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Representative Structural Element - A New Paradigm for 

Multi-Scale Structural Modeling

Abstract 

Under the sponsorship of AFOSR, we have successfully achieved the objective to establish a new 

paradigm for multiscale structural modeling to provide a systematic approach for efficient high-fidelity 

modeling of aerospace structures featuring multiscale heterogeneities and anisotropy. The proposed 

approach uses the concept of representative structural element, later renamed to be structure genome 

(SG) to emphasize the potential of this concept to bridge materials genome and structural analysis, and to 

better align with the Materials Genome Initiative (MGI). In this project, we have formulated the general 

theory for mechanics of structure genome (MSG), carried out a critical assessment of the proposed 

approach, and applied this approach to predict static failure and imperfect interfaces, construct models for 

hyperelastic materials, elastoplastic materials, viscoplastic materials, damaged materials, smart laminates, 

aperiodic materials, and last but not least, applied this approach to create new theories for laminates and 

micromechanics, and to provide a versatile solution for general free-edge stress problems.  

Introduction 

This grant has been active since April 2013 with Dr. Wenbin Yu, a former employee of Utah State 

University (USU), as the PI, who joined the faculty of the School of Aeronautics and Astronautics at 

Purdue University in August 2013. The grant is consequently modified so that Dr. Ling Liu becomes the 

USU PI and a subcontract is issued to Purdue with Dr. Wenbin Yu as the subcontract PI taking care of all 

the technical responsibilities. The subcontract was not approved and effective until 11/10/2014. During 

15-month funding gap (8/2013-11/2014), Dr. Yu’s Purdue startup funds was used to support a postdoc 

and three graduate students who are working on this project.  

All work done will be summarized and papers written under grant sponsorship will be appended to 

provide the technical details. The goal of this research is to establish a new paradigm for multiscale 

structural modeling. The importance of such a research stems from pervasive use of composites structures 

in USAF platforms, for which efficient high-fidelity predictive modeling capability is the key for future 

advance. These structures are usually heterogeneous and anisotropic at the material level and/or structural 

level. Although these structures can still be macroscopically modeled as beams, plates, shells, or 3D 

elements, their performance and failure greatly depend on the engineered heterogeneities. This poses 

formidable obstacles for mathematical modeling of these structures, which must be overcome before we 

can reap the full benefits of heterogeneous structures. Furthermore, to rapidly yet confidently evaluate 

1 Assistant Professor, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah

84332-4130. 
2Associate Professor, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907-

2045. 
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new structural concepts with engineered heterogeneities, the designers must be equipped with versatile 

computational tools to accurately capture the right physics at the speed of computational design. This 

calls for efficient high-fidelity physics-based models for heterogeneous structures to deliver the best 

possible accuracy within desirable efficiency. We have successfully completed the three research tasks 

originally proposed in the proposal: 

 Introduced RSE [1,2] as a new concept to provide a unified treatment for structural mechanics and 

micromechanics and establish the basic requirements for the RSE-based multi-scale structural 

modeling from fundamental mechanics principles. RSE generalizes the well-known representative 

volume element (RVE) concept in micromechanics and naturally connects the micromechanical 

analysis with the macroscopic structural analysis. RSE was renamed as SG later to better align with 

MGI [3,4]. 

 Constructed efficient high-fidelity models for heterogeneous composite structures. Exploiting the 

smallness of thickness and heterogeneity using the variational asymptotic method (VAM) [5], 

mechanics of structure genome (MSG) [6,7,8] was formulated to mathematically split the original 

structural analysis including heterogeneous details into a constitutive modeling analysis and a 

macroscopic structural analysis without heterogeneous details. The constitutive modeling analysis 

provides effective properties for the macroscopic structural analysis and dehomogenization relations 

for obtaining the microscopic behavior. MSG has been implemented into a general-purpose, 

multiscale constitutive modeling code called SwiftComp using the finite element technique to 

facilitate technology transfer of this fundamental research. 

 Validated the models and the companion computer code SwiftComp developed in this research 

extensively using existing results in the literature, direct finite element analyses with meshing all the 

heterogeneous details, and experiments through collaboration with AFRL researchers. Particularly, 

we collaborated with AFRL researchers to design and analyze a unique sandwich configuration 

pursued by AFRL as a viable candidate for hybrid thermal protection systems [9, 10, 11].  

We have also carried out a critical assessment of the proposed approach [12,13,14], and applied this 

approach to predict static failure [15, 16] and imperfect interfaces [17], to construct models for 

hyperelastic materials [18, 19], elastoplastic materials [20], viscoplastic materials [21,22], damaged 

materials including both continuum damage mechanics [23-27] and cohesive zone modeling [28-30], 

smart laminates [31, 32], to create new theories for micromechanics [33-36] and laminates [37, 38], to 

analyze low cycle and high cycle fatigue [39, 40], to treat aperiodic materials [41], and last but not least, 

applied this approach to provide a versatile solution for general free-edge stress problems [42]. A total of 

24 technical papers have been published based on the results from this research including 4 peer reviewed 

journal articles, 19 conference papers, and 1 book chapter. Additional 12 conference abstracts were 

included in various national/international conferences. We are in the process to convert several 

conference papers for journal publications. In the following, we briefly summarize all the work we have 

accomplished under this grant.  

Work Accomplished 

The project team supported one postdoc and several PhD students, we have made the following major 

accomplishments during the past three years (4/2013-3/2016)3. 

                                                           
3 Due to the transition from USU to Purdue, the PhD could only start at Jan 1st 2015 due to availability of funding.  

DISTRIBUTION A: Distribution approved for public release.



Establish SG concept and its mechanics 

Motivated by materials genome initiative [4], we defined Structure Genome (SG) as the smallest 

mathematical building block of the structure. SG is built upon the concept of the representative structural 

element (RSE) initially introduced in [1, 2], to emphasize the fact that it contains all the constitutive 

information needed for a structure the same fashion as the genome contains all the intrinsic information 

for an organism's growth and development. SG generalizes from the RVE concept in micromechanics 

with the following three fundamental differences:  

 SG is defined as smallest mathematical building block and its dimension only depends on the 

microstructure while RVE dimension is usually determined by heterogeneity and what type of 

properties required for the structural analysis. For example, if 3D properties are needed for 3D 

structural analysis of continuous unidirectional fiber reinforced composites, a 3D RVE is usually 

required. However, only a 2D SG is required to compute the 3D properties.  

 SG for beams/plates/shells can be naturally chosen and structural modeling is rigorously unified 

with the micromechanical modeling.  

 Boundary conditions in terms of displacements and tractions indispensable in RVE-based models 

are not needed for SG-based models. 

Details of the SG concept and the Mechanics of Structure Genome have been presented at 2015 AIAA 

SciTech conference [3], 2015 MACH Conference [6], 13th US National Congress on Computational 

Mechanics [7]. The complete formulation can be found at the recently accepted journal paper [8].  

Critical Assessment of the Proposed Approach 

To show the strength of MSG, we carried a comprehensive evaluation of the proposed approach when it is 

applied to micromechanics with GMC/HFGMC, a micromechanics approach well known in the aerospace 

community. It is find out that our proposed approach consistently achieves the best accuracy for all 

microstructures and for some cases, our approach can achieve a better accuracy with even a better 

efficiency than GMC. This assessment was initially presented on the 2013 ASME IMECE conference 

[12], and the complete results was later documented [13] and presented on the 2014 AIAA SciTech 

conference. We also invited all micromechanics simulation tools to participate the micromechanics 

simulation challenge. Results for various composites including fiber reinforced composites, particle 

reinforced composites, laminates, woven composites, short fiber composites from several readily 

available micromechanics simulation tools include MAC/GMC, MAC/HFGMC, FVDAM, MDS, 

DIGIMAT, SwiftComp, ESI VPS are compiled. The accuracy and efficiency of each tool are compared 

with 3D FEA of RVE with periodic boundary conditions using either ABAQUS or ANSYS. The results 

are documented in [14] and presented in 2015 Annual Technical Meeting of the American Society of 

Composites. All the data generating the report are hosted in a live database at 

https://cdmhub.org/members/project/mmsimulationchalleng.  

Modeling of Static Failure of Composites  

The excellent stress predictive capability of the proposed approach is used to improve prediction for the 

static failure strength and the initial failure envelop of composites obeying various failure criteria. The 

failure is evaluated locally at integration points under both uniaxial and combined loading conditions. 

These evaluations are performed using several representative examples of heterogeneous materials such 
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as continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced 

composite, and woven composite. This work was initially presented on the 2014 ASME IMECE 

conference [15], and later documented in [16] and presented on the 2015 AIAA SciTech conference. This 

capability is implemented into the official release version of SwiftComp and a journal version of the 

conference paper [16] is also under preparation.  

Modeling of Imperfect Interface  

The proposed approach is used to predict the effective properties and the failure strength of heterogeneous 

materials with imperfect interface. The imperfect interface is modeled using linear elastic traction 

displacement model obeying small infinitesimal displacement jump across the interface. These 

predictions are performed using several representative examples of heterogeneous materials such as 

continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced 

composite, and woven composite. Finally, the predictions of the proposed approach is compared with the 

predictions of Finite Element Analysis (FEA) and the predictions obtained from other published papers. 

This work was documented and presented on the 2015th AIAA SciTech conference [17]. We are also 

revising the conference paper for journal publication.  

Modeling of Hyperelastic Materials 

The proposed approaches is used to develop a micromechanics approach to homogenizing hyperelastic 

heterogeneous materials undergoing finite deformation. A variational statement for homogenization is 

formulated using the variational asymptotic method, discretized in a finite-dimensional space, and solved 

using a multilevel Newton-Raphson method. The versatility and accuracy of the present approach are 

demonstrated through homogenizing several typical heterogeneous materials. The proposed approach is 

found to be capable of handling various microstructures, complex material models, and complex loading 

conditions. This work was initially presented on the 2013 ASME IMECE conference [18] and the 

complete work was presented on the 2014 AIAA SciTech conference and documented in the 

corresponding conference paper [19]. A significantly revised journal version of this work is currently 

under preparation.  

Modeling of Elastoplastic Materials 

The proposed modeling approach is applied to develop a micromechanics approach to homogenizing 

elastoplastic composites. A rigorous second-order radial return algorithm, which can handle elastic and 

plastic anisotropy and nonlinear kinematic hardening, is developed. A variational statement for 

homogenization is formulated using the variational asymptotic method, discretized in a finite-dimensional 

space, and solved using a multilevel Newton–Raphson method. The versatility and accuracy of the 

present approach are demonstrated through homogenizing long fiber-, particle-, and short fiber-reinforced 

metal matrix composites (MMCs). Different types of reinforcement are found to differently affect the 

response of MMCs. The present approach is found to be capable of handling various microstructures, 

complex material models, complex loading conditions, and complex loading paths. More sophisticated 

material models can be implemented in it. This work was published in the Journal of Composites 

Structures [20].  

Modeling of Elastoviscoplastic Behavior of Composites 
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The proposed approach is used to develop a micromechanics approach to homogenize elasto-viscoplastic 

heterogeneous materials. An affine formulation of the constitutive relations for an elasto-viscoplastic 

constituent, which exhibits viscoplastic anisotropy and combined isotropic–kinematic hardening, is 

derived. The weak form of the problem is derived using an asymptotic method. An affine formulation of 

the constitutive relations for the constituents is derived. The Perzyna model, Hill’s yield criterion, the 

Voce hardening law, and the Chaboche model are implemented into the affine formulation to enable it to 

couple the effects of viscoplasticity, plastic anisotropy, nonlinear isotropic hardening, and nonlinear 

kinematic hardening. The applicability, power, and accuracy of the proposed approach are validated using 

examples such as predicting the stress-strain hysteresis loops of fiber reinforced composites consisting of 

matrices of various material properties, subject to various loading conditions. This work was initially 

presented on the 2013 SDM conference [21] and later published in the International Journal of Solids and 

Structures [22]. 

Modeling of Damaged Materials 

The constitutive relations which are capable of coupling anisotropic damage, damage hardening, 

(visco)plastic anisotropy, and isotropic/kinematic hardening are developed. The constitutive relations in 

the undamaged configuration, the damage evolution law, and the constitutive relations in the damaged 

configuration are subsequently derived. The applicability and power of the proposed constitutive relations 

are validated using examples such as predicting the stress-strain and damage factor-strain curves of 

damaged elastoplastic and elastoviscoplastic materials of various material properties. These 

thermodynamically consistent constitutive relations for damaged elastoplastic materials were documented 

in [23]. These constitutive relations for damaged  elastoviscoplastic materials  was initially presented on 

the 2014 ASME IMECE conference [24] followed by complete work presented on the 2015 SciTech 

conference [25]. The constitutive relations for damaged elastoplastic materials are also along with the 

proposed approach for multiscale constitutive modeling to construct micromechanics models for damaged 

elasto-visco-plastic materials [26, 27].  

A Thermodynamically Consistent Cohesive Zone Model 

A thermodynamically consistent cohesive zone model is developed for mixed-mode fracture, which 

enables a cohesive element to exhibit designated behaviors when subject to mixed-mode loading. The 

cohesive law in the undamaged configuration, the damage evolution law, and the cohesive law in the 

damaged configuration are subsequently derived, and a novel delamination criterion is proposed. The 

applicability and power of the proposed cohesive zone model are demonstrated using examples such as 

predicting the traction-relative displacement and damage factor-relative displacement curves of cohesive 

elements of various cohesive properties. The work was initially presented on the 2013 ASME IMECE 

conference [28], a follow on work was presented on the 2014 SciTech conference [29] and implemented 

as a UMAT in ABAQUS [30].   

Modeling Smart Laminates 

The proposed approach is used to model a general anisotropic laminated plate with thermal deformation 

and two-way coupled piezoelectric effect and pyroelectric effect. Total potential energy contains strain 

energy, electric potential energy and energy caused by temperature change and external loads. The feature 

of small thickness and large in-plane dimension of plate structures helped to asymptotically simplify the 

three-dimensional analysis to a two-dimensional analysis on the reference surface and a one-dimensional 

analysis through the thickness. This work was originally presented on 2015 ASC conference [31] and 

later published on the Journal of Smart Materials and Structures [32].  
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Modeling Aperiodic Materials and Structures 

MSG was originally developed for periodic materials. During this research, we found out that MSG can 

be extended to deal with aperiodic materials and structures. This finding is documented in an ASC 

conference paper [33]. This discovery also enabled us to develop a micromechanics theory without 

boundary conditions which was presented on the 2015 ASME IMECE conference [34].  figured out the 

equivalence between asymptotic homogenization theory and RVE analysis which was also presented on 

the 2015 ASME IMECE conference [35]. The equivalence and difference between asymptotic 

homogenization theory, RVE analysis and MSG are documented in a book chapter [36]. MSG is further 

extended to model aperiodic structures (beams/plates/shells) which is documented in an ASC conference 

paper [42].  

Remove Homogeneous Layer Assumption for Modeling Composite Laminates 

A fundamental assumption in modeling composite laminates is the homogeneous layer assumption. We 

have discovered that MSG can enable to remove this fundamental assumption. This finding is 

documented in an ASC conference paper [37]. It was later used to point out the basic philosophy and 

fallacies of composite mechanics on the 2015 ASME IMECE conference [38]. This enables us to provide 

a true multiscale modeling for composite laminates without artificial separation of scales.  

Modeling Fatigue Life of Composites 

The proposed approach is used to model high cycle and low cycle fatigue life of heterogeneous materials, 

which was documented in 2016 AIAA SciTech conference papers [39] and [40], respectively. In this 

study, local continuum damage mechanics approach is employed to model and analyze the evolution of 

fatigue damage. The constitutive law for elastic damage analysis is derived. The evolution of anisotropic 

fatigue damage is iteratively approximated by incremental algorithm at each numerical integration point 

using weighted averaged local field. The fatigue damage and life are estimated for continuous fiber-

reinforced composite.  

Solving the Generalized Free-Edge Stress Problem 

By serendipity, we discovered that MSG can be used to formulate and solve general free-edge stress 

problems of composite laminates. Due to its semi-analytical nature, MSG can converge to the singular 

free-edge stresses much faster than 3D FEA with similar discretization. MSG and the companion code 

SwiftCompare applied to the free-edge stress analysis of several composite laminates with arbitrary 

layups and general loads including extension, torsion, in-plane and out-of-plane bending and their 

combinations. The results of MSG are compared with various existing solutions for symmetric angle-ply 

laminates. New results are presented for the free-edge stress fields in general laminates for combined 

mechanical loads and compared with three dimensional (3D) finite element analysis (FEA) results, which 

agree very well. All the results are documented in a forthcoming 2016 ASC conference paper [41].  

AFRL Interaction 

We have interacted with AFRL researchers in a regular base. Particularly, we have worked closely with 

Dr. Ming Chen (Materials Directorate, AFRL, WPAFB) on efficient high-fidelity thermomechanical 

modeling of sandwich panels considered for hypersonic applications on the Rapid Development and 

Insertion of Hypersonic Materials program (RDIHM). The results of this collaboration are documented in 
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[9,10,11]. Prof. Yu was invited to give a seminar with the same title of this project at AFRL WPAFB 

(Nov. 4, 2013). The host is Dr. Steve Clay of Aerospace System Directorate. Prof. Yu also had frequent 

interaction with Dr. Clay regarding damage modeling of composite laminates. He has kindly provided the 

experimental data of his Damage Tolerance Design Principles (DTDP) program for Prof. Yu’s research 

group to validate their models.   

Technology Transfer and Dissemination 

To facilitate technology transfer of the fundamental results from this research into practical engineering 

tools, we have implemented MSG into a general-purpose multiscale constitutive modeling called 

SwiftComp. SwiftComp has been commercialized by Purdue Research Foundation and licensed to 

AnalySwift LLC for fielding into various industries related with composites. SwiftComp represents a 

revolutionary, general-purpose computational approach for modeling composite materials and structures. 

It can be used independently as a tool for virtual testing of composites or as a plugin to power 

conventional finite element analysis (FEA) codes with efficient high-fidelity multiscale modeling for 

composites. SwiftComp enables engineers to model composites similarly to metals, capturing details as 

needed and affordable. This saves orders of magnitude in computing time and resources without 

sacrificing accuracy, while enabling engineers to tackle complex problems impossible with other 

approaches. SwiftComp can be used as a standalone code with a GUI developed based on Gmsh, or as a 

plugin for conventional finite element packages such as Abaqus, and Ansys. It can also be used as a 

module to be directly linked to other composite simulation environments. SwiftComp can be freely 

launched in the cloud at https://cdmhub.org/resources/scstandard on any device connected to internet 

through a browser.  Within less than one year after its initial release, SwiftComp has reached a user base 

of several hundred.  

The results from this research are broadly disseminated. In additional to traditional venues of 

dissemination such conference presentations, publications and archive journals, we also disseminated this 

research through workshops/short courses, keynote lectures and invited seminars. Such disseminations are 

listed below: 

1. “Mechanics of Composites,” A three-hour lecture given at the cdmHUB hands-on workshop, Purdue, 

Aug. 5-7, 2014.  

2. “Composites Simulation Workshop,” A two-day workshop taught at the cdmHUB annual workshop, 

Purdue, Nov. 3-5, 2015. 

3. “Multiscale Structure Mechanics,” A two-day short course taught at Department of Aerospace 

Engineering, Politecnico di Torino, Italy, Nov. 20-21, 2015.  

4. Yu, W.: “Representative Structural Element: a New Paradigm for Multiscale Structural Modeling,” 

Aerospace Systems Directorate, Wright Patterson Air Force Base/AFRL, Dayton, Ohio, Nov. 4th, 2013. 

5. Yu, W.: “Unify Structural Mechanics with Micromechanics Using the Concept of Representative 

Structural Element,” Sunday Meeting of AIAA Structures Technical Committee, National Harbor, 

Maryland, Jan. 12, 2014.  

6. Yu, W.: “RSE: a New Paradigm for Multiscale Structural Modeling,” Department of Mechanical and 

Aerospace Engineering, Ohio State University, Feb. 28, 2014. 

7. Yu, W.: “Mechanics of Structure Genome,” Center for Laser-based Manufacturing, Purdue University, 

Jan. 30, 2015.   

8. Yu, W.: “Mechanics of Structure Genome,” Center for Computational & Applied Mathematics, Purdue 

University, Feb. 6, 2015.  

9. Yu, W.: “Mechanics of Structures Genome: Reproduce 3D FEA Using Simple Structural Models for 

Aero Structures,” Boeing Community of Excellence, Sept. 10, 2015.  
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10. Yu, W.: “Mechanics of Structure Genome,” Italian Association of Aeronautics and Astronautics – 

XXIII Conference, Nov. 19, 2015, Torino, Italy. (Plenary talk) 

11. Yu, W.: “Structure Genome: Fill the Gap between Materials Genome and Structural Analysis,” 

Department of Mechanical Engineering, Michigan State University, March 15, 2016.   

12. Yu, W.: “Mechanics of Structure Genome: Fill the Gap between Materials Genome and Structural 

Analysis,” Solid Mechanics Seminar, Purdue University, May 25, 2016.   

Personnel Support 

This project involves two faculty members: Prof. Wenbin Yu (USU before 08/2013, Purdue) and Prof. 

Ling Liu (USU, supported nominally to manage the subcontract from USU after Prof. Yu moved to 

Purdue), one postdoctoral fellow: Dr. Liang Zhang (08/2013-). Several students were also partially 

supported during the course of this project including Bo Peng (PhD student), Haiqiang She (PhD student), 

and Yufei Long (MS). Another PhD student Hamsasew M Sertse moved with Prof. Yu from USU to 
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Conclusions and Further Work 

We have accomplished the goal of this project: establish a new paradigm for multiscale structural 

modeling. The newly discovered Mechanics of Structure Genome is so overarching that it can be used to 

define any building block for all structures including 3D structures, beams, plates, and shells. And also 

the proposed approaches have been applied to construct models for failure prediction, capture effects of 

imperfect interface, and various nonlinear behavior including damage. It can handle both periodic and 

aperiodic structures and materials and can be used to solve the traditional problems such as composite 

laminates and the free-edge stress problems in a new way. MSG along with its companion code represents 

a unique and powerful approach to multiscale constitutive modeling of composites. Because of its 

versatility and generality, enormous applications are anticipated. Unfortunately, due to the PI’s transition 

from USU to Purdue and inability of AFOSR to approve the no-cost extension, we lose about 15 months 

of opportunity to further develop this theory and demonstrate its power in many other applications.    
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Structure Genome: Fill the Gap between Materials

Genome and Structural Analysis

Wenbin Yu∗

A new concept, Structure Genome (SG), is proposed to fill the gap between materials
genome and structural analysis. SG acts as the basic building block of the structure con-
necting materials to structures and the mechanics of SG governs the necessary information
to link materials genome and structural analysis. SG also enables a powerful approach
to construct efficient yet high-fidelity constitutive models for composite structures over
multiple length scales. No apriori assumptions will be used in the formulation and mul-
tiscale constitutive modeling is mathematically decoupled from the structural analysis. A
general-purpose computer code called SwiftCompTM is developed to implement the me-
chanics of Structure Genome along with various examples to demonstrate its application
and power. SwiftCompTM can be used as plug-in for commercial finite element codes to
treat composites as “black aluminum” in structural design and analysis with negligible loss
of accuracy.

I. Introduction

The recently launched Materials Genome Initiative (MGI),1 resonating the challenges pointed out earlier
in the National Research Council report on Integrated Computational Materials Engineering (ICME),2 aims
to deliver the required infrastructure and training to accelerate discovery, developing, manufacturing, and
deploying of advanced materials in a more expeditious and economical way. It is true that accelerating the
pace of discovery and deployment of advanced materials is crucial to achieving global competitiveness as
materials with nonexisting properties will bring transformative changes in science and technology. However,
material by definition is a matter from which a thing can be made of. For example, structural materials
are substances used to make structures. Ultimately speaking, it is not the material performance, but the
structural performance or rather system performance we are after. Thus, materials genome must integrate
with structural analysis to maximize the benefits of accelerated development of advanced structural materials
to be delivered by MGI and ICME.

Nowadays, structural analyses are routinely carried out using the finite element analysis (FEA) in terms of
three-dimensional (3D) solid elements, two-dimensional (2D) plate or shell elements or one-dimensional (1D)
beam elements (see Figure 1). For structures made of isotropic homogeneous materials, material properties
characterized in materials genome are direct inputs for solid elements, and these properties combined with
geometric properties of the structure can be used for plate/shell/beam elements. This implies that materials
genome can be directly linked with structural analysis. However, such simplicity does not exist for structures
made of composites which are usually anisotropic and heterogeneous. Consider structural analysis of the
UH-60 (8 ton helicopter) all composite rotor blade. The blade is of length 8.6 m, and chord 0.72 m. Main
D-spar is composed of 60 graphite/epoxy plies, and each ply has thickness of 125 μm. To directly use the
properties of graphite/epoxy composite tape delivered by materials genome in structural analysis, we need
to use at least one 3D solid element through the ply thickness. Supposing we use 20-noded brick elements
with a 1 to 10 thickness-length ratio, it is estimated that around 11.5 billions of degrees of freedom is needed
for the blade analysis.3 Such a huge FEA model is too costly for effective structural design and analysis. The
standard practice in helicopter industry is to model rotor blades as beams.4 To this end, models are needed
to take the material properties out of materials genome as inputs to compute the beam properties needed
for the structural analysis and recover the 3D stress fields within the original material for failure prediction
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Beam Elements

3D Elements

Shell Elements

Plate Elements

Figure 1. Typical structural elements

according to the allowables and failure criteria characterized by materials genome. Clearly there is a gap
existing between materials genome and structural analysis.

In the past several decades, many models have been proposed to fill this gap, including both micromechan-
ics models and structural mechanics models. These models are mainly based on various apriori assumptions.
Models are either efficient but too simplistic to be predictive, or accurate but too computationally intensive
to be used for effective design. These models usually cannot be used in general industrial settings particularly
in the situations where the apriori assumptions will be violated. Moreover, structural mechanics models are
not seamlessly unified with micromechanics models, creating difficulty for rigorous modeling of composite
structures which are multiscale in nature. The present modeling capabilities for realistic composite structures
are still very limited, and lagging much behind of their manufacturing techniques. For example, the recent
world-wide failure analysis proved that prediction of strength for composites laminates, one of the simplest
composite structures, has been elusive.5,6 Nevertheless, we have been successfully designed and manufac-
tured composites in many engineering systems. We do so with the conservative Edisonian approach based
on exhaustive testings. This not only attributes to the expensive development cost of composites relative to
conventional materials, but also causes significant delay in time-to-market of a product.

It is thus encouraging to see that ICME and MGI try to improve our modeling capability through an
integrated computational framework. However, one should be careful about what integrated computational
framework entails for predictive modeling. Simply linking models at different scales and streamlining in-
formation passing between different models are not sufficient. Unpinning theory must be formulated in
such a way that provides a unified way for the passing of information between models. And also material
modeling must be performed with the corresponding structural analysis in mind. This is particularly true
for composites as the traditional boundary between materials and structures is quickly disappearing. Some
modeling should be done at the material level through ICME and MGI, but some modeling must be done at
the structural level. For example, for composite laminated plates, it is reasonable to expect ICME or MGI to
deliver us the properties of fiber, matrix, their interfaces, and even those of each lamina (composite tapes),
but it is out of the scope of ICME or MGI to obtain plate properties for the laminate for the structural
analysis using plate elements.

Another significant disadvantage of most approaches to composite structural analyses is that they lack
a direct connection with the analysis of structures made of isotropic homogeneous materials. FEA has
been very successful and well established for design and analysis of these structures and commercial codes
such as NASTRAN, ABAQUS, ANSYS, etc. are industrial standard. However, such success has not been
transplanted to composite structures. The main reason is that most models for composite structures are very
different from those models used for structures made of isotropic homogeneous materials and require special
purpose structural elements not available in conventional FEA. Note that many commercial codes are adding
a separate composites module into their packages but those modules are different analysis codes implementing
special purpose structural elements. The direct connection with conventional structural elements is missing.
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II. Structure Genome

To fill the gap between materials genome and composite structural analysis, avoid the disadvantages of
current modeling approaches of composites, and enable a direct connection with conventional FEA, this
paper will present the Structure Genome (SG) concept. According to MGI,1

A genome is a set of information encoded in the language of DNA that serves as a blueprint
for an organism’s growth and development. The world genome, when applied in non-biological
contexts, connotes a fundamental building block toward a larger purpose.

Motivated by this description, we define Structure Genome (SG) as the smallest mathematical building block
(or a cell in biological contexts) of the structure containing many such building blocks. SG not only describes
the matter but also carries the information bridging materials genome and structural analysis. SG is build
upon the concept of the representative structural element (RSE),7,8 to emphasize the fact that it contains all
the constitutive information needed for a structure the same fashion as the genome contains all the intrinsic
information for an organism’s growth and development. For periodic structures, it is easy to identify the
SG as described later. However, for real structures in engineering, we rely on the expert opinion of the
analysts to determine what will be the smallest, representative building block of the structure. This liberal
definition is intended for maximizing the freedom in choosing the SG. It can be justified from the view point
of material characterization using experiments. When experimentalists want to find properties of a material,
they cut representative pieces of the material according to their own judgment and do the testing to get the
properties and associated statistics. As we are not doing physical experiments, SG is thus defined as the
smallest mathematical building block.

+

2D SG 3D SG

1D SG

Figure 2. SG for 3D structure

A. SG for 3D Structures

If the structural analysis uses 3D solid elements (Figure 2), SG serves a similar role as representative volume
element (RVE), a concept well known in micromechanics. However, they are fundamentally different. For
example, for a structure made of composites featuring 1D heterogeneity (e.g. binary composites made
of two alternating layers), SG will be a straight line with two segments denoting corresponding phases.
Mathematically speaking, we can repeat this straight line in plane to build the two layers of the binary

3 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
20

1 

DISTRIBUTION A: Distribution approved for public release.



composite, then we can repeat the binary composite out of plane to build the entire structure. For a
structure made of composites featuring 2D heterogeneity (e.g. continuous unidirectional fiber reinforced
composites), the SG will be a 2D domain, and for a structure made of composites featuring 3D heterogeneity
(e.g. particle reinforced composites), the SG will be a 3D volume. Despite of the dimensionality of SGs, the
effective properties should remain 3D for the 3D macroscopic structural analysis. For example, for linear
elastic behavior, one should be able to carry out a micromechanical analysis over the 1D SG to obtain the
complete 6×6 stiffness matrix. Clearly, SG uses the lowest dimension, thus highest efficiency, to describe the
heterogeneity, while RVE dimension is determined by heterogeneity and by what type of properties required
for the macroscopic structural analysis. If 3D properties are needed for a 3D structural analysis of continuous
unidirectional fiber reinforced composites, a 3D RVE is usually required [9].

B. SG for Dimensionally Reducible Structures

+

2D SG

3D SG

Figure 3. SG for beam-like structures

Another feature of SG not available in RVE is that SG allows direct connection with the macroscopic
structural analysis, particularly for dimensionally reducible structures which have one or two dimensions
much smaller than the other dimensions. For example, the structural analysis of slender structures (beam-
like structures) can use beam elements (Figure 3). If the beam has uniform cross-sections which could be
made of homogeneous materials or composites, its SG is the 2D cross-sectional domain as we can repeat the
cross-section along the beam reference line to build the entire structure. This inspires an astoundingly new
perspective toward beam theories, an important traditional branch of structural mechanics. If we consider
the beam reference line as a 1D continuum, every material point of this continuum has a 2D cross-section as
its microstructure. In other words, structural mechanics can be effectively viewed as a specific application of
micromechanics. If the beam is also heterogeneous in the spanwise direction, we need a 3D SG to describe
the microstructure of the 1D continuum, the behavior of which is governed by the 1D macroscopic beam
analysis.

If the structural analysis uses plate/shell elements, SG can also be chosen properly. For illustrative
purpose, typical SGs of plate-like structures are sketched in Figure 4. If the plate-like structures feature no
in-plane heterogeneities such as composite laminates, the SG is a material line along the thickness direction
with each segment denoting the corresponding material of each layer. For a sandwich panel with a core cor-
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+

2D SG 3D SG1D SG

Figure 4. SG for plate-like structures

rugated in one direction, the SG is 2D, and if the panel is heterogeneous in both in-plane directions, the SG is
3D. Despite of different dimensions of SG, what we want out of the constitutive modeling is structural prop-
erties for the corresponding structural analysis (such as A, B, D matrices for the classical plate theory) and
recovery relations to express the original 3D fields in terms of the global behavior (e.g. moments, curvatures,
etc.) obtained from the plate/shell analysis. We know that theories of beams, plates, shells traditionally
belong to structural mechanics, the SG concept enables us to treat them as special micromechanics theories.
For a plate/shell-like structure, if we consider the reference surface as a 2D continuum, every material point
of this continuum has the SG as its microstructure. Plate/shell theory constructed using the SG concept
can handle buildup structures (see Figure 5) as long as their external contours look like plates or shells, that
is, the thickness is much smaller than the in-plane dimensions.

Figure 5. Typical buildup structures

Clearly SG can serve as the fundamental building block of a structure, no matter whether it is a 3D
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structure, beam, plate, or shell. SG also bridges materials genome and structural analysis as SG itself is
formed by materials. For SG to not merely remain as a concept, we need to develop the theory necessary
to govern SG so that there is a two-way communication between materials genome and structural analy-
sis: information from materials genome can be rigorously passed to structural analysis to predict structural
performance and information from structural analysis can be passed back for material failure prediction ac-
cording to materials genome. We develop such a theory with the objective to directly connect with structural
analysis and minimize the loss of information from materials genome to structural analysis. As mentioned
previously, structures are usually analyzed using structural elements in FEA. Underpinning each element
type, there is a corresponding structural model containing three types of equations describing kinematics,
kinetics, and constitutive relations. Kinematics deals with strain-displacement relations, and compatibility
equations, kinetics deals with stress and equations of motion. Constitutive relations deal with stress-strain
relations. Both kinematics and kinetics can be formulated exactly within the framework of continuum me-
chanics. Constitutive relations are ultimately approximate as we are using a hypothetical continuum to
approximate the underlining atomic structure of matter. Some criterion is needed for us to minimize the loss
of information between materials genome and structural analysis. For elastic materials, this can be achieved
by minimizing the difference between the strain energy of the materials stored in SG and that stored in the
structural model of structural analysis. The mechanics of Structure Genome is derived below.

III. Mechanics of Structure Genome

SG serves as the link of the original heterogeneous structures with microscopic details and the hypo-
thetical homogeneous continuum used in the macroscopic structural analysis. Thus, we need to formulate
its mechanics in such a way that the kinematics and energetics of the original heterogeneous structure can
be expressed in terms of those of the final macroscopic structural model. Note that the final macroscopic
homogenized structures are imaginary and are created by analysts to approximate the original heterogeneous
structures. For this very reason, we call the final macroscopic homogenized structure as the macroscopic
structural model.

A. Kinematics

The first step in formulating the mechanics of SG is to express the kinematics, including the displacement
field and the strain field, of the original heterogeneous structures in terms of those of the macroscopic
structural model. Although the SG concept is applicable to heterogeneous structures made of materials
admitting general continuum description such as the Cosserat continuum,10 we are focusing on materials
admitting the Cauchy continuum description: the displacement field in a 3D space is described in terms of
three translations and the corresponding strain field can be defined in terms of the stretch tensor obtained
through the polar decomposition of the deformation gradient tensor.

Let us use xi, called macro coordinates here, to denote the coordinates describing the original hetero-
geneous structure. The coordinates could be general curvilinear coordinates. However, without loss of
generality, we choose an orthogonal system of arc-length coordinates. If the structure is dimensionally re-
ducible, some of the macro coordinates xα, called eliminated coordinates here, correspond to the dimensions
eliminated in the macroscopic structural model. (Here and throughout the paper, Greek indices assume
values corresponding to the eliminated macro coordinates, Latin indices k, l,m assume values corresponding
to the macro coordinates remaining in the macroscopic structural model, and other Latin indices assume 1,
2, 3. Repeated indices are summed over their range except where explicitly indicated).

For beam-like structures, only x1, describing the beam reference line, will remain in the final beam model,
and x2, x3, the cross-sectional coordinates, will be the eliminated coordinates; for plate/shell-like structures,
x1 and x2, describing the plate/shell reference surface, remain in the final plate/shell model, and x3, the
thickness coordinate, will be the eliminated coordinate. For this reason, we also call the beam model as
1D continuum model as all the unknown fields are functions of x1 only although the 1D beam model could
predict 3D behavior such as translations in three directions. Similarly, we call the plate/shell model as 2D
continuum model as all the unknown fields are functions of x1 and x2 although the 2D plate/shell model
can predict 3D behavior.

In view of the fact that the size of SG is much smaller than the overall size of the macroscopic structure,
we introduce a set of micro coordinates yi = xi/ε with ε being a small parameter to describe the SG. This
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basically enables a zoom-in view of the SG at the size similar as the macroscopic structure. If the SG is 1D,
only y3 is needed; if the SG is 2D, y2 and y3 are needed; if the SG is 3D, all three coordinates y1, y2, y3 are
needed.

In multiscale structural modeling, it is postulated that all the information can be obtained from the
SG in combination with the macroscopic structural model. In other words, a field function of the original
heterogeneous structure can be generally written as a function of the macro coordinates xk which remain in
the macroscopic structural model and the micro coordinates yj . The partial derivative of a function f(xk, yj)
can be expressed as

∂f(xk, yj)

∂xi
=

∂f(xk, yj)

∂xi
|yj=const +

1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (1)

Note ε is just a book keeping parameter here to facilitate the asymptotic analysis. It has no significance in
the numerical implementation. Choosing an ε will fix the corresponding SG domain. εyi together remain
invariant as equal to xi.

Letting bk denote the tangent vector to xk for the undeformed configuration, one is then free to chose
bα tangent to xα to form an orthonormal triad bi. Note bi chosen this way are functions of xk only. For
example, for beam-like structures, we chose b1 to be tangent to the beam reference line x1, and b2 and b3
as unit vectors tangent to the cross-sectional coordinates xα. We can describe the position of any material
point of the heterogeneous structure by its position vector r relative to a point O fixed in an inertial frame
such that

r(xk, yα) = ro(xk) + εyαbα(xk) (2)

where ro is the position vector from O to a material point of the macroscopic structural model. Note here
xk denote only those coordinates remaining in the final macroscopic structural model, and yα correspond
to eliminated coordinates xα. Repeated index implies summation over its own range. Because xk is the
arc-length coordinate, we have

bk =
∂ro
∂xk

(3)

For beam-like structures, the undeformed configuration can be described as

r(x1, y2, y3) = ro(x1) + εy2b2(x1) + εy3b3(x1) (4)

because the dimensions along x2 and x3, corresponding to εy2 and εy3, are eliminated in the macroscopic
structural model, no matter whether the SG is 2D or 3D (see Figure 3).

For plate/shell-like structures, the undeformed configuration can be described as

r(x1, x2, y3) = ro(x1, x2) + εy3b3(x1, x2) (5)

because the thickness dimension along x3, corresponding to εy3, is eliminated in the macroscopic structural
model, no matter whether the SG is 1D, 2D, or 3D (see Figure 4).

For 3D structures, the undeformed configuration can be described as

r(x1, x2, x3) = ro(x1, x2, x3) (6)

because all the macro coordinates remain in the macroscopic structural model, no matter whether the SG
is 1D, 2D, or 3D (see Figure 2).

When the heterogeneous structure deforms, the particle that had position vector r in the undeformed
configuration now has position vector R in the deformed configuration, such as

R(xk, yj) = Ro(xk) + εyαBα(xk) + εwi(xk, yj)Bi(xk) (7)

where Ro denotes the position vector of the deformed homogenized structure, yj are the micro coordinates
used to describe the SG, Bi forms a new orthonormal triad for the deformed configuration, and εwi are
fluctuating functions introduced to accommodate all possible deformation other than those described by Ro

and Bi. The small parameter ε is added due to traditional reasons. But as it is mentioned previously, it
is not a number of significance and εwi remain as the unique solution. Note wi are usually called warping
functions in structural mechanics and we call them as fluctuating functions for the reason that structural
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mechanics can be viewed as a special application of micromechanics using the concept of SG. Bi can be
related with bi through a direction cosine matrix, Cij = Bi · bj , subject to the requirement that these two
triads are the same in the undeformed configuration.

For beam-like structures featuring 2D SGs, the deformed configuration can be described as

R(x1, y2, y3) = Ro(x1) + εy2B2(x1) + εy3B3(x1) + εwi(x1, y2, y3)Bi(x1) (8)

For beam-like structures featuring 3D SGs, the deformed configuration can be described as

R(x1, y1, y2, y3) = Ro(x1) + εy2B2(x1) + εy3B3(x1) + εwi(x1, y1, y2, y3)Bi(x1) (9)

For plate/shell-like structures featuring 1D SGs, the deformed configuration can be described as

R(x1, x2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y3)Bi(x1, x2) (10)

For plate/shell-like structures featuring 2D SGs, the deformed configuration can be described as

R(x1, x2, y2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y2, y3)Bi(x1, x2) (11)

For plate/shell-like structures featuring 3D SGs, the deformed configuration can be described as

R(x1, x2, y1, y2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y1, y2, y3)Bi(x1, x2) (12)

For 3D structures featuring 1D SGs, the deformed configuration can be described as

R(x1, x2, x3, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y3)Bi(x1, x2, x3) (13)

For 3D structures featuring 2D SGs, the deformed configuration can be described as

R(x1, x2, x3, y2, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y2, y3)Bi(x1, x2, x3) (14)

For 3D structures featuring 3D SGs, the deformed configuration can be described as

R(x1, x2, x3, y1, y2, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y1, y2, y3)Bi(x1, x2, x3) (15)

Note in Eq. (7), we actually express R in terms of Ro, Bi, and wi, which is six times redundant. Six
constraints are needed to ensure a unique mapping. These constraints are directly related with how we define
Ro and Bi in terms of R. For example, it is natural for us to define

Ro = 〈〈R〉〉 − 〈〈εyα〉〉Bα(xk) (16)

where 〈〈·〉〉 indicates average over SG. If yα is chosen such that 〈〈εyα〉〉 = 0, position vector of a material
point in the macroscopic structural model Ro is defined as the average of the position vector of the original
heterogeneous structure. This definition implies following three constraints on the fluctuating functions:

〈〈wi〉〉 = 0 (17)

The other three constraints can be used to specify Bi in a certain fashion. For 3D structures, we already
have three constraints from the definition Bk = Ro,k.

For plate/shell-like structures, we can select B3 in such a way that

B3 ·Ro,1 = 0 B3 ·Ro,2 = 0 (18)

which provides two constraints implying that we choose B3 normal to the reference surface of the deformed
plate/shell. It should be noted that this choice has nothing to do with the well-known Kirchhoff hypothesis.
In the Kirchhoff assumption, the transverse normal can only rotate rigidly without any local deformation.
However, in the present formulation, we allow all possible deformation, classifying all deformation other than
those described by Ro and Bi in terms of the fluctuating function wiBi. The last constraint can be specified
by the rotation of Bα around B3 such that

B1 ·Ro,2 = B2 ·Ro,1 (19)
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This constraint actually defines the macro strains for a plate/shell model as defined in Eq. (48) later to be
symmetric.

For beam-like structures, we can select Bα in such a way that

B2 ·Ro,1 = 0 B3 ·Ro,1 = 0 (20)

which provides two constraints implying that we choose B1 to be tangent to the reference line of deformed
beam. Note that this choice is not the well-known Euler-Bernoulli assumption as the present formulation
allows us to describe all the deformation of the cross-section. We can also prescribe the rotation of Bα

around B1 such that

B3 · ∂R
∂x2

−B2 · ∂R
∂x3

= 0 (21)

which implies the following constraint on the fluctuating functions〈〈w2|3 − w3|2〉
〉
= 0 (22)

This constraint actually defines the twist angle of the macroscopic beam model in terms of the original
position vector as pointed out in Ref. [4].

Thus the fluctuating functions are constrained according to Eq. (17) for 3D structures or plate/shell-
structures, for beam structures, they are also constrained according to Eq. (22).

If the original heterogeneous structure is made of materials described using a Cauchy continuum and if
the local rotation (the real rotation of a material point of the original heterogeneous structure subtracting
the rotation needed for bringing bi to Bi) is small, it is convenient to use the Jauman-Biot-Cauchy strain
according to the decomposition of rotation tensor.11

Γij =
1

2
(Fij + Fji)− δij (23)

where δij is the Kronecker symbol and Fij is the mixed-basis component of the deformation gradient tensor
defined as

Fij = Bi ·Gag
a · bj = Bi ·

(
Gkg

k +Gαg
α
) · bj (24)

Here ga are the 3D contravariant base vectors of the undeformed configuration and Ga are the 3D covariant
basis vectors of the deformed configuration.

The contravariant base vector ga is defined as

ga =
1

2
√
g
eaijgi × gj (25)

with eaij as the 3D permutation symbol and

gi =
∂r

∂xi
(26)

as the covariant base vector of the undeformed configuration. g is the determinant of the metric tensor of
the undeformed configuration, defined as

g = det(gi · gj) (27)

From the undeformed configuration in Eq. (2), corresponding to the remaining macro coordinate xk, we
obtain the covariant base vector as

gk =
∂r

∂xk
= bk + εyα

∂bα
∂xk

= bk + εyαkk × bα = bk + eiαjεyαkkibj (28)

Here kk = kkibi is the initial curvature vector corresponding to the remaining macro coordinate xk. This
definition is consistent with those defined for initial curvatures of shells in Ref. [12], k2Dkl , if we let

k2Dkl = αlmkkm k2Dk3 = kk3 (29)

with αlm as the 2D permutation symbol so that α11 = α22 = 0, α12 = −α21 = 1.

9 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
20

1 

DISTRIBUTION A: Distribution approved for public release.



