
 
 
 

 ARL-TR-7715 ● JULY 2016 
 
 
 

 US Army Research Laboratory 

 
 
Gesture-Based Controls for Robots: Overview 
and Implications for Use by Soldiers 

 
by Linda R Elliott, Susan G Hill, and Michael Barnes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-7715 ● JULY 2016 

 
 US Army Research Laboratory 

 
 
Gesture-Based Controls for Robots: Overview 
and Implications for Use by Soldiers 

 
by Linda R Elliott, Susan G Hill, and Michael Barnes 
Human Research and Engineering Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

July 2016 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

September 2013–July 2015 
4. TITLE AND SUBTITLE 

Gesture-Based Controls for Robots: Overview and Implications for Use by 
Soldiers 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Linda R Elliott, Susan G Hill, and Michael Barnes 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 
ATTN: RDRL-HRS 
Aberdeen Proving Ground, MD 21005-5425 
 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-7715  

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 

This report provides an overview of gestural controls of robots in general, followed by a discussion of issues more specific to 
control of military ground robots by dismounted Soldiers. For the field of gestural controls, the technological progress is rapid 
and distributed among many different approaches, and the number of relevant publications is huge. A review of literature is 
provided, focused on 2 types of technological approach: camera-based and wearable instrumented devices. Handheld devices 
are also discussed in terms of augmenting gesture precision (i.e., pointing gestures). Attention is given to issues related to relative 
advantages of each approach for effective recognition and parsing of gestures, particularly in terms of their relevance to 
dismounted Soldier systems. Human-factors issues regarding the interaction of Soldiers and technology and effective design of 
user interfaces and controls are fundamental to successful use. This report identifies the major issues regarding applications to 
dismounted military operations. 

15. SUBJECT TERMS 

gesture, robot control, haptic, Soldier, Army 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

70 

19a. NAME OF RESPONSIBLE PERSON 

Linda R Elliott 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

706-315-1386 
 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited. 
iii 

Contents 

List of Figures v 

List of Tables v 

Acknowledgments vi 

1. Introduction 1 

1.1 Background 1 

1.2 Purpose 2 

1.3 Gestural Control Task Demands 3 

1.3.1 Simple Commands (Small Set of Specific Commands/Alerts) 3 

1.3.2 Complex Commands 4 

1.3.3 Pointing Commands 4 

1.3.4 Remote Manipulation 5 

1.3.5 Robot-User Dialog 7 

1.3.6 Summary 9 

2. Camera-Based Systems 10 

2.1 Overview and Options 10 

2.1.1. 3-D Data Recognition 10 

2.1.2 Multicamera Networks 12 

2.1.3 Recognition Algorithms 13 

2.2 Military Applications: Camera Systems 14 

2.2.1 Dismount Soldier Communications 14 

2.2.2 Robot Control 15 

2.2.3 Aircraft Direction 17 

2.2.4 Camera-Based Gestural Systems: Constraints in Military 
Operations 18 

2.2.5 Approaches to Enhance Camera-Based Recognition 20 

3. Wearable Instrumented Systems 22 

3.1 Wearable Instrumented Gloves 22 

3.2 Other Wearable Sensors 23 



 

Approved for public release; distribution is unlimited. 
iv 

3.3 Gesture Recognition by Instrumented Systems 24 

3.4 Military Applications: Instrumented Systems 26 

3.4.1 Dismount Soldier Communications 26 

3.4.2 Robot Control 27 

3.4.3 Aircraft Direction 28 

3.4.4 Constraints in Military Operations 29 

4. Discussion 29 

4.1 Issues Relevant to Soldier Use 31 

4.1.1 Line of Sight/Distance between Robot and User 31 

4.1.2 Visibility/Night Operations 31 

4.1.3 Practicality of Using Special “Markers” 32 

4.1.4 Practicality of Using Wireless Transmissions 32 

4.1.5 Need for Deictic Information: Pointing Gestures 32 

4.1.6 Ease of Producing and Sustaining Gestures 33 

4.1.7 Number of Gestures 33 

4.1.8 Number of Robots to Be Controlled by One Person 33 

4.1.9 Number of Coordinating Soldier Users 34 

4.1.10 Combat Readiness 34 

4.2 Future Directions 36 

4.2.1 Integration with Speech 36 

4.2.2 Integration with Handheld Devices 39 

5. Conclusions 41 

6. References 42 

List of Symbols, Abbreviations, and Acronyms 61 

Distribution List 62 
 



 

Approved for public release; distribution is unlimited. 
v 

List of Figures 

Fig. 1 Camera-based control of robotic mule .................................................17 

Fig. 2 Soldier using instrumented glove for robot control (left) and 
communications (right) ........................................................................28 

 

List of Tables 

Table 1 Typical constraints in military operations associated with camera-
based gestural systems .........................................................................20 

Table 2 Considerations for gesture technology relevant to Soldier 
performance .........................................................................................35 

 
 



 

Approved for public release; distribution is unlimited. 
vi 

Acknowledgments 

This report was accomplished through the support of the US Army Research 
Laboratory Human Research and Engineering Directorate programs regarding 
multiyear investigations of human-robot interaction. 



 

Approved for public release; distribution is unlimited. 
1 

1. Introduction 

1.1 Background 

A future vision of the use of autonomous and intelligent robots in dismounted 
military operations is for Soldiers to interact with robots as teammates, much like 
Soldiers interact with other Soldiers (Brown 2011; Lilley 2013; Phillips et al. 2013; 
Redden et al. 2013). Soldiers will no longer be operators in full control of every 
movement, as the autonomous intelligent systems will have the capability to act 
without continual human input. However, Soldiers will need to use the information 
available from or provided by the robot. One of the critical needs to achieve this 
vision is the ability of Soldiers and robots to communicate with each other. This 
report examines one mode of communication—gesture. 

Part of the future vision includes bidirectional communication, with Soldiers and 
robots communicating with each other. However, this review focuses on human 
gestures to instruct and command robots. Therefore, we are describing (for the most 
part) one-way communications from human to robot. While this is very important, 
it is only one part of the larger vision for humans and intelligent, autonomous 
systems to interact with each other. Many efforts are focused on the use of gestures 
for robot control; in this report, we discuss technology options and issues impacting 
effectiveness for robot control in military operations.  

The use of gestures as a natural means of interacting with devices is a very broad 
concept that includes a range of body movements, including movements of the 
hands, arms, and legs, facial expressions, eye movements, head movements, and/or 
2-dimensional (2-D) swiping gestures against flat surfaces such as touch screens 
(Saffer 2008). Gesture-based technology is already in place and commonly used 
(e.g., public buildings, public restrooms) without special instruction required for 
effective use. A common example of a well-designed gestural command is the use 
of hands to “wave” to activate (e.g., public bathroom faucet). This concept is also 
common to gaming interfaces (e.g., Kinect) and is now extending to other private 
and public domains such as automobile consoles (Stokloso 2015). 

The most cursory examination of the gestural literature shows great breadth and 
depth, with investigations of gestures arising from a variety of fields. Classification 
and interpretation of gestures have been discussed and reviewed over many years 
(Pavlovic et al. 1997; Moore et al. 1999; Kendon 2004). Gestures using hand 
motion are most common, and one useful classification scheme is by purpose: a) 
conversational, b) communicative, c) manipulative, and d) controlling (Wu and 
Huang 1999). Conversational gestures are those used to enhance verbal 
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communications, while communicative gestures, such as sign language, comprise 
the language itself. Manipulative gestures can be used for remote manipulation of 
devices or in virtual reality settings to interact with virtual objects. Controlling 
gestures can be used in both virtual and reality settings, and are distinguished in 
that they direct objects through gestures such as static arm/hand postures and/or 
dynamic movements.   

Of particular interest in this report are applications and advancements with regard 
to controlling gestures for human-robot interactions. There have been many studies 
showing usefulness of more naturalistic interfaces for robot control (Goodrich and 
Schultz 2007). The study of gestures for robot control in itself is a huge field of 
endeavor. Gestures can be as simple as a static hand posture or may involve 
coordinating movements of the entire body (Yang et al. 2006). Gesture-based 
commands to robots have been used in a variety of different settings, such as 
assisting users with special needs (Jung et al. 2010), assisting in grocery stores 
(Corradini and Gross 2000), and home assistance (Muto et al. 2009). Examples of 
gestural commands in these settings include “follow me”, “go there”, or “hand me 
that”. There are also advancements in various industrial settings to control robotic 
assembly and maneuver tasks (Lambrecht et al. 2011; Barattini et al. 2012).  

Some aspects of gesture control are not included in this report. Stroke gestures 
made upon a screen (e.g., tablet, smartphone) represent a different domain of 
gesture control, which is also of interest to military human-robot interactions 
(O’Brien et al. 2009). Research regarding these stroke gestures attends to issues 
that define, develop, and validate approaches and taxonomies relating to the stroke 
gesture. This report does not address these issues, but rather is focused on free-form 
gestures made by the hand and arm, technology approaches to recognition of these, 
and how they may impact effectiveness within a military human-robot application. 
There is also interesting work to develop gestures for the robot to use to 
communicate back to the operator, such as head nodding (Muto et al. 2009; St Clair 
et al. 2011b), conversational gestures (Bremner et al. 2009), and queries (Iba et al. 
2003). While bidirectional human-robot interaction is also pertinent to military 
settings, this realm of research deserves a separate review and is not addressed here.  

1.2 Purpose 

For this report, we start with a very general nontechnical overview of gestural 
controls of robots in general, then we narrow our focus to efforts more specific to 
control of military ground robots by dismounted Soldiers. We start with findings 
that are more general because certain features of gestural commands to robots are 
relevant to all settings: they should be intuitive, familiar, and easily distinguished. 
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Findings with regard to these different user groups can still generalize to military 
use, given the cross-cultural intuitive nature of some gestures (e.g., pointing). That 
is, many gestures can be intuitively recognized and used across population groups. 
Technical challenges for gesture-based control are also similar, regardless of 
operational setting. We review current progress and issues with a view of assessing 
different technological approaches for their relevance to dismounted Soldier 
systems. The technology approaches are very different and can strongly moderate 
effectiveness for different situations. 

We cover 2 very different approaches to gestural control: camera-based systems 
and wearable instrumented systems. For the field of gestural controls, the 
technological progress is rapid and distributed among many different approaches 
within each general domain. In this review, we have attempted to include papers 
that represent a cross section of relevant approaches, by universities, government, 
industry, and countries, of varying disciplines and points of view. Our aim is to 
identify the major approaches and corresponding issues across the diverse range of 
gesture control endeavors. From this, we discuss characteristics of different 
gesture-based systems, with regard to capabilities, advantages, and limitations—as 
they pertain to use by dismounted Soldiers.  

1.3 Gestural Control Task Demands 

A front-end issue when considering use of any new system is consideration of the 
task demands and situational constraints. Here, we identify 5 types of tasks that can 
impact the choice of technological approach: simple commands, complex 
commands, pointing commands, remote manipulation, and robot-user dialogue. 
The developer should always start with a deep understanding of operational and 
situational task demands. In the following subsections we describe some basic tasks 
that distinguish the kind of technology and approach that will best meet the user 
requirements.  

1.3.1 Simple Commands (Small Set of Specific Commands/Alerts) 

While it is easy to think of single commands (e.g., “stop”, “move forward”, “turn 
left”) as simple commands, one should keep in mind it is not the command per se, 
but the distinguishability and the intuitive nature of the gesture that determines ease 
of use and recognition. When the gesture set is small, recognition rates have been 
high, across many different camera and glove-based approaches. Gestures must be 
distinguishable from one another and, in general, gestures using movements of the 
arms as well as fingers have been more effectively recognized.  
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1.3.2 Complex Commands 

Complex commands are characterized by higher demands for deliberative cognitive 
processing, often through use of a larger gesture set and/or combinations of gestural 
units to communicate multiple concepts. Any particular gesture set lies on a 
continuum of complexity (e.g., recognition difficulty), ranging from a small set of 
elemental gestures (e.g., “move forward”, “turn left”, “turn right”, “stop”) to 
gestures sets that may include large numbers of gestures, associated not only with 
meaning (i.e., vocabulary), but also elements of syntax and grammar, depending on 
sequence (e.g., American Sign Language [ASL]).  

