 
 
2.3 Transition or Collaborative Activities 

 
The PI was awarded in 2015 a 2-year contract from AFRL/IF in Rome to apply the 

results of speech segregation to automatic speech recognition (ASR) in noisy conditions. 
This contract aims to achieve robust ASR in the deep neural network framework through 
integrated acoustic modeling and separation. The performance of the proposed system 
will be systematically evaluated using the series of recently constructed CHIME corpora. 

Kuzer, a small-business company located in Seattle, Washington, partnered with the 
PI in winning a Phase II STTR project funded by AFOSR. This two-year project started in 
late 2011, hence partly overlapping with this AFOSR project. The project successfully 
developed a prototype speech separation system that is computationally efficient and can 
operate with a processing delay close to real time. The project led to a patent application 
filed in 2014. 

Our proposed spectral mapping method (see Sect. 1.4) was transitioned to Starkey 
Hearing Technologies, the largest hearing aid manufacturer in the U.S. Starkey sponsored 
a graduate student in the PI’s laboratory to analyze the computational complexity of the 
algorithm and simplify its computations for potential incorporation in hearing devices. At 
Starkey’s invitation, the PI spent 3 months in 2014 to evaluate the potential of this 
method in improving the speech intelligibility of hearing-impaired listeners in reverberant 
and noisy environments. The Starkey contact is Dr. Tao Zhang.  

The PI currently serves as a technical advisor to Audience, a Knowles company. 
Audience is a provider of audio and noise suppression processors for mobile equipment, 
including Android phones. The PI advises the company on speech separation, pitch 
tracking, and deep learning.  
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Journal articles 
 

Han K. and Wang D.L. (2012): “A classification based approach to speech 
segregation,” Journal of the Acoustical Society of America, vol. 132, pp. 3475-3483. 
 
Hu K. and Wang D.L. (2013): “An unsupervised approach to cochannel speech 
separation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, 
pp. 120-129. 
 
Han K. and Wang D.L. (2013): “Towards generalizing classification based speech 
separation,” IEEE Transactions on Audio, Speech, and Language Processing, pp. 
166-175. 
 
Wang Y., Han K., and Wang D.L. (2013): “Exploring monaural features for 
classification-based speech segregation,” IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 21, pp. 270-279. 
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Transactions on Audio, Speech, and Language Processing, vol. 21, pp. 806-815. 
 
Wang Y. and Wang D.L. (2013): “Towards scaling up classification-based speech 
separation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, 
pp. 1381-1390. 
 
Narayanan A. and Wang D.L. (2013): “The role of binary mask pattern in automatic 
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America, vol. 133, pp. 3083-3093. 
 
Hu K. and Wang D.L. (2013): “An iterative model-based approach to cochannel 
speech separation,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 
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Healy E.W., Yoho S.E., Wang Y., and Wang D.L. (2013): “An algorithm to improve 
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Zhao X., Wang Y., and Wang D.L. (2014): “Robust speaker identification in noisy 
and reverberant conditions,” IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, vol. 22, pp. 836-845. 
 
Williamson D.S., Wang Y., and Wang D.L. (2014): “Reconstruction techniques for 
improving the perceptual quality of binary masked speech,” Journal of the Acoustical 
Society of America, vol. 136, pp. 892-902. 
 
Wang Y., Narayanan A. and Wang D.L. (2014): “On training targets for supervised 
speech separation,” IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, vol. 22, pp. 1849-1858. 
 
Chen J., Wang Y., and Wang D.L. (2014): “A feature study for classification-based 
speech separation at low signal-to-noise ratios,” IEEE/ACM Transactions on Audio, 
Speech, and Language Processing, vol. 22, pp. 1993-2002. 
 
Han K. and Wang D.L. (2014): “Neural network based pitch tracking in very noisy 
speech,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 
22, pp. 2158-2168. 
 
Healy E.W., Yoho S.E., Wang Y., Apoux F., and Wang D.L. (2014): “Speech cue 
transmission by an algorithm to increase consonant recognition in noise for hearing-
impaired listeners,” Journal of the Acoustical Society of America, vol. 136, pp. 3325-
3336. 
 
Narayanan A. and Wang D.L. (2015): “Improving robustness of deep neural network 
acoustic models via speech separation and joint adaptive training,” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 23, pp. 92-101.  
 
Han K., Wang Y., Wang D.L., Woods W.S., Merks I., and Zhang T. (2015): 
“Learning spectral mapping for speech dereverberation and denoising,” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 23, pp. 982-992. 
 
Zhao X., Wang Y., and Wang D.L. (2015): “Cochannel speaker identification in 
anechoic and reverberant conditions,” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, vol. 23, pp. 1727-1736. 
 