From the undeformed configuration in Eq. (2), corresponding to the eliminated macro coordinate xα, we
obtain the covariant base vector as

gα =
∂r

∂xα
=

∂εyα
∂xα

bα = bα (30)

Specifically, for beam-like structures, we have

g1 = (1− εy2k13 + εy3k12)b1 − εy3k11b2 + εy2k11b3 (31)

g2 = b2 (32)

g3 = b3 (33)√
g = 1− εy2k13 + εy3k12 (34)

g1 =
1√
g
b1 (35)

g2 = b2 +
εy3k11√

g
b1 (36)

g3 = b3 − εy2k11√
g

b1 (37)

For prismatic beams, k11 = k12 = k13 = 0, and gi = gi = bi.
For plate/shell-like structures, one is free to chose the lines of curvatures to be the arc-length coordinates

x1 and x2, so that k11 = k22 = 0. If such a choice is made, the covariant base vectors can be obtained in the
following simple form:

g1 = (1 + εy3k12)b1 (38)

g2 = (1− εy3k21)b2 (39)

g3 = b3 (40)√
g = (1 + εy3k12)(1− εy3k21) (41)

g1 =
b1

1 + εy3k12
(42)

g2 =
b2

1− εy3k21
(43)

g3 = b3 (44)

For plates, k12 = k21 = 0, we have gi = gi = bi.
For 3D structures, we have gi = gi = bi according to Eq. (6).
The 3D covariant basis vectors of the deformed configuration Gi are defined as

Gi =
∂R

∂xi
(45)

From the deformed configuration in Eq. (7), corresponding to the remaining macro coordinate xk, we
obtain the covariant base vector Gk as

Gk =
∂R

∂xk
=

∂Ro

∂xk
+ εyα

∂Bα

∂xk
+ ε

∂wi

∂xk
Bi + εwi

∂Bi

∂xk
(46)

From the deformed configuration in Eq. (7), corresponding to the eliminated macro coordinate xα, we
obtain the covariant base vector as

Gα =
∂R

∂xα
=

∂(εyβ)

∂xα
Bβ + ε

∂wi

∂xα
Bi = Bα +

∂wi

∂yα
Bi (47)

A proper definition of the generalized strain measures for the macroscopic structural model is needed for
purpose of formulating our macroscopic structural analysis in an intrinsic form. Following Refs. [4, 12, 13],
we introduce the following definitions:

εkl = Bl · ∂Ro

∂xk
− δkl

κki =
1

2
eiajBj · ∂Ba

∂xk
− kki (48)
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where εkl is the Lagrangian stretch tensor and κki is the Lagrangian curvature strain tensor. This definition
corresponds to the kinematics of a nonlinear Cosserat continuum10 which allows six independent degrees of
freedom (three translations and three rotations) for each material point no matter whether the macroscopic
structural model is 1D, 2D, or 3D.

For beam-like structures, these definitions reproduce the 1D generalized strain measures of the Timo-
shenko beam model defined in Ref. [14]. If we restrict B1 to be tangent to Ro, Eq. (20), these definitions
reproduce the 1D generalized strain measures of the Euler-Bernoulli beam model defined in Ref. [14].

For plate/shell-like structures, if we uses Eq. (19), we will have the symmetry ε12 = ε21 as a constraint for
the kinematics of the final plate/shell model. These definitions reproduce the 2D generalized strain measures
of the Reissner-Mindlin model defined in Ref. [12]. If we further restrain B3 to be normal to the reference
surface, Eq. (18), these definitions reproduce the 2D generalized strain measures of the Kirchhoff-Love model
defined in Ref. [15].

For 3D structures, these definitions correspond to the natural strain measures defined in Ref. [13] for
non-linear Cosserat continuum. Although the SG kinematics formulated this way has the potential to
construct a Cosserat continuum model for the 3D macroscopic structural model, we will restrict ourselves
to the classical Cauchy continuum model for 3D structures in this paper. In other words, we are seeking a
symmetric Lagrangian stretch tensor εkl and negligible curvature strain tensor κki. This can be achieved by
constraining the global rotation needed for bringing bi to Bi in a specific way, which can be illustrated more
clearly using an invariant form of the definitions in Eq. (48). According to Ref. [13,16], these definitions can
be rewritten as

ε = CT · F − I

κT = −1

2
e :

(
CT · ∂C

∂xk
bk

)
(49)

where ε is the Lagrangian stretch tensor, κ the Lagrangian curvature strain tensor (or so-called wryness
tensor), C = Bibi is the global rotation tensor bringing bi to Bi, F is the deformation gradient tensor,
I = bibi is the second-order identity tensor, and e = −I × I is the third-order skew Ricci tensor. If
we constrain the global rotation tensor C to be that can be decomposed from F according to the polar
decomposition theorem such that

F = C ·U (50)

where U is a second-order positive symmetric tensor, then the definitions in Eq. (49) become

ε = CT · (C ·U)− I = U − I

κT = −1

2
e :

(
CT · ∂C

∂xk
bk

)
(51)

Clearly, the Lagrangian stretch tensor ε becomes symmetric and is the definition of Jauman-Biot-Cauchy
strain tensor. Lagrangian curvature strain tensor κ corresponds to higher order terms, gradient of the
deformation gradient, which is commonly neglected in a Cauchy continuum.

To facilitate the derivation of the covariant vectors Gi, we can rewrite the definitions in Eq. (48) as

∂Ro

∂xk
= Bk + εklBl

∂Bi

∂xk
= (κkj + kkj)Bj ×Bi (52)

Note ε13 = ε23 = 0 for plate/shell-like structures due to Eq. (18) and ε12 = ε13 = 0 for beam-like structures
due to Eq. (20).

Substituting Eq. (52) into Eq. (46), we can obtain more detailed expressions for the covariant base vectors
of the deformed configuration Gk as follows:

Gk = Bk + εklBl + εyα
∂Bα

∂xk
+ ε

∂wl

∂xk
Bl + ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk
+ εwα

∂Bα

∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε (yα + wα)

∂Bα

∂xk
+ ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε

[
eijα (yα + wα) (κkj + kkj) +

∂wα

∂xk
δαi + eijlwl(κkj + kkj)

]
Bi

(53)
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Note in this expressions for Gk, according to Eq. (1), we have

ε
∂wi(xk, yj)

∂xk
= ε

∂wi(xk, yj)

∂xk
|yj=const +

∂wi(xk, yj)

∂yk
|xk=const ≡ εwi,k + wi|k (54)

Now, we are ready to write out the explicit expressions of Gi for beam-like structures, plate/shell-like
structures, or 3D structures.

For beam-like structures, we have

G1 =

[
1 + ε11 + ε

∂w1

∂x1
− ε(y2 + w2)(κ13 + k13) + ε(y3 + w3)(κ12 + k12)

]
B1

+ ε

[
∂w2

∂x1
− (y3 + w3)(κ11 + k11) + w1(κ13 + k13)

]
B2

+ ε

[
∂w3

∂x1
+ (y2 + w2)(κ11 + k11)− w1(κ12 + k12)

]
B3

(55)

G2 =
∂w1

∂y2
B1 +

(
1 +

∂w2

∂y2

)
B2 +

∂w3

∂y2
B3 (56)

G3 =
∂w1

∂y3
B1 +

∂w2

∂y3
B2 +

(
1 +

∂w3

∂y3

)
B3 (57)

For plate/shell-like structures, we have

G1 =

[
1 + ε11 + ε

∂w1

∂x1
+ ε(y3 + w3)(κ12 + k12)− εw2(κ13 + k13)

]
B1

+

[
ε12 + ε

∂w2

∂x1
− ε(y3 + w3)κ11 + εw1(κ13 + k13)

]
B2

+ ε

[
∂w3

∂x1
− w1(κ12 + k12) + w2κ11

]
B3

(58)

G2 =

[
ε21 + ε

∂w1

∂x2
+ ε(y3 + w3)κ22 − εw2(κ23 + k23)

]
B1

+

[
1 + ε22 + ε

∂w2

∂x2
− ε(y3 + w3)(κ21 + k21) + εw1(κ23 + k23)

]
B2

+ ε

[
∂w3

∂x2
− w1κ22 + w2(κ21 + k21)

]
B3

(59)

G3 =
∂w1

∂y3
B1 +

∂w2

∂y3
B2 +

(
1 +

∂w3

∂y3

)
B3 (60)

For 3D structures, we have

Gk =

(
δki + εki + ε

∂wi

∂xk

)
Bi (61)

Note for 3D structures, we are focusing on a Cauchy continuum, thus the initial curvatures vanish and
curvature strain tensors are higher order terms and thus neglected.

Using the expressions for ga and Ga, and dropping nonlinear terms due to the product of the curvature
strains and the fluctuating functions, the 3D strain field defined in Eq. (23) can be written in the following
matrix form

Γ = Γhw + Γεε̄+ εΓlw + εΓRw (62)

where Γ = �Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12�T , w = �w1 w2 w3�T , ε̄ is a column matrix containing the
generalized strain measures for the macroscopic structural model. For example, if the macroscopic structural
model is a beam model we have ε̄ = �ε11 κ11 κ12 κ13�T with ε11 denoting the extensional strain and κ11

the twist, κ12 and κ13 the bending curvatures. If the macroscopic structural model is a plate/shell model we
have ε̄ = �ε11 2ε12 ε22 κ11 κ12 + κ21 κ22�T with εαβ denoting the in-plane strains and καβ denoting the
curvature strains. To be consistent with our previous work on plate/shell modeling,12 the curvature strains
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are defined according to Eq. (29). If the macroscopic structural model is a 3D continuum model we have
ε̄ = �ε11 ε22 ε33 2ε23 2ε13 2ε12�T with εij denoting the Biot strain measures in a Cauchy continuum.

Γh is an operator matrix which depends on the dimensionality of the SG. If the SG is 3D, we have

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
g1

∂
∂y1

0 0

0 1√
g2

∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

1√
g2

∂
∂y2

∂
∂y3

0 1√
g1

∂
∂y1

1√
g2

∂
∂y2

1√
g1

∂
∂y1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(63)

where
√
g1 =

√
g2 = 1 for plate-like structures or 3D structures,

√
g1 = 1− εy2k13 + εy3k12 and

√
g2 = 1 for

beam-like structures,
√
g1 = 1 + εy3k12 and

√
g2 = 1− εy3k21 for shell-like structures.

If the SG is a lower-dimensional one, one just needs to vanish the corresponding term corresponding to
the micro coordinates which are not used in describing the SG. For example, if the SG is 2D, we have

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1√
g2

∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

1√
g2

∂
∂y2

∂
∂y3

0 0
1√
g2

∂
∂y2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

If the SG is 1D, we have

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 ∂
∂y3

0 ∂
∂y3

0
∂

∂y3
0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

Γε is an operator matrix the form of which depends on the macroscopic structural model. If the macro-
scopic structural model is the 3D Cauchy continuum model, Γε is the 6× 6 identity matrix.

If the macroscopic structural model is a beam model, we have

Γε =
1√
g1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 εy3 −εy2

0 0 0 0

0 0 0 0

0 0 0 0

0 εy2 0 0

0 −εy3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

If the macroscopic structural model is a plate/shell model, we have

Γε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
g1

0 0 εy3√
g1

0 0

0 0 1√
g2

0 0 εy3√
g2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1
2

(
1√
g1

+ 1√
g2

)
0 0 1

2

(
εy3√
g1

+ εy3√
g2

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(67)
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Note the above expression is obtained with the understanding that the difference between κ12 and κ21 is of
higher order and negligible if we are not seeking a higher-order approximation of the initial curvatures.

Γl is an operator matrix the form of which depends on the macroscopic structural model. If the macro-
scopic structural model is 3D, Γl has the same form as Γh in Eq. (68) with ∂

∂yk
replaced with ∂

∂xk
, that

is

Γl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
g1

∂
∂x1

0 0

0 1√
g2

∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

1√
g2

∂
∂x2

∂
∂x3

0 1√
g1

∂
∂x1

1√
g2

∂
∂x2

1√
g1

∂
∂x1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

Of course for 3D structures, we have
√
g1 =

√
g2 = 1.

If the macroscopic structural model is a lower-dimensional one, one just needs to vanish the corresponding
term corresponding to the macro coordinates which are not used in describing the macroscopic structural
model. For example, if the macroscopic structural model is a 2D plate/shell model, we have

Γl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
g1

∂
∂x1

0 0

0 1√
g2

∂
∂x2

0

0 0 0

0 0 1√
g2

∂
∂x2

0 0 1√
g1

∂
∂x1

1√
g2

∂
∂x2

1√
g1

∂
∂x1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(69)

If the macroscopic structural model is the 1D beam model, we have

Γl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
g1

∂
∂x1

0 0

0 0 0

0 0 0

0 0 0

0 0 1√
g1

∂
∂x1

0 1√
g1

∂
∂x1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(70)

ΓR is an operator matrix existing only for those heterogeneous structures featuring initial curvatures. For
prismatic beams, plates or 3D structures, ΓR vanishes. For those structures having initial curvatures such
as initially twisted/curved beams or shells, the form of ΓR depends on the macroscopic structural model. If
the macroscopic structural model is a 1D beam model,

ΓR =
1√
g1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
−k13 k12

0 0 0

0 0 0

0 0 0

−k12 k11 k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
k13 k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
−k11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(71)
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If the macroscopic structural model is a 2D shell model,

ΓR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −k13√
g1

k12√
g1

k23√
g2

0 −k21√
g2

0 0 0

0 k21√
g2

0
−k12√

g1
0 0

k13√
g1

− k23√
g2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(72)

B. Variational Statement for SG

Although the SG concept can be used to analyze various type of behavior of heterogeneous structures, we are
instead focusing on the elastostatic behavior of the original heterogeneous structure for illustrative purpose
in this paper, which is governed by the following variational statement

δU = δW (73)

δ is the usual Lagrangean variation, U is the strain energy and δW is the virtual work of applied loads. The
bars over variations are used to indicate that the virtual quantity needs not be the variation of a functional.
For a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U =
1

2

∫
1

ω

〈
ΓTDΓ

〉
dΩ (74)

where Ω is the volume of the domain spanned by xk remaining in the macroscopic structural model. The
notation 〈•〉 =

∫ •√gdω is used to denote a weighted integration over the domain of the SG, ω, where g
is the determinant of the metric tensor of the undeformed configuration spanned by x1, x2, x3, as defined
previously. ω also denotes the volume of the domain spanned by yk corresponding to the coordinates xk

remaining in the macroscopic structural model. If none of yk are needed in the SG, then ω = 1. For
example, if a heterogeneous beam-like structure features a 3D SG, ω is the length of the SG in the y1
direction, corresponding to x1 remaining in the macroscopic beam model. If the heterogeneous beam-like
structure features a 2D SG (uniform cross-section), y1 is not needed for the SG and ω = 1. If a heterogeneous
plate/shell-like structure features a 3D SG, ω is the area of the SG in the y1 − y2 plane, corresponding to
x1 and x2 remaining in the macroscopic plate/shell model. If the heterogeneous plate/shell-like structure
features a 2D SG, y2 and y3 are needed for the SG and ω is equal to the length of SG in y2 direction. If the
heterogeneous plate/shell-like structure features a 1D SG, only y3 is needed for the SG and ω = 1. If a 3D
heterogeneous structure features a 3D SG, ω is the physical volume of SG spanned by y1, y2, and y3. If a 3D
heterogeneous structure features a 2D SG, ω is the area of SG spanned by y2 and y3. If a 3D heterogeneous
structure features a 1D SG, ω is the length of SG in y3 direction.

For a Cauchy continuum, there may exist applied loads from tractions and body forces. The virtual work
done by these applied loads can be calculated as

δW =

∫
1

ω

(
〈p · δR〉+

∫
s

Q · δR√
cds

)
dΩ (75)

where s denotes the boundary surfaces of the SG where the traction force per unit area Q = QiBi is applied
and p = piBi denotes the applied body force per unit undeformed volume.

√
c is equal to 1 except for some

degenerated cases where s is only a boundary curve of the SG and one of coordinates xk is required to form
the physical surfaces on which the load is applied. In this case, the differential area of the physical surface
is equal to

√
cdsdxk with ds as the differential arc length along the boundary curve of SG. For example

for beam-like structures featuring a 2D SG, the SG boundary is the curve encircling the cross-section, and
√
c =

√
g +
(
y2

dy2

ds + y3
dy3

ds

)2
k211. δR is the Lagrangian variation of the displacement field in Eq. (7), such

that
δR = δqiBi + εyαδBα + εδwiBi + εwiδBi (76)
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We may safely ignore products of the fluctuating function and virtual rotation in δR, because the fluctuating
functions are small. The last term of the above equation is then dropped so that

δR = δqiBi + εyαδBα + εδwiBi (77)

The virtual displacements and rotations of the macroscopic structural model are defined as

δqi = δRo ·Bi δBα = δψjBj ×Bα (78)

where δqi and δψi contain the components of the virtual displacement and rotation in the Bi system,
respectively. They are functions of xk only. Note δψj are restrained to be derivable from δqi and are higher
order terms neglected in a 3D structure described using the Cauchy continuum.

Then we can rewrite Eq. (77) as

δR =
(
δqi + εejαiyαδψj + εδwi

)
Bi (79)

Finally, we express the virtual work due to applied loads as

δW = δWH + ε δW
∗

(80)

where δWH is the virtual work not related with the fluctuating functions wi and δW
∗
is the virtual work

related with the fluctuating functions. Specifically, they are

δWH =

∫ (
fiδqi +miδψi

)
dΩ δW

∗
=

∫
1

ω

(
〈piδwi〉+

∮
Qiδwi

√
c ds

)
dΩ (81)

with the generalized forces fi and moments mi defined as

fi =
1

ω

(
〈pi〉+

∫
Qi

√
c ds

)
mi =

eiαj
ω

(
〈εyαpj〉+

∫
εyαQj

√
c ds

)
(82)

If we assume that pi and Qi are independent of the fluctuating functions, then we can rewrite δW
∗
as

δW
∗
= δ

∫
1

ω

(
〈piwi〉+

∫
Qiwi

√
c ds

)
dΩ (83)

In view of the strain energy in Eq. (74) and virtual work in Eq. (80) along with Eq. (81), the variational
statement in Eq. (73) can be rewritten as∫

1

ω
δ

[
1

2

〈
ΓTDΓ

〉− ε

(
〈piwi〉 −

∫
Qiwi

√
c ds

)]
− (fiδqi +miδψi

)
dΩ = 0 (84)

If we attempt to solve this variational statement directly, we will meet the same difficulty as solving the
original problem of heterogeneous structures. The main complexity comes from the fluctuating functions wi

which are unknown functions of both micro and macro coordinates. The common practice in the literature is
to assume the fluctuating functions, a priori, in terms of some unknown functions (displacements, rotations,
and/or strains) of xk and some known functions of yk, to straightforwardly reduce the original continuum
model into a macroscopic structural model. However, for arbitrary heterogeneous structures made with
general composites, the imposition of such ad hoc assumptions may introduce significant errors. Fortunately,
variational asymptotic method (VAM)17 provides a useful technique to obtain the fluctuating functions
through an asymptotical analysis of the variational statement in Eq. (84) in terms of the small parameter ε
inherent in the heterogeneous structure to construct asymptotically correct macroscopic structural models.
As the last two terms in Eq. (84) are not functions of wi, we can conclude that the fluctuating function is
governed by the following variational statement instead:

δ

[
1

2

〈
ΓTDΓ

〉− ε

(
〈piwi〉 −

∫
Qiwi

√
c ds

)]
= 0 (85)

which can be considered as a variational statement for the SG as it is posed over the SG domain only.
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According to VAM, we can neglect the terms in the order of ε to construct the first approximation of the
variational statement in Eq. (85) as

δ
1

2

〈
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)
〉
= 0 (86)

For very simple cases, this variational statement can be solved analytically, while for general cases we need
to turn to numerical techniques such as the finite element method for solution. To this end, we need to
express w using shape functions defined over SG as

w(xk, yj) = S(yj)V (xk) (87)

where S represents the shape functions and V a column matrix of the nodal values of the fluctuating
functions.

Substituting Eq. (87) into Eq. (86), we obtain the the following discretized version of the strain energy
functional:

U =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄

)
(88)

where
E =

〈
(ΓhS)

T
D (ΓhS)

〉
Dhε =

〈
(ΓhS)

T
DΓε

〉
Dεε =

〈
ΓT
ε DΓε

〉
(89)

Minimizing U in Eq. (88) subject to the constraints, gives us the following linear system

EV = −Dhεε̄ (90)

It is clear that V will linearly depend on ε̄, and the solution can be symbolically written as

V = V0ε̄ (91)

Substituting Eq. (91) back into Eq. (88), we can calculate the strain energy storing in the SG as the first
approximation as

U =
1

2
ε̄T
(
V T
0 Dhε +Dεε

)
ε̄ ≡ ω

2
ε̄T D̄ε̄ (92)

where D̄ is the effective stiffness to be used in the macroscopic structural model.
Substituting the solved strain energy stored in the SG into Eq. (84), we can rewrite the variational

statement governing the original heterogeneous structures as∫ [
δ

(
1

2
ε̄T D̄ε̄

)
− fiδqi −miδψi

]
dΩ = 0 (93)

This variational statement governs the macroscopic structural model as it involves only fields which are
unknown functions of macro coordinates xk. The first term is the variation of the strain energy of the
macroscopic structural model and the last terms are the virtual work done by generalized forces and moments.
This variational statement governs the C1 structural elements and 3D solid elements implemented in most
commercial FEA software packages.

We are not only interested in obtaining the effective stiffness and macroscopic structural behavior. We
are also interested in obtaining the local fields within the original heterogeneous structure. First knowing ε̄,
we can compute the fluctuating function as

w = SV0ε̄ (94)

The local displacement field can be obtained as

ui = ūi + εyα(Cαi − δαi) + εwjCji (95)

where ui is the local displacement, ūi is the macroscopic displacement.
The local strain field can be obtained as

Γ = (ΓhSV0 + Γε) ε̄. (96)

The local stress field can be obtained directly using the Hooke’s law as

σ = DΓ. (97)
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IV. Numerical Examples

The Mechanics of Structure Genome developed in this paper is implemented into a computer code
called SwiftCompTM using the modern Fortran language. Although still in its early development stage,
SwiftCompTM has demonstrated a great potential for multiscale constitutive modeling of composites as it
represents a unique unified approach for modeling composites structures and materials. A few examples
are used here to demonstrate the application and validity of the Mechanics of Structure Genome and the
companion code SwiftCompTM. As it can be theoretically shown that one can specialize the Mechanics of
Structure Genome to reproduce the theories the author and his co-workers have developed over the years
for composite beams (Variational Asymptotic Beam Sectional analysis (VABS)), composite plates/shells
(Variational Asymptotic Plate And Shell analysis (VAPAS)), and micromechanics (Variational Asymptotic
Method for Unit Cell Homogenization (VAMUCH)). We have verified that SwiftCompTM can reproduce all
the results of VAMUCH, and the classical models of VABS and VAPAS. Here, we just study a few examples
which have been studied before in our previous publication to demonstrate the application of SwiftCompTM.

2
, y

3
,y

Figure 6. Structure genome for sandwich beam with various cross-sections

A. Sandwich Beam with Periodically Variable Cross-Section

The first example is to analyze a sandwich beam with periodically variable cross-section studied in Ref. [18].
The geometric parameters for each configuration are given below:

• For the sandwich beam with square holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, a = 1 m (Figure 6 : top-left)

• For the sandwich beam with circular holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, r = 0.5614 m (Figure 6 : top-right)

• For the sandwich beam with cross holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, e = 0.7071 m (Figure 6 : bottom-left)
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• For the sandwich beam with hexagonal holes, the geometric variables are given by b = 1.23745 m,
d = 2b, t = 0.1 m, a = 0.7887 m, e = 0.6431 m (Figure 6 : bottom-right)

Note although all the SG in Figure 6 are uniform along y2, the SG must be 3D as they are used to form a
beam structure and y2 is one of the cross-section domain which is finite, see Figure 7. All sandwich beams
in the above cases have the same core material properties (material indicated by blue color in the figure)
of Ec = 3.5 GPa, νc = 0.34 and face sheet material properties (indicated by purple color in the figure) of
Ef = 70 GPa, νc = 0.34. Note although these beams are studied in [19], only bending stiffness is given. In
fact, the effective stiffness for the classical beam model in general should be represented by a fully populated
4×4 matrix. The effective bending stiffnesses predicted by the analytical formulas in [19] and SwiftCompTM

are listed in Table 1.

Table 1. Effective beam bending stiffness of sandwich beams predicted by different methods (×1010 N.m2)

Ref. [19] SwiftCompTM

Rectangle Holes 5.669 5.576

Circular Holes 5.176 5.537

Cross Holes 5.486 5.805

Hexagon Holes 2.875 2.888

As can be observed, SwiftCompTM predictions are slightly different from those in [19]. However, the
present approach is more versatile than that in [19] because [19] only provides analytic formulas for bending
stiffness of beams made of materials characterized only by one material constant, the Young’s modulus,
while SwiftCompTM can estimate all the engineering beam constants represented by a 4× 4 stiffness matrix,
possibly fully populated, for the most general anisotropic materials by factorizing the coefficient material in
the linear system, Eq. (90), only once.

Figure 7. A sandwich beam with hexagonal holes

B. Sandwich Panel with a Corrugated Core

The second example is to model a corrugated-core sandwich panel, a concept used for Integrated Thermal
Protection System (ITPS) studied in [20, 21]. The ITPS panel along with the details of the SG is sketched
in Figure 8. The geometry parameters are tT = 1.2 mm, tB = 7.49 mm, tW = 1.63 mm, p = 25 mm,
d = 70 mm, and θ = 85◦. Both materials are isotropic with E1 = 109.36 GPa, ν1 = 0.3, E2 = 209.482
GPa, ν2 = 0.063. Although 3D unit cells are needed for the study in [20], only a 2D SG is necessary for
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SwiftCompTM as it is uniform along one of the in-plane directions. The effective stiffness for the classical
plate model can be represented using A, B and D matrices known in classical lamination theory. Results
obtained in Ref. [20] are compared with SwiftCompTMin Tables 2, 3 and 4. SwiftCompTM predictions agree
very well with those in Ref. [20] with the biggest difference (around 1%) appearing for the extension-bending
coupling stiffness (B11). However, the present approach is much more efficient because using the approach
in [20] one needs to carry out six analyses of a 3D unit cell under six different sets of boundary conditions
and load conditions and postprocess the 3D stresses to compute the plate stress resultants, while using the
present approach, one only needs to carry out one analysis of a 2D SG without any postprocessing.

Material 1

Material 2

θ

d

T
t

W
t

2p

B
t

Material 1

Material 2

θ

d

T
t

W
t

2p

B
t

Figure 8. Sketch of the ITPS panel and its SG

Table 2. Effective extension stiffness of ITPS (×109 N/m)

A11 A13 A22 A33

Ref. [20] 2.83 0.18 1.07 2.33

SwiftCompTM 2.80 0.18 1.08 2.33

Table 3. Effective bending stiffness of ITPS (×106 N.m)

D11 D13 D22 D33

Ref. [20] 3.06 0.22 1.32 2.85

SwiftCompTM 3.03 0.22 1.32 2.87

V. Conclusion

This paper introduces the concept of structure genome (SG) to bridge materials genome and structural
analysis. SG facilitates a mathematical decoupling of the original complex analysis of composite structures
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Table 4. Effective coupling stiffness of ITPS (×106 N)

B11 B13 B22 B33

Ref. [20] -71.45 -3.36 -34.05 -71.45

SwiftCompTM -70.67 -3.31 -34.06 -71.42

into a constitutive modeling over SG and a macroscopic structural analysis. The constitutive modeling will
not only perform homogenization to obtain the constitutive relations for the macroscopic structural analysis
but also perform dehomogenization to obtain the local fields within the microstructure. This paper not only
formulated the mechanics of structure genome but also implemented the theory in a computer code called
SwiftCompTM. Mechanics of SG presented in this paper enables a multiscale constitutive modeling approach
with the following unique features:

• Use SG to fill the gap between materials genome and structural analysis. Intellectually, SG enables
us to view structural mechanics as an application of micromechanics. Technically, SG empowers us to
systematically model complex buildup structures with heterogeneities of a length scale comparable to
the smallest structural dimension.

• Use VAM to avoid apriori assumptions commonly invoked in other approaches, providing the most
mathematical rigor and the best engineering generality.

• Decouple the original problem into two sets of analyses: a constitutive modeling and a structural
analysis. This allows the structural analysis to be formulated exactly as a general (1D, 2D, or 3D)
continuum, the analysis of which is readily available in commercial FEA software packages and confines
all approximations to the constitutive modeling, the accuracy of which is guaranteed to be the best by
VAM.

A general-purpose computer code called SwiftCompTM is developed to implement the Mechanics of Structure
Genome along with several examples to demonstrate its application and power.
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A Comprehensive Evaluation of the Predictive

Capabilities of Several Advanced Micromechanics

Approaches

Hamsasew Sertse∗, Liang Zhang†, Wenbin Yu‡, and Zheng Ye§

The objective of this paper is to comprehensively evaluate predictive capability and effi-
ciency of advanced micromechanics approaches such as generalized method of cells (GMC),
the high fidelity generalized method of cells (HFGMC), and the variational asymptotic
method for unit cell homogenization (VAMUCH) and Finite Element Analysis (FEA) based
micromechanics approaches using representative examples of heterogeneous materials such
as: 1. continuous fiber reinforced composite; 2. particle reinforced composite; 3. discon-
tinuous fiber reinforced composite; 4. woven composite. The evaluation reveals that GMC
experiences noticeable loss of accuracy in predicting effective properties and also ineffec-
tively recovers the local stress fields in all cases. HFGMC shows good agreement compared
to FEA and also better recovers the local stress fields while VAMUCH shows an excellent
agreement with FEA for both effective properties prediction and local field recovery. The
shear moduli prediction of FEA is noticed to converge to the prediction of VAMUCH as
the number of unit cell increases particularly for 3D analysis. It is also found that GMC is
computationally efficient however VAMUCH with fewer elements can better approximate
effective properties with better efficiency.

I. Introduction

In recent decades, heterogeneous materials become increasingly used in structural components due to
their capability of exhibiting designated in-plane stiffness, bending stiffness, ultimate strength, or thermal
expansion coefficient. The increasing use of heterogeneous materials leads to an increasing need for knowing
the effective properties of such materials. It is doable to experimentally test the effective properties of such
materials, but it is expensive and time consuming to manufacture a great amount of materials and to perform
various tests on them. Although possible, it is computationally prohibitive to analyze these structures with
all the microstructural details because the macroscopic dimensions of these structures are usually several
orders of magnitude greater than the heterogeneity length scale. Therefore, it is of great practical value to
solve the problems of heterogeneous materials using a micromechanics approach.

Numerous efforts have been devoted to the homogenization of heterogeneous materials. According to
Ref. [1], the homogenization generally consists of the following steps:

• Idealize the heterogeneous material as consisting of numerous periodically arranged unit cells (UCs)
and identify the UC;

• Perform a micromechanical analysis on the UC and obtain the effective material properties;

• Substitute the effective material properties into the macroscopic structure to obtain the global response
of the structure;

∗Graduate Research Assistant, Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah
84322-4130.

†Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering, Logan, Utah 84322-4130.
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• Feedback the global response to UC and recover the local fields of interest (e.g., the displacement,
strain, and stress fields).

The earliest rules of mixture approaches were developed based on the Voigt-Reuss hypotheses. Hill2

demonstrated that the Voigt-Reuss hypotheses are capable of providing rigorous lower and upper bounds
of the effective material properties of the UC. However, for real heterogeneous materials, the differences
between these two bounds are generally too great to be of practical value. Elaborate efforts have been
devoted to overcoming these drawbacks, i.e., either to reduce the aforementioned differences or to obtain
close approximations between the lower and upper bounds. Examples include the mean field homogenization
(MFH),,3 Hashin and Shtrikman’s variational approach,,4 the third-order bounds,,5 the recursive cell method,,6

and the mathematical homogenization theories (MHT),,7,8 and many others. Hollister and Kikuchi,9 evaluated
the predictive capabilities of these approaches and concluded that, for periodic or even locally periodic
heterogeneous materials, MHT is superior to the other approaches.

Numerous attempts have been made not only to obtain the effective material properties but also to
recover the local fields. Aboudi and his co-workers in Ref. [10,11] developed the method of cells (MOC) and
later the generalized method of cells (GMC) to achieve this goal. A detailed review on these approaches can
be found in Ref. [12]. The basic ideas of these approaches are subdividing the UC into numerous cuboid
subcells, solving for the average strain and stress over each subcell, and obtaining an estimation of the local
fields. These approaches solve the problems to a certain extent but suffer two major drawbacks. First,
using cuboid subcells to represent the UC introduces considerable domain approximation errors. This can
be understood by noting that it is generally more accurate to use a finite element mesh to represent the UC.
Second, using the average local strains and stresses within each subcell to represent the real ones introduces
considerable approximation errors. This can be understood by noting that it is generally more accurate
to use shape functions and nodal values to represent the local fields. In fact, several attempts have been
made to overcome the aforementioned drawbacks. An example is the high fidelity generalized method of
cells (HFGMC). Ref. [13] demonstrated that HFGMC and VAMUCH, which will be mentioned in the next
paragraph, significantly outperform GMC. However, they also found that, despite higher accuracy, HFGMC
is more computationally costly. In this paper, the accuracy and efficiency of GMC, HFGMC and VAMUCH
will be carefully assessed.

In recent years, Yu and his co-workers Ref. [1, 14–17] developed the variational asymptotic method for
unit cell homogenization (VAMUCH), a general-purpose micromechanics approach, to handle the problems of
heterogeneous materials. In fact, VAMUCH is not only capable of predicting the effective material properties
and recovering the local fields but also has several unique features compared with other numerical methods.
One of these features is that VAMUCH has the minimum number of assumptions. Specifically, VAMUCH
starts with two basic assumptions associated with the micromechanical analysis of heterogeneous materials
of identifiable UCs, i.e.,

1. The exact solutions of the field have their volume averages over the UC, i.e., if ui denotes the exact
displacements within the UC, there exists a vi such that

vi =
1

Ω

∫
Ω

uidΩ ≡ 〈ui〉, (1)

where Ω denotes the domain occupied by the UC and also its volume, and 〈·〉 denotes the volume
average over Ω;

2. The effective material properties obtained using the micromechanical analysis are independent of the
geometry and boundary conditions of the macroscopic structure, or to say, the effective material prop-
erties are assumed to be the intrinsic properties of the material when macroscopically viewed.

These two assumptions place the fewest restrictions on the problem solving. The first assumption means
that the exact solutions of the field are integrable over the UC, or to say, that the heterogeneous material
can be homogenized. The second assumption basically reflects the fact that the material properties are fully
described by the constitutive relations for the material and are independent of the geometry and boundary
of the macroscopic structure. Of course, the micromechanical analysis of the UC is desirable and appropriate
only if η = h/l � 1, where h denotes the characteristic size of the UC and l denotes the characteristic size
of the macroscopic structure.
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The objective of this paper is to comprehensively evaluate the predictive capabilities of GMC, HFGMC,
and VAMUCH. The basic formulations of these approaches are presented. The accuracy and efficiency of
these approaches are comprehensively evaluated using examples such as predicting the effective material
properties of: 1. continuous fiber reinforced composite; 2. particle reinforced composite; 3. discontinuous
fiber reinforced composite; 4. woven composite. This evaluation is expected to help scientists and engineers
select appropriate micromechanics approaches to solve various problems of heterogeneous materials.

II. Generalized Method of Cells (GMC)

As mentioned above, GMC is a variant of MOC. The derivations of GMC start with discretizing a UC
into numerious rectangular (2D) or cuboid (3D) subcells. Specifically, without loss of generality, consider a
UC consisting of Nα × Nβ × Nγ subcells (see Figure 1), where α, β, and γ denote a set of running indices
taking the values of α = 1, . . . , Nα, β = 1, . . . , Nβ , and γ = 1, . . . , Nγ , respectively. Let the UC be of length
D, width H, and height L, and let each subcell be of length dα, width hβ , and height lγ . Introduce two

Cartesian coordinate systems, x = (x1, x2, x3) and ȳ =
(
ȳ
(α)
1 , ȳ

(β)
2 , ȳ

(γ)
3

)
. Let x denote the global coordinates

describing the UC, and let ȳ denote the local coordinates describing each subcell, with its origin located at
the geometric center of the subcell (see Figure 1). For notational convenience, also introduce the following
accessory indices:

Figure 1. (a) Sketch of a heterogeneous material of identifiable UCs; (b) UC; (c) sketch of typical subcells
(duplicated from Ref. [12]).
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α̂ =

{
α+ 1 α < Nα,

1 α = Nα,
β̂ =

{
β + 1 β < Nβ ,

1 β = Nβ ,
γ̂ =

{
γ + 1 γ < Nα,

1 γ = Nα.
(2)

Let the local displacements within subcell (αβγ) take the form of

u
(αβγ)
i = w

(αβγ)
i (x) + ȳ

(α)
1 χ

(αβγ)
i + ȳ

(β)
2 φ

(αβγ)
i + ȳ

(γ)
3 ψ

(αβγ)
i i = 1, 2, 3, (3)

where w
(αβγ)
i (x) denote the global displacements at the origin of the local coordinates, and χ

(αβγ)
i , φ

(αβγ)
i ,

and ψ
(αβγ)
i denote the microvariables characterizing the linear dependence of u

(αβγ)
i on ȳ. It can be verified

that Eq. (3) leads to a uniform strain field within the subcell. Accordingly, the local strains corresponding

to u
(αβγ)
i can be obtained from Eq. (3) as

ε
(αβγ)
11 = χ

(αβγ)
1 , ε

(αβγ)
22 = φ

(αβγ)
2 , ε

(αβγ)
33 = ψ

(αβγ)
3 , (4)

2ε
(αβγ)
23 = φ

(αβγ)
3 + ψ

(αβγ)
2 , 2ε

(αβγ)
13 = ψ

(αβγ)
1 + χ

(αβγ)
3 , (4′)

2ε
(αβγ)
12 = φ

(αβγ)
1 + χ

(αβγ)
2 , (4′′)

and the average or global strains over the UC can be expressed as

ε̄ij =
1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγε
(αβγ)
ij . (5)

Without loss of generality, let each constituent exhibit a temperature-dependent, inelastic behavior. In this
case, the constitutive relations for a constituent can take the following general form:

σ
(αβγ)
ij = C(αβγ)

ijkl

(
ε
(αβγ)
kl − ε

I(αβγ)
kl − ε

T (αβγ)
kl

)
, (6)

where Cijkl denotes the fourth-order elasticity tensor, ε
I(αβγ)
kl denotes the inelastic strains, and ε

T (αβγ)
kl denotes

the thermal strains. Similarly to Eq. (5), the average or global stresses over the UC can be expressed as

σ̄ij =
1

DHL

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγσ
(αβγ)
ij . (7)

The local displacements must satisfy the continuity conditions and the periodic boundary conditions
between neighboring unit cells. This leads to the following relations:

Nα∑
α=1

dαε
(αβγ)
11 = dε̄11,

Nβ∑
β=1

hβε
(αβγ)
22 = hε̄22,

Nγ∑
γ=1

lγε
(αβγ)
33 = lε̄33, (8)

Nα∑
α=1

Nβ∑
β=1

dαhβε
(αβγ)
12 = dhε̄12,

Nβ∑
β=1

Nγ∑
γ=1

hβlγε
(αβγ)
23 = hlε̄23, (8′)

Nα∑
α=1

Nγ∑
γ=1

dαlγε
(αβγ)
13 = dlε̄13. (8′′)

Eq. (8) can be rewritten in a matrix form as

AGεs = Jε̄, (9)

where εs denotes the 6NαNβNγ-order subcell strain column matrix, ε̄ denotes the sixth-order global stain col-
umn matrix,AG is aNα (Nβ +Nγ + 1)+Nβ (Nγ + 1)+Nγ by 6NαNβNγ matrix, and J is aNα (Nβ +Nγ + 1)+
Nβ (Nγ + 1) +Nγ by 6 matrix.
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Similarly to the local displacements, the local tractions also must satisfy the continuity conditions in an
average sense between neighboring subcells. This leads to the following relations.

σ
(αβγ)
11 = σ

(α̂βγ)
11 α = 1, . . . , Nα − 1, β = 1, . . . , Nβ , γ = 1, . . . , Nγ , (10)

σ
(αβγ)
22 = σ

(αβ̂γ)
22 α = 1, . . . , Nα, β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ , (10′)

σ
(αβγ)
33 = σ

(αβγ̂)
33 α = 1, . . . , Nα, β = 1, . . . , Nβ , γ = 1, . . . , Nγ − 1. (10′′)

σ
(αβγ)
23 = σ

(αβ̂γ)
23 α = 1, . . . , Nα, β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ , (11)

σ
(αβγ)
32 = σ

(αβγ̂)
32 α = 1, . . . , Nα, β = Nβ , γ = 1, . . . , Nγ − 1. (11′)

σ
(αβγ)
13 = σ

(α̂βγ)
13 α = 1, . . . , Nα − 1, β = 1, . . . , Nβ , γ = 1, . . . , Nγ , (12)

σ
(αβγ)
31 = σ

(αβγ̂)
31 α = Nα, β = 1, . . . , Nβ , γ = 1, . . . , Nγ − 1. (12′)

σ
(αβγ)
12 = σ

(α̂βγ)
12 α = 1, . . . , Nα − 1, β = 1, . . . , Nβ , γ = 1, . . . , Nγ , (13)

σ
(αβγ)
21 = σ

(αβ̂γ)
21 α = Nα, β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ . (13′)

Eqs. (10) - (13) can be rewritten in terms of ε
(αβγ)
ij , ε

I(αβγ)
ij , and ε

T (αβγ)
ij using Eq. (6). The resulting

equations can be further rewritten in a matrix form as

AM

(
εs − εIs − εTs

)
= O, (14)

where εIs and εTs denote the 6NαNβNγ-order subcell inelastic and thermal strain column matrix, respectively,
and AM is a 6NαNβNγ − (NαNβ +NαNγ +NβNγ)− (Nα +Nβ +Nγ) by 6NαNβNγ matrix.

Combining Eqs. (9) and (14) gives

Ãεs − D̃
(
εIs + εTs

)
= Kε̄, (15)

where

Ã =

[
AM

AG

]
, D̃ =

[
AM

O

]
, K =

[
O

J

]
. (16)

Rearranging Eq. (15) gives
εs = Aε̄+D

(
εIs + εTs

)
, (17)

where
A = Ã−1K, D = Ã−1D̃. (18)

Till now, εs and ε(αβγ) can be uniquely determined. In addition, the local stresses can be recovered as

σ(αβγ) = C(αβγ)
[
A(αβγ)ε̄+D(αβγ)

(
εIs + εTs

)− (εI(αβγ)s + εT (αβγ)
s

)]
, (19)

and the global stresses can be obtained using

σ̄ = C∗ (ε̄− ε̄I − ε̄T
)
, (20)

where C∗ denotes the effective elasticity matrix, and ε̄I and ε̄T denote the global inelastic and thermal
strains, respectively. Interested readers can refer to Ref. [18] for more details on the GMC theory.
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III. High Fidelity Generalized Method of Cells

As mentioned above, HFGMC is a variant of MOC and GMC. The basic concept of HFGMC is quite
similar with that of GMC except that HFGMC adopts a second-order expansion of the local displacements,

u
(αβγ)
i . Specifically, for HFGMC, u

(αβγ)
i take the form of

u
(αβγ)
i = ε̄ijxj + w

(αβγ)
i(000) + ȳ

(α)
1 w

(αβγ)
i(100) + ȳ

(β)
2 w

(αβγ)
i(010) + ȳ

(γ)
3 w

(αβγ)
i(001)

+
1

2

(
3ȳ

(α)2
1 − d2α

4

)
w

(αβγ)
i(200) +

1

2

(
3ȳ

(β)2
2 − h2

β

4

)
w

(αβγ)
i(020) +

1

2

(
3ȳ

(γ)2
3 − l2γ

4

)
w

(αβγ)
i(002),

(21)

where w
(α,β,γ)
i(000) denotes the volume-averaged displacements over the UC, and w

(αβγ)
i(lmn) are higher-order terms to

be determined by interfacial and periodic conditions. Recall that, for GMC, u
(αβγ)
i merely represents a linear

displacement field within the subcell. Here Eq. (21) introduces several second-order terms, which implies
higher accuracy but also higher computational costs. To avoid redundancy, the derivations of HFGMC will
not be presented in this paper. Interested readers can refer to Ref. [18] for more details on the HFGMC
theory.

IV. Variational Asymptotic Method for Unit Cell Homogenization

VAMUCH is a general-purpose micromechanics approach that is capable of predicting the effective prop-
erties of heterogeneous materials and recovering the local fields. The derivations of VAMUCH start from the
variational statement of a heterogeneous continuum. Note that the macroscopic dimensions of these struc-
tures are usually several orders of magnitude greater than the heterogeneity length scale. This leads one to
formulate the problem of homogenization as a problem of constrained minimization on a single UC and to
perform an asymptotic analysis of the variational statement. Specifically, consider a heterogeneous material
of an identifiable UC. Introduce two Cartesian coordinate systems, x = (x1, x2, x3) and y = (y1, y2, y3). Let
xi denote the global coordinates describing the macroscopic structure, and let yi denote the local coordinates
describing the UC. The variational statement of the problem can be formulated as seeking the minimum of
the functional

ΠΩ =
1

2Ω

∫
Ω

[
ε̄ij + χ(i|j)

] Cijkl [ε̄kl + χ(k|l)
]
dΩ (22)

within a UC, where Cijkl denote the fourth-order elasticity tensor, ε̄ij denotes the components of the global
strain tensor for the homogenized structure, χi denotes the components of the fluctuation functions and
must satisfy the periodic boundary conditions along with constraint

〈χi〉 = 0, (23)

and

χ(i|j) =
1

2

(
∂χi

∂yj
+

∂χj

∂yi

)
. (24)

Introduce the following matrix notations:

ε̄ =
⌊

ε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33

⌋T
, (25)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂y1
∂χ1

∂y2
+

∂χ2

∂y1
∂χ2

∂y2
∂χ1

∂y3
+

∂χ3

∂y1
∂χ2

∂y3
+

∂χ3

∂y2
∂χ3

∂y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
0 0

∂

∂y2

∂

∂y1
0

0
∂

∂y2
0

∂

∂y3
0

∂

∂y1

0
∂

∂y3

∂

∂y2

0 0
∂

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ, (28′)
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where Γh denotes an operator matrix, and χ denotes a column matrix containing the three components of
the fluctuation functions. Let χ be discretized using finite elements as

χ (xi; yi) = S (yi)X (xi) , (26)

where S denotes the shape functions, and X denotes a column matrix of the nodal values of the fluctuation
functions for all the active nodes. The discretized version of Eq. (22) can then be obtained as

ΠΩ =
1

2Ω

(
XTEX+ 2XTDhεε̄+ ε̄TDεεε̄

)
, (27)

where

E =

∫
Ω

(ΓhS)
T
D (ΓhS) dΩ, Dhε =

∫
Ω

(ΓhS)
T
DdΩ, Dεε =

∫
Ω

DdΩ (28)

with D denoting the 6 × 6 stiffness matrix condensed from Cijkl. It can be derived from Eq. (27) that ΠΩ

attains its minimum only if
EX = −Dhεε̄ (29)

which can be used to solve for X as;
X = X0ε̄. (30)

Eq. (30) implies that X is linearly dependent on ε̄. Substituting Eq. (30) into Eq. (27) gives the minimum
of ΠΩ as

ΠΩ =
1

2Ω
ε̄T
(
XT

0 Dhε +Dεε

)
ε̄ ≡ 1

2
ε̄T D̄ε̄, (31)

where D̄ denotes the so-called effective stiffness matrix, and ε̄ denotes the global strain column matrix.
Till now, the effective material properties can be fully determined. In addition, if the local fields are of

interest, they can be recovered using the global displacements, v, the global strains, ε̄, and the fluctuation
functions, χ. Specifically, the local displacements can be recovered as

u = v +

⎡
⎢⎢⎢⎢⎢⎣

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

y1
y2
y3

⎫⎪⎬
⎪⎭+ SX̄0ε̄, (32)

where u and v denote the local and global displacement column matrices, respectively, and X̄0 denotes the
nodal values of fluctuation functions modified from X0 by the periodic boundary conditions and Eq. (23).
The local strains can be recovered as

ε = ε̄+ ΓhSX̄0ε̄, (33)

where ε denotes the the local strain column matrix. The local stresses can be recovered from the local strains
as

σ = Dε. (34)

It is worth notice that, although VAMUCH seems as verstile as the finite element method, it is by no
means an extension of the traditional displacement-based finite element method. In fact, the VAMUCH code
has the following distinctive features:

• The complete set of effective material properties can be obtain within one analysis, without the appli-
cation of any external loads;

• The fluctuation functions and the displacements are uniquely determined;

• The effective material properties and the recovered local fields are directly obtained with the same
accuracy of the fluctuation functions, without any postprocessing-type calculations (e.g., averaging the
stresses or the strains),

• The dimensionality of the problem is determined by that of the periodicity of the UC.