As the gesture set becomes larger, the challenge to effective recognition also 
increases. It is critical to have gestures that are distinguishable from the point of 
view of the recognition process; however, it is also desirable to have gestures that 
are intuitive to the command and easily learned (e.g., pointing). There is no distinct 
categorization of what comprises a small versus large gesture set, for the difficulty 
of recognition is also a function of distinguishability. It should simply be noted that 
these distinctions exist on a continuum, and this continuum of gesture set 
complexity will greatly moderate the results with regard to recognition 
effectiveness. This issue is very much related to concepts of visual salience 
(St Clair et al. 2011b) and tactile salience (Mortimer et al. 2011).  

Scenario complexity is also increased through an increase in scenario actors (human 
and robot). Given a multi-entity situation, the goal is to attain robot awareness of 
the environment and actors, as interpreted through shared goals and perspective 
taking. This level of situation assessment and understanding by the robot is sought 
through development and application of agent-based and other computational decision 
models or cognitive architectures (St Clair et al. 2011a).  

1.3.3 Pointing Commands 

A fundamental task for gesture commands is that of directing movement for ground 
robots. Pointing gestures have been developed over several years, either to convey 
direction information or to clarify ambiguous speech-based commands. 
Perzanowski distinguished natural gestures (e.g., pointing a finger or whole arm) 
from “synthetic” gestures (e.g., use of a mechanical device such as mouse or stylus). 
The act of pointing is considered universally intuitive, as exemplified by attempts 
by infants to use pointing when trying to grasp objects out of their reach 
(Perzanowski et al. 2000b).   

While the pointing gesture is natural and intuitive, recognition of “where” and 
“what” can be challenging, depending on task context. When using a pointing 
gesture, there should be a distinction between pointing to a specific object (e.g., 
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“please bring me that cellphone”), pointing to a specific location (e.g., “through 
that alley”) and pointing to a generalized area (e.g., “search that area”). Areas can 
be more precisely circumscribed when augmented by use of a map display (e.g., 
circling the area of interest) (Brooks and Breazeal 2006; Perzanowski et al. 2000a, 
2000b). Other approaches have used object recognition as an aid to gesture 
interpretation (e.g., “bring me that cup”). A different approach was taken by Strobel 
et al. (2002), where they used the spatial context of the environment (e.g., 
orientation of object to axis of hand) to help disambiguate hand gestures. 
Advancements in instrumented glove technology are enabling determination of 
azimuth from a point gesture; when combined with GPS-based wearable device, 
both direction and distance can be determined through sensors within the glove 
(Vice 2015).  

Littmann et al. (1996) discuss progress on a point and place task for a robot capable 
of grasping maneuvers (e.g., “pick up that object and place it over there”) using 2 
color cameras that provide stereo data. The output is further processed by color-
sensitive neural networks (NNs) to determine object location. In a laboratory 
setting, the accuracy of the system for localization was that of 1 cm in a workspace 
area of 50 × 50 cm. The 2 cameras must show both the human hand and the table 
with objects. In addition, each training exemplar must show a hand-pointing posture 
associated with a known location.  

Abidi et al. (2013) used a Kinect sensor to interpret pointing gestures that directed 
a robot to move to a location that the user pointed to on the ground. The 3-D location 
of a person’s right elbow, right hand, and eye gaze were captured to determine 
location. Two approaches were compared: gesture alone and gesture combined with 
eye gaze. While participants expressed a strong preference (i.e., 62% vs. 38%) for 
the combination of gesture with eye gaze, no performance data were reported with 
regard to accuracy of localization by the robot. An advantage to this approach is 
that the robot continually assesses the pointing gesture while moving, allowing for 
real-time change; however, the robot must always keep the operator in sight. This 
prevents pointing to a location that is outside this range.  

1.3.4 Remote Manipulation 

Ground-based mobile robots are often used for remote manipulation of objects. In 
combat situations, this capability is often used for bomb disposal (Axe 2008). 
Several efforts have been reported where gestures have been developed for remote 
manipulation. Several of these regard the development of service robots designed 
to assist people in locations such as offices, supermarkets, hospitals, and 
households. Other efforts focus on assisting users in more dangerous environments 
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such as hazardous areas or space, using telepresence and teleoperation (see Basanez 
and Suarez [2009] for a review of teleoperation issues).  

One primary manipulation common to most applications is that of grasping. 
Grasping consists of several steps: a) perception of object, b) determination of 
object form, size, orientation, and position, c) planning the grip, d) grasping the 
object, e) moving the object to a new location, and f) releasing the object (Becker et 
al. 1999). Becker and his associates developed a camera-based system that allows 
interpretation of gestures that indicate the choice of object, the grip to be used, and 
the desired final position. The task environment was restricted to that of a tabletop. 
The camera was a dual-stereo camera with 3 degrees of freedom (DOF) (pan, tilt, 
and vergence) with both color and monochrome capabilities. Recognition software 
was based on the C++ library FLAVOR (“Flexible Library for Active Vision and 
Object Recognition”) developed at the Institut fur Neuroinformatik (Bochum, 
Germany). Tracking of the operator’s hand relied on motion detection, skin color 
analysis, and a stereo cue. Object recognition was based on object edges. 

Colasanto et al. (2013) describe issues and challenges inherent in developing 
successful teleoperation of anthropomorphic robotic hand-arm systems. They 
support the approach where the motion is made with the human hand and captured, 
to enable proper imitation by the robotic hand. While visual-based systems have 
been used for grasping tasks, they usually require special markers on the hand and 
still have problems due to visual occlusion. They describe algorithmic approaches 
that used an instrumented wired glove (i.e., Cyberglove having 22 joint-angle 
measurements) and a 4-finger robotic hand. They describe development of an 
effective approach combining joint-space mapping and fuzzy-based pose mapping 
that accommodated both grasping movements and more free-form movements. 

Stiefelhagen and associates (2004) reported the development of a system using 
speech, gestures, and head pose to accomplish grasping tasks such as retrieving 
objects, turning a lamp on/off, or setting a table. While they report correct 
interpretation of each component (e.g., speech, head orientation, pointing gesture) 
and of the combination of components, they did not report performance data on the 
manipulation tasks per se. Lii and his associates (2012) describe uses of a library 
of tasks linked to gesture commands given by an operator wearing a Cyberglove. 
They describe teleoperation of grasps and manipulation with a 15DOF robot hand 
and 6DOF object manipulation, using different grasp approaches.  

Camera-based approaches have also been used for remote manipulation. Lathuiliere 
and Herve (2000) reported successful real-time application using a single camera, 
where the operator wore a dark glove marked with colored cues. This approach was 
used for 2 different grasping maneuvers (e.g., spherical and cylindrical). Raheja et 
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al. (2010) also used a camera-based approach for robotic hand control. Using a 
technique described by Raheja et al. (2009), to manage light illumination and 
viewing angle, the researchers developed a system to recognize hand gestures. 
Eleven different gestures were used to control a robotic hand. The gestures were 
restricted to static posturing of the hand (e.g., clenching a fist, spreading of fingers, 
thumbs up/down, 2-finger “peace” sign, 1 finger, 3 fingers). Recognition was 
reported at 90% but was very dependent on proper light illumination. Celik and 
Kuntalp (2012) also used a camera-based approach for control of grip commands 
and compared 2 methods for gesture recognition. The template-matching 
algorithm, based on pre-stored gestural information, was found to be faster than the 
signature signal algorithm (based on identification of edge data) but had higher 
memory requirements. Their results appear to be based on 2 commands (open 
gripper, close gripper), therefore these differences may compound as the number 
of gestures increase.   

Researchers from Keio University in Yokohama, Japan, investigated user 
preferences for gestural control of a robotic “hand” for assistive tasks such as 
assembly (Wongphati et al. 2012). Control movements included 6 direction 
movements and open-close gripper movements that were applied to assist users 
with a soldering task. While many gestures are developed from the point of view 
of engineering (e.g., ease of detection), in this study the focus was on capturing 
gestures that were more intuitive to the user. While results are preliminary and 
exploratory, trends indicate user preference to use one or both hands, as opposed to 
other body parts/movements.  

An interesting application reported by Park et al. (2005b) is that of a “competition” 
robot that could make fighting maneuvers (stand up, hook, turn left, turn right, walk 
forward, back pedal, side attack, move to left, move to right, back up, both punch, 
left punch, right punch). Pose extraction was accomplished through skin color 
regions using a 2-D Gaussian model that extracted positions of the face, left hand, 
and right hand. Hidden Markov modeling (HMM) was used to process the 
continuous stream. Each gesture was performed 100 times by 10 different 
individuals. Reliability of recognition was reported to be 98.95%. 

1.3.5 Robot-User Dialog 

As robots become more autonomous, command of the robot transitions from direct 
and detailed teleoperation commands to higher-level command dialogs. Several 
approaches have been taken to establish dialogs that allow robots to acknowledge 
commands and ask for clarification. At the least, robots have to inform users of 
their status, through visual, auditory, or other means. International standards exist 
for visual signals of danger and for auditory alarms. However, there is increasing 



 

Approved for public release; distribution is unlimited. 
8 

need for more complex dialog to attain clarity (e.g., “you told me to go somewhere 
but you did not say where”), (Kennedy et al. 2007; Perzanowski et al 2000a, 
2000b). Many efforts are currently focused on developing the ability for the robot 
to not only maintain a dialog, but to learn new interactions over time, such as use 
of gaze direction or pointing gestures toward an object of interest (Ou and Grupen, 
2009). Taylor and associates report progress for greater dialog based on a computer 
programming architecture (i.e., Soar) for artificial intelligence (Taylor et al. 2012). 
Soar provides a robust framework for knowledge representation and logic (i.e., 
“if-then” rules). These efforts represent growing focus and progress with regard to 
communications based on logic and reason.  

In addition to enhanced clarity and complexity of rational commands, there are also 
many efforts focused on social aspects of human-robot communications. Muto et 
al. (2009) explored options for human-robot dialogue for situations involving a 
social robot to assist elderly users. Findings from an investigation of human-human 
dialogue were applied to develop and refine the robot’s response to a user request, 
such as “could you give me a wood block”. Human-human interactions were 
observed, where the request utterance speed was varied. The average pause between 
request and response was 300 ms. In subsequent human-robot interactions, speed 
of the request was varied, along with the robot’s response, using speech and gesture 
(i.e., head nod, grasping), with regard to timing, order, and length of pause after the 
request. Afterward, these interactions were rated by the human participant. They 
found that older participants favored the condition where the robot response timing 
matched the timing of the request utterance (e.g., fast, slow). This preference was 
not demonstrated by younger participants. The use of the older versus younger 
participants was exploratory; there were no a priori hypotheses with regard to 
expected differences. However, researchers suggested differences might be in part 
due to differences in subjective time perception. It may also be due to younger 
participants having higher levels of familiarity with technology and robots. 
Findings suggest the need for more research in this area.  

While much of the progress in human-robot dialog is based on speech, there are 
complementary efforts to incorporate gestures to enhance, clarify, and/or replace 
speech, when appropriate. St Clair and his colleagues (2011b) investigated human-
robot effectiveness in visually cluttered environments to better understand the 
effect of visual saliency on gesture production by a robot. In this case the gestures 
of interest were those indicating a distal location or item to elicit clarification from 
the operator. Pointing gestures produced by the robot included orientation of the 
head (e.g., “eye” gaze direction), with straight arms, with bent arms, and the 
combination of arm and head gestures. Target items were varied with regard to 
visual salience, distance, angle, and pointing modality. Results showed that the 
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pointing modality affected results to a greater extent than that of visual salience. 
The combination of head orientation and arm gesture was more accurate than either 
gesture was alone.  