Williamson D.S., Wang Y., and Wang D.L. (2015): “Estimating nonnegative matrix 
model activations with deep neural networks to increase perceptual speech quality,” 
Journal of the Acoustical Society of America, vol. 138, pp. 1399-1407. 
 
Healy E.W., Yoho S.E., Chen J., Wang Y., and Wang D.L. (2015): “An algorithm to 
increase speech intelligibility for hearing-impaired listeners in novel segments of the 
same noise type,” Journal of the Acoustical Society of America, vol. 138, pp. 1660-
1669. 
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Zhang X.-L. and Wang D.L. (2016): “Boosting contextual information for deep neural 
network based voice activity detection,” IEEE/ACM Transactions on Audio, Speech, 
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Appendix 1. Executive Summary of Kun Han’s Ph.D. Dissertation 
 

In real-world environments, speech often occurs simultaneously with acoustic 
interference, such as background noise or reverberation. The interference usually leads to 
adverse effects on speech perception, and results in performance degradation in many 
speech applications, including automatic speech recognition and speaker identification. 
Monaural speech separation and processing aim to separate or analyze speech from 
interference based on only one recording. Although significant progress has been made on 
this problem, it is a widely regarded challenge. 

Unlike traditional signal processing, this dissertation addresses the speech separation 
and processing problems using machine learning techniques. This doctoral research first 
proposes a classification approach to estimate the ideal binary mask (IBM) which is 
considered as a main goal of sound separation in computational auditory scene analysis 
(CASA). The dissertation employs support vector machines (SVMs) to classify time-
frequency (T-F) units as either target-dominant or interference-dominant. A 
rethresholding method is incorporated to improve classification results and maximize hit 
minus false alarm rates. Systematic evaluations show that the proposed approach 
produces accurate estimated IBMs. 

In a supervised learning framework, the issue of generalization to conditions different 
from those in training is very important. The generalization issue is addressed through 
methods that require only a small training corpus and can generalize to unseen conditions. 
The system utilizes SVMs to learn classification cues and then employs a rethresholding 
technique to estimate the IBM. A distribution fitting method is introduced to generalize to 
unseen signal-to-noise ratio conditions and voice activity detection based adaptation is 
used to generalize to unseen noise conditions. In addition, the dissertation proposes to use 
a novel metric learning method to learn invariant speech features in the kernel space. The 
learned features encode speech-related information and can generalize to unseen noise 
conditions. Experiments show that the proposed approaches produce high quality IBM 
estimates under unseen conditions. 

Besides background noise, room reverberation is another major source of signal 
degradation in real environments. Reverberation when combined with background noise 
is particularly disruptive for speech perception and many applications. The work 
described in the dissertation performs dereverberation and denoising using supervised 
learning. A deep neural network (DNN) is trained to directly learn a spectral mapping 
from the spectrogram of corrupted speech to that of clean speech. The spectral mapping 
approach substantially attenuates the distortion caused by reverberation and background 
noise, leading to improvement of predicted speech intelligibility and quality scores, as 
well as speech recognition rates. 

Pitch is one of the most important characteristics of speech signals. Although pitch 
tracking has been studied for decades, it is still challenging to estimate pitch from speech 
in the presence of strong noise. A pitch estimation method is proposed, and it uses 
supervised learning where probabilistic pitch states are directly learned from noisy speech 
data. Two alternative neural networks are investigated in order to model pitch state 
distribution given observations, i.e., a feedforward DNN and a recurrent deep neural 
network (RNN). Both DNNs and RNNs produce accurate probabilistic outputs of pitch 
states, which are then connected into pitch contours by Viterbi decoding. Experiments 
show that the proposed algorithms are robust to different noise conditions. 
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Appendix 2. Executive Summary of Xiaojia Zhao’s Ph.D. Dissertation 
 

As a primary topic in speaker recognition, speaker identification (SID) aims to 
identify the underlying speaker(s) given a speech utterance. SID systems perform well 
under matched training and test conditions. In real-world environments, mismatch caused 
by background noise, room reverberation or competing voice significantly degrades the 
performance of such systems. Achieving robustness to the SID systems becomes an 
important research problem. Existing approaches address this problem from different 
perspectives such as proposing robust speaker features, introducing noise to clean speaker 
models, and using speech enhancement methods to restore clean speech characteristics. 
Inspired by auditory perception, computational auditory scene analysis (CASA) typically 
segregates speech from interference by producing a time-frequency mask. This 
dissertation aims to address the SID robustness problem in the CASA framework.  

