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UNIT CONVERSION TABLE 

U.S. customary units to and from international units of measurement
* 

U.S. Customary Units 
Multiply by  

International Units 
 Divide by

†
 

Length/Area/Volume    

inch (in) 2.54 × 10
–2

 meter (m) 

foot (ft) 3.048 × 10
–1

 meter (m) 

yard (yd) 9.144 × 10
–1

 meter (m) 

mile (mi, international) 1.609 344 × 10
3
 meter (m) 

mile (nmi, nautical, U.S.) 1.852 × 10
3
 meter (m) 

barn (b) 1 × 10
–28

 square meter (m
2
) 

gallon (gal, U.S. liquid) 3.785 412 × 10
–3

 cubic meter (m
3
) 

cubic foot (ft
3
) 2.831 685 × 10

–2
 cubic meter (m

3
) 

Mass/Density    

pound (lb) 4.535 924
 

× 10
–1

 kilogram (kg) 

unified atomic mass unit (amu) 1.660 539 × 10
–27

 kilogram (kg) 

pound-mass per cubic foot (lb ft
–3

) 1.601 846 × 10
1
 kilogram per cubic meter (kg m

–3
) 

pound-force (lbf avoirdupois) 4.448 222  newton (N) 

Energy/Work/Power    

electron volt (eV) 1.602 177 × 10
–19

 joule (J) 

erg 1 × 10
–7

 joule (J) 

kiloton (kt) (TNT equivalent) 4.184 × 10
12

 joule (J) 

British thermal unit (Btu) 

(thermochemical) 
1.054 350 × 10

3
 joule (J) 

foot-pound-force (ft lbf) 1.355 818  joule (J) 

calorie (cal) (thermochemical) 4.184  joule (J) 

Pressure    

atmosphere (atm) 1.013 250 × 10
5
 pascal (Pa) 

pound force per square inch (psi) 6.984 757 × 10
3
 pascal (Pa) 

Temperature    

degree Fahrenheit (
o
F) [T(

o
F) − 32]/1.8 degree Celsius (

o
C) 

degree Fahrenheit (
o
F) [T(

o
F) + 459.67]/1.8 kelvin (K) 

Radiation    

curie (Ci) [activity of radionuclides] 3.7 × 10
10

 per second (s
–1

) [becquerel (Bq)] 

roentgen (R) [air exposure] 2.579 760 × 10
–4

 coulomb per kilogram (C kg
–1

) 

rad [absorbed dose] 1 × 10
–2

 joule per kilogram (J kg
–1

) [gray (Gy)] 

rem [equivalent and effective dose] 1 × 10
–2

 joule per kilogram (J kg
–1

) [sievert (Sv)] 
*
Specific details regarding the implementation of SI units may be viewed at http://www.bipm.org/en/si/.  

†Multiply the U.S. customary unit by the factor to get the international unit. Divide the international unit by the factor to get the 

U.S. customary unit. 

http://www.bipm.org/en/si/
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Abstract 

The modeling and simulation work in this grant was directed by Prof. D. Scott 
Stewart, (the Stewart-Group) and the experimental work and data collection was 
directed by Prof. Nick Glumac (the Glumac-group). Professors Stewart and 
Glumac and Drs. John Bdzil and Joseph C. Foster, collaborated on experimental 
designs, that benefited from the concurrent theoretical and computational 
modeling. The effort described in this report fully integrated modeling and 
experiments to study the energy release processes that thermitic and/or 
exothermic intermetallic reactive materials experience when they are subjected 
to sustained shock loading. 
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I. Objectives 

An objective of this grant was to integrate modeling and experiments to develop 
an increased scientific understanding of the condensed phase energy release 
processes in the microstructure, that thermitic and/or exothermic intermetallic 
materials experience when they are subjected to sustained shock loading. Data 
from highly spatially and temporally resolved experiments, supported by our 
modeling and simulation efforts were directed at building and validating a model 
that describes the basic physical processes, including solid state, multi-phase 
transport and reaction/diffusion mechanisms. Such experimentally validated 
models are invaluable for the design of the intended applications. Our efforts 
provided a unique, multi-disciplinary research experience for graduate students 
and young scientists affiliated with and supported by this effort.  

I.1 Background 

The Department of Defense (DoD) and the Defense Threat Reduction Agency 
(DTRA) has had a long- standing interests in designing reactive material (RM) 
whose energy release is triggered by shock/shear stimulus and which contributes 
to long duration, high-thermal pulse. A main application of thermitic reactive 
materials is the defeat of biological agents that must be destroyed with an 
extremely high temperature deflagration, that is highly contained in localized area. 
There is a need to avoid wide-scale dispersal of the biological threat agent and 
thermal destruction is a preferred mechanism. Materials that lie in a group of 
intermetallic, and thermitic mixtures are promising because when the unreacted 
(solid) materials are combined to make products materials, they often have very 
high (enthalpic) energy release and often make make mainly solid products so 
that gas generation is somewhat minimized. Our original proposal identified a 
number of target systems of interest that included, the Titanium-Boron system 
(metal/intermetallic), the aluminum copper oxide, (metal/metal oxide) system as 
well as a number of similar combinations with metal/metal oxide/intermetallic 
components.  

II. Approach

In design applications, the RM’s are typically manufactured composites, layered 
or particulate, and the reactants are not molecularly pre-mixed. Therefore a 
distinct microstructure comprised of regions of separated reactants, is inherited 
from the constituents and fabrication. Reaction of the initial constituents must 
take place at interfaces between molecularly pure materials. The initial shock 
passage serves as a trigger that concentrates energy by collapse/compaction 
and yield of nominally solid materials, that surely experience temperature rise 
through dissipative yield mechanisms. But immediately and subsequently the 
overall stress level drops to near ambient conditions of the larger surroundings, 
while high temperature remain in localized regions at the interfaces between 
materials,  The post-shock energy release that is related to chemical reaction is 
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controlled entirely by anerobic, condensed phase processes in the RM. The 
project scope was based on a  scenario from application, where a shock is driven 
into RM by a high explosive, and the subsequent reaction/combustion of the 
materials is observed and modeled. Below Figure 6. from the original proposal 
provides an excellent conceptual schematic of this effort 

Figure. 1. A reproduction of Fig. 6 from the original proposal that describes the basic 
scenario and premise. 

At the time of the inception of this proposal (2009) even to the time of this 
summary report (2015), with a few exceptions that include work done by our 
combined groups, there have been few high-resolution experiments that attempt 
to resolve the energy release processes in the microstructure and few models of 
the condensed phase processes that are truly predictive. While experiments are 
limited by optical issues, modeling and simulation issues have been limited by 
the necessary requirements to simultaneously model deformation, reaction and 
diffusion in condensed materials. Our efforts focused on exactly these issues.  

Two major sets of accomplishments were made during our efforts. 1) On the 
experimental side, the Glumac group executed a set of experiments, [25] on 
shock compaction of RM that was able to visualize the characters of ignition and 
propagation of reaction in thermite and intermetallic systems. 2) On the 
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experimental side, the Stewart-group was able to develop new models, (e.g. the 
Gibbs formulation [18]) that is fundamentally based on the concept of stress and 
temperature equilibrium at the smallest continuum scales at all points in materials 
mixtures. Hence stress and temperature are fundamental state variables, that 
define Gibbs potentials for the materials. This new approach allowed our group to 
develop new, material models for reaction and diffusion and deformation in 
condensed phase reactants. Both of these main accomplishments have been (or 
are currently being) documented in archival publications by the members of our 
combined group, [15,16,17,18,19,20,21,24] These upcoming and planned 
archival publications will cite DTRA support, [25,26,27,28]  

What follows below is a brief overview description of the "Striker experiment" 
carried out in the Glumac lab, and a summary collection of the experimental 
results obtained so far. This is followed by a brief description of some of the key 
modeling and simulation results. These are the main achievements of this grant. 
A complete description of this work and its chronological development is found in 
Section VII, which is a concatenation of our annual reports.  

III. Synopis of Work Accomplished

III.1 Experimental Work 

The first experimental task was to define an representative experiment, that 
would capture key features of the ignition of a reactive material (RM) that was 
subjected to shock and rapid compression. Our entire team of senior 
investigators, experimentalists Glumac and Foster, and modelers Stewart and 
Bdzil, worked together to come up with a conceptual design we called the "Striker 
experiment". In this experiment a fabricated RM sample that was approximately a 
3/8 inch cube, was inserted into a steel confinement cell. On either side, steel 
slider "striker bars" were inserted and tamped against the RM sample. Then on 
each striker bar, detonators (such as Reynolds RP-80 detonators) were placed 
on the striker bar in order to generate a shock wave and push the striker bars 
into the sample. A PMMA window for optical viewing was placed on one side of 
the confinement cell. On firing of the detonators, reactive events at the boundary 
of the RM and the viewing window  were imaged in a  1 cm square view area by 
means of high magnification lenses, with very high speed cameras. Different 
classes of RM materials were subjected to this experiment. Figures 1 and 2 (this 
report) shows an overview of the experiment, the basic setup (circa 2012), and 
the imaging setup up for the second generation experiments. 
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Figure 1. Overview of the Striker experiment. Striker bars driven by detonators drive compression 
bars into the RM sample and direct imaging of burning events is made through an optical window.  
 
 

 
 
Figure 2. Basic set up of the Striker experiment. The detonators are embedded in fragments 
shields to prevent excessive damage to the confinement cell, that was used in multiple 
experiments.  
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Figure 3. Basic imaging set up of the Striker experiment. A reversed telephoto lense, with 
intensity filters and high-speed phantom camera were key features of the imaging system.  
 
 
Tests were carried out on a suite of RMs that were manufactured in the Glumac-
lab. The basic materials were made from mixtures of metal and metal oxide 
powders (such as aluminum and copper oxide) to make a thermite RM or a metal 
and intermetallic materials (such as titanium and silicon) to make a 
metal/intermetallic RM. These were combined and pressed to about  80 % of 
their theoretical maximum density. Titanium/Boron RMs were also tested but 
were found hard to ignite in the Striker experiement. However they were fired 
with mulitple detonators, in project funded by a grant funded supported by the Air 
Force Research Laboratory for bio-cidal experiments, [9,14]. 
 
Figures 4 and 5 show representative imaging results obtained from the Striker 
experiment, for a stoichiometric thermite mixture of aluminum and copper oxide.  
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Figure 4. Images from the Al/CuO experiment, with a 80 % TMD, stoichiometric mixture. 

Figure 5. Close up images, for the same experiment shown in Fig 4., (with times not marked). 
Images show evidence of a front that follows compaction density contours, and secondary and 
tertiary reaction.   
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In addition to the Striker experiments shown above, another series of experiment 
that used a pure (fuzed) quartz, cylindrical confinement cell was used. This 
allowed greater optical access than the steel confinement cell. But the 
confinement was inadequate, when the same detonator and (cylindrical rod) 
striker bars were used. The confinment came apart prematurely. So this set of 
experiments while promising were only partly successful. This redesign was 
attractive from a modeling and simulation point of view. But a revised version of 
this experiment was not attempted.  
 

III.2 Modeling and Simulation Work 

Simulations that Supported Experimental Design 
 
The first efforts of our group were to provide basic support for the experiments in 
the Glumac lab. Simulation of the compaction events were carried out with the 
multimaterial hydrocode, ALE3D (distributed by Lawrence Livermore National 
Laboratory). Two and three dimensional simulations of shock/compaction event 
were carried out in representative experimental geometries in order to estimate 
timing and to evaluate the effects of mixing between particle during the 
compaction effects.  
 
A major conclusions was that the effect of shock compaction is to increase the 
area where reaction can take place at the interfaces between the initially 
separated reactants. Also we found that one must include material strength in the 
shock actuated mixing, since otherwise excessive reaction surface is created in 
the material simulations that is not physical.  
 
Another major conclusion was that the light/dark boundaries observed in the 
Striker experiment follows contours of densification (compaction). The 
densification process is endothermic where mechanical energy is concentrated 
into small region of the microstructure and where mechanical dissipation there 
results in large amount of localized heating. The compaction process is realized 
by the propagation of a front and the observed light/dark front propagates in a 
sequenced manner that follows the compaction front. Hence we found  significant 
evidence that burning takes place at the separated reactants boundaries, and 
that the ignition of the RM enabled by the compaction processes. 
 
Development of a Multi-Component Reaction Diffusion Model Framework 
 
One of the main tasks, outlined in the original proposal was to model multi-
component reaction diffusion flames in condensed media. This led to an effort to 
identify thermodynamically consistent approaches and revisit the literature. 
Significant efforts were made based on earlier work of Stewart, and later revised 
to generate/invent what we now refer to as the Gibbs formulation, [18]. A single 
stress tensor, and a single temperature is assumed for the mixture with specified 
Gibbs potentials for all relevant species, and interaction energies. This work was 
of a fundamental nature, within non-equilibrium continuum thermodynamics.   
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The Gibbs formulation model enjoyed additional support through grants from the 
Office of Naval Research and the Air Force Office of Scientific Research.  
 

 
 
Figure 6. Figures 7 and 8 extracted from the 2013 annual report that show a qualitative 
comparison of the  shape of the initial compaction  front contours from simulation and  
and the shape of  the flame front in the experiment.   This comparison strongly suggests  
that in the experiments, the lead reaction front propagates along the compaction front  
contours.  
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Modeling Titanium Boron Condensed Phase Diffusion Flames 
 
Because of interest in biocides, the original proposal discussed in detail the 
Titanium/Boron system. So our initial examples of reactive flow modeling 
considered Titanium/Boron as a representative (but significant) example. We 
note that subsequently we found in the experimental program that Ti/B RM 
mixtures were fairly hard to ignite and that systems like Al/CuO or Ti/Si were 
more reactive and thus provided lots of data in the Striker experiment setups. 
Nonetheless, we note another advantage of the choice of the Ti/B system for 
fundamental study, is that the basic overall reaction is simple with Ti + 2 B -> 
TiB2. Thus only three components were needed for our earliest models and first 
treatments of condensed phase diffusion flames. A version of the Gibbs 
formulation was used that took advantage of a simplifying assumption that the 
components were fluid-like, and that a steady diffusion flame that situated itself in 
two opposed stream of separated reactants, was studied in detail and recently 
published [17]. 
 
 

 
 

Figure 7. Figure 1 extracted from a recently published paper (in press), " Diffusion 
flames in condensed-phase energetic materials: Application to Titanium–Boron 
combustion", Combustion and Flame (2015) 
http://dx.doi.org/10.1016/j.combustflame.2015.08.023 
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Modeling of the Ignition of an Aluminum Copper Oxide Thermite 

The Glumac experiments on aluminum/copper oxide thermite showed ignition 
and extinction behavior. Evidence suggested that this takes place at the interface 
between the initially separated reactants.   

Figure 8. Figure 1 extracted from a recent APS proceeding paper, that captures a sub-
millisecond ignition/extintion event that takes place at the scale of the microstructure of 
the aluminum copper oxide thermite. 

Efforts in the Stewart-group expanded the Gibbs formulation to model the 
features of ignition shown in Fig. 8. This modeling effort considered of the basic 
processes of a thermite, and included no less than eight components, and the 
melting of solid phases to liquid. This substantially expanded the analysis of 
multi-component diffusion. The component considered included, minimally Al-
solid and liquid, CuO-solid and liquid, Cu-solid and liquid and Al2 O3 -liquid and 
solid, [21,25,27].  
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IV. Papers, Proceeding published, and Works in Progress 
 
Here we provide a list of all the papers, proceedings published, and works in 
progress of the Stewart-group and key publications of the Glumac-group, that 
were carried out during the execution of the grant. An astrick is used to mark 
papers that were principally funded by this DTRA grant. We note that both our 
groups have multiple ongoing efforts, funded by the Department of Defense and 
funding provided by DTRA is synergistics as it provides our larger efforts with a 
core base of funding. Hence we list all relevant publication of interest to DTRA 
that were generated in the time frame of this grant. Note the first years of the 
effort were devoted to entirely new experiments and entirely new theory, so that 
our DTRA cited publication appear in the later years of the grant and some are 
still in the process of being completed. 
 

Publications 
(*- that cite DTRA Support) 

 
2011 

 
1. Yoo, S., D. Scott Stewart, D. E. Lambert, M. A. Lieber, and M. J. Szuck, 

"Modeling solid state detonation and reactive materials," Proceedings of the 
14th International Detonation Symposium, Office of Naval Research 
publication number 351-10-18, pp 211-218 (2011). 

 
2. Bdzil, J. B., B. Lieberthal, and D. S. Stewart, "Mesoscale Modeling of Metal-

loaded High Explosives," Proceedings of the 14th (International) 
Detonation Symposium, Office of Naval Research publication number 351-
10-18, pp. 1343-1352 (2011). 

2012 
 

3. Yoo, S., D. S. Stewart, S. Choi, and D. E. Lambert, "Modeling Kinetics for the 
Reaction of Aluminum and Teflon and the Simulation of Its Energetic Flow 
Motion," Proceedings of the Conference of the American Physical 
Society Topical Group on Shock Compression of Condensed Matter, 
APS Conf. Proc. 1426, pp. 351-354 (2012). 

 
4. Foster, J. C., N. Glumac, and D. S. Stewart, "Analysis of the Requirements on 

Modern Energetics and Their Impact on Materials Design," Proceedings of 
the Conference of the American Physical Society Topical Group on 
Shock Compression of Condensed Matter, APS Conf. Proc. 1426, pp. 649-
652 (2012). 

 
5. Lieber, M., J. C. Foster Jr., and D. S. Stewart, A Study of Energy Partitioning 

Using A Set of Related Explosive Formulations,": Proceedings of the 
Conference of the American Physical Society Topical Group on Shock 
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Compression of Condensed Matter, APS Conf. Proc. 1426, pp. 645-648 
(2012). 

