

 ARL-TN-0765 ● JULY 2016

 US Army Research Laboratory

Network Visualization Project (NVP)

by Terry Wen, Lisa M Marvel, and C Sean Morrison

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0765 ● JULY 2016

 US Army Research Laboratory

Network Visualization Project (NVP)

by Terry Wen
American Society of Engineering Education, Washington, DC

Lisa M Marvel
Computational and Information Sciences Directorate, ARL

C Sean Morrison
Quantum Research International, Inc., Bel Air, MD

Approved for public release; distribution is unlimited.

FOR OFFICIAL USE ONLY (delete if not FOUO)

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2016
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

1 May–31 August 2015
4. TITLE AND SUBTITLE

Network Visualization Project (NVP)
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Terry Wen, Lisa M Marvel, and C Sean Morrison
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The purpose of the Network Visualization Project is to construct an interactive application for real-time playback of network
activity based upon packet capture data. As data networks continue to expand as an integral part of modern information
systems, the importance of the organization and clarity of said networks grows as well. The goal of this project differs from
those of similar existing tools in its attempt to optimize both content and clarity, as the product is meant to maintain aesthetic
appeal without sacrificing any details of the data meant to be portrayed. The project uses Dshell for back-end data retrieval
and Processing for front-end presentation and construction of the application itself.

15. SUBJECT TERMS

computer network traffic, computer network security, computer network visualization, network traffic analysis, network
forensics

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Lisa Marvel
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-6508
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures iv

1. Introduction and Background 1

2. Application Design 1

2.1 Dshell: Back-End Data Handling 2

2.2 Processing: Front-End Data Presentation 3

2.3 Running a Network Visualization 6

3. Conclusion and Future Work 8

4. References 9

List of Symbols, Abbreviations, and Acronyms 10

Distribution List 11

Approved for public release; distribution is unlimited.

iv

List of Figures

Fig. 1 Application data flow ...2

Fig. 2 Sample JSON data ...3

Fig. 3 Original visualization model ..4

Fig. 4 New flow-based model ..4

Fig. 5 Snip of connection time line ..5

Fig. 6 Connection and packet information ...5

Fig. 7 Application screenshot ...7

Approved for public release; distribution is unlimited.

1

1. Introduction and Background

As part of the ever-expanding age of information, data networking continuously
grows in importance. With the quantity of data transferred across networks
increasing daily, the monitoring of such networks becomes increasingly difficult.
The Network Visualization Project (NVP) tackles issues regarding the display,
monitoring, and inspection of network traffic and allows such data to be presented
in an easily explored and understandable fashion.

NVP is useful for troubleshooting, application development, protocol analysis, and
a myriad of other network analysis purposes. With other commonly available
network visualization tools, such as WireShark,1 users lack direct control of and
interaction with the network data. They are simply presented with an itemized
display of packet capture information. Other visualizers, such as Commetrix, tend
to prioritize aesthetics with visually interesting illustrations that make it difficult or
impossible to access technical detail. Tools that lack interactivity or limit access to
technical detail are generally unusable for in-depth network analysis work. NVP
aims to address these issues with the construction of an interface that more
optimally balances content, interactivity, and clarity.

Because of the need for attention to detail, NVP is intended to monitor small-scale
networks, watch for specific issues, and trace events in traffic. A primary goal of
the project is to create an interface that can help locate potential issues, identify
weaknesses in a network, and provide an understandable illustration of network
communication that is adequate for a generally untrained eye. In accomplishing
this, the project will provide a new tool interface supporting improved network
analysis and network communication visualization.

2. Application Design

NVP consists of 2 parts: back-end data handling and front-end presentation. Data
are first processed through Dshell, an open source packet-decoding tool developed
by the US Army Research Laboratory.2 These data, either streamed or input through
a packet capture file (commonly called a “pcap” file), are output in JavaScript
object notation (JSON) format. This JSON is provided as input to the front-end
application of the project. This interaction of the user with the back-end interface
allows for full manipulation of the data and the ability to directly filter data to the
user’s needs.

Approved for public release; distribution is unlimited.

2

The data are then processed by the front-end application, which is coded using the
Processing programming language.3 Here, the user is able to visually interact with
a time line that encloses the duration of imported packet data. This playback
presents the data visually through nodes and connections that can be interactively
manipulated fully by the user or automatically arranged by the application. The
primary attributes of the data shown are as follows:

• Source and Destination IP addresses

• Ports

• Protocols

• Time

• Packet length

• Other details in packet header (transmission control protocol (TCP) flags,
etc.)