Interested readers can refer to Refs. [1] for more details on the VAMUCH theory.
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V. Results and Discussions

In this section, the accuracy and efficiency of GMC, HFGMC and VAMUCH will be comprehensively
evaluated using representative examples of heterogeneous materials such as: 1. continuous fiber reinforced
composite; 2. particle reinforced composite; 3. discontinuous fiber reinforced composite; 4. woven composite.
The outputs of GMC and HFGMC will be obtained using micromechanics analysis code MAC/GMC 4.0 de-
veloped by NASA Glenn Research Center.18 Finite Element Analysis (FEA) based micromechanics approach
proposed by Sun and Vaidya19 is considered for all subsequent analyses as a benchmark for comparison of
effective properties and local stress field prediction of GMC, HFGMC and VAMUCH. The computing time
will also be studied for all the approaches including FEA using the ANSYS software. For consistency, the
same computer is used to obtain the FEA elapsed time spent for computing solution of the analysis. Finally
the outputs of GMC, HFGMC and VAMUCH will be compared with converged results of FEA.

It should be noted that the application of FEA for predicting effective properties of composite materials19

does not rigorously simulate the periodic boundary conditions adopted in GMC, HFGMC and VAMUCH.
Some differences are expected between the results of FEA and other approaches. But considering a RVE
containing multiple unit cells should reduce the effects due to boundary conditions and converge to those
approaches using periodic boundary conditions.

A. Continuous Fiber Reinforced Composite

First, let the unit cell of the continuous fiber reinforced composite be identified as a square matrix embedded
with a circular fiber. Let the fiber be located at the center of the unit cell arranged in a square array and
also let the fiber volume ratio be 40%. The local Cartesian coordinates can be introduced at the center of
unit cell as y = (y1, y2, y3) with y1 parallel to the fiber direction as depicted in Figure 2. Second, let material
of the matrix and fiber be boron and aluminum, respectively, with the material parameters listed in Table 1,
where E and ν are the Young’s elastic modulus and Poisson’s ratio, respectively.

Table 1. Material parameters of Boron and Aluminium

Material E(GPa) ν

Boron 379.3 0.1

Aluminium 68.3 0.3

A 66× 66 subcell grid is used for GMC and HFGMC, and a mesh of 4500 8-noded quadrilateral elements
is used for VAMUCH and FEA. FEA is conducted using PLANE82 element for G23 and SOLID95 elements
for remaining effective properties. The comparison of the predicted results in Table 2 reveals that GMC
slightly underpredicts both normal and shear moduli but HFGMC sufficiently estimates most of predicted
properties except G23. On the contrary, VAMUCH shows an excellent agreement with converged FEA results
for all the predicted effective properties.

Table 2. Predicted effective properties of the fiber reinforced composite

E11(MPa) E22(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 193300 125100 45270 39740 0.2119 0.2809

HFGMC 193500 127500 48320 42580 0.2090 0.2789

VAMUCH 193530 127676 48303 41702 0.2090 0.2777

FEA 193530 127680 48295 41702 0.2090 0.2777

The computing time has also been obtained for GMC, HFGMC, VAMUCH, and FEA for different
element numbers. The computing times verse the number of elements are plotted for each approach as
shown in Figure 3. To critically investigate the computing time verses the accuracy of these approaches, it is
worthwhile to evaluate their effectiveness for different element numbers. From this study, it is learned that
GMC and HFGMC (with 4356 elements) run for 0.118 seconds and 12.33 minutes, respectively, while FEA
and VAMUCH take approximately 8.2 seconds and 28.65 seconds for 4500 elements, respectively. It is clear
to observe that GMC is more efficient however, as shown in Table 3, the loss of accuracy of GMC is greater
compared to the others, for instance, the losses of accuracy of GMC for longitudinal moduli E11 and E22 are
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Figure 2. Unit cell for continuous fiber reinforced composite

0.118% and 2.02% , respectively, while HFGMC shows relatively better agreement resulting in 0.0156% and
0.142% losses of accuracy for E11 and E22, respectively. These losses of accuracy (of GMC and HFGMC) are
observed to be significant compared to VAMUCH (with 4500 elements) that has a capability of predicting
E11 and E22 with 0.00% and 0.0031% losses of accuracy, respectively. Moreover, GMC experiences greater
loss of accuracy for longitudinal shear modulus, G12, which is approximated to be 6.26% compared with
converged FEA results. On the contrary, HFGMC and VAMUCH show better agreement with FEA. From
Table 3, it is generally noticed that the losses of accuracy of VAMUCH with 80 elements are much lower
than that of GMC and HFGMC compared to FEA results. VAMUCH takes approximately 0.0467 seconds to
complete the run which makes VAMUCH faster than GMC. The computing time with respect to number of
elements is also plotted in Figure 3, which shows that HFGMC takes significantly more time than VAMUCH,
particularly so when the number of elements is large.

The predicted effective properties are used to obtain the local stress recovery of GMC, HFGMC and
VAMUCH for continuous reinforced composite. Considering a plane strain problem, it is assumed that the
homogenized medium is subjected to a normal load in the x2 direction that generates global strain ε̄22=0.1%,
and the corresponding strain ε̄33 in the x3 direction obtained based on the predicted Poisson’s ratios of each
approach. All other strains would be zero, i.e, ε̄11 = ε̄12 = ε̄23 = ε̄13=0. These strains are fed back to the
model to recover the local stresses both along y2 (y3 = 0) and y3 (y2 = 0).

Table 3. Comparison of accuracy of GMC, HFGMC and VAMUCH

Elements E11(MPa) E22(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 4356 0.119% 2.02% 5.70% 4.70% 1.38% 1.13%

HFGMC 4356 0.015% 0.14% 0.64% -2.10% 0.0054% -0.432%

VAMUCH 80 0.00244% -0.035% 0.62% 0.10% 0.006% 0.071%

As it can be seen from Figure 4, GMC and HFGMC poorly recover the local stress fields σ11 along
y2 (y3 = 0) for fiber section and at the interface but both roughly capture stress in the matrix. On the
contrary, VAMUCH fully recovers the local stress σ11 with the same level of accuracy as FEA for fiber
section, at interface and for matrix section of continuous fiber reinforced composite. The local stress σ22
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Figure 3. Computing time for GMC, HFGMC and VAMUCH

along y3 (y2 = 0), as depicted in Figure 5, is fairly recovered by both GMC and HFGMC specifically at the
fiber section compared with FEA result however GMC is unable to well capture the stress disturbance at
the interface. Conversely as indicated on the same figure, the local stress σ22 is well recovered by VAMUCH
with the same level of accuracy as FEA. From Figure 6, it is evident that GMC is unable to sufficiently
recover the local stress σ33 along y3 (y2 = 0). This is mainly due to its inherent shear coupling problem, yet
HFGMC roughly captures the local stresses. Generally speaking, it is clear to observe that VAMUCH well
recovers the local stress fields for both along y2 (y3 = 0) and y3 (y2 = 0) with same level of accuracy as FEA
for all local stress field recovery as seen from Figures 4 to 6.

B. Particle Reinforced Composite

In this case, let a spherical inclusion with 40% fiber volume be embedded at the center of cuboidal matrix
to be used as a unit cell for particle reinforced composite. Let the local Cartesian coordinates be set at
the center of sphere. The particle and the matrix are made of boron and aluminium, respectively, with the
material parameters listed in Table 1.

For GMC, a built-in spherical particle reinforced model with 343 elements is used as a unit cell. The
current version of MAC/GMC 4.0 does not support 3D analysis for HFGMC thus it is omitted in all
subsequent 3D analyses. A cuboidal unit cell with 7776 elements is used for VAMUCH and FEA. Further
refining of the mesh does not have any significant improvement on the output of GMC, however it may
slightly change the outputs of VAMUCH and FEA. The result of FEA analysis is obtained by using SOLID95
elements.

The prediction outputs of particle reinforced composite in Table 4 show that GMC underpredicts lon-
gitudinal moduli approximately by 3.095%, while VAMUCH shows an excellent agreement with converged
FEA outputs. For particle reinforced composite, the effect of boundary conditions are found to be more
observable on the prediction of axial shear modulus as learned from various analyses with multiple number
of unit cells. It is timely noted that the boundary conditions in Ref. [19] was developed for continuous fiber
reinforced composites, not necessarily suitable for other composites. However, as the number of unit cells
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Figure 4. Comparison of recovered local stress σ11 along y2 (y3 = 0)

Figure 5. Comparison of recovered local stress σ22 along y3 (y2 = 0)

Table 4. Predicted effective properties of the particle reinforced composite.

E11(MPa) E22(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 134800 134800 43340 43340 0.2229 0.2229

VAMUCH 139106 139106 46797 46797 0.2167 0.2167

FEA 139106 139106 47439 46755 0.2167 0.2167
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Figure 6. Comparison of recovered local stress σ33 along y3 (y2 = 0)

Table 5. Computing time for particle reinforced composite

GMC VAMUCH FEA

Elements 343 7776 7776

Time(s) 0.052 982.52 145.4
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included in the RVE increases, we can effectively avoid the boundary effect. FEA predicts G12 to be 49471
(MPa) for a single unit cell. As number of unit cell increases to 27 (3 × 3 × 3) unit cells, the prediction of
FEA for G12 lowered to 47750 (MPa) based on global shear strains and shear stresses. It is believed that
the middle unit cell is generally less affected by the boundary conditions and thus it is also used to predict
the axial shear modulus. We first use Eqs. (35) and (36) to obtain average shear stress and average shear
strain in the middle UC, respectively. The effective axial shear modulus G12 is then calculated as the ratio
of average shear stress and average shear strain.

σ̄12 =
1

Ω

∑
σ12iΩi, (35)

where σ̄12 denotes average shear stress in the middle unit cell, Ω denotes the volume occupied by the middle
UC and Ωi denotes volume of subcell i within middle UC and σ12i denotes the shear stress of Ωi.

ε̄12 =
1

Ω

∑
ε12iΩi, (36)

where ε̄12 denotes average shear strain in the middle unit cell. This approach gives more reasonable result as
the number of unit cell increases. For this particular case, G12 is 47439 (MPa) when we use a RVE contains
125 unit cells (5 × 5 × 5). From Figure 7, it is clear to see that as the number of unit cell increases the
prediction of FEA gets closer to a single unit cell prediction of VAMUCH whereas VAMUCH is confirmed to
have consistent prediction for different number of unit cells. It should be noted that the remaining effective
properties predicted by FEA are negligibly affected by the number of unit cells. For instance, the prediction
of G23 using 27 (3 × 3 × 3) unit cells is observed to have less than 0.5% difference compared to single unit
cell.

Based on the prediction of FEA, GMC significantly under predicts shear modulus G23 and G12 approxi-
mately by 7.30% and 8.64%, respectively. On the contrary, VAMUCH predicts G12 and G23 approximately
with 1.35% and 0.089% difference from FEA results, respectively.

Computing time for particle reinforced composite is also evaluated as shown in Table 5. Although the
GMC appears to be faster in this case, it achieves this efficiency at the expense of considerable loss of
accuracy of predicted shear and longitudinal moduli. Moreover, these loss of accuracy and computing time
are obtained under considerable difference of element numbers between GMC and VAMUCH, thus it is
of interest to evaluate VAMUCH with fewer number of elements. From Table 6, it is evident to see that
VAMUCH predicts the required effective properties with significantly less error than its counterpart GMC.
VAMUCH takes approximately 0.14 seconds to complete the run which is of similar efficiency as GMC.

Figure 7. Convergency study of FEA for different unit cells for G12
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Table 6. Prediction error of GMC and VAMUCH for particle reinforced composite.

Elements E11(MPa) E22(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 343 3.095% 3.095% 8.58% 7.12% -0.62% 0.62%

VAMUCH 52 0.44% 0.44% 0.64% -0.42% -0.034% -0.034%

The recovery of the local fields for particle reinforced composite is also analyzed. It is assumed that a
normal load applied in the x2 direction of homogenized medium generates global strain of ε̄22 = 0.2% in the
x2 direction and the corresponding strain in the x3 direction also calculated based on the predicted Poisson’s
ratios of each approach. All other strains are zero. The global strains are then fed back to the model for
recovering the local stress field. In this recovery of the local fields, finer meshes are used for VAMUCH and
FEA for better clarity at the interface.

From this local stress recovery analysis, as depicted from Figures 8-10, it is noticed that GMC is not fully
capable of capturing the local stress fields. This may be primarily due to its inherent lack of shear coupling
effect. It should also be noted that MAC/GMC 4.0 software package provides only elemental average stresses
for 3D analysis, thus local stress of GMC for 3D analysis is plotted using an average elemental stresses. As
it can be seen from all subsequent figures, these plots fail to hit the boundary of the unit cell for the reason
that the stresses are plotted at the element center. On the other hand, local stresses of VAMUCH and FEA
are plotted using average nodal stresses. It is obvious to note that plots with nodal values would better
capture the local fields. As shown in Figure 8, the recovered local stress σ22 of GMC along y2 (y1 = y3 = 0)
is found to be the same in the matrix, fiber and interface which is not actually true. GMC again ineffectively
recovers the local stress σ11 along y2 (y1 = y3 = 0) as shown in Figure 9. Conversely, VAMUCH well recovers
the local stress with the same level of accuracy as FEA. Moreover, GMC poorly captures local stress σ33

along y2 (y1 = y3 = 0) as shown in Figure 10. It is also observed that VAMUCH well captures the local
stress σ33 equivalent to FEA. In general, the outputs of the recovery analyses sufficiently demonstrates that
VAMUCH is fully capable of recovering all local stresses equivalent to FEA.

Figure 8. Comparison of recovered local stress σ22 along y2 (y1 = y3 = 0)

C. Discontinuous Fiber Reinforced Composite

For a discontinuous fiber reinforced composite, first, let a quarter of circular fiber be embedded at the two
opposite corners of hexagonal array matrix. Let the array be symmetric with respect to its width and
height. This arrangement produces hexagonal array with circular fiber at the center and quarter circular
fiber at the corners of the array as shown in Figures 11 and 13. Moreover, let the local Cartesian coordinates
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Figure 9. Comparison of recovered local stress σ11 along y3 (y1 = y2 = 0)

Figure 10. Comparison of recovered local stress σ33 along y2 (y1 = y3 = 0)
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be introduced as y = (y1, y2, y3) at the center of unit cell, where y1 is in the fiber direction. The fibers
are generally shorter compared to the unit cell in y1 direction. Second, let the cross-sectional area of the
hexagonal array be generated based on the common relation, a = βb, where a is the width and b the height
of the unit cell and β =

√
3 for hexagonal array. The fiber aspect ratio (length/diameter) is assumed to be

5. By assuming any values of a and total length of the unit cell, it is possible to determine the diameter
of the circular fiber for any required fiber volume. In this analysis, 40% of fiber volume ratio is assumed
to sufficient to test the predictive capability of the models. Two variants of discontinuous fiber reinforced
composites are considered for testing predictive capability of these approaches. The first one is transversely
aligned regular array, called aligned-regular array here, where all the fibers are arranged in aligned pattern
as shown in Figure 11 and the second one is transversely aligned staggered array, call aligned-staggered array
here, where fibers are arranged in offset pattern as seen from Figure 13. Both regular and staggered array
are used for predicting effective properties and local field recovery of discontinuous fiber reinforced composite
using GMC, VAMUCH, and FEA.

For FEA, SOLID95 elements are used for both aligned regular and staggered arrays. The unit cell is first
modeled using plane element (Mesh200) in 2D model and then the corresponding 3D model is generated by
extrusion of 2D element based material type and the desired fiber volume. Material parameters may also
play a vital role for evaluating the responses of GMC and VAMUCH, therefore, it is of great interest to
evaluate the predictive capability of these models with higher property mismatch between fiber and matrix
material. The material parameters are listed in Table 7.

1. Aligned-Regular Array

In this analysis, a 3× 44× 42 (y1, y2, y3) subcell grid is used for GMC, and 20-noded elements are employed
for VAMUCH and FEA. In this case, considerable differences in the number of elements are observed due to
specific nature of the approaches. GMC and VAMUCH/FEA have 5544 and 45000 elements, respectively.
One of the reason for this difference is GMC can have only three elements in the y1 direction and further
refining of the mesh in this direction does not improve the output of GMC. The unit cell of VAMUCH and
FEA is shown in the Figure 11. GMC has similar shape and size of unit cell with cuboidal meshing style.
FEA can be obtained by the same unit cell as VAMUCH or one-eighth of it may also be used for prediction
of effective longitudinal moduli and Poisson’s ratios.

Table 7. Material parameters

Fiber Matrix

E(GPa) 300 10

ν 0.17 0.33

Table 8. Predicted effective properties for aligned-regular discontinuous fiber reinforced composite

E11(MPa) E22(MPa) E33(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 49130 21370 19020 6955 6278 0.2482 0.4268

VAMUCH 65752 22594 22608 8199 8052 0.2366 0.4060

FEA 65753 22595 22608 8248 8048 0.2366 0.4060

The output of the analyses in Table 8 indicates that GMC significantly underpredicts longitudinal modu-
lus, E11, approximately by 25.28% compared to converged FEA output. This result is fairly consistent with
the result obtained by Pahr and Arnold20 where GMC suffers maximum of 35% prediction error. Conversely,
VAMUCH shows an excellent agreement with all predicted effective properties. As described for particle
reinforced composite, the prediction of G12 is also executed for different number of unit cells. In this case,
FEA predicts G12 to be 8602 (MPa) and 8363 (MPa) using single unit cell and 27 (3 × 3 × 3) unit cells,
respectively. This output can further be improved using Eqs. (35) and (36) for determining the average
shear stress and average shear strain of the middle unit cell, respectively. Effective shear modulus, G12,
can then be calculated as the ratio of average shear stress and average strain which is found to be 8248
(MPa). Similar to particle reinforced composite, in this case also, it is learned that as the number of unit cell
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Figure 11. Aligned-regular discontinuous fiber reinforced composite

increases the prediction of FEA converges to the single unit cell prediction of VAMUCH. It is also confirmed
that VAMUCH shows consistent prediction of all effective properties for any number of unit cells. It should
also be noted that other effective properties predicted by FEA are negligibly affected by the number of unit
cells. Other elastic properties such as E22 and E33 are fairly under predicted by GMC as shown in Table 8.
However, GMC considerably underestimates G12 and G23 by 15.67% and 21.99% error, respectively, as com-
pared to converged FEA results while VAMUCH again predicts G12 and G23 approximately with 0.59% and
-0.049% error, respectively.

For local stress recovery of transversely aligned discontinuous fiber reinforced composite, a normal global
load is assumed to be applied in the x2 direction of homogenized medium. This load generates global strain
ε̄22 = 0.1% in the x2 direction. The global strains in the x3 directions calculated based on the predicted
Poisson’s ratios of each approach. All other strains are zero. The global strains are then fed back to the
model for recovering the local stress field. From the recovered local stress as shown in Figure 12, it is evident
to see that GMC is not fully capable of capturing the local stress σ22 along y3 (y1 = y2 = 0) compared with
FEA but VAMUCH recovers the local stress equivalent to FEA.

The computing times for predicting effective properties are found to be 3.53 seconds, 326.3 seconds,
2192.46 seconds, for GMC, FEA and VAMUCH, respectively. It is reasonable to notice that GMC is the
fastest one as it has obviously much less number of elements, i.e. FEA and VAMUCH have eleven times
more elements than GMC. Thus, it is of great importance to critically investigate the response of VAMUCH
for fewer number of elements. From prediction error analysis as indicated in Table 10, it is observed that
VAMUCH, with 1152 elements, predicts all effective properties except for G23 with less error compared to
GMC where VAMUCH takes approximately 6.84 seconds to complete the run.

Table 9. Prediction error for discontinuous fiber reinforced composite (aligned regular array).

Elements E11(MPa) E22(MPa) E33(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 5544 25.17% 4.93% 15.87 % 15.36 % 21.99 % -4.35 % -5.32%

VAMUCH 1152 -1.89% -1.31% -2.00% -13.37% -24.68% 1.31% 1.19%
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Figure 12. Comparison of recovered local stress σ22 along y3 (y1 = y2 = 0)

2. Aligned-Staggered Array

In aligned staggered array case, it is similar to the regular array discontinuous fiber reinforced composite
but in this case the fibers in the unit cell are arranged in staggered pattern, i.e. fibers overlap within the
unit cell. Let 76% of fiber length be overlapped in the unit cell. For this case, a 6 × 42 × 42 (y1, y2, y3)
subcell grid is used for GMC, and 34608 20-noded elements are used for VAMUCH and FEA. The unit cell
of VAMUCH and FEA is shown in the Figure 13. GMC has similar unit cell with cuboidal meshing pattern.

Table 10. Predicted effective elastic properties for aligned staggered discontinuous fiber composite

E11(MPa) E22(MPa) E33(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 30190 22450 19250 6729 6360 0.2388 0.3813

VAMUCH 59830 23208 24129 8792 8277 0.2853 0.3731

FEA 59831 23208 24129 8808 8246 0.2835 0.3723

The prediction outputs of discontinuous fiber reinforced composite (aligned staggered) in Table 11 indicate
that GMC more significantly underpredicts E11 and E33 approximately by 49.54% and 20.22%, respectively,
compared to converged FEA results. On the contrary, VAMUCH shows an excellent agreement with con-
verged results of FEA. For this case also, as described for regular aligned array, the axial shear modulus
is predicted using multiple unit cells. FEA approximately predicts G12 to be 9049 (MPa) and 8877 (MPa)
using single and 27 (3× 3× 3) unit cells, respectively. To further refine this prediction, the middle unit cell
is used to evaluate the axial shear modulus based on average shear stress and average shear strain obtained
using Eqs. (35) and (36). The refined prediction of FEA is found to be 8808 (MPa). This output indicates
that the perdition of FEA converges to single unit cell prediction of VAMUCH as the number of unit cell
increases. The remaining effective properties are negligibly affected by the number of unit cells. For in-
stance, the prediction of G23 using 27 (3×3×3) unit cells results in approximately less than 0.3% difference
compared to the prediction of single unit cell. Based on the prediction of FEA, the axial shear modulus,
G12, is significantly underpredicted by GMC approximately by 23.60%. Other effective properties are fairly
predicted by GMC whereas VAMUCH shows good agreement.

For analyzing the local stress recovery of staggard array, the load assumptions used for regular array are
used here too but in this case the local stress σ33 is recovered. From Figure 14, it is clear to see that GMC
is not fully able to recover the local stress σ33 along y1 (y2 = y3 = 0) compared with FEA, while VAMUCH
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Figure 13. Aligned staggered discontinuous fiber composite

captures the local fields equivalent to FEA. The computing times of these models are found to be 7.756
seconds, 193.1 seconds, 1008.43 seconds for GMC, FEA and VAMUCH, respectively. Note that GMC has
significantly few elements as compared with FEA and VAMUCH. Thus, it is worthwhile to investigate the
response of VAMUCH with fewer elements. The prediction error verse element number study, as indicated
in Table 11, reveals that VAMUCH sufficiently predicts all effective properties with less error compared to
its counterpart GMC. VAMUCH takes approximately 1.90 seconds to complete the run which is even faster
than GMC.

Table 11. Prediction error for discontinuous fiber reinforced composite (staggered array)

Elements E11(MPa) E22(MPa) E33(MPa) G12(MPa) G23(MPa) ν12 ν23

GMC 10584 49.61% 6.74% 20.22 % 23.6 % 22.87 % 16.30 % - 2.41%

VAMUCH 1512 0.50% -0.58% -4.47% -13.37% -24.68% 0.79% 11.73%

D. Woven Composite

There are various shapes and sizes of unit cell for woven composite, for simplicity as depicted in the Figure 15,
woven composite is modeled as an ellipsoidal cross section with major axis radius, c, and minor axis radius
is c

4 , elliptical curvature radius, r = 2.5c, and also matrix thickness of c
8 is assumed on the top and bottom

of the side of the unit cell. The ellipsoidal cross section center to center distance is 2c. The overall unit
cell length, width and height are 4c, 4c and 5c

4 respectively. GMC uses the similar shape of unit cell with
cuboidal meshing pattern.

As listed in Table 12, four different materials parameters with corresponding volume ratio are used for
predicting effective properties of woven composite. As shown in Figure 15, material 1 and 2 are oriented in
the y1 and y2 directions, respectively, waving through the center of unit cell in respective directions. Material
3 is oriented in both y1 and y2 directions waving in the outer side of the unit cell and finally material 4 is
assumed to be matrix, it also covers the top and bottom sides of the unit cell.

In MAC/GMC 4.0 software package, there are two approaches of predicting effective properties of woven
composite, namely single step GMC and two step GMC, both of them are used for predictions of effective
properties. GMC inherently uses only cuboidal element type in the unit cell and also further meshing of the
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Figure 14. Comparison of recovered local stress σ33 along y1 (y2 = y3 = 0)

unit cell does not add any accuracy for predicted output. Thus, GMC can only have as few as 64 elements
while FEA (SOLID95 element) and VAMUCH are meshed to have 18432 elements. It is obvious that this
results in significant difference in the computing time between GMC and VAMUCH.

Table 12. Material parameters and volume ratio for woven composite

Mat.1 Mat.2 Mat.3 Mat.4

E(GPa) 413 400 73 68.3

ν 0.24 0.20 0.22 0.30

Volume ratio 12.96% 12.96% 25.96% 48.12%

The prediction output of the woven composite in Table 13 reveals that single step GMC method sig-
nificantly underestimates most of effective properties except E22 which is fairly over predicted. The two
step GMC slightly underpredicts longitudinal modulus E11 and E33 compared with converged FEA results.
FEA predictions of G12 and G13 are preformed using single and multiple unit cells. From this prediction,
it is observed that the prediction of G12 improved from 41046 (MPa) to 40089 (MPa) using single and 27
(3 × 3 × 3) unit cells, respectively. Similarly, the prediction of G13 is found to be 52565 (MPa) and 50637
(MPa) for single and 27 (3 × 3 × 3) unit cells, respectively. These two predictions can further be refined
using Eqs. (35) and (36) considering only the middle unit cell as described for particle reinforced composite.
The refined predictions for G12 and G13 are found to be 39961 (MPa) and 49710 (MPa), respectively. It is
also noticed that FEA predictions of G12 and G13 converge to the single unit cell prediction of VAMUCH
as the number of unit cell increases. Other effective properties are negligibly affected by the number of unit
cells, for instance, G23 refined only by 0.26% using 27 (3× 3×3) unit cells. Based on the prediction of FEA,
single step GMC significantly under predicts the shear moduli G12 and G13 approximately with 10.04% and
25.86% loss of accuracy, respectively, as shown in Table 13 while the two step GMC predicts G12 and G13

with 13.25% and 21.60% loss of accuracy, respectively. On the contrary, VAMUCH sufficiently predicts G12

and G13 with 0.92% and 0.0014% loss of accuracy, respectively.
For local stress recovery of woven composite, a global normal load applied in the x1 direction is assumed

to generate 0.1% of global strains in the x1 direction and the corresponding strains in the x2 can be obtained
using the predicted Poisson’s ratio of each approach and all other strains are assumed to be zero. As shown
in the Figure 16, a single step GMC is not able to fully capture the local stress σ11 along y2 (y1 = y3 = 0)
in woven composite while VAMUCH effectively recoveries the local stress σ11 equivalent to FEA.

The computing times for all approaches are evaluated. As it can be seen from Table 14, GMC is very fast
for the reason that it has only 64 elements to analyze the modeled woven composite. Single step GMC takes
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Figure 15. Unit cell for woven composite

Table 13. Predicted effective properties of woven composite

E11(MPa) E22(MPa) E33(MPa) G12(MPa) G13(MPa) G23(MPa) ν12 ν23

GMC Single Step 129100 99380 129000 35590 38970 35590 0.2779 0.2145

GMC Two Step 130100 108500 129000 35590 38970 38370 0.2516 0.2333

VAMUCH 135995 97965 134766 39590 49693 39574 0.2186 0.1570

FEA 136152 98008 134824 39961 49710 39565 0.2219 0.1591

Figure 16. Comparison of recovered local stress σ11 along y2 (y1 = y3 = 0)
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only 0.025 seconds to produce the required effective properties. Both FEA and VAMUCH have the same
number of elements but VAMUCH experiences significantly longer time to compute the required effective
properties. The level of accuracy that the two step method GMC accomplishes looks better compared to
single step which takes approximately 0.95 seconds to complete the run. Using VAMUCH with coarse mesh
of 576 elements, we predict E11 and G23 with -0.29% and 0.76% loss of accuracy, respectively, as indicated
in Table 15. VAMUCH approximately takes 16.582 seconds to complete the analysis which is slower than
GMC due to the fact that VAMUCH has still relatively larger number of elements.

Table 14. Computing time for woven composites

Single Step GMC Two Step GMC VAMUCH FEM

Elements 64 16/64 18432/576 18432

Time(s) 0.025 0.95 3412.16/16.582 654.5

Table 15. Loss of accuracy of GMC, VAMUCH for woven composite

Elements E11(MPa) E22(MPa) E33(MPa) G12(MPa) G13(MPa) G23(MPa)

GMC Single Step 64 5.18% -1.39% 4.32% 10.93% 25.86% 10.04%

GMC Two Step 16 4.44% -10.70% 4.32% 13.29% 21.60% 3.87%

VAMUCH 576 -0.29% -0.04% -0.39% 0.91% 0.034% 0.76%

VI. Conclusion

The comprehensive evaluation of advanced micromechanics approaches indicates that VAMUCH and FEA
agree well both in prediction of effective properties and recovering local stress fields. For continuous fiber
reinforced composites, HFGMC also better agrees with FEA however it is computationally more demanding.
GMC is observed to be computationally efficient however it comes with significant losses of accuracy for
predictions of effective properties and recovery of local fields. On the contrary, VAMUCH can better predict
with fewer number of elements with better efficiency for some cases. From 3D analysis of particle reinforced
composite, discontinuous fiber reinforced composite, and woven composite, it is observed that FEA over
predicts the effective shear moduli. However, as the number of unit cell increases, the prediction of FEA
converge to the single unit cell prediction of VAMCUH. Finally, the overall results of this assessment will give
insight to researchers looking for predictive capability and efficiency of the GMC, HFGMC and VAMCUH
compared to converged results of FEA. However still many more complex cases need to be investigated to
further evaluate predictive capability of these approaches and also including other micromechanics models.
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(FIRST PAGE OF ARTICLE – align this to the top of page – leave space blank 
above ABSTRACT)1

ABSTRACT

Because of the inherent heterogeneity in composites, the field of micromechanics 
provides essential tools for the understanding and analyzing composite materials and 
structures. Micromechanics can serve two purposes: homogenization or prediction of 
effective properties and dehomogenization or recovery of the local fields in the 
original heterogeneous material.  Many micromechanical tools have been developed 
and codified, including many commercially-available software packages that offer 
micromechanical analyses as either a stand-alone tool or as part of a chain of analyses.  
However, with the increasing number of tools available, the practitioner must 
determine which tool(s) provides the most value for the problem at hand given budget, 
time and resource constraints.  To date, simple benchmarking examples have been 
reported in the literature.  The present paper suggests a series of comprehensive
benchmarking exercises in the field of micromechanics against which such tools can 
be compared.  The microstructures include aligned, continuous fibers in a matrix, with 
and without an interphase; a 0/90 laminate; spherical inclusions; a plain-weave fabric; 
and a “random” short-fiber microstructure. In each case, the material constitutive 
relations are restricted to linear-elastic. Results from DIGMAT-MF, MAC/GMC,
FVDAM, Altair MDS, SwiftComp, and 3D finite element analysis are reported.
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INTRODUCTION

As the number of commercial modeling tools for manufacturing and designing 
composite materials is large and keeps growing, it becomes more important to identify 
the cost-versus-value of each potential software solution.  This necessitates the need 
for a thorough look at each software candidate to correctly identify the range of 
applications and limitations of the product as well as provide comparison between 
competing codes.  In addition, as each software increases in sophistication, so does the 
training time required to use or even evaluate a solution against a specific application.  
As such, adaption of state-of-the-art integrated computational materials engineering 
tools by industry can be hampered.  

One approach that is successfully being used to accelerate technology 
development is the adoption of standard benchmarking problems.  On the commercial 
side, software vendors will often distribute releases of software with relevant 
benchmarking solutions.  However, it is not always possible to directly compare 
competing software using these benchmarking studies because there is no guarantee 
that the same problem will be solved.  On the academic side, many such 
benchmarking efforts are currently ongoing or available in the literature.  Two such 
examples are the seminal work lead by Hinton, Kaddour and Soden known as the 
World Wide Failure Exercise [1] and the quarterly benchmark magazine from 
NAFEMS (the International Association of the Engineering Modelling, Analysis and 
Simulation Community) [2]. However, these efforts only provide a snapshot of the 
state-of-the-art at the time of publication.  Given that the current norm is for 
engineering software to be developed and released on a 12 or 6 month cycle, these 
studies can quickly lose relevance to the engineer in industry.

Because of the rapid pace of scientific and software development, it is the authors’ 
opinion that the research, industrial and governmental communities interested in 
composites would be better served by a living archive of benchmarking examples that 
are updated in parallel with publications and software revisions.  Such an effort will 
require a digital collaboration environment that is accessible to the relevant 
stakeholders. In particular, we propose the composite micromechanics challenge 
problems, hosted by the Composite Design and Manufacturing Hub (cdmHub.org) as 
a preliminary example of such a living archive concept.  It is envisioned that the 
cdmHub will host the results provided by the challenge participants and, to some 
extent, the software tools themselves.  This will allow the community at large to run 
some of the analyses, vary the inputs and interpret results.

The Micromechanics Challenge consists of three levels. The problems specified in 
Level I consider linear thermoelastic behavior. Prediction of effective properties 
(homogenization) and local fields (dehomogenization or localization) are specified.  
Level II extends the challenge by introducing non-linear phase properties, including 
inelastic (elastic-plastic, creep, viscoplastic) constitutive relations.  Finally, damage 
and failure prediction including fatigue file prediction under combined mechanical and 
environmental effects will be addressed in Level III. In addition to effective properties 
and local fields, the computational efficiency will be an important metric in comparing 
the tools. It is anticipated that the results from the challenge will compare the relative 
strengths and trade-offs of the participating tools and identify areas currently 
unaddressed by the field.
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Level I microstructures are highly idealized representation of real heterogeneous
materials. Nevertheless, these idealizations are constantly used in the micromechanics 
field. The microstructures examined in level I include aligned, continuous fibers in a 
matrix, with and without an interphase; a 0/90 laminate; spherical inclusions; a plain-
weave fabric; and a “random” short-fiber microstructure.

In the reminder of this paper we will provide the results from the initial set of 
simulation tool participants completed to date.  The problems and results, including 
data files, will be hosted on cdmHUB as a project entitled Micromechanics Simulation 
Challenge.  Interested parties are invited to participate at any time by accessing and 
contributing to the live database on cdmHUB.

PARTICIPATING MICROMECHANICS TOOLS

In this paper, various advanced micromechanics tools are used to analyze the 
stated micromechanics challenge problems which are briefly described below. 

DIGIMAT is a commercial code that is used to solve various engineering 
problems, many with a micromechanical-theme [4]. DIGIMAT uses two main 
approaches for homogenization: 1. Mean-field approaches (DIGIMAT-MF) such as 
the Mori-Tanaka (MT) approach and Double Inclusion (DI) approach; 2. FEA-based 
homogenization approaches (DIGIMAT-FE).  In this paper only DIGIMAT-MF
approaches are used to analyze the challenge problems due to difficulties we 
experienced with DIGIMAT-FE. Further, as the mean-field approaches (no 
discretization needed) are implemented for homogenization in DIGIMAT-MF, only 
homogenization results are available.  

MAC/GMC is a well-known micromechanics code developed by NASA Glenn 
Research Center based on Aboudi’s micromechanics theories [5] that provides a 
wide range of capabilities for modeling continuous, discontinuous, woven, and 
smart (piezo-electo-magnetic) composites.  Libraries of nonlinear deformation, 
damage, failure, and fiber/matrix debonding models, continuous and discontinuous 
repeating unit cells (UCs), and material properties are provided, and the software is 
available from NASA Glenn [6, 7]. The software includes both GMC (generalized 
method of cells) and HFGMC (high-fidelity generalized method of cells) semi-
analytical models.  The basic idea of these two approaches is subdividing the 
microstructure into numerous cuboid subcells and solving for the average strain and 
stress over each subcell.  GMC uses a first-order expansion of the local 
displacement field while HFGMC utilizes a second-order expansion of the local 
displacements.  The linear displacement expansion limits GMC to uniform states of 
stress and strain in the subcells, which results in a lack of normal/shear coupling. 
Both macro and micro fields along with effective composite and laminate properties 
are available outputs. A detailed description of both theory and application of GMC 
and HFGMC is given in [5].  In the current version, MAC/GMC 4.0, HFGMC can 
only handle continuous reinforced (doubly periodic) microstructures. 

FVDAM (Finite Volume Direct Averaging Method) uses the finite volume 
method [8]. The development of FVDAM took place in three stages. In the first stage, 
the linear thermo-elastic higher-order theory for periodic multiphase materials
(HFGMC) originally developed by Aboudi et al [9] was reconstructed by Bansal and 
Pindera [10]. The equivalence of this approach with GMC was demonstrated by 
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Arnold et al [11]. The theory’s further development leveraged the parametric mapping 
[12] into the rectangular subvolume-based finite volume theory, which was 
implemented in [13, 14]. This, in turn, facilitated the recent incorporation of the 
cohesive zone model capability [15]. The third phase of FVDAM’s development 
involved incorporation of enriched subvolume displacement field description which 
resulted in enhanced interfacial traction and displacement continuity [16]. Currently, 
FVDAM can only handle doubly periodic microstructures. 

Altair recently acquired Multiscale Design System for linking Continuum scales 
(MDS-C) developed by Jacob Fish [17]. MDS focused on the creation of practical 
yet rigorous tools for seamless integration of engineering modeling, simulation, 
testing and optimization of products involving multiple spatial and temporal scales. 
MDS, is a plug-in to commercial finite element software (ABAQUS, ANSYS, LS–
DYNA) that provides multiscale capabilities for commercial codes. Distinguishing 
features of the MDS-C software are: (1) a systematic model reduction technology 
that reduces complex UCs having hundreds of thousands of finite elements to a 
manageable number of deformation modes and state variables; (2) an extensible 
library of parametric UCs; and (3) advanced features such as microstructural 
optimization, multiscale fatigue and multiphysics analyses.

SwiftComp is a general-purpose multiscale constitutive modeling code for 
composites which provides unified modeling for 1D (beams), 2D (plates/shells), or 3D 
composite structures.  This is accomplished using the concept of a structure genome 
that unifies structural mechanics and micromechanics [18].  SwiftComp can perform 
homogenization and dehomogenization for a wide variety of periodic, partially 
periodically or aperiodic composites structures and materials including laminates, 
woven composites, stiffened structures, sandwich structures, corrugated structures, 
and other buildup structures which could be made into form of beams, plates/shells, or 
3D structures. Level I problems only tests SwiftComp’s capability for 3D structures 
made of materials featuring doubly periodic or triply periodic microstructures.

3D FEA is also used to analyze the challenge problems because it can be proven 
that the exact solutions of linear thermoelastic micromechanics problems can be
provided by 3D FEA of a UC with periodic BCs with a sufficient fine mesh. The
predictions of 3D FEA are used as references for evaluating accuracy and efficiency of 
other approaches. Mesh refinement study was undertaken (not shown herein) to ensure 
appropriate solution convergence. ANSYS is used for all the cases except for case 2 
which is analyzed using ABAQUS because ANSYS has difficulty to generate a 
quality mesh to provide a converged local stress distribution at the thin interface. 

Prof. Pindera and his team of University of Virginia obtained FVDAM results on a 
machine with Windows 7 64-bit operating system (Intel(R) Core(TM) i7-2760QM 
CPU @ 2.4 GHZ, 8G RAM). Mr. Jeffery Wollschlager at Altair provided MDS 
results. cdmHUB representatives generated MAC/GMC/HFGMC results
independently, subsequent to review of results, input files were provided by Dr. 
Steven Arnold and his team at NASA Glenn, and run by cdmHUB, which are believed 
to provide a better tradeoff between accuracy and efficiency. cdmHUB representative 
also obtained DIGIMAT, SwiftComp and 3D FEA results. cdmHUB representative 
used a computer with Window 8.1 64-bit operating system, (Intel (R) Xeno(R) CPU 
E5-2697 v3 @2.6GHz, 256G RAM).  Note FVDAM and MAC/GMC do not have 
parallel computing capability while DIGIMAT, SwiftComp, and 3D FEA can use 
multiple cores. Consequently, in the results reported below, only one core is used for 
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all the approaches to facilitate runtime comparisons. At the time of writing, the 
machine information, discretization, and running time of MDS are not reported.
Except that it is known that current FVDAM and MAC/HFGMC (version 4.0) cannot 
handle triply periodic (discontinuous) cases and DIGIMAT-MF cannot provide local 
fields, it is expected that all the other codes can provide all the required results for the 
level I problems, but some results are missing for various reasons at the time of 
writing. Particularly, the capability of dehomogenization (localization) is important as 
prediction of local fields greatly influences the nonlinear behavior (including strength 
and failure) prediction which will be benchmarked in level II and level III challenge 
problems.  To strive for objectivity and neutrality, we: 1) let the tool providers review 
the results and input/output files well in advance of deadline if cdmHUB generated the 
results (this applies to MAC/GMC and DIGIMAT); 2) make all the model files, 
inputs/outputs, result files publically available through cdmHUB; 3) make 
SwiftComp, a code developed by one of the co-authors, Prof. Yu, globally accessible 
to anybody who wants to verify the results; 4) keep a live copy of the report for 
anybody to question and correct the results. 

RESULTS OF LEVEL I CHALLENGE PROBLEMS

For Level I problems, the effective properties reported are either in engineering 
constants or the stiffness matrix according to the symmetry of the composites.  The 
local fields are computed along paths specified in each problem statement and values 
in the problem coordinate system (x1, x2, x3) are reported.  The local field cases 
examined consist of applying pure strain controlled problems; wherein a constant 
(unit) strain is applied in the a) x1 direction, b) x2 direction, c) shearing strain in the x2-
x3 plane, d) shearing strain in the x1-x3 plane, and e) combined unit axial strain in the 
x1 direction and shearing strain in the x1-x3 plane, while all other components of strain 
are constrained at zero.  These constraints cause stresses to arise in the constrained 
directions.  Note, strain control was chosen to isolate loss of accuracy in 
homogenization and dehomogenization, since if stress control is used effective 
properties (computed by various methods) will be used to compute the macroscopic 
strain for the purpose to compute the local fields. Particularly for multiscale modeling, 
strains are readily available from the macroscopic analysis. Due to page restrictions 
only a representative portion of the results are 
presented here. The complete sets of results are 
available on cdmHUB.  Results and computing 
time are clearly influenced by UC discretization, 
particularly for numerical based methods like 
FEA. Only brief descriptions of the mesh are 
given and pictures showing the details of 
discretization can be found on cdmHUB. 

Case 1: Hexagonal Pack Microstructure

The first microstructure is a hexagonal pack 
UC shown in Figure 1.0 (not to scale).  It can be FIGURE 1.0. Hexagonal pack of 

fiber reinforced composites.
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used to describe a continuous fiber reinforced composites.  For this case, the effective 
properties are predicted assuming a fiber volume fraction of 60%.  Constituent 
properties utilized are given by set 1 in Table I.0. Note matrix is assumed isotropic 
while the fiber is transversely isotropic. All nontrivial local stress components are 
reported along the linear path from to .

TABLE I.0. Material properties
 Set 1, Carbon/Epoxy Set 2, Low Contrast Isotropic Fiber 

Property Matrix Fiber Matrix Fiber 
E1 (GPa) 4.76 276 350 400 
E2=E3 (GPa) 4.76 19.5 350 400 

12  13 0.37 0.28 0.18 0.17 
 23 0.37 0.70 0.18 0.17 

G12=G13 (GPa) 1.74 70 148 171 
G23 (GPa) 1.74 5.74 148 171 

1 ( / C) 64.8 -0.4 30 20 
 2 ( / C) 64.8 5.6 30 20 
 3 ( / C) 64.8 5.6 30 20 

For FVDAM, GMC, HFGMC and SwiftComp, since the material is doubly 
periodic, a 2D domain is sufficient to predict the full set of effective properties for this 
case. The 2D UC is discretized to form a 36×62 grid for GMC and HFGMC, and a
38×62 grid for FVDAM.  For SwiftComp, the UC is meshed with 2300 quadrilateral 
elements. For 3D FEA to obtain the full set of effective properties, 3D domain is 
needed to model this doubly periodic material which can be obtained by extruding the 
mesh of SwiftComp along the fiber direction. The thickness does not matter as we 
applied periodic BCs in 3D FEA. However, to maintain a quality mesh, it is assumed 
that the UC has a thickness equal to 10% of it’s the shorter side with four element in 
the thickness directions.  The 3D UC has 10,925 hexagonal elements.