Taylor and his associates (2014), in their development of gestures for a robotic 
mule, offer a useful taxonomy for the classification of gestures types, which 
includes the following: 

• Static versus dynamic:  Whether the gesture is a “pose” or requires 
movement. 

• Continuous versus discrete: Whether the gesture can be repeated and still 
be recognized. 

• 1-arm versus 2-arm: Some are made with one arm, others with two. 

• Inclusion of hand pose: Whether the gesture is arm-only or also includes a 
hand position.  

• Inclusion of body reference: Whether the gesture is hand-arm only, or refers 
to another part of the body (e.g., tapping the head). 

• Facing toward or away from target of communication: Some gesture 
recognition systems require facing toward the receiver. 

• Gestures in x-y plane versus x-y-z plane: Some gestures may have more 
complex movement in 3-D space. 

• Unique versus dependent: Whether gesture has only one meaning or is 
dependent on context. 

These distinctions become more useful and relevant as other issues are also 
considered (e.g., purpose of gesture, type of recognition system).   

1.3.6 Summary 

Designers and managers must give careful consideration to operational task 
demands to develop or select the appropriate system for diverse commands, ranging 
from simple commands to more complex human-robot dialogs. The need for remote 
manipulation or accurate communication of azimuth and distance (i.e., pointing) 
introduces additional challenges and considerations. Both camera-based and 
instrumented systems vary in effectiveness for the different types of task demands. 
All varieties have demonstrated effectiveness for simple commands. All gesture 
systems are more challenged when accomplishing pointing gestures, and may need 
augments such as visual display, speech, or use of a handheld pointer, to better 
localize the target. Instrumented gloves can have an advantage over camera-based 
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systems, to accomplish more complex and/or manipulation commands, particularly 
in situations having high visual clutter or greater distances between the operator 
and robot. Future concepts include more bidirectional dialogs between the operator 
and robot. In addition, operational context, such as visibility, weather, and need for 
colocation or direct view of the robot, will also impact the effectiveness of a given 
gesture system. 

2. Camera-Based Systems 

2.1 Overview and Options 

Camera-based gesture recognition systems have used a variety of camera types to 
capture images that are then interpreted with some form of quantitative algorithmic 
interpretation of the video (Hassanpour et al. 2008). This type of approach is also 
referred as vision-based recognition (Gavrilla 1999; Wu and Huang 1999). 
Applications have ranged from a small set of body postures to large sets of complex 
hand gestures (e.g., ASL). A well-known application is that of the Kinect system, 
where camera-based interpretation of user body posture and movements serves to 
control videogame features and feedback.  

It should first be noted that camera-based systems vary widely—with regard to type 
of camera sensor, number of cameras, and various algorithms used for gesture 
recognition. More recent advancements are as follows.  

2.1.1. 3-D Data Recognition 

More-recent improvements to camera-based recognition systems strive to better 
capture 3-D movement. Progress in this area has been achieved over time. Early 
attempts were fairly bulky (Kortenkamp et al. 1996). The 3-D camera sensors offer 
an alternative that may alleviate some of the problems with 2-D camera displays. 
Vogler and Metaxas (2001) developed parallel HMMs to recognize ASL gestures 
using a 3-D camera system. Xie et al. (2010) describe a stereo vision-based 
approach to identify the trajectory of a dynamic gesture, reporting a recognition 
rate of 92%. Gordon et al. (2008) used 2 cameras to achieve stereo vision to attain 
depth information. The 3-D approach to hand postures needs a large enough data 
set to cover the large number of possible hand shapes from various viewing angles. 
While successes have been reported with regard to 3-D-based real-time recognition 
of human shapes and movements, results are limited, restricted, and more relevant 
to surveillance as opposed to robot control per se (Checka and Demirdjian 2010; 
Cohen 2013).  



 

Approved for public release; distribution is unlimited. 
11 

The 3-D sensors with additional depth perception data (e.g., Kinec, etc.) offer even 
more detailed data for interpretation. Use of depth perception data allows the user 
more range of motion that can be interpreted by the system. Several studies have 
used the Kinect depth sensor system (Cheng et al. 2012). Yanik et al. (2012) used 
Kinect technology to build recognition of 3 hand signals taken from ASL to 
command assistive robots (i.e., “come closer”, “go away”, “stop”). Their approach 
used the Growing Neural Gas (GNG) algorithm that is more robust to variations in 
gesture execution. Skeletal depth data collected by the Microsoft Kinect sensor was 
clustered with the GNG. They report initial progress on their goal to develop a 
system that will improve with user feedback. Lai et al. (2012) reported 2 approaches 
to gesture recognition of 8 hand gestures, both using Kinect depth data and both 
resulting in over 99% accuracy of real-time recognition. While both approaches 
were accurate, the one based on Euclidean distance was associated with more 
limitations. Barattini et al. (2012) developed a gesture set for control of industrial 
robots, based on distinguishability data (i.e., confusion matrix), as determined 
based on use of the Microsoft Kinect system and dynamic time warping (DTW) 
recognition algorithms. Others have also applied the Kinect capabilities for 
industrial robots (Lambrecht et al. 2011) and for humanoid robots (Suay and 
Chernova 2011). Masum et al. (2012) applied Kinect capabilities for whole body 
gesture recognition, for the naturalistic control of a humanoid robot. They reported 
99.87% accuracy using the Fuzzy Neural Generalized Learning Vector 
Quantization algorithm. Konda et al. (2012) used depth perception data to better 
adapt to outdoors conditions.  

Xu et al. (2012) described the development of a gesture control system for robot 
control, using Kinect depth perception data for the control of a human service robot. 
HMMs, using left-right topology to identify hand trajectory, are used to model and 
classify 3-D tracking of 2 hands to distinguish 1) 6 navigation commands used by 
the right hand: turn right, turn left, move forward, move backward, rotate, and brake 
and 2) use of the left hand for velocity (robot speed) control. The system was able 
to recognize gestures by both hands at the same time. Start and end of a gesture was 
determined through a detection method combining an initial region with hand 
velocity. While assessment of real-time performance was accomplished in 
laboratory settings, the system was stated as robust to changes in illumination, color 
variations, and background clutter. The system was evaluated using gestures 
generated by 6 people that each performed 60 gestures. Gesture recognition rates 
ranged from 96% to 100% for the right-hand gesture, and 100% with the left hand. 
These rates were compared to recognition rates based on skin color segmentation 
(Elmezain et al. 2008) and DTW (Wu et al. 2010). While statistical significance is 
not reported, recognition rates were similar or higher using the depth data approach, 
and lower using the dynamic time warping approach. Recognition time was stated 
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to be based on time to complete a gesture, about 0.5 s. Navigation accuracy was 
described through diagrams representing ground truth (i.e., the path that the robot 
was supposed to traverse) and actual performance. Diagrams were quite similar in 
pattern; however, there was no performance data with regard to navigation errors.  

Li and Pan (2012) used Kinect technology (e.g., skeleton tracing) and a DTW 
recognition algorithm for real-time control of a ground robot using 11 arm-based 
gestures (e.g., left hand to right; right hand to left, 2 hands zoom in, 2 hands clap, 
etc.). Using 5 people, with each person demonstrating each gesture 20 times, they 
reported accuracies from 90% to 96%. They stated response times were short but 
did not report actual times. They also reported that the user was able to use real-
time returned video to manipulate the robot to avoid obstacles and successfully 
reach its destination.   

Sugiyama and Miura (2013) reported an approach that integrates a head-mounted 
camera with a 9-axis orientation sensor and hand-worn inertial sensors. Sensor 
information is fused to estimate walking motion and hand motions, which then 
drives the movement (walking and arm motion) of a humanoid robot. The camera 
detects the hand through skin color and finger edges and can detect movement and 
grasping gestures. The user was able to successfully control robot movements. The 
primary application was that of remote telepresence control. Gopalakrishnan et al. 
(2005) discussed how camera-based systems could be augmented by integration 
with laser-based localization, a visual map display, and speech recognition 
capabilities.  

2.1.2 Multicamera Networks 

Multicamera networks show much promise with regard to recognition of a variety 
of types of gestures in a complex environment (Aghajan and Wu 2007); however, 
feasibility of such networked systems in operational environments is limited. One 
application that has reported success with this approach used multiple cameras to 
control a robotic forklift, such that the object can be recognized, and after a period 
of time, reacquired, even after the robot has moved long distances. First, the 
operator gives the robot a “guided tour” of named objects and the locations. Then 
the operator can dispatch the robot to fetch a particular object by name (Walter et 
al. 2010).   

Park et al. (2005b) used a multicamera system to enable 2 robot controllers to 
participate in an indoor robot competition that involved fighting movements 
between 2 small humanoid-like robots (e.g., similar to transformer toys). This 
camera-based approach used recognition of skin color regions (i.e., face, left and 
right hands) of each operator for pose extraction and HMM-based gesture 
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recognition. Each of the 13 gestures was performed 100 times by 10 different 
operators, resulting in an overall reliability of 98.9%. 

2.1.3 Recognition Algorithms 

At this time, several reviews agree that the main technological challenge of camera-
based systems rests with the efficacy of feature capture and gesture recognition 
processes, such as the review by Rautaray and Agrawal (2012). In another recent 
review, Khan and Ibraheem (2012) describe these phases as extraction method (e.g., 
image capture), features extraction, and classification (e.g., recognition). Image 
capture approaches include 2-D monocular systems, 3-D stereo systems, 3-D 
systems with more advanced depth information (e.g., Kinect), and multiple-camera 
systems. While capabilities among these systems vary, they each face similar 
challenges and assumptions, such as the need for high-contrast backgrounds under 
optimal ambient lighting conditions. An appearance-based approach uses a simpler 
2-D model; still, extracting the image of hand movements in a cluttered 
environment can be challenging. Murthy and Jadon (2009) also provided a review 
of issues related to vision-based gesture recognition, noting that such systems are 
more effective in controlled environments. Problems arise from less-than-optimal 
illumination and visual noise (Kang et al. 2009).  

Camera-based gesture recognition relies on some type of algorithmic approach to 
extract, parse, and classify gestures. The challenge to all approaches is gesture-
spotting, which is the extracting of the start and stop points of specific gestures 
from a continuous stream of dynamic gestural movement (Alon et al. 2005). At this 
time, all approaches are associated with some level of error. Recognition of 
dynamic gestures has often been accomplished with some variation of HMM. 
HMM is a statistical procedure that builds upon Markov models, in that they can 
make inferences based on data that are probabilistic and sequential, such as speech 
recognition (Baker 1975). Many refinements  have been explored and applied, finite 
state machines (FSMs), artificial neural networks (ANNs), continuous dynamic 
programming (Alon et al. 2005), and DTW (Kobayashi and Haruyama 1997; Shah 
and Jain 1997; Wu and Huang 1999; Corradini and Gross 2000; Urban et al. 2004; 
Li and Pan 2012). Rao and Mahanta (2006), instead of analyzing all frames of a 
video feed, applied methodology to extract and analyze a subset of key frames. 
They also used a clustering algorithm on static gestures and reported success on 
5,000 gestures, with recognition rates from 84%–100%. Similarly, Chian et al. 
(2008) reported a method to more efficiently parse gesture classifications. 
Corradini and Gross (2000) compared different algorithms with regard to 
recognition rates for a set of 5 basic gestures. These included combination NNs 
with HMM, combination of radial basis function (RBF) with HMM, and recurrent 
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NN. While the HMM/RBF approach had somewhat higher recognition rates, the 
data were insufficient to draw conclusions other than that all approaches were 
associated with fairly high recognition rates associated with a small set of gestures, 
accomplished in laboratory conditions.   

Most approaches to camera-based recognition rely on preprogrammed algorithms 
based on extensive repetition of a small set of gestures. However, there are attempts 
to make the recognition process more dynamic and user friendly. Hashiyama et al. 
(2006) used camera-based information in such a way as to allow users to create 
their own gestures for specific commands. Users “show” the gesture to the robot 
system, which then learns to recognize the gesture, for a particular command. Users 
were able to accomplish this within 30 min.  