 
6. Stewart, D. S., M. Szuck, and L. E. Fried, "Detonation Theory for Condensed 

Phase Explosives with Anisotropic Properties," Proceedings of the 
Conference of the American Physical Society Topical Group on Shock 
Compression of Condensed Matter, APS Conf. Proc. 1426, pp. 263-266 
(2012). 

 
7. Saenz, J. A, B. D. Taylor, and D. S. Stewart, "Asymptotic Calculation of the 

Dynamics of Self-sustained Detonations in Condensed Phase Explosives," 
Journal of Fluid Mechanics, Vol.710, pp 166-194 (2012). 

 
8. J. Bdzil and Stewart, D.S., "Theory of Detonation Shock Dynamics," Shock 

Waves Science and Technology Library, (80 pages), Chapter 7, Vol. 6 Shock 
Wave Science and Technology Reference Library Volume 6, (2012), pp 373-
453 

 
9. *-M. Clemenson, H. Krier, and N. Glumac, Blast Enhancement Effects of 

Various Forms of the Ti/2B Energetic System, Proceeding of the Spring 
Technical Meeting of the Combustion Institute, April (2012) 

 
2013 

 
10. Hernandez, A. M, J. B. Bdzil, and D. S. Stewart, "A MPI parallel level set 

algorithm for propagating front curvature dependent detonation shock fronts 
in complex geometries," Combustion Theory and Modelling, Volume 17, 
Number 1, pp. 109-141(33), (2013). 

 
11. Ling, Y., A. Haselbacher, S. Balachandar , F. M. Najjar, D. S. Stewart,  Shock 

Interaction with a Deformable Particle: Direct Numerical Simulation and Point-
Particle Modeling,  J. Appl. Phys. 113, 013504 (2013). 

 
12. D. Scott Stewart, N. Glumac, F. M. Najjar*, M. J. Szuck , Hydrodynamics 

Computation of Jet Formation and Penetration for Micro- Shaped Charges,  
Procedia Engineering 58 (2013) 39 – 47 

 
2014 

 
13. Lieberthal, B., J. Bdzil, D.S. Stewart, "Modeling detonation of heterogeneous 

explosive with embedded particle using detonation shock dynamics: Normal 
and divergent propagation in regular and simplified microstructure," 
Combustion Theory and Modelling, Volume 18, Issue 2, (2014), pages 
204-241 
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14. *-Michael D. Clemenson,  Stephanie Johnson,  Herman Krier,  and Nick 
Glumac ,Explosive Initiation of Various Forms of Ti/2B Reactive Materials, 
Propellants Explos. Pyrotech. (2014), 39, 454 – 462 

 
2015 

 
15. *-Asay, B., John Bdzil, Joseph Foster, Alberto Hernandez, David Lambert and 

D. Scott Stewart, "A Multi-component Detonation Reaction Zone Model for 
Blast Explosives", Proceedings of the 15th International Detonation 
Symposium, Office of Naval Research publication number 43-280-15, pp 
445-455 (2015) 

 
16. *-S. Choi, D. Scott Stewart and Sunhee Yoo, Modeling of the Quenching of 

Blast Products from Energetic Materials by Expansion into Vacuum, Journal 
of Computational Physics, 296 (2015) 158–183 

 
17. *-S. Koundinyan , M. Matalon , D. S. Stewart and Bdzil, J. B. Diffusion flames 

in condensed-phase energetic materials:  Application to Titanium-Boron 
combustion, in press Combustion and Flame (2015), 
doi:10.1016/j.combustflame.2015.08.023 

 
18. *-D. Scott Stewart, A Gibbs Formulation for Reactive Materials with Phase 

Change, to appear Proceedings of the Conference of the American Physical 
Society Topical Group on Shock Compression of Condensed Matter (2015) 

 
19. *-S. Koundinyan, M. Matalon, D. S. Stewart, J. B. Bdzil. Modeling reaction 

fronts of separated condensed phase reactants, to appear Proceedings of the 
Conference of the American Physical Society Topical Group on Shock 
Compression of Condensed Matter (2015) 

 
20. *-D. Scott Stewart, Santanu Chaudhuri, Kaushik Joshi. Kiabek Lee. Mirrored 

continuum and molecular scale simulations of the ignition of gamma phase 
RDX, to appear Proceedings of the Conference of the American Physical 
Society Topical Group on Shock Compression of Condensed Matter (2015) 

 
21. *-K. Lee, D. S. Stewart, M. Clemenson, N. Glumac, C. Murzyn, Modeling the 

Shock Ignition of a Copper Oxide Aluminum Thermite, to appear Proceedings 
of the Conference of the American Physical Society Topical Group on Shock 
Compression of Condensed Matter (2015) 

 
22. Lieberthal, Brandon, D. Scott Stewart and John B. Bdzil, "Embedded Particle 

size distribution and its effect on detonation in composite explosives", 
submitted to Combustion Theory and Modeling (2015) 
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23. D. Scott Stewart, Alberto Hernandez, and Kibaek Lee, Modeling Reaction 
Histories to Study Chemical Pathways in Condensed Phase Detonation, 
submitted to J. Applied Physics (2015) 

 
24. *-Kiabek Lee, Kaushik Joshi, Santanu Chaudhuri and D. Scott Stewart, 

Mirrored continuum and molecular scale simulations of the ignition of gamma 
phase RDX, submitted to J. Chem. Physics (2015) 

 
Papers in preparation to be submitted to archival journals 

 
25. *-Nick Glumac, D. Scott Stewart, John B. Bdzil, Joseph C. Foster, Michael 

Clemenson, Sushil Koundinyan, Shock Actuated Burning of Thermitic and 
Inter-Metallic Reactive Composite Materials, to be submitted to Combustion 
and Flame 

 
26. *-S. Koundinyan, M. Matalon, D. S. Stewart, Effect of density variations in 

axis-symmetric counterflow diffusion flames, to be submitted to Combustion 
and Flame 

 
27. *-K. Lee, D. S. Stewart, M. Clemenson, N. Glumac, C. Murzyn, Modeling the 

Shock Ignition of a Copper Oxide Aluminum Thermite, in preparation 
 
28. *-A Gibbs Formulation for Reactive Materials with Phase Change, D. Scott 

Stewart and students, to be submitted to Journal of Chemical Physics  
 

Masters Theses 
 
29. *-On the simulation and modeling for the reaction mechanism and solid state 

detonation in non-conventional explosives, Sungjin Choi, M.S., Theoretical 
and Applied Mechanics, Nov 2012.  
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a b s t r a c t

The characteristics of a steady diffusion flame that arises at the interfaces of two condensed phase reactant

streams that form an opposed counterflow are discussed. We assume that the flow is due to deformation from

compaction or local heating and thermal expansion processes in the microscale environment of composite

energetic materials. As a representative example of high temperature combustion of metal/intermetallic re-

actants, the overall reaction of titanium and boron to create titanium diboride products is considered under

near isobaric conditions. The multi-component diffusion description uses a generalized Fick formulation with

coefficients related to the binary diffusivities defined in the Maxwell–Stefan relations. A fairly simple deple-

tion form with Arrhenius temperature dependent coefficients is used to describe the reaction rate. Several

types of analyses are carried out at increasing levels of complexities: an asymptotic analysis valid in the limit

of low strain rates (high residence time in the reaction zone), a constant mixture density assumption that

simplifies the flow description, diffusion models with equal and unequal molecular weights for the vari-

ous species, and a full numerical study for finite rate chemistry, composition-dependent density and strain

rates extending from low to moderate values. All are found to agree remarkably well in describing the flame

structure, the flame temperature and the degree of incomplete combustion. Of particular importance is the

determination of a critical strain rate beyond which steady burning may no longer be observed. The analy-

sis has a general character and can be applied to other condensed phase energetic material systems, where

reaction and diffusion occur in the presence of flow and material deformation.

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Energetic materials are a broad class of manufactured materials
that traditionally comprise both propellants and explosives, but in-
clude thermite and intermetallic/metal mixtures as well. They consist
of molecular explosives and molecular oxidizer crystallites, like HMX
and Ammonium perchlorate (AP), metal elements like aluminum (Al)
and titanium (Ti), metal oxides like iron oxide, copper oxide, inter-
metallic elements like carbon, silicon and boron, and plastic binders
and resins like HTPB. The mixtures are made from elements, or a com-
posite of components that have been processed and have imperfec-
tions and contaminants, such as cracks or inclusions, or have been
subjected to surface oxidation, as in propellants. The components in
the mixture prior to the composite assembly, all have their own indi-
vidual mechanical and thermo-chemical identity.
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Explosive compounds are pre-mixed at the molecular level,
whereas the mixtures of metals, metal oxides and intermetallics
compound are initially separated constituents that react in the vicin-
ity of the initial material boundaries, enabled by diffusion of reactants
and products through the molecular condensed phase regions. Typi-
cally, the individual components are combined to make an agglomer-
ated composite mixture of powders and other ingredients. The pow-
ders have a particle size distribution, with dimension that varies from
one to several hundreds microns, and characteristic particle morphol-
ogy. The mixtures are pressed or cast into a mold for applications.

Reactive energetic materials, as defined in a 2004 US National
Academy of Sciences report [1], generally combine two or more in-
ert solids, and an ignition source is required to start the chemical
reaction at the interfaces of the initially separated reactants. Agglom-
erated composites can be ignited by shock compression if the com-
ponents comprising the initial reactive mixture are not highly dense.
The conditions required for ignition occur through the collapse of in-
terstitial voids, typically of initial volume fraction in the range of 1–
20%. During the void collapse, thermo-mechanical flows and mate-
rial displacements occur due to the densification caused by the shock
confinement, and lead to large strain rates in the reactive material
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components. The resulting deformations are associated with energy
dissipation that cause localized heating (hot spots) which, in turn,
generates thermal events that are needed for melting the constituent
components and to initiate the reaction at the material interfaces. The
localized thermal events in the mixture also lead to local streaming
motions and greater species mobility of reactants.

Energetic materials fall generally into two broad classes based on
how they are manufactured: (i) agglomerated composite mixtures of
powders and other reactive components, and (ii) finely-spaced, struc-
tured or layered composites with specified interstitial spacing be-
tween the reactive components. The current state of experimental
investigations and modeling of finely-spaced multilayered reactive
materials has been recently reviewed by Rogachev [2], Weihs [3] and
Adams [4]. A typical illustration is described by Weihs [5], where ap-
proximately 10 micron layers of foil (of say, nickel and aluminum) are
pressed into a laminate ply. The formation of nickel/aluminum prod-
ucts, for example, starts with thermal initiation (heating) of the com-
posite material that first melts the aluminum and allows the chemi-
cal reaction to proceed. The modeling effort focuses on the effect of
the laminate bilayer thickness on ignition and on the velocity of the
self-propagating reactions of a number of reactive material pairs. In
general, steady self-propagation of a reacting front in the laminate
material moves perpendicular to the normal of the planes of lami-
nate plies. The speed of the steady self-propagation reaction front is
found to be dependent on the ply spacing and composition [6]. For
example, Sraj [7] studied the response of Ni/Al multilayered compos-
ites to shock compression; he used the Sandia CTH hydrocode to sim-
ulate the mechanical deformation of layered Ni/Al material to shock
compression and investigate the effects of the bilayer thickness and
the shock velocity and orientation on the combustion process. When
the normal to the plane of the impact that creates the shock is in the
same direction as the normal to the plane of the laminate plies, the
propagation process is found to be highly unsteady.

An alternative to the well-structured layered composites are ag-
glomerated materials made of a mixture of reactive and inert com-
ponents. Glumac et al. [8] have recently reported results of shock
compaction experiments on porous materials that are initially com-
posed of two reactive components. Systems that have been studied
include the aluminum (Al), copper oxide (CuO) thermite, and the
metal/intermetallic system composed of titanium, silicon, and tita-
nium, boron. A typical shock compaction experiment is carried out
for 80% porous, stoichiometric mixture of components, with the ini-
tial mass fractions based on the overall equilibrium products. For
the Al, CuO system the stoichiometric reaction is 2 Al + 3 CuO →
Al2O3 + 3 Cu. The reactive material sample is placed in a striker as-
sembly, and compacted by the action of two metal bars that are shock
loaded by the firing of detonators on each end. A sustained heteroge-
neous front was found to propagate at an average speed of approxi-
mately 6–20 cm/sec. High speed microscopic photography was used
to record the emitted light seen through a small observation win-
dow. On a length scale of 10–20 µm one observes the sudden for-
mation and disappearance of intense spots of light, corresponding to
intense and weak chemical reactions recurring within a time interval
of approximately 100 µ s. Similar results were observed for the tita-
nium - silicon system and more extensive experiments are planned
for the titanium - boron system. These experiments clearly demon-
strate that the overall combustion process is highly unsteady. While
the lead reactive front after shock compaction is observed to propa-
gate at a well-defined average velocity, measurable and robust, time-
dependent heterogeneous reaction–diffusion processes occur on the
micro-scale, corresponding to the initial size of the reactive compo-
nent particles, before and after the passage of the lead shock. Since
the component materials and their reactants are very hot and experi-
ence significant thermal expansion, the chemically reacting material
experiences a distribution of local flow velocities and strain rates, pri-
marily at the material interface of the reacting components.

Fig. 1. Schematic of the condensed phase counterflow diffusion flame, with titanium

entering from the left and boron from the right. The color shades clearly delineate the

planar mixing region and reaction zone.

The theoretical modeling approach for the finely-space laminate,
or regular structured materials, can be summarily described as an ap-
proach that lumps, or relies on cross-sectional averages for all trans-
port phenomena, such as bulk heat transfer and diffusion, and for all
material properties of the laminate/arrays [4]. These reduced mod-
els seem to appropriately describe observed phenomena that de-
pend on average properties of the system, such as bulk tempera-
ture and reaction extent, or the self-propagation speed of a reactive
front propagating along the axis of the plane of the plies. They do
not explicitly describe the reaction–diffusion phenomena at material
interfaces, and cannot delineate separate molecularly distinct reac-
tants. The focus in this work is exactly on the processes taking place
on a small-scale of the initially-separated component materials that
comprise the mixtures, that are not necessarily layered or structured.
Our approach delineates separate molecularly distinct reactants and
employs a multicomponent, thermodynamic formulation with sepa-
rated reactants and products, each with their own properties. While
we employ some simplifications, we do not use a lumped, averaged
formulation in the same sense of the reduced models found in the
analysis of finely-spaced laminates or arrays. Fundamental under-
standing of these local events will serve as a basis for future model-
ing of time-dependent reaction processes in both classes of energetic
materials, agglomerated composites and finely-spaced, structured or
layered composites.

In this paper we examine the reaction–diffusion processes in the
mixing region of two opposed streams of distinct reactants, that stag-
nate on the stream axis as shown in Fig. 1. The flow due to mate-
rial deformation, local heating, and thermal expansion processes, has
been presumably established at the micro-scale by prior shock com-
paction events that we do not model; such considerations were given,
for example, in the studies reported in [7,9]. The flow of opposed
streams is characterized by a single strain rate – the ratio of the av-
erage displacement speed to the length scale that characterizes the
material nonuniformity – or, equivalently, the inverse of a residence
time that we presume given. We show that in this counterflow con-
figuration, a balance between advection, diffusion and chemical reac-
tion is possible under steady conditions when the strain rate is not too
large. Otherwise, the only possible balance is that of a nearly-frozen
or weak burning state (not discussed in this paper). In the larger pic-
ture, we envision a cooperative time-dependent mechanism between
local reaction sites that experience intense reaction and slow reaction
at local interfaces, that depends on the local strain rate distribution
in the composite material.

Although our analysis holds for any three-components sys-
tem, we have chosen the titanium (Ti) and boron (B) system as
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a representative example of metal/intermetallic reactive material
system. Their overall reaction, to create titanium diboride (TiB2)
products,

Ti + 2B → TiB2, (1)

is considered under nearly-isobaric conditions, such that the pres-
sure is represented by the hydrostatic pressure. The equation of state
of the three components and the formulation that defines the equi-
librium equation of state of the mixture is based on multicomponent
thermodynamics formulations that are similar to those used in the
study of metallurgy and materials [10]. As such, the formulation is
based on Gibbs thermodynamic potentials where one assumes that
at each point of the condensed phase mixture, there is a single stress
state and temperature. Each isolated component is assumed to have
its own distinct reference density, and we neglect thermal expansion
in the components. This is consistent with the notion that the change
in composition due to reaction is much larger than changes due to
thermal expansion. As a result the mechanical equation of state for
the mixture takes a simple form whereby the specific volume of the
mixture is simply a sum of the intrinsic densities weighted with the
mass fraction of each component. This form of the mechanical equa-
tion of state stands in contrast with that for a mixture of reacting
gases that is a relation between the specific volume, pressure, tem-
perature and mass fractions. The diffusion model for the components
is derived from an effective Fick diffusion formulation as described
by Curtiss [11] and Curtiss and Bird [12], whereby a Maxwell–Stefan
law formulated in terms of binary diffusivities is expressed as a gen-
eralized Fick diffusion law with symmetric diffusion coefficients. The
resulting diffusion coefficients used in our model are then chosen to
lead consistent results with experimental data reported by Trunov
et al. [13].

The governing equations describing the steady burning of initially
separated titanium and boron in a counterflow geometry are pre-
sented in the next section. These equations are addressed first un-
der the assumption of constant mixture density, which enables the
construction of an analytical solution in the fast chemistry limit. The
expressions for flame position and temperature are used when com-
pared to experimental data to estimate binary diffusion coefficients
that are not well-known, and or measured under restricted condi-
tions. We then address numerically the general case, of finite rate
chemistry and when the density of the mixture varies reflecting the
local composition of the mixtures. In particular, we derive extinction
conditions that differentiate between vigorous and weak burning be-
tween titanium and boron. We note that the analytical solution, valid
for large Damköhler numbers, is used to validate the numerical solu-
tion and calibrate the corresponding strain rates in deriving the ex-
tinction conditions.