TABLE I.I. Predicted effective elastic properties

Approach E1 

(GPa) 
E2 

(GPa) 
E3 

(GPa) 
G12 

(GPa) 
G13 

(GPa) 
G23 

(GPa) 12 13 23 

FVDAM 167.30 10.67 10.67 6.38 6.39 3.33 0.310 0.310 0.600 
GMC 167.40 10.46 10.08 5.33 4.45 3.00 0.312 0.312 0.612 

HFGMC 167.40 10.71 10.69 6.58 6.54 3.36 0.312 0.312 0.603 
DIGIMAT-MF/MT 167.52 10.53 10.53 6.36 6.36 3.27 0.312 0.312 0.605 
DIGIMAT-MF/DI 167.77 10.99 10.99 9.51 9.51 3.36 0.306 0.306 0.632 

Altair MDS 166.31 10.88 10.88 6.89 6.89 3.42 0.312 0.312 0.594 
SwiftComp 167.33 10.67 10.67 6.38 6.39 3.33 0.312 0.312 0.600 

3D FEA 167.33 10.67 10.67 6.38 6.39 3.33 0.312 0.312 0.600 

TABLE I.II. Predicted effective CTEs
Approach FVDAM GMC HFGMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA 

1 oC) 0.410 0.364 0.408 0.404 0.503 0.405 0.405 
2 oC) 35.20 35.03 34.99 35.13 29.52 35.10 35.10 
3 oC) 35.13 40.08 35.30 35.13 29.52 35.10 35.10 

According to Table I.I, all tools predict essentially the same effective elastic 
properties except GMC under predicts E3 by 6%, G12 by 15%, G13 by 30%, and G23 by 

( 1/ 2 , 3 / 2 )h h (1/ 2 , 3 / 2 )h h
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10%, MDS over predicts shear moduli (8% for G12 and G13), and DIGIMAT-MF/DI 
over predicts shear moduli (49% for G12 and G13) and over predicts 23 by 5% as 
compared to 3D FEA. The discrepancy between the two DIGIMAT mean field 
approaches is surprising. The effective CTEs (Table I.II) are well predicted by all the 
tools except GMC under predicts 1 by 10% and over predicts 3 by 12% and 
DIGIMAT-MF/DI over predicts 1 by 24% and under predicts 2, 3 by 16%. MDS 
CTEs were not reported. 

The local stresses are computed using the described loading options along the 
specified path. F 11 loading, the non-trivial stresses 11,

22 33, 23. There are similar results for the various different loading options
examined, however here only representative local stress field distributions are shown.
As it can be seen from Figure 1.1, all tools provide excellent agreement for 11 under 

11. Such excellent agreement is not observed however for Figures 1.2-1.4 where we 
observe GMC does not predict local fields as well as HFGMC, FVDAM, and 
SwiftComp. It can also been seen for these cases, HFGMC’s prediction is not as good 
as FVDAM and SwiftComp, particularly at the interfaces or boundaries. Local fields 
from MDS were not reported. 

  

  
The computing time of each tool is shown in Table I.III with dehomogenization is 

only for one load case. The time shown in the table for FVDAM and SwiftComp 
shows both for homogenization and dehomogenization time. Note these time are just 
a rough measurement as there might be some background processes affecting the time. 

FIGURE 1.1. 11 under 11
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FIGURE 1.2. 13 under 13
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FIGURE 1.3. 23 under 23
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FIGURE 2.0. Circular fiber and 
interphase embedded in matrix.

We assume it will affect all the tools the same fashion. It is also noted that computing 
time is significantly affected by mesh which is greatly related with accuracy. It is 
suggested that interested readers obtain the various codes to run the problems 
themselves to get a feeling of efficiency. Table I.III indicates that DIGIMAT-MF, 
GMC, HFGMC, SwiftComp and FVDAM are more efficient compared with 3D FEA, 
with DIGIMAT-MF being the most efficient, followed by GMC, then HFGMC, 
SwiftComp, and FVDAM. 

TABLE I.III. Computing time for case 1
Approach FVDAM GMC HFGMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA

Homo. (sec) 4 
N/A N/A N/A N/A 

0.26 
N/A Dehomo. 

(sec) 0.88 0.93 

Total (sec) 4.88 0.292 1.151 0.03 0.03 1.19 42.00 

Case 2: Three-Phase Interphase Microstructure

The second microstructure is a square pack array with an interphase region between 
the fiber and matrix.  The microstructure geometry (not to scale) is shown in Figure 
2.0.  For the prediction of effective properties, let the volume fraction of the fiber 
phase be 60% and a very small interphase volume fraction be 1%.  One set of fiber, 
matrix and interphase properties, representative of a generic CMC, is given in Table 
II.0.  Note, this problem is purposely designed to test the capability of tools to handle 
microstructures with possibly very thin interfaces and may not represent any real 
CMCs as the chosen fiber volume fraction is significantly higher, and the interphase 
volume fraction an order of magnitude lower, than typical CMCs. Further, it should be 
noted that the fiber properties are orthotropic, despite the fact that all three Young’s 
moduli and all three Poisson’s ratios have been chosen to be the same.  For 
dehomogenization, all nontrivial stress 
components should be reported along the path 
of x3 = 0.

TABLE I.0. Material properties
 Set 3, Three phase 

microstructure 
 Property Matrix Fiber Interphase 
E (GPa) 350 450 5.0 

 0.18 0.17 0.22
G (GPa) 148 171 2.0 

1 ( / C) 64.8 -0.4 5.0 
2 ( / C) 64.8 5.6 5.0 
3 ( / C) 64.8 5.6 5.0

   

A 56×56 grid is used for FVDAM, a 7x7 grid is used for GMC (more refined grid 
being unnecessary based on the approximate nature of GMC according to the tool 
authors), and a 240x240 grid (due to the overly thin interface) is used for HFGMC. 
Note to use a coarse grid in GMC, the UC must be modified in such a way that the 
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FIGURE 2.1. 11 under 11

fiber volume fraction remains the same. For SwiftComp, the UC is meshed with 3,072
quadrilateral elements.  For 3D FEA, the UC is meshed with 11,372 brick elements.

TABLE II.I. Predicted effective properties

Approach E1 

(GPa) 
E2= E3 

 (GPa) 
G12= G13 

 (GPa) 
G23 

(GPa) 12 13 23 1 
oC) 

2 3 
oC) 

FVDAM 406.54 276.64 116.77 110.36 0.175 0.203 21.63 32.10 
GMC 406.70 295.90 114.40 93.98 0.174 0.138 21.60 30.63 

HFGMC 406.40 278.40 118.00 117.00 0.175 0.193 21.47 32.00 
DIGIMAT-MF/MT 406.56 271.87 83.11 111.56 0.174 0.218 25.61 30.43 
DIGIMAT-MF/DI 406.08 391.15 20.70 166.4 0.173 0.175 25.63 26.65 

Altair MDS 406.13 280.80 118.41 112.99 0.175 0.199 N/A N/A 
SwiftComp 406.56 276.85 117.58 115.69 0.174 0.203 21.61 32.08 

3D FEA 406.55 276.85 117.58 115.49 0.174 0.203 21.61 32.08 

Table II.I shows that all the tools achieve an excellent prediction for E1, 12 (= 13). 
GMC over predicts E2 (=E3) by 7%, while under predicts G23 by 19% and 23 by 32%. 
DIGIMAT-MF/MT under predicts G12 (=G13) by 29%, over predicts 23 by 7% and 1

by 19%. DIGIMAT-MF/DI over predicts E2 (=E3) by 41%, G23 by 44% and 1 by 19% 
while under predicts G12 (=G13) by 82%, 23 by 14%, and 2 (= 3) by 17%. Generally 
speaking, FVDAM, HFGMC, MDS, and SwiftComp have excellent agreement with 
3D FEA with SwiftComp being the best. 

Representative local stress distributions are shown in Figures 2.1-2.4. As it can be 
seen from Figure 2.1, all tools provide excellent agreement for 11 under 11 loading. 
This type of problem, where a vanishingly-thin, very compliant material is 
sandwiched between two stiff materials is known to be challenging for GMC [19], 
which is also demonstrated by the properties predictions in Table II.I and local field 
prediction in Figures. 2.2-2.4. For more realistic interphase thicknesses, like those in 
real CMCs, GMC has been shown to provide good approximations of the properties 
and local fields [20, 21]. HFGMC prediction of local fields is significantly better than 
GMC, although not as good as FVDAM and SwiftComp. 

The computing time of each tool is shown in the Table II.II. It is noticed that 
DIGIMAT-MF and GMC are three orders of magnitude faster than FEA, followed by 
SwiftComp two orders, FVDAM an order of magnitude faster, and HFGMC being 
only a factor 2.8 times faster than 3D FEA. 
 
 

 

TABLE II.II. Computing time for case 2
Approach FVDAM GMC HFGMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA

Homo. (sec) 5.92 N/A N/A N/A N/A 0.45 N/A 
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FIGURE 2.4. 33 under 11 & 13

Dehomo. (sec) 0.43 1.26 
Total (sec) 6.35 0.08 94.00 0.03 0.03 1.71 271 

Case 3: 0/90 Microstructure

The third problem, shown in Figure 3.0, is a 0/90 microstructure characterized by 
two perpendicular rows of 3 fibers each, with fibers having diameter, D = 5 microns.  
This microstructure is assumed to be periodic in the x1 and x2 directions, 
representative of a 0/90 lamina interface.  Though not representative of typical 
composite laminate microstructures, boundary conditions on the x3 faces are assumed 
to be periodic.  The fiber volume fraction determines the thickness T and length L.  
Elastic properties for the fiber and matrix are given in the set 1 properties in Table I.0.  
The fiber volume fraction is 60%.  All nontrivial stress components are reported along 
the path defined by (L/2, L/2, x3).  It is noted that the same microstructure can be 
represented by two UCs with one fiber each 
stacked on top of each other. Any methods 
with periodic BCs should predict the same 
results no matter which microstructure is 
used. 

A 4×6×6 grid is used for GMC as more 
refined mesh is believed to be excessive by 
the authors of the code. For SwiftComp and 
3D FEA, the UC is meshed to have 140,400
brick elements to achieve a converged 
solution. The predicted effective properties 
are shown Table III.I. It is noticed that all 
approaches show excellent predictions for E1
(=E2). GMC under predicts G12 by 15% and G13 (=G23) by 11%. DIGIMAT-MF/MT 
under predicts G12 and 12 by 8% while over predicts G13 (=G23) by 14%. DIGIMAT-
MF/DI over predicts E3 by 7%, G12 by 37%, G13 (=G23) by 52%, while under predicts 

1(= 2) by 13% and 3 by 14%. MDS over predicts G12 by 7%, and G13 (=G23) by 26%. 

TABLE III.I Predictions of effective properties

Approach E1=E2 

(GPa) 
E3 

(GPa) 
G12 

(GPa) 
G13 =G23 

(GPa) 12 13 23 
1 2 

oC) 
3 
oC) 

FIGURE 3.0. 0/90 microstructure
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GMC 89.78 15.12 5.89 3.76 0.039 0.528 3.05 55.30 
DIGIMAT-MF/MT 89.50 15.30 6.36 4.82 0.036 0.539 3.00 53.60 
DIGIMAT-MF/DI 89.88 16.65 9.51 6.43 0.039 0.550 2.74 45.62 

Altair MDS 89.45 15.88 7.40 5.31 0.04 0.517 N/A N/A 
SwiftComp 89.51 15.52 6.93 4.23 0.039 0.526 3.12 53.10 

3D FEA 89.51 15.53 6.94 4.23 0.039 0.526 3.15 52.77 

As can be observed from Figures 3.1 and 3.3, GMC achieves decent predictions 
for these two local stress distributions, whereas for the other two cases, GMC predicts, 
due to the known lack of normal/shear coupling, a uniform state of shear stress along 
the path as shown in Figures 3.2 and 3.4. On the contrary, SwiftComp maintains 
consistent agreements with 3D FEA.

GMC achieves similar efficiency as DIGIMAT-MF. SwiftComp and 3D FEA are 
orders of magnitude slower due to the fine mesh needed for numerical convergence. 
SwiftComp is about 10 times more efficient than 3D FEA although exactly the same 
mesh is used and similar accuracy is achieved. 

 

  
TABLE III.II. Computing time for case 3

Approach GMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA
Homo. (sec) N/A N/A N/A 69.5 N/A Dehomo. (sec) 120 
Total (sec) 0.08 0.03 0.03 324 3521 
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FIGURE 3.3. 22 under 11 & 13
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Case 4: Spherical Inclusions Microstructure

A spherical-inclusion microstructure is shown 
in Figure 4.0.  The spheres may represent particles 
or voids.  The diameter of the 2 spheres is 1 micron 
and 0.5 microns, respectively. The dimensions of 
the UC are 2x2x2 microns. The larger sphere is 
centered at (0.6, 0.6, 0.6) and the smaller sphere is 
centered at (1.5, 1.7, 1.3). The matrix elastic 
properties are listed in Table IV.0. For the case 
where the spheres represent particles, the elastic 
properties of the particles are listed in Table IV.0. 

Predict the elastic properties of the 
microstructure for the case where the spheres represent particles, and the case (not 
shown here) where the larger sphere represents a particle and the smaller sphere 
represents a void.  Local field recovery should also be performed for both cases.  All 
nontrivial stress components should be reported along the linear path from (0,0,0) to 
(2,2,2).  Only the first (non-voided) case is presented here.  The complete results will 
be available at cdmHUB. 

TABLE IV.0. Constituent properties
 Set 4 

Property Matrix Particle 
E (GPa) 45 450 

 0.18 0.17 
 (  / C) 64.8 -0.4 

The UC is meshed with a 5×5×5 grid for GMC and 36,694 tetrahedral elements
for SwiftComp and 3D FEA. This material is not orthotropic thus the predicted elastic
properties are shown here in the form of stiffness matrix. The fully populated stiffness 
matrix obtained by 3D FEA listed below is reproduced by SwiftComp. GMC and 
DIGIMAT-MF predict this material to be isotropic and the corresponding stiffness 
matrices are also listed below which represent noticeable difference from 3D FEA. 
GMC’s prediction is slightly (2.5 to 6%) worse than DIGIMAT-MF, depending upon 
component, for this case. CTEs are listed in Table IV.I, which shows that GMC 
slightly (5%) over predicts while DIGIMAT-MF and SwiftComp shows an excellent 
agreement with 3D FEA.

GMC (MPa)
53.72E3 11.45E3 11.45E3 0 0 0 
11.45E3 53.72E3 11.45E3 0 0 0 
11.45E3 11.45E3 53.72E3 0 0 0 

0 0 0 20.54E3 0 0 
0 0 0 0 20.54E3 0 
0 0 0 0 0 20.54E3 

DIGIMAT-MF/MT (MPa)
55.19E3 12.18E3 12.18E3 0 0 0 

FIGURE 4.0. Spherical 
inclusions microstructure
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12.18E3 55.19E3 12.18E3 0 0 0 
12.18E3 12.18E3 55.19E3 0 0 0 

0 0 0 21.50E3 0 0 
0 0 0 0 21.50E3 0 
0 0 0 0 0 21.50E3 

DIGIMAT-MF/DI (MPa)
55.36E3 12.22E3 12.22E3 0 0 0 
12.22E3 55.36E3 12.22E3 0 0 0 
12.22E3 12.22E3 55.36E3 0 0 0 

0 0 0 21.56E3 0 0 
0 0 0 0 21.56E3 0 
0 0 0 0 0 21.56E3 

3D FEA and SwiftComp (MPa)
55.33E3 12.13E3 12.11E3 -7.09 0.62 -1.02 
12.13E3 55.33E3 12.11E3 -1.00 7.13 -1.11 
12.11E3 12.11E3 55.32E3 0.02 0.01 -2.32 

-7.09 -1.00 0.02 21.44E3 -3.15 8.91 
0.62 7.13 0.01 -3.15 21.44E3 -8.75 

-1.02 -1.11 -2.32 8.92 -8.76 21.47E3 

Table IV.I.  Effective CTEs
Approach 1 oC) 2 

oC) 3 
oC) 

DIGIMAT-MF/MT 56.34 56.34 56.34 

DIGIMAT-MF/DI 56.14 56.14 56.14 
GMC 58.82 58.82 58.82 

SwiftComp 56.31 56.31 56.36 
3D FEA 56.30 56.12 56.37 

Regarding the local fields, Figures 4.1-4.4 show that GMC does not adequately 
recover the local stress field along the specified diagonal path. Conversely, the 
predictions of SwiftComp, for all loading options, shows decent agreement with the 
predictions of 3D FEA. The computing time for each tool are shown in Table IV.II. It 
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is observed that GMC achieves similar efficiency as DIGIMAT-MF (although GMC 
has a 6% error) which is orders of magnitude more efficient than 3D FEA. SwiftComp 
achieves similar accuracy as 3D FEA with 1/4 of its computing time.

TABLE IV.II. Computing time for case 4
Approach GMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA 

Homo. (sec) N/A N/A N/A 26 N/A Dehomo. (sec) 50 
Total (sec) 0.07 0.047 0.047 76 264 

Case 5: Woven-fiber microstructure

The woven-fiber microstructure shown in 
Figure 5.0 is representative of a plain weave 
fabric where the fibers are oriented along the 
x1 and x2-directions. To avoid the difficulty in 
creating pointwise anisotropy in the mesh, the 
constituents are assumed to be isotropic. 
MAT1 has elastic material properties same as 
those of particle listed in Table IV.0.  MAT3 
has the same elastic material properties as the 
matrix listed in Table IV.0. MAT2 has E=300 
GPa, / C. The specific weave geometry of the weave is provided 
through an iges file.   For dehomogenization, all nontrivial stress components should 
be reported along the paths defined by x2=x3=0 and x1=x2=0.

For GMC, the built-in woven composite template with a 4x4x4 grid is used while 
3D FEA and SwiftComp are meshed to have 33,600 brick elements. The predicted 
effective elastic properties are listed in Table V.I.  GMC predicts E1 and Poisson’s 
ratios well while it over predicts E2 by 6%, G12 by 9%, and under predicts E3 by 6%, 
G13 by 8%, and G23 by 7% as compared to 3D FEA. DIGIMAT-MF predictions for 
all effective properties are different from 3D FEA with the smallest error 7% for E3
and max error 47% for G12, both predicted by DIGIMAT-MF/MT. As shown in Table 
V.II, GMC under predicts 1 by 11% and 2 by 12% while over predicts 3 by 12%. 
CTEs cannot be obtained from the current version of DIGIMAT 5.1.2 for this case.

FIGURE 5.0. Woven microstructure
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FIGURE 5.1. 22 under 11 (along x1 )
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FIGURE 5.2. 11 under 11 (along x3 )
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FIGURE 5.3. 23 under 23 (along x1 )
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FIGURE 5.4. 13 under 11 & 13 (along x1 )
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TABLE V.I Predicted effective elastic properties. 

Approach E1 

(GPa) 
E2 

(GPa) 
E3 

(GPa) 
G12 

(GPa) 
G13 

(GPa) 
G23 

(GPa) 12 13 23 

GMC 208.50 208.50 86.45 87.02 34.86 34.86 0.179 0.188 0.188 
DIGIMAT-MF/MT 174.63 140.11 98.75 42.75 44.86 41.88 0.201 0.131 0.158 
DIGIMAT-MF/DI 179.33 147.75 111.07 51.17 48.65 47.25 0.200 0.141 0.169 

SwiftComp 202.93 197.03 92.40 80.25 37.94 37.61 0.178 0.194 0.191 
3D FEA 202.95 196.65 92.48 80.12 37.94 37.59 0.178 0.194 0.191 

TABLE V.II Effective CTEs

Approach 1 
oC)

2 
oC)

3 
oC)

GMC 6.76 6.76 41.83 
SwiftComp 7.60 8.26 37.25 

3D FEA 7.57 8.24 37.24

Regarding the local fields, Figures 5.1-5.4 show that GMC does not adequately 
recover the local stress field (except in an averaged sense) along the specified 
diagonal path. Conversely, the predictions of SwiftComp for all loading options 
show decent agreement with the predictions of 3D FEA. The computing time for 
each tool are shown in Table V.III. It is observed that GMC achieves similar 
efficiency and yet better accuracy than DIGIMAT-MF, both are orders of magnitude 
more efficient than 3D FEA. SwiftComp achieves similar accuracy as 3D FEA with 
1/6 of its computing time.
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TABLE V.III Computing time
Approach GMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA 

Homo. (sec) N/A N/A N/A 27.75 N/A Dehomo. (sec) 27.67 
Total (sec) 0.08 0.047 0.047 55.42 289.33 

Case 6: Short-fiber “random” microstructure

The final microstructure, shown in Figure 
6.0, represents a complex triply periodic short-
fiber microstructure. While much physical 
insight can be gained from simplification of 
realistic microstructures, the intent of the present 
microstructure is to challenge the simulation tool 
in treating very complex geometries. As the 
intent is not to test the capability of the code to 
reproduce complex geometries, a single 
geometry is generated and provided to each tool 
as either a step or an iges file

In this microstructure, the fibers are 
“randomly” oriented by rotations in each
coordinate direction. The material properties of the fiber and matrix are listed in Table 
IV.0 with the particle properties used for fibers. For dehomogenization, all nontrivial 
stress components should be reported along the linear path from (0,0,0) to (L,L,L).

The UC forms a 62×62×62 grid (again believed to be excessive by the authors of 
the code) for GMC and 548,999 tetrahedral elements for SwiftComp and 3D FEA.
The number of elements are increased to effectively capture the complex features of 
the short fiber microstructure. DIGIMAT-MF results are obtained by assuming the 
aspect ratio of the fiber to be 5 and with orientation (0.33, 0.33, 0.34) and fiber volume 
ratio of 7.857%. As seen from the predictions outputs, GMC and DIGIMAT-MF 
predict ‘orthotropic’ type behavior (effective properties) for the short fiber composite 
geometry. The prediction of 3D FEA shows fully populated matrix with anisotropic 
effective properties, but with the additional terms being much smaller than the 
orthotropic terms (maximum of 4.5%). Moreover, the predictions of GMC under
predicts for all components of the stiffness matrix (with max error up to 14%) while 
DIGIMAT-MF shows better agreements (max error of 5.8%) with 3D FEA. The 
predictions of SwiftComp reproduces the prediction of 3D FEA as shown in the 
stiffness matrix. 

GMC (GPa)
52.83 11.53 11.53 0 0 0 
11.53 53.08 11.53 0 0 0 
11.53 11.53 52.86 0 0 0 

0 0 0 20.53 0 0 
0 0 0 0 20.53 0 
0 0 0 0 0 20.53 

DIGIMAT-MF/MT (GPa)

FIGURE 6.0. Short-fiber 3D 
random orientation microstructure
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57.15 12.82 12.83 0 0 0 
12.82 57.15 12.83 0 0 0 
12.83 12.83 57.26 0 0 0 

0 0 0 22.18 0 0 
0 0 0 0 22.18 0 
0 0 0 0 0 21.16 

DIGIMAT-MF/DI (GPa)
57.35 12.86 12.88 0 0 0 
12.86 57.35 12.88 0 0 0 
12.88 12.88 57.46 0 0 0 

0 0 0 22.26 0 0 
0 0 0 0 22.26 0 
0 0 0 0 0 22.24 

3D FEA/SwiftComp (GPa)
59.60 13.66 13.47 0.05 -0.60 0.56 
13.66 61.70 13.47 0.55 -0.27 -0.12 
13.47 13.47 58.75 0.70 -0.07 -0.45 

0.05 0.55 0.70 23.24 -0.45 -0.32 
-0.60 -0.27 -0.07 -0.45 23.16 0.08 
0.56 -0.12 -0.45 -0.32 0.08 23.45 

Regarding effective CTEs (Table VI.I), GMC over predicts 1 by 15%, 2 by 21%, and 
3 by 12%, and predicts the off-diagonal CTEs to be zero. DIGIMAT-MF over 

predicts 2 by 10% and predicts the off-diagonal CTEs to be zero. SwiftComp shows 
good agreement with 3D FEA for the diagonal CTEs. Although the off diagonal terms 
are much smaller than the primary, diagonal terms, further investigation is needed why 
SwiftComp has a different prediction for coupling CTEs as this is the only case we 
observed a significant difference among all the effective properties and local fields 
between the prediction of SwiftComp and 3D FEA.  

TABLE VI.I Effective CTEs

Approach 1 
oC) 

2 
oC) 

3 
oC) 

23 
oC) 

13 
oC) 

2 12 
oC) 

DIGIMAT-MF/MT 53.85 53.85 53.69 0.00 0.00 0.00 
DIGMAT-MF/DI 53.64 53.64 53.64 0.00 0.00 0.00 

GMC 59.52 59.11 59.47 0.00 0.00 0.00 
SwiftComp 51.12 48.67 52.60 -3.29 2.35 0.02 

3D FEA 51.68 48.75 53.00 -0.16 2.21 0.56 

Regarding the local fields, Figures 6.1-6.4 show that GMC does not adequately 
recover the local stress field (except in an averaged sense) along the specified 
diagonal path. Conversely, the predictions of SwiftComp for all loading options 
show decent agreement with the predictions of 3D FEA. The computing time for 
each tool is shown in Table VI.II. It is observed that GMC is about 10 times faster 
than 3D FEA and SwiftComp is about six times faster than 3D FEA. 
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FIGURE 6.1. 23 under 23
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TABLE VI.II. Computing time for case 6
Approach GMC DIGIMAT-MF/MT DIGIMAT-MF/DI SwiftComp 3D FEA 

Homo. (sec) N/A N/A N/A 2873 N/A Dehomo. (sec) 167 
Total (sec) 1680 0.047 0.047 3040 17496 

CONCLUSION

A few representative microstructures are used to evaluate existing micromechanics 
tools including FVDAM, MAC/GMC, DIGIMAT, Altair MDS, and SwiftComp.  The 
results are compared with 3D FEA of a UC subject to periodic BCs. Finally, 
cmdHUB, utilized provided codes to obtain all results except FVDAM and MDS and 
all the results were reviewed by corresponding tools providers. NASA Glenn provided 
some revised input files for GMC and HFGMC which were believed by the tool 
authors to be better compromise between efficiency and accuracy within the context of 
each theories limitations. The following conclusion can be drawn from this exercise:
1. Not all the methods are able to accurately predict effective thermoelastic 

properties and local fields. Different levels of inaccuracy are observed for different 
quantities and different cases. 

2. GMC was shown to be able to solve all problems and provide both effective 
thermal and mechanical properties and local fields, with minimal input demands 
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and high computational efficiency provided a small number of cells are used to 
define UC. HFGMC in general has better predictive ability than GMC, particularly 
for local fields. However, it is much more computationally expensive and does not 
handle triply periodic microstructures in MAC/GMC 4.0. 

3. DIGIMAT-MF provides an efficient way to predict effective properties. Generally 
speaking MT provides better prediction than DI. DIGIMAT-MF cannot yet predict 
CTEs for case 5. No local field prediction were available. DIGIMAT-MF predicts 
better effective elastic constants than GMC for case 4 and case 6. 

4. FVDAM can achieve similar accuracy as 3D FEA for continuous reinforced 
microstructures except the transverse shear modulus for Case 2. FVDAM 
currently can handle only doubly periodic microstructures. 

5. MDS provides generally good predictions for the first three cases although 3D 
UCs are most likely used for all the cases. MDS over predicts all the shear moduli 
for the 0/90 microstructure and under predicts the transverse shear modulus for 
Case 2. Presently, we only received effective elastic properties for the first three 
microstructures from Altair, with no local field predictions. 

6. SwiftComp consistently maintains excellent agreement with 3D FEA for all the
microstructures analyzed in this paper including both effective properties and local 
fields, except the minor, coupling CTEs for the last case. 

7. As far as efficiency is concerned, DIGIMAT-MF is most efficient for most cases 
as it does not depend on discretization of microstructure, followed by GMC, 
SwiftComp, FVDAM, HFGMC, and 3D FEA. Note efficiency heavily depends on 
the discretization of UCs. Because GMC typically requires a far coarser 
discretization than the other methods to arrive at its own approximate results, it 
will usually be significantly more efficient than other discretization-based 
methods. Clearly, the other methods will become more efficient as their meshes 
are coarsened, but neither this, nor the impact of such coarsening on the 
predictions, have been investigated in the present paper.

8. As far as versatility is concerned, currently only GMC, SwiftComp, and 3D FEA 
provide the full set of results including the complete set of thermomechanical 
effective properties and local fields. 

However, these results provide only a snapshot of the state-of-the-art at the time of 
publication.  Hopefully, they will provide some guidance for future development of 
these codes and other codes. All the results reside in a live database on cdmHUB, 
which will allow the community at large to run the individual analyses, vary the inputs 
and interpret results directly.
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A Micromechanical Approach to Static Failure

Prediction of Heterogeneous Materials

Hamsasew Sertse∗, and Wenbin Yu†

The objective of this paper is to enable Variational Asymptotic Method for Unit Cell
Homogenization (VAMUCH) to predict the static failure strength and the initial failure
envelop of heterogeneous materials obeying various failure criteria. These predictions
are performed using several representative examples of heterogeneous materials such as
continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber
reinforced composite, and woven composite. The static failure predictions of VAMUCH
are partially evaluated with various micromecahnics approaches such as Mori-Tanaka (MT),
Double Inclusion (DI), Generalized Methods of Cells (GMC), High Fidelity Generalized
Methods of Cells (HFGMC) and also Finite Element Analysis (FEA). The evaluation
reveals that MT and DI insufficiently approximate the static failure compared with FEA
whereas GMC and HFGMC better predict compared with MT and DI. However GMC and
HFGMC poorly predict failure particularly for maximum principal stress failure criterion.
GMC shows relatively better agreement with FEA for Tsai-Hill failure criterion. On the
contrary, VAMUCH shows excellent agreements with FEA for all aforementioned examples
of heterogeneous materials. Moreover, VAMUCH also generates the initial failure envelop
for combined axial and transverse shear using maximum shear stress and Tsai-Hill failure
criteria. The prediction of combined shear usually cannot be rigourously performed using
commercial FEA software due to complex boundary conditions. In general, the outputs
of the predictions signify that maximum principal stress criteria is more conservative
compared with Tsai-Hill and Tsai-Wu failure criteria. It is also noticed that the predictions
of Tsai-Hill and maximum shear stress criteria agree well for shear loading conditions except
for the woven composite.

I. Introduction

Heterogeneous materials are widely used in various industrial applications due to their capability of
achieving the desired performance. Despite their extensive use, there are still a number of challenges
related to rigourous mathematical modeling of these materials. One of the challenges is lacking of powerful
unified tools to accurately predict the failure strength and behaviors of these materials under various loading
conditions. Numerous researchers have proposed various approaches to analyze the complex failure behavior
of the heterogeneous materials at various levels of abstractions. For monolithic materials, failure may be
modeled using Weibull’s probabilistic approach. This approach, usually referred as the weakest link theory,
postulates that the failure strength of the structure is governed by the weakest point in the structure. This
implies that larger structures are more susceptible to failure compared with smaller structures at the same
stress level. This is mainly because there is a higher probability of flaw in the larger structures. Cassenti1

extended the weakest link theory to capture the location of failure and also to analyze the effect of loading
history on the failure strength of composite materials. Sun and Yamada2 also predicted the strength of
unidirectional fiber composite under multiaxial stress state using various failure criteria. Generally, in the
heterogeneous materials, failure is a complex phenomenon. It results from the interactions among various
contributing factors such as the properties of the matrix, the fiber, the matrix-fiber interface, and the fiber
volume fraction, and the loading conditions. The failure of a heterogeneous material is usually modeled using
both macromechanical and micromechanical approaches. In macromechanical approaches,3–5 failure analyses
are performed based on the averaged/smeared properties of the heterogeneous materials. In this approach,

∗Graduate Research Assistant, School of Aeronautics and Astronautics, Purdue University
†Associate Professor, School of Aeronautics and Astronautics, Purdue University, AIAA Associate Fellow.
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each lamina may be treated as pseudo homogeneous orthotropic material or laminate as quasi-isotropic
material. This is relatively simple for numerical analysis, but it is incapable of accurately predicting the
failure strength of heterogeneous materials at the constituent level. Similarly, various micromechanics models
are also employed to predict the failure strength and failure surface of heterogeneous materials. Huang6 used
the rule of mixture to predict strength of a unidirectional composite for various loading conditions. Cox and
co-authors7 also estimated the failure strength of a woven composite using this rule. Wakashima and his
co-workers8 used self-consistent approach to predict the initial yield surface and also to analyze the effect
of thermal loading on the failure strength of a particle reinforced composite. Tanaka and his co-workers9

also used the same model to predict the failure and plastic deformation of the continuous fiber reinforced
composite. The mean field based micromechanical approach6,7,9 usually uses the average stress in the matrix
and the fiber to predict the strength of heterogeneous materials. This approach is capable of reasonably
predicting failure strength at the constituent level compared to macromechanical approach. However, the
approach is incapable of capturing the effect of the local stress and also it does not take into account the
geometry of the constituents. Thus, failure analysis, using average stress approach, might considerably
underestimate the overall strength of heterogeneous materials.10 In Ref. [11, 13, 14], the method of cell
(MOC) is employed to predict the failure strength, the initial and subsequent yield surfaces of composites.
Bednarcky and Arnold10 also used the generalized methods of cells (GMC) to predict the failure of viscoelastic
material using the Curtin fiber breakage model and evolving complaint interfacial (ECI) model. MOC and
GMC can better predict the failure strength of heterogeneous material based on the local stress fields.
However, in MOC and GMC, the local stresses and strains are estimated by averaging local stresses and
strains over each subcell, and moreover they inherently lack shear coupling effect, i.e, only the normal local
stresses and strains are fairly approximated. These factors can affect the method to insufficiently recover
the local stress field in the constituents for various loading conditions. Consequently, MOC and GMC
might inadequately predict the failure strength of heterogeneous materials. Choi and Tamma15 used FEA
to analyze the damage initiation in a woven composite using stiffness degradation approach for the normal
and shear loading conditions. Scida and his co-workers16 also analyzed failure in a woven composite using
a point wise lamination approach. This approach adopts classical thin-laminate theory to recover the local
stresses in the woven composite. This method cannot provide a good approximation for the local stress fields.

According to Ref. [17], if failure happens locally, the load of damaged part obviously transfers to the
undamaged part of the constituents. This process results in local and global load sharing through shear
and tensile stresses. Hence, it is of great importance to critically investigate initial and subsequent failure
of the heterogeneous material at a micro scale level. At a micro scale, failure can be analyzed using the
local stress in the constituents and the local interfacial stresses or any combination of these. The local
interactions determine the dominating factors that control the failure strength and behavior of the material.
For example, the failure strength of Silicon-carbide-fiber/titanium-matrix (SiC/T) composite is governed by
the fiber volume fractions. For fiber volume fraction greater than 20%, the fiber mainly controls the failure of
the composite otherwise the matrix governs the failure of SiC/T.10 Dvorak and his co-workers18 demonstrated
that, for transversely loaded composite, matrix properties will mainly govern yielding conditions whereas for
longitudinally loaded composite, the ratio of the Young’s moduli of the constituents controls the yielding
of the composite materials. In Ref. [19, 20], FEA is used to analyze the strength of continuous fiber
reinforced composite and woven composite, respectively, using various failure criteria. In these works,
failure is evaluated at numerical integration points (Gauss points) for approximating failure strength of
the material. This approach is found to be reasonable for critically analyzing failure at constituent level.
Generally, it is evident to notice that the local fields will play a vital role in the failure strength prediction
of heterogeneous materials. Thus, it is of great interest to use a micromechanical approach with efficient
capability of recovering the local fields for better predicting the failure strength and failure envelop of
heterogeneous materials. This initiates the present study to predict the static failure strength and the initial
failure envelop of heterogeneous materials using variational asymptotic method for unit cell homogenization
(VAMUCH).21 VAMUCH is a recently developed general-purposed micromechanics approach framework by
carrying out an asymptotic analysis of the variational statement, synthesizing the merits of both variational
methods and asymptotic methods. It has the advantages of analytical micromechanics approaches and the
versatile modeling capability of the finite element analysis. VAMUCH is proven to have an outstanding
capability of recovering the local stress fields of heterogeneous materials.22,23 Moreover, Tang and Yu24 also
demonstrated the capability of VAMUCH by producing the yield surface for a continuous fiber reinforced
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composite under biaxial loading conditions. Thus, VAMUCH is the natural choice for the prediction of the
static failure strength and the initial failure envelop of heterogeneous materials.

Failure, at the constituents level, may be predicted using numerous failure criteria. It is usually postulated
that failure is initiated in a multiaxial stress state when the effective stress or maximum stress reaches a
limiting or failure value. So far, no single unified failure criterion has been fully developed that can accurately
predict the failure of materials. However, several failure criteria are commonly used to predict the failure
strength and the failure envelop of heterogeneous materials. These are; maximum principal stress criterion,
maximum shear stress criterion, maximum principal strain criterion, Tsai-Hill criterion, Tsai-Wu criterion,
and many others. The first three criteria are usually used to identify the failure mode in the material but they
fail to capture the stress interactions for multiaxial loading. Tsai-Wu criterion25 is the most comprehensive
failure criterion that uses tensor polynomial failure criterion. The tensor strength has the advantage of
rotational invariance, symmetric properties and it is also governed by tensor transformation laws similar to
elastic stiffness tensor or compliance tensor. Tasi-Wu failure criterion has also the advantage of capturing
stress interactions for various multiaxial stress state conditions but it is unable to predict the mode of failure
of the materials. For the details of the failure criteria, interested reader may refer to Ref. [26].

The objective of this paper is to enable VAMUCH to predict the static failure strength of heterogeneous
materials and the initial failure envelop using various failure criteria such as maximum principal stress
criterion, Tsai-Hill criterion, and Tsai-Wu criterion, maximum shear stress criterion, and maximum principal
strain criterion. The failure analyses are performed under uniaxial and combined loading conditions using
several representative examples of heterogeneous materials such as continuous fiber reinforced composite,
particle reinforced composite, discontinuous fiber reinforced composite, and woven composite. The unit cell
(UC) of the heterogeneous material is sufficiently discretized and then the failure is evaluated at numerical
integration point (Gauss point). Finally, the prediction of VAMUCH is then compared with MT, DI, GMC,
HFGMC, and FEA. A detailed review on GMC and HFGMC can be found in Ref. [27–29]. These analyses
not only demonstrate the static failure and the initial failure envelop predictive capability of VAMUCH but
also help engineers to use appropriate models for related problems based on the capability of corresponding
approaches. Moreover, the analyses will give a general direction for inception of damage in heterogeneous
material.

II. Variational Asymptotic Method for Unit Cell Homogenization

VAMUCH is a general-purpose micromechanics approach that is capable of predicting the effective
properties of heterogeneous materials and recovering the local fields. Different micromechanical approaches
adopt different assumptions in the literature, however there are only two essential assumptions associated
with the micromechanical analysis of heterogeneous materials with identifiable UCs. These assumptions are:

1. The exact solutions of the field have their volume averages over the UC, i.e., if ui denotes the exact
displacements within the UC, there exists a vi such that

vi =
1

Ω

∫
Ω

uidΩ ≡ 〈ui〉, (1)

where Ω denotes the domain occupied by a UC and also its volume, and 〈·〉 denotes the volume average
over Ω;

2. The effective material properties obtained using the micromechanical analysis are independent of the
geometry and boundary conditions of the macroscopic structure, or to say, the effective material
properties are assumed to be the intrinsic properties of the material when macroscopically viewed.

These two essential assumptions are the basis for the formulation of VAMUCH. VAMUCH does not
depend on any other ad hoc assumptions. In general, the derivation of VAMUCH starts from the variational
statement of a heterogeneous continuum. Note that the macroscopic dimensions of these structures are
usually several orders of magnitude greater than the heterogeneity length scale. This leads one to formulate
the problem of homogenization as a problem of constrained minimization on a single UC and to perform
an asymptotic analysis of the variational statement. Introduce two Cartesian coordinate systems, x =
(x1, x2, x3) and y = (y1, y2, y3). Let xi denote the global coordinates describing the macroscopic structure,
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and let yi denote the local coordinates describing the UC. The variational statement of the problem can be
formulated as seeking the minimum of the functional

ΠΩ =
1

2Ω

∫
Ω

[
ε̄ij + χ(i|j)

] Cijkl [ε̄kl + χ(k|l)
]
dΩ (2)

within a UC, where Cijkl denote the fourth-order elasticity tensor, ε̄ij denotes the components of the global
strain tensor for the homogenized structure, χi denotes the components of the fluctuation functions and
must satisfy the periodic boundary conditions along with constraint

〈χi〉 = 0, (3)

and

χ(i|j) =
1

2

(
∂χi

∂yj
+

∂χj

∂yi

)
. (4)

This minimization problem can be solved analytically for very simple cases; however, to handle general case,
finite element method is the common choice for solving this problem. Eq. (2) can be discretized as follows.
Introduce the following matrix notations:

ε̄ =
⌊

ε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33

⌋T

, (5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂y1
∂χ1

∂y2
+

∂χ2

∂y1
∂χ2

∂y2
∂χ1

∂y3
+

∂χ3

∂y1
∂χ2

∂y3
+

∂χ3

∂y2
∂χ3

∂y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
0 0

∂

∂y2

∂

∂y1
0

0
∂

∂y2
0

∂

∂y3
0

∂

∂y1

0
∂

∂y3

∂

∂y2

0 0
∂

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ, (6)

where Γh denotes an operator matrix, and χ denotes a column matrix containing the three components of
the fluctuation functions. Let χ be discretized using finite elements as

χ (xi; yi) = S (yi)X (xi) , (7)

where S denotes the shape functions, and X denotes a column matrix of the nodal values of the fluctuation
functions for all the active nodes. The discretized version of Eq. (2) can then be obtained as

ΠΩ =
1

2Ω

(
XTEX+ 2XTDhεε̄+ ε̄TDεεε̄

)
, (8)

where

E =

∫
Ω

(ΓhS)
T
D (ΓhS) dΩ, Dhε =

∫
Ω

(ΓhS)
T
DdΩ, Dεε =

∫
Ω

DdΩ (9)

with D denoting the 6 × 6 stiffness matrix condensed from Cijkl. It can be derived from Eq. (8) that ΠΩ

attains its minimum only if
EX = −Dhεε̄ (10)

which can be used to solve for x as;
X = X0ε̄. (11)

Eq. (11) implies that X is linearly dependent on ε̄. Substituting Eq. (11) into Eq. (8) gives the minimum of
ΠΩ as

ΠΩ =
1

2Ω
ε̄T

(
XT

0 Dhε +Dεε

)
ε̄ ≡ 1

2
ε̄T D̄ε̄, (12)

where D̄ denotes the so-called effective stiffness matrix, and ε̄ denotes the global strain column matrix.
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Till now, the effective material properties can be fully determined. In addition, if the local fields are of
interest, they can be recovered using the global displacements, v, the global strains, ε̄, and the fluctuation
functions, χ. Specifically, the local displacements can be recovered as

u = v +

⎡
⎢⎢⎢⎢⎢⎣

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

y1

y2

y3

⎫⎪⎬
⎪⎭ + SX̄0ε̄, (13)

where u and v denote the local and global displacement column matrices, respectively, and X̄0 denotes the
nodal values of fluctuation functions modified from X0 by the periodic boundary conditions and Eq. (3).
The local strains can be recovered as

ε = ε̄+ ΓhSX̄0ε̄, (14)

where ε denotes the the local strain column matrix. The local stresses can be recovered from the local strains
as

σ = Dε. (15)

It is worth notice that, although VAMUCH seems as versatile as the finite element method, it is by no
means an extension of the traditional displacement-based finite element method. In fact, the VAMUCH code
has the following distinctive features:

• The complete set of effective material properties can be obtained within one analysis, without the
application of any external loads or displacement boundary conditions;

• The fluctuation functions and the displacements are uniquely determined;

• The effective material properties and the recovered local fields are directly obtained with the same
accuracy of the fluctuation functions, without any postprocessing-type calculations (e.g., averaging the
stresses or the strains),

• The dimensionality of the problem is determined by that of the periodicity of the UC.

Interested readers can refer to Ref. [21] for more details on the VAMUCH theory.

III. Brief Review of Failure Criteria

There are various failure criteria in literature, the most common ones are: maximum principal stress
criterion, maximum shear stress criterion, Tsai-Hill criterion, and Tsai-Wu criterion. The maximum principal
stress criterion, usually known as Rankine’s criterion, postulates that failure begins at a given point where
the maximum principal stress reaches a value equal to the tensile (or compressive) yield stress which can be
expressed as

| σ
YT

| = 1 if σ > 0 or | σ
YC

| = 1 if σ < 0, (16)

where σ is the principal stress, YT and YC are the tensile and compressive failure strength of the material,
respectively.

The maximum shear stress criterion, also known as the Tresca criterion, is based on the principal shear
stress in the material; the maximum shear stress of a material point will be compared to the shear strength
of the material. The yield function for the maximum shear stress criterion may be defined by

f(τ) = τ − Y

2
, (17)

where τ is the maximum shear stress, and Y is failure limit of the material.

Tsai-Hill failure criterion is more general type of failure criteria compared with maximum principal stress
and maximum shear stress criteria. It includes both tensile and shear failure strength of the material to
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predict the failure in the material. For two dimensional (2D) stress state, Tsai-Hill failure criterion can be
expressed as

fA =
√
fA(σ), (18)

fA(σ) =
(σ11)

2

X2
− σ11σ22

X2
+

(σ22)
2

Y 2
+

(σ12)
2

S2
, (19)

whereX and Y denote axial and transverse tensile strength, S denotes transverse shear strength, and σ11, σ22,
and σ12 denote stress in the respective direction. In this criterion, failure is assumed to be initiated if fA ≥ 1.

Tsai-Wu Failure criterion25 assumes that the failure envelop can be expressed using scalar form by
Eq. (20),

f(σk) = Fiσi + Fijσiσj = 1, i, j, k = 1, 2, ..6 (20)

where Fi and Fij are the strength tensor of second and fourth order tensor, respectively. Fij is symmetric
and governed by tensor transformational law. A material is assumed to be failed if the value of f ≥ 1. In this
case, there are two constraints applied to Eq. (20). The first one is stability condition. This ensures none
negativity of the diagonal terms in Fij tensor to be consistent with physical condition and second constraint
is inadmissibility of hydrostatic failure. Interested readers may refer to Ref. [25]. The detail review of the
prediction capability of various failure criteria may be obtained from Ref. [14, 26, 30].