To summarize, many different recognition algorithms and strategies are currently 
being investigated. No one particular approach has been established as best; instead, 
it is likely that ideal solutions will be situational, depending on factors such as 
situation context (e.g., indoors, lighting), number of gestures, and type of gestures 
(e.g., range of movement). In the following section we discuss some factors 
contributing to recognition effectiveness.  

2.2 Military Applications: Camera Systems 

Camera-based gesture control systems have been investigated for several military 
applications, including robot control. Other applications are also included in this 
section, as issues regarding use and effectiveness generalize among the various task 
demands.   

2.2.1 Dismount Soldier Communications 

Cohen (2000, 2005) developed and demonstrated a prototype gesture recognition 
system for dismounted Soldiers based on camera-based gesture recognition of 
existing Army hand and arm signals (e.g., Army Field Manual 21–60 
[Headquarters, Department of the Army 1987]). The approach for this technology 
was developed and demonstrated previously (Beach and Cohen 2001). The purpose 
was to prove the capability for technology-based recognition of Soldiers using a 
subset of Army hand and arm signals. The capability was developed to enhance 
training of gesture-based communications. The system would monitor if the proper 
gesture was performed adequately and if not, show how to perform the required 
gesture. The system also had a goal to be able to learn new gestures. Dynamic 
gestures included “slow down”, “prepare to move”, and “attention”. Static gestures 
included “stop”, “right/left turn”, “okay”, and “freeze”. In this case, the dynamic 
gestures included the actual movement of the arms as part of the gesture. It is also 
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possible for camera-based systems to recognize static gestures, where a single, 
static position conveys the gesture meaning, and does not include the actual 
movement as part of the gesture. They also used a variety of other gestures, based 
on circles and lines, to check for recognition performance. Recognition rates varied 
from 80%–100%, with many gestures recognized at 95%–100% accuracy. This 
camera-based approach to recognition of gestures, motion tracking, and feature 
matching has been applied to numerous surveillance applications (Cohen 2013).  

2.2.2 Robot Control 

Perzanowski and his associates (Perzanowski et al. 1998; 2000a, 2000b; 2002, 
2003) reported progress toward a multimodal approach to control of single and 
multiple robots using gesture, personal digital assistant (PDA), and speech. 
Syntactic and semantic information is drawn using ViaVoice speech recognition 
and natural language understanding system, Nautilus (Wauchope 1994). Visual 
cues include body location, eye gaze, or other types of body language. This is 
supplemented by recognition of gestures, such as pointing. In the 2002 
instantiation, gesture recognition was based on a camera with a structured light 
rangefinder mounted to the side of the robot to track the user’s hands, while sonar 
sensors are used to detect objects in the environment. In 2003, a Wizard of Oz 
(WoZ) experiment was conducted to explore naturally occurring preferences with 
regard to the use of gestures and language syntax. Natural language and spatial 
relationships are based on an approach described by Skubic (Skubic et al. 2001a, 
2001b, 2002, 2004). Skubic and her research associates explored linguistic spatial 
relationships and directives (e.g., “go around the desk and through the doorway”) 
when referring to an evidence grid map. The evidence grid map is built from range 
sensor data, where objects are assigned labels provided by the user. Robot software 
includes spatial reasoning that enables the robot to understand linguistic 
descriptions (e.g., “object is behind the desk”) or commands (e.g., “go through the 
doorway then stop”).  

Sofge et al. (2003a) described an agent-based approach to control an autonomous 
robot using natural language, spatial reasoning, and gesture interpretation. The 
gestural system included a structured-light rangefinder that emitted a horizontal 
plane of laser light and a camera mounted on the robot with an optical filter tuned 
to the laser frequency. The camera generated a depth map from the reflection of the 
laser off objects in the room. Hand gestures were recognized because they were 
closer to the camera than other objects and were then processed to generate 
trajectories that are used for gesture recognition. Gestures indicated direction, and 
were integrated with speech commands such as “go over there”. The focus of this 
effort, sponsored by Defense Advanced Research Projects Agency (DARPA), was 
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on the use of agent-based capabilities to integrate screen-based, visual, and gestural 
commands along with object recognition and spatial reasoning.  

Brooks (2005) and Brooks and Breazeal (2006) reported progress toward 
naturalistic interaction with robots for Soldier tasks, which included robot 
capability to learn and imitate tasks, camera-based recognition of social interaction 
cues (e.g., gaze direction, nodding, facial expressions, etc.), and codified verbal 
expressions. In this case, the robot is not controlled directly by gestures; instead, 
the robot visual attention system attempts to monitor and recognize gestures and 
facial expressions of the operator to ascertain stimuli of interest. Robot capabilities 
included detection of head orientation, body motion mimicry, hand reflex, figure-
ground segmentation, and response to operator gestures and touch. In addition, 
gesture recognition is integrated with a representational language for humanoid 
movement, with the goal of mimicry. Operational goals include scenarios where 
the user can show the robot what to do (e.g., open a gas tank, stack boxes, etc.).  

Kennedy et al. (2007), using ViaVoice, programmed speech and gesture commands 
for a core set of robot control commands relevant to Marine reconnaissance 
missions: “attention”, “stop”, “assemble” (i.e., come here), “as you were” (i.e., 
continue), “report” (which assumes the robot can communicate to the user). The 
first 4 commands were taken from the US Marine Corps Rifle Squad manual 
(Headquarters, Department of the Navy 2002). The robot interacted with a team 
member through voice, gestures, and movement, using artificial intelligence 
programming (i.e., ACT-R) capability with additional capacity for spatial reasoning 
and perspective taking. Together, the team member and robot were tasked to 
covertly follow and approach a moving target (e.g., another human or robot). The 
target continually moved to various locations and had a limited field of view in 
which to spot any followers. The robot had logical reasoning to enable covert 
approach, such as “if the target is on the north, east, south, or west side of an object, 
it should hide on the opposite side of the object”. While the emphasis of this effort 
was on spatial reasoning, gestures and speech were used for intercommunications. 
However, it is not clear from the report as to the extent to how many user-to-robot 
communications were used or successfully interpreted.  

Jones (2007) reported development of a prototype robotic system capable of 
detecting and following a person through indoor and outdoor environments while 
responding to voice and gesture commands. A camera-based system was mounted 
to the arm of a Packbot, placing the camera about 5 ft above the ground, allowing 
the view of a person’s upper body and gestures. The sequence of observed arm 
poses was matched to a complete sequence corresponding to a known gesture (e.g., 
wait, follow, breach doorway) through HMM algorithms (Rabiner 1989).  
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Ruttum and Parikh (2010) reported development of a gestural robot control system 
using core hand and arm signals used by the Marines. They focused on 4 signals, 
“come”, “go here/move up”, “stop”, and “freeze” and identified distinguishing 
factors from arm, hand, and body orientation/velocity/acceleration. Their approach 
was camera-based with real-time analysis of continuous video based on a Vicon 
motion detection system. This system is stated to reduce the limitations with regard 
to background clutter and orientation of the person to the camera. The assessment 
was conducted indoors (in an area measuring 30 × 25 × 9 ft). The subject was tagged 
with markers that are detected by infrared cameras set up within the room. They 
also compared 2 methods of analysis: Bayesian and NNs. Preliminary results were 
reported as inconclusive; however, the authors stated higher expectations for the 
NNs as data become more complex.  

Advancements in camera-based interpretation of human movements have evolved 
to enable recognition and tracking (Gavrilla 1999). Kania and Del Rose (2005) 
describe successful application of camera-based techniques to detect pedestrian 
movements and thus augment robot leader-follower performance.  

Camera-based recognition concepts have been demonstrated for leader-follower 
tasks, and other simple gestural commands, as shown in Fig. 1. There is also the 
potential use of more advanced applications of camera-based recognition, as it more 
closely approximates actual computer vision. For example, given surveillance as a 
mission goal, a camera-based computer vision system can serve to interpret 
surroundings in the environment, as well as the operator gestures (e.g., threat 
assessment based on motion, etc.) (Cohen 2005, 2013). 

 

Fig. 1 Camera-based control of robotic mule (Taylor et al. 2012) 

2.2.3 Aircraft Direction 

There are ongoing efforts to build gesture recognition for aircraft and unmanned 
aerial vehicle (UAV) handling, which have similar task demands to ground robot 
control. Recent efforts to develop camera vision-based recognition of aircraft 
handling hand and arm signals have included work by Choi et al. (2008), as well as 
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a current Office of Naval Research–funded research and development effort being 
conducted at the Massachusetts Institute of Technology by Song et al. (2011a, 
2011b, 2012). Choi et al. report overall accuracy of 99%, but for a training set 
consisting of multiple repetitions of only 8 gestures, while Song et al. have 
demonstrated gesture recognition accuracy of 75.37% for a subset of 24 aircraft 
handling gestures. In both cases, data were collected within a highly controlled 
laboratory setting in which lighting was controlled, visual noise was eliminated, an 
optimized field of view (FOV) and distance to the user were ensured, and hand and 
arm signals were generated by individuals that were standing still, rather than 
interacting within a complex and dynamic environment. Thus, it is unclear how 
well these systems would operate in challenging circumstances to meet operational 
needs. 

Ablavsky (2004) also reported progress toward proof of concept with regard to the 
use of a camera-based gesture recognition system for the direction of UAV 
movements on aircraft carrier decks. The passive camera system used a wide FOV 
for recognition of blinking beacons and a narrow FOV for observing hand and arm 
gestures. In contrast, Urban et al. (2004) used a motion tracker along with wearable 
sensors toward the same task goals. Sensors were attached to armbands worn by 
the operator. Two sensors on each arm (i.e., upper and lower arm) were determined 
to be sufficient for most gestures in the Navy gesture lexicon for control of aircraft 
on the ground. While gestures were accurately recognized, there were problems 
associated with wired sensors (e.g., tangled wires, necessity of being near the base 
device) and fatigue associated with bulky sensors, indicating the need for smaller, 
wireless sensors.  

2.2.4 Camera-Based Gestural Systems: Constraints in Military 
Operations 

There are a number of things to think about when technology is considered for use 
in military operations. Military operations have a number of characteristics that will 
be more challenging than simple tasks in controlled settings. Camera-based systems 
that have been shown to be successful in controlled laboratory settings may not 
generalize to military operations. The following bullets discuss how camera-based 
gesture recognition systems might fare under some military operations 
circumstances. 

• Line of sight. A primary constraint is line of sight: the camera and operator 
must be within sight of each other.  

• Visual clutter in operational environments. Clutter represents increased 
challenges due to distance and angle from the camera, varied contrast 
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backgrounds, and visual degradation from smoke, exhaust, haze, and 
inclement weather.  

• Visual clutter due to additional personnel. Camera-based systems may have 
difficulty recognizing the operator if other personnel (e.g., squad members) 
are within the visual field. 

• Visibility. Camera-based recognition is degraded or ineffective in poor 
visibility due to smoke, fog, and night operations. This can be ameliorated 
with infrared or thermal cameras.  

• Complex fast movements. High variation of body movements, the self-
occlusion of one body part by another, and fast movements of arms and legs 
(Checka and Demirdjian 2010; Yanik et al. 2012).  

• Latency. Latency can be a particular problem when operational tempo is 
fast and movements are quick. 

• Generalizability of recognition to a wider range of users remains uncertain 
as the performance metrics are typically based on a training set developed 
from a small number of participants in ideal circumstances (Garg et al. 
2009).  

• Complex environments. The hand gesture detection methods that are based 
on skin color, 2-D, or 3-D template matching are not sufficiently robust due 
to the many degrees of freedom with regard to hand movements, unobvious 
exterior features of hands, illumination changes, and varied colored and 
cluttered backgrounds (Xu et al. 2012).  

• Multiple cameras are not easily used on the go.   