The visualization is meant to illustrate macro activity through a network as well as
the individual details of individual packets. The interface will also include other
utilities, such as playback tools and data filters.

The NVP process is shown in Fig. 1. Where network data is collected in a .pcap
file. It is then transformed using Dshell into a JASON format. This is the input into
the NVP processing module to construct the visualization.

Fig. 1 Application data flow

2.1 Dshell: Back-End Data Handling

Dshell, or Decoder shell, is a command-line framework used for network forensic
analysis. Dshell processes existing pcap files and filters output information based
on both prebuilt and user-constructed modules. The Dshell portion of NVP involves
the construction of an output module that will parse the necessary data from a pcap
file into a JSON format file. Dshell allows the user to directly choose the modules
to use for full control of the data portrayed in the visualization. Dshell provides a
variety of tools and filters necessary to extract the desired information from pcap
data and is flexible enough to adapt to a variety of network analysis goals. A sample
of the JSON data file is shown in Fig. 2.

Approved for public release; distribution is unlimited.

3

Fig. 2 Sample JSON data

2.2 Processing: Front-End Data Presentation

The Processing application is a graphic user interface (GUI) that first loads and
processes the input JSON data into a visual representation. Loaded into memory,
the JSON array contains network packet objects with packet information as
attributes. It is loaded into memory via Processing’s Java-based JSON input
methods. The packets are then added into individual topological data arrays,
representing the nodes and connections that they travel between and through during
data transmission. A time line is also generated based on the timestamps of the
imported packet data, and the packet data are accessed through the individual states
of the time line.

The initial design of the GUI visualization used a direct animated visual for the
individual packets of an exchange, allowing for a full illustration of the amount of
traffic on a connection between nodes. However, multiple issues arose from this,
including the inaccurate portrayal of travel time for the data packets, which
generally travel faster than can be interactively visualized clearly. This initial
version used a time line of visual states where the visualization directly reflected
the time-line state, but packet transmission was visualized as an animation. The
illustration ended up with inconsistencies, such as response packets being drawn
while the initial packets were still portrayed as “travelling” and packets being
“frozen” while the time line is paused when they were likely already at their
destination (Fig. 3). While the idea of viewing individual packet movements is
appealing, the design was ultimately impractical and was readapted to a new model.

Approved for public release; distribution is unlimited.

4

Fig. 3 Original visualization model

The new model uses flow visualization rather than individual packet visualization.
A screenshot of the complete interface is found in Section 2.3. Instead of animating
individual packet movements, the visualization portrays general activity along a
connection, which can then be selected to show more details about a given flow of
packets, including information on individual packets. This model allows the visual
to base itself on the data instead of the time line directly, and the time line instead
influences the state of the data. By doing this, independent animations of nodes and
connections can be manipulated far more easily as the model adapts itself to the
data rather than the timestamp on the time line. This allows for a simpler layout that
does not sacrifice clarity or detail. In the following screenshot (Fig. 4), active data
transfer is denoted by a solid connection, and the currently selected connection is
denoted by the highlighted connection.

Fig. 4 New flow-based model

Approved for public release; distribution is unlimited.

5

This new functionality makes selecting individual packets for details much easier.
As stated previously, the selected connection is then illustrated in the interface as a
smaller time line, as well as highlighted in the overall time line, to allow viewing
of individual packets and their sizes (Fig. 5). The red line (seen in the application
screenshot) denotes the current point in time, and packets sent are either drawn
above or below the horizontal time line according to whether they originate from
source or destination.

Fig. 5 Snip of connection time line

This new model also allows for more flexibility in changing the layout of the visible
graph, allowing individual nodes and connections to be visible only when they are
actively sending or receiving data to reduce overall clutter. This is particularly
important on larger, complex networks with hundreds or thousands of nodes. The
GUI allows for easy manipulation of individual node positions so the user can
customize the general layout. The program also automatically balances the relative
node positions, using a force-directed graph algorithm.4 This makes for an intuitive
and aesthetically pleasing graph drawing that is easy to learn and manipulate.

Aside from the visual aspects of the GUI, selected nodes, connections, and packets
also provide direct information, including addresses, ports, bytes, and protocols
(Fig. 6). Both TCP and user datagram protocol packet protocols are supported by
the visuals through different colors and can also be viewed in the attributes of
selected nodes. These data panels can be extended and configured to display
additional information as well.

Fig. 6 Connection and packet information

Approved for public release; distribution is unlimited.