2. Formulation

The counterflow geometry under consideration is shown in Fig. 1,
where far to the left (state 1) there is only titanium and far to the
right (state 2) there is only boron; the intrinsic densities are de-
noted by ρ̂10

and ρ̂20
, respectively. Under steady conditions, the ma-

terial deformation may be described by a velocity field v of the form
v =

(
u(x), y v̄(x)

)
. This “similarity solution” implies that the pressure

gradient in the transverse direction y is necessarily linear and admits
planar combustion fronts such that all state variables, the mass frac-
tions Yi, the density ρ , and temperature T, are functions of x alone.
The constituents in the combustion zone include titanium of mass
fraction Y1, boron of mass fraction Y2, and titanium diboride prod-
ucts of mass fraction Y3. Overall mass conservation implies that

Y1 + Y2 + Y3 = 1. (2)

The conductivity k and specific heat (at constant pressure) cp of
the mixture (defined as mass-weighted averages) are, in general,

functions of temperature but for simplicity they will be taken here
as constants. Finally, the chemical reaction (1) between Ti and B is
assumed to proceed at a rate

ω = BY1Y 2
2 e−E/RT (3)

where E is the activation energy, R is the universal gas constant and B
is an appropriately defined pre-exponential factor. Different reaction
orders could be considered without difficulty; the present form that
simplifies the reaction to one-step process was made for simplicity.

2.1. Conservation equations

The governing equations, describing conservation of mass, mo-
mentum, and energy under steady conditions simplify to

d

dx
(ρu) + ρ v̄ = 0 (4)

ρu
dv̄
dx

+ ρ v̄2 = C (5)

ρucp
dT

dx
− k

d2T

dx2
= Qω (6)

ρu
dY1

dx
+ d

dx
(ρY1V1) = −W1ω (7)

ρu
dY2

dx
+ d

dx
(ρY2V2) = −2W2ω (8)

where Vi, Wi stand for the diffusion velocity and molecular weight of
species i, and Q is the overall heat release. As noted earlier, the pres-
sure gradient in the transverse y-direction is linear, given by ∂ p/∂y =
−Cy, where C is a constant determined by the far field boundary con-
ditions. Specifically, Eq. (5) implies that there is a relation between
the densities and strain rates at the far ends, such that

ρ̂10
ε2

1 = ρ̂20
ε2

2 = C. (9)

Hence the motion of the reactants impinging on each other is char-
acterized by a single strain rate ε (in units of 1/s) which we choose
as ε = ε1/2; the factor of 2 is introduced solely to facilitate the form
of the analytical asymptotic solution described below. The axial de-
pendence of the pressure can be obtained a-posteriori by solving the
x-component of the momentum equation (not written above).

Eqs. (4)–(8) must be supplemented with constitutive relations for
the diffusion velocities and an equation of state for the mixture. Start-
ing with the assumption that the Gibbs free energy of each com-
ponent of the mixture can be summed, the Gibbs potential for the
mixture which is a function of pressure, temperature, and mixture
composition is

g =
3∑

i=1

gi(p, T)Yi, (10)

where the energies related to mixing have been neglected. The spe-
cific volume υ = 1/ρ of the mixture and individual components are
given by the thermodynamic relation:

υ = ∂g

∂ p

∣∣∣∣
T,Yi

and υi = ∂gi

∂ p

∣∣∣∣
T

, (11)

where υi are the partial volumes, or the volume of the components.
This leads to

υ =
3∑

i=1

υi(p, T)Yi (12)

which is the mechanical equation of state for the mixture. (Note: The
symbol υ represents the specific volume and should not be confused
with v which represents the y-component of velocity.) If we further
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assume that the volume change due to pressure variations is small,
and neglect the effect of temperature, the partial volumes υi can be
approximated by their reference values υ̂i0

. The mechanical equation
of state (12), when expressed in terms of the densities, then becomes

ρ−1 =
3∑

i=1

Yi ρ̂
−1
i0

(13)

where ρ̂i0
is the intrinsic density, and ρ̂−1

i0
the intrinsic specific vol-

ume, of species i. Using (2) the equation of state simplifies to

1

ρ
= 1

ρ̂30

+
(

1

ρ̂10

− 1

ρ̂30

)
Y1 +

(
1

ρ̂20

− 1

ρ̂30

)
Y2. (14)

With the flow specified by the strain rate ε and the material prop-
erties far to the left (denoted by subscript 1) and far to the right
(denoted by subscript 2) assumed uniform, the boundary conditions
are:

du/dx ∼ −2ε as |x| → ∞, (15)

ρ = ρ̂10
, Y1 = 1, Y2 = 0, T = T∞ as x → −∞, (16)

ρ = ρ̂20
, Y1 = 0, Y2 = 1, T = T∞ as x → +∞. (17)

Note that there is no need to specify a condition for v̄, because it is
obtained from

v̄ = − 1

ρ
d

dx
(ρu) (18)

by differentiation.
When density variations are small, the equation of state (14) can

be effectively replaced by ρ = constant, and the velocity field every-
where is given by

u = −2εx, v̄ = 2ε. (19)

The problem reduces to the reaction–diffusion system (6)–(8). The
constant-density approximation will be used for simplicity in the
asymptotic description described below. In general, variations in
the density modify the overall velocity field which, in turn, affects
the combustion field. In Section 4, numerical computations are car-
ried out in order to assess the importance of density variations in
condensed-phase combustion.

2.2. Diffusion

The most common expressions used for multi-component diffu-
sion are the Maxwell–Stefan (MS) relations

∇Xi =
∑

j

XiXj

Di j
(V j − Vi), (20)

with the summation taken over all species present [14]; here Xi is
the molar fraction, Vi is the diffusion velocity vector of species i, and
Di j = D ji is the binary diffusivity of a pair of species (i, j). Although
this relation was derived for a dilute ideal gas mixture, it has been
often applied to condensed phase media [15].

The use of the Maxwell–Stefan relations is quite complicated be-
cause the diffusion velocities Vi are not expressed explicitly in terms
of the concentration gradients. A common practice is to use the gen-
eralized Fick equations

Vi =
∑

j

Di j ∇Xj (21)

with coefficients Di j, referred to as Fick diffusivities, that are related
to the binary diffusivities Di j, but unlike the binary diffusivities they

are concentration dependent and may not necessarily be all positive.
They must, however, satisfy the constraints [12]

Di j = D ji, for all i, j,
∑

i

Di jYi = 0 for all j.

The expressions relating Fick and binary diffusivities for a ternary
mixture [16] are listed in the Appendix. Converting Eq. (21) from mole
to mass fraction yields:

YiVi = ai∇Y1 + bi∇Y2, i = 1, 2 (22)

where

a1 = W1(Y2 + Y3)(−Y2W3 − W2 + Y2W2)D13D12 + Y1Y2W2(W1 − W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

− W3Y1(W2 − Y2W2 + Y2W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

b1 = −Y1W1(Y2 + Y3)(W2 − W3)D13D12 + Y1W2(−W1 + Y1W1 − W3Y1)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

+ Y1W3(−Y1W2 − W1 + Y1W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

a2 = −Y2W1(−W2 + Y2W2 − Y2W3)D13D12 + Y2W2(Y1 + Y3)(W1 − W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

− Y2W3(−Y2W2 + Y2W1 + W2)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

b2 = Y2Y1W1(−W3 + W2)D13D12 + W2(Y1 + Y3)(−W1 + Y1W1 − Y1W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

+ Y2W3(−Y1W2 − W1 + Y1W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12
.

The species Eqs. (7)–(8) can then be written as

ρu
dY1

dx
+ d

dx

[
ρ
(

a1
dY1

dx
+ b1

dY2

dx

)]
= −W1 ω, (23)

ρu
dY2

dx
+ d

dx

[
ρ
(

a2
dY1

dx
+ b2

dY2

dx

)]
= −2W2 ω. (24)

A simplification that can be used for analytical convenience results
from assuming equal molecular weights W1 = W2 = W3, then

a1 = −D13
D12 + (D23 − D12)Y1

(D23 − D12)Y1 + (D13 − D12)Y2 + D12

b1 = D23(D12 − D13)Y1

(D23 − D12)Y1 + (D13 − D12)Y2 + D12

a2 = D13(D12 − D23)Y2

(D23 − D12)Y1 + (D13 − D12)Y2 + D12

b2 = −D23
D12 + (D13 − D12)Y2

(D23 − D12)Y1 + (D13 − D12)Y2 + D12

3. Asymptotic solution – the Burke–Schumann limit

We first present analytical results in the limit of infinitely fast
chemical reaction, known in the literature as the Burke–Schumann
limit. The solutions obtained in this limit provide a simple illustra-
tion of the flame structure. An appropriate time scale may be defined
as the ratio of a representative length associated with the distance
between particles and a characteristic microscale velocity associated
with material deformation. The inverse of this time is the charac-
teristic strain rate, and the fast chemistry limit corresponds to weak
strain rates. The corresponding Damköhler number, or the ratio of the
flow-to-chemistry time scales, is therefore large. Although asymp-
totic methods that accounts for finite rate chemistry and thus span
a wider range of strain rates (up to flame extinction) are available for
the related gaseous problem [17,18], their extension to energetic ma-
terials is nontrivial and will be discussed in a future publication. Here
we rely on numerical methods to examine the dependence of the so-
lution on the strain rate for steady combustion.
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In the fast chemistry limit the chemical reaction occurs along a
sheet, at x = x f say, where the two reactants are in contact. Else-
where, the chemical reaction is negligibly small and we are left solv-
ing the energy and species equations on either side of the sheet, with
ω = 0. The flame sheet separates a region where there is only tita-
nium (x < xf), from a region where there is only boron (x > xf). Since
Y2 = 0 for x < xf, we find that

a1 = −D13, b1 = D23(D12 − D13)Y1

D23Y1 + D12(1 − Y1)
,

a2 = 0, b2 = − D23D12

D23Y1 + D12(1 − Y1)
.

and, since Y1 = 0 for x > xf, we find that

a1 = − D13D12

D13Y2 + D12(1 − Y2)
, b1 = 0,

a2 = D13(D12 − D23)Y2

D13Y2 + D12(1 − Y2)
, b2 = −D23.

We note parenthetically that the simplification of the coefficients ai,
bi applies even for unequal molecular weights. All variables must be
continuous at the flame sheet, but their derivatives are not; the mass
and energy fluxes must satisfy the relations

α
Q/cp

[
dT

dx

]
= 1

W1

[
a1

dY1

dx
+ b1

dY2

dx

]
= 1

2W2

[
a2

dY1

dx
+ b2

dY2

dx

]
,

(25)

where the square brackets [·] denote the jump, namely the difference
between the values at x+

f
and x−

f
, and α = k/ρcp is the thermal diffu-

sivity of the mixture. The conditions (25) imply that the fluxes of ti-
tanium and boron towards the flame sheet are in stoichiometric pro-
portions, and they specify the proportion of heat from the total heat
released conducted to one or the other side of the sheet.

For simplicity, we have also adopted in this section the constant
density approximation. The mathematical problem on either side of
the flame sheet then consists of

2εx
dT

dx
+ α

d2T

dx2
= 0 for x ≶ x f (26)

2εx
dY1

dx
+ D13

d2Y1

dx2
= 0 for x < x f (27)

Y1 ≡ 0 for x > x f (28)

Y2 ≡ 0 for x < x f (29)

2εx
dY2

dx
+ D23

d2Y2

dx2
= 0 for x > x f (30)

together with the boundary conditions (16) and (17), with ρ assumed
constant, and the jump relations

[T ] = [Y1] = [Y2] = 0 (31)

α
Q/cp

[
dT

dx

]
= − D13

W1

[
dY1

dx

]
= − D23

2W2

[
dY2

dx

]
(32)

across x = x f . The solution is readily obtained as

T =






T∞ + (Tf − T∞)
1 + erf

(√
ε/α x

)

1 + erf
(√

ε/α x f

) x < x f

T∞ + (Tf − T∞)
1 − erf

(√
ε/α x

)

1 − erf
(√

ε/α x f

) x > x f

-4 -3 -2 -1 0 1
0

5

10

15

20

25

30

35

Fig. 2. Variation of the flame sheet position with D23/D13, based on the asymptotic

solution.

Y1 =

{
1 − 1 + erf(

√
ε/D13 x)

1 + erf(
√

ε/D13 x f )
x < x f

0 x > x f

Y2 =

{
0 x < x f

1 − 1 − erf(
√

ε/D23 x)

1 − erf(
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The position xf of the flame sheet and the adiabatic flame tempera-
ture Tf, defined as the value of T at the flame sheet, satisfy

1 + erf(
√

ε/D13 x f )

1 − erf(
√

ε/D23 x f )
= ν

√
D13

D23

eεx2
f
/D23
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f
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Tf = T∞ + 1
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Q/cp

W1

√
D13

α

1 − erf 2(
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ε/α x f )

1 + erf(
√

ε/D13 x f )

eεx2
f
/α

eεx2
f
/D13

(34)

where ν = 2W2/W1 is a mass-weighted stoichiometric ratio. The po-
sition xf is determined from the transcendental Eq. (33) using an it-
erative process. We note that for a given strain rate ε the position xf

depends only on the binary diffusivities Ti-TiB2 and B-TiB2, and is in-
dependent of the diffusivity of Ti-B because there is no boron in the
titanium region and vice-versa. Once xf is determined, the flame tem-
perature can be calculated from (34) by direct evaluation. Evidently,
the latter depends on the heat released Q and thermal diffusivity α.

For equal diffusivities D13 = D23 ≡ D, Eq. (33) reduces to

erf(
√

ε/D x f ) = ν − 1

ν + 1
.

For the titanium–boron reaction the mass-weighted stoichiometric
ratio ν ≈ 0.45, implying that x f ≈ −0.41

√
D/ε and the flame sheet

lies on the titanium side of the stagnation plane. If the Lewis number
is assumed equal to one, i.e., D = α, the flame temperature is given
by

Tf = T∞ +
Q/cpW1

1 + ν
.

In the absence of differential (unity Lewis number) and preferential
(unequal mass diffusivities) diffusion, the flame temperature results
from a simple energy balance.

Figure 2 displays the dependence of the scaled flame sheet loca-
tion on the ratio D23/D13, for a fixed ν . This ratio is typically larger
than one, since boron atoms have an effectively smaller atomic ra-
dius and hence diffuse more readily through titanium-diboride than
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does the titanium atom [19,20]. We see that the flame sheet gener-
ally resides on the titanium side of the stagnation plane and moves
further to the left when the diffusivity of boron into the titanium-
diboride products increases relative to the diffusivity of titanium into
the titanium-diboride products.

The only explicit results presented here from the asymptotic solu-
tion are the expressions for the flame position and temperature. Pre-
dictions based on these expressions are used in conjunction with ex-
perimental data to extract kinetic parameters that are not well known
or were measured under limited conditions. Moreover, the asymp-
totic solution is used to validate the numerical solution of the gov-
erning equations for large values of the Damköhler number (or small
strain rates) and to properly calibrate the strain rate, in order to derive
extinction conditions.

4. Numerical solution – finite-rate chemistry

To examine the effects of finite-rate chemistry, the boundary
value problem consisting of Eqs. (4)–(6) and (23)–(24) and bound-
ary conditions (15)–(17) must be addressed. The numerical procedure
is described next, followed by results pertaining to titanium-boron
combustion.

4.1. Numerical procedure

Steady solutions of the aforementioned boundary value problem
are obtained numerically as the long time behavior of the time-
dependent equations

ρ
∂ v̄
∂t

+ ρu
∂ v̄
∂x

+ ρ v̄2 = C (35)

ρ
∂Y1

∂t
+ ρu

∂Y1

∂x
+ ∂

∂x

[
ρ
(

a1
∂Y1

∂x
+ b1

∂Y2

∂x

)]
= −W1 ω (36)

ρ
∂Y2

∂t
+ ρu

∂Y2

∂x
+ ∂

∂x

[
ρ
(

a2
∂Y1

∂x
+ b2

∂Y2

∂x

)]
= −2W2 ω (37)

ρcp

(
∂T

∂t
+ u

∂T

∂x

)
− k

∂2T

∂x2
= Qω, (38)

with v̄ obtained from

ρv̄ = − d

dx
(ρu) (39)

and ρ from (14). Initially, these equations were solved using an ex-
plicit time marching method until the solution converges to its equi-
librium state. The integration in time starts with an initial guess,
taken here as the asymptotic solution discussed in the previous sec-
tion. A fourth order approximation was used to compute the first or-
der and second order space derivatives and a fourth order Runge–
Kutta (RK4) method was used for time stepping. The extent of the
numerical domain depends on the strain rate value, with lower strain
rates requiring a larger domain. This, however, can be overcome by
normalizing x with the thermal diffusion length ld =

√
α/ε, as is also

evident from the analytical form of the asymptotic solution. Due to
large stiffness arising from the Arrhenius exponential in the reaction
rate term, we found that the time step, in general, could not exceed
10−9 and to properly describe the solution at low strain rates where
the reaction zone becomes extremely thin, a fine grid is also required.
As a result, convergence to the equilibrium state was very slow even
after parallelizing the numerical code. Determining the solution over
a wide range of strain rate conditions requires a faster converging
algorithm.

To overcome the computational stiffness, an implicit time re-
laxation method was implemented. First and second order spa-
tial derivatives are approximated by second order finite difference

Table 1

Property values of representative physical parameters used in the computa-

tions.