IV. Static Failure Prediction

In this section, the predictions of static failure and initial failure envelop of the heterogeneous materials
are performed using various micromechanics approaches such as MT, DI, GMC, HFGMC, VAMUCH and
FEA. These approaches employ different methods of analyzing failure in heterogeneous materials. In MT
and DI, failure is generally assumed to occur when the average stress in the matrix or in the fiber reaches
the maximum values. The outputs of MT and DI are obtained using DIGIMAT 5.1.1 software from MSC
Software and e-Xstream engineering. In GMC and HFGMC, failure is assumed to be initiated when the
local stress averaged over the subcell reaches its limiting point. The results of GMC and HFGMC are
obtained using micromechanics analysis code MAC 4.0/GMC developed by NASA Glenn Research Center.
For VAMUCH and FEA, failure is assumed to be initiated when the stress at a numerical integration point
(Gauss Point) reaches its maximum limiting value based on the failure criterion. The results of FEA are
obtained using ANSYS by employing the micromechanics approach proposed by Sun and Vaidya.31 These
predictions are performed using several representative examples of heterogeneous materials such as continuous
fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced composite, and woven
composite. The static failure strength and initial failure envelop are analyzed using various failure criteria
such as maximum principal stress criterion, Tsai-Hill criterion, Tsai-Wu criterion, maximum shear stress
criterion, and maximum principal strain criterion. Finally, the predictions of VAMUCH are compared with
the predictions of MT, DI, GMC, HFGMC, and FEA for all aforementioned examples of heterogeneous
material. It should be noted that the proposed FEA appraoch31 does not rigorously simulate the periodic
boundary conditions adopted in MT, DI, GMC, HFGMC and VAMUCH. Thus, some differences are obviously
expected between the results of FEA and other approaches. All failure analyses are performed using material
properties listed in the Table 1.

Table 1. Material property for failure analysis (Ref. [19,32])

Type E(GPa) ν Strength (GPa) Shear strength (GPa)

1
Fiber 130 0.3 2.8 -

Matrix 3.5 0.35 0.07 -

2
Fiber 86 0.22 4.8 2.4

Matrix 4.3 0.34 0.083 0.04
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A. Continuous fiber reinforced composite

The unit cell of continuous fiber reinforced composite is generated by assuming that a circular fiber is
embedded in a square matrix. Let the local Cartesian coordinate be introduced at the center of unit cell
as y = (y1, y2, y3) with y1 is parallel to the fiber direction as depicted in Figure 1. A 26 × 26 subcell grid
is used for GMC and HFGMC, and a mesh of 45008-noded quadrilateral and SOLID95 elements are used
for VAMUCH and FEA, respectively. First, let the material property listed in the Table 1 (type 1) be used
to predict the static failure strength of continuous fiber reinforced composite and also let the fiber volume
of 63% be used for this prediction. Using maximum principal stress criterion, the following predictions are
obtained. MT and DI predict the axial static failure strength to be 1.64 GPa and 1.60 GPa, respectively.
GMC and HFGMC predict the the static failure strength to be 1.62 GPa and 1.76 GPa. The predictions of
VAMUCH and FEA are found to be 1.61 GPa and 1.60 GPa, respectively. All approaches except HFGMC
show a good agreement with the prediction of FEA. This prediction is consistent with the suggested failure
strength in Ref [19] which was estimated to be 1.61 GPa. However, this is not found to be the case for
the transverse static failure strength of the composite. MT and DI predict 89.36 MPa and 140.91 MPa,
respectively, while GMC and HFGMC estimate the transverse static failure to be 40.26 MPa and 41.16
MPa, respectively. The predictions of VAMUCH and FEA are found to be 34.21 GPa and 34.21 MPa,
respectively. From this analysis, it is clear to notice that the predictions of transverse static failure strength
are not well approximated by all approaches except VAMUCH compared with FEA.

Figure 1. Unit cell for continuous fiber reinforced composite

The predictions of the axial and transverse failure strength are also analyzed for material property of
type 2 using maximum principal stress and Tsai-Hill failure criteria. As shown in Tables 2 and 3, the
prediction results show that MT and DI produce roughly close predictions of the axial failure strength for
maximum principal stress and Tsai-Hill failure criteria compared with FEA particularly for small fiber volume
fraction. As the fiber volume fraction increases, the two approaches overpredict the axial failure strength
for both failure criteria. The transverse failure predictions of MT and DI are observed to be significantly
overpredicted compared with FEA for both maximum principal stress and Tsai-Hill failure criteria. GMC
fairly approximates the axial failure strength using both maximum principal stress and Tsai-Hill failure
criteria, while HFGMC overpredicts the failure strength of the composite for both failure criteria. For
transverse failure strength, GMC poorly approximates for lower fiber volume fraction for maximum principal
stress criterion but shows better agreement for up to 40% fiber volume. The predictions of GMC for transverse
failure strength shows relatively better agreement with FEA for Tsai-Hill failure criterion, whereas HFGMC
significantly overpredicts the transverse failure strength for both maximum principal stress and Tsai-Hill
failure criteria. Conversely, the predictions of VAMUCH shows excellent agreements for both failure criteria
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and different fiber volume fractions.

Table 2. Axial and transverse failure strength of continuous fiber reinforced using maximum principal stress
criterion

Axial strength (MPa) Transverse strength (MPa)

Vof(%) MT DI GMC HFGMC VAMUCH FEA MT DI GMC HFGMC VAMUCH FEA

1 99.00 98.92 100.00 100.00 95.37 95.37 83.64 83.76 74.88 74.00 51.51 50.24

10 240.12 239.56 240.00 268.00 235.85 235.85 86.76 87.58 61.62 72.00 51.93 50.88

20 339.11 393.98 392.00 440.00 389.19 389.19 90.16 92.79 56.94 82.00 52.26 51.45

40 700.58 688.63 688.00 860.00 686.58 686.58 97.15 110.63 53.82 119.00 50.85 50.75

60 1001.5 956.43 970.00 1200.00 963.26 963.26 103.91 146.1 50.70 170.00 44.20 44.09

Table 3. Axial and transverse failure strength of continuous fiber reinforced using Tsai-Hill failure criterion

Axial strength (MPa) Transverse strength (MPa)

Vof(%) MT DI GMC HFGMC VAMUCH FEA MT DI GMC HFGMC VAMUCH FEA

1 98.89 98.89 100.00 100.00 97.59 97.32 85.69 85.69 77.60 77.60 67.98 67.92

10 242.39 242.39 240.00 268.00 238.78 237.84 96.72 97.11 70.50 78.40 68.84 68.51

20 402.26 402.26 399.00 440.00 395.60 395.27 102.84 105.96 69.30 96.00 67.51 67.53

40 722.03 729.47 710.00 800.00 708.96 708.96 114.6 130.86 73.50 173.25 68.88 68.88

60 1047.7 1073.00 1022.00 1200.00 999.08 998.74 124.95 178.72 74.70 269.5 73.11 72.97

The initial failure envelops are also generated using maximum principal stress, Tsai-Hill and Tsai-Wu
failure criteria. For maximum stress failure criteria, Figure 2 shows that GMC overpredicts the failure limit
of the composite for the combined loading conditions, i.e, the axial and transverse loading conditions. On
the other hand, VAMUCH shows an excellent agreement with FEA. For Tsai-Hill failure criterion, Figure 3,
GMC predicts well except slight deviation from FEA for larger combined loading condition. The initial failure
envelop generated by VAMUCH agrees well with the prediction of FEA. The failure envelop generated by
Tsai-Wu failure criteria is found to same as the one generated by the Tsai-Hill failure criteria thus it is not
necessary to repeat it here.

In this failure strength prediction, it can easily be noticed that the axial strength of continuous fiber
reinforced composite increases with fiber volume fraction for both failure criteria. On the contrary, except
for MT, DI, and HFGMC, the transverse strength decreases for maximum principal stress criterion. In the
transverse direction, failure is mainly governed by matrix and the stress disturbance at the fiber-matrix
interface. The increase of fiber volume will increase the area of stress disturbance thereby increases the
chance of failure of the composite, i.e., consistent with the weakest link theory. But this is not observed to
be the same for Tsai-Hill failure criterion where transverse failure strength also increases with fiber volume
fractions. Generally, all approaches produce close prediction of the axial failure strength for relatively lower
fiber volume fractions for both failure criteria, but the prediction of transverse failure strength is found to
be significantly different. It is also clear to observe that the mean field homogenization approaches, MT and
DI, poorly estimate both the axial and transverse failure strength. The main reason for the poor predictions
of the failure strength may be due to that fact that these approaches are evaluating failure based on the
average stress in the matrix and fiber. They fail to accurately recover the local stress and strain fields within
the matrix, fiber and particularly in the fiber-matrix interface where the stress disturbance is most likely to
occur. The capability of local field recovery remarkably influences the failure analysis in the heterogeneous
material at micro level.

The shear failure strength is also predicted using axial and transverse shear loading conditions. In this
case, failure is mainly caused by shear stress. This ensures that the shear failure strength of the continuous
fiber reinforced composite could better be predicted using Tsai-Hill, maximum shear stress, and Tsai-Wu
failure criteria. The axial and transverse shear loading are applied as proposed in the Ref. [31]. The material
properties of type 2 listed in the Table 1 are used for this analysis. Please note that the current version of
DIGMAT 5.1.1 does not support shear loading option thus the results of MT and DI are omitted. As shown
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Figure 2. Initial failure envelop of continuous fiber reinforced composite (Maximum Principal Stress for 60%
vof)
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Figure 3. Initial failure envelop of continuous fiber reinforced composite (Tsai-Hill for 60% vof)
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in the Table 4, the predictions of shear failure strength indicate that GMC fairly overpredicts the axial shear
strength of the composite for lower fiber volume but shows better for relatively larger fiber volume fraction,
while HFGMC significantly overpredicts for larger fiber volume fractions compared with the predictions
of FEA. The predictions of transverse shear failure strength of GMC remains to be invariant for all fiber
volume fractions. On the other hand, HFGMC predicts the transverse shear strength fairly well compared
with FEA for Tsai-Hill failure criteria. On the contrary, VAMUCH shows excellent agreements with the
predictions of FEA. The axial and transverse shear strength are also evaluated using maximum shear stress
and Tsai-Wu failure criteria as shown in Table 5. The current version of MAC/GMC 4.0 does not support
maximum shear stress criterion. As it can be seen from Table 5, the axial and transverse shear strength
failure predictions of VAMUCH show excellent agreements with the predictions of FEA for both maximum
shear stress and Tsai-Wu failure criteria for different fiber volume fractions. Moreover, the combined shear
loading conditions may also be used to generate the initial failure envelop of the continuous fiber reinforced
composite. But the application of boundary conditions for the combined axial and transverse shear loading
conditions are very difficult. Thus, ANSYS is not used for this prediction. The output of MT, DI, GMC, and
HFGMC are also omitted as they do not provide options of this type of loading conditions. But, VAMUCH
can be used to generate the initial failure envelop for any possible combined loading options. As depicted in
the Figure 4, the initial failure envelop of axial and transverse shear looks identical for maximum principal
stress and Tsai-Hill failure criteria. It is also learned that these failure criteria yield very close predictions
for unidirectional shear failure analyses.

Table 4. Axial and transverse shear failure strength of continuous fiber reinforced using Tsai-Hill criterion

Axial shear strength (MPa) Transverse shear strength (MPa)

Vof(%) GMC HFGMC VAMUCH FEA GMC HFGMC VAMUCH FEA

1 36.62 33.95 25.52 25.52 40.02 34.92 34.04 34.00

10 29.97 35.64 23.87 23.88 40.02 29.10 32.94 33.08

20 27.30 37.20 24.60 24.61 40.02 28.13 31.84 31.85

40 24.92 46.50 24.96 24.95 40.02 27.44 31.06 31.04

60 21.85 68.60 22.10 22.08 40.02 30.07 28.23 28.18

Table 5. Axial and transverse shear failure strength of continuous fiber reinforced using maximum shear stress
and Tsai-Wu criterion

Maximum shear stress Tsai-Wu

Axial shear
strength
(MPa)

Transverse
shear strength
(MPa)

Axial shear
strength(MPa)

Transverse
shear strength
(MPa)

Vof(%) VAMUCH FEA VAMUCH FEA VAMUCH FEA VAMUCH FEA

1 25.51 25.52 34.05 34.00 30.57 30.57 40.71 40.76

10 23.87 23.87 32.94 33.07 28.6 28.6 39.46 39.62

20 24.60 24.60 31.85 31.83 29.47 29.47 38.13 38.15

40 24.95 24.95 31.04 31.06 29.89 29.9 37.18 37.21

60 22.09 22.08 28.22 28.18 26.45 26.47 33.75 33.81

Finally, maximum principal strain failure criterion is employed to predict the strength of the continuous
fiber reinforced composite using strain or displacement loading conditions. In this case, an interesting result is
observed for the axial failure strain, all approaches including FEA produce the same prediction of axial failure
strain approximated to be 0.019 for the material property (type 2) irrespective of the fiber volume. Since
the allowable strains of the fiber is greater than the matrix, the matrix controls the failure of the composite.
However, this is not observed to be the same for the transverse failure strain prediction. As it can be seen
from the Table 6, MT and DI overestimate the failure strain compared with FEA. GMC and HFGMC also
fairly overpredict compared with FEA. On the other hand, VAMUCH shows excellent agreement with FEA
for all fiber volume fractions. The initial failure envelop is also generated using maximum principal strain
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Figure 4. Initial failure envelop of axial and transverse shear predicted using VAMUCH ( for 60% vof)

failure criteria. As depicted in the Figure 6, MT and DI overpredict the initial failure envelop nearly by
more than 2.5 times compared to FEA. GMC shows a better prediction of the envelop, although not as good
as VAMUCH compared with FEA.

Table 6. Transverse shear failure strength of continuous fiber reinforced using maximum strain failure criterion

Vof(%) MT DI GMC HFGMC VAMUCH FEA

1 0.019 0.019 0.0173 0.0174 0.0149 0.0149

10 0.018 0.018 0.0130 0.0156 0.0117 0.0119

20 0.016 0.016 0.0103 0.0155 0.0095 0.0098

40 0.012 0.012 0.0067 0.0157 0.0060 0.0060

60 0.009 0.009 0.0037 0.0152 0.0033 0.0033
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Figure 5. Initial failure envelop of continuous fiber reinforced composite (maximums principal strain for 60%
vof)

B. Particle reinforced composite

In this case, let a spherical inclusion with 40% fiber volume be embedded at the center of cuboidal matrix to
be used as a unit cell for particle reinforced composite. Let the local Cartesian coordinates be set at the center
of sphere. The material properties of particle and the matrix are listed in the Table 1 (type 2). For MT and
DI, a built in model is used, and for GMC a built-in spherical particle reinforced model with 343 elements is
used. The current version of MAC/GMC 4.0 does not support 3D analysis for HFGMC. A cuboidal unit cell
with 7776 elements is used for VAMUCH and FEA. Further refining of the mesh does not have any significant
improvement on the outputs of GMC, however it may slightly change the outputs of VAMUCH and FEA. The
results of FEA analysis are obtained by using SOLID95 elements. The static failure strength of the particle
reinforced composite is predicted using MT, DI, GMC, VAMUCH and FEA. The predictions using maximum
principal stress failure criterion, Table 7, reveal that both MT and DI significantly overestimate the axial
failure strength of the particle reinforced composite approximately by more than 9 and 12 times, respectively,
compared with FEA for 50% particle volume. GMC significantly overpredicts compared with FEA, while
VAMUCH shows an excellent agreement. For Tsai-Hill and Tsai-Wu failure criteria, Table 8, both MT and
DI significantly overpredict the axial failure strength of particle reinforced composite particularly for large
particle volume. GMC slightly overpredicts compared with FEA using Tsai-Hill criteria while VAMUCH
shows excellent agreements. Please note that GMC does not support Tsai-Wu failure criterion. Except for
MT, the prediction of Tsai-Hill and Tsai-Wu are found to similar for all other approaches. It is clear to
notice that as particle volume increases the static failure strength decreases for GMC, VAMUCH and FEA
for all failure criteria, this is due to the fact that as particle size increases the area of stress disturbance
also increases, consequently the chance of failure of the composite increases, i.e., consistent of weakest link
theory. This is not found to valid for MT and DI, this is because MT and DI are inherently not capable
of recovering the local stress concentrations or disturbances which mainly contribute to the failure of the
composite. The over-prediction of GMC might be due to that fact that GMC does not accurately recover
the local stress field.22,23

The initial failure envelope, for axial and transverse loading condition, is also generated using maximum
stress failure criterion as shown in the Figure 6. GMC significantly overestimate the initial failure envelop
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while VAMUCH shows an excellent agreement with FEA. GMC provides a better estimate for the initial
failure envelop using Tsai-Hill failure criterion as shown in the Figure 7 in comparison its own prediction
using the maximum stress failure criterion.

Table 7. Axial failure strength using maximum principal stress criterion

Vof(%) MT DI GMC VAMUCH FEA

10 90.00 91.00 42.50 39.02 38.59

20 96.96 99.96 36.00 33.89 33.63

40 109.96 127.47 29.10 21.76 20.91

50 116.51 148.81 24.40 12.02 11.27

Table 8. Axial failure strength of particle reinforced composite using Tsai-Hill and Tsai-Wu critera

MT (MPa) DI (MPa) GMC(MPa) VAMUCH(MPa) FEA(MPa)

Vof(%) Tsai-Hill Tsai-Wu Tsai-Hill Tsai-Wu Tsai-Hill Tsai-Wu Tsai-Wu Tsai-Hill Tsai-Wu Tsai-Hill

10 92.04 91.80 92.63 92.91 47.00 - 46.49 46.50 44.97 44.97

20 91.77 100.41 104.50 104.32 42.50 - 39.97 39.97 38.84 38.84

40 100.56 117.84 138.08 138.23 36.50 - 34.67 34.67 32.68 32.68

50 100.95 126.98 164.91 164.48 31.20 - 24.89 24.89 23.49 23.49
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Figure 6. Initial failure envelop for axial and transverse loading condition (maximum principal stress for 40%
vof)

The axial and transverse shear failure strength of the particle reinforced composite are also analyzed
using Tsai-Hill and maximum shear stress criteria. The outputs of the two criteria are very much close to
each other similar to what we observed for continuous fiber reinforced composite. Thus, in this case, the
predictions of Tsai-Hill criterion are listed in the Table 9. It is obvious to notice that GMC significantly
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Figure 7. Initial failure envelop for axial and transverse loading condition (Tsai-Hill for 40% vof)

overpredicts both axial and transverse shear strength of particle reinforced composite, while VAMUCH shows
excellent agreements with FEA. The combined axial and transverse shear loading conditions are also used
to generate the initial failure envelop using maximum shear and Tsai-Hill failure criteria, the generated
plots are qualitatively similar to the one generated for continuous fiber reinforced composite. Thus, it is not
necessary to repeat them here.

Table 9. Axial and transverse shear failure strength of particle reinforced composite using Tsai-Hill criterion

Axial shear strength (MPa) Transverse shear strength (MPa)

Vof(%) GMC VAMUCH FEA GMC VAMUCH FEA

10 33.60 25.70 25.12 34.00 24.48 25.70

20 30.80 25.99 25.55 31.60 25.00 25.99

40 27.20 17.03 17.22 28.00 17.14 17.03

The maximum principal strain failure criteria is also used to analyze the failure strength of the particle
reinforced composite for strain or displacement loading conditions. The predictions in the Table 10 show that
MT and DI significantly overpredict the failure strain compared with FEA while GMC slightly overestimates
failure strains. On the other hand, VAMUCH shows an excellent agreement with the results of FEA. The
initial failure envelop, Figure 9, indicates that MT and DI significantly overpredicts the failure strain. The
prediction of MT and DI are plotted by dividing the actual predicted values by two for better clarity of the
other figures. GMC predicts much better compared with MT and DI, but it fairly overpredicts the failure
strains compared with FEA whereas VAMUCH shows an excellent agreement.
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Table 10. Axial strain failure strength of particle reinforced composite using maximum strain criterion

Vof(%) MT DI GMC VAMUCH FEA

10 0.0176 0.0176 0.0088 0.0083 0.0082

20 0.0158 0.0159 0.0061 0.0056 0.0055

40 0.0124 0.0126 0.0027 0.0023 0.0022

50 0.0106 0.0110 0.0014 0.0009 0.0010
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Figure 8. Initial failure envelop of particle reinforced composite (maximum principal strain for 40% vof)
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C. Discontinuous Fiber Reinforced Composite

Two variants of discontinuous fiber reinforced composites are considered for predicting the static failure
strength of the composite. The first one is aligned-regular array, where all the fibers are arranged in aligned
pattern and the second one is aligned-staggered array, where fibers are arranged in an offset pattern. To
generate the unit cell, first, let a quarter of circular fiber be embedded at the two opposite corners of
hexagonal array matrix. Let the array be symmetric with respect to its width and height. This arrangement
produces hexagonal array with circular fiber at the center and quarter circular fiber at the corners of the
array as shown in Figures 9 and 14. Second, let the cross-sectional area of the hexagonal array be generated
based on the common relation, a = βb, where a is the width and b the height of the unit cell and β =

√
3 for

hexagonal array. Moreover, let the local Cartesian coordinate be introduced as y = (y1, y2, y3) at the center
of unit cell, where y1 is in the fiber direction. The fibers are generally shorter compared to the unit cell in y1
direction. For detailed geometric constructions of discontinuous fiber reinforced composite, interested reader
may refer to Ref. [33]. In this failure analysis, the fiber volume and fiber aspect ratio (length/diamater)
are assumed to be 40% and 5, respectively. For FEA, the unit cell is first modeled using plane element
(Mesh200) in 2D model and then the corresponding 3D model is generated by extrusion of the 2D model.
VAMUCH uses the mesh used for FEA. The failure analysis is conducted using material properties of type
1 listed in the Table 1 for both types of discontinuous fiber reinforced composite.

1. Aligned-Regular Array

In this failure analysis, a 3 × 44 × 42 (y1, y2, y3) subcell grid is used for GMC, and 20-noded elements are
used for VAMUCH and FEA. GMC and VAMUCH/FEA have 5544 and 45000 elements, respectively. This
large difference of elements number comes from the modeling nature of unit cell for GMC, it may have only
three elements in the y1 direction and further refining of the mesh in this direction does not improve the
output of GMC. The unit cell of VAMUCH and FEA is shown in the Figure 9. The static failure of the
aligned regular array discontinuous fiber reinforced composite is conducted using various failure criteria and
loading conditions. The axial and transverse failure prediction of GMC, VAMUCH and FEA using various
failure criteria are shown in Table 11. These predictions indicate that GMC poorly estimates the axial
failure strength for maximum principals stress and Tsai-Hill failure criteria. It also shows poor agreement
with FEA for transverse failure strength for maximum principal stress criterion, however, the transverse
failure predictions of GMC show good agreement for Tsai-Hill criterion. The predictions of VAMUCH
very well agree with the results of FEA for both axial and transverse loading conditions using both failure
criteria. GMC fairly predicts the axial failure strain using maximum principal strain failure criteria but
poorly overestimates the transverse failure strain. VAMUCH produces the axial failure strain equivalent to
FEA and also yields a very close prediction for the transverse strains. The slight discrepancy between the
FEA and VAMUCH may be due to the applied boundary conditions in FEA.

Table 11. Axial and transverse failure strength of aligned regular array discontinuous fiber reinforced composite

Axial strength 1 Transverse strength 2 Transverse strength 3

Vof(%) GMC VAMUCH FEA GMC VAMUCH FEA GMC VAMUCH FEA

Max.Prn.stress (MPa) 41.28 49.59 47.50 63.70 56.65 57.42 49.50 45.69 43.87

Tsai-Hill (MPa) 50.92 77.66 78.27 58.10 58.15 57.00 57.54 56.80 55.80

Tsai-Wu (MPa) - 80.83 82.00 - 63.32 64.35 - 61.08 59.80

Max.Prn.strain 0.00258 0.00218 0.00218 0.0087 0.00455 0.00573 0.0062 0.00424 0.00533

As shown in the Figures 10 -13, the initial failure envelops, using different loading options, depict that
GMC poorly predicts the failure strength for both maximum principal stress and Tsai-Hill criteria. On the
contrary, the predictions of VAMUCH show an excellent agreement with FEA for both failure criteria and
loading options. In an other analysis, the initial failure envelop of GMC shows good agreement for the biaxial
transverse loading conditions using Tsai-Hill failure criteria as depicted in the Figure 12. In this case, the
prediction is much closer to the FEA except slight deviation at large combined loads, whereas VAMUCH
shows an excellent agreement with the prediction of FEA. In general, the prediction of maximum principal

16 of 27

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
46

3 

DISTRIBUTION A: Distribution approved for public release.



Figure 9. Unit cell aligned regular array discontinuous fiber reinforced composite

stress failure criteria is found to be conservative compared with other failure criteria.
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Figure 10. Initial failure envelop for axial and transverse loading (Maximum Principal stress criterion for 40%
vof)
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Figure 11. Initial failure envelop for axial and transverse loading (Tsai-Hill criterion for 40% vof)
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Figure 12. Initial failure envelop for transverse loading (Tsai-Hill criterion for 40% vof)

VAMUCH produces the initial failure envelop for axial and transverse shear loading using both maximum
shear stress and Tsai-Hill failure criteria as shown in the Figure 13. Similar to continuous fiber reinforced and
particle reinforced composite, in this case also, the two failure criteria produce very much close prediction
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for combined shear failure analysis.
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Figure 13. Initial failure envelop for axial and transverse shear loading (combined shear for 40% vof)

2. Aligned-Staggered Array

Aligned staggered array type of discontinuous fiber reinforced composite is similar to the regular aligned
array but, in this case, the fibers in the unit cell are arranged in a staggered pattern, i.e., fibers overlap
within the unit cell. Let 76% of fiber length overlap within a unit cell for this analysis. A 6 × 42 × 42
(y1, y2, y3) subcell grid is used for GMC, 34608 20-noded elements are used for VAMUCH and FEA. The
unit cell of FEA/VAMUCH is shown in the Figure 14. GMC has similar unit cell with cuboidal meshing
pattern. The predictions of static failure strength are performed using different failure criteria. The results
of axial and transverse failure strength, Table 12, indicate that GMC insufficiently approximates the axial
failure strength using all failure criteria. However, the predictions of the transverse failure strength show
relatively better agreements with FEA while VAMUCH shows an excellent agreement for transverse failure
strength. For axial strength, VAMUCH prediction is much better than GMC but also show slight discrepancy
with FEA. This might be due to the applied boundary conditions. GMC fairly overpredicts the axial and
the transverse failure strain, while VAMUCH shows better agreement.

Table 12. Axial and transverse failure strength of aligned staggered array discontinuous fiber reinforced
composite

Axial strength 1 Transverse strength 2 Transverse strength 3

Vof(%) GMC VAMUCH FEA GMC VAMUCH FEA GMC VAMUCH FEA

Max.Prn.stress (MPa) 49.50 67.96 61.56 53.35 47.29 47.50 48.00 43.97 44.50

Tsai-Hill (MPa) 59.40 87.36 79.81 61.38 56.40 57.66 56.84 57.52 57.60

Tsai-Wu (MPa) 93.27 84.82 60.97 61.81 57.53 57.60

Max.Prn.strain 0.0046 0.0027 0.0033 0.0073 0.0041 0.0052 0.0058 0.0052 0.0055

The axial and transverse shear failure prediction of GMC, Table 13, is observed to be overpredicted using
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Figure 14. Unit cell aligned staggered array discontinuous fiber reinforced composite

Tsai-Hill failure criteria compared with FEA. On the contrary, VAMUCH shows excellent agreements with
the predictions of FEA for axial shear failure strength using both failure criteria. But the predictions of
transverse shear failure strength are slightly under predicted compared with FEA, this might be due to the
effect of boundary conditions and remains to be studied. In an other analysis, GMC poorly predicts the
initial failure envelop for axial transverse loading using maximum principal stress failure criteria as shown
in the Figure 15. The predictions of VAMUCH well agree with FEA. As also depicted in the Figure 16,
VAMUCH predicts the failure strength equivalent to FEA using Tsai-Wu failure criteria. Please note that
the current version of GMC does not support the Tsai-Wu failure criteria. Similarly, Figure 17, the initial
failure envelop for the transverse loading condition, i.e, σ22 vs σ33, indicates that the failure predictions of
GMC well agree with the predictions of FEA except slight deviation at larger combined loading conditions.
Conversely, VAMUCH shows an excellent agreements with the prediction of FEA for all the cases.

Table 13. Axial and transverse shear failure strength of aligned staggered array discontinuous fiber reinforced
composite (40% of vof)

Max. shear stress (MPa) Tsai-Hill (MPa)

Vof(%) S12 S13 S23 S12 S13 S23

GMC - - - 29.70 32.67 35.28

VAMUCH 24.87 23.74 22.93 24.51 23.74 22.93

FEA 25.17 24.59 26.52 24.99 24.59 26.53

The predictions of the initial failure envelop for combined shear loading, i.e, σ12 vs σ23, indicate that
the maximum shear and Tsai-Hill failure criteria produce slightly different prediction unlike the continuous
fiber reinforced and particle reinforced case. But it is still observable that the two failure criteria yield close
prediction for the combined shear loading failure analysis as shown in the Figure 18.
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Figure 15. Initial failure envelop for transverse loading (maximum principal stress criteria vof 40%)
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Figure 16. Initial failure envelop for transverse loading (Tsai-Wu vof 40%)

21 of 27

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
46

3 

DISTRIBUTION A: Distribution approved for public release.



-1 0 1
-2

-1

0

1

2

N
or

m
al

iz
ed

Tr
an

sv
er

se
St

re
ss

(σ
3

3
/σ

3
3

0
 )

Normalized Transverse Stress (σ
22

/σ
220

)

GMC
VAMUCH
FEA

Figure 17. Initial failure envelop for transverse loading (Tsai-Hill vof 40%)
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Figure 18. Initial failure envelop for axial and transverse shear loading (vof 40%)
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D. Woven Composite

The woven composite is modeled as depicted in the Figure 19. The ellipsoidal cross section of major axis
radius, c, and minor axis radius, c = 4 , elliptical curvature radius, r = 2.5c, and also matrix thickness
of c

8 is assumed on the top and bottom of the side of the unit cell. The ellipsoidal cross section center to
center distance is 2c. The overall unit cell length, width and height are 4c, 4c and 5c

4 , respectively. GMC
uses the similar shape of unit cell with cuboidal meshing pattern. A single-step GMC approach is employed
for this analysis. A 64 sub cell grid is used for GMC. The basic type of woven microstructure is used from
DIGIMAT for MT and DI. The unit cell of FEA/VAMUCH is meshed to have 18432 elements. It is obvious
to see large element difference between the GMC and FEA/VAMUCH. This is because, GMC inherently
uses only cuboidal element type in the unit cell and also further meshing of the subcell does not improve
accuracy for the predicted values. The static failure strength prediction of woven composite is performed
using various failure criteria. The warp and weft are assumed to have the material properties of fiber listed
under type 1 and type 2, respectively. The matrix of woven is assumed to have the matrix in type 2 of
the material properties shown in the Table 1. The volume of warp, weft and the matrix are assumed to be
25.95%, 25.95% and 48.10%, respectively.

Figure 19. Unit cell of woven composite)

The axial (S11) and transverse (S22, S33) static failure predictions of woven composite are conducted
using various failure criteria. As shown in the Table 14, MT and DI significantly underpredict axial failure
strength stress for maximum principal stress and Tsai-Hill criteria but overpredicts for maximum principal
strain failure criterion. Conversely, these approaches significantly overpredict the transverse failure strength
for all failure criterion. Similarly, GMC also significantly overestimates the axial failure strength for all
failure criteria. However, the prediction of GMC is pretty good for S33 using Tsai-Hill failure criteria. On
the other hand, VAMUCH shows good agreements for both axial and transverse failure strength. The failure
strain predictions of MT, DI, and GMC are observed to be significantly greater than the prediction of FEA.
VAMUCH produces the failure strains of the woven composite that agree well with the predictions of FEA.

The initial failure envelop for transverse loading, i.e., σ22 and σ33, as depicted in the Figure 20, shows
that GMC significantly overpredicts the combined failure load using maximum stress criterion approximately
by more than 54%. Moreover, for Tsai-Hill failure criterion as shown in the Figure 21, the prediction of GMC
is way off from the prediction of FEA and VAMUCH although VAMUCH has a good agreement with FEA.
The inability of GMC for prediction the failure strength of woven composite may be due to the cuboidal
shape of the sub cell. The cuboidal shape may affect the approach not to accurately recover the local fields
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Table 14. Axial and transverse failure strength of woven composite

Max. principal stress Tsai-Hill Max. principal strain

Vof(%) S11 S22 S33 S11 S22 S33 ε11 ε22 ε33

MT(MPa) 465.41 103.57 465.41 554.01 162.35 592.52 0.01313 0.01306 0.01313

DI (MPa) 492.50 140.92 592.52 592.52 204.55 592.52 0.01339 0.01326 0.01339

GMC (MPa) 1046.64 83.30 1046.64 1094.40 159.60 194.40 0.01931 0.01010 0.01931

VAMUCH (MPa) 728.24 51.97 225.10 769.81 88.60 209.18 0.00652 0.00236 0.00219

FEA (MPa) 776.61 47.73 211.00 647.17 88.60 198.05 0.00552 0.00222 0.00281

along the wave of the warp, weft and the matrix. In general, from these predictions, it is easily noticeable
that VAMUCH can predict the initial failure envelop of woven composite equivalent to FEA.
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Figure 20. Initial failure envelop for σ22 and σ33 (Maximum principal stress criterion)

The initial failure envelops of woven composite for axial and transverse shear appear to be significantly
different for maximum shear stress and Tsai-Hill failure criteria. It is clear to see from the Figure 22 that
the Tsai-Hill failure criterion is more conservative than the maximum shear stress criterion.

V. Conclusion

The static failure prediction of several examples of heterogeneous material has been analyzed using
VAMUCH obeying various failure criteria. The prediction of VAMUCH is partially evaluated with the
prediction from various micromechanics approaches. The mean field based homogenization approaches,
i.e, MT and DI, cannot accurately predict the static failure strength and initial failure envelop of the
heterogeneous materials. GMC and HFGMC predict better compared with the mean field theory, but
this approach also poorly predict the static failure strength for both uniaxial and biaxial loading using
maximum principal stress and strain failure criteria. The predictions of these approaches agree relatively
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Figure 21. Initial failure envelop for σ22 and σ33 (Tsai-Hill)
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Figure 22. Initial failure envelop for σ12 and σ23 predicted using VAMUCH
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better with FEA predictions for Tsai-Hill failure criterion. VAMUCH shows an excellent agreement with
the prediction of FEA for both uniaxial and biaxial loading conditions using all considered failure criteria.
Moreover, VAMUCH also demonstrates the capability of analyzing failure in the heterogeneous material for
any possible loading condition. This capability is not usually available in commercial FEA software package
due to the complexity of applying the required boundary conditions. VAMUCH can generate the initial
failure envelop for combined axial and transverse shear loading conditions using maximum shear stress and
Tsai-Hill failure criteria. These predictions produce the close results for the two criteria for the examples
of the heterogeneous material except for woven composite. It is also known that maximum principal stress
failure criteria produces conservative results compared to other failure criteria for most of the cases we have
studied. Generally speaking, VAMUCH is found to be a consistent and accurate micromechanics approach
to analyze the static failure of heterogeneous material for any possible loading options.
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A Micromechanical Approach to Imperfect Interface

Analysis of Heterogeneous Materials

Hamsasew Sertse∗, and Wenbin Yu†

The objective of this paper is to extend the capability of the Variational Asymptotic
Method for Unit Cell Homogenization (VAMUCH) to predict the elastic effective properties
and the failure strength of heterogeneous materials with imperfect interface. The imperfect
interface is modeled using linear elastic traction displacement model obeying small
infinitesimal displacement jump across the interfaces. A cohesive zone model with zero
thickness is introduced at the interface to simulate the imperfect interface for predictions
of elastic effective properties. These predictions are performed using several representative
examples of heterogeneous materials such as binary composite, continuous fiber reinforced
composite, particle reinforced composite, discontinuous fiber reinforced composite, and
woven composite. The predictions reveal that VAMUCH and Finite Element Analysis
(FEA) agree well with exact solutions for binary composite except that FEA has difficulty
to predict the axial shear modulus. The two approaches show excellent agreements for
all the other aforementioned example heterogeneous materials except that FEA cannot
predict the axial shear modulus for continuous fiber reinforced composite. The predictions
of VAMUCH are also observed to be within the upper and lower bounds of imperfect
interface effective properties proposed in the literature. The interfacial stiffness is also
observed to significantly reduce the static failure strength of the material, however, the
static failure may not necessarily initiate at the interface.

I. Introduction

In recent decades, various advanced micromechanics approaches have been proposed and widely used for
the predictions of effective properties, local fields and the overall responses of the heterogeneous materials
under various thermomechanical loadings. However, the majority of these models were developed by
assuming a perfect interface among constituents. This assumption adopts continuous displacement and
traction across the interface of the constituents, but this might not be obviously valid due to various reasons
such as manufacturing defects, inherent properties of the constituents and bonding agents. Numerous efforts
have been devoted to develop constitutive models that adequately capture the effect of imperfect interface on
the effective properties and the failure strength of the heterogeneous materials. Jones and Whittter1 proposed
linear interface model, where the interfacial traction is proportional to the displacement jumps across the
interface. This hypothesis is adopted by numerous researchers to formulate the imperfect interface using
continuum model.2–4 Needleman5–7 proposed a cohesive zone model that exponentially relates the interfacial
traction with displacement jump across the interface. The normal traction increases with displacement
jump, reaches maximum and then finally drops to vanish at the complete debonding of the interface. In
these works, it has also been demonstrated that the tangential traction shows a periodic function with
displacement jump along the interface plane. These models do not explicitly indicate a finite traction
value that initiates the debonding in the fiber-matrix interface. Lissenden8 proposed a three dimensional
(3D) polynomial traction displacement model. This model incorporates the effect of friction between the
debonded fiber and matrix in the interface. Generally, it is evident to notice that interfacial debonding
is a local phenomena. It is mainly influenced by the local stress fields in the heterogeneous material,
particularly at the interface of constituents. It is also demonstrated that the imperfect interface significantly
affects the effective properties of the heterogeneous material.9,10 Hashin11 used a thin elastic interface, as
an imperfect fiber-matrix interface, to obtain the effective properties of the composite. In Ref. [3, 12],
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variational approach is adopted to predict the upper and lower bounds of elastic properties of a particle
reinforced composite with imperfect interface. In the latter reference, the prediction is performed using
stress interface model that assumes discontinuous stress across interface. The static interfacial equilibrium is
maintained by generalized Young-Laplace equation. The variational approach can better predict the upper
and lower bounds of elastic effective properties with imperfect interface. However, the predicted bounds
may be wide enough for practical use. Moreover, this method is also incapable of rigourously obtaining
the local stress fields in the heterogeneous material. Thus, the effect of imperfect interface may not be
sufficiently captured for the prediction of the effective properties of the heterogeneous material. Andrianova
and co-workers13 analyzed the interfacial debonding of continuous fiber reinforced composite under axial
shear loading condition. In this work, a thin elastic bond with finite volume and rigidity is introduced
between the fiber and the matrix, and the asymptotic limit for the ratio of the rigidity and volume is
used for the prediction of the interfacial debonding using linear interfacial model. Liu and Sun14 analyzed
the effect of imperfect fiber-matrix interface in a particle reinforced composite by adopting the Eshelby’s
micromechanical approach. This approach can not effectively capture the local stress fields in the composite
either. Thus, the prediction may not be adequate. Tvergaard15 used the cohesive zone model to analyze the
imperfect interface and whiskers breakage in the composite using cell-model analysis approach. Aboudi2 and
Lissenden8 used the method of cells (MOC) to analyzing the effect of imperfect interface by adopting the
linear spring model and polynomial traction displacement model, respectively. In Ref. [16, 17], generalized
methods of cells (GMC) is employed to predict the interfacial debonding in the continuous fiber composites
under transverse loading condition. In these works, various traction displacement models such as flexible
interfacial model, evolving interfacial model, statistical interfacial model and Needleman cohesive zone model
are incorporated in GMC to predict interfacial decohesion in the composite. MOC and GMC can better
predict the interfacial debonding. However, these methods may not sufficiently approximate the local stress
field due to normal shear coupling problem and also the local stresses are obtained by averaging over each
subcell. Hence, the approach might inadequately predict the interfacial debonding in the heterogeneous
materials. In Ref. [18–21], FEA is used to analyze the effect of imperfect fiber-matrix interface and the
fiber breakage of various heterogeneous material by adopting linear traction displacement model. This
approach can give a reasonable predictions for the interfacial debonding and also the failure strength. This
is because in the FEA, the local fields can be accurately recovered in the composites. This, in turn, helps
to predict the effect of imperfect interface. In general, it is rational to use a micromechanical approach with
outstanding predictive capability of both effective properties and local fields to better analyze the effect of
imperfect interface on the effective properties, the static failure strength, and the interfacial debonding of
the heterogenous materials. This initiates the present study to investigate the effect of imperfect interface on
the effective properties and the static strength of the heterogeneous materials using variational asymptotic
method for unit cell homogenization (VAMUCH).22 VAMUCH is a recently developed general-purposed
micromechanics approach framework by carrying out an asymptotic analysis of the variational statement,
synthesizing the merits of both variational methods and asymptotic methods. It has the advantages of
analytical micromechanics approaches and the versatile modeling capability of the finite element analysis.
VAMUCH is proven to have an outstanding capability of predicting effective properties and recovering the
local stress fields of heterogeneous materials.23,24 Thus, VAMUCH is the natural choice for the prediction of
the effective properties and the static failure of heterogenous material with imperfect interfaces. The failure
strength of the heterogeneous material can be predicted using various failure criteria such as maximum
principal stress criterion, Tasi-Hill, and Tasi-Wu criterion. These failure criteria will be used to critically
analyze the failure strength of the heterogeneous material with imperfect interface.

The objective of this paper is to extend the capability of the VAMUCH to predict the effective properties
and the failure strength of heterogeneous materials with imperfect interface. The imperfect interface will
be modeled using linear elastic traction displacement model obeying small infinitesimal displacement jump
across the interface. The predictions of effective properties and the static failure strength, for imperfect
interface, are performed using several representative examples of heterogeneous materials such as binary
composite, continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced
composite, and woven composite. The unit cell (UC) of the heterogeneous material is sufficiently discretized
to better predict the effective properties and the failure strength of the materials. The failure strength of
this materials is evaluated at numerical integration point (Gauss point) using various failure criteria such
as maximum principal stress criterion, Tsai-Hill failure criterion, and Tsai-Wu failure criterion. Finally,
the prediction of VAMUCH is then compared with FEA and the predictions from published papers. These
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analyses not only demonstrate the predictive capability of VAMUCH for imperfect interface of heterogeneous
materials but also help engineers to use appropriate models for related problems based on the capability of
corresponding approaches. Moreover, the analyses will give a general direction for inception of interfacial
debonding and damage in heterogeneous materials.

II. Interfacial Constitutive Model

There are various models for the imperfect interface of the heterogeneous materials in the literature.16

These models may be categorized as linear and nonlinear interfacial models. Let the interfaces among
the different constituents be subjected to infinitesimal displacement jumps across the interface. The linear
traction displacement model can then sufficiently capture the effect of imperfect interface on the predictions
of elastic effective properties and static failure strength of these materials. The linear traction displacement
model may be expressed as25

Ti = D∗
ij [uj ], [uj ] = u2 − u1, (1)

where Ti denote interfacial tractions, and [uj ] denote displacement jumps cross the interface between
constituent 1 and 2, and D∗

ij denote the second order interface constitutive tensor. As described by the
Eq. (1), the interfacial displacement jump or failure can be expressed by three modes of failure. Let the
displacement jump normal to the interface be represented as Model I failure with the corresponding interfacial
stiffness, D∗

I , and let the two tangential displacement jumps be presented as Mode II and Mode III failures
with the corresponding interfacial stiffness D∗

II and D∗
III , respectively, as shown in the Figure 1. For the

Figure 1. Interface failure modes for unit cell of binary composite

normal displacement jump, using matrix notation, we can obtain from Eq. (1) the interfacial constitutive
modeling as

T1 = D∗
I

[
−1 1

] [
w1

w2

]

where wi denotes displacement jump in the normal direction. Let the displacement jumps in all directions
are decoupled, i.e, tangential displacement in one direction does not affect affect the other tangential
displacement jump and/or the normal displacement jump. This leads to a free sliding of one layer over
the other without experiencing any normal displacement jump. Thus, Eq. (1) can be written as
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⎡
⎢⎣ T1

T2

T3

⎤
⎥⎦ =

⎡
⎢⎣ D∗

I 0 0

0 D∗
II 0

0 0 D∗
III

⎤
⎥⎦

⎡
⎢⎣ −1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

v1

u1

w2

v2

u2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where vi and ui denote the displacement in the Mode II and Mode III direction, respectively. Let the
interface undergoes infinitesimal displacement jump across the interface. The strain energy due to interfacial
displacement jumps can be expressed as

Wint =
1

2

∫
Γ

XTD
∗
XdΓ (2)

where Wint denotes interfacial strain energy and Γ denotes interface area, X and D
∗
are the displacement

vector of the interface and interface stiffness expressed as

X =
⌊

w1 u1 v1 w2 u2 v2
⌋

and

[
D

∗]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D∗
I 0 0 −D∗

I 0 0

0 D∗
II 0 0 −D∗

II 0

0 0 D∗
III 0 0 −D∗

III

−D∗
I 0 0 D∗

I 0 0

0 −D∗
II 0 0 D∗

II 0

0 0 −D∗
III 0 0 D∗

III

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, it should be noted that this stiffness, D
∗
, represents a spring type element between two physically

contacting surfaces or interface. Thus, the interface has a zero thickness with the corresponding stiffness.
Since the two points of the interface is on different materials, it is also noticeable that the interface energy
equation, Eq. (2), is in the discretized form.