Table 1 lists these constraints, along with impact on operations and ways in which 
the constraint can be managed. 
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Table 1 Typical constraints in military operations associated with camera-based gestural 
systems 

Issue Operational impact Potential solutions 

Line of sight 
Must use within line of sight 
(e.g., leader-follower 
scenario) 

Future:  multiple cameras/perspectives  

Visual clutter 
Use in noncluttered 
environments (e.g., roads, 
simple terrain) 

Augment with GPS, other wearable 
markers 

Visibility 
Limit to high-visibility 
operations/daytime use Augment with infrared/thermal cameras 

Complex/fast 
movements 

Limit to few simple 
commands/keep operator 
separate from others  

Augment with GPS/wearable markers   

Latency 
Do not use in high-tempo 
operations  

Technology improvements   

Generalizability to 
other operators 

Train camera/operator as a 
system  

Algorithm improvements/wearable 
markers 

Multiple cameras 
Static situations (e.g., 
indoors) 

Technology improvements for 
integration of multiple cameras on the 
go  

Pointing gestures Pointing not well 
accomplished  

Augment with speech recognition; 
Improved technology  

2.2.5 Approaches to Enhance Camera-Based Recognition 

A strong advantage of camera-based systems in military operations is the direct link 
between the camera and the operator. No wireless transmissions are needed to 
achieve communications, thus avoiding issues regarding signal strength or 
jamming. This issue can be the deciding factor for some military situations. 
Potential advantages also arise when camera-based vision systems serve multiple 
purposes, based on general recognition, not only of gestures, but of objects 
(stationary and moving) and potential threats.  

However, camera-based system effectiveness can be degraded in cluttered 
environments or if the operator is out of the line of sight. There are a number of 
approaches used to enhance camera-based recognition. As discussed in the 
following paragraphs, these approaches include making the gesture more “visible” 
(e.g., wearable markers), controlling the environment, or enhancing the camera 
technology. 

2.2.5.1 Wearable Markers 

A major challenge in more complex settings is the capability of recognizing a 
discrete gesture from a continuous stream of motion against a cluttered background. 
Some success has been reported using real-time continuous data (Alon et al. 2005). 
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Some progress has been made with regard to vision-based gestures in loud and 
cluttered settings, where user-borne devices such as microphones or gloves were 
not an option (Barattini et al. 2012).  

The efficacy of camera-based gesture recognition can be aided by use of markers 
(e.g., special clothing, colors, focus on skin tones, etc.) to simplify and speed the 
recognition process. Waldherr et al. (2000) used face color and shirt color as 
features to track movements. Manigandan and Jackin (2010) used skin color and 
textures to simplify recognition of hand postures. Singh et al. (2005) had the user 
wear clothes with colors that stand out from the background, with recognition based 
on motion and color cues and accuracy up to 90% for 11 commands. Malima et al. 
(2006) reported fast and efficient recognition of “counting” gestures through 
segmentation of the hand based on skin color and size. Stancil et al. (2012) 
described development of a robotic mine dog (Neya Systems LLC) that located its 
operator through recognition of body shape, posture, and a jacket worn by the 
operator.  

2.2.5.2 Controlled Environment 

Demonstrations of camera-based recognition often occur in controlled laboratory 
settings. Recognition can be aided through minimization of movement of all other 
objects in the field (Singh et al. 2005).  

2.2.5.3 Adding Speech Recognition 

Speech recognition has been used to facilitate gesture systems of all types. Several 
Department of Defense efforts are focused on integration of gestures with speech 
for robot control. While there are advantages to the independent use of gesture-
based control, there are also advantages that have been demonstrated when gestures 
are integrated with speech to achieve communication that is both naturalistic and 
precise. Speech is a very natural means of communication and is often the preferred 
modality of control (Beer et al. 2012). Progress toward natural speech control has 
been demonstrated for situations involving autonomous ground robots 
(Schermerhorn 2011; Hill et al. 2015).   

Jones (2007) combined camera-based recognition based on analysis of 3-D point 
clouds with speech recognition. Robot capabilities include that of person-
following, gesture recognition based on silhouette and 3-D head position (“wait-
follow”, “breach doorway”), and speech-based controls (“turn back”, “follow 
little/big”). These capabilities were demonstrated in moderately noisy 
environments where both the robot and operator were moving. Speech commands 
enabled control when the robot and operator were out of line of sight.  
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2.2.5.4 Adding a Handheld Pointing Device 

Natural speech, used alone, can be ambiguous (e.g., “go over there”) and needs 
some means of conveying details such as direction, either through further speech-
based clarification, a PDA visual display-based map, a laser pointer, or a gesture, 
to address the ambiguity in deictic elements (e.g., “this”, “that”, “there”, etc.) 
(Perzanowski et al. 1998, 2000a, 2000b).   

3. Wearable Instrumented Systems 

An alternative to camera-based systems for gesture-based controls is that of 
wearable instrumented systems. The most common technology used for gestures is 
instrumented gloves, but a few other approaches have been identified, as described 
in the following subsections. In this section, we describe the 2 main approaches to 
wearable gestural systems (e.g., instrumented gloves, electromyographic [EMG] 
sleeves) and approaches to gesture recognition using these systems. We then 
describe some military applications using these systems. While the focus is on robot 
control, we include some other applications, such as aircraft control and dismount 
communications. There are also applications developing within cockpit-type 
environments (Brown et al. 2011; DeVries et al. 2012; Slade and Bowman 2011); 
however, details are limited.   

3.1 Wearable Instrumented Gloves 

Instrumented gloves are the most common instantiation of wearable instrumented 
systems for robot control. The glove concept is congruent for many work situations 
where operators may already have to wear gloves. Early versions of these gloves 
were integrated for computer usage, in that the gloves could be used for computer 
interface actions such as menu selection. However, the reliance on a visual display 
was somewhat detrimental to performance (Kenn et al. 2007). For robot control, 
glove-based approaches are usually stand-alone, with the glove sending signals to 
robotic intelligence software for recognition, interpretation, and translation into 
computationally understandable and executable robotic behaviors.  

Earlier instrumented gloves relied on sensors such as bend sensors, which react to 
changes of finger angles, and sensor electrodes (Karlsson et al. 1998). Others use 
touch sensors, magnetic trackers, embedded accelerometers, and electromagnetic 
position sensors with multiple degrees of freedom to convey information that is 
then mathematically interpreted. Optical fiber sensors have also been used to detect 
angular displacements of finger joints (Fujiwara et al. 2013). Iba et al. (1999) 
described the integration of a Cyberglove, a 6DOF position sensor to determine 
wrist position and orientation, a mobile robot, and a geolocation system that tracks 
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the robot location. The operator may give specific commands to the robot or wave 
in the direction the robot is to move (e.g., to the left or right). HMM algorithms are 
used for gesture recognition. Multiple users were used to train the 6 commands. 
Recognition under ideal conditions was very accurate (96%–100%), with fewer 
false positives associated when there was a “wait” state in the gesture, such that the 
gestures were more easily distinguished.  

Barber et al. (2013) developed an instrumented glove combined with a 9-axis 
inertial measurement unit (IMU) for classification of 21 unique hand and arm 
gestures that were from the Army Field Manual (Headquarters, Department of the 
Army 1987) and modified Palm Graffiti. The wireless gesture-recognition glove 
incorporated bend sensors to distinguish pointing gestures and open/closed fist for 
determining the start/end of a gesture. They reported a 98% accuracy using a 
modified handwriting recognition statistical algorithm. The same algorithm was 
tested against a handheld device (Nintendo Wiimote), which also demonstrated an 
accuracy of 96% on the same set of gestures. Hill et al. (2015) demonstrated the 
use of this same system in an outdoor field assessment where arm and hand gestures 
were used to pause, resume, and direct control (e.g., move forward) a mobile robot.  

While instrumented gloves in general have core traits in common, each approach 
to design has advantages and disadvantages specific to particular task demands. For 
example, bend sensors can be fragile in adverse environments or repeated use, and 
can only track static postures. Finger-touch sensors may move out of position over 
time. Accelerometers on fingertips and/or the back of the hand rely on precise 
finger movements and finger and hand position. Piezo sensors have also been used 
(Hu et al. 2009). While several types of gloves can accommodate static hand 
postures (positioning), dynamic hand and arm movements are more challenging or 
are not possible for effective gesture recognition by some of these instrumented 
systems. In short, the findings from one type of glove do not necessarily generalize 
to other types of gloves; they are not equal in capability or usability.   

3.2 Other Wearable Sensors 

While gloves are the more common approach to wearable sensors for gesture 
recognition, other types of wearable sensors have also been developed. Wu et al. 
(2010) used a 3-axis accelerometer mounted to the user’s wrist to record hand 
trajectories, which were then classified as 1 of 6 commands (“turn right/left”, “go 
straight”, “go back”, “rotate”, “stop”). They reported 92% accuracy using the DTW 
recognition algorithms. Lementec and Bajcsy (2004) used an array of wearable 
sensors to detect arm orientations. Yan et al. (2012) reported success with body-
worn sensors (e.g., arm tape, wrist harness, thoracic and pelvic orientation sensors) 
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as well as with 3-D (i.e., Kinect) camera-based systems. While both the body-worn 
and camera-based systems were equally effective, there were additional constraints 
with the camera-based system beyond those of the body-worn sensors. For the 
camera-based systems, the controller must always face the camera and stay in a 
certain distance from the camera.   

There is an emerging alternate approach for gesture control that is based on 
recognition of EMG signals, where EMG activity is recorded from forearm 
locations. In the field of prosthetics, EMG signals have been used for simple binary 
commands; however, advancements are enabling more complex coding based on 
postures. Crawford et al. (2005) described how they used this approach to control 
a robotic arm with gripper functions, from static hand postures. Electrodes were 
placed on 7 forearm locations and one on the upper arm. Features were extracted 
for each person (N = 3), for each of 8 hand postures, over 5 sessions. In each 
session, the subject maintained each of the 8 postures for 10 s. Robotic tasks ranged 
from simple (e.g., “move the arm to topple blocks”) to more challenging (e.g., “pick 
up a designated object and drop in specified bin”). They reported classification 
accuracies over 90%. Progress has been reported with regard to adaptability to 
power source and reduction in muscle fatigue (Li et al. 2011) and more 
generalizable recognition of signals across multiple users (Matsubara and 
Morimoto 2013).   

The JPL Biosleeve, developed at the Advanced Robotics Controls group at the Jet 
Propulsion Laboratory (California Institute of Technology) also uses this approach. 
Eight bipolar EMG sensors and an IMU) are mounted in a wearable sleeve that 
monitors forearm muscles. The Biosleeve development is focused toward National 
Aeronautics and Space Administration space missions to enhance telepresence 
control and for astronauts working side by side with robots (Assad et al. 2012; Wolf 
et al. 2013). 

The concept is particularly apt for astronaut use outside the vehicle, as they are 
encumbered with heavy gloves, making traditional interfaces, such as joystick or 
touch interfaces, less effective. The sleeve is programmed to a particular user to 
develop recognition for static and dynamic gestures using algorithms to match 
temporal feature patterns to known templates. Recognition rates, based on 3 
subjects, ranged from 93% to 99% over 17 static gestural commands. Recognition 
rates based on one subject resulted in 99% accuracy for 9 dynamic gestures.  