6

2.3 Running a Network Visualization

Currently, the application has not been exported and runs through the Processing
integrated development environment (IDE). After retrieving the JSON file from
Dshell, it must be named data.json and placed into the data directory in the
application folder. Then the application file NetVis.pde must be loaded and run
through the Processing IDE (Fig. 7).

From here, there are multiple controls to interact with as well as the visualization
itself. The time line can be manipulated freely, similar to a video player.5 There are
2 timers, one for direct timestamps and one for the duration of the playback only.
On the right side, there is a slider that manipulates playback speed from 0.1× up to
100× speed. There are also multiple buttons that manipulate the layout, with 2
primary functions:

• Lock: Keep node visible at all times, even when inactive (i.e., not
transmitting or receiving data)

• Anchor: Keep node anchored at its current position, unaffected by
automatic position adjustment

There is one final button labelled Start of Flow, which simply moves the time-line
cursor to the beginning of the currently selected connection. Nodes and connections
can be freely selected individually, and packets can be selected while a connection
is active.

Along with the button functionalities, there are also a variety of keyboard shortcuts:

• Space: Play/Pause

• L: Lock current node/ all visible if no node is selected (Shift+L for all)

• A: Anchor current node/ all visible if no node is selected (Shift+A for all)

• F: Move to start of selected flow

7
Approved for public release; distribution is unlim

ited.

Fig. 7 Application screenshot

Approved for public release; distribution is unlimited.

8

3. Conclusion and Future Work

Data networks are a pervasive part of daily life in the modern era, but few are truly
aware of what really happens in these systems. Even competent system
administrators and network managers struggle to manage the ever-growing
complexity. As network size and usage continue to grow, the chances of error and
threats become more and more pertinent. Today, even the common household
should be able to monitor and make full use of their home network to avoid
exploitation and other possible configuration issues. NVP seeks not only to provide
a helpful tool for experienced analysts, but also to promote awareness of the
importance of how networks are structured and operate.

Though the base of NVP is complete, there is still much that needs to be expanded
upon. As stated in the original goals for the project, aesthetics should not sacrifice
technical detail in an interactive interface. There remain many details in the network
packets (in the original pcap data) that are not currently presented via the GUI. A
primary attribute of packets to highlight is the TCP flags to help capture more detail
into what is occurring in each of the flows portrayed in the visualization. The GUI
also currently functions primarily as a large-scale interactive and animated
playback visualization with no simulation capabilities. Other issues in the layout lie
in the simplicity of the nodal graph drawing: while the clarity is important, a
difficult issue to address is how to distinguish or group similar nodes without
having to look into their details.

These issues can be readily accounted for with future improvements to the user
customization and interaction, which could use color-coding and node filtering as
well as other ways to present information, such as node sizing and clustering. Other
ideas discussed included data exportation, which could allow for shared
visualizations that include highlighting, annotations, and user-specified or
preconfigured layouts that better communicate a given network analysis.

To simplify application deployment, NVP needs to be configured as a stand-alone
application that does not require the Processing IDE to run. It may also be
incorporated as a web application using Processing.js, a Javascript framework for
Processing. All of these functions can be built off of the current base application,
which is released as open source to enable further innovation and community-
driven development possibilities.

Approved for public release; distribution is unlimited.

9

4. References

1. WireShark [accessed 2015 June 3]. http://www.wireshark.org.

2. Dshell [accessed 2015 June 8]. https://github.com/USArmyResearchLab/Dshell.

3. Processing. Documentation [accessed 2015 June 3]. https://processing.org
/reference/.

4. Marchi L. Force directed placement [accessed 2015 July 9].
http://openprocessing.org/visuals/?visualID=177.

5. ControlP5. Documentation [accessed 2015 June 20]. http://www.sojamo.de
/libraries/controlP5/reference/index.html.

Approved for public release; distribution is unlimited.

10

List of Symbols, Abbreviations, and Acronyms

GUI graphical user interface

IDE integrated development environment

IP internet protocol

JSON JavaScript object notation

NVP network visualization tool

TCP transmission control protocol

Approved for public release; distribution is unlimited.

11

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 3 DIR USARL
 (PDF) RDRL CIN D
 L MARVEL
 J CLARKE
 RDRL SLB S
 C MORRISON

Approved for public release; distribution is unlimited.

12

INTENTIONALLY LEFT BLANK.

	List of Figures
	1. Introduction and Background
	2. Application Design
	2.1 Dshell: Back-End Data Handling
	2.2 Processing: Front-End Data Presentation
	2.3 Running a Network Visualization

	3. Conclusion and Future Work
	4. References
	List of Symbols, Abbreviations, and Acronyms