III. Variational Asymptotic Method for Unit Cell Homogenization

VAMUCH is a general-purpose micromechanics approach that is capable of predicting the effective
properties of heterogeneous materials and recovering the local fields. Different micromechanical approaches
adopt different assumptions in the literature, however there are only two essential assumptions associated
with the micromechanical analysis of heterogeneous materials with identifiable UCs. These assumptions are:

1. The exact solutions of the field have their volume averages over the UC, i.e., if ui denotes the exact
displacements within the UC, there exists a vi such that

vi =
1

Ω

∫
Ω

uidΩ ≡ 〈ui〉, (3)

where Ω denotes the domain occupied by a UC and also its volume, and 〈·〉 denotes the volume average
over Ω;

2. The effective material properties obtained using the micromechanical analysis are independent of the
geometry and boundary conditions of the macroscopic structure, or to say, the effective material
properties are assumed to be the intrinsic properties of the material when macroscopically viewed.

The variational statement of the micromechanical analysis of a UC has been formulated as constrained
minimization problem for a perfect interface by Yu and Tang.22 Using Eq. (1) for imperfect interface,
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the proposed variational statement can be modified for imperfect interface as minimizing the value of the
functional

ΠΩ =
1

2Ω

∫
Ω

Cijkl(ε(i|j) + χ(i|j))(ε(k|l) + χ(k|l))dΩ+
1

2Ω

∫
Γ

D∗
ij [χi][χj ]dΓ, (4)

subjected to the following constrains
〈χi〉 = 0. (5)

where D∗
ij denote the interface constitutive tensor for the current local coordinate, [χi] = u2 − u1. The

above equation can be discretized using the finite element method as follows. Introduce the following matrix
notations:

ε̄ =
⌊

ε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33

⌋T

, (6)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂y1
∂χ1

∂y2
+

∂χ2

∂y1
∂χ2

∂y2
∂χ1

∂y3
+

∂χ3

∂y1
∂χ2

∂y3
+

∂χ3

∂y2
∂χ3

∂y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
0 0

∂

∂y2

∂

∂y1
0

0
∂

∂y2
0

∂

∂y3
0

∂

∂y1

0
∂

∂y3

∂

∂y2

0 0
∂

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ (7)

where Γh denotes an operator matrix, and χ denotes a column matrix containing the three components of
the fluctuation functions. Let χ be discretized using finite elements as

χ (xi; yi) = S (yi)X (xi) , (8)

where S denotes the shape functions, and X denotes a column matrix of the nodal values of the fluctuation
functions for all the active nodes. The discretized version of Eq. (4) can then be obtained as

ΠΩ =
1

2Ω

(
XTEX+ 2XTDhεε̄+ ε̄TDεεε̄+XTDttX

)
, (9)

where

E =

∫
Ω

(ΓhS)
T
D (ΓhS) dΩ, Dhε =

∫
Ω

(ΓhS)
T
DdΩ, Dεε =

∫
Ω

DdΩ, Dtt =

∫
Γ

D
∗
dΓ (10)

with D denoting the 6 × 6 stiffness matrix condensed from Cijkl and D
∗
denote interface stiffness. The

discretized version of the second part of Eq. (4) is shown in Eq. (2). The above Eq. (9) can then be modified
as

ΠΩ =
1

2Ω

(
XT (E +Dtt)X + 2XTDhεε̄+ ε̄TDεεε̄

)
, (11)

It can be derived from Eq. (11) that ΠΩ attains its minimum only if

(E +Dtt)X = −Dhεε̄ (12)

which can be used to solve for X as;
X = X0ε̄. (13)

Eq. (13) implies that X is linearly dependent on ε̄. Substituting Eq. (12) into Eq. (11) gives the minimum
of ΠΩ as

ΠΩ =
1

2Ω
ε̄T

(
XT

0 Dhε +Dεε

)
ε̄ ≡ 1

2
ε̄T D̄ε̄, (14)

where D̄ denotes the so-called effective stiffness matrix, and ε̄ denotes the global strain column matrix. Till
now, the effective material properties can be fully determined. In addition, if the local fields are of interest,
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they can be recovered using the global displacements, v, the global strains, ε̄, and the fluctuation functions,
χ. Specifically, the local displacements can be recovered as

u = v +

⎡
⎢⎢⎢⎢⎢⎣

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

y1

y2

y3

⎫⎪⎬
⎪⎭ + SX̄0ε̄, (15)

where u and v denote the local and global displacement column matrices, respectively, and X̄0 denotes the
nodal values of fluctuation functions modified from X0 by the periodic boundary conditions and Eq. (5).
The local strains can be recovered as

ε = ε̄+ ΓhSX̄0ε̄, (16)

where ε denotes the the local strain column matrix. The local stresses can be recovered from the local strains
as

σ = Dε. (17)

It is worth to notice that, although VAMUCH is as versatile as the finite element method to discretized the
microstructure, it is by no means an extension of the traditional displacement-based finite element method.
In fact, the VAMUCH code has the following distinctive features:

• The complete set of effective material properties can be obtained within one analysis, without the
application of any external loads or displacement boundary conditions;

• The fluctuation functions and the displacements are uniquely determined;

• The effective material properties and the recovered local fields are directly obtained with the same
accuracy of the fluctuation functions, without any postprocessing-type calculations (e.g., averaging the
stresses or the strains),

• The dimensionality of the problem is determined by that of the periodicity of the UC.

Interested readers can refer to Ref. [22] for more details on the VAMUCH theory.

IV. Effective Properties and Static Failure Predictions

In this section, a bilinear cohesive zone material model shown in the Figure 2, is employed to analyze the
effects of imperfect interface on the elastic effective properties of heterogeneous materials. In this analysis,
a mixed-mode fracture is assumed, i.e. both normal and tangential displacement jumps contribute for
the overall displacement jumps across the interface. Here, it is also assumed that the interface undergoes
infinitesimal displacement jump. This helps to bound the analysis within elastic limit. δ∗n denotes displacement
jump at the maximum interfacial stress and δcn denotes the interfacial displacement at complete debonding
as shown the Figure 2. This assumption ensures the displacement jumps occurs within recoverable limits.
The positive slope of on the Figure shows the stiffness of the interface.

This cohesive zone material mode is used for both normal and tangential displacement jumps to analyze
the effects of imperfect interface on the effective properties and also static failure strength of heterogeneous
materials. The interfacial stiffness shown in Eq. (2) with this material model is incorporated into VAMUCH
to analyze the effective properties and also static failure of heterogeneous materials. The predictions of
VAMUCH are performed using several examples of heterogeneous materials such as binary composite,
continuous fiber reinforced composite, particle reinforced composite, discontinuous fiber reinforced composite,
and woven composite. These predictions are validated using exact solutions for binary composite, FEA and
published data. The results of FEA are obtained using ANSYS by employing the micromechanics approach
proposed by Sun and Vaidya.26 Interface element INTER204 is used in ANSYS for all the examples analysis
using FEA.
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Figure 2. Sketch of cohesive zone material model

A. Binary Composite

As thoroughly discussed in the Ref. [22, 27, 28], VAMUCH theory can be used to obtain analytical the
exact solution for both effective properties and local fields of binary composites, although both the effective
properties of binary composite are obtained for perfectly bonded interface, i.e, both displacement and stress
are continuous across the interface. Here, it should be noted that VAMUCH provides the 3D effective
properties and local fields from a 1D analysis. In the current analysis, it is assumed that the interface
undergoes infinitesimal displacement jumps and the stress across the interface is assumed to be continuous.
The effective properties of binary composite can then be obtained by analytically solving Eq. (4) using
Eq. (5) and boundary conditions as constraints as well stated in the Ref. [27, 28]. Thus, the perfect interface
of the first part of Eq. (9) of Ref. [27] is modified as

DI [χ3]− σ33 = 0, DII [χ3]− σ13 = 0, DIII [χ3]− σ23 = 0, (18)

where [χi] denote displacement jump across the interface, and σi3 denote interfacial stress in yi direction.
For isotropic material, the effective properties for imperfect interface can be obtained as

G12 =
1

2

(1 + ν(2))E1φ1 + (1 + ν(1)E2φ2

(1 + ν(1))(1 + ν(2))

G13 =
D2

IIIE
(1)E(2)2(1 + ν(1))2( 12 + 1

2ν
(2))φ1

m

+
DIIIE

(1)2E(2)(E(2)( 14 + ν(1)( 14 + 1
4ν

(2)) + 1
4ν

(2)))

m

+
D2

IIIE
(1)2E(2)( 12 + 1

2ν
(1))(1 + ν(2))2φ2)

m

m = (1 + ν(1))(1 + ν(2))(−1

2
E(1)E(2) +DIII(E

(1)φ1(1 + ν(2))− E(2)(1 + ν(1))φ1 − E(1)(1 + ν(2)))2
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G23 =
D2

IIE
(1)E(2)2(1 + ν(1))2( 12 + 1

2ν
(2))φ1

nn

+
DIIE

(1)2E(2)(E(2)( 14 + ν(1)( 14 + 1
4ν

(2)) + 1
4ν

(2)))

nn

+
D2

IIE
(1)2E(2)(( 12 + 1

2ν
(1))(1 + ν(2))2φ2)

nn

nn = (1 + ν(1))(1 + ν(2))(−1

2
E(1)E(2) +DII(E

(1)φ1(1 + ν(2))− E(2)(1 + ν(1))φ1 − E(1)(1 + ν(2)))2

where E(1) and E(2) denote elastic moduli of material 1 and 2, ν(1) and ν(2) denote the Poisson’s ratios of
material 1 and 2, and φ1 and φ2 denote the volume of material. The solutions for E1, E2, E3 and Poisson’s
ratios are very lengthy, thus it is not shown here. The effective properties obtained from these equations are
compared with the prediction of VAMUCH and FEA. In this analysis, VAMUCH uses only two elements.
FEA uses 6400 (Solid186) elements. The FEA unit cell of binary composite is shown in the Figure 1.

The elastic modulus and Poisson’s ratio of layer 1 is assumed to 86 GPa and 0.22, respectively and layer
2 has an elastic modulus of 4.3 GPa and Poisson’s ratio of 0.34. The effective properties are predicted for
various interfacial stiffness. Here, it is also assumed that DII and DIII are equal. From the analyses, it
is noticed that the predictions of E1, E2, G12, and all Poisson’s ratio are found to be invariant with the
interfacial stiffness for VAMUCH, FEA and exact solutions. These predictions are found to be reasonable.
However, as shown in the Figure 3, the predictions of E3 are significantly affected by interfacial stiffness,
D11, that corresponds to the failure mode I. Note from hereon, we let D11 = D∗

I , D22 = D∗
II , D33 = D∗

III .
As the interfacial stiffness decreases, the prediction reduces to very small value. These predictions are found
to be consistent with the debonding strength of the layers. It is obvious to see that all approaches show
an excellent agreement. The interfacial stiffness DII and DIII also affect the shear moduli, G23 and G13,
respectively, as depicted in the Figures 4 and 5.

1E-5 0.01 10 10000 1E7 1E10

0.0

0.5

1.0

E 33
/E

33
pe

rfe
ct

Interface stiffness - DI (MPa/m)

VAMUCH
FEA
Exact

Figure 3. Predictions of E33.

For this case, the FEA cohesive zone treatment is limited to only two basic failure mode, i.e, Mode I
and Mode II, thus, the predictions of FEA for G13 shows negligible deviation from the predictions of the
perfect interface (not shown here). However, as depicted in the Figure 5, the interfacial stiffness, D22, can
significantly affect the axial shear modulus G13. Thus, it is of significant importance not to neglect the effect
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Figure 4. Predictions of G23.
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Figure 5. Predictions of G13.
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of the interfacial stiffness, D22, particularly for the prediction of shear modulus, G13, in binary composite.
The effect of the interfacial stiffness on the failure strength of the binary composite is also analyzed using

maximum principal stress and maximum shear stress criteria. It is also assumed the axial and shear strength
of layer are 4.8 GPa and 2.4 GPa, respectively, for layer 2 the axial and shear strength are 83 MPa and 40
MPa, respectively. These failure strength are used for all subsequent failure analyses. As it can be seen from
the Figures 6 and 7, it is clear to notice that the failure strength is considerably dependent on the interfacial
strength of the composite. Both VAMUCH and FEA show an excellent agreement with exact solutions. The
interfacial stiffness mainly controls the failure of the composite, i.e, failure usually initiates at the interface.

1E-3 0.01 0.1 1 10 100 1000

0.0

0.5

1.0

σ
33

/σ
33

pe
rfe

ct

Interfacial stiffness - DI (MPa/m)

VAMUCH
FEA
Exact

Figure 6. Predictions of failure strength σ33 using maximum principal stress criterion.

B. Continuous Fiber Reinforced Composite

In this case, first, let a circular fiber be embedded in a square matrix, and also let the local Cartesian
coordinate be introduced at the center of unit cell as y = (y1, y2, y3) with y1 is parallel to the fiber direction
as depicted in Figure 8. Second, a mesh of 4500 8-noded quadrilateral and SOLID95 elements are used for
VAMUCH and FEA, respectively. The material properties are listed in the Table 1. In this analysis, a fiber
volume of 40% is assumed.

Table 1. Material property for imperfect interface.

Mat E (GPa) ν

Fiber 379.3 0.10

Matrix 68.3 0.30

The interfacial debonding can happen in three possible directions at fiber and matrix interface: normal
to the contacting surface, tangent to the interface along the fiber direction which corresponds to the mode II
failure, and tangent along the the interface corresponds to mode III failure. These modes of failure may be
represented by three interfacial stiffness D11, D22, and D33 to analyze the effect of imperfect interface on the
elastic effective properties of continuous fiber reinforced composite. Let the two tangential interface stiffness,
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Figure 7. Predictions of failure strength σ23 using maximum shear stress criterion

Figure 8. Unit cell of continuous fiber reinforced composite.
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i.e, D22 and D33, be equal. The predictions of this analysis reveal that the axial effective elastic modulus,
E1, is negligibly affected by the interfacial stiffness, while the transverse elastic modulus, E2, is significantly
dependent on the normal interfacial stiffness, D11, as depicted in the Figure 9. However, the interfacial
stiffness, D11, doesn’t influence the predictions of transverse elastic modulus, whereas the prediction of the
transverse shear modulus, G23, is found to be highly dependent on the interfacial stiffness, D33, as shown
the Figure 10.

1 1000 1000000 1E9
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0.4

0.6

0.8

1.0

E 22
/E

22
Pe

rfe
ct

Interface stiffness - DI (MPa/m)

VAMUCH
FEA

Figure 9. Predictions of E22.

The axial shear modulus, G12, is significantly affected by the interfacial stiffness, D22, as shown in the
Figure 11. However, it is not considerably affected by the the other interfacial stiffness. The current version
of ANSYS 15.1 does not support the interfacial stiffness, D22, which corresponds to the model II failure for
continuous fiber reinforced composite. Finally, it is found to be important to analyze the influence of the
interfacial stiffness on the Poisson’s ratio. It is also noted that the interfacial stiffness, D11, can influence
the effective Poisson’s ratio. As it can be seen from the Figure 12, the Poisson’s ratio ν12 is observed to be
larger for imperfect interface with negligible stiffness. This prediction appears to be reasonable. The weaker
the interface is the larger the global strain at the boundary in corresponding direction. For instance, the
transverse global strain, ε22, is not mainly affected by axial external load along the fiber but the axial strain
ε11 slightly affected. Thus, it results in the larger Poisson’s ratio. Conversely, for transverse poisson ratio,
the global strain increases in the direction of the external load application while it nearly remain the same
in the other direction which results in reducing effective poisson ratio for lower interfacial stiffness.

Finally, the static failure strength of the composite is analyzed. It is learned that the failure strength
in axial direction is not affected, while the failure in the transverse direction is significantly dependent of
the interfacial stiffness as depicted in the Figures 13 and 14. The transverse shear failure strength is also
evaluated using Tsai-Hill failure criterion as shown in the Figure 15. It is clear to notice that the interfacial
stiffness control the transverse shear failure of the composite. Here, it should be noted that the failure
strength of the interface is assumed to be the same as the its corresponding stiffness. Consequently, failure
may usually be initiated in matrix, however, if the interfacial failure strength is assumed lower than the
corresponding interfacial stiffness, then the interface mainly controls the failure strength of the composite.
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Figure 10. Predictions of G23.
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Figure 11. Predictions of G12.
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Figure 12. Predictions of ν12 and ν23.
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Figure 13. Predictions of failure strength for σ22 using maximum principal stress criterion.
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Figure 14. Predictions of failure strength for σ22 using Tsai-Hill criterion.
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Figure 15. Predictions of failure strength for σ23 using Tsai-Hill criterion.
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C. Particle Reinforced Composite

The unit cell of particle reinforced composite can be generated as follows. Let a spherical inclusion with 40%
fiber volume be embedded at the center of cuboidal matrix. Let the local Cartesian coordinates be set at the
center of sphere. The inclusion particle and matrix are assumed to have an elastic modulus 703.45 GPa and
206.94 GPa, respectively, and with the corresponding Poisson ratios of 0.2199 and 0.2999, respectively. The
interface stiffness in this case is assumed to have a relation, D11 = 5D22, and D22 = D33, and

G2

aD22
= 10,

where G2 is the shear modulus of the matrix, and a is the radius of the sphere. The elastic effective properties
are predicted using upper and lower bounds proposed by Hashin.25 The upper and lower bounds for the
effective elastic modulus, E, are found to be 187.86 GPa and 61.6 GPa, respectively, and similarly, for the
effective shear modulus, G, the upper and the lower bounds are predicted to be 75.71 GPa and 22.50 GPa,
respectively. The current predictions using VAMUCH and FEA are 140.85 GPa and 142.63 GPa for effective
elastic modulus, respectively. VAMUCH and FEA also predict the effective shear modulus to be 51.89 GPa
and 55.61 GPa, respectively. It appears that the prediction of VAMUCH and FEA for both elastic and shear
moduli are within the within the proposed upper and lower bounds. The predictions of VAMUCH and FEA
compared with the upper and lower bounds of elastic moduli are analyzed for various interfacial stiffness.
As shown in the Figures 16 and 17, the prediction of both effective elastic and shear moduli is observed to
be much closer to the upper bounds.
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Figure 16. Predictions of effective elastic modulus E.

The failure strength of the particle reinforced composite is also analyzed for different interfacial stiffness.
As depicted in the Figure 18, the predictions of failure strength using maximum principal stress criterion
shows that the imperfect interface negligibly affect the failure strength of the composite. However, the
Tsai-Hill failure criterion shows the failure strength of the composite can be compromised due to the imperfect
interface that may go up to 25% loss of its original strength.

D. Discontinuous Fiber Reinforced Composite

To generate the unit cell for discontinuous fiber reinforced composite, first, let a quarter of circular fiber be
embedded at the two opposite corners of hexagonal array matrix. Let the array be symmetric with respect to
its width and height. This arrangement produces hexagonal array with circular fiber at the center and quarter
circular fiber at the corners of the array as shown in Figures 19 and 26. Second, let the cross-sectional area of
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Figure 17. Predictions of effective shear modulus G.
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Figure 18. Predictions of failure strength of particle reinforced composite σ.
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the hexagonal array be generated based on the common relation, a = βb, where a is the width and b the height
of the unit cell and β =

√
3 for hexagonal array. Moreover, let the local Cartesian coordinate be introduced

as y = (y1, y2, y3) at the center of unit cell, where y1 is in the fiber direction. The fibers are generally shorter
compared to the unit cell in y1 direction. For detail geometric constructions of discontinuous fiber reinforced
composite, interested reader may refer to Ref. [29]. Two variants of discontinuous fiber reinforced composites
are considered for predicting the effective elastic properties and static failure strength of the composite with
imperfect interface. The first one is aligned-regular array, where all the fibers are arranged in aligned pattern
and the second one is aligned-staggered array, where fibers are arranged in offset pattern. In this analysis,
the fiber volume and fiber aspect ratio (length/diamater) are assumed to be 40% and 5, respectively. For
FEA, the unit cell is first modeled using plane element (Mesh200) in 2D model and then the corresponding
3D model is generated by extrusion of the 2D model. VAMUCH uses the same mesh used for FEA. The
material properties for this analysis are listed in the Table 2 for both types of discontinuous fiber reinforced
composite.

Table 2. Material property (Ref. [29]).

Mat E (GPa) ν

Fiber 300 0.17

Matrix 10 0.33

1. Aligned-Regular Array

In this imperfect interface analysis, 20-noded elements are used for VAMUCH and FEA with 10624 elements.
The unit cell of VAMUCH and FEA is shown in the Figure 19. The prediction of effective properties with
various interfacial stiffness are performed using VAMUCH and FEA. In this case, the interfacial stiffness,
D22 = 5D11 and D22 = D33, are assumed. Please note that ANSYS does not support stiffness, D22. Thus,
this analysis also helps to critically investigate the effect of D22 on the prediction of effective properties. The
predictions of elastic modulus E1, using VAMUCH shows a slight deviation from ANSYS as depicted in the
Figure 20. This deviation may be due the interfacial stiffness in the model II direction. In another analysis,
as shown in the Figures 21 and 22, VAMUCH and FEA agree well in estimating the effects of interfacial
stiffness on the effective elastic moduli, E2 and E3.

The prediction of both effective axial and transverse shear moduli are also performed for different
interfacial stiffness. As depicted in the Figure 23, the axial shear modulus predictions of VAMUCH show
slight deviation from FEA, as described in the continuous fiber reinforced composite, this deviation may be
due to the stiffness in mode II direction. Similar observation has been also seen for binary composite for
G13. The predictions of VAMUCH for the effective transverse shear modulus agree well with the prediction
of VAMUCH as shown in the Figure 24. The effect of interfacial stiffness on the effective Poisson’s ratio
also predicted as shown in the Figure 25. VAMUCH and FEA show good agreement except small deviation
for small interfacial stiffness. In general, the imperfect interface analyses for discontinuous fiber reinforced
composite reveal that the stiffness in mode II direction does not affect the predictions of the transverse axial,
E2, and transverse shear modulus, G23. However, it significantly affects axial elastic modulus, E1 and axial
shear modulus, G12.

2. Aligned-Staggered Array

Aligned staggered array type of discontinuous fiber reinforced composite is similar to the aligned regular
array but, in this case, the fibers in the unit cell are arranged in staggered pattern, i.e., fibers overlap within
the unit cell. Let 76% of fiber length overlap within a unit cell for this analysis. 9120 20-noded elements are
used for VAMUCH and FEA. The unit cell of FEA and VAMUCH is shown in the Figure 26. In this case,
it is assumed that the interfacial stiffness D22 = D33 and also D22 = 5D11.

From the analyses, it is observed that VAMUCH shows excellent agreements for all elastic moduli as
depicted in the Figures 27-29. The axial and transverse shear moduli are also well predicted by VAMUCH
compared with FEA as shown in the Figures 30 and 31. It is clear to notice that the interfacial stiffness,
D22, does not noticeably affect the axial shear moduli. This may be due to the arrangement of the fibers
in the unit cell. The fibers are not fully embedded in the matrix along the axial direction, i.e., exposed to
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Figure 19. unit cell aligned discontinuous fiber reinforced composite.
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Figure 20. Predictions of effective elastic modulus E1
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Figure 21. Predictions of effective elastic modulus E2.
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Figure 22. Predictions of effective elastic modulus E3.
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Figure 23. Predictions of effective axial shear modulus G12.
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Figure 24. Predictions of effective transverse shear modulus G23.
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Figure 25. Predictions of effective Poisson’s ratio ν23.

Figure 26. Unit cell aligned staggered discontinuous fiber reinforced composite.
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any external boundary conditions, in the unit cell. Finally, the prediction of Poisson ratios is also evaluated.
As it can be seen from Figure 32, it is noticed that VAMUCH shows excellent agreements with FEA except
slight deviation for ν23 for smaller interface stiffness.
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Figure 27. Predictions of effective elastic modulus E1.
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Figure 28. Predictions of effective elastic modulus E2.
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Figure 29. Predictions of effective elastic modulus E3.
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Figure 30. Predictions of effective axial shear modulus G12.

24 of 30

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
39

4 

DISTRIBUTION A: Distribution approved for public release.



1 1000 1000000 1E9
0.0

0.2

0.4

0.6

0.8

1.0

G
23

/G
23

pe
rfe

ct

Interface stiffness - DIII (MPa/m)

VAMUCH
FEA

Figure 31. Predictions of effective transverse shear modulus G23.
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Figure 32. Predictions of effective Poisson’sratio ν12 and ν23.
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E. Woven Composite

There are various models of woven composite. For the current analysis, the woven composite is modeled with
ellipsoidal cross section as depicted in the Figure 33. The ellipsoidal cross section of major axis radius, c, and
minor axis radius, c

4 , elliptical curvature radius, r = 2.5c, and also matrix thickness of c
8 is assumed on the

top and bottom of the side of the unit cell. The ellipsoidal cross section center to center distance is 2c. The
overall unit cell length, width and height are 4c, 4c and 5c

4 , respectively. The unit cell of FEA/VAMUCH
is meshed to have 8640 elements. The material properties and the corresponding volume of warp, weft
and the matrix are listed in the Table 3. The effects of interfacial stiffness on the effective properties of
woven composite are analyzed using cohesive zone element similar to the above cases. In this case also, it
is assumed that D22 = 5D11 and also D22 = D33. Moreover, it is also assumed that the interfacial stiffness
among different material properties are the same.

Table 3. Material property (Ref. [29])

Mat E (GPa) ν vol(%)

Warp 130 0.30 25.95

Weft 86 0.22 25.95

Matrix 4.30 0.34 48.10

Figure 33. unit cell woven.

The predictions of effective properties of woven composite for imperfect interface are shown in the
Figures 34-37. It is clear to notice that VAMUCH agrees well with the predictions of FEA for axial moduli
E11. However, the predictions of shear moduli are observed to significantly different particularly for smaller
interfacial stiffness. This difference in general may be due to the effect of applied boundary conditions in
FEA. Thus, it is of interest to analyze the effect of the boundary conditions by using 3 × 3 × 3 unit cells.
The middle unit cell will then be used to analyze the effective properties based on the average stress and
average strain. As depicted in the Figure 36, the predictions of G12 using global stress and global strain
nearly the same as the one generated using single unit cell, however, the predictions using the average stress
and average strain, for the middle unit cell, is significantly different compared with others. To further
analyze these difference, again, let the axial effective moduli, E11, using the multiple unit cell be analyzed.
It is interesting to observe that the prediction of axial modulus nearly the same as the predictions obtained
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with the single unit cell, while the predictions based on the average stress and average strain in the the
middle unit cell yields 62% greater than the single unit cell prediction. Generally, the average stress and
strain approach yields better predictions. However, the current predictions of elastic modulus, E11 appears
to be not reasonable. The over prediction may be due to the complex geometry of the woven composite
contributing to interfacial stiffness D22 that is missing in ANSYS and also due to the cohesive element type
employed. From the imperfect interface analysis of woven composite, it is also noticed that the introduction
of imperfect interface with different material properties will make the woven composite to exhibit anisotropic
material property, i.e, the stiffness matrix is fully populated, for relativity smaller stiffness. However, as the
interfacial stiffness increases orthotopic material property will be obtained.
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Figure 34. Prediction of E1.

V. Conclusion

A discrete cohesive zone model is introduced into VAMUCH for the predictions of effective properties
of heterogeneous material with imperfect interface. The predictions of VAMUCH are evaluated with exact
solution for binary composite, the predictions of FEA and the upper and lower bounds proposed in the
literature. The evaluations show that VAMUCH is capable of predicting effective properties with various
interfacial stiffness. Moreover, it is learned that VAMUCH can sufficiently predict the axial shear for binary
and continuous fiber reinforced composite where ANSYS can not due to the cohesive zone mode used in
ANSYS. The static failure strength of heterogeneous material is found to be significantly affected by the
interfacial stiffness. However, this effect will be lesser as the interface gets stiffer. The failure analysis
demonstrates that the initial failure may not necessarily occur at the interface. In general, the application
of external load or displacement boundary condition is mandatory in FEA to obtain effective properties. In
the current analysis where the imperfect interfaces is assumed, the application of external load may lead
to interpenetration of constituents across the interface. Moreover, for some cases, the output of analyses
may not be easily obtained due to convergence problem. These problems can not be encountered by using
VAMUCH. VAMUCH does not use any external load or displacement boundary condition to predict the
effective properties for both perfect and imperfect interface. As seen for the current analyses, a simple linear
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Figure 35. Prediction of E3.
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Figure 36. Prediction of G12.
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Figure 37. Prediction of ν13.

analyses leads to optimal results. Finally, further studies need to be performed using nonlinear cohesive
model for prediction of both elastic and inelastic material properties.
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A Micromechanics Model for Homogenizing

Hyperelastic Heterogeneous Materials

Liang Zhang∗

Utah State University, Logan, UT 84322-4130, USA

Wenbin Yu†

Purdue University, West Lafayette, IN 47907-2045, USA

The variational asymptotic method for unit cell homogenization (VAMUCH) has emerged
as a general-purpose micromechanics code that is capable of predicting the effective prop-
erties of heterogeneous materials and recovering the local fields. The objective of this
paper is to develop a new micromechanics model which can enable VAMUCH to handle
various problems of hyperelastic heterogeneous materials undergoing finite deformation.
The rate form of the constitutive relations for a constituent, which is amendable to various
hyperelastic material models, is derived. The rate form of the VAMUCH formulations is
derived, while the corresponding code structure is developed. The application of the this
new model is demonstrated using a simple example of predicting the stress-strain curves
of binary composites consisting of compressible and quasi-incompressible hyperelastic con-
stituents. The current VAMUCH is found to be capable of handling the problems involving
complex constitutive relations for the constituents and complex loading conditions. More
sophisticated user-defined material models can be implemented into it and more realistic
examples should be used to validate this new model.

I. Introduction

Hyperelastic heterogeneous materials play an important role in numerous industrial and biological appli-
cations. Industrial products such as rubber tires are often reinforced with carbon-black particles in a small
length scale and with steel or other fibers in a larger length scale such that they can exhibit designated
mechanical properties,1 while biological tissues such as human arteries are observed to be reinforced with
collagen fibers.2 Although possible, it is challenging to evaluate the mechanical behaviors of such materials
because their deformation is often accompanied by material and geometrical nonlinearities. Moreover, it
is difficult and time consuming to manufacture a great amount of heterogeneous materials and to perform
various tests on them, while it is also computationally prohibitive to analyze them with all the microstruc-
tural details because the macroscopic dimensions of these structures are usually several orders of magnitude
greater than the heterogeneity length scale. Therefore, it is of great practical value to solve the problems of
hyperelastic heterogeneous materials using a micromechanics approach.

In recent decades, numerous efforts have been devoted to micromechanics. According to Ref. [3], a
micromechanics approach generally consists of the following steps:

• Idealize the heterogeneous material as consisting of numerous periodically arranged unit cells (UCs)
and identify the UC;

• Perform a constitutive modeling of the UC and obtain the effective material properties;

• Substitute the effective material properties into the macroscopic structure and obtain the global re-
sponse of the structure;

∗Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering.
†Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow.
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• Feedback the global response to the local scale and recover the local fields of interest (e.g., the dis-
placement, strain, and stress fields).

If the deformation is restricted in the linearly elastic regime, the constitutive relations for the constituents
are path-independent. In this case, the effective material properties of the UC remain the same throughout
continued deformation, and the constitutive modeling just needs to be performed once. The micromechanics
theories of linearly elastic heterogeneous materials have been well established. These theories include the
self-consistent model,4 Hashin and Shtrikman’s variational approach,5 the third-order bounds,6 the method of
cells (MOC) and its variants,7 the recursive cell method,8 and the mathematical homogenization theories,9,10

and etc. If both material and geometrical nonlinearities are involved, one has to seek for proper stress and
strain measures, derive the correspondence principal between the rates of these measures, and iteratively
perform the aforementioned four steps of micromechanics.

Elaborate efforts have been devoted to predicting the global response of a hyperelastic heterogeneous
material. Hill11 and Hill and Rice12 constructed the framework of the homogenization of linearly elastic
heterogeneous materials undergoing finite deformation. Ogden13 and Ponte Castañeda14 later derived a
Voigt-type upper bound and several Reuss-type lower bounds for general hyperelastic heterogeneous ma-
terials, respectively. Although mathematically rigorous, these upper and lower bounds do not vary with
the microstructure and are hereby of limited applicabilities. Ponte Castañeda and Tiberio15 and Lahellec
et al.16 proposed a second-order homogenization approach for particle-reinforced rubbers, which is capa-
ble of taking into account some high-order statistical information on the initial microstructure such as the
particle stiffness, shape, volume fraction, and distribution. Several authors17–20 later enabled this approach
to handle the problems of particle-reinforced rubbers of random microstructure, porous elastomers of ran-
dom and periodic microstructure, and fiber-reinforced elastomers of random microstructure and found good
agreements between their predictions and the finite element analysis. deBotton et al.21 also successfully
homogenized a fiber-reinforced elastomer consisting of two incompressible neo-Hookean constituents, and
deBotton and Shmuel22 later extended the neo-Hookean constituents to more general ones. Despite success,
all of these approaches are incapable of either dealing with designated microstructure or recovering the local
fields. Therefore, there is a need for a more powerful approach.

Numerous attempts have been made not only to predict the global response but also to recover the local
fields. Aboudi and his co-workers23–25 developed themethod of cells (MOC) and later the generalizedmethod
of cells (GMC) to achieve this goal. A detailed review on these approaches can be found in Ref. [26]. The
basic ideas of these approaches are subdividing the UC into numerous cuboid subcells, solving for the average
strain and stress over each subcell, and obtaining an estimation of the local fields. These approaches are
capable of solving the problems to a certain extent but suffer two major drawbacks. Specifically, discretizing
the UC using cuboid subcells may introduce considerable domain approximation errors, while describing the
local fields using the average local strains and stresses may introduce considerable approximation errors. In
fact, it is always more accurate to discretizing the UC using a finite element mesh and to describe the local
fields using shape functions and nodal values. Meanwhile, Yvonnet and his co-workers27,28 developed an
incremental non-concurrent multiscale method to achieve the same goal and found good agreements between
their predictions and the finite element analysis results. The basic ideas of thismethod are discretizing the UC
using a finite elementmesh, decomposing the problem for each iteration into a limited number of subproblems
associated with different kinematic boundary conditions using the proper orthogonal decomposition, and
obtaining the instantaneous effective stiffness by solving all the subproblems. Despite success, this method
assumes that the UC is subject to kinematic rather than periodic boundary conditions and hereby tends to
overestimate the instantaneous effective stiffness. All these lead one to seek for a more accurate and efficient
approach.

Recently, Yu and his co-workers3,29–32 developed the variational asymptotic method for unit cell homoge-
nization (VAMUCH), a general-purpose micromechanics approach, to handle the problems of heterogeneous
materials. In fact, VAMUCH is not only capable of predicting the global response and recovering the local
fields but also has several unique features compared with other numerical methods. One of these features
is that VAMUCH has the minimum number of assumptions. Specifically, VAMUCH starts with two basic
assumptions associated with the micromechanical analysis of heterogeneous materials of identifiable UCs.
For hyperelastic heterogeneous materials, these two assumptions are modified as follows:

1. The exact solutions of the field have their volume averages over the UC, i.e., if u̇i denotes the exact
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velocity vector in the Lagrange description within the UC, there exists a v̇i such that

v̇i =
1

Ω

∫
Ω

u̇idΩ ≡ 〈u̇i〉 , (1)

where Ω denotes the domain occupied by the UC (with boundary ∂Ω) and also its volume in the
Lagrange description, and 〈·〉 denotes the volume average of the quantity over Ω;

2. The effective material properties obtained using the micromechanical analysis are independent of the
geometry and boundary conditions of the macroscopic structure, or to say, they are assumed to be the
intrinsic properties of the material when macroscopically viewed.

These two assumptions place the fewest restrictions on the problem solving. The first assumption means
that the exact solutions of the field are integrable over the UC, or to say, that the heterogeneous material
can be homogenized. The second assumption basically reflects the fact that the material properties are fully
described by the constitutive relations for the material and are independent of the geometry and boundary
of the macroscopic structure. Of course, the micromechanical analysis of the UC is desirable and appropriate
only if the characteristic size of the UC is much smaller than that of the macroscopic structure.

The objective of this paper is to enable VAMUCH to handle various problems of hyperelastic heteroge-
neous materials undergoing finite deformation. The rate form of the constitutive relations for a constituent,
which is amendable to various hyperelastic material models, is derived. The rate form of the VAMUCH for-
mulations is derived, while the corresponding code structure is developed. The application of this capability
in current VAMUCH is validated using simple examples such as predicting the stress-strain curves of binary
composites consisting of compressible and quasi-incompressible hyperelastic constituents.

II. Constitutive Relations

Consider a heterogeneous material consisting of one or more hyperelastic constituents. In this section,
the rate form of a constitutive relations for the hyperelastic constituent will be derived first.

Introduce amaterial coordinate systemX = (X1, X2, X3) and a spatial coordinate system x = (x1, x2, x3).
Without loss of generality, assume that the orthonormal basis of these two coordinate systems coincide with
each other. Let u (X, t) denote the displacement vector in the Lagrange description, where t denotes the
time. x can be expressed as a function of X and t as

x (X, t) = X+ u (X, t) . (2)

The deformation gradient tensor, F, can then be defined as

F =
∂x

∂X
= I+

∂u

∂X
, (3)

where I denotes the second-order identity tensor. The right Cauchy-Green deformation tensor, C, is related
to F by

C = FT · F. (4)

There are three widely used stress measures in continuum mechanics, i.e., the Cauchy stress, the first Piola-
Kirchhoff stress, and the second Piola-Kirchhoff stress. The first Piola-Kirchhoff stress tensor, P, can be
related to the Cauchy stress tensor, σ, by

P = Jσ · F−T , (5)

where J = detF, and (·)−T
denotes the inverse of the transpose of the tensor, while the second Piola-

Kirchhoff stress tensor, S, can be related to P and σ by

S = F−1 ·P = JF−1 · σ · F−T . (6)

Among these stress and strain measures, C, σ, and S are always symmetric, while F and P are generally
not.

According to continuum mechanics, a material is said to be hyperelastic only if:
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• There exists a the strain energy density function, say W ;

• W is locally a function of F in the Lagrange description, i.e., W = W (X,F).

The constitutive relations for a hyperelastic material can be defined as

P =
∂W

∂F
. (7)

It can be verified that an alternative form of Eq. (7) writes

S = 2
∂W

∂C
. (8)

In fact, the constitutive relations often take the form of Eq. (8) because it is more convenient to express W
as a function of the invariants of C.

It is beneficial to derive the rate forms of Eqs. (7) and (8). Following Ref. [33], taking material derivatives
on both sides of Eq. (7) gives

Ṗ =
∂

∂t

(
∂W

∂F

)
=

∂

∂F

(
∂W

∂t

)
=

∂

∂F

(
∂W

∂F
: Ḟ

)
=

∂2W

∂F∂F
: Ḟ+

∂W

∂F
:
∂Ḟ

∂F
. (9)

Note that
∂Ḟ

∂F
=

∂

∂t

(
∂F

∂F

)
=

∂I
∂t

= 0, (10)

where I denotes the fourth-order identity tensor. Substituting Eq. (10) into Eq. (9) gives the rate form of
Eq. (7) as

Ṗ =
∂2W

∂F∂F
: Ḟ ≡ A : Ḟ, (11)

where A is often referred to the fourth-order first elasticity tensor. It can be verified that A fulfills the
major symmetries (i.e., Aijkl = Aklji) but not the minor symmetries (i.e., Aijkl �= Ajikl and Aijkl �= Aijlk).
Similarly to Eq. (11), the rate form of Eq. (8) can be obtained as

Ṡ = 4
∂2W

∂C∂C
:
1

2
Ċ ≡ C :

1

2
Ċ, (12)

where C is often referred to the fourth-order second elasticity tensor. It can also be verified that C fulfills
both the major and minor symmetries.

Although the rate form of the constitutive relations often takes the form of Eq. (12) for the reason
mentioned above, for the convenience of unit cell homogenization, it is better to take the form of Eq. (11)
(see Section III). This leads one to relate A to C. Following Ref. [33], rewrite Eq. (6) as

P = F · S. (13)

Taking material derivatives on both sides of Eq. (13) gives

Ṗ = Ḟ · S+ F · Ṡ = Ḟ · S+
1

2
F ·

(
C : Ċ

)
. (14)

Also taking material derivatives on both sides of Eq. (4) gives

Ċ = ḞT · F+ FT · Ḟ. (15)

Substituting Eq. (15) into Eq. (14) gives

Ṗ = Ḟ · S+
1

2
F ·

[
C :

(
ḞT · F+ FT · Ḟ

)]
. (16)

It can be verified that
C :

(
ḞT · F

)
= C :

(
FT · Ḟ

)
. (17)
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due to symmetry of C. Substituting Eq. (17) into Eq. (16) gives

Ṗ = Ḟ · S+ F ·
[
C :

(
FT · Ḟ

)]
(18)

or

Ṗij = ḞilSlj + FimCmjnlFknḞkl = SljδikḞkl + FimCmjnlFknḞkl = (Sljδik + FimCmjnlFkn) Ḟkl. (19)

Comparing Eq. (19) with Eq. (11) gives

Aijkl = Sljδik + FimCmjnlFkn. (20)

Once the hyperelastic material model is specified, the explicit expressions for C and A can be fully deter-
mined. More details on the derivation in this paragraph can be found in Ref. [33].

A hyperelastic material model specifies the relation between W and F, or more frequently, the relation
between W and the invariants of C, i.e.,

W = W (I1, I2, I3) = W (I1, I2, J) , (21)

where

I1 = trC, I2 =
1

2

[
tr2C− tr

(
C2

)]
, I3 = detC = J2 (22)

denote the first, second, and third invariants of C, respectively. Moreover, according to numerous experimen-
tal observations, many hyperelastic materials exhibit uncoupled volumetric and isochoric behaviors. This
leads one to seek for an alternative expression for W consisting of uncoupled volumetric and isochoric parts.
Specifically, according to Ref. [34], the volumetric part of C can be obtained as J

2
3 I, while the isochoric

part, C̄, can be obtained as
C̄ = J− 2

3C. (23)

Let Ī1, Ī2, and Ī3 denote the first, second, and third invariants of C̄, respectively. Note that, by definition,

Ī1 = trC̄, Ī2 =
1

2

[
tr2C̄− tr

(
C̄2

)]
, Ī3 = det C̄ = 1. (24)

Till now, W can be expressed as a function of Ī1, Ī2, and J , i.e.,

W = W
(
Ī1, Ī2, J

)
. (25)

In addition, W can further be expressed as the sum of its volumetric part, W v, and its isochoric part, W i,
i.e.,

W
(
Ī1, Ī2, J

)
= W v (J) +W i

(
Ī1, Ī2

)
. (26)

In this paper, W is set to take the general form of Eq. (26) with the corresponding explicit expression for C
being derived in Appendix A, while Eq. (26) can always be replaced by a more general one as needed.

The polynomial hyperelastic model is among the most general hyperelastic material models proposed in
the literature. It suggests that W takes the form of

W =
n∑

i,j=0

Cij

(
Ī1 − 3

)i(
Ī2 − 3

)j
+

m∑
k=0

Dk(J − 1)
2k
, (27)

which implies that the material is compressible. If n = 1, C11 = 0, and m = 1, the polynomial hyperelastic
model reduces to the Mooney-Rivlin model, for which W takes the form of

W = C01

(
Ī2 − 3

)
+ C10

(
Ī1 − 3

)
+D1(J − 1)

2
; (28)

if C01 = 0, the Mooney-Rivlin model further reduces to the neo-Hookean model, for which W takes the form
of

W = C10

(
Ī1 − 3

)
+D1(J − 1)

2
. (29)

Once the hyperelastic material model is specified, the explicit expression for C can be fully determined (see
Appendix A).

Till now, the rate form of the constitutive relations for a constituent have been derived. In the next
section, the rate form of the VAMUCH formulations will be derived.
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III. Variational Asymptotic Method for Unit Cell Homogenization

Consider a heterogeneous material with an identifiable UC. Introduce a global material coordinate system
X = (X1, X2, X3) and a local material coordinate system Y = (Y1, Y2, Y3), where Y is related to X by

Y = X/ε (30)

with ε denoting a scale ratio and 0 < ε � 1. Let X describe the macroscopic structure, and let Y describe
the UC with its origin located at the geometric center of the UC. Suppose that, at a given instant of time t:

• The UC is in a state of static equilibrium;

• All the state variables are known;

• All the periodic boundary conditions are satisfied.

The task is to solve for the exact velocity vector, u̇i, at this instant of time (see Eq. (1)).
According to Ref. [35], u̇i can be expressed as the sum of its volume average over Ω, v̇i (see Eq. (1)), and

a fluctuation function, χi, i.e.,
u̇i (Y,X) = v̇i (X) + εχi (Y,X) , (31)

where χi is a periodic function of Y and may also depend on X, and εχi should be asymptotically smaller
than v̇i such that a heterogeneous material can be homogenized. Without loss of generality, let

〈χi〉 = 0. (32)

In fact, although εχi negligibly contributes to u̇i, it does affect the derivatives of u̇i. Specifically,

∂u̇i

∂Xj
=

1

ε

∂u̇i

∂Yj

∣∣∣∣
X=const

+
∂u̇i

∂Xj

∣∣∣∣
Y=const

=
∂v̇i
∂Xj

+
∂χi

∂Yj
+ ε

∂χi

∂Xj
, (33)

where ε∂χi/∂Xj is a high-order term and can be omitted. Recall that, by definition,

Fij =
∂xi

∂Xj
= δij +

∂ui

∂Xj
. (34)

Taking material derivatives on both sides of Eq. (34) gives

Ḟij =
∂u̇i

∂Xj
. (35)

Also let
˙̄F ij =

∂v̇i
∂Xj

and χi,j =
∂χi

∂Yj
. (36)

It can be verified that ˙̄F ij =
〈
Ḟij

〉
. ˙̄F ij hereby denotes the global rate of deformation gradient tensor.