Property Symbol Value Reference

Heat release Q −323.8 kJ/mol [23]

Molar mass of Ti W1 47.87 g/mol

Molar mass of B W2 10.81 g/mol

Molar mass of TiB2 W3 69.85 g/mol

Averaged molar mass Wc 50 g/mol

Intrinsic density of Ti ρ̂10
4.5 g/cc

Intrinsic density of B ρ̂20
2.34 g/cc

Intrinsic density of TiB2 ρ̂30
4.52 g/cc

Averaged density ρ̂c0
3.8 g/cc

Heat capacity cp 900 J/(kg K) [23]

Thermal conductivity k 36 W/(m K) [24–26]

Pre exponential factor B 7.6e16 mol/(m3 s) [27]

Activation energy Ea 318 kJ/mol [27]

Binary diffusivity of Ti-B D12 0.2 m2/s [28]

schemes on a uniform grid, and for time stepping we use a back-
ward Euler method, such that a generic equation of the form ∂φ/∂t =
f (t,φ) is approximated by φn+1 = φn + 't f (tn+1,φn+1), where n
denotes the time step and 't the time increment. A damped Newton–
Raphson solver is then used for the solution of the resulting nonlin-
ear system at each time step. The stiffness in the governing equa-
tions lead to strong fluctuations, and consequently sharp gradients
in the Jacobian matrix that may cause the numerical solution to di-
verge. We have therefore implemented a relaxation parameter dur-
ing each iterative update to limit the fluctuations; the value 0.1 was
found appropriate for our calculations. The PetSC sparse solver [21]
was used for the system that arises during the Newton–Raphson iter-
ation. This approach has significantly reduced the time step relative
to the explicit scheme from 10−9 to 10−2, for the same spatial grid
distribution.

In order to generate solutions for increasing values of the strain
rate ε and draw response curves of quantities of interest (e.g., flame
temperature, mass fraction of unconsumed reactants, etc.) as a func-
tion of ε, we start with a small strain rate value of ε = 0.01 s−1 using
the asymptotic solution as an initial guess, and advance in time until
the incremental changes in the solution at all points in the domain
of integration are less than a tolerance error, here taken as 10−3. Con-
vergence is guaranteed only when the long-time equilibrium solution
is stable. This approach, therefore, works well for small-to-moderate
values of ε, but fails at larger values when the solution of the bound-
ary value problem becomes multi-valued, and the response curve de-
velops a turning point with stable and unstable branches. To con-
struct all steady solutions, stable and unstable, particularly near the
turning point, we use the continuation approach proposed by Kur-
dyumov and Matalon [22]. The time-dependent Eqs. (35)–(39) were
solved with an additional constraint that the temperature remains
constant at some reference point, say T(x∗) = T ∗. The constraint is
used to iterate on the value of ε until both, the strain rate and the
space distribution of solution, do not vary significantly from one time
step to the next. By selecting T∗ judiciously, this procedure always
converges allowing to generate the entire response curve through a
turning point. When computing steady states that are expected to be
unstable, the time steps must be adaptively changed while keeping
the damped newton iterations. It is crucial to start with small time
steps, 10−6 say, and gradually increase 't to 10−2. Finally, we note
that the time t is used in this context only as an iterative parameter.

4.2. Physical parameters

Table 1 lists representative values of physical parameters based on
a literature survey; some values required by the model are easier to
estimate than others and are obtained from standard thermal prop-
erty measurements. The table lists values for the constant pressure
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Fig. 4. Comparison between the numerical solution and asymptotic solutions for a small strain rate value ε = 0.01 s−1.

heat capacity, cp, and thermal conductivity, k, that represent aver-
aged values for the mixture. However, the determination of the bi-
nary mass diffusivities is more problematic. Experimental values for
D13 and D23 have been reported [19,20], but not at conditions that
are present in the reaction zone. Better estimates could be obtained

from our derived asymptotic expressions, when used in conjunction
with experimentally measured flame temperatures.

Trunov et al. [13] measured adiabatic flame temperatures for
the titanium-boron reaction of approximately 2400–3300 K. One
expects, similar to the values measured experimentally at low
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temperatures [20], that the binary diffusivities of both, boron and
titanium into titanium-diboride, are significantly smaller than the
mixture thermal diffusivity, and that D23 ! D13. Taking D23/D13 =
10 as a base-line model value, and the estimate Tf = 3000 K for
the flame-sheet temperature, our formulas (33) and (34) yield D13 ≈
5 × 10−7 m2/s and D23 ≈ 5 × 10−6 m2/s. Figure 3 shows changes in
flame temperature as a result of variations in the binary diffusivi-
ties D13 and D23 relative to the base-line values, for the fixed ratio
of D23/D13.

4.3. Low strain rates

We start by presenting results pertaining to low strain rates,
where the solution can be compared directly to the asymptotic so-
lution discussed above. Since the latter was obtained under the con-
stant density assumption, the average value ρ = 3.8 g/cc was se-
lected, abandoning the equation of state (14). The expressions for the
diffusion coefficients were used without resorting to the approxima-
tion of equal molecular weights, since the reduced form of these re-
lations led to nearly identical results.

Figure 4 (a) and (b) shows a comparison of the temperature
and mass fraction profiles between the computed solution for ε =
0.01 s−1 and the corresponding asymptotic expressions. The spa-
tial coordinate is normalized with the thermal diffusion length ld =√

α/ε = 3.2410−4 cm. For such low values of strain rate combustion
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is nearly complete, with both reactants consumed in a very thin reac-
tion zone. There is excellent agreement between the computed and
asymptotic profiles except for very small changes near the reaction
zone, as shown in the figure inserts. Evidently, for finite ε however
small, the reaction zone has a finite thickness, which is adequately
captured by the numerical solution as shown in Fig. 4(c). The excel-
lent agreement between the numerical and asymptotic solutions also
serves as a validation of our numerical methodology that properly
resolves the stiffness in the governing equations arising from the ex-
ponential Arrhenius term.

4.4. Moderate strain rates – constant density

Next we consider the entire response of the flame to increasing
strain rates, from complete combustion corresponding to low strain
rates to flame extinction occurring at significantly higher values of ε.

We first examine the solution using two diffusion formulations:
the complete expressions for the diffusion coefficients ai, bi, and the
simplified form resulting from equal molecular weights. We note
that the general diffusion expressions add nonlinearity to an already
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stiff problem. Therefore, to facilitate the computations we have re-
tained the constant-density approximation in the results presented
in this subsection, which effectively decouples the flow and combus-
tion fields; variable density solutions will be presented in the next
subsection. Figures 5 and 6 show response curves of various flame
characteristics to the imposed strain rate ε, based on the two dif-
fusion formulations. These include the flame position xf (defined as
the location where the temperature reaches its maximum value), the
flame temperature Tf (the value of T at xf), and the mass fractions
of unconsumed titanium and boron (the values of Y1 and Y2 evalu-
ated at xf). We note that the precise evaluation of the flame position,
and the temperature and mass fractions evaluated at this location,
depend on the step size used in the computations and on the value of
the thermal diffusion length ld, which decreases from 3.24 × 10−5 cm
to 1.3 × 10−6 cm as the strain rate increases from ε = 0.01 s−1 to
ε = 6.5 s−1 (which is very near extinction). A Matlab Curve Fit [29]
tool was used to fit the numerical data to a smoothing spline, which
was then used for the determination of xf and for evaluating all prop-
erties at this location. The same tool was used to fit smoothing spline
curves presented in all the figures, to the discrete data obtained
numerically.

From the response curves of Figs. 5 and 6 the following physical
picture emerges. Since at low strain rates the chemical reaction time
is much shorter than the flow time, the reaction proceeds immedi-
ately as titanium and boron get in contact. The reaction occurs in a
very thin zone (or a sheet) where both reactants are completely con-
sumed. The flame lies on the titanium side (x < 0) and the flame tem-
perature reaches its maximum value. Upon increasing the strain rate,
the flow time relative to the chemical reaction time is shortened and
a fraction of titanium and boron escape mixing and leaks through
the reaction zone. As a result of incomplete combustion, the flame
moves towards the boron side and the flame temperature drops. The
relatively larger leakage of titanium as opposed to boron stems from
the fact that D13 # D23, which implies much larger fluxes of boron
towards the reaction zone and consequently a more complete con-
sumption of boron. This trend continues until the fraction of uncon-
sumed reactants exceeds a critical threshold and the flame temper-
ature drops significantly from its adiabatic value. For larger values
of the strain rate steady burning is no longer possible. The critical
state, represented by the turning point on the response curves and
corresponding to ε ≈ 6.586 sec−1, identifies conditions associated
with flame extinction. The lower branch on the temperature response
curve of Fig. 5 and the upper branches in Fig. 6 are typically unstable
and therefore physically inaccessible.
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density conditions.

The two diffusion formulations lead to identical results at low
strain rates and predict the exact same extinction strain rates. There
are small, insignificant differences in flame temperature at and near
extinction, which can be traced to the slight difference in flame loca-
tion. Being influenced primarily by the binary diffusivity D13 # D23,

the simplified diffusion formulation predicts a flame position that is
slightly tilted towards the titanium (x < 0) side. Due to the negligible
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difference between the two formulations, the simplified diffusion for-
mulation will be used in the following section in order to save com-
putational time.

4.5. Moderate strain rates – variable density

When variations in density are accounted for, the flow field no
longer satisfies (19) and must be obtained by solving the momentum
Eq. (5) with ρ given by (14). The boundary conditions as x → ±∞
imply that v̄ tends to a constant on either end, with the asymptotes
subject to the constraint (9). Figure 7 shows profiles of v̄ computed for
two values of ε; the low strain rate value corresponding to conditions
close to the Burke-Schumann solution and the larger strain rate value
corresponding to near-extinction conditions. Variations in v̄ across
the field are due to density changes, which are more pronounced in
the combustion region −0.5 ! x/ld ! 0.5.

Density profiles are shown in Fig. 8 for the same two values of
ε. Generally, the density would vary from ρ̂10

= 4.5 g/cc on the tita-
nium side to ρ̂20

= 2.34 g/cc on the boron side. Since to the density
of TiB2 is slightly higher than that of Ti, there is a noticeable jump in
density near the reaction zone at low strain rates (see the figure in-
set), where the reaction is more vigorous and the production of TiB2

higher. This increase in density diminishes at higher strain rates due
to lower TiB2 production and increase of titanium leakage through
the reaction zone.

Response curves of flame position and temperature vs strain rates,
for constant and variable density conditions, are shown in Fig. 9. The

flame temperature Tf and flame position xf are consistently higher for
the constant density case than for the variable density case, for all val-
ues of ε. The difference is very small and is of no physical significance,
being primarily due to the selected mean density value adopted in the
constant density formulation. The small difference between the two
solutions indicates that the composition distribution has little effect
on the overall density, for practically all strain rate values. The flame
temperature at extinction is approximately 2500 K, corresponding to
a drop in approximately 500 K from the adiabatic flame temperature
Tf = 2950 K (or 3000 K for the constant density case). The flame posi-
tion in the Burke–Schumann limit is determined from the condition
that the two separate reactants meet in stoichiometric proportions,
with the temperature playing no role in this balance. One may there-
fore attribute the slight variation in flame position between the con-
stant and variable cases to the dependence of species distribution on
the overall density. As with the flame temperature, the predicted val-
ues of xf at extinction by the two formulations is very close, with the
difference being less than 0.1%.

In Fig. 10, we show the degree of reactant leakage through the
reaction zone for the constant and variable density formulations. In
both cases the mass fractions tend to zero at low strain rates, as it
should. Elsewhere, the variable density solution shows a slight devi-
ation in the leakage of Y1 and Y2 from the constant density solution.
This is more evident for titanium, because the extent of titanium dif-
fusion is much smaller than that of boron causing a sharper response
to density variations. The difference between the two solutions at ex-
tinction is nearly 0.005 for Y2 and 0.05 for Y1, approximately 10% of
the actual extinction values.

5. Conclusions

A multi-component mixture theory is used to describe condensed
phase diffusive combustion, in particular for titanium-boron reac-
tion in a counterflow geometry. The Maxwell–Stefan model for multi-
component mixtures is informed by the binary diffusivities of any
pair of species comprising the mixture. Because of the complications
arising from the direct use of the Maxwell–Stefan model in combus-
tion studies, a generalized Fick law is often adopted with coefficients,
referred to as Fick diffusivities, which are often assumed to be con-
stant. These coefficients, however, are concentration-dependent and
could be related to the binary diffusivities via cumbersome expres-
sions. A significant contribution of this work is the derivation of a
multi-component diffusion model for a three-component mixture,
which reduces to the gaseous model when molecular weights and
diffusivities for each species are equal.

The proposed diffusion expressions can be simplified by assum-
ing equal molecular weights. A comparison between the two diffu-
sion models, with equal and unequal molecular weights, has been
carried out in the constant density limit (for simplicity of computa-
tions). The response curves constructed numerically show that the
two diffusion models lead to identical results at large strain rates as
expected, and vary by less than 2% near extinction. This suggests that
one could safely use the constant molecular weight approximation in
the proposed diffusion model with minimal loss in accuracy, while
saving computational time and complexity.

Low temperature measurements of the boron-titanium diboride
binary diffusivity, D23, fall in the range of 10−13 to 10−20 m2/s while
the titanium–titanium diboride diffusivity, D13, is three orders of
magnitude lower. These diffusivities, however, are unavailable at the
combustion temperature of Ti-B nano-composites, measured near
3000 K. The derived expressions of flame position and tempera-
ture from the fast-chemistry asymptotic analysis have been used
to estimate the aforementioned diffusivities in a manner which is
consistent with macroscopically observed adiabatic flame tempera-
tures. These estimates may hold in more general circumstances be-
cause, as noted from our simulations the flame temperature drops
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only slightly over the entire range of strain rates sustaining steady
combustion.

Combustion characteristics at the interface of two condensed
phase reactant streams that form an opposed counterflow are rep-
resented by a typical S-shaped response curve. In this paper we only
address the portion of the S-curve that extends from a vigorous burn-
ing state, where the flame temperature reaches its maximum value
(the adiabatic flame temperature) and both titanium and boron are
completely consumed, down to an extinction state associated with
incomplete combustion and with a flame temperature significantly
below the adiabatic value. The extinction state is identified when the
strain rate reaches a critical value, and for larger strain rates a bal-
ance between advection, diffusion and reaction is not possible un-
der steady conditions. The other portion of the S-curve, which ex-
tends to exceedingly large values of the strain rate is associated with
chemically frozen, or weakly-burning states. Our analysis therefore
suggests that in composite materials the distribution of local reac-
tion sites and local frozen sites would depend on the local strain rate
distribution.
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The relation between the Fick diffusivities Di j and binary diffusiv-
ities Di j for a ternary mixture are given by

D11 = −

(Y2 + Y3)
2

X1 D23
+ Y2

2

D13 X2
+ Y3

2

X3 D12

X1

D12 D13
+ X2

D12 D23
+ X3

D13 D23

(40)

D22 = −

(Y1 + Y3)
2

D13 X2
+ Y3

2

X3 D12
+ Y1

2

X1 D23

X1

D12 D13
+ X2

D12 D23
+ X3

D13 D23

(41)

D33 = −

(Y2 + Y1)2

X3D12
+

Y 2
1

X1D23
+

Y 2
2

X2D13

X1

D12D13
+ X2

D12D23
+ X3

D13D23

(42)

D12 =

Y1(Y2 + Y3)
X1D23

+ Y2(Y1 + Y3)
X2D13

−
Y 2

3

X3D12

X1

D12D13
+ X2

D12D23
+ X3

D13D23

(43)

D13 =

Y3(Y2 + Y1)
X3D12

+ Y1(Y2 + Y3)
X1D23

−
Y 2

2

X2D13

X1

D12D13
+ X2

D12D23
+ X3

D13D23

(44)

D23 =

Y2(Y1 + Y3)
X2D13

+ Y3(Y2 + Y1)
X3D12

−
Y 2

1

X1D23
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Condensed phase energetic materials include propellants and explosives. Their detonation 
or burning products generate dense, high pressure states that are often adjacent to 
regions that are at vacuum or near-vacuum conditions. An important chemical diagnostic 
experiment is the time of flight mass spectroscopy experiment that initiates an energetic 
material sample via an impact from a flyer plate, whose products expand into a vacuum. 
The rapid expansion quenches the reaction in the products so that the products can be 
differentiated by molecular weight detection as they stream past a detector. Analysis of 
this experiment requires a gas dynamic simulation of the products of a reacting multi-
component gas that flows into a vacuum region. Extreme computational difficulties can 
arise if flow near the vacuum interface is not carefully and accurately computed. We 
modify an algorithm proposed by Munz [1], that computed the fluxes appropriate to a 
gas–vacuum interface for an inert ideal gas, and extend it to a multi-component mixture 
of reacting chemical components reactions with general, non-ideal equations of state. We 
illustrate how to incorporate that extension in the context of a complete set of algorithms 
for a general, cell-based flow solver. A key step is to use the local exact solution for an 
isentropic expansion fan, for the mixture that connects the computed flow states to the 
vacuum. Regularity conditions (i.e. the Liu–Smoller conditions) are necessary conditions 
that must be imposed on the equation of state of the multicomponent fluid in the limit of 
a vacuum state. We show that the Jones, Wilkins, Lee (JWL) equation of state meets these 
requirements.