3.3 Gesture Recognition by Instrumented Systems 

The glove-based approaches have the same core challenge of gesture capture and 
coding as do the camera-based approaches. Gesture recognition analysis methods 



 

Approved for public release; distribution is unlimited. 
25 

for instrumented gloves overlap with approaches taken with camera-based systems: 
HMMs (Rabiner and Juang, 1986), FSM (Hong et al. 2000), DTW (Hu et al. 2009; 
Wu et al. 2010), and ANNs (Oz and Leu 2007). Hand and body gestures can be 
transmitted from a controller mechanism that contains IMU sensors to sense 
rotation and acceleration of movement. HMMs have the ability to model sequential 
information and have been used dominantly throughout the past decade (Ong and 
Ranganath 2005). In previous years, HMMs were used to recognize ASL with real-
time color-based hand tracking (Starner and Pentland 1996). However, HMM has 
a relatively long training time with a large amount of training data. Others have 
found that the DTW approach is as effective as HMM, with a small set of gestures, 
while taking less time to prepare (Wu et al. 2010). Huang and associates (2011) 
describe a somewhat different approach to glove-based recognition, which abstracts 
a concept from raw data to recognize clusters of data. While the mathematic 
algorithms differ, there are still the same basic principles that underlie algorithmic 
recognition strategies to parse gestural movements into meaningful commands.  

Earlier versions of wearable instrumented gloves relied on recognition of static 
hand gestures, as extrapolated by the glove sensors with regard to hand posture. 
Gesture recognition was based on specific features of a hand posture that may be 
somewhat artificial and difficult to replicate across different users. While intuitive 
in nature, and appreciated by users, the application of glove-based control can be 
challenging for robot control. Kenn et al. (2007) found that users would naturally 
look to the robot instead of their hands, thus allowing more attention to robot 
performance. However, the gestural commands were sometimes misinterpreted, 
and these misinterpretations had more negative consequence to robot control 
compared with other purposes, such as using gestures to control a presentation 
application. The negative consequences include robot movements that keep going 
if a stop command is not recognized, or robots that actuate in response to an 
unintended command. With human-robot situations, the tolerance for error may be 
very low.  

Recent applications of the instrumented glove for robot control have been reported 
as successful. Boonpinon and Sudsang (2008) used a data glove to command 
multiple robots. More-recent technology adds the capability for more dynamic, 
movement-based gestures. IMU sensor technologies placed on the body provide an 
alternative approach to gesture recognition within uncontrolled environments. Iba 
et al.’s (1999) Cyberglove measures 18 joint angles of the fingers and wrist, with a 
6DOF positioning system to determine wrist position and orientation. The system 
was used to recognize 6 gestures, based on a) hand opening, b) flat open hand, c) 
hand closing, d) index finger pointing, e) waving fingers to the left, f) waving 
fingers to the right, and g) none of the above. Kang et al. (2010) used a version of 
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the Cyberglove having a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis 
magnetometer. They developed a data fusion approach to integrate findings, 
consisting of 5 substeps. They reported an average of 94% recognition rate for 10 
gestural commands. Rates were somewhat lower for 12 commands (91.7%) and 14 
commands (86.5%). Jin and his associates (2011) used an instrumented glove 
orientation sensor to recognize static hand commands. 

3.4 Military Applications: Instrumented Systems 

3.4.1 Dismount Soldier Communications 

Sullivan et al. (2010) described progress toward a DARPA-sponsored goal for a 
Soldier ensemble incorporating gesture recognition, head tracking, laser 
rangefinding, and augmented reality displays to support shared local situation 
awareness. Objects marked by one Soldier using gestures are portrayed to other 
Soldiers and shown as overlays in wearable visual displays. The gestural system 
included hand and upper arm gesture sensors that work with Soldiers wearing 
gloves.  

Ellen et al. (2010) offer a concept of operations for use of wireless communication 
gloves to communicate, plan, and react while wearing Mission-oriented Protective 
Posture (MOPP) gear (i.e., protective ensemble for chemical and biologic threats) 
(Ceruti et al. 2009; Defense Tech Briefs 2010). While smartphone applications can 
be useful for Soldier use, touchscreen controls are not easily accomplished while 
wearing MOPP gear that includes heavy gloves. The gloves have magnetic and 
motion sensors for gesture recognition. Additional glove-based sensors would 
provide information regarding chemical and biological threats in the immediate 
area. Other sensors in this concept include GPS, physiological sensors, and video 
imagery. Researchers from this group also demonstrated the wireless glove for 
robot control (Tran et al. 2009). In this effort, glove-based sensors sent signals to a 
processing unit worn on the forearm, which then sent signals to a TALON robot. 
Commands were used to control robot position, camera, claw, and arm, such as 
“point camera” and “grab object”.  

AnthroTronix has demonstrated (IMU-based hand and arm signal gesture 
recognition accuracy of 100% (Vice et al. 2001) via a custom instrumented glove 
interface. A more recent effort developed an instrumented glove for robot control 
and for hand and arm gestures for Soldier communications. Robot control was 
accomplished through navigation cues via static hand gestures (e.g., “move 
forward”, “move backward”, “turn left”, “turn right”, “stop”). Communication with 
other Soldiers was sent through hand and arm gestures (i.e., freeze, rally, danger, 
double time) that were received through signal patterns via a tactile vest. The tactile 
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vest allowed more immediate perception and understanding compared with 
standard visually communicated hand and arm signals (Elliott et al. 2014).  

The US Army Research Laboratory and the University of Central Florida have 
demonstrated an IMU-based hand and arm signal gesture recognition system for 
interactions with an autonomous ground robot (Hill et al. 2015; Barber et al. 2015). 
The IMU-based instrumented glove recognized 8 dynamic hand and arm gestures 
to issue commands to the robot. Integrated within a multimodal interface that also 
used speech for verbal commands, the user could perform a gesture to pause or 
resume autonomous navigation of the robot in addition to simple drive commands 
(e.g., “move forward”, “move backward”, “turn left”). 

Calvo et al. (2012) developed and evaluated a pointing device embedded within a 
tactical glove normally worn by US Air Force Battlefield Airmen during dismount 
military operations. Battlefield Airmen are the special operations force of the Air 
Force. The system detects the user’s wrist and finger movements through a 3-axis 
gyroscopic sensor. This capability was primarily explored for controlling cursor 
movements on a handheld device, as compared with using a touchpad or TrackPoint 
device. Moving the sensor with directional hand movements proportionally moves 
the cursor in the same direction. The user can also use their thumb to press buttons 
placed on the side of the index finger, to enable cursor movement, and perform 
cursor left clicks. While training time to reach asymptotic performance was longest 
with the glove than with the touchpad or TrackPoint device, throughput 
performance was significantly higher with the glove compared with the touchpad, 
which in turn, was significantly higher than the TrackPoint. Movement times were 
lowest with the glove; however, the glove was associated with higher error. This 
glove concept was compared to a handheld controller for micro-UAV control to 
navigate waypoints. Operators included 6 nonmilitary subjects performing in a 
simulation-based training environment. Waypoints were presented as red cubes in 
a 3-D virtual environment. Performance was not significantly different from the 
handheld controller. These results are quite promising and warrant further 
investigations using military subjects. 

3.4.2 Robot Control 

3.4.2.1 AnthroTronix 

Figure 2 shows Soldiers using an instrumented glove for robot control and for hand-
arm communications (Elliott et al. 2014).  
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Fig. 2 Soldier using instrumented glove for robot control (left) and communications (right) 

3.4.2.2 SA Photonics  

Researchers at the Space and Naval Warfare Systems Center (Ceruti et al. 2009; 
Tran et al. 2009) demonstrated application of a wireless communications glove for 
robot control and communications, along with other tasks, such as motion tracking, 
gesture recognition, data transmission, and reception, in normal and in extreme 
environments. They compared glove prototypes with and without a haptic (i.e., 
vibrotactile) capability for signal feedback and covert signal reception. Both types 
of gloves can be worn under a space suit or chemical protective gear and still 
operate effectively. 

3.4.3 Aircraft Direction 

Urban et al. (2004) used a motion tracker along with wearable sensors. Sensors 
were attached to armbands worn by the operator. Two sensors on each arm (i.e., 
upper and lower arm) were determined to be sufficient for most gestures in the 
Navy gesture lexicon for control of aircraft on the ground. While gestures were 
accurately recognized, there were problems associated with wired sensors (e.g., 
tangled wires, necessity of being near the base device) and fatigue associated with 
bulky sensors, indicating the need for smaller, wireless sensors. 

Research and development of gestural communications for military use highlight 
positive potential for successful use and the limitations that must be addressed. The 
variation of gestural command approaches represents a corresponding variety of 
advantages and disadvantages. Identification of promising technology for a 
particular use should begin with consideration of purpose through analyses of 
operational requirements, task demands, and situational constraints.  
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3.4.4 Constraints in Military Operations 

Some characteristics constrain the use of wearable sensors such as instrumented 
gloves. As identified in the following bullets, while some of the wearable 
instrumented systems can perform well in controlled environments, military 
operational environments may prove challenging for the current state-of-the-art 
technology. 

• Operational range. The instrumented gloves/sensors must be used within 
system range. At this time, technology improvements to the electronic 
transmission capabilities (for sender and receiver) will be needed for longer 
distances. 

• Latency. Latency of signals may be a problem when operational tempo is 
fast and movements quick. 

• Multiple instrumented gloves/sensors. There may be networking limitations 
on the integration of multiple wearable controllers. 

• Pointing gestures. Pointing has not yet been well-achieved while using 
wearable instrumented devices for gestures. Certainly part of the issue is 
that it is difficult to know what a pointing gesture is directed toward—what 
is being pointed at? Current technology may be able to be augmented with 
speech recognition. 

4. Discussion 

In our overview, we focused on hand and arm gestures, as they are most commonly 
used. For example, Mitra and Acharya (2007) identify 90% of gesture 
communication conveyed through hands and arms. Also, Soldiers already have 
familiarity of hand and arm signals for communication, some of which could also 
be considered as gestural commands to robots. The use of gestures is already 
common in military tactics and communication, as they have the advantage of being 
silent and easily used. Military hand and arm signals are documented in sources 
such as the US Army Field Manual No. 21-60 (Headquarters, Department of the 
Army 1987) and Marine Rifle Squad MWCP 3-11.2 (Headquarters, Department of 
the Navy 2002). In addition, certain mission scenarios may have further 
requirements, such as a need for covert operations (e.g., low noise and electronic 
transmissions) or combat operations that are characterized by high stress, high time 
pressure, high noise, low visibility, or night operations. Task demands of military 
ground robots will vary depending on mission requirements, such that the user may 
have to control robot movements, camera actions (e.g., pan, zoom, take pictures), 
or robot manipulations (e.g., grasping and manipulating objects).  
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The ease of use expected from gestures illustrates a core goal for effective use of 
gestural commands across many situations: that they be intuitive and easy to learn; 
ideally to the point of being discoverable (i.e., the user discovers the gestural 
command as a natural consequence of interaction). The best, most natural designs 
are those that are intuitive, that match the behavior of the system to the gestures 
humans would naturally use to accomplish the behavior, such as putting your hands 
under a faucet to turn it on, walking through a doorway, or pointing to direct 
attention to a location. Task context must also be a primary consideration in gesture 
evaluation: some gestures may be intuitive, easily learned, and performed for a 
single command but would be inappropriate for sustained repetitive use. Some 
situations will be more demanding on the user and the technology, such that each 
technology must be assessed in light of the intended use and users. However, 
general principles for gestural commands would include the following design goals 
to achieve high user acceptance, arising from perceived usefulness along with ease 
of use (Davis 1989):  

• Easy to learn 

• Easy to perform 

• “Natural” movements 

• Easy to remember 

• Easily distinguishable gestures (from other gestures) 

• Easily distinguished from normal work movements 

• Easily distinguished from other people in surrounding area 

• Easily distinguished from normal social gesticulations 

• Easily recognized within a specified range (relevant to task) 

• Socially acceptable 

• On/off control 

• Compatible with and supplemental to existing hand and arm gestures 

While these characteristics seem self-evident, embedded within are issues with 
regard to measurement of these concepts. For example, concepts such as 
“intuitiveness” and “comfort” are subjective and perhaps somewhat ambiguous, 
although efforts have been made toward a more-quantitative approach to 
measurement (Stern et al. 2006). In addition, there are situational moderators, such 
that one solution does not fit all. For example, ease of learning and recognition can 
be significantly affected not only by the nature of the gesture(s) themselves, but 
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also by the number of gestures that are needed. Certainly, it is more difficult to 
learn, remember, and distinguish a large number of gestures. Comfort and ease of 
performance will also be greatly affected by gesture duration and use over time, 
and whether commands must be made while on the move. Social acceptance will 
also be affected by the environment; for example, speech-based controls would not 
be as appropriate for use in a quiet situation such as a library. Similarly, broad active 
gesticulations would not be appropriate for covert Soldier missions, such as an 
ambush. Designers must systematically analyze situation task demands to best 
tailor gestures (e.g., static hand postures, dynamic hand movements, etc.) with 
gestural recognition capabilities, environmental constraints, and need for precision 
(e.g., consequences of error or repetition). Given this, we turn attention to issues 
relevant to Soldier use and performance. 