Combining Eqs. (33), (35), and (36) gives

Ḟij =
˙̄F ij + χi,j . (37)

The strong form of the problem can be formulated as seeking χi satisfying

Ṗij,j = 0 in Ω (38)

subject to constraint Eq. (32) and periodic boundary conditions

χi (Y) = χi (Y + L) and
(
ṖijNj

)
(Y) +

(
ṖijNj

)
(Y + L) = 0 on ∂Ω, (39)

where L denotes the periodicity vector of the UC, and Ni denotes the unit normal vector in the Lagrange
description. Let δχi denotes the virtual fluctuation function which is arbitrary in Ω and satisfies periodic
boundary conditions

δχi (Y) = δχi (Y + L) on ∂Ω. (40)
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The rate form of the principle of virtual work can be expressed using arbitrary periodic functions δχi as

− 1

Ω

∫
Ω

Ṗij,jδχidV =
1

Ω

∫
Ω

Ṗijδχi,jdV − 1

Ω

∫
∂Ω

ṖijNjδχidS = 0. (41)

Substituting the second equation of Eq. (39) into Eq. (41) δχi gives

1

Ω

∫
Ω

Ṗijδχi,jdV = 0. (42)

The weak form of the problem can then be formulated as seeking χi satisfying Eq. (42) subject to constraint
Eq. (32) and periodic boundary conditions

χi (Y) = χi (Y + L) on ∂Ω. (43)

Substituting Eq. (37) into Eq. (11) gives

Ṗij = Aijkl

(
˙̄F kl + χk,l

)
. (44)

Substituting Eq. (44) into Eq. (42) gives

δΠΩ =
1

Ω

∫
Ω

δχi,jAijkl

(
˙̄F kl + χk,l

)
dV = 0. (45)

Eq. (45) implies that, once ˙̄F ij and Aijkl are specified, χi can be uniquely determined.
It is beneficial to also relate the local first Piola-Kirchhoff stress rate tensor and the local rate of defor-

mation gradient tensor to the global ones. Specifically,
〈
ṖijḞij

〉
can be expressed as

1

Ω

∫
Ω

ṖijḞijdV =
1

Ω

∫
Ω

Ṗij
˙̄F ijdV +

1

Ω

∫
Ω

Ṗijχi,jdV . (46)

Eq. (46), together with Eq. (42), implies that

1

Ω

∫
Ω

ṖijḞijdV =
1

Ω

∫
Ω

Ṗij
˙̄F ijdV = ˙̄F ij

(
1

Ω

∫
Ω

ṖijdV

)
≡ ˙̄P ij

˙̄F ij , (47)

In fact, Eq. (47) is a variation of the Hill-Mandel lemma for unit cell homogenization.
Till now, the rate form of the VAMUCH formulation has been derived and has been proven valid. In the

next section, this formulation will be discretized using finite elements to solve for χi.

IV. Finite Element Implementation of VAMUCH

Introduce the following matrix notations:

˙̄F =
⌊

˙̄F 11
˙̄F 12

˙̄F 22
˙̄F 13

˙̄F 23
˙̄F 33

˙̄F 21
˙̄F 31

˙̄F 32

⌋T

, (48)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂Y1
∂χ1

∂Y2
∂χ2

∂Y2
∂χ1

∂Y3
∂χ2

∂Y3
∂χ3

∂Y3
∂χ2

∂Y1
∂χ3

∂Y1
∂χ3

∂Y2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂Y1

0 0
∂

∂Y2
0 0

0 ∂
∂Y2

0
∂

∂Y3
0 0

0 ∂
∂Y3

0

0 0 ∂
∂Y3

0 ∂
∂Y1

0

0 0 ∂
∂Y1

0 0 ∂
∂Y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ, (48′)
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where Γh denotes an operator matrix, and χ denotes a column matrix containing the three components of
the fluctuation functions. Let χ be discretized using finite elements as

χ (Yi, Xi) = S (Yi)X (Xi) , (49)

where S denotes the shape functions, and X denotes a column matrix of the nodal values of the fluctuation
functions for all the active nodes. The discretized version of Eq. (45) can then be obtained as

δΠΩ =
1

Ω
δXT

(
DhhX+DhF

˙̄F
)
= 0, (50)

where

Dhh =

∫
Ω

(ΓhS)
T
D (ΓhS) dV and DhF =

∫
Ω

(ΓhS)
T
DdV (51)

with D denoting the 9× 9 instantaneous stiffness matrix condensed from Aijkl. In Eq. (50), equality holds
only if

DhhX = −DhF
˙̄F or X = X0

˙̄F. (52)

Eq. (52) implies that X is proportional to ˙̄F . In addition, Eq. (47) can be rewritten as

˙̄F ij
˙̄P ij =

1

Ω

∫
Ω

˙̄F ijṖijdV =
1

Ω

∫
Ω

˙̄F ijAijkl

(
˙̄F kl + χk,l

)
dV . (53)

The discretized version of Eq. (53) can be obtained as

˙̄F
T ˙̄P =

1

Ω

(
˙̄F
T
DFhX+ ˙̄F

T
DFF

˙̄F

)
=

1

Ω
˙̄F
T
(DFhX0 +DFF )

˙̄F ≡ ˙̄F
T
D̄ ˙̄F, (54)

where ˙̄P denotes the global first Piola-Kirchhoff stress rate columnmatrix, DFh = DT
hF , andDFF =

∫
Ω
DdV .

It can be obtained from Eq. (54) that
˙̄P = D̄ ˙̄F, (55)

which is the rate form of the global constitutive relations, and D̄ hereby denotes the so-called instantaneous
effective stiffness matrix. This rate form of the global constitutive relations can be used in the macroscopic
structural analysis at a certain load step to obtain the global rate of deformation gradient column matrix,
˙̄F , which can be used to recover the local fields, which will be used to obtain the rate form of the global
constitutive relations for the next step. Specifically, the local rates of deformation gradient can be recovered
as

Ḟ = ˙̄F + ΓhSX̄0
˙̄F, (56)

where Ḟ denotes the the local rate of deformation gradient column matrix, and X̄0 denotes the nodal values
of the fluctuation functions modified from X0 by Eqs. (32) and (43). The local first Piola-Kirchhoff stress
rates can be recovered from the local rates of deformation gradient as

Ṗ = DḞ . (57)

V. VAMUCH Code Structure

Figure 1 depicts the current VAMUCH code structure. The code starts with reading the finite element
model and initializing all the state variables (e.g., the deformation gradients and the first Piola-Kirchhoff
stresses). After this, it will iteratively complete the following steps in sequence:

• Perform the constitutive modeling to obtain the instantaneous effective material properties and the
fluctuation functions;

• Impose the global stress/gradient increments;

• Perform the recovery to recover the local fields;

• Save the updated state variables as the inputs for the next iteration;
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Read finite element model

Start

Initialize state variables

Constitutive modeling

Recovery

Update state variables

End

Output results

Impose stress/gradient increments

�

End of loading path

Figure 1. Current VAMUCH code structure.
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• Check whether to continue the iteration.

The code will continue the iteration till the end of the loading path. After this, it will output the results as
needed. Currently, the second-order Runge-Kutta method is employed as the time integration method.

VI. Validation Examples

In this section, several examples are presented to validate the applicability, power, and accuracy of the
current VAMUCH. The examples include predicting the stress-strain curves of binary composites consisting
of compressible and quasi-incompressible hyperelastic constituents. The results predicted by VAMUCH are
compared with those predicted by ANSYS.

A. Compressible Hyperelastic Constituents

Without loss of generality, let the volume factions of the two constituents of the binary composite be 25%
and 75%, respectively, and let both of these two constituents be Mooney-Rivlin solids whose behaviors
are characterized by Eq. (28). According to continuum mechanics, the initial bulk and shear moduli of a
Mooney-Rivlin solid, κ and μ, can be related to C01, C10, and D1 as

κ = 2D1 and μ = 2 (C01 + C10) , (58)

respectively. Let the material parameters of the two constituents take the values listed in Table 1. Table 1,
together with Eq. (58), implies that the first constituent is four times stiffer than the second one. In addition,
here the constituents are actually highly compressible, while in the next section, they will be set to be quasi-
incompressible. The UC of this composite can be identified as a line segment consisting of two connecting
sub-line segments with the ratio of their lengths being 1 : 3. Recall that yi denotes the local coordinates
describing the UC with its origin located at the geometric center of the UC (see Section III). Here let the
y1-axis parallel to the line segment representing the UC, and let the y2- and y3-axes perpendicular to it. For
notational convenience, let Fij and Pij denote the global gradient of deformation and first Piola-Kirchhoff
stress tensors, respectively. For comparison with ANSYS, let the off-diagonal components of Fij vanish in
all the validation examples. In this case, periodic boundary conditions Eq. (43) reduce to homogeneous
boundary conditions, and can be easily handled by ANSYS.

Table 1. Material parameters of the compressible hyperelastic constituents.

C01 (Pa) C10 (Pa) D1 (Pa)

Constituent 1 5 5 7.5

Constituent 2 1 1 1.5

Figure 2 shows the stress-strain curves of the composite subject to uniaxial tension in the y1- and y2-
directions, respectively. It can be seen that the composite exhibits nonlinear stress-strain relations when
loaded in both the y1- and y2-directions but is stiffer when loaded in the y2-direction. This indicates that
the first constituent more significantly reinforces the composite in the y2-direction. In addition, it can be
seen that the tangent stiffness of the composite monotonically decreases with increasing F . It is hereby
of interest whether this is always the case for all the loading conditions. The answer to this question will
become clear later this section. At last, it can be seen that the results predicted by VAMUCH perfectly
agree with those predicted by ANSYS. This indicates that VAMUCH is capable of handling the problems
involving compressible hyperelastic constituents.

Figure 3 shows the stress-strain curves of the composite subject to equal-biaxial extension in the y1-
and y2-directions. It can be seen that the composite exhibits approximately linear stress-strain relations in
different directions, or to say, as F increases, the tangent stiffness of the composite almost remains constant.
Recall that, in Figure 2, the tangent stiffness monotonically decreases with increasing F . All these imply
that the trend of the stress-strain curve varies with the loading condition. In addition, it can be seen that
the composite here is approximately one time stiffer than that in Figure 2. This implies that the stiffness
of the composite also varies with the loading condition. At last, it can be seen that the results predicted
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Figure 2. Stress-strain curves of the composite subject to uniaxial tension in the y1- and y2-direction.

by VAMUCH perfectly agree with those predicted by ANSYS. This indicates that VAMUCH is capable of
handling the problems involving complex loading conditions.

Figure 4 shows the stress-strain curves of the composite subject to equal-triaxial extension. It can be
seen that the tangent stiffness of the composite rapidly increases with increasing F . In fact, the tangent
stiffness increases so rapidly that, as F attains 1.5, P11 and P22 both attain very high values. This not only
validates the findings obtained above but also implies that, even though the composite is compressible, it is
not easily deformed to a large extent when subject to equal-triaxial extension. At last, it can be seen that
the results predicted by VAMUCH perfectly agree with those predicted by ANSYS. This again indicates
that VAMUCH is capable of handling the problems involving complex loading conditions.

B. Quasi-Incompressible Hyperelastic Constituents

According to numerous experimental observations, many hyperelastic materials are nearly incompressible.
It is hereby of great practical value to solve the problems involving incompressible or quasi-incompressible
hyperelastic constituents. Recall that κ and μ are related to C01, C10, and D1 by Eq. (58). It is easy to see
that, for a quasi-incompressible Mooney-Rivlin solid, D1 is much greater than C01 and C10. This requires a
homogenization approach to be of high accuracy. It is hereby of interest whether VAMUCH can meet this
high standard. Specifically, let the two constituents of the binary composite become quasi-incompressible,
and let the material parameters of the two constituents take the values listed in Table 2, where D1 is set to
be a penalty parameter here.

Table 2. Material parameters of the constituents.

C01 (Pa) C10 (Pa) D1 (Pa)

Constituent 1 5 5 1000

Constituent 2 1 1 1000

Figure 5 shows the stress-strain curves of the composite subject to uniaxial tension in the y1- and y2-
directions, respectively. It can be seen that the stress-strain curves here are of similar trends as those in
Figure 2 except that the composite is much stiffer here and exhibits almost the same stress-strain relation
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Figure 3. Stress-strain curves of the composite subject to equal-biaxial extension in the y1- and y2-directions.
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Figure 4. Stress-strain curves of the composite subject to equal-triaxial extension.
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when loaded in different directions. This indicates that, as the constituents are set to be quasi-incompressible,
the composite becomes more isotropic. In addition, it can be seen that the results predicted by VAMUCH
agree well with those predicted by ANSYS. This indicates that VAMUCH is capable of handling the problems
involving quasi-incompressible hyperelastic constituents. Last but not least, as addressed in Appendix A,
the explicit expression for the second elasticity tensor, C, remains valid for all the hyperelastic material
models for which Eq. (66) is applicable. This enables VAMUCH to handle the problems involving many
other constitutive relations for the constituents, which might be very complex.

�
�
�

�

� ������

� ������

� ���	�

� ���	�

Figure 5. Stress-strain curves of the composite subject to uniaxial tension in the y1-direction.

VII. Conclusions

In this paper, VAMUCH, a general-purposemicromechanics approach, has been enabled to handle various
problems of hyperelastic heterogeneous materials undergoing finite deformation. The rate form of the con-
stitutive relations for a constituent, which is amendable to various hyperelastic material models, is derived.
The rate form of the VAMUCH formulation is derived, while the corresponding code structure is devel-
oped. The applicability, power, and accuracy of the current VAMUCH are validated using examples such as
predicting the stress-strain curves of binary composites consisting of compressible and quasi-incompressible
hyperelastic constituents. The current VAMUCH is found to be capable of handling the problems involving
complex constitutive relations for the constituents and complex loading conditions. VAMUCH provides a
powerful and convenient tool for scientists and engineers to efficiently and accurately solve the problems of
hyperelastic heterogeneous materials. More sophisticated user-defined material models can be implemented
into it.
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Appendix

A. Second Elasticity Tensor

It is beneficial to first introduce some fundamentals of tensor calculus. Specifically, let A, B, and C denote
three arbitrary second-order tensors. It can be verified that

(A⊗B) : C = (A : B)C = (B : C)A. (59)

Let A further be invertible. It can be verified that

∂

∂A
(detA) = (detA)A−T . (60)

In addition, let I1, I2, and I3 denote the first, second, and third invariants of A, respectively. Note that, by
definition,

I1 = trA, I2 =
1

2

[
tr2A− tr

(
A2

)]
, I3 = detA. (61)

It can be verified that
∂I1
∂A

= I,
∂I2
∂A

= I1I−AT ,
∂I3
∂A

= (detA)A−T . (62)

At last, it can be verified that
∂A−1

ji

∂Akl
= −A−1

li A−1
jk . (63)

In addition, if A is symmetric, Eq. (63) can be rewritten as

∂A−1
ij

∂Akl
= −1

2

(
A−1

ik A−1
jl +A−1

il A−1
jk

)
≡ −(

A−1 
A−1
)
ijkl

. (64)

Moreover, it can also be verified that

∂A−1

∂A
: A⊗A−1 = −A−1 ⊗A−1. (65)

The details on the derivation of Eqs. (59)–(65) can be found in Ref. [34].
Recall that, if the constituent exhibits uncoupled volumetric and isochoric behaviors, W can be expressed

as
W

(
Ī1, Ī2, J

)
= W v (J) +W i

(
Ī1, Ī2

)
, (66)

where

Ī1 = trC̄, Ī2 =
1

2

[
tr2C̄− tr

(
C̄2

)]
, Ī3 = det C̄ = 1. (67)

According to Eq. (62),
∂Ī1

∂C̄
= I and

∂I2

∂C̄
= I1I− C̄T = I1I− C̄. (68)

It can be verified that
∂J

∂C
=

J

2
C−T =

J

2
C−1, (69)

while it is beneficial to write
∂J− 2

3

∂C
= −J− 2

3

3
C−1 (70)

and
∂C̄

∂C
=

∂

∂C

(
J− 2

3C
)
= J− 2

3I +C⊗ ∂J− 2
3

∂C
= J− 2

3

(
I − 1

3
C⊗C−1

)
≡ J− 2

3KT , (71)

where I denotes the fourth-order identity tensor, and

K = I − 1

3
C−1 ⊗C (72)

14 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
14

-1
33

5 

DISTRIBUTION A: Distribution approved for public release.



is a fourth-order projection operator with respect to the reference configuration.34

Following Ref. [34], substituting Eq. (26) into Eq. (26) gives

S = 2
∂W

∂C
= 2

∂W v

∂C
+ 2

∂W i

∂C
≡ Sv + Si, (73)

where Sv and Si denote the volumetric and isochoric parts of S, respectively. For notational convenience,
let

p = −dW v

dJ
(74)

and

S̄ = 2
∂W i

∂C̄
= 2

(
∂W i

∂Ī1

∂Ī1
∂C̄

+
∂W i

∂Ī2

∂Ī2
∂C̄

)
= 2

[(
∂W i

∂Ī1
+ Ī1

∂W i

∂Ī2

)
I− ∂W i

∂Ī2
C̄

]
. (75)

It can be verified that p actually denotes the hydrostatic pressure.34 Sv and Si can be expressed using the
chain rule as

Sv = 2
∂W v

∂C
= −2p

∂J

∂C
= −JpC−1 (76)

and

Si = 2
∂W i

∂C
= S̄ :

∂C̄

∂C
= J− 2

3 S̄ : KT = J− 2
3K : S̄, (77)

respectively.
Recall that, by definition,

C = 4
∂2W

∂C∂C
= 2

∂S

∂C
. (78)

Following Ref. [34], substituting Eq. (73) into Eq. (79) gives

C = 2
∂S

∂C
= 2

∂Sv

∂C
+ 2

∂Si

∂C
≡ Cv + Ci, (79)

where Cv and Ci denote the volumetric and isochoric parts of C, respectively. Cv can be expressed as

Cv = 2
∂Sv

∂C
= 2

∂

∂C

(−JpC−1
)
= −2C−1 ⊗

(
p
∂J

∂C
+ J

∂p

∂C

)
− 2Jp

∂C−1

∂C
. (80)

Eqs. (66) and (74) implies that p is a function of J . ∂p/∂C can hereby be expressed using the chain rule as

∂p

∂C
=

dp

dJ

∂J

∂C
=

1

2
J
dp

dJ
C−1. (81)

In addition, replacing A in Eq. (64) with C gives

∂C−1

∂C
= −C−1 
C−1. (82)

Substituting Eqs. (81) and (82) into (80) gives

Cv = −J

(
p+ J

dp

dJ

)
C−1 ⊗C−1 + 2JpC−1 
C−1. (83)

Ci can be expressed as

Ci = 2
∂Si

∂C
= 2

∂

∂C

(
J− 2

3K : S̄
)
= 2

(
K : S̄

) ⊗ ∂J− 2
3

∂C
+ 2J− 2

3
∂

∂C

(
K : S̄

)
. (84)

The first term to the right of the last equal sign in Eq. (84) can be expressed as

2
(
K : S̄

) ⊗ ∂J− 2
3

∂C
= −2

3

(
J− 2

3K : S̄
)
⊗C−1 = −2

3
Si ⊗C−1, (85)
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while the second term can be expressed using Eq. (59) and the chain rule as

2J− 2
3

∂

∂C

(
K : S̄

)
= 2J− 2

3
∂

∂C

[
S̄− 1

3

(
C−1 ⊗C

)
: S̄

]
= 2J− 2

3
∂

∂C̄

[
S̄− 1

3

(
C : S̄

)
C−1

]
:
∂C̄

∂C
.

= 2J− 4
3

{
∂S̄

∂C̄
− 1

3

∂

∂C̄

[(
C : S̄

)
C−1

]}
: KT .

(86)

For notational convenience, let

C̄ = 2J− 4
3
∂S̄

∂C̄
. (87)

The second term in the bracket to the right of the last equal sign in Eq. (86) can be expressed as

∂

∂C̄

[(
C : S̄

)
C−1

]
= C−1 ⊗ ∂

∂C̄

(
C : S̄

)
+

(
C : S̄

) ∂C−1

∂C̄
. (88)

The first term to the right of the equal sign in Eq. (88) can be expressed as

C−1 ⊗ ∂

∂C̄

(
C : S̄

)
= C−1 ⊗

(
∂C

∂C̄
: S̄

)
+C−1 ⊗C :

∂S̄

∂C̄
= J

2
3C−1 ⊗ S̄+

J
4
3

2
C−1 ⊗C : C̄, (89)

while the second term can be expressed using the chain rule as

(
C : S̄

) ∂C−1

∂C̄
=

(
C : S̄

) ∂C−1

∂C
:
∂C

∂C̄
= −J

2
3

(
C : S̄

)
C−1 
C−1. (90)

Substituting Eqs. (87), (89), and (90) into Eq. (86) and rearranging the equation give

2J− 2
3

∂

∂C

(
K : S̄

)
=

(
I − 1

3
C−1 ⊗C

)
: C̄ : KT − 2

3
J− 2

3C−1 ⊗ S̄ : KT

+
2

3
J− 2

3

(
C : S̄

)
C−1 
C−1 : KT .

(91)

It can be obtained from Eq. (65) that

C−1 
C−1 : KT = −∂C−1

∂C
:

(
I − 1

3
C⊗C−1

)
= C−1 
C−1 − 1

3
C−1 ⊗C−1 ≡ L, (92)

where L is a fourth-order modified projection operator defined in Ref. [34]. Substituting Eqs. (72), (77), and
(92) into Eq. (91) gives

2J− 2
3

∂

∂C

(
K : S̄

)
= K : C̄ : KT − 2

3
C−1 ⊗ Si +

2

3
J− 2

3

(
C : S̄

)
L. (93)

Substituting Eqs. (86) and (93) into Eq. (84) and rearranging the equation give

Ci = K : C̄ : KT +
2

3
J− 2

3

(
C : S̄

)
L− 2

3

(
C−1 ⊗ Si + Si ⊗C−1

)
. (94)

Substituting Eqs. (83) and (94) into Eq. (79) gives the explicit expression for C as

C = − J

(
p+ J

dp

dJ

)
C−1 ⊗C−1 + 2JpC−1 
C−1

+K : C̄ : KT +
2

3
J− 2

3

(
C : S̄

)
L− 2

3

(
C−1 ⊗ Si + Si ⊗C−1

)
.

(95)

More details on the derivation of Eq. (95) can be found in Ref. [34].
It is worth notice that Eq. (95) remains valid for all the hyperelastic material models for which Eq. (66)

is applicable. Once the hyperelastic material model is specified, the expressions for the unknowns in Eq. (95)
(i.e., p, dp/dJ , S̄, and C̄) can be easily obtained. For example, for the Mooney-Rivlin model,

p = −2D1 (J − 1) ,
dp

dJ
= −2D1, (96)

S̄ = 2
[(
C10 + Ī1C01

)
I− C01C̄

]
, C̄ = 4C01J

− 4
3 (I⊗ I− I) . (96′)

This enables VAMUCH to handle the problems involving complex constitutive relations for the constituents.
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a b s t r a c t

The objective of this paper is to develop a micromechanics approach to homogenizing elastoplastic com-
posites. A rigorous second-order radial return algorithm, which can handle elastic and plastic anisotropy
and nonlinear kinematic hardening, is developed. A variational statement for homogenization is formu-
lated using the variational asymptotic method, discretized in a finite-dimensional space, and solved using
a multilevel Newton–Raphson method. The versatility and accuracy of the present approach are demon-
strated through homogenizing long fiber-, particle-, and short fiber-reinforced metal matrix composites
(MMCs). Different types of reinforcement are found to differently affect the response of MMCs. The pre-
sent approach is found to be capable of handling various microstructures, complex material models, com-
plex loading conditions, and complex loading paths. More sophisticated material models can be
implemented in it.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composites are widely used in structural components due to
their capability of exhibiting low strength-to-weight ratio,
improved thermal conductivity, improved permittivity, or even
negative Poisson’s ratio. Many of them (e.g., metal matrix compos-
ites (MMCs), reinforced concrete, and metal foams) consist of
elastoplastic constituents, whose deformation is often accompa-
nied by material nonlinearity and history dependency. One major
challenge is to predict their global response from the microstruc-
tural details: first, it is often difficult or expensive to experimen-
tally measure such response; second, the scales of macroscopic
structures are usually several orders of magnitude greater than
those of heterogeneities, making it computationally prohibitive
to capture all the microstructural details. All these lead one to seek
for a micromechanics approach to solving such problems on the
microscopic scale.

Elaborate efforts have been devoted to developing various
analytical micromechanics approaches. The mean-field
homogenization (MFH) is a popular one. Its nonlinear variants
are classified into two groups: the tangent approach [23,35,27]
and the secant approach [8,45]. The tangent approach involves
linearizing the local constitutive relations with the stress rates,
the strain rates, and a tangent modulus, and the secant approach
with the stresses, the strains, and a secant modulus (sometimes

plus pre-stresses/strains). Unfortunately, both approaches tend to
make too stiff predictions because they assume uniform local con-
stitutive relations over each phase. Suquet and Ponte Castañeda
[44,38] developed a second-order variational homogenization
method, which involves minimizing a second-order estimate of
the strain energy potential of a properly selected ‘‘linear compar-
ison composite”, and made close predictions for high-contrast
composites (e.g., rigidly reinforced composites and porous materi-
als). Several authors [14,10,11,4] implemented the radial return
algorithm in this method and made it more versatile. Despite suc-
cess, these approaches require a two-phase composite embedded
with sparsely distributed inclusions and are hereby incapable of
homogenizing composites with more complex microstructures
(e.g., woven composites and open-cell foams). Meanwhile, they
do not recover the local fields, either.

Several semi-analytical and computational approaches have
been developed to overcome these drawbacks. Such approaches
often involve finely discretizing a unit cell (UC) in a finite-
dimensional space such that the microstructural details are better
captured. The transformation field analysis (TFA) [15,16] is a pop-
ular semi-analytical approach. It involves treating the plastic strain
as a uniform eigenstrain over each phase, computing the local
fields from a predetermined eignenstain field (just like solving a
thermoelastic problem), and updating the plastic strain with the
flow rule. Dvorak et al. [17] and Fish et al. [19] implemented TFA
in the finite element method (FEM) and made TFA very versatile.
Michel and Suquet [32,33] later developed the nonuniform TFA,
which allows a nonuniform eigenstrain over each phase, and made
closer predictions. Despite success, TFA and its variations still

http://dx.doi.org/10.1016/j.compstruct.2015.07.117
0263-8223/� 2015 Elsevier Ltd. All rights reserved.
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cannot perfectly handle nonlinear kinematic hardening, complex
loading conditions, and complex loading paths [26]. The method
of cells (MOC) or the generalized method of cells (GMC) [1,2] is
another semi-analytical approach. It involves treating the plastic
strain as an eigenstrain, discretizing a UC into numerous rectangu-
lar (2D) or parallelepiped (3D) subcells, and approximating the
local quantities with their averages over each subcell. Despite
some advantages, MOC or GMC does not make very accurate
predictions because their microstructural details and local fields
are captured without sufficient accuracies.

The formal asymptotic homogenization method [5] is a popular
computational approach. It involves asymptotically expanding the
displacements on multiple scales and solving the resulting partial
differential equation (PDE) on each scale. It possesses two major
advantages: first, the asymptotic expansion allows periodic bound-
ary conditions rigorously to be applied (see Michel et al. [30] for
more details); second, although solving PDEs makes it not straight-
forward to implement this method in FEM, Guedes and Kikuchi
[22] still accomplished it, making the method very versatile.
Suquet [43] extended its applications to the nonlinear regime.
Several authors [46,21] developed its nonlinear variants with
continuum tangent operators and explicit time integration meth-
ods, but neither continuum tangent operators nor explicit time
integration methods behave well in elastoplastic problems.
Jansson [25] developed another nonlinear variant with the
Newton–Raphson method and made close predictions.

The fast Fourier transform (FFT)-based approach [36] is another
popular computational approach. It allows the direct use of a dig-
ital image of microstructure by discretizing the UC into numerous
so-called ‘‘voxels” (a combination of ‘‘volume” and ‘‘pixel”). Eyre
and Milton [18] and Michel et al. [31] enabled it to homogenize
high-contrast composites with satisfactory convergence speed.
Despite success, this approach requires elastically isotropic phases,
for which a Green operator is explicitly known in Fourier space.
Meanwhile, its capability of handling nonlinear kinematic harden-
ing has not been demonstrated yet.

Several authors also developed computational approaches
based on the displacement-based finite element analysis (FEA).
Here it becomes challenging to apply periodic boundary conditions
because the displacements are not necessarily periodic. Markovic
and Ibrahimbegovic [29] developed an approach to handling the
micro–macro transitions in multiscale FEA, yet requiring kinematic
or static boundary conditions at the UC level. Sun and Vaidya [42]
developed an approach to applying periodic boundary conditions
to the UCs of long fiber-reinforced composites, and Smit et al.
[41] developed a similar approach applicable to axisymmetric 2D
UCs undergoing finite deformation. Miehe [34] developed an impli-
cit approach applicable to 3D UCs undergoing finite deformation,
requiring the Newton–Raphson iteration, and Xia and his cowork-
ers [49,50] developed an explicit approach applicable to 3D UCs,
requiring solving a master stiffness equation for six times.
Despite success, neither approach applicable to 3D UCs can be
straightforwardly implemented in implicit time integration
methods.

The variational asymptotic homogenization method [7,51] is
another computational approach. It involves asymptotically ana-
lyzing a variational statement of a composite and solving the
resulting simplified functional equation governing the response
of the UC. Its first-order approximation is actually mathematically
equivalent to the formal asymptotic homogenization method and
hereby possesses similar advantages. Moreover, since both this
method and FEM are inherently variational approaches, it is more
straightforward to implement this method in FEM. Zhang and Yu
[52] enabled it to homogenize elasto-viscoplastic composites, and
it can be further extended to homogenize elastoplastic composites.

The objective of this paper is to develop a micromechanics
approach to homogenizing elastoplastic composites. A rigorous
second-order radial return algorithm, which can handle elastic
and plastic anisotropy and nonlinear kinematic hardening, is
developed. A variational statement for homogenization is
formulated using the variational asymptotic method, discretized
in a finite-dimensional space, and solved using a multilevel
Newton–Raphson method. The versatility and accuracy of the pre-
sent approach are demonstrated through homogenizing long fiber-
, particle-, and short fiber-reinforced MMCs. The effect of the type
of reinforcement on the response of an MMC will be evaluated.

2. Thermodynamics and plasticity model

Letw denote the Helmholtz free energy per unit mass of a mate-
rial. It can be treated as a function of a suitable set of independent
state variables characterizing the elastic and plastic behavior of the
material, e.g.,

w ¼ w �e;a; rð Þ; ð1Þ
where �e denotes the elastic strain tensor, a is a second-order ten-
sor accounting for kinematic hardening, and r is a scalar accounting
for isotropic hardening. Assume that the material exhibits uncou-
pled elastic and plastic behavior. w can then be decomposed into
its elastic and plastic hardening parts, i.e.,

w �e;a; rð Þ ¼ we �
eð Þ þ wp a; rð Þ: ð2Þ

The thermodynamic forces conjugate to the state variables in Eq. (1)
are defined as

r ¼ q
@w
@�e

¼ q
@we

@�e
; X ¼ q

@w
@a

¼ q
@wp

@a
; R ¼ q

@w
@r

¼ q
@wp

@r
; ð3Þ

where r denotes the stress tensor, X denotes the back stress tenor,
R is related to the current yield stress, and q denotes the density of
the material.

For isothermal deformation, the Clausius–Duhem inequality
writes

U ¼ r : _�� q _w P 0; ð4Þ
where U denotes the dissipation per unit volume, and the overdot
denotes the time derivative of a quantity. The strain tensor, �, can
be decomposed into its elastic and plastic parts, i.e.,

� ¼ �e þ �p: ð5Þ
Combining Eqs. (2)–(5) gives

U ¼ r : _�p � X : _a� R _r P 0: ð6Þ
Let the yield criterion write

f r;X;Rð Þ 6 0: ð7Þ
Assume a pseudo-plastic potential, F r;X;Rð Þ, and a plastic
multiplier, _k, yielding plastic evolution laws [9]

_�p ¼ _k
@F
@r

; _a ¼ � _k
@F
@X

; _r ¼ � _k
@F
@R

: ð8Þ

Once qwp; f , and F are specified, the plastic evolution laws can be
fully determined.

Without loss of generality, let the material obey Hill’s yield
criterion,

f r;X;Rð Þ ¼ beq � ry � R 6 0; ð9Þ
where

beq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
b0 : H : b0

r
ð10Þ
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denotes a Hill measure of b ¼ r� X with �ð Þ0 denoting the deviatoric
part of the tensor and H denoting the fourth-order anisotropy ten-
sor, and ry denotes the initial yield stress. Note that H can be
obtained from the so-called R-value (see Appendix A for more
details). Meanwhile, set [9]

F ¼ f þ 3a
4C

X : X þ R2

2Q
; ð11Þ

where C and a are two kinematic hardening parameters, and Q is an
isotropic hardening parameter. Substituting Eq. (11) into Eq. (8)
gives

_�p ¼ _kn; _a ¼ _�p � 3a
2C

X _k; _r ¼ 1� R
Q

� �
_k; ð12Þ

where n ¼ @f=@r ¼ @F=@r denotes the normal to the yield surface.
Substituting Eq. (10) into the modified plastic work equivalence
principle,

b : _�p ¼ beq _p; ð13Þ
gives the accumulated plastic strain rate as [6]

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_�p : H�1 : _�p

r
: ð14Þ

It is beneficial to find the relation between _k and _p. n can be
expressed as [6]

n ¼ @f
@r

¼ @beq

@r
¼ 1

2beq

@b2
eq

@r

¼ 1
2beq

3
2
2

@

@r
b0 : H : b0

� �
¼ 3

2beq
J : H : b0: ð15Þ

where J ¼ I � 1
3 I � I denotes the fourth-order deviatoric projec-

tion operator with I and I denoting the fourth- and second-order
identity tensors, respectively. Substituting the first equation of Eq.
(12) into Eq. (13) gives

b : _kn
� �

¼ beq _p: ð16Þ

Substituting Eq. (15) into Eq. (16) gives

beq
_k ¼ beq _p or _k ¼ _p; ð17Þ

which implies that plastic deformation is irreversible [40]. The
Kuhn–Tucker conditions,

f 6 0; _k P 0; _kf ¼ 0; ð18Þ
also characterize this nature.

Also set [9]

qwp ¼
1
3
Ca : aþ 1

2
bQr2; ð19Þ

where b is another isotropic hardening parameter. Substituting Eq.
(19) into the last two equations of Eq. (3) gives

X ¼ 2
3
Ca and R ¼ bQr: ð20Þ

Substituting the last two equations of Eq. (12) into the rate form of
Eq. (20) and noting that _k ¼ _p give

_X ¼ 2
3
C _�p � aX _p and _R ¼ b Q � Rð Þ _p; ð21Þ

which are the Chaboche hardening law [12] and the rate form of the
Voce hardening law [47], respectively. Integrating the second equa-
tion of Eq. (21) with respect to time gives the Voce hardening law,

R ¼ Q 1� exp �bpð Þ½ �: ð22Þ

Till now, some fundamentals of thermodynamics have been
briefly introduced, and the plasticity model has been specified. In
the next section, a rigorous second-order radial return algorithm
will be developed.

3. Radial return algorithm

The radial return algorithm is a widely used integration scheme
for elastoplastic constitutive relations. If there does not exist non-
linear kinematic hardening, it is implicit and unconditionally
stable; if there does, it has to explicitly update its variables and
becomes semi-implicit and conditionally stable. In the latter case,
a second-order algorithm is supposed to behave better than a
first-order one because high order generally means high accuracy
and rapid convergence. The traditional second-order algorithm
(based on the midpoint rule), however, was found to behave worse
than the first-order one (based on the backward Euler method) for
long-time integration [3]. This is probably because the traditional
algorithm imprecisely updates the back stresses. In this section, a
rigorous second-order algorithm, which can handle elastic and
plastic anisotropy and nonlinear kinematic hardening, will be
developed.

Suppose that all the variables at a given instant of time, tn, are
known. The task is to find the variables at tnþ1 ¼ tn þ Dt, where
D �ð Þ denotes the increment in a quantity over this time interval.
For notational convenience, omit the subscript nþ 1 on each
quantity at tnþ1. The trial stress tensor, rtr , is defined as

rtr ¼ Ce : �� �p
n

� �
; ð23Þ

where Ce denotes the fourth-order elastic stiffness tensor. The inte-
gration scheme can be formulated as solving the following equation
set for r and Dp:

r ¼ rtr � Ce : D�p; ð24Þ

f ¼ beq � ry � R ¼ 0; ð240 Þ
where

D�p ¼ Dp
2

nn þ nð Þ; ð25Þ

_X ¼ 2
3
C _�p � aX _p: ð250 Þ

Its major distinction from the traditional one is that X is a solution
to an ordinary differential equation (ODE) rather than [3]

DX ¼ 2
3
CD�p � aXDp: ð26Þ

Note that, even if D�p and Dp are second-order accurate, Eq. (26)
relates DX to them via a first-order method and hereby provides
an imprecise second-order approximation of X. This can make an
algorithm inaccurate and instable for long-time integration.

Note that the solution to

dy
dx

þ PðxÞy ¼ QðxÞ ð27Þ

is

y ¼ e�
R

PðxÞdx
Z

e
R

PðxÞdxQðxÞdxþ C1

	 

: ð28Þ

Combining the second equation of Eqs. (25), (27), and (28) gives

X ¼ e�ap 2
3
C
Z t

0
eap sð Þ _�p sð Þdsþ C2

	 

: ð29Þ

Setting t ¼ tn in Eq. (29) and rearranging the equation give
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C2 ¼ eapnXn � 2
3
C
Z tn

0
eap sð Þ _�p sð Þds: ð30Þ

Substituting Eq. (30) into Eq. (29) gives

X ¼ e�aDpXn þ 2
3
Ce�ap

Z t

tn

eap sð Þ _�p sð Þds: ð31Þ

The integral in Eq. (31) can be approximated using the midpoint
method asZ t

tn

eap sð Þ _�p sð Þds ¼ ea pnþDp
2ð Þ _�p tn þ Dt

2

� �
Dt ¼ ea pnþDp

2ð ÞD�p: ð32Þ

Substituting Eq. (32) into Eq. (31) gives

X ¼ e�aDpXn þ 2
3
Ce�

aDp
2 D�p: ð33Þ

Substituting the first equation of Eq. (25) into Eq. (33) gives

X b;Dpð Þ ¼ e�aDpXn þ C
3
e�

aDp
2 Dp nn þ nð Þ: ð34Þ

Note that the only additional approximation involved in the above
derivation arises in Eq. (32) and is second-order accurate. Eq. (34)
hereby provides a rigorous second-order approximation of X. In
addition, it is beneficial to write

@X
@b

¼ C
3
e�

aDp
2 Dp

@n
@b

; ð35Þ

@X
@Dp

¼ �ae�aDpXn þ C
3

1� aDp
2

� �
e�

aDp
2 nn þ nð Þ; ð350 Þ

where

@n
@b

¼ @

@b

3
2beq

J : H : b0
 !

¼ 3
2

@

@b

1
beq

 !
�J : H : b0 þ 3

2beq
J : H :

@b0

@b

¼ 3
2

� 1
b2
eq

@beq

@b

 !
�J : H : b0 þ 3

2beq
J : H : J

¼ 1
beq

3
2
J : H : J � n� n

� �
: ð36Þ

The task can then be reformulated as solving the following
equation set for b and Dp:

W b;Dpð Þ ¼ b� rtr þ Dp
2

Ce : nn þ nð Þ þ X b;Dpð Þ ¼ 0; ð37Þ

f b;Dpð Þ ¼ beq � ry � R ¼ 0: ð370 Þ
Despite similarities, Eq. (37) is distinct to the corresponding equa-
tion set in Doghri [13] from the following three aspects:

1. it involves elastic anisotropy because Ce takes a general
form;

2. it involves plastic anisotropy because beq is a Hill (rather
than von Mises) measure of b;

3. it is rigorously second-order (rather than first-order)
accurate.

Here the Newton–Raphson method is used for problem solving.
Require

W bold þ db;Dpold þ dDpð Þ ¼ W bold;Dpoldð Þ þ @W
@b

: dbþ @W
@Dp

dDp ¼ 0;

ð38Þ

f boldþdb;DpoldþdDpð Þ¼ f bold;Dpoldð Þþn :db� dR
dDp

dDp¼0; ð380 Þ

where

@W
@b

¼ I þ Dp
2

Ce :
@n
@b

þ @X
@b

; ð39Þ

@W
@Dp

¼ 1
2
Ce : nn þ nð Þ þ @X

@Dp
: ð390 Þ

Introduce matrix notation

b ¼ b11 b12 b22 b13 b23 b33b cT : ð40Þ
The matrix form of Eq. (38) writes

W bold;Dpoldð Þ
f bold;Dpoldð Þ

( )
þ J

db

dR
dDp dDp

8<
:

9=
; ¼ 0; ð41Þ

where

J ¼
@W
@b

@W
@Dp
dR
dDp

nT �1

2
4

3
5 ð42Þ

is a 7� 7 Jacobian matrix. Note that Eq. (41) is arranged so that J is
well-conditioned. Rearranging Eq. (41) gives

db

dR
dDp dDp

8<
:

9=
; ¼ �J�1

W bold;Dpoldð Þ
f bold;Dpoldð Þ

( )
: ð43Þ

The corrections can thenbe computed and added to the solutions, i.e.,

bnew ¼ bold þ db and Dpnew ¼ Dpold þ dDp: ð44Þ
Once the process is iterated to convergence, the variables are
updated as

D�p ¼ Dp
2

nn þ nð Þ; ð45Þ

X ¼ e�aDpXn þ e�
aDp
2
2
3
CD�p; ð450 Þ

r ¼ bþ X: ð4500 Þ
The consistent tangent operator awaits determination. Totally

differentiating both sides of Eq. (37) with respect to b;Dp, and �
gives

dW ¼ @W
@b

: dbþ @W
@Dp

dDp� Ce : d� ¼ 0; ð46Þ

df ¼ n : db� dR
dDp

dDp ¼ 0: ð460 Þ

Solving Eq. (46) for db and dDp gives

db ¼ @W
@b

þ
@W
@Dp � n

dR
dDp

" #�1

: Ce : d�; ð47Þ

dDp ¼ n : db
dR
dDp

: ð470 Þ

Meanwhile, one has

dr ¼ dbþ dX; ð48Þ

dX ¼ @X
@b

: dbþ @X
@Dp

dDp: ð480 Þ

Combining Eqs. (47) and (48) gives
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dr ¼ dbþ @X
@b

: dbþ @X
@Dp

dDp ¼ I þ @X
@b

þ
@X
@Dp � n

dR
dDp

" #
: db

¼ I þ @X
@b

þ
@X
@Dp � n

dR
dDp

" #
:

@W
@b

þ
@W
@Dp � n

dR
dDp

" #�1

: Ce : d�

� Calg : d� ð49Þ

where Calg denotes the fourth-order consistent tangent operator. It
can be verified that Calg fulfills the major and minor symmetries

(i.e., Calg
ijkl ¼ Calg

klij ¼ Calg
jikl ¼ Calg

ijlk).
Till now, a rigorous second-order radial return algorithm has

been developed. In the next section, a variational statement for
homogenizing elastoplasic composites will be formulated
using the variational asymptotic method, discretized in a
finite-dimensional space, and solved using a multilevel
Newton–Raphson method.

4. Variational asymptotic homogenization method

Consider an elastoplasic composite having an identifiable UC.
Note that an elastic constituent can be treated as an elastoplastic
one with an infinite initial yield stress. Introduce global
coordinates x ¼ x1; x2; x3ð Þ describing the macroscopic structure
and local coordinates y ¼ y1; y2; y3ð Þ describing the UC, and let y
be related to x by

y ¼ x=�; ð50Þ
where �� 1 denotes a scale ratio. Suppose that all the global and
local variables at tn are known. The task is to find the current
displacements within the UC, ui.

That a composite can be homogenized implies that ui has its
volume average over the UC, say �ui, i.e., [51]

�ui ¼ 1
X

Z
X
uidV � uih ih i; ð51Þ

where X denotes the domain occupied by the UC (with boundary
@X) and also its volume, and �h ih i denotes the volume average of a
quantity over X. ui can be asymptotically expanded into the sum
of �ui and a fluctuation function, vi, i.e.,

ui y; xð Þ ¼ �ui xð Þ þ �vi y; xð Þ; ð52Þ
where vi is a periodic function of y and may also depend on x, and
�vi must be asymptotically smaller than �ui. Note that Eq. (52) is not
assumed a priori but can be derived using the variational
asymptotic method [7]. Combining Eqs. (51) and (52) gives

vi

� �� � ¼ 0: ð53Þ
Although �vi negligibly affects ui, it may significantly affect the
derivatives of ui. Specifically,

@ui

@xj
¼ 1
�
@ui

@yj


x¼const

þ @ui

@xj


y¼const

¼ @�ui

@xj
þ @vi

@yj
þ �

@vi

@xj
; ð54Þ

where �@vi=@Xj is omissible because it negligibly contributes to the
integral of a state function over the UC (see Eq. (60)). By definition,

�ij ¼ 1
2

@ui

@xj
þ @uj

@xi

� �
: ð55Þ

Let

��ij ¼ 1
2

@�ui

@xj
þ @�uj

@xi

� �
and v ijjð Þ ¼

1
2

@vi

@yj
þ @vj

@yi

 !
: ð56Þ

Note that ��ij actually denotes the global strain tenor. Combining
Eqs. (52), (55), and (56) gives

�ij ¼ ��ij þ v ijjð Þ: ð57Þ
Define a state function, W, as

W _�ij
� � ¼ 1

2
_�ijCalg

ijkl
_�kl; ð58Þ

such that

dW ¼ _rijd _�ij: ð59Þ
It can be verified that external forces negligibly contribute to the
integral of W over the UC (see Eq. (60)). A variational principle
can then be created for elastoplastic heterogenous materials as:
among all the admissible velocities, the actual velocities make
functional

U ¼
Z
X
WdV � Wh i ð60Þ

an absolute minimum (see Washizu [48] for more details), i.e.,

dU ¼ @W
@ _�ij

d _�ij
� �

¼ _rijd _v ijjð Þ
� � ¼ _rijd _vi;j

� � ¼ 0 ð61Þ

and

d2U ¼ @2W
@ _�ij@ _�kl

d _�ijd _�kl

* +
¼ Calg

ijkld _�ijd _�kl
D E

P 0; ð62Þ

where �h i denotes the integral of a quantity over X. Note that the

inequality in Eq. (62) holds because Calg
ijkl is positive-definite.

Introduce the following matrix notations:

�� ¼ ��11 2��12 ��22 2��13 2��23 ��33b cT ; ð63Þ

@v1
@y1

@v1
@y2

þ @v2
@y1

@v2
@y2

@v1
@y3

þ @v3
@y1

@v2
@y3

þ @v3
@y2

@v3
@y3

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼

@
@y1

0 0

@
@y2

@
@y1

0

0 @
@y2

0

@
@y3

0 @
@y1

0 @
@y3

@
@y2

0 0 @
@y3

2
66666666666666664

3
77777777777777775

v1

v2

v3

8>>><
>>>:

9>>>=
>>>;

� Chv; ð63 0gÞ

where Ch denotes an operator matrix, and v denotes a column
matrix containing the components of the fluctuation function. Let
v be discretized in a finite-dimensional space as

v yi; xið Þ ¼ S yið ÞX xið Þ; ð64Þ
where S denotes the shape function, and X denotes a column matrix
containing the nodal values of the fluctuation function at all the
active nodes. Eq. (57) can be discretized as

� ¼ ��þ ChSX: ð65Þ
The task then becomes finding �� and X. Here a multilevel Newton–
Raphson method [39] is used for problem solving because:

1. �� and X are implicitly coupled, making it numerically pro-
hibitive to solve for them simultaneously;

2. this method fits a multiscale simulation well.