The doctoral research first deals with the noise robustness of SID systems. The 
dissertation employs an auditory feature, gammatone frequency cepstral coefficient 
(GFCC), and shows that this feature captures speaker characteristics and performs 
substantially better than conventional speaker features under noisy conditions. To deal 
with noisy speech, CASA separation is applied, followed by either reconstruction or 
marginalization of corrupted components indicated by a CASA mask. Both reconstruction 
and marginalization are found to be effective. These two methods are further combined 
into a single system based on their complementary advantages, and this system achieves 
significant performance improvements over related systems under a wide range of signal-
to-noise ratios (SNR). In addition, systematic investigation is conducted on why GFCC 
shows superior noise robustness with the conclusion that nonlinear log rectification is 
likely the reason. 

Speech is often corrupted by both noise and reverberation. There have been studies to 
address each of them, but the combined effects of noise and reverberation have been 
rarely studied. This issue is addressed in two phases. First, background noise is removed 
through binary masking using a deep neural network (DNN) classifier. Then, robust SID 
is performed with speaker models trained in selected reverberant conditions, on the basis 
of bounded marginalization and direct masking. Evaluation results show that the 
proposed method substantially improves SID performance compared to related systems in 
a wide range of reverberation time and SNRs. 

The aforementioned studies handle mixtures of target speech and non-speech 
intrusions by taking advantage of their different characteristics. Such methods may not 
apply if the intrusion is a competing voice, which is of similar characteristics as the 
target. SID in cochannel speech, where two speakers are talking simultaneously over a 
single recording channel, is a well-known challenge. Previous studies address this 
problem in the anechoic environment under the Gaussian mixture model (GMM) 
framework. On the other hand, cochannel SID in reverberant conditions has not been 
addressed. This dissertation studies cochannel SID in both anechoic and reverberant 
conditions. This dissertation first investigates GMM-based approaches and proposes a 
combined system that integrates two cochannel SID methods. Secondly, DNNs are 
explored for cochannel SID, resulting in a DNN-based recognition system. Evaluation 
results demonstrate that the proposed systems significantly improve SID performance 
over recent approaches in both anechoic and reverberant conditions and various target-to-
interferer ratios. 
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Appendix 3. Executive Summary of Yuxuan Wang’s Ph.D. Dissertation 
 

Speech is crucial for human communication. However, speech communication for 
both humans and automatic devices can be negatively impacted by background noise, 
which is common in real environments. Due to numerous applications, such as hearing 
prostheses and automatic speech recognition, separation of target speech from sound 
mixtures is of great importance. Among many techniques, speech separation using a 
single microphone is most desirable from an application standpoint. The resulting 
monaural speech separation problem has been a central problem in speech processing for 
several decades. However, its success has been limited thus far.  

Time-frequency (T-F) masking is a proven way to suppress background noise. With 
T-F masking as the computational goal, speech separation reduces to a mask estimation 
problem, which can be cast as a supervised learning problem. This opens speech 
separation to a plethora of machine learning techniques. Deep neural networks (DNN) are 
particularly suitable to this problem due to their strong representational capacity. This 
dissertation presents a systematic effort to develop monaural speech separation systems 
using DNNs. 

The dissertation starts by presenting a comparative study on acoustic features for 
supervised separation. In this relatively early work, support vector machine is used as the 
classifier to predict the ideal binary mask (IBM), which is a primary goal in 
computational auditory scene analysis. It is found that traditional speech and speaker 
recognition features can actually outperform previously used separation features. 
Furthermore, a feature selection method is presented to systematically select 
complementary features. The resulting feature set is used throughout the dissertation.  

DNN has shown success across a range of tasks. The dissertation then studies IBM 
estimation using DNN, and shows that it is significantly better than previous systems. 
Once properly trained, the system generalizes reasonably well to unseen conditions. It is 
demonstrated that the proposed system can improve speech intelligibility for hearing-
impaired listeners. Furthermore, by considering the structure in the IBM, the work 
described in this dissertation shows how to improve IBM estimation by employing 
sequence training and optimizing a speech intelligibility predictor. 

The IBM is used as the training target in previous work due to its simplicity. DNN 
based separation is not limited to binary masking, and choosing a suitable training target 
is obviously important. The performance of a number of targets is investigated and it is 
found that ratio masking can be preferable, and T-F masking in general outperforms 
spectral mapping. In addition, a new target is proposed that encodes structure into ratio 
masks. 

Generalization to noises not seen during training is key to supervised separation. A 
simple and effective way to improve generalization is to train on multiple noisy 
conditions. Along this line, it is demonstrated that the noise mismatch problem can be 
well remedied by large-scale training. This important result substantiates the 
practicability of DNN based supervised separation. 

Aside from speech intelligibility, perceptual quality is also important. In the last part 
of the dissertation, a new DNN architecture is proposed that directly reconstructs time-
domain clean speech signal. The resulting system significantly improves objective speech 
quality over standard mask estimators. 
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