4.1 Issues Relevant to Soldier Use 

It is evident that the field of gestural controls for robots has shown promise along 
a number of task demands, ranging from simple commands to more complex and 
autonomous tactical commands. Given that Soldier tasks can also vary, along with 
environmental demands and constraints, we identify the following mission and 
task-related factors for consideration when designing gestural controls for Soldier 
use. 

4.1.1 Line of Sight/Distance between Robot and User 

Many dismount Soldier missions are conducted with intact squads, where Soldiers 
are within line of sight. Some robot roles would normally take place in proximity 
to squad members, such as robotic mules to offload weight. While the constraints 
associated with the need for line of sight seems more applicable to camera-based 
systems, it can also be relevant to instrumented systems, because of the need for 
appropriate range for wireless signals. The need for line of sight or close range can 
affect the nature of gestures to be used. For example, larger, more whole-body 
dynamic movements may be more effective for camera-based systems. The need 
for direct line of sight with camera systems could affect military operations such as 
room clearing, reconnaissance, ordnance removal, and other situations where the 
robot may be distant and/or out of line of sight. Perhaps most important, the need 
for line-of-sight operations requires the Soldier-gesturer to be exposed, making the 
gesturer more vulnerable and potentially reducing survivability. 

4.1.2 Visibility/Night Operations 

For camera-based systems, the issues associated with the need for visibility is 
similar to that of line of sight and range. Camera-based systems that cannot be 
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effective in smoke, fog, mist, or night operations will be greatly limited in tactical 
applications. To be effective in these low-visibility conditions, camera-based 
systems will need to be augmented with specialized capabilities such as night- or 
thermal-vision capabilities. (Research and progress in this area warrant greater 
focus with regard to engineering and human factors). At this time, wearable 
instrumented systems in general have greater advantage for limited visibility 
operations. 

4.1.3 Practicality of Using Special “Markers” 

Some camera image recognition systems are augmented by the use of special 
clothing or wearable markers, which ease the processing complexity and load. 
Situational task demands will greatly affect whether this approach can be used. It 
should be noted that the special clothing or markers that make the user more visible 
and recognizable to the camera would not likely be suited for covert operations 
where Soldiers strive for discretion and secrecy. Special clothing/markers can make 
the Soldier a higher-risk target and more likely to be engaged by enemy forces, thus 
survivability may be compromised. 

4.1.4 Practicality of Using Wireless Transmissions 

Some operational missions may require silence, not only for audio, but also for 
electronic transmissions. Other missions may be more susceptible to jamming of 
such electronic transmissions. While camera systems are not vulnerable to jamming 
transmissions, the instrumented wearable systems would be rendered ineffective if 
transmissions were jammed. 

4.1.5 Need for Deictic Information: Pointing Gestures 

Deictic information depends on knowledge of situation context and personnel 
locations. The receiver robot must know where the operator is, as well as the 
direction of the pointing gesture. While pointing gestures are intuitive and perhaps 
the most useful of gestures, they are also quite difficult to instantiate successfully, 
for both camera-based and instrumented systems. If there is a need for deictic 
information, specifications should be generated with regard to the nature of the 
pointing gesture. For example, will the gesture indicate a general area? If so, how 
large is this area? Will the gesture be augmented by speech and object recognition 
(e.g., “bring me that ammo pack”) or integrated with map-based information on a 
visual display? The multimodality of the entire system will greatly affect the utility 
of pointing gestures in general.  

The effectiveness of any gesture set will be affected by the nature of its multimodal 
context. Gestures may be added to augment an existing system to increase 
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intelligibility in noisy environments. In the same way, speech can augment a vision-
based gestural system when visibility is occluded. It is not likely at this time that a 
gestural command system would be completely stand-alone; instead, it will serve 
to augment and complement speech, keyboard, and or visual map displays. 
Scenario-based cognitive task analysis approaches including these issues should 
drive development of new Soldier concepts (Hoffman and Elliott 2010).  

4.1.6 Ease of Producing and Sustaining Gestures 

Situations should be analyzed with regard to the frequency and duration of gestural 
use. Gestures that may be easy to produce for a short period may become fatiguing 
over time. For example, robot controllers found that holding their hand steady and 
parallel to the ground was at first quite easy to accomplish but soon became fatigued 
after only 15 min. Thus, a relevant issue is whether the gestures have to be 
maintained continuously. This issue pertains to both camera-based and 
instrumented gestural systems. 

4.1.7 Number of Gestures 

The number of gestural commands that are needed for robot control will greatly 
affect the ease of use for the operator. Given a situation that requires more than  
5–7 commands, particular attention must be given to gesture distinguishability, as 
well as ease of producing the gesture. As the number of gestural commands 
becomes higher, there should be greater consideration of gestures that use 
movement as well as static postures, including arm and/or whole body movements, 
to ease recognition. As the number of gestures increases, the training takes longer, 
the difference between gestures may be less than optimal, and the robot may not be 
able to determine differences at increased operating distances. This issue pertains 
to both camera-based and instrumented systems.  

4.1.8 Number of Robots to Be Controlled by One Person 

Gestures have been used to coordinate formation and movement of multiple robots. 
For example, an instrumented glove has been used to facilitate coordination of robot 
behaviors in multirobot systems having inherent decision rules to stay together, 
according to assigned distance parameters (Boonpinon and Sudsang 2008). In such 
a situation, the approach to gesture control is somewhat similar to the gestures and 
whistles used by herders to command sheep and/or herding dogs (e.g., the sheep 
have natural tendencies for formation and reaction to command stimuli [Phillips et 
al. 2012]). Multirobot situations must be carefully considered to match gestural 
commands to robot capabilities (e.g., level of autonomy and group formation 
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algorithms) and robot task demands, at both the individual and multiple-robot level 
of analysis. This issue pertains to both camera-based and instrumented systems.  

4.1.9 Number of Coordinating Soldier Users 

As robot-Soldier scenarios become more complex, there may be situations when 
the robot is considered a squad-level asset, much like any other squad member. In 
that case, careful attention must be given to provide not only the capabilities but 
the policies for squad-level use (i.e., the tactics, techniques, and procedures [TTPs] 
to be used by the Soldiers). When such TTPs are developed, the robot could, and 
should participate as an integral member of the squad, in training exercises (i.e., 
battle drills), to best ensure performance that is intuitive, efficient, and effective. In 
addition to consideration of TTPs, systems should be programmable for accepting 
unit standard operating procedures, which differ from unit to unit. This issue 
pertains to both camera-based and instrumented systems.  

4.1.10 Combat Readiness 

There are also the usual factors that must be considered for any Soldier system. 
These would include consideration of the type of power source, battery life, 
weight/bulk, sensitivity, accuracy, reliability, noise and light discipline, operational 
security, operational environment (sand/dust, rain, terrain, urban, etc.), durability, 
and maintainability.  

In addition the system should be simple to operate, modular in design for specific 
application to various missions or tasks, designed to deny use by enemy against 
friendly, include design considerations for continuous operations missions lasting 
from 72–96 h, man-portable, air-droppable, and have decontamination procedures 
for nuclear, biological, and chemical environment (i.e., disposable vs. able to be 
decontaminated). 

Table 2 lists primary considerations for gesture technology type that are relevant to 
use by Soldiers in operational contexts. The positive characteristics (Pros) and 
negative characteristics (Cons) of 2 types of gesture technology, camera-based 
systems and instrumented systems, are presented. Throughout the table, positive 
characteristics (Pros) for Soldier use are presented in plain font, while negative 
characteristics (Cons) for Soldier use are presented in italics. 
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Table 2 Considerations for gesture technology relevant to Soldier performance 

Consideration Camera-based system 
(Pros/cons)   

Instrumented systems 
(Pros/cons) 

Need for line of sight • Camera cannot capture and 
interpret command 

• If camera is too close, then 
it may miss part of the 
movement intended for 
command/control. 

• Trees, bushes, obstacles can 
severely restrict line of sight 
between operator and robot 
camera. 

• Operator must remain 
exposed in hostile 
environment to control 
robot 

• Gesture will be 
interpreted regardless of 
intermittent line of sight 

• Operator may be able to 
control robot from a 
covered or defilade 
position. 

• Operator may be 
restricted based on 
dense foliage from 
executing proper 
gesture. 

Distance between robot and 
user 

• Camera may require close 
range for effective gesture 
recognition even when 
signaler is within line of 
sight.  

• Dependent on network 
range capability 
(See also Wireless 
Transmissions below) 

Need for visibility during 
low-visibility operations 

• May be addressed through 
specialized vision systems 

• Daylight camera systems 
may not capture and 
interpret command in low 
visibility 

• Instrumented systems 
not affected by level of 
visibility 

 

Need for wearable markers • May be required for 
effective use in cluttered 
environments  

• May enable targeting of 
operator, reducing safety 
and effectiveness 

• Not needed 

Need for wireless 
transmissions 

• Not needed • Depending on system, 
may be susceptible to 
interference/jamming  

Need for deictic (pointing) 
information  

• May be augmented by 
speech, visual display, or 
pointing device (e.g., laser-
pointing system)  

• 2-D camera systems have 
difficulty interpreting 3-D 
cue information  

• May be augmented by 
speech,  visual display, 
or pointing device (e.g., 
laser-pointing system) 

• Pointing system may be 
incorporated in wearable 
or handheld systems  
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Table 2 Considerations for gesture technology relevant to Soldier performance (continued) 

Consideration Applies to BOTH camera and instrumented systems 

Ease of producing and 
sustaining gestures 

• Frequency and duration of gestures may impact fatigue and 
ability to hold gesture for some period of time  

Number of gestures • The number and distinguishability of gestures will greater 
affect the ease of use by Soldier 

Number of robots to be 
controlled by one person 

• Careful consideration needs to be made for multirobot 
systems. 

Number of coordinating 
Soldier users 

• For multirobot, multi-Soldier user scenarios, need careful 
attention to robot responses to gestures and policies for 
squad-level use. 

Combat readiness • Important factors for any Soldier system, including gesture 
technology, include power source, battery life, weight/bulk, 
operational security, operational environment, etc. 

4.2 Future Directions 

4.2.1 Integration with Speech 

Given the relatively hands-free nature of gestural commands and constraints with 
regard to command vocabulary and syntax, it is likely that a combination with 
speech control would be beneficial. While control systems should be separable as 
an option (e.g., in circumstances where minimal sound is required, or one 
component is not working), it is clear that integration of multiple modalities will 
benefit from respective advantages. The combination of deictic gestures to support 
human-human interactions has been well established (Urban and Bajcsy 2005). 
Most efforts follow the structure of “put-that-there” system of Bolt (1980) that 
refers to object and locations by pointing and speaking. Research from 
neuroscience has argued that human gesture production is very much associated 
with language processing (Kelly et al. 2009; Mayberry and Jacques 2000) and are 
thus an intuitive pairing. Consistent with this view, Gullberg (1999) reported that 
over 50% of gestures used in spontaneous gesture production were to clarify speech 
utterances. Studies have shown demonstrable benefits from use of gestures to 
support deictic information, particular with regard to location and spatial 
relationships (St Clair et al. 2011b). 