 2015 Elsevier Inc. All rights reserved.

1. Introduction

Condensed phase energetic materials include propellants and explosives. They are usually composed of a mixture of 
granular solids that include explosive or oxidizing crystallites, various metal powders like aluminum, sometimes carbon 
black, resins and plastics. The performance of the aggregate composite depends on the chemistry and the mechanisms 
of energy release, which occur in nearly all phases of materials, gas, liquid and solid. Propellant and explosives reactive 
decomposition produces huge volume expansion. The products start at near solid densities and at high pressures and expand 
to very low densities and lower pressures. In the case of explosives, the pressure drops from hundreds of kilo-bars to 1 
atmosphere or less, which is 5 to 6 orders of magnitude across a reaction zone that is often no more than 1/10 of a 
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Fig. 1. The schematic diagram of numerical simulation of initiation, detonation and expansion for an explosive sample in the TOFMS experiment.

millimeter thick. This enormous pressure gradient provides the means to cut materials or drive surrounding materials to 
large velocities by virtue of this expansion power. Likewise, solid propellants in rocket motors vent gases with pressures 
that range from 1 to 200 atmospheres, down to vacuum conditions. Many orders of magnitudes of pressure change are 
realized and the pressure gradient in propellant exhaust stream provides the means to generate thrust. The problem of 
computing the transition of material states from very high pressure to vacuum or near vacuum states is a generic one for 
any multi-material simulation where two materials may collide and have individual or shared boundaries, for which one 
of the materials is adjacent to a region with very low pressure and density or a vacuum. Difficulties generally arise if the 
region of expansion between the high and low pressure regions is not accurately computed.

A time of flight mass spectrometry (TOFMS) experiment by Fossum et al. [2], initiated small samples of energetic ma-
terials by laser flyer plate impact. After impact, the products expanded into a vacuum region where spectroscopic analysis 
of the products was performed. A larger version of a similar experiment was carried out by Blais et al. [3] that used a 
large quantity of explosive to drive an ampule of nitromethane, which detonated upon being shocked. The premise of the 
TOFMS experiments is that the pressure drop caused by the expansion in a long vacuum region freezes/quenches the reac-
tion amongst product species in a sequential manner, ordered by the events in the reaction zone in the material that was 
established prior to the expansion. In order to interpret TOFMS experiments, accurate model simulations of the gas dynam-
ics of reacting multi-component mixtures are required. The range of thermodynamic states is extreme. The reactants start 
at standard room pressure and temperature conditions, are raised to high pressure, density detonation or highly shocked 
states in condensed materials, convert to (mostly) gas species products that expand to a vacuum or near-vacuum state. Such 
simulations are very challenging to carry out since non-ideal equations of state forms must be used for the reactants and 
products, and the location of the vacuum/materials boundary must be calculated in a precise manner.

Computational methods and techniques are not widely available for multi-component reactive flow, when the compo-
nents are subjected such huge ranges in the thermodynamics states. Since we had an interest in finding an accurate and 
robust way to simulate the TOFMS experiments, we decided to make a modification to the basic vacuum interface tracking 
algorithm pioneered by Munz [1]. Our extension is used in combination with a (now) standard, higher order, cell-based, 
totally variation diminishing (TVD) Euler scheme, in a fairly general multicomponent framework. One should be able to 
use our method to compute the approach to the vacuum in the continuum limit, and combine it with simulations of the 
Boltzmann equation or with molecular dynamic simulations. The continuum simulations we describe would generate the 
near vacuum continuum flows as a far-field limit, or be used to establish averaged initial conditions for molecular based 
simulations. In this paper, we describe these algorithms and implementations in detail, and present worked examples that 
simulate the flow in the TOFMS experiment as a targeted application.

Fig. 1 shows a sketch of a typical sequence of events that occur in a simulation of the quenching of blast products that 
expand into a vacuum region on the right. a) The explosive sample and vacuum regions are initially separated, prior to 
impact by the flyer. b) If the sample detonates, a detonation shock and its supporting reaction zone propagate through the 
explosive. c) The detonation wave hits the vacuum interface. d) Then a rarefaction travels back into the detonation reaction 
zone structure. As the pressure and density drop, the reactions amongst product species slow as the products flow into the 
vacuum section, past the detector which monitors the mass concentration of the products at a fixed probe locations. Since 
the number density drops in the vacuum region, the species are thought not to undergo significant collisions and hence no 
further chemical changes occur.
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1.1. Summary of the algorithms

The original work of Munz [1] proposed an approximation method that computes the fluxes, appropriate to the gas–
vacuum interface, and tracked the motion of the gas–vacuum boundary for an inert ideal gas. Our extended algorithm 
allows for reactive flow with general, non-ideal equation of state (EOS) in Mie–Gruneisen (MG) form for a reacting multi-
component mixture, adjacent to a vacuum interface. The formulation can be used to include an arbitrary number of chemical 
components or other state variables like porosity or particulate density, that could be included in the constitutive descrip-
tion. Our standard multi-component flow model has only one material velocity for the mixture. The corresponding gas 
dynamics formulations have only forward, backward acoustic characteristic and one material characteristic. The exact form 
of the vacuum Riemann problem can thus be handled in a standard and familiar way, albeit with complexities associated 
with the EOS that we describe in some detail. We note that Lee et al. [4] recently considered the Riemann problem for the 
MG EOS in their analysis of difficulties associated with contact discontinuities.

The extended vacuum tracking algorithm is described in the context of other supporting methods and solver algorithms. 
We use a cell-based reactive Euler solver that employs local cell-based Riemann problems for general EOS to compute the 
cell edge fluxes. Roe-average fluxes are used in the manner originally developed by Glaister [5], and extended by Xu [6], and 
Xu, Aslam and Stewart [7] for chemically reacting species. The reactive Euler equations are solved by source splitting with 
the first update as a solution to the Euler equations without source term, followed by an update of the (chemical) source 
terms. We will reference to the first update as the hydrodynamic update and the second update as the source term update. We 
have used 5th order Weighted Essentially Non Oscillatory (WENO) with 3rd order Runge–Kutta (RK) for the hydrodynamic 
update. Updates to the location and velocity of vacuum interface of material, and the special cell boundary flux calculations, 
use the extensions to the Munz [1] tracking scheme. We have verified our schemes against various examples found in the 
literature [1,5,8].

Care must be taken to accurately integrate the chemical source terms, because the rates in most kinetics schemes widely 
vary and can have both fast and slow time scales that are disparate. Colella et al. [9] were amongst the first to point this out 
for Arrhenius kinetics, applied to the calculation of gas-phase reacting flow. In this case it was advantageous to analytically 
integrate an approximate form of the source terms across a time step. However source term splitting treatments have been 
proven to work well (dating back to Colella’s original work) and are known to have good stability properties. In his thesis 
Xu [6] demonstrated that an algorithm of the same type we use here for non-ideal EOS forms, was second order accurate.

If one uses an inaccurate numerical method for the basic hydrodynamic solver, significant problems arise from inaccu-
racies in the evaluation of the sound speed c = √

∂ p/∂ρ|s in the vicinity of the vacuum region, in which case tracking the 
vacuum material interface becomes difficult or breaks down. Therefore in order to compute the flux state and velocity of 
the vacuum material interface, we work out the exact form of the isentropic expansion fan that vents to the interface. This 
connects the vacuum state to the state in the adjacent cell, and thus supplies the combined method with a physically accu-
rate value for the vacuum interface velocity. Since we allow for general equation of state, we must insist that the limiting 
behaviors of the EOS forms are such that the vacuum/material interface problem is well-posed. Fortunately, the conditions 
that define a well-posed vacuum Riemann problem (VRP) have been considered by Liu and Smoller [10] and they provide 
criteria on limiting functional form of the EOS as the material expands to the vacuum state of zero mass density. These 
conditions must be incorporated into the vacuum interface tracking method. We show that the Jones, Lee, Wilkins (JWL) 
EOS form, commonly used for product components, satisfies these conditions.

1.2. Paper outline

Section 2 describes basic model formulations that include the conservation laws, the mixture equation of state for a 
multi-component mixture with commonly used EOS forms for the components, that include ideal gas EOS forms and 
Mie–Gruneisen EOS forms. Details are given for the JWL EOS form for reactant and product components. Details for two 
component mixture closures are given. One is the standard pressure–temperature equilibrium closure (PT-EQB), and the 
other is an often-used, simpler, pressure equilibrium closure (P-EQB), that specifies a volume ratio between the components 
(instead of enforcing strict temperature equilibrium). Section 3 describes the numerical methods, with a brief review of 
basic methods for the compressible Euler equations. A brief description of the Riemann solver for general EOS is given fol-
lowed by the detailed discussion of the implementation of the vacuum tracking method for a general EOS in a reactive flow. 
Section 4 presents examples and applications. The first example describes a condensed explosive with ideal gas EOS forms 
for both the reactants and products. This is followed by a detailed simulation of a facsimile of the TOFMS experiment where 
a thin sample of PETN is hit by an impactor and whose products are vented into the long vacuum region of the experiment. 
The components are modeled with non-ideal MG EOS forms. We also discuss the sensitivity of the simulation results to the 
different mixture closure conditions, pressure, temperature equilibrium (PT-EQB) and pressure equilibrium (P-EQB).

2. Basic model formulations

Here we give the formulations for the physical models of interest. The models apply to a mixture of compressible fluids 
with N distinct species. The fluid mixture is assumed to have a single mixture material velocity u, pressure p, and generally 
a single temperature T (although that is not strictly required). Each species will be assumed to be specified by its separate 
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equation of state, and the mixture energy that is used to define the equilibrium potentials will neglect mixing terms, that 
can sometime be included in the theory of liquid mixtures. Hence the mixture is ideal, although the equation of state 
(EOS) forms are not necessarily those of the ideal gases. We assume that the EOS forms provided by the model allow for 
a continuous and smooth approach to zero density, i.e. to the vacuum state. That will allow us to calculate reasonable 
mixture velocities and track the location of vacuum material interface. It is understood that the continuum limit breaks 
down at a true vacuum and the model only predicts some limiting approximation (from the continuum limit side) of the 
states near the material/vacuum interface. The description of the transition to vacuum on the molecular scale requires the 
implementation of additional models, that are not the subject of this work. Thus the flow simulations as shown in the 
section for examples are restricted to extremely low but non-zero densities, where the continuum approximations are still 
reasonable.

2.1. The governing equations

It is useful to present all three forms of the governing equations, the primitive, conservation and characteristic forms. 
The basic numerical scheme in the body of the fluid uses the conservative form, while the vacuum interface approximation 
require the characteristic form. The primitive form of the governing conservation laws for mixture mass, momentum, energy, 
and mass fraction of identified chemical species are respectively

ρ̇ + ρ∇ · v = 0 , (1)

ρ v̇ = −∇p , (2)

ρė + p∇ · v = 0 , (3)

ρλ̇i = rλi , (4)

where we use the “dot” notation is used for the material derivative (̇ ) = ∂/∂t + v · ∇ . The variables ρ = 1/v , e, v and 
λi are the mixture density (its reciprocal, specific volume), specific internal energy, mixture velocity and mass fraction of 
the ith-species respectively. The one-dimensional conservative form of the Euler equations for reactive flow in the multi-
component mixture (illustrated for two independent components/reactions, λ1, λ2) are:

∂U
∂t

+ ∂F(U )

∂x
= S(U) (5)

U =





ρ

ρu
ρE
ρλ1

ρλ2




F =





ρu
ρu2 + p

(ρE + p)u
ρuλ1

ρuλ2




S =





0
0
0

ρrλ1

ρrλ2




, (6)

and

E = e + 1
2

u2 . (7)

Riemann problems and the methods for solving these hyperbolic equations are based on the characteristic form of the 
equations which we list below in one spatial dimension, x

∂ p
∂t

+ (u + c)
∂ p
∂x

+ ρc
[

∂u
∂t

+ (u + c)
∂u
∂x

]
= ρc2(σ · r) , (8)

∂ p
∂t

+ (u − c)
∂ p
∂x

− ρc
[

∂u
∂t

+ (u − c)
∂u
∂x

]
= ρc2(σ · r) , (9)

∂ p
∂t

+ u
∂ p
∂x

− c2
(

∂ρ

∂t
+ u

∂ρ

∂x

)
= ρc2(σ · r) , (10)

∂λi

∂t
+ u

∂λi

∂x
= rλi . (11)

The sound speed c2 and the thermicity σ · r are given by

c2 = ( ∂e
∂v |p,λi + p)v2

(
∂e
∂ p |v,λi

) with σi = 1
ρc2

(∂e/∂λi)|p,v

(∂e/∂ p)|v,λi

and σ · r =
N∑

i

σirλi , (12)

respectively, and where the specific internal energy is of the form e(p, v, λi). The equations above, written as ordinary 
differential equations on their respective characteristics, are given by
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dp
dt

+ ρc
du
dt

= ρc2(σ · r) on C+: dx
dt

= u + c , (13)

dp
dt

− ρc
du
dt

= ρc2(σ · r) on C−: dx
dt

= u − c , (14)

dp
dt

− c2 dρ

dt
= ρc2(σ · r) on C0:

dx
dt

= u , (15)

dλi

dt
= rλi on C0:

dx
dt

= u . (16)

2.2. Mixture equation of state

We assume that the fluid mixture is comprised of N chemical components. A complete equation of state is supposed to 
be given for each component (species). One can suppose that a Gibbs free energy form is provided for each component that 
specifies that energy at a fixed temperature and pressure in the form gi(p, T ), which is a complete equation of state, Callen 
[11], from which we can write the specific internal energy and pressure, volume temperature equation of states, in the form

ei(p, vi) and vi = vi(p, T ) . (17)

The internal energy and volume are extensive thermodynamic quantities, so the contribution from each component add 
in a fixed volume of mixture in proportion to the relative masses of the components. Additional contributions due to 
the intermolecular mixing are neglected. If the mass fraction of each component is λi , then the specific energies and the 
volumes of the mixture can be written as the sums

e(p, T ;λi) =
N∑

i=1

ei(p, vi(p, T ))λi and v(p, T ;λi) =
N∑

i=1

vi(p, T )λi , (18)

with 
∑N

i=1 λi = 1. For fixed mixture energy and volume and internal composition, the first and second equation of Eq. (18) 
are implicit equations for the pressure and temperature, (p, T ).

We require the regularity conditions on the equation of state, called the Liu–Smoller conditions (see [10]), when the 
density approaches to zero density on an isentrope. The pressure relations modeled by the mixture EOS (18) should satisfy

p(0) = 0,
∂ p (0)

∂ρ
|s = 0, and

∂ p
∂ρ

|s > 0,
∂2 p
∂ρ2 |s > 0 for ρ > 0 . (19)

In order to model a particular energetic or explosive material, one must identify all the components and their EOS forms 
for each component. The ideal gas EOS form is often used in detonation theory, [12], and is also the EOS form that was 
used by Munz to establish his original vacuum tracking algorithm. We describe those common EOS forms next.

2.2.1. Ideal gas EOS forms for the components
When all the components are specified by the ideal EOS form with constant specific heats of formation, we write

ei = 1
γi − 1

pvi + ei0 , (20)

where γi = cpi/cvi (the ratio of specific heats) and ei0 is the heat of formation of the i-th component. We also use the 
notation ωi ≡ (γi − 1). The component gas constant is Ri = cvi(γi − 1), and the p, vi , T EOS is given by

pvi = Ri T (21)

The mixture energy and mixture volume are given by

e = p
∑

i

vi

γi − 1
λi +

∑

i

ei0 λi , and v = T
p

∑

i

Ri λi . (22)

The first part of Eq. (22) can also be written as

e =
(

∑

i

cviλi

)

T +
∑

i

ei0λi . (23)

2.2.2. A Mie–Gruneisen EOS form for components
A e(p, v) form of Mie–Gruneisen (MG) EOS for components is explicitly linear in the pressure p and generally nonlinear 

in the specific volume, and can be written (dropping the i-subscript temporarily) as

e(p, v) = es(v) + v
&

(p − ps(v)) ≡ A(v) + G(v)p (24)
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The functions es(v), ps(v), and v/! are functions that are determined from EOS calibration experiments. Often es(v) and 
ps(v) are identified as the internal energy and pressure at reference states on some specified, well-identified and measur-
able thermodynamic process, such as the states on a p, v expansion isentrope, or a shock Hugoniot. Here they are simply 
regarded as known functions of the specific volume, v . The Mie–Gruneisen coefficient ! is often assumed to be a constant 
or simply a function of v . We note that the ideal EOS forms are in this MG class, so the MG forms are inclusive of the ideal 
EOS forms.

2.2.3. The Jones, Lee, Wilkins (JWL) EOS form for components
The Jones, Lee, Wilkins (JWL) EOS form for components is in the MG class, and is probably the most commonly used 

EOS form for engineering studies of reactive flow in explosives. For example, the chemical equilibrium code Cheetah [13]
automatically generates JWL equation of state for reaction products. The JWL EOS forms are often paired with the “Ignition 
and Growth” reaction rate models that were pioneered by Lee and Tarver [14]. Many highly used explosive compounds such 
as HMX, RDX, PETN, TATB, TNT, etc. are modeled with MG EOS forms, paired with Ignition and Growth kinetic rate models 
that describe the rate of overall decomposition from reactants to products.

A standard convention is to use a lower case letter for specific internal energy (as in e) and a upper case letter for energy 
per unit volume E . An upper case V to represent the specific volume ratio relative to a reference volume (as in V = v/v0). 
Then for each component the JWL and thermal EOS is given by

p = Ai exp−R1i V i +Bi exp−R2iV i +ωi Cvi

V i
T with V i = vi

v0
, (25)

and the JWL EOS form are given by the e(p, vi) mechanical EOS given by

Ei = Es
i (V i) + V i

ωi

[
p − ps

i (V i)
]
+ E0i , (26)

with

Es
i (v) =

(
Ae−R1i V i

R1i
+ Be−R2i V i

R2i

)
and ps

i (V i) =
(

Aie
−R1i V i + Bie

−Ri2 V i
)

. (27)

With ei = Ei v0 one has

ei = es
i (vi) + vi

ωi

[
p − ps

i (vi)
]
+ e0i , (28)

with es
i (vi) = Es

i v0. The constants Ai , Bi , R1i , R2i , ωi and Cvi ≡ cvi/v0 are the JWL component EOS constants; e0i is the 
reference energy and v0 is a standard reference volume of the original, unshocked mixture.