Speech-based controls have been developed with the goal of natural language 
interaction (Brooks et al. 2012). At this time, purely speech-based controls face a 
core challenge regarding communication of spatial relationships and explicit 
directions (e.g., “go to the east side of the third building behind the church”), and 
pointing gestures are expected to help clarify localization information. The 
challenge becomes even greater if one is commanding a robot with multiple degrees 
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of freedom in space; neither speech nor any programming language is well suited 
for these types of commands (Hirzinger 2001). Speech-based controls can also be 
problematic in noisy environments such as aircraft carriers. The addition of gestures 
to speech control systems should result in higher effectiveness based on 
complementary capabilities.  

Marge et al. (2012) used a WoZ approach to investigate relative advantages of a 
traditional handheld robot controller with video feed, against alternatives that used 
speech or a combination of speech and gesture. The evaluation was based on a 
Soldier room-clearing mission, where the ground robot played the role of a fellow 
Soldier who guards the hallway and watches for enemy movement. Twenty-one of 
30 participants were active duty in the military. In the traditional handheld display 
condition, the participant used a tablet computer with a virtual onscreen joystick, 
which also provided a video feed from the robot’s camera. The participant was 
tasked to move and search rooms using a predefined route, look for and note certain 
objects in the environment, and monitor the video for passing people (indicated by 
a marker placed in front of the camera). In the speech condition, the video feed was 
replaced by a simulated capability where the robot alerts the participant through 
speech. In the combined speech and gesture condition, the speech replaced the 
video speech, and teleoperation of the robot was performed by a hand and arm 
gesture to stop and start robot “follow” movements. Actual commands were 
accomplished through experimenter control of robot movements, allowing a more 
controlled investigation of options independent of other performance factors (e.g., 
capability and reliability of speech and gesture control). Results indicated that 
significantly faster speed and lower workload associated with the speech-gesture 
combined display, particularly for the military participants, who had less 
experience with robot controllers. Other participants were the robot developers and 
technicians who had more experience with the handheld controller. Participants 
expressed higher preference for the speech-gesture combination, as they allow 
heads-up hands-free control, allowing more attentional resources to their 
surroundings. While not conclusive, given the WoZ approach, results are promising 
and support further development of actual capability.  

Sofge and colleagues discuss their application of 2 cognitive architectures (i.e., 
ACT-R and Polyscheme) to achieve understanding of natural language commands 
that involve spatial reasoning and perspective-taking (Sofge et al. 2003b). Related 
efforts are also focused on the modeling of spatial reference in natural language 
(Adams and Skubic 2005; Blisard and Skubic 2005; Luke et al. 2005), and the 
integration of speech with pointing gestures (St Clair et al. 2011b). Typically, the 
pointing gesture is used in conjunction with speech to accomplish labeling of 
objects (e.g., “this is saucer1”), where the pointing gesture assists in clarifying 
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“which” object. Pointing gestures are also used to indicate a location (e.g., “move 
50 m over there” [Brooks and Breazeal 2006]). Kennedy and Rybski (2007) 
reported the integration of vision-based human/limb detection and tracking with the 
capability for a human to teach a robot how to do tasks through speech and physical 
demonstration. More basic research investigates the natural use of speech and 
gestures for human-to-human dialogs pertaining to spatial relationships (Lucking 
et al. 2012). As robots become more capable (e.g., intelligent, autonomous), the 
guidelines pertaining to human-human communications will become more 
relevant. It is sensible to conclude that systems using both speech and gestures will 
naturally evolve towards more effective and intuitive robot control systems.  

Stiefelhagen et al. (2004) developed a speech-gesture control system as a natural 
interaction with an assistive robot, in a kitchen scenario. Speech, head pose, and 
gestures were integrated with visual recognition technology to communicate 
commands such as “what is in the refrigerator”, “please set the table”, “please turn 
off/on the light”, and “please bring me a certain object”. The system included a 
JANUS speech recognition system developed at the University of Karlsruhe, 3-D 
face and hand tracking, speech synthesis, and a stereo camera system with pan/tilt. 
Remote microphones were used in lieu of head-mounted alternatives, to minimize 
user discomfort. Depth information allowed gesture recognition that was more 
robust to lighting changes. Head pose information was used to signify direction and 
to determine whether the user was directing speech to the robot as a command. 
When combined with pointing gestures, the head pose information increased 
accuracy of interpretation, by reducing false positive error rate from 26% to 13%. 
The robot visual recognition system was programmed to recognize objects such as 
cups, dishes, forks, knifes, spoons, and lamps. Thus, combination of speech, 
gesture, and head pose information allowed interpretation of ambiguous phrases 
such as “get me that fork” or “switch on that lamp”. However, performance data 
for the system were sparse and restricted to performance of each component rather 
than the system as a whole. The system was described as a work in progress, with 
current goals toward a more humanoid robot with 2 arms. Similarly, Rogalla and 
associates (Rogalla et al. 2002) also reported progress on integrated vision-based 
recognition of gestures and objects with speech-based control, for assistive tasks. 
In their approach, emphasis was on hand silhouette recognition of hands with color 
segmentation of objects, combined with “ViaVoice” speech recognition capability, 
to accomplish tasks such as “take the cup from the table in front of you”.  

While benefits have been demonstrated, challenges remain with regard to effective 
integration of speech and gesture, particularly in multi-object environments in a 
3-D world. These more complex scenarios represent a complex and unstructured 
problem (Brooks and Breazeal 2006). Similar issues are faced as researchers strive 
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to develop an interface that integrates head-mounted visual display, speech, and 
gesture controls for the commander as he or she is seated within a moving command 
vehicle (Neely et al. 2004). Gestures are most naturally effective in situations of 
physical co-presence, where the robot and the operator can establish a joint visual 
understanding of the environment, with physical and directional referents. This is 
particularly true if robot recognition of gestures is dependent on a camera-based 
system. In a somewhat different approach, (Taylor et al. 2014) used smartphone 
technology attached to a user’s wrist to capture both speech and gestural 
movements, which was sent to a remote laptop for processing and command of a 
robotic mule. It is clear that many approaches are being explored from different 
perspectives to more fully achieve effective and naturalistic integration of speech 
and gesture.   

4.2.2 Integration with Handheld Devices 

The smartphone is a core element of the Army concept of operations for the ground 
Soldier (Barker 2013), providing the opportunity to use numerous apps to support 
mission tasks. While the concept for Soldier use is a popular one, with a dedicated 
program of effort, many challenges remain to be addressed to achieve capabilities 
typical of civilian use (Erwin 2011) due to limitations associated with secure use. 
Smartphone applications have incorporated 3-D audio and tactile feedback for 
waypoint navigation for US Air Force Battlefield Airmen (Calvo et al. 2013) and 
for robot control, incorporating features such as vision-based recognition and 
speech control (Checka 2011). The smartphone platform can also be used to support 
gestural commands. Two types of handheld devices are prevalent with regard to 
gesture control. One would be the use of the device to assist in gesture recognition, 
by being the object that is recognized. The Kinect gaming device is such an 
example. The user holds the device, which is tracked by a camera system. This 
approach was shown to be easy to learn for simple navigation commands to a robot, 
so that the device is used like a virtual leash (Olufs and Vincze 2009). The XWand, 
developed by Microsoft Research, is a wand-like device that enables the user to 
point at an object and control it using gestures and/or voice. For example, lights 
and music can be turned on and off by pointing to the device (light switch, music 
player) and saying “lights on” or “volume up” (Wilson and Shafer 2003). The 
Nintendo Wii remote controller has also been used as a gestural device to send 7 
different communications, representative of Army hand and arm signals to a tactile 
belt (Varcholik and Merlo 2008).  

Smartphone visual displays can also be used to augment speech or gesture. A map-
based display addresses the challenge of directing a robot to a particular location or 
object. The visual display may be used with touch gestures, or integrated with 
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speech-based specifications. A grid-based map display allows the operator to refer 
to a grid-based location when directing the robot. Alternatively, an object-based 
approach is based on the labeling of referent objects, which can be referred to from 
different vantage points over time (Walter et al. 2010; Pettitt et al. 2014). 
Gopalakrishnan et al. (2005) demonstrated gains achieved through integrating 
camera-based gestures with visual displays, laser-based localization, and speech 
recognition capabilities.   

Pointing devices have also been used to enhance the precision of the gesture to 
point to areas or objects. Kemp and his associates (Kemp et al. 2008) utilized an 
off-the-shelf green laser pointer, integrated with an omnidirectional catadioptric 
system (i.e., an optic combining reflection and refraction, such as lenses and curved 
mirrors) with a narrowband green filter. The user points at the object of interest, 
which is located by the robot. They reported 99.4% accuracy with regard to the 
robot looking at the correct object and estimating its 3-D location, and in 90% of 
the trials the robot successfully moved to the object and picked it up. Objects were 
within 3 m. Patel and Abowd (2003) developed a 2-way laser-assisted capability 
on a cell phone, which can select and communicate with photosensitive tags placed 
in the environment. This general approach is promising in that it avoids the 
complexity with regard to intelligent understanding of spatial relationships and 
recognition of objects and/or pointing gestures. 

One recommendation with regard to handheld objects in general is to make the 
device easy to find if misplaced. In particular, this can be very important for 
Soldiers in military operations, given combat missions that are often executed at 
night, by users under high stress. A simple GPS chip within the device can indicate 
its position on a map. In addition, the device might emit audio cues when requested. 
In the same way, the robot itself may be beyond line of sight and in need of retrieval. 
In that case, a tactile belt display can respond to GPS signals and guide the wearer 
to the robot location, while leaving the hands and eyes free, to attend to weapons 
and surroundings (Pomranky-Hartnett et al. 2015).  

Some characteristics that constrain the use of handheld devices and should be 
considered prior to development or selection for use are as follows:  

• Operational range. The handheld devices must be used within system range. 
At this time, technology improvements to the electronic transmission 
capabilities (for sender and receiver) will be needed for longer distances. 

• Latency. Latency of signals may be a problem when operational tempo is 
fast and movements quick. 
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• Multiple handhelds. There may be networking limitations on the integration 
of multiple handheld controllers. 

• Ability to be hands free. By their very nature, handheld devices are not 
hands free. Even if stored in a pocket, a hand must be used to hold the device 
for gesture control. 

5. Conclusions 

It is clear that much progress has occurred with regard to development of gestural 
command systems, and that progress is ongoing. In addition, there is great variety 
of technology approaches. In this report, we describe many of these approaches, 
and offer an organizing framework that can allow the developer to more closely 
consider situational context and task demands to better identify the technology most 
suited to the purpose at hand. 

It is also clear that integration with other modalities (e.g., visual map displays, 
speech control, and bidirectional communication) will offer a wider range of 
applications and greater effectiveness with regard to speed, accuracy, and ease of 
use. While camera-based systems are currently limited, research is ongoing to 
enable the camera system to more closely approximate the capability to not only 
“see”, but to understand and interpret, not only gestures but situational context. At 
this time, however, both camera-based and instrumented systems have limitations 
that must be considered when choosing the most appropriate system for the task 
and situational demands at hand. For military use, generalizable recommendations 
would include weight, bulk, maintainability, power consumption, and ease of use. 
In addition, the use of wearable networked systems will always present security 
issues (Hudgens 2013). Proof-of-concept technology must address these issues 
before transition to combat situations.  
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List of Symbols, Abbreviations, and Acronyms 

2-D  2-dimensional  

3-D 3-dimensional 

ANN artificial neural network 

ASL American Sign Language 

DARPA Defense Advanced Research Projects Agency 

DOF degrees of freedom  

DTW dynamic time warping 

EMG electromyographic 

FOV field of view  

FSM finite state machine  

GNG Growing Neural Gas 

GPS  global positioning system 

HMM hidden Markov modeling. 

IMU inertial measurement unit  

MOPP  Mission-oriented Protective Posture 

NN neural network 

PDA personal digital assistant   

RBF radial basis function  

TTP tactics, techniques, and procedures 

UAV unmanned aerial vehicle  

WOZ  Wizard of Oz
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