2.2.4. A mixture EOS of reactant and product components for the JWL EOS forms
Next suppose we specify that the mixture is composed of only two species/components reactants (R) and products (P). 

Both are assumed to be modeled by the JWL EOS forms. The material decomposes by the reaction R → P , during which the 
reactant and product are assumed to be in pressure and temperature equilibrium. The product mass fraction is taken be λ
while the reactant mass fraction be 1 − λ. An R subscript is used to denote reactant and P for product. Given the energy e
and a mixture volume v , the constraints (18) become

e = λ eP (p, v P (p, T )) + (1 − λ) eR( p, v R(p, T )) , (29)

v = λ v P (p, T ) + (1 − λ) v R(p, T ) . (30)

Since the JWL forms (25) and (26) are not generally linear in the specific volume, the volume dependence is implicit 
in p, T . Given specified values for e, v , λ, Eqs. (30) and (29) are two equations for p and T . The solution completes the 
EOS description for the mixture, and defines the PT-EQB closure. There are many ways to find the roots but all involve 
an iteration to find roots of a pairs (or n-tuples) of equations. For the specific choice of the MG, JWL EOS forms for two 
components, the problem of finding the (p, T ) root pairs can be reduced to a single scalar unknown. Next we present a 
simple robust algorithm that can be used to find the roots.

2.2.5. Determination of the (p, T ) (Gibbs) equilibrium states
We present a simple way to compute the PT-EQB for JWL EOS forms, that can be used for N components; illustrated for 

three that can be extended simply to N . The mechanical and thermal EOS forms can be represented as

ei(p, vi) and p = p(vi, T ) ,

for some fixed temperature and pressure, where ei, vi are the specific energy and volume for that component. The mixture 
energy and volume are represented as a sum over the components

e = λ1e1 + λ2e2 + λ3e3 , and v = λ1 v1 + λ2 v2 + λ3 v3 . (31)



164 S. Choi et al. / Journal of Computational Physics 296 (2015) 158–183

Use v1 as a reference volume and define the component volume ratios

!2 = v2/v1 and !3 = v3/v1 , (32)

which combined with the second equation in Eq. (31) solves for the component volumes in term of the mixture volume 
and the ratios, to obtain

v1 = v
λ1 + λ2!2 + λ3!3

, v2 = v!2

λ1 + λ2!2 + λ3!3
, v3 = v!3

λ1 + λ2!2 + λ3!3
. (33)

Using the forms (28) for ei in (31) obtains

e = p
∑

i

vi

ωi
λi +

∑

i

[es
i (vi) − vi

ωi
ps

i (vi)]λi +
∑

i

ei0λi . (34)

Solving for p gives

p =
[

e −
∑

i

[es
i (vi) − vi

ωi
ps

i (vi)]λi −
∑

i

ei0λi

]

/[
∑

i

vi

ωi
λi] . (35)

The pressure is now explicitly determined by direct evaluation once the mixture energy e and the volume ratios !2, !3
are known. Thus one needs two (2) residuals to determine the correct values of !2 and !3. Those residuals come from 
setting the temperature of the component (species) equal. For the case of three components there are two such equivalences, 
i.e. T ≡ T1 = T2, and T2 = T3. For N components there are N −1 volume ratios and, likewise N −1 temperature equivalences.
For the 3-component case, with the JWL, MG forms, these equivalences are

T = 1

C1
v

V 1

ω1

[
p −

(
A1 e−R1

1 V 1 + B1 e−R1
2 V 1

)]
= 1

C2
v

V 2

ω2

[
p −

(
A2 e−R2

1 V 2 + B2 e−R2
2 V 2

)]
, (36)

T = 1

C3
v

V 3

ω1

[
p −

(
A3 e−R3

1 V 3 + B3 e−R3
2 V 3

)]
= 1

C2
v

V 2

ω2

[
p −

(
A2 e−R2

1 V 2 + B2 e−R2
2 V 2

)]
, (37)

recast as the pair

1

C1
v

V 1

ω1

[
p − ps

1(V 1)
]
= 1

C2
v

V 2

ω2

[
p − ps

2(V 2)
]

,
1

C3
v

V 3

ω3

[
p − ps

3(V 3)
]
= 1

C2
v

V 2

ω2

[
p − ps

2(V 2)
]

, (38)

that defines the two residuals. For a two component case only one residual is required.
The roots are determined by the following steps. 1) Specify the mixture values of v and e and the reaction progress 

variables, λi . 2) Make an initial guess for !2 and !3 (say) and then the values of the component volumes (for the example: 
v1, v2 and v3 are computed. 3) Then the residuals defined by Eq. (38) can be evaluated. 4) Iterate using the residuals to find 
the root. Any reasonable root procedure can be used. Newton–Raphson works well and converges in a few steps. In special 
cases direct searches can be used. The initial guess for the volume ratios are usually determined from the previous (time 
step) physical state, so good quality initial guesses are in abundance. The convergence of the root finding procedure then 
determines all the component ratios, which in turn can be used to directly compute the pressure from (35) and temperature 
from (36) or (37).

3. Numerical methods

3.1. The Euler solver

A typical numerical solution of our equations would use operator splitting that updates a discrete approximation to the 
source free Euler equations, followed by an update of the source terms. The latter generally requires a stiff ODE solver that 
can handle the stiff reaction terms. In our implementation we used the splitting methods described by Toro [8]. A Roe-type 
solver is used to update the source free Euler equations, and a stiff ODE package, Livermore Solver of Ordinary Differential 
Equations (LSODE) [15], is used to update the source terms for interior points in the domain. The first update takes the 
initial data at the current time tn and solves the source free Euler equations and returns the updated states at tn+1. Thus

CYCLE 1: The Hydrodynamic update: Solve

Ut + F(U)x = 0 , (39)

subject to the initial condition U(x, tn) = Un , and return the solution at tn+1 so that Uhydro ≡ U(x, tn+1).

The second source term update uses the first update as the initial conditions at tn , and then solves just the temporal ODES 
with the source terms, to generated the final update at tn+1. Thus
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CYCLE 2: Source term update: Solve

dU
dt

= S(U) , (40)

subject to the initial condition U(x, tn) = Uhydro , and return the solution at tn+1, U(x, tn+1) = Un+1.

The hydrodynamics updates Uhydro obey (39) and their cell state averages Ūn
i+1/2, centered at i + 1/2, are advanced in 

the standard way as

Ūn+1
i+1/2 = Ūn

i+1/2 − !t
!x

[Fi+1 − Fi] , (41)

where Fi+1 and Fi are numerical fluxes at the cell boundaries. The numerical flux is computed by using Roe’s approximation 
as follows:

Fi+1 = 1
2

(F(UL) + F(UR)) − 1
2

∑

i

∣∣∣!̃i

∣∣∣ α̃i R̃ i . (42)

The vectors UL and UR in Eq. (42) are the state vectors at cell interface at ith grid point and these two vectors were obtained 
by using WENO scheme, which were first introduced by Harten et al. (see [16]). The details of WENO reconstruction are 
found in [7,17,18] for example. The other quantities α̃i , #̃i , R̃ i in Eq. (42) are the vector α, matrices functions !, and R
applied at Roe averaged state Ũ. Those computations require the Jacobian of the exact system given by

J (U) = ∂F
∂U

=





0 1 0 0 0
c2 − u2 − p,e

ρ (H − u2) − λ1 p,λ1
ρ − λ2 p,λ2

ρ 2u − up,e
ρ

p,e
ρ

p,λ1
ρ

p,λ2
ρ

u
(

c2 − H − p,e
ρ (H − u2) − λ1 p,λ1

ρ − λ2 p,λ2
ρ

)
H − u2 p,e

ρ u
(

1 + p,e
ρ

)
u

p,λ2
ρ u

p,λ2
ρ

−uλ1 λ1 0 u 0
−uλ2 λ2 0 0 u




, (43)

where

H = e + 1
2

u2 + p
ρ

and c2 = p,ρ + p
ρ2 p,e , (44)

and the comma notation subscript denotes the partial derivative with respect to thermodynamics argument.
The Jacobian can be diagonalized and has real eigenvalues (the characteristic wave speeds) and real eigenvectors accord-

ing to

J = R!R−1 , (45)

where R is identified as the matrix composed the right eigenvectors of J (columns)

R(U) =





1 1 1 0 0
u − c u u + c 0 0

H − uc H − p/ρ − ρ
pρ

p,e
H + uc − p,λ1

p,e
− p,λ2

p,e

λ1 λ1 λ1 1 0
λ2 λ2 λ2 0 1




, (46)

and ! is the diagonal matrix corresponding to the eigenvectors

# = diag [(u − c), u, (u + c), u, u] . (47)

The Roe averaged states are defined by

Ũ = [ρ̃, ũ, ẽ, λ̃1, λ̃2], (48)

where
ρ̃ = √

ρR ρL, (49)

ũ =
√

ρL uL + √
ρR uR√

ρL + √
ρR

, (50)

ẽ =
√

ρL eL + √
ρR eR√

ρL + √
ρR

, (51)

λ̃1 =
√

ρL λ1L + √
ρR λ1 R√

ρL + √
ρR

, (52)

λ̃2 =
√

ρL λ2L + √
ρR λ2 R√

ρL + √
ρR

. (53)
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Fig. 2. (a) A solution of Vacuum Riemann Problem: This solution is not possible if UR is a vacuum state. (b) A possible solution of a Vacuum Riemann 
Problem.

The enthalpy H in J (U) is also computed in the same way,

H̃ =
√

ρL H L + √
ρR H R√

ρL + √
ρR

. (54)

Detailed derivations of Roe average and the pressure derivatives of the averages can be found in Roe [19,20], Glaister [5], 
Xu [6] and elsewhere.

3.2. Vacuum Riemann problem (VRP) and vacuum tracking method for non-ideal EOS

The vacuum Riemann problem (VRP) is by definition a Riemann problem with vacuum initial condition on one side 
and a constant state at another side of a computational domain. The vacuum is defined such that the mass density in the 
geometrical domain of the vacuum is zero, i.e. there is an absence of material. Consider the situation with the presence of 
vacuum in the right state (x > 0). In the vacuum region, the conserved variables are zero so that the sound velocity and 
pressure will also be zero. The VRP for the source free Euler equations can be written as

∂U
∂t

+ ∂F(U)

∂x
= 0 , (55)

and the initial condition is

U(x,0) =
{

(ρL, uL, eL,λL 1,λL 2) for x < 0 ,
(0,0,0,0,0) for x > 0 .

(56)

The vacuum Riemann problem has a solution structure that is different from a conventional Riemann problem, but it can 
be obtained as a limit of the conventional Riemann problem [21,8].

We start with a brief description of the vacuum Riemann problem and Munz’s tracking method and then extend the 
algorithm for a general EOS of the form p = p(v, e, λ1, λ2). Fig. 2(a) shows a Riemann problem that consists of constant 
left state UL , that is connected to a left-going fan, that terminates on a constant state U1 that has a particle velocity that 
defines a contact line in x, t space. The right state UR is connected by a right going shock to another constant state U2
whose pressure and particle velocity (but not necessarily the density) must match across the contact discontinuity to the 
constant state U1. Fig. 2(b), shows a left state UL , that is connected by a single (left-going) rarefaction fan that terminates 
on the vacuum state denoted, U0. In what follows, the velocity of the material vacuum interface (MVI) is uv .

Next we recount the argument that the scenario shown in Fig. 2(a), cannot be used as a solution to the VRP (or rather 
its analysis collapses the configuration to that shown in Fig. 2(b)). Given the configuration shown in Fig. 2(a), the jumps in 
the state across the right-going shock with speed S (say) must obey the standard Rankine–Hugoniot conditions for fixed 
composition,

ρ2u2 − ρ0u0 = S(ρ2 − ρ0) , (57)

ρ2u2
2 + p2 − (ρ0u2

0 + p0) = S(ρ2u2 − ρ0u0) , (58)

u2(ρ2 E2 + p2) − u0(ρ0 E0 + p0) = S(ρ2 E2 − ρ0 E0) . (59)

The state on the left side of the shock as shown is the state U2. In this case we have ρ0 = 0, and this leads to the conclusion 
that

u2 = u0 = S, p2 = p0 . (60)

But if UR is the vacuum state U0, then p0 = 0, hence p2 = 0. The conditions across the contact discontinuity show that 
p1 = 0. The solution scenario shown in Fig. 2. If the regularity conditions (19) are imposed, then the zero pressure state is a 
zero density state. Hence both states U1 and U2 are vacuum states, now connected to a left-going rarefaction fan. Therefore 
the solution of VRP with vacuum right state consists of left rarefaction wave and the tail of the rarefaction merges at the 
vacuum interface as shown in Fig. 2(b).
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Fig. 3. (a) Tracking of vacuum interface boundary in the case that the MVI moves across the cell interface xi+1. (b) The case of non-zero flux across the 
grid interface xi+1, denoted by Fi+1.

Thus Riemann problem for vacuum right state has the left non-vacuum constant states UL = (ρL, uL, pL) and the right 
vacuum state

U0 = (ρ0, u0, p0) ≡ (0,0,0), (61)

where uv is the velocity of the material vacuum interface (MVI). One elementary wave (isentropic, rarefaction fan) connects 
the left non-vacuum and the right vacuum state.

3.2.1. Numerical flux approximation
Numerical approximation of gas flow near the gas–vacuum boundary can give rise to severe difficulties in the numerical 

scheme, associated with zero or near-zero density used in mathematical model of the equation of state. The Munz approxi-
mation scheme [1] computes the flux at the gas–vacuum interface and simultaneously tracks the vacuum material interface. 
The original algorithm was developed for the case of inert, perfect gas. We use the Munz flux approximations and extend 
the algorithm updates to multi-component reacting flow uses non-ideal EOS forms that are commonly used in explosive 
modeling. First, we briefly describe the Munz flux formula, for completeness and to clarify the original presentation.

Let xn
v be the location of the material vacuum interface, with velocity un

v at the current time t = tn . The location of the 
MVI at time tn+1 is estimated by the advance

xn+1
v = xn

v + (tn+1 − tn)un
v . (62)

The numerical flux Fi+1 at the (i +1)th cell boundary is computed based on the estimated position of the MVI, see Fig. 3(a). 
If the MVI does not cross the cell interface at xi+1 at time tn+1, such that xn+1

v ≤ xi+1, then the interface lies in the vacuum 
during the time step and the flux Fi+1 is zero. If the MVI does cross the cell interface at xi+1 at time tn+1 (as shown), such 
that xn+1

v > xi+1 then the flux is computed by means of solving a local Vacuum Riemann Problem (VRP) centered at x = xn
v . 

The initial data for the VRP (for a right going MVI) is

U(x,0) =
{

UL for X < 0
U0 for X > 0 (63)

where U0 is the vacuum state and UL is a non-vacuum left state.
The VRP has the vacuum state on UR = U0 on the right. For the left state UL , Munz proposed an average that is weighted 

between the cell-centered states on the left and right of the xi interface

UL = αŪn
i+1/2 + (1 − α)Un

i−1/2 with α = xn
v − xi

xi+1 − xi
. (64)

The cell between xi and xi+1, has vacuum in the interval [xn
v , xi+1], with value Ūn

i+1/2 in that region. The average of the 
non-vacuum state over the entire cell is Un

i+1/2 is defined by Ūn
i+1/2(xn

v − xi) = Un
i+1/2(xi+1 − xi) such that

UL = Un
i+1/2 + xi+1 − xn

v

xi+1 − xi
Un

i−1/2 (65)

is used for the left state.
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Munz’ approximate solution to this VRP is

U(x, t) =






UL for X/τ < uL − cL
ULfan for uL − cL < X/τ < uv
U0 for X/τ > uv

(66)

where all the states are constants. The constant state ULfan is obtained by using the integral form of the conservation law, 
by integrating the conservation law over the region bound by X = −"x/2, X = uvτ and "t . See Fig. 3(b), gives

uv"t∫

−"x/2

U(x,"t)dX = "x
2

UL + F(UL)"t . (67)

The state U(x, "t) has the value ULfan for x ∈ [(uL − cL)"t, uv"t].
The state in that fan region is approximated with an averaged value ULfan . If one applies the integral conservation law to 

the region, x ∈ [−"x/2, xi+1] and t ∈ [tn, tn+1] one obtaines

(uL−cL)"t∫

−"x/2

U(x,"t)dX +
uv"t∫

(uL−cL)"t

U(x,"t)dX = "x
2

UL + F(UL)"t , (68)

or

(uL − cL)"tUL + "x
2

UL + [uv − (uL − cL)]"tULfan = "x
2

UL + F(UL)"t , (69)

which obtains the formula for ULfan

ULfan = F(UL) − (uL − cL)UL

uv − uL + cL
. (70)

This approximation is subject to the standard restriction that the waves generating from an interface do not interact within 
the cell by waves from adjacent cell interfaces, which implies the CFL condition

"t ≤ "x/2
Smax

, (71)

where Smax is the maximum wave velocity, i.e. max [ |uL − cL |, |uv | ].
The next step is to use the approximate solution (66), (70) to calculate the flux at xi+1, when xn+1

v > xi+1, see Fig. 3(a). 
The left non-vacuum states lie in the interval [−"x/2, 0] and the vacuum takes place in the shifted interval [0, "x/2]. 
Integrating the integral conservation law across the box from [−"x/2, xi+1 − xn

v ], and [0, "t], leads to

xi+1−xn
v∫

−"x/2

U(x,"t)dX = "x
2

UL + F(Ur
L)"t − Fi+1"t . (72)

This can be recast as
(ur

L−cr
L)"t∫

−"x/2

U(x,"t)dX +
xi+1−xn

v∫

(ur
L−cr

L)"t

U(x,"t)dX = "x
2

Ur
L + F(Ur

L)"t − Fi+1"t , (73)

and on the timeline t = tn+1 we use

U(x,"t) =
{

UL for −"x/2 < X < (uL − cL)"t
ULfan for (uL − cL)"t < X < (xi+1 − xn

v)
. (74)

From the approximate solution (66), and Eq. (72), we obtain

(uL − cL)"tUL + "x
2

UL + [xi+1 − xn
v − (uL − cL)"t]ULfan = "x

2
UL + F(UL)"t − Fi+1"t . (75)

By separate consideration of the cases when the left rarefaction boundary is such that ur
L − cr

L > 0 or ur
L − cr

L ≤ 0, the flux 
Fi+1 at xi+1 computed from (75) is written concisely as

Fi+1 = F(Ur
L) − 1

"t
min

[
(ur

L − cr
L)"t, xi+1 − xn

v
]

Ur
L

− 1
"t

max
[
0, xi+1 − xn

v − (ur
L − cr

L)"t
]

Ur
Lfan . (76)
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In summary, the method updates the interface location and determines approximate fan states in the MVI adjacent 
cell, consistent with the integral conservation law, then updates the flux at the vacuum interface boundary. The tracking 
method is only activated when the density of left (or right) local Riemann problem has a neighboring vacuum state. If any 
neighboring state is not a vacuum state, the algorithm computes the flux using the general Riemann solver (in our case the 
Roe-solver for general equation of state). A simple criterion is required to establish a vacuum (or extremely low pressure 
state). In our case a density cut off is used, and for the applications discussed in the following section sets the vacuum 
criteria to 10−9 g/cm3. When the ideal equation of state is used and no reaction occurs, the velocity xv of vacuum interface 
can be computed analytically as shown by Munz. However when non-ideal EOS for reactive flow is used, the computation 
of vacuum interface is not simple and depends on how the reaction quenches during the isentropic expansion. Furthermore 
an expression for the pressure in the isentropic fan cannot be obtained in closed form and numerical integration is required. 
We describe these essential considerations in the next section.

3.3. Considerations and the limiting conditions near the vacuum edge for multi-component reacting flow

In previous section, we described the basic tracking algorithm. Here we add the considerations required to employ the 
algorithm for a multi-component reacting flow with mechanical and thermal mixture EOS form expressed as of the form 
p = p(v, e, λi) and p = p(v, T , λi). Menikoff [22] worked the details for a complete MG EOS, which we choose to model the 
component EOS forms for the discussion in this section. We assume that

ei(p, vi) = es
i (vi) + vi

"i
(p − ps

i (vi) ) + e0i , (77)

where we assume that ps
i (vi) and es

i (vi) are specified reference functions, and in the case when an isentrope is used as a 
reference curve, es

i is such that ∂es
i /∂vi = −ps

i (vi). Both "i and e0i are assumed constants. If the specific heat is constant 
and the reference curve is an isentrope, Menikoff shows that the thermal equation of state is given by

p = ps
i (vi) + cvi "i

vi

[

T − T0

(
v0

vi

)"i
]

. (78)

The volume v0 is a reference volume. One can also work out the form for the component entropies, to obtain

si(p, vi) = s0i + cvi ln

[

1 + v0

"icviT0
[p − ps

i (vi)]
(

vi

v0

)1+"i
]

. (79)

The mixture energy and volume and entropy are given by

e =
∑

i

eiλi , v =
∑

i

viλi and s =
∑

i

siλi . (80)

In the region near the vacuum edge the flow is highly rarefied, and nearly collisionless so it is reasonable to assume that 
the reaction rates are zero (as is the basic premise of the TOFMS experiments), and hence isentropic. The task of working 
out the structure of the flow in the fan is the task of finding the isentrope in the vacuum fan solution. We briefly discuss the 
nature of that calculation using these non-ideal EOS forms, without further assumption, except that of isentropic expansion.

The analysis of the left rarefaction fan at the right edge of the domain then requires an expression for the p, v isentropes 
for the mixture. In turn this requires finding expressions (or numerically calculating) the values for the partial volumes 
vi(p, v) of components in the mixture. The mixture entropy is then given by

s =
∑

i

s(vi(p, v), p)λi (81)

and is found as a function of p, v and λi , in general. The determination of vi(p, v) depends on the forms of the mixture 
closure. If the mixture closure uses the PT-EQB, an iterative numerical solution is required even for a simplified version of 
the MG form. But that can always be done in principle, as the formulation is complete. The sound speed squared on the 
isentrope is given by c2 = ∂ p/∂ρ|s , and can be calculated

c2 = v2
(

p + ∂e
∂v

|p,λi

)
/

∂e
∂ p

|v,λi (82)

to obtain c2(p, v, λi). The constant entropy in the left state sL (say) can be used in (81) to generate the p, v isentrope that 
applies in the rarefaction of the form sL = s(p, v, λi). In turn this can be used to construct the solution and compute the 
MVI velocity.

An equivalent and computationally simple procedure is available by a directly integrating states through the fan as 
follows. From the consideration of the Generalized Riemann Invariants for the system (46) for the rarefaction wave µ1 =
u − c we have
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dρ = d(ρu)

u − c
= d(ρe)

H − uc
. (83)

The first equality in Eq. (83) gives a formula for the MVI velocity, uv where ρR = 0 and uR = uv as shown in Fig. 2(b).

uv = uL +
ρL∫

0

c
ρ

dρ . (84)

The second equality from Eq. (83), obtains the isentropic change of the internal energy in the isentropic expansion and is 
written as

de = p
ρ2 dρ . (85)

This equation can be used to derive a differential equation for p(ρ, λi). As an example, consider the equation of state 
defined by using the JWL EOS forms for two components as defined by Eq. (29). Using the form (34) the energy can be 
written as

e(p, v,λ) = A + G p (86)

where

A(v R , v p,λ) = (1 − λ)

(
es

R(v R) − v R

w R
ps

R(v R)

)
+ λ

(
es

P (v P ) − v P

w P
ps

P (v P )

)
, (87)

and

G(v R , v p,λ) = λ
v P

ωP
+ (1 − λ)

v R

ωR
. (88)

The closure condition is used to determine the component specific volumes v P and v R . The PT-EQB condition for the 
thermal EOS form is

T ≡ T R(v R , p) = T P (v P , p) , (89)

where T R and T P are obtained from the thermal EOS for the components. With $ = v P /v R , and Eq. (30) leads to

v R = v
1 − λ + λ$

, v P = v$

1 − λ + λ$
(90)

Eq. (89) determines a value of $(p, v) for fixed λ. Given a value λ, the functions A and G are functions of v and p. 
Then if we substitute Eq. (86) in (85) one obtains a differential equation for the pressure as a function of density for fixed 
composition, that holds in the rarefaction wave

dp
dρ

= 1

G + ∂ A
∂ p + p ∂G

∂ p

[{
1
ρ2 −

(
∂G
∂ρ

)}
p − ∂ A

∂ρ

]
, subject to p(ρL) = pL . (91)

Note that the c2 = dp/dρ on the isentrope. The interface velocity is then computed from (84) as

uI = uL +
ρL∫

0

1
ρ

√
1

G + ∂ A
∂ p + p ∂G

∂ p

[{
1
ρ2 −

(
∂G
∂ρ

)}
p − ∂ A

∂ρ

]
dρ. (92)

The pressure p in the integrand of Eq. (92) is the solution of the ODE (91).
Generally the ODE for p and the integral for uv must be computed numerically. However if the simpler P-EQB closure 

is used to compute the component volumes as in Stewart et al. in [23], then $ does not depend on pressure and the ODE 
(91) simplifies to

dp
dρ

= 1
G

[{
1
ρ2 −

(
dG
dρ

)}
p − dA

dρ

]
, subject to p(ρL) = pL, (93)

and can be integrated analytically to obtain the solution for p

p(ρ) = p1

(
ρ

ρ1

)&+1

+ &ρ&+1



A(ρ1)ρ
−&
1 − A(ρ)ρ−& + &

ρ1∫

ρ

Aρ−&−1dρ



 , (94)

where

& = (1 − λ + λ$) /

(
λ

ωp
+ (1 − λ)$

ωR

)
, (95)

so that G = v
& .
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At the limit of zero density, one must check the Liu–Smoller conditions (19) to make sure that the pressure and sound 
speed vanish as the density vanishes. The solution satisfies the end condition p(0) = 0. The derivative is given by

dp
dρ

= (" + 1)



 pL

ρ"+1
L

+ "
A(ρL)

ρ"
L

+ "2

ρL∫

ρ

A
ρ"+1 dρ



ρ" − "ρ
dA
dρ

− "(" + 1)A(ρ) , (96)

and the solution satisfies the Liu–Smoller conditions (19) if A = o(ρ"+1) and A′ = o(ρ"+1) as ρ → 0.
Physical consideration of the near collision limit of a vacuum would admit the reasonable approximation that each EOS 

for each gaseous component of the mixture limits to an ideal gas form. For each component in the limit of infinite volume, 
or zero density we would require that

es
i (vi) → 0 , ps

i (vi) ∼ cvi "i

vi

[

T0

(
v0

vi

)"i
]

→ 0 as ρi = 1/vi → 0 , (97)

so that in the limit of low densities the ideal EOS forms apply

ei(p, vi) ∼ pvi

(γi − 1)
+ e0i , and p ∼ Ri T

vi
, (98)

where cvi "i → Ri (the ideal gas constant weighted by the molecular weight of the component) and "i → γi − 1. One can 
view these additional requirements as a modeling statement that reflects the correct physics or simply a physically-based 
regularization for the model that is used only near the MVI. In either case the additional requirement that each gaseous 
component EOS form limits to ideal EOS form when PT-EQB is used as the mixture closure model, will guarantee that the 
Liu–Smoller conditions are met which we show next.

For the conditions near the MVI, the state will be such that the EOS forms of the components of the mixture limit to 
the ideal EOS forms. For fixed pressure and temperature, we can take the expression for the partial volumes and sum them 
over the components to obtain

v =
∑

i

viλi =
(

∑

i

Riλi

)
T
p

= RT
p

(99)

where R = ∑
i Riλi is the mass weight ideal gas constant. Then specific energy of the multi-component mixture limits to

e ∼ pv
γ − 1

+
∑

i

ei0λi , with
1

γ − 1
≡

(
∑

i

λi

(γi − 1)

Ri

R

)

(100)

and where we have used T ∼ pv/R and identified, and γ is a function of the composition. Then the standard formula for 
sound speed squared

c2 = γ pv (101)

and the isentrope in the fan expansion is given by
p

ργ
= κ , (102)

where the constant κ is also a function of the frozen composition, which determines γ . If these limiting forms for the 
EOS are used then the Liu–Smoller conditions are satisfied since p/ργ = κ = pL/(ρ

γ
L ) > 0 and c2 = γ p/ρ implies c =√

γ κ ρ(γ −1)/2 with the properties that

c(ρ) > 0 for ρ > 0 and c(0) = 0 , (103)

and
ρL∫

0

c
ρ

dρ = 2
√

γ κ

γ − 1
ρ

(γ −1)/2
L bounded . (104)

It is important to compute the integral (92) carefully, since there is often an abrupt change in the states through the 
rarefaction, especially when a shock wave first hits the MVI. To avoid singularity occurring from lower limit of the integrand 
in (92), we always split the integration into two pieces as shown in Fig. 4. We define a cut-off density ε that is small 
enough to ensure that the ideal gas limiting form is a good physical approximation to the flow, and write the integral

ρL∫

0

c
ρ

dρ =
ε∫

0

c
ρ

dρ +
ρL∫

ε

c
ρ

dρ . (105)
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Fig. 4. Two ranges of integration of Eq. (105).

For a given specified value of ε , with 0 < ε << 1, the first term of (105) is evaluated with Eq. (104)

ε∫

0

c
ρ

dρ = 2
√

γ κ

γ − 1
ρ

(γ −1)/2
L , (106)

and the second integral is computed numerically using the Romberg’s method [24].
As an example, the JWL EOS forms are MG forms that are commonly used to model explosives and they have the 

property that they limit to ideal EOS forms as the component densities vanish. A JWL EOS for a component takes the form

ps
i = Aie

−R1i(vi/v0) + Bie
−R2i(vi/v0) + Ri T0

v0

(
v0

vi

)γi

,

es
i = Ai

R1i
e−R1i(vi/v0) + Bi

R2i
e−R2i(vi/v0) + Ri T0

(γi − 1)

(
v0

vi

)(γi−1)

(107)

and as ρi = 1/vi → 0, it follows that (97) holds. Thus the JWL EOS behaves like the ideal gas near vacuum region or density 
is very small, which is a feature built into the JWL EOS calibration.

If the non-ideal EOS forms for the components do limit to the ideal EOS forms in the limit of vanishingly small density, 
then the classic fan analysis will hold at the extreme edge of the fan. Even then we make the observation that the computed 
MVI velocity can be very sensitive to the limiting values of the flow near the fan when the reaction ceases, since the 
composition of the frozen/quenched products determines the mass fraction weighted value of γ of the mixture.

Close to the MVI assume that the expansion to vacuum occurs by a left-going isentropic fan seeded by a constant left 
state that lies in a region a nonzero density, but where the ideal EOS forms are applicable. This would be a point close to 
the MVI edge, but to the left of it (say). Then the particle velocity and speed relation hold between the defined left state 
and any state to the right toward the MVI, i.e.

u + 2c
γ − 1

= uL + 2cL

γ − 1
. (108)

Eq. (108) can be used to illustrate why the tracking of vacuum interface numerically can be very difficult if done without 
knowledge of the analytical character of the fan solution.

Since the fan boundary at the MVI is characteristic, then uv = X/τ , and this is consistent with setting u = uv and 
ρ = c = 0 at the vacuum interface. Then (108) becomes

uv = X/τ = uL + 2cL

(γ − 1)
. (109)

Eq. (109) could be used to compute uv near the interface, but since the Liu–Smoller requirement insists that in a (compu-
tationally) small neighbor of the interface cL → 0, under resolution, then this relation is simply the identity uv = X/τ = uL .

But now consider Eq. (108) in the same small neighborhood, and consider another neighboring state to the right of the 
same left state in the left fan. We identify this state with a vacuum cut-off density d (say) to designate being close enough 
to the MVI. Replace uv = X/τ , as before, but estimate the sound speed which is a function of ρ at the vacuum cut off as

c(d) = cL

(
d
ρL

)(γ −1)/2

(110)

in which case (108) becomes

uv = uL + 2cL

γ − 1
− 2cL

γ − 1

(
d
ρL

)(γ −1)/2

. (111)

There are clearly many ways to go wrong if the local approximations near the vacuum interface are not accurate, incon-
sistent with the Liu–Smoller conditions or inconsistent with the fan structure. The greatest sensitivity in the formulas are 
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Fig. 5. The plot of interface velocity function uv (d) shown in Eq. (111) with ρL = 3.0e−8 [g/cm3], pL = 3.6e−8 [GPa], uL = 16.5 [mm/µs].

illustrated by the dependence on the local value of γ . As γ → 1 the interface velocity function (111) becomes singular, and 
thus is very sensitive to γ . Fig. 5 shows the plot of velocity uv (d) of Eq. (111) as a function of density d for different values 
of γ ; i.e. γ = 1.2, 1.4, 1.8, and 2.0. The left state variable ρL , pL and uL shown in Eq. (111) was set to actual computational 
values at time t = 1.5 µs used in the PETN problem in Section 4.2. As shown in the figure, the interface velocity increases 
rapidly and the slope of uv (d) becomes very large as γ decreases toward one. Also it is clear from the dependence of 
ρL in the denominator of Eq. (111) that if the monotonically decreasing ratio of (d/ρL) is not maintained correctly in the 
approximation scheme, even for fixed cL that the prediction of the interface velocity can be made highly inaccurate. Since γ
is a function of the mass fraction as seen in Eq. (100), it is dependent on the composition of the products near the vacuum 
edge. Thus the details of the kinetic rate law and how the reactions quench, does matter in the calculation of the MVI 
velocity uv .

The conclusions from the simple considerations above are independent of the grid resolution. The vacuum tracking 
algorithm uses the fan solution that maintains the correct limiting forms, derived from the EOS forms of the underlying 
model as the vacuum state is approached. The requirement that the EOS forms limit to the ideal EOS forms and that the 
reaction stops, is easy to implement and is physically consistent. The JWL EOS form is an example of a non-ideal form that 
has the correct properties and the Liu–Smoller condition are automatically satisfied. Any vacuum tracking scheme that would 
work similarly, must employ consideration of the EOS forms used for the mixture in the vicinity of the vacuum, otherwise 
large and likely catastrophic inaccuracies will occur that will destroy any simulation that has a vacuum or extremely low 
pressure regions. In the next section, we demonstrate application of the algorithms with examples that explicitly uses ideal 
and nonideal EOS forms for the mixture of reactants and their products.

4. Examples and applications

In this section, we demonstrate the applicability of our algorithm through two representative numerical simulations. The 
first example uses the ideal equation of state. The second example is representative of the TOFMS experiments which uses 
the non-ideal JWL EOS forms for reactants and products.

4.1. Example 1: An explosive modeled by the ideal gas EOS form whose products expand into a vacuum

In many theoretical studies of high explosives (that are condensed solids at their initial state), the flows are modeled 
with the ideal EOS forms for a mixture of reactants and products. The reader is referred to Fickett and Davis [12]. We used 
values listed in their text for this example [12, Chapter 2, C2, p. 46]. The EOS is given by

e(p, v,λ) = pv
γ − 1

− Q λ . (112)

The density in the unreacted explosive is assumed to be ρ0 = 1.6 g/cm3. For the choices γ = 3.0, and Q = 4.5156 MJ/kg, 
the Chapman–Jouguet (CJ) detonation velocity and pressure are DCJ = 8.5 mm/µs and pCJ = 28.9 GPa, respectively.

The computational domain is taken to be 50 mm long. The boundary at x = 0 is an outflow boundary that enforces 
zero gradients. The material in the region 0 ≤ x < 20 mm is assumed to be a uniform, completely reacted, CJ detonation 
state with the state vector as UCJ = (ρ, u, p, λ) = (ρCJ, uCJ, pCJ, 1). In the strong shock approximation, the CJ states are 
ρCJ = (γ + 1)/γ )ρ0, uC = DCJ/(γ + 1), and pCJ = ρ0 D2

CJ/(γ + 1). The material between 20 ≤ x < 30 mm is assumed to be 
at a uniform, completely unreacted, motionless state at an initial density ρ0, but at zero pressure with UHE = (ρ, u, p, λ) =
(ρ0, 0, 0, 0). The region to the right of x = 30 mm is assumed to be the vacuum state U0 = (0, 0, 0, 0). Thus the initial values 
are given by
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Table 1
Initial conditions for the simulation in Example 1.

State Reacted CJ state Unreacted CJ state Vacuum state

U 0 < x < 20 20 < x < 30 20 < x < 30
ρ 2.133 g/cm3 1.6 g/cm3 0
u 2.125 mm/µs 0 0
p 28.9 GPa 0 0

U(x) =






UCJ (reacted CJ) if x < 20
UHE (unreacted HE) if 20 ≤ x < 30
U0 (vacuum) x > 30

(113)

and listed in Table 1. The reaction rate in the explosive is taken as

λ̇ = (5.0)(1 − λ)0.5
(

p
pCJ

)3

µs−1, (114)

The initial high pressure, density, particle velocity state, UCJ introduces a shock into the unreacted HE at the x = 20 mm
interface and initiates a detonation wave, that builds up and runs in the unreacted HE towards the vacuum interface initially 
at x = 30 mm. Since the pressure in the unreacted HE is zero, there is no initial expansion into the vacuum, so the MVI at
x = 30 mm is motionless until the detonation shock hits the interface and the detonation products start to vent into the
vacuum region. The initiated detonation becomes nearly steady, with a von Neumann spike shock pressure of about 55 GPa 
pressure at approximately t = 1.3 µs. At that time it encounters the previously static vacuum interface. After the detonation
shock and the following flow in the detonation reaction zone hits the vacuum interface at x = 30 mm, the detonation
shock disappears and a rarefaction wave is sent backwards to the left into the gas flow. Since reaction rate in the explosive 
is a function of the pressure, the reaction rate in the fan region drops as the pressure drops. Figs. 6 and 7 show the state 
variables at different times and show the formation of a detonation, followed by the expansion of products as they vent into 
the vacuum region. The simulation uses 5000 grid points for the entire domain, and exhibits cleanly defined, well-resolved 
features and a sharply defined MVI motion.

4.2. Example 2: detonation of pentaerythritol tetranitrate (PETN) whose products vent to vacuum

Next we describe a simulation of the expansion of PETN products into a vacuum, that represents a facsimile of TOFMS 
experiments. The JWL EOS parameters for reactants and products are chosen to match experimental data obtained from 
macroscopic detonation experiments on PETN [26]. These experiments include those that determine: a) the unreacted shock 
Hugoniot or U p–Us relation, b) the overdriven detonation shock Hugoniot for the products, and c) the products expansion 
experiments that determine constants for the products JWL EOS [27,25,28,26]. The reaction rate parameters are determined 
from shock initiation experiments that determine the distance and time to detonation as a function of the shock input 
pressure into the sample. The reader can find details on how the equation of state and rate law parameters are fit to 
explosives in recent review papers [29,30].

We use model parameters reported by Tarver et al. in [26]. The calibrated parameters of the JWL EOS forms for the 
reactant and product are given in Table 2. The reference density is given by ρ0 = 1.778 g/cm3. The JWL product equation
of state parameters determines the CJ states which are found to be

DCJ = 8.23 mm/µs, vCJ = 0.42 [cm3/g], pCJ = 31.5 GPa (115)

The distance to detonation for full density PETN is reported as

log10 p = a − b log10 x∗ (116)

where p [GPa] is the shock input pressure and x∗ [mm] is observed distance to detonation from the explosive edge, and 
parameters a = 1.1767 [GPa], b = 0.2432. We used a simple, pressure dependent reaction rate model with rate parameters
chosen so that our PETN model reproduces the reported the run to detonation data, (116). The rate is given by

dλ

dt
= 80 (1 − λ)0.5

(
p

pCJ

)5

µs−1. (117)

Fig. 1 shows a schematic of the setup for a simulation of motionless PETN that has vacuum on the right side, and is 
struck by a impact piston on the right side. Initial states (p, ρ, λ) at initial time t = 0 are divided into three regions and
are shown in Table 3. Through impact on the left side, a shock is introduced into the unreacted material. If the shock is 
strong enough and the sample is thick enough, then a steady state detonation forms in the PETN sample in the region 
xI < x < xv before the detonation shock strikes the vacuum interface, after which the venting at the interface occurs. In 
PETN, the steady CJ detonation structure has a reaction complements of approximately 99% in 0.02 mm, and the final 1%
of the energy that relaxes to the CJ state, is released in a reaction zone tail that is approximately 0.2 mm. Therefore the 
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Fig. 6. Sequence showing the detonation hitting the MVI and the expansion of products into the vacuum region: (a) density, (b) pressure, (c) velocity,
(d) reaction progress.
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Fig. 7. Space time contour plots that show the same sequence as Fig. 6 showing the detonation hitting the MVI and the expansion of products into the
vacuum region: (a) density, (b) pressure, (c) velocity, (d) reaction progress field in space and time domain.

Table 2
The calibrated parameters of JWL EOS of PETN.

Ai [GPa] Bi [GPa] Ci wi R1i R2i e0i [KJ/g]

Product JWL (i = R) 1032.158 90.57 0.0 0.57 6 2.6 6.074
Reactant JWL (i = P ) 1280.0 −27.058 0.0 0.6 6 2 0.0

Table 3
Initial data for impact simulation Example 2.

Material p [Gpa] ρ [g/cm3] u [mm/µs] Range

Piston 0.0 2.14 uin x ≤ xI
PETN 0.0 1.778 0.0 xI ≤ x ≤ xv
Vacuum 0 0 0.0 x > xv

computation requires high resolution, and the spatial grid size must be no more than one micrometer with approximately 
20 points in the rapidly changing detonation shock structure. Note that a multi-material solver, described in [31], was used 
to properly model the flyer impact (of a different material, specifically a plastic KEL-F) and transmission of the impact shock 
into the PETN sample. But the interior algorithms and the algorithms near the MVI are identical to what is discussed in this 
paper.

Experimental detection of product species flying through vacuum depends on many factors, that include the thickness 
of sample and how the sample is shock initiated. A premise of the experiment is that a steady detonation is established 
by the time the detonation shock hits the vacuum interface and the reactants are quenched by the subsequent rarefaction. 
When the PETN sample is initiated with an input shock strength of 5 GPa in pressure, matched to the experimental pop-plot 
shows a steady state detonation is established in about 0.16 µs at around 0.5 mm away from the edge of the sample. In this 
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Fig. 8. The location of impactor, PETN sample, vacuum and seven probe locations of measurement for simulation in Example 2.

scenario, any sample thicker than 0.5 mm is sufficiently thick to observe steady state detonation. Once the steady state 
detonation on PETN hits the vacuum interface and the vented products expand at a very high speed, faster than 16 mm/µs.

Next we discuss a set of cases in which the thickness of the sample, i.e. xv − xI and the impactor velocity uimpactor (i.e.
related to the input shock pressure) are varied. In each case the density ρ , pressure p and reaction progress λ are sampled 
at a designated point far away from the original vacuum interface locations and the time histories are recorded, similar to 
what would be recorded at a sampling probe at a fixed point in space in the TOFMS experiment. The three different cases 
are

• Case I: xv − xI = 3.0 mm, uimpactor = 2.963 mm/µs
• Case II: xv − xI = 1.0 mm, uimpactor = 2.963 mm/µs
• Case III: xv − xI = 3.0 mm, uimpactor = 2.563 mm/µs

Fig. 8 shows the locations of the impactor, PETN (HE sample) and vacuum and probe locations where measurements are 
recorded. The probe locations are set to x = 100, 200, 300, 400, 500, 600 [mm] and x = 680 [mm] measured from the initial
vacuum interface.

Figs. 9 and 10 plot the state variables in the region 0 < x < 10 mm. They show the formation of a detonation, followed 
by the initial expansion of products as they start to vent into the vacuum interface. Fig. 9 shows the solution profiles of the 
state variables for Case I at the indicated times from t = 0 to t = 0.69 µs. The solution profiles at t = 0.39 µs corresponds
to a nominally steady CJ detonation wave that is established in the PETN sample, just prior to the detonation shock hitting 
the vacuum interface xv that is initially located at 4 mm. Once the detonation shock wave hits the vacuum interface, the 
products expand into the vacuum via the action of a rarefaction wave. Fig. 10 shows the corresponding contours of the 
state variables plotted in the x–t (space and time) for Case I. Figs. 9(d) and 10(d), clearly show the region of interest 
for the experimental study where quenching of the reaction occurs and that would be the region where reactions of the 
intermediate species would likely cease, since the pressure in the rarefaction fan region drops rapidly.

Next we discuss the observations in the full length of the vacuum region x ≤ 680 mm. After the sample is detonated,
the products expand toward the vacuum and spread evenly in the entire vacuum region of the experiment. Fig. 11(a) shows 
the density profiles in vacuum expanding process from times t = 5 µs to t = 270 µs for Case I. The density was monitored
at various locations. Fig. 11(b) shows the monitored density at the end of the vacuum region at x = 680 mm for Cases I,
II and III. The density and time of arrival of the density is different for all three cases, and is affected by different sample 
thicknesses and impact velocities associated with each case. Fig. 12 shows the pressure and particle velocity plotted in the 
x–t (space, time) plane for the entire vacuum regions, for Case I. The velocity of vacuum interface can be estimated to be 
about 19 mm/µs.

For all three cases at each probe location, we recorded the time of arrival (TOA) that corresponds to a time when 
specified density value was first sensed. The densities ranged from a low monitoring value of 10−8 g/cm3, to a maximum 
of 10−3 g/cm3. The probes first senses the low values and later sense the higher values and the results for all three cases 
are shown in Fig. 13. Case II has a smaller explosive sample thickness than Case I, but is subjected to the same impact 
velocity. In Case II, the detonation wave is not a steady state, CJ detonation when it hits the initial vacuum interface. 
Fig. 11(b) shows that a smaller peak density is attained and that TOA at the monitoring locations has larger values. Thus the 
recorded velocity of a constant density front, measured by sampling the products expansion in the vacuum region is slower 
for Case II than for Case I. Case III has the same sample thickness of the PETN sample as Case I, but the sample is subject to 
a lower impact velocity. In Case III, the sample is thick enough so that a steady state CJ occurs, and the peak pressure and 
density observed at the probes is quite similar to Case I, but very slight shift of TOA of fixed density value at the probes is 
observed.

These results can be summarized by computing the phase velocity of a constant density front as the products encounter 
each probe. The results are listed in Table 4. The table shows that the velocity of the front, for a given monitored density, 
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Fig. 9. Time sequences of detonation and expansion processes for Case I: (a) density [g/cm3], (b) pressure [GPa], (c) velocity [mm/µs], (d) reaction progress.
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Fig. 10. (a) Density, (b) pressure (log10(p)), (c) velocity, (d) reaction progress field in space and time domain for Case I.

Fig. 11. (a) Density profile expanding toward the vacuum region, (b) monitoring density at x = 680 mm for the Cases I–III.

ranges from 8 to 19 mm/µs and is a function sample thickness and impact velocity. Experiments by Thomas et al. [32]
showed that the detonation products expanding toward vacuum achieve terminal velocities in the range of 8 to 12 mm/µs. 
Fajardo et al. [33], reported the leading-edge velocities of species through the vacuum approximately ≈ 10 mm/µs in their 
experiments on aluminum ablation. Lundborg [34] measured the velocity of the shock front of TNT evacuating from cham-
bers and the velocity increased from 10 mm/µs to 20 mm/µs with decreasing pressure. So our simulations easily fall in 
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Fig. 12. Pressure (a) and particle velocity (b) fields for Case I in x–t domain.

the range reported in related experiments, and is a reasonable check of the applicability of these algorithms and simulation 
techniques for the TOFMS experiments.

4.3. Comparison of two different closure models that are used to define the mixture EOS

The vacuum tracking interface algorithms described in this paper can be generally used for simulating the propagation 
of products from the reaction of multi-component mixtures and can be modeled with any EOS that obeys the Liu–Smoller 
conditions for the mixture. However when a multi-component formulation is used for the mixture, one must provide some 
closure conditions that are in essence the statements of local equilibrium between components within the mixture. For a 
Gibbs formulation one posits a single pressure and temperature (p, T ) for the mixture, denoted as (PT-EQB). This means that 
the component EOS forms must also share the same mixture pressure and temperature. But one can close the mathematical 
formulation by proposing slightly different statements. A common one is that while there a common pressure (P-EQB), the 
ratio of the volumes of components is either constant or is a function of the composition, in which case the component 
volume are not pressure dependent.

This model (P-EQB) enforces only pressure equilibrium and specifies the volume component ratios as a closure condition. 
It is attractive since it uses EOS forms that are linear in the pressure and the EOS forms are closed explicitly. This type of 
closure eliminates the need for an iterative cycle to determine the temperature, and might be considered if one has two 
(or multi-) temperature model for reactants and products that are in pressure equilibrium but not temperature equilibrium. 
However our purpose here is simply to illustrate that changing the mixture closure condition does have an effect on the 
simulated results, since closure really represents a different model of the mixture EOS. We note that as we changed the 
closure models, the qualitative features of the simulated flow are quite similar but the computed values, that are important 
when interpreting chemical measurements made at the probes, do change.

To examine the dependencies of the simulation results on the mixture closure models, we implemented the pressure 
equilibrium (P-EQB) closure for the mixture equation of state in our PETN model and carried out the simulations for Cases I 
and II. Comparisons of simulated results for Cases I and II, that use the two closures (PT-EQB) and (P-EQB) are shown in 
Figs. 14 and 15. The TOA in Fig. 14 is plotted versus the probe locations. The detection velocities of the fixed density of 
10−8 g/cm3 for Case I are listed in Table 5. The velocities for the two closures, range respectively from 8 to 19 mm/µs and 
9 to 13.5 mm/µs.

Fig. 15 shows a comparison of the density recorded at x = 680 mm for the two closure models. Both models show the
same tendencies and approximately the same densities, however there are noticeable differences in the time shift and peak 
density at a fixed monitoring point. The pressure equilibrium (P-EQB) model shows higher peak density but slower time 
of arrival for Cases I and II. These differences are entirely attributed to the differences in the closure models. Thus careful 
physical chemistry-based considerations must be taken into account to make accurate quantitative predictions for this class 
of simulations.

5. Conclusions

We have illustrated how the original Munz’s vacuum tracking algorithm for a single ideal gas can be extended to a gen-
eral multi-component reacting flow, with an Euler solver method that uses a linearized Riemann solver for a Mie–Gruneisen 
EOS form. Our implementation uses a fairly standard, cell based TVD scheme with source splitting to solve the reacting 
Euler equations. We have shown that for a non-ideal EOS model, our method can be implemented with different mixture 
closure models for pressure and temperature equilibrium, or just pressure equilibrium that uses an auxiliary condition such 
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Fig. 13. Time of arrival of quenched products at a specified density as a function of monitoring position for (a) Case I, (b) Case II, (c) Case III.

Table 4
Velocity [mm/µsec] of monitored (specified) density front observed in the vacuum region for each Cases I, II and III.

Monitoring density Case I Case II Case III

10−8 g/cm3 19.64343 18.99816 19.67554
10−7 g/cm3 18.46885 17.87125 18.49775
10−6 g/cm3 17.31006 16.73676 17.34145
10−5 g/cm3 15.81749 15.27493 15.85946
10−4 g/cm3 13.76884 13.13290 13.82020
10−3 g/cm3 10.50874 8.14376 10.50174
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Fig. 14. Comparison of the two different closures at probe locations: Monitoring TOA of front of density 10−8 g/cm3 of (a) Case I and (b) Case II.

Fig. 15. Comparison of the two different closures: the density at x = 680 mm versus time for (a) Case I and (b) Case II.

Table 5
Comparison of the velocity determined by a monitoring density for closures, 
PT-EQB and PEQB [mm/µs] for Case I.

Monitoring density PT-Equilibrium P-Equilibrium

10−8 g/cm3 19.64343 13.47709
10−7 g/cm3 18.46885 12.90323
10−6 g/cm3 17.31006 12.28501
10−5 g/cm3 15.81749 11.54734
10−4 g/cm3 13.76884 10.57082
10−3 g/cm3 10.50874 8.952551

as a specified volume ratio to define the mixture equation of state. One must ensure that the Liu–Smoller conditions hold for 
the mixture EOS in the limiting case of a vacuum. The methods illustrated here are fairly robust and are easy to implement 
in any cell-based finite difference code framework. We feel that this is a welcome addition to a set of basic methods in 
an existing simulation code framework for interactions between multiple materials that are subjected to extreme pressure 
gradients. In cases where there is a violent expansion of material into vacuum or near vacuum regions it is essential to 
compute sensible and physically defined fluxes, as defined by the underlying models in order to avoid severe computational 
difficulties. Thus we believe the methodology presented here will have widespread applications and extensions to a much 
larger class of problems.
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