The method consists of an inner and an outer loop: in the inner
loop, �� is held fixed, and X is the variable; in the outer one, X is held
fixed, and some global unknowns are the variables. Note that, if �� is
fully prescribed (this is usually the case in multiscale simulations),
only the inner loop is needed. First consider the inner loop. The
incremental form of Eq. (61) writes
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dU	 ¼ Drijd Dvi;j

� �D E
¼ 0 ð66Þ

or

dU	 ¼ rij � rnð Þij
h i

d vi;j � vn

� �
i;j

h iD E
¼ rij � rnð Þij

h i
dvi;j

D E
¼ 0:

ð67Þ
Eq. (67) can be discretized as

dU	 ¼ dXT ChSð ÞT r Xð Þ � rn½ �
D E

¼ 0; ð68Þ

where r denotes the local stress column matrix. The second equal-
ity in Eq. (68) holds only if

Win Xð Þ ¼ ChSð ÞT r Xð Þ � rn½ �
D E

¼ 0: ð69Þ

Suppose that Eq. (69) is zeroed within each previous step. This
implies that

ChSð ÞTrn

D E
¼ 0: ð70Þ

Substituting Eq. (70) into Eq. (69) gives

Win Xð Þ ¼ ChSð ÞTr Xð Þ
D E

¼ 0: ð71Þ

The task of the inner loop is hereby solving Eq. (71) (rather than Eq.
(69) to eliminate the accumulation of errors) for X. Requiring

Win Xold þ dXð Þ ¼ Win Xoldð Þ þ @Win

@X
dX ¼ 0 ð72Þ

gives

@Win

@X
dX ¼ �Win Xoldð Þ; ð73Þ

where

@Win

@X
¼ ChSð ÞT @r

@X

� �
¼ ChSð ÞTD ChSð Þ
D E

� Dhh ð74Þ

with D denoting the 6� 6 instantaneous stiffness matrix condensed
from Calg . The corrections can then be computed and added to the
solution, i.e.,

Xnew ¼ Xold þ dX: ð75Þ
By definition, the global stress column matrix, �r, is given by

_�r ¼ @

@ _��
Wh ih i ¼ @W

@ _��

� �� �
¼ @ _�

@ _��

� �T
@W
@ _�

* +* +

¼ I þ ChS
@X
@��

� �T

_r

* +* +
¼ _rh ih i þ @X

@��

� �T

ChSð ÞT _r
D ED E

; ð76Þ

where I denotes an identity matrix. Substituting the rate form of
Eq. (71) into Eq. (76) gives

_�r ¼ _rh ih i or �r ¼
Z t

0

_�rdt ¼
Z t

0

_rh ih idt ¼ rh ih i: ð77Þ

Next consider the outer loop. �r and �� can be partitioned as

�r ¼ �ru

�rk

� �
and �� ¼

��k
��u

� �
; ð78Þ

respectively, where the subscripts k and u denote the known and
unknown components, respectively. Let

�r	 ¼ �ru

��u

� �
and ��	 ¼

��k
�rk

� �
; ð79Þ

respectively. Set �r	 to be the variable, and choose

Wout �r	ð Þ ¼ ��	 �r	ð Þ � �e	 ð80Þ

as the function to be zeroed in the outer loop, where �e	 denotes the
prescribed value of ��	 within the current load increment. Requires

Wout �r	
old þ d�r	� � ¼ ��	 �r	

old

� �þ d��	 � �e	 ¼ 0: ð81Þ
Substituting Eq. (80) into Eq. (81) gives

d��	 ¼ �Wout �r	
old

� �
: ð82Þ

It is beneficial to relate d�r	 to d��	. Combining Eqs. (49) and (77)
gives

d�r ¼ drh ih i ¼ @r
@�

@�
@��

� �� �
d�� ¼ Dh ih id�� � �Dd��; ð83Þ

where the third equality holds because X is held fixed. Eq. (83) can
be partitioned as

d�ru

d�rk

� �
¼

�Duk
�Duu

�Dkk
�Dku

" #
d��k
d��u

� �
: ð84Þ

Rearranging Eq. (84) gives

d�ru

d��u

� �
¼

�Duk � �Duu
�D�1
ku

�Dkk
�Duu

�D�1
ku

��D�1
ku

�Dkk
�D�1
ku

" #
d��k
d�rk

� �
ð85Þ

or

d�r	 ¼ �D	d��	: ð86Þ
Multiplying both sides of Eq. (82) by �D	 gives

d�r	 ¼ ��D	Wout �r	
old

� �
: ð87Þ

The corrections can then be computed and added to the solution, i.e.,

�r	
new ¼ �r	

old þ d�r	: ð88Þ
The whole process is iterated to convergence.

The multilevel Newton–Raphson method is not guaranteed to
converge to the solution and often gets ‘‘lost” if started far from
the solution. Fortunately, it can be embedded in a Euler–Newton
predictor–corrector method [20] for improved convergence. This
method consists of the following steps:

1. Euler predictor step—proceed in the tangent direction of the
loading path;

2. Newton corrector step—bring the predictions back to the
loading path.

More details on the Euler predictor step can be found in
Appendix B.

5. Numerical examples

In this section, the versatility and accuracy of the present
approach are demonstrated through homogenizing binary, long
fiber-reinforced, and particle-reinforced MMCs. For validation pur-
poses, the predictions by the present approach will be compared
with those by ANSYS.

5.1. Long fiber-reinforced MMC

First consider a long fiber-reinforced MMC consisting of an
elastoplastic aluminum matrix and numerous cylindrical, elastic
SiC long fibers arranged in a square array, with a volume fraction
of fibers of 10%. Here let aluminum only exhibit combined
isotropic-kinematic hardening (see Eqs. (21) and (22)), and follow-
ing Zhao and Lee [53], let the material parameters of SiC and alu-
minum take the values listed in Table 1, where E and m denote
Young’s modulus and Poisson’s ratio, respectively. Let the UC of
this composite consist of a square matrix and a circular fiber
located at its center. Choose the center of the UC as the origin of
the local coordinates, yi, and the fiber direction and the length
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and width directions of the UC as the y1-, y2-, and y3-directions,
respectively.

In the present approach, the 2D UC is meshed with 4-node
quadrilateral elements having 3 degrees of freedom (DOFs) at each
node, and the meshed UC consists of 1216 elements (see Fig. 1(a)).
In ANSYS, a 3D UC is meshed with 8-node hexahedra elements
(SOLID45), and the meshed UC also consists of 1216 elements
(see Fig. 1(b)). Both finite element models are found to be capable
of producing converged results.

Fig. 2 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial deformation in the y1- and y2-directions,
respectively. Let each loading path consist of the following steps:

1. initial loading—the major strain is increased from 0 to
0.005;

2. initial unloading—the major strain is decreased from 0.005
to 0;

3. reverse loading—the major strain is decreased from 0.0 to
�0:005;

4. reverse unloading—the major strain is increased from
�0:005 to 0.

It can be seen that the composite exhibits a bilinear stress–strain
relationship when loaded in the y1-direction and a nonlinear one
when loaded in the y2-direction. This can be understood by inves-
tigating the stress distribution in the matrix. Specifically, in the for-
mer case, this stress distribution remains approximately uniform
during continued deformation, causing the matrix to yield simulta-
neously everywhere; in the latter case, it remains highly nonuni-
form, causing the matrix to yield successively at different
locations. In addition, in Fig. 2, the composite exhibits a pseudo
Bauschinger effect. This effect is said to be ‘‘pseudo” because its
cause is not metallurgical but the local residual stresses due to ini-
tial loading [37]. At last, in Fig. 2, the predictions by the present
approach perfectly agree with those by ANSYS. This indicates that
the present approach can handle complex loading paths.

Fig. 3 shows the stress–strain hysteresis loops of the composite
undergoing longitudinal shear deformation. It can be seen that the
stress–strain relationship here is also nonlinear. Therefore, the cor-
responding discussion for Fig. 2 holds here. Meanwhile, the present
approach actually makes the same predictions using a 2D and a 3D
UC, while ANSYS has to use a 3D UC to handle out-of-plane loads
and displacements. In Fig. 3, the predictions by the present
approach agree well with those by ANSYS. Figs. 2 and 3 indicate
that the present approach can homogenize long fiber-reinforced
MMCs using 2D UCs.

Next let aluminum also exhibit plastic transverse isotropy in
the y2y3 plane with its Ri’s taking the three sets of values listed
in Table 2 in three cases (see Appendix A for more details).

Fig. 4 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial deformation in the y2-direction. In fact, the
following findings can be obtained after some calculation:

1. all sets of values yield the same initial yield stress in the y1-
direction;

2. the initial yield stress in the y2-direction decreases with
increasing R3.

Accordingly, in Fig. 4, as R3 increases, the composite becomes more
flexible. Meanwhile, in Fig. 4, the predictions by the present
approach agree well with those by ANSYS. Figs. 2 and 4 indicate
that the present approach can handle complex material models.

Fig. 5 shows the initial yield surfaces of the composite, where
�r11 ¼ 0. It can be seen that these yield surfaces all have prominent

Table 1
Material parameters of SiC and aluminum.

Elastic constants

E GPað Þ m

SiC 490 0.17
Aluminum 65 0.3

Plastic parameters of aluminum

ry MPað Þ Q MPað Þ b C MPað Þ a

154 140.2 7.094 7019 118.6

Fig. 1. Meshed UCs of a long fiber-reinforced MMC.

L. Zhang, W. Yu / Composite Structures 133 (2015) 947–958 953

DISTRIBUTION A: Distribution approved for public release.



vertices. In fact, a point on a yield surface here is determined by
finding the location where the matrix starts yielding and the global
stresses at the onset of initial yielding, both of which depend on
the stress distribution in the matrix. Let h denote the inclination
angle of a proportional loading path in the �r22 �r33-plane. The
numerical results indicates that the stress distribution is highly
nonuniform and very sensitive to h. This causes the location of an
aforementioned point to irregularly vary with varying h. The class
of such points, an initial yield surface, hereby tends to be
non-smooth. In addition, for aluminum, as R3 increases, the yield
surface remains unchanged at h ¼ 45
 but shrinks along h ¼ 135
.

Accordingly, for the composite, as R3 increases, the yield surface
exhibits a similar trend except that it slightly shrinks along
h ¼ 45
 due to the existence of fibers (see Fig. 5). At last, in
Fig. 5, the predictions by the present approach agree well with
those by ANSYS. This indicates that the present approach can han-
dle complex loading conditions and recover the local fields.

5.2. Particle-reinforced MMC

Next consider a particle-reinforced MMC consisting of an alu-
minum matrix and numerous spherical SiC particles arranged in
a cubic array, with a volume fraction of particles of 10%. Let the
material parameters of SiC and aluminum take the values listed
in Table 1, and let the UC of this composite consist of a cubic matrix
and a spherical particle located at its center. Here choose the

Fig. 2. Stress–strain hysteresis loops of a long fiber-reinforced MMC undergoing
uniaxial deformation in the y1- and y2-directions, respectively.

Fig. 3. Stress–strain hysteresis loops of a long fiber-reinforced MMC undergoing
longitudinal shear deformation.

Table 2
Ri ’s in three cases.

R1 R2 R3 R4 R5 R6

1 1 1 0.5 1 0.5 2
2 1 1 1 1 1 1
3 1 1 2 1 2 0.5

Fig. 4. Stress–strain hysteresis loops of a long fiber-reinforced MMC with a
plastically anisotropic matrix, undergoing uniaxial deformation in the y2-direction.

Fig. 5. Initial yield surfaces of a long fiber-reinforced MMC with a plastically
anisotropic matrix, where �r11 ¼ 0.
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length, width, and height directions of the UC as the y1-, y2-, and
y3-directions, respectively.

In the present approach and ANSYS, the same UC is meshed
with 8-node hexahedra elements having 3 DOFs at each node,
and the meshed UC consists of 1512 elements (see Fig. 6). This
finite element model is found to be capable of producing con-
verged results.

Fig. 7 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial deformation in the y1-direction. It can be seen
that the stress–strain relationship here is also nonlinear. Therefore,
the corresponding discussion for Fig. 2 holds here. Meanwhile, in
Fig. 7, the predictions by the present approach agree well with
those by ANSYS.

5.3. Short fiber-reinforced MMC

Last consider a short fiber-reinforced MMC consisting of an alu-
minum matrix and numerous cylindrical SiC short fibers arranged
in a cuboid array, with a volume fraction of fibers of 10%. Let the
material parameters of SiC and aluminum take the values listed
in Table 1. Let the UC of this composite consist of a cuboid matrix
and a cylindrical short fiber located at its center. Following Levy
and Papazian [28],

1. define the aspect ratio of a short fiber as the ratio of the fiber
length to the fiber diameter;

2. define the aspect ratio of a UC as the ratio of the UC length
to the UC width;

3. set these two ratios to be equal.

Following Hom [24], set the aspect ratio of the short fiber to be 5.
Here choose the length, width, and height directions of the UC as
the y1-, y2-, and y3-directions, respectively.

In the present approach and ANSYS, the same UC is meshed
with 8-node hexahedra elements having 3 DOFs at each node,
and the meshed UC consists of 4080 elements (see Fig. 8). This
finite element model is found to be capable of producing con-
verged results.

Fig. 9 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial deformation in the y1- and y2-directions,
respectively. It can be seen that the composite exhibits nonlinear
stress–strain relationships when loaded in both directions. This is
because, in each case, the stress distribution in the matrix remains
highly nonuniform, causing the matrix to yield successively at dif-
ferent locations. Meanwhile, in Fig. 9, the predictions by the pre-
sent approach agree well with those by ANSYS. Figs. 7 and 9
indicate that the present approach can homogenize composites
of 3D heterogeneities such as particle- and short fiber-reinforced
MMCs.

It is beneficial to evaluate the effect of the type of reinforcement
on the response of an MMC. Fig. 10 compares the predictions by
the present approach in Figs. 2, 7, and 9. As expected, in Fig. 10
(a), long fibers most significantly strengthen MMCs in the y1-
direction, and short fibers come second. Meanwhile, in Fig. 10(b),
different types of reinforcement similarly strengthen MMCs in
the y2-direction. This indicates that the type of reinforcement neg-
ligibly affects the response of an MMC perpendicular to the fiber
direction. In fact, numerical tests indicate that the volume fraction
of reinforcement plays a more important role here.

Fig. 6. Meshed UC of a particle-reinforced MMC.

Fig. 7. Stress–strain hysteresis loops of a particle-reinforced MMC undergoing
uniaxial deformation in the y1-direction. Fig. 8. Meshed UC of a short fiber-reinforced MMC.

L. Zhang, W. Yu / Composite Structures 133 (2015) 947–958 955

DISTRIBUTION A: Distribution approved for public release.



6. Conclusions

In this paper, a micromechanics approach to homogenizing
elastoplastic composites is developed. A rigorous second-order
radial return algorithm, which can handle elastic and plastic aniso-
tropy and nonlinear kinematic hardening, is developed. A simpli-
fied functional equation governing the response of the UC is
derived using the variational asymptotic method, discretized in a
finite-dimensional space, and solved using a multilevel Newton–
Raphson method. The versatility and accuracy of the present
approach are demonstrated through homogenizing long fiber-,
particle-, and short fiber-reinforced MMCs. Different types of rein-
forcement are found to differently affect the response of MMCs.
The present approach is found to be capable of handling various
microstructures, complex material models, complex loading
conditions, and complex loading paths.

The following conclusions can be drawn from the above
findings:

1. the present approach can be embedded in a multiscale finite
element code to make predictions on the microscopic scale;

2. more sophisticated material models can be implemented in
it;

3. the present radial return algorithm can be implemented in
various finite element codes, while various integration
schemes for elastoplastic constitutive relations (e.g., a
first-order radial return algorithm) can be implemented in
the present homogenization approach.
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Appendix A. Plastic anisotropy parameters

The R-value is commonly used to describe the plastic anisotropy
of rolled sheet metals. It can be measured in a uniaxial tensile test.
The R-value of a tensile specimen cut from a sheet is defined as the
ratio of the plastic strain in the width direction to that in the thick-
ness direction, i.e.,

R ¼ �W
�T

: ðA:1Þ

Since the R-value generally varies with the cut angle with respect to
the rolling direction of the sheet, a, an averaged R-value,

�R ¼ R0 þ 2R45 þ R90

4
; ðA:2Þ

is often adopted, where Ra denotes the R-value measured in a ten-
sile specimen of cut angle a.

Benzerga and Besson [6] introduced six strain rate ratios, Rij’s, to
fully describe the plastic anisotropy of a 3D structure. These ratios
can be measured in a series of uniaxial tensile and simple shear
tests. Introduce Cartesian coordinates x ¼ x1; x2; x3ð Þ with its three
axes parallel to the orthotropic axes of a material. These ratios are
defined as

R11 ¼ _�22
_�33

; R12 ¼ _�12
_�33

; R22 ¼ _�33
_�11

; ðA:3Þ

R13 ¼ _�13
_�22

; R23 ¼ _�23
_�11

; R33 ¼ _�11
_�22

ðA:30 Þ

Fig. 9. Stress–strain hysteresis loops of a short fiber-reinforced MMC undergoing
uniaxial deformation in the y1- and y2-directions, respectively.

Fig. 10. Stress–strain hysteresis loops of MMCs with different types of reinforce-
ment, undergoing uniaxial deformation in the y1- and y2-directions, respectively.
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and can be written in the Voigt notation as

R1 ¼ R11; R2 ¼ R12; R3 ¼ R22; ðA:4Þ

R4 ¼ R13; R5 ¼ R23; R6 ¼ R33: ðA:40 Þ
Eq. (A.3) implies that R6 ¼ 1=R1R3. Therefore, only five out of six Ri’s
are independent.

Hijkl can be written in the Voigt notation as Hij. The diagonal
components of Hij can be related to Ri by

H11 ¼ �2
3
R1R3 � 2R1 � 2

R1 þ 1
;

H22

H11
¼ �1

2
2R2 þ 1ð Þ R1R3 þ 1ð Þ
R1R3 � 2R1 � 2

;

ðA:5Þ

H33

H11
¼ 1� 3 R1R3 � 1ð Þ

R1R3 � 2R1 � 2
;

H44

H11
¼ �1

2
2R4 þ 1ð Þ R3 þ 1ð ÞR1

R1R3 � 2R1 � 2
;

ðA:50 Þ

H55

H11
¼ �1

2
2R5 þ 1ð Þ R1 þ 1ð Þ
R1R3 � 2R1 � 2

;
H66

H11
¼ 1� 3R1 R3 � 1ð Þ

R1R3 � 2R1 � 2
; ðA:500 Þ

while the off-diagonal components vanish (see more details onH in
Benzerga and Besson [6], Appendix A).

A special case of plastic anisotropy is plastic transverse isotropy,
in which case only two out of six Ri’s are independent. Let the x2x3
plane be the plane of plastic isotropy. The correlation among Ri’s is
given by

R3 ¼ R5 ¼ 1
R6

� R and R2 ¼ R4 � R0: ðA:6Þ

Substituting Eq. (A.6) into Eq. (A.5) and rearranging the equations
give

H11 ¼ 1
3

4� Rð Þ; H22 ¼ H44 ¼ 1
6

Rþ 1ð Þ 2R0 þ 1
� �

; ðA:7Þ

H33 ¼ H55 ¼ H66 ¼ 1
3

2Rþ 1ð Þ: ðA:70 Þ

Appendix B. Euler predictor step

Here the task becomes finding the current velocities within the
UC, _ui. Note that the rate of a quantity can be converted to its cor-
responding increment by multiplying it by Dt. Eq. (60) can be dis-
cretized as

U ¼ 1
2

_XTDhh
_Xþ 2 _XTDh�

_��þ _��TD��
_��

� �
; ðB:1Þ

where

Dhh ¼ ChSð ÞTD ChSð Þ
D E

; Dh� ¼ ChSð ÞTD
D E

; D�� ¼ Dh i: ðB:2Þ

Minimizing U in Eq. (B.1) gives

Dhh
_X ¼ �Dh�

_�� or _X ¼ X0
_��; ðB:3Þ

which implies that _X is proportional to _��. Substituting Eq. (B.3) into
Eq. (B.1) gives

U ¼ 1
2
_��T XT

0Dh� þ D��

� �
_�� � X

2
_��T �D _��; ðB:4Þ

where here �D denotes the instantaneous effective stiffness matrix
rather than a variant of a Jacobian matrix (see Section 4). By
definition,

_�r ¼ @

@ _��
Wh ih i ¼ �D _��: ðB:5Þ

Eq. (B.5) can be partitioned as

_�ru

_�rk

( )
¼

�Duk
�Duu

�Dkk
�Dku

" #
_��k
_��u

( )
: ðB:6Þ

Rearranging Eq. (B.6) gives

_�ru

_��u

( )
¼

�Duk � �Duu
�D�1
ku

�Dkk
�Duu

�D�1
ku

��D�1
ku

�Dkk
�D�1
ku

" #
_��k
_�rk

( )
; ðB:7Þ

from which the global response of the UC can be determined. After
this, the local deformation gradient rates can be obtained as

_� ¼ _��þ ChSX0
_��: ðB:8Þ
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A Variational Asymptotic Method for Unit Cell

Homogenization of Elasto-Viscoplastic Heterogeneous

Materials

Liang Zhang∗ and Wenbin Yu†

Utah State University, Logan, UT 84322-4130, USA

The variational asymptotic method for unit cell homogenization (VAMUCH) is a general-
purpose micromechanics approach that is capable of predicting the effective properties of
heterogeneous materials and recovering the local fields. The objective of this paper is to ex-
tend VAMUCH by enabling it to handle the problems of elasto-viscoplastic heterogeneous
materials. An affine formulation of the constitutive relations for the constituents is derived.
The Perzyna model, Hill’s yield criterion, the Voce hardening law, and the Chaboche model
are implemented into the affine formulation to enable it to couple the effects of viscoplastic-
ity, plastic anisotropy, nonlinear isotropic hardening, and nonlinear kinematic hardening.
The affine formulation is implemented into the incremental formulations of VAMUCH. A
nonlinear algorithm is developed for the VAMUCH code. The applicability, power, and
accuracy of the current version of VAMUCH are validated using examples such as predict-
ing the stress-strain hysteresis loops of fiber reinforced composites consisting of matrices of
various material properties, subject to various loading conditions. The current version of
VAMUCH is found to be capable of handling the problems involving complex constitutive
relations for the constituents, complex loading conditions, and complex loading histories.
More sophisticated user-defined material models can be implemented into it.

I. Introduction

Heterogeneous materials are widely used in structural components due to their capability of exhibiting
designated in-plane stiffness, bending stiffness, ultimate strength, or thermal expansion coefficient. However,
when they undergo a certain extent of deformation at high temperatures, their constituents often exhibit
a viscoplastic behavior, which limits their performance. It is doable to evaluate the performance of such
heterogeneous materials by performing a series of tests, in which the viscoplastic behavior can be detected.
However, it is expensive and time consuming to manufacture a great amount of materials and to perform
various tests on them. Although possible, it is computationally prohibitive to analyze these structures with
all the microstructural details because the macroscopic dimensions of these materials are usually several
orders of magnitude greater than the heterogeneity length scale. Therefore, it is of great practical value to
solve the problems of elasto-viscoplastic heterogeneous materials using an efficient, powerful, and accurate
numerical approach, i.e., the homogenization of heterogeneous materials.

In recent decades, numerous efforts have been devoted to the homogenization of heterogeneous materials.
According to Ref. [1], such homogenization generally consists of the following steps:

• Idealize the heterogeneous material as consisting of numerous periodically arranged unit cells (UCs)
and identify the UC;

• Perform a micromechanical analysis on the UC and obtain the effective material properties;

• Substitute the effective material properties into the macroscopic structure and obtain the global re-
sponse of the structure;

∗Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering.
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• Feedback the global response to the local scale and recover the local fields of interest (e.g., the dis-
placement, strain, and stress fields).

If the deformation is restricted in the linearly elastic region, the constitutive relations for the constituents are
stress-, history-, and rate-independent. In this case, the effective material properties of the UC remain the
same throughout continued deformation, and the aforementioned homogenization just needs to be performed
once. The theories of the homogenization of linearly elastic heterogeneous materials have been well estab-
lished. These theories include the self-consistent model,2 Hashin and Shtrikman’s variational approach,3

the third-order bounds,4 the method of cells (MOC),5 the recursive cell method,6 and the mathematical
homogenization theories (MHT),7,8 and etc. If the deformation is extended to the viscoplastic region, the
constitutive relations for one or more than one constituents become stress-, history-, and rate-dependent,
and there does not exist a correspondence principal between the stress and strain rates. This leads one to
linearize the instantaneous effective material properties and to iteratively perform homogenization.

There are two major approaches to obtaining the instantaneous effective material properties, i.e., the
tangent approach and the secant approach. As the name suggests, the tangent approach treats the tan-
gent effective material properties as the instantaneous effective material properties,2,9 while the secant ap-
proach treats the secant effective material properties as the instantaneous effective material properties.10–12

Hutchinson13 first extended the tangent approach to the viscoplastic region by proposing a self-consistent
model of rigid-viscoplastic polycrystal. Weng14 also extended the secant approach to the viscoplastic region
by treating the inelastic strain rates as some stress free eigenvalues to linearize the constitutive relations.
Nemat-Nasser and Obata15 later extended this approach by taking account into finite deformation. These
early approaches did not take account into the viscoplastic interactions among different constituents and
tend to overestimate the instantaneous effective material stiffness.

To overcome these drawbacks, several authors16–23 proposed a set of secant and affine approaches. Li
and Weng16 extended the secant approach by transform the elasto-viscoplastic problem to a viscoelastic one.
Molinari et al.17,18 proposed a non-incremental approach in which they transformed the problem to a linearly
thermoelastic one. Despite improvement, these two approaches either require a two-phase heterogeneous
material or tend to underestimate the instantaneous effective material stiffness. Masson et al.19,20 proposed
an affine approach in which they linearized the constitutive relations in the time domain and transformed the
problem to a linearly thermoelastic one using the Laplace transformation. Pierard et al.21,22 later extended
this approach by enabling it to solve the problems of two-phase hetergeneous materials. Although the affine
approach is capable of generating close predictions, it requires the inverse Laplace transformation, which
is computationally costly. To overcome this drawback, Doghri et al.23 proposed an incrementally affine
apporach in which they discretized the time domine into numerous intervals, linearized the constitutive
relations in each interval, and avoided the Laplace transformation. Despite success, all the aforementioned
approaches are incapable of recovering the local fields or truly coupling the effects of viscoplasticity, plastic
anisotropy, nonlinear isotropic hardening, and nonlinear kinematic hardening. Therefore, there is a need for
a more powerful approach.

Numerous attempts have been made not only to obtain the instantaneous effective material properties
but also to recover the local fields. Aboudi and his co-workers24,25 developed the so-called method of cells
(MOC) and later the generalized method of cells (GMC) of elasto-viscoplastic heterogeneous materials to
achieve this goal. A detailed review on these approaches can be found in Ref. [26]. The basic ideas of
these approaches are subdividing the UC into numerous cuboid subcells, solving for the average strains
and stresses over each subcell, and obtaining an estimation of the local fields. These approaches solve the
problems to a certain extent but suffer two major drawbacks. First, representing the UC by cuboid subcells
introduces considerable domain approximation errors. This can be understood by noting that it is generally
more accurate to represent the UC by a finite element mesh. Second, representing the local strains and
stresses within each subcell by the average ones introduces considerable approximation errors. This can be
understood by noting that it is generally more accurate to represent the local fields using shape functions
and nodal values. In fact, several attempts have been made to overcome these two drawbacks. An example
is the so-called high fidelity generalized method of cells (HFGMC).27 Williams et al.28 demonstrated that
HFGMC and VAMUCH, which will be mentioned in the next paragraph, significantly outperform GMC.
However, they also found that, despite higher accuracy, HFGMC is quite computationally costly. Therefore,
there is a need for a more accurate and efficient approach.

In recent years, Yu and his co-workers1,29–33 developed the variational asymptotic method for unit cell
homogenization (VAMUCH), a general-purpose micromechanics approach, to handle the problems of het-
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erogeneous materials. In fact, VAMUCH is not only capable of predicting the effective properties of hetero-
geneous materials and recovering the local fields but also has several unique features compared with other
numerical methods. One of these features is that VAMUCH has the minimum number of assumptions.
Specifically, VAMUCH starts with two basic assumptions associated with the micromechanical analysis of
heterogeneous materials of identifiable UCs. For the problems of elasto-viscoplastic heterogeneous materials,
these two assumptions are modified as follows:

• Assumption 1. The exact solutions of the field have their volume averages over the UC, i.e., if du
denotes the exact displacement increments within the UC, there exists a dv such that

dv =
1

Ω

∫
Ω

dudΩ ≡ 〈du〉 , (1)

where Ω denotes the domain occupied by a UC and also its volume and 〈·〉 denotes the volume average
over Ω;

• Assumption 2. The affine instantaneous effective material properties obtained using the micromechan-
ical analysis are independent of the geometry and boundary conditions of the macroscopic structure, or
to say, the affine instantaneous effective material properties are assumed to be the intrinsic properties
of the material when macroscopically viewed.

These two assumptions place the fewest restrictions on the problem solving. The first assumption mathemat-
icallymeans that the exact solutions of the field are integrable over the UC. In other words, the heterogeneous
material can be homogenized. The second assumption basically reflects the fact that material properties are
part of the constitutive relations of the matter, not related with the geometry and boundary of the macro-
scopic structure. Of course, the micromechanical analysis of the UC is desirable and appropriate only if
η = h/l � 1, where h denotes the characteristic size of the UC and l denotes the characteristic size of the
macroscopic structure.

The objective of this paper is to extend VAMUCH by enabling it to handle the problems of elasto-
viscoplastic heterogeneous materials. An affine formulation of the constitutive relations for the constituents
is derived. The Perzyna model, Hill’s yield criterion, the Voce hardening law, and the Chaboche model are
implemented into the affine formulation to enable it to couple the effects of viscoplasticity, plastic anisotropy,
nonlinear isotropic hardening, and nonlinear kinematic hardening. The affine formulation is implemented
into the incremental formulations of VAMUCH. A nonlinear algorithm is developed for the VAMUCH code.
The applicability, power, and accuracy of the current version of VAMUCH are validated using examples such
as predicting the stress-strain hysteresis loops of fiber reinforced composites consisting of matrices of various
material properties, subject to various loading conditions.

II. Constitutive Relations

A. Perzyna Model

Consider a heterogeneous material consisting of several constituents. Note that an elastic constituent can be
treated as an elasto-viscoplastic one with its initial yield stress, σ0, being infinity. Therefore, each constituent
can be treated as exhibiting elasto-viscoplasticity, plastic anisotropy, and combined isotropic and kinematic
hardening.

Before yielding occurs, the yield function of a constituent can take the general form of

f (σ −α) = F (σ −α)− σ0; (2)

if f ≥ 0, yielding occurs, and f becomes

f (σ −α, σY ) = F (σ −α)− σY , (3)

where σ denotes the stress tensor, α denotes the back stress tensor and accounts for kinematic hardening,
and σY denotes the current yield stress with σ0 being its initial value.

For an isotropic hardening material, the evolution of σY over continued deformation can be character-
ized by the so-called isotropic hardening law. This hardening law can be extracted from the monoton-
ic uniaxial stress-strain relations of the constituent. Specifically, introduce a Cartesian coordinate system
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x = (x1, x2, x3) with its three axes parallel to the orthotropic axes of the constituent, and let the x1-direction
denote the loading direction. The hardening law can be expressed as

σY = κ (εvp1 ) , (4)

where σY equals the normal stress in the x1-direction, σ1, ε
vp
1 denotes the viscoplastic normal strain along

the x1-direction, and κ is a monotonically increasing function of εvp1 . εvp1 can be related to its rate, ε̇vp1 , by

εvp1 =

∫ t

0

ε̇vp1 dt, (5)

where t denotes the current time.
Decomposing the total strain rate tensor, ε̇, into its elastic and viscoplastic parts gives

ε̇ = ε̇e + ε̇vp, (6)

where ε̇e is related to σ̇ by the rate form of Hooke’s law as

σ̇ = Ce : ε̇e or ε̇e = (Ce)
−1

: σ̇ (7)

with Ce denoting the fourth-order elastic stiffness tensor, and ε̇vp is given by the flow rule as

ε̇vp = λ̇
∂g

∂σ
(8)

with g denoting the plastic potential function and λ̇ being a positive scalar multiplier. The Perzyna model
suggests that

λ̇ =

{
γΦ(f) f > 0,

0 f ≤ 0,
(9)

where γ denotes a fluidity parameter, and Φ denotes an overstress function and takes the form of

Φ (f) =

(
f

σY

)N

(10)

with N denoting a rate-sensitivity parameter.34

B. Hill’s Yield Function

Without loss of generality, let the constituent obey Hill’s yield function along with an associated flow rule.
For notational convenience, let σ̃ = σ −α. The yield function can take the form of

f (σ̃, σY ) = σ̃e − σY , (11)

where

σ̃e =

√
3

2
σ̃′ : H : σ̃′ (12)

with (·)′ denoting the deviatoric part of the tensor and H denoting the fourth-order anisotropy tensor.
According to Ref. [35], if α vanishes, σ̃ = σ, and σ̃e reduces to the Hill equivalent stress. Substituting Eq.
(12) into the modified plastic work equivalence principle,

σ̃′ : ε̇vp′ = σ̃eε̇
vp
e , (13)

gives the Hill equivalent strain rate, ε̇vpe , as

ε̇vpe =

√
2

3
ε̇vp′ : Ĥ : ε̇vp′, (14)

where the fourth-order tensor Ĥ is the formal inverse of H (H : Ĥ = I with I denoting the fourth-order

identity tensor).35 H and Ĥ can be obtained from the R-values that characterize plastic anisotropy and can

be measured from experiments. More details on H and Ĥ can be found in appendix A.
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It can be derived from Eq. (13) that, for the assumed constituent, ε̇vp1 = ε̇vpe . Eq. (15) can hereby be
rewritten as

εvpe =

∫ t

0

ε̇vpe dt, (15)

where εvpe is referred to as the cumulative equivalent viscoplastic strain. In this paper, the Voce hardening
law and the Chaboche model are employed as the isotropic and kinematic hardening laws, respectively.
Specifically, the Voce hardening laws writes

σY = σ0 +K [1− exp (−nεvpe )] , (16)

where K and n are material constants;36 the Chaboche model writes

α =
∑

αi, (17)

where

α̇i =
2

3
Ciε̇

vp − γiε̇
vp
e αi (18)

with Ci and γi being material constants.37

Last but not least, if H = I, Hill’s yield function reduces to the von Mises yield function. In this case,
σ̃e becoms

σ̃e =

√
3

2
σ̃′ : I : σ̃′ =

√
3

2
σ̃′ : σ̃′. (19)

If α vanishes, σ̃e reduces to the von Mises equivalent stress.

III. Affine Formulation of the Constitutive Relations

Following Ref. [23], discretize the time domain into numerous intervals, and let [tn, tn+1] be the interval
of interest. Suppose that all the state variables at tn are known, and let Δ (·) denotes the increment in a
quantity over this time interval, e.g., Δt = tn+1 − tn and Δε = ε (tn+1)− ε (tn). The task is hereby to find
the relations between Δσ and Δε. Note that Δε can be decomposed into its elastic and viscoplastic parts,
Δεe and Δεvp, where Δεe can be related to Δσ by Eq. (7). The task hereby becomes finding the relations
between Δσ and Δεvp. According to Ref. [23], Δεvp can be related to ε̇vp (tn+1) using the backward Euler
method by

Δεvp = ε̇vp (tn+1)Δt. (20)

Remember that εvpe and α are the internal variables accounting for isotropic and kinematic hardening,
respectively. Without loss of generality, let ε̇vp, ε̇vpe , and α̇ be functions of σ, εvpe and α, respectively, i.e.,

ε̇vp (t) = ε̇vp (σ (t) , εvpe (t) ,α (t)) , ε̇vpe (t) = ε̇vpe (σ (t) , εvpe (t) ,α (t)) , (21)

α̇ (t) = α̇ (σ (t) , εvpe (t) ,α (t)) . (21′)

Following Ref. [23], let the evolution equations of ε̇vp, ε̇vpe , and α̇ take the following forms:

ε̇vp (tn+1) = ε̇vp (tn) +K (tn+1) : Δσ + L (tn+1)Δεvpe +M (tn+1) : Δα, (22)

ε̇vpe (tn+1) = ε̇vpe (tn) +N (tn+1) : Δσ + P (tn+1)Δεvpe +Q (tn+1) : Δα, (22′)
α̇ (tn+1) = α̇ (tn) +R (tn+1) : Δσ + S (tn+1)Δεvpe + T (tn+1) : Δα, (22′′)

where

K =
∂ε̇vp

∂σ
, L =

∂ε̇vp

∂εvpe
, M =

∂ε̇vp

∂α
, N =

∂ε̇vpe
∂σ

, P =
∂ε̇vpe
∂εvpe

, Q =
∂ε̇vpe
∂α

, (23)

R =
∂α̇

∂σ
, S =

∂α̇

∂εvpe
, T =

∂α̇

∂α
(23′)

with K, M, R, and T being fourth-order tensors, L, N, Q, and S being second-order tensors, and P being
a scalar. Note that Δεvpe and Δα can also be related to ε̇vpe and α̇ using the backward Euler method by

Δεvpe = ε̇vpe (tn+1)Δt and Δα = α̇ (tn+1)Δt, (24)
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respectively. Substituting Eq. (24) into the second and third equations of Eq. (22) and rearranging the
equations gives

A11ε̇
vp
e (tn+1) +A12 : α̇ (tn+1) = B1, (25)

A21ε̇
vp
e (tn+1) +A22 : α̇ (tn+1) = B2, (25′)

where

A11 = 1− P (tn+1)Δt, A12 = −Q (tn+1)Δt, A21 = −S (tn+1)Δt, A22 = I − T (tn+1)Δt, (26)

B1 = ε̇vpe (tn) +N (tn+1) : Δσ, B2 = α̇ (tn) +R (tn+1) : Δσ. (26′)

Rearranging the second equation of Eq. (25) gives

α̇ (tn+1) = A−1
22 : [B2 −A21ε̇

vp
e (tn+1)] , (27)

where A−1
22 is the formal inverse of A22. Substituting Eq. (27) into the first equation of Eq. (25) and

rearranging the equation give

ε̇vpe (tn+1) =
B1 −A12 : A−1

22 : B2

A11 −A12 : A−1
22 : A21

. (28)

Substituting Eq. (28) into Eq. (27) gives

α̇ (tn+1) = A−1
22 :

(
B2 − B1 −A12 : A−1

22 : B2

A11 −A12 : A−1
22 : A21

A21

)
. (29)

Substituting Eqs. (28) and (29) into Eq. (24), substituting the equation into the first equation of Eq. (22),
and rearranging the equation give

ε̇vp (tn+1) = ˙̃ε (tn+1) + C̃−1
(tn+1) : Δσ, (30)

where

˙̃ε (tn+1) = ε̇vp (tn) +M (tn+1) : A−1
22 : α̇ (tn)Δt

+
ε̇vpe (tn)−A12 : A−1

22 : α̇ (tn)

A11 −A12 : A−1
22 : A21

[
L (tn+1)−M (tn+1) : A−1

22 : A21

]
Δt

(31)

and

C̃−1
(tn+1) = K (tn+1) +M (tn+1) : A−1

22 : R (tn+1)Δt

+

[
L (tn+1)−M (tn+1) : A−1

22 : A21

] ⊗ [
N (tn+1)−A12 : A−1

22 : R (tn+1)
]

A11 −A12 : A−1
22 : A21

Δt.
(32)

Substituting Eq. (30) into Eq. (20) gives

Δεvp = Δε̃+
[
C̃−1

(tn+1)Δt
]
: Δσ, (33)

where Δε̃ = ˙̃ε (tn+1)Δt. Substituting Eq. (33) and the incremental form of Eq. (7) into the incremental
form of Eq. (6) gives

Δε = Δεe +Δεvp = (Ce)
−1

: Δσ +Δε̃+
[
C̃−1

(tn+1)Δt
]
: Δσ. (34)

Rearranging Eq. (34) gives a general affine formulation of the constitutive relations for the constituent as

Δε−Δε̃ =
[
(Ce)

−1
+ C̃−1

(tn+1)Δt
]
: Δσ (35)

or
Δσ = Cevp (tn+1) : (Δε−Δε̃) , (36)
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where Cevp denotes the fourth-order affine instantaneous elasto-viscoplastic stiffness tensor and is given by

Cevp (tn+1) =
[
(Ce)

−1
+ C̃−1

(tn+1)Δt
]−1

. (37)

Once the partial derivatives in Eq. (23) are specified, Cevp is uniquely determined.
Till now, a general affine formulation of the constitutive relations has been derived. In this paper, the

Perzyna model, Hill’s yield function, the Voce hardening law, and the Chaboche model (see sections II.A
and II.B) are implemented into the affine formulation with the corresponding explicit expressions for the
partial derivatives in Eq. (23) being derived in appendix B, while either of these material models can be
replaced by a more sophisticated one as needed. In addition, if a constituent merely exhibits either isotropic
or kinematic hardening, its affine formulation can reduce to a simpler form. More details on this can be
found in appendix C.

IV. Variational Asymptotic Method for Unit Cell Homogenization

In this section, the general affine formulation is implemented into the incremental formulations of VA-
MUCH to yield the formulations for elasto-viscoplastic heterogeneous materials. In this case, some formu-
lations of VAMUCH remain unchanged, while the others are subject to modification. To avoid redundancy,
only the derivations of the latter formulations are presented here. Interested readers can refer to Refs. [1]
and [33] for more details on the VAMUCH theory.

Consider a heterogeneous material consisting of numerous UCs. Introduce two Cartesian coordinate
systems x = (x1, x2, x3) and y = (y1, y2, y3). Let xi denote the global coordinates describing the macroscopic
structure, and let yi denote the local coordinates describing the UC. For a heterogeneous material consisting
of elasto-viscoplastic constituents, the total strain energy dissipation in a UC at time tn+1, Π (tn+1), is
defined as

Π (tn+1) =

∫
Ω

σ (tn+1) : Δε (tn+1) dΩ, (38)

while its increment, ΔΠ, can be obtained as

ΔΠ =

∫
Ω

Δσ : ΔεdΩ+

∫
Ω

σ (tn+1) : Δ (Δε) dΩ =

∫
Ω

Δσ : ΔεdΩ

=

∫
Ω

Δε : Cevp (tn+1) : (Δε−Δε̃) dΩ,

(39)

where the high-order terms are omitted. The variational statement of the problem can hereby be formulated
as seeking the minimum of the functional

ΔΠΩ =
1

Ω

∫
Ω

Cevp
ijkl

[
Δε̄ij + χ(i|j)

] [
Δε̄kl + χ(k|l) −Δε̃kl

]
dΩ (40)

within a UC, where Δε̄ij denotes the components of the global strain increment tensor for the homogenized
structure, χi denotes the components of the fluctuation functions and must satisfy the periodic boundary
conditions associated with Eq. (40) along with constraint

〈χi〉 = 0, (41)

and

χ(i|j) =
1

2

(
∂χi

∂yj
+

∂χj

∂yi

)
. (42)
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Introduce the following matrix notations:

Δε̄ =
⌊

Δε̄11 2Δε̄12 Δε̄22 Δε̄13 2Δε̄23 Δε̄33

⌋T

, (43)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂y1
∂χ1

∂y2
+

∂χ2

∂y1
∂χ2

∂y2
∂χ1

∂y3
+

∂χ3

∂y1
∂χ2

∂y3
+

∂χ3

∂y2
∂χ3

∂y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
0 0

∂

∂y2

∂

∂y1
0

0
∂

∂y2
0

∂

∂y3
0

∂

∂y1

0
∂

∂y3

∂

∂y2

0 0
∂

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ, (46′)

where Γh denotes an operator matrix and χ denotes a column matrix containing the three components of
the fluctuation functions. Let χ be discretized using finite elements as

χ (xi; yi) = S (yi)X (xi) , (44)

where S denotes the shape functions and X denotes a column matrix of the nodal values of the fluctuation
functions for all the active nodes. The discretized version of Eq. (40) can then be obtained as

ΔΠΩ =
1

Ω

[
XTEX+XT

(
Dhε +DT

εh

)
Δε̄+Δε̄TDεεΔε̄−XTΔσh −Δε̄TΔσε

]
, (45)

where

E =

∫
Ω

(ΓhS)
T
D (ΓhS) dΩ, Dhε =

∫
Ω

(ΓhS)
T
DdΩ, (46)

Dεh =

∫
Ω

D (ΓhS) dΩ, Dεε =

∫
Ω

DdΩ, (46′)

Δσh =

∫
Ω

(ΓhS)
T
DΔε̃dΩ, Δσε =

∫
Ω

DΔε̃dΩ (46′′)

with D denoting the 6× 6 affine instantaneous stiffness matrix condensed from Cevp. It can be derived from
Eq. (45) that ΔΠΩ attains its minimum only if

EX+
1

2

(
Dhε +DT

εh

)
Δε̄− Δσh

2
= 0 or X = X0Δε̄+X1, (47)

where

EX0 =
1

2

(
Dhε +DT

εh

)
and EX1 =

Δσh

2
. (48)

Eq. (47) implies that X is linearly dependent on dε̄. Substituting Eq. (47) into Eq. (45) gives the minimum
of dΠΩ as

ΔΠΩ =
1

Ω

{
Δε̄T

[
1

2
XT

0

(
Dhε +DT

εh

)
+Dεε

]
Δε̄−Δε̄TXT

0 Δσh − 1

2
XT

1 Δσh −Δε̄TΔσε

}

≡ Δε̄T D̄Δε̄−Δε̄TXT
0 Δσ̄h −Δε̄TΔσ̄ε − 1

2
XT

1 Δσ̄h,

(49)

where D̄ denotes the so-called affine instantaneous effective stiffness matrix, Δε̄ denotes the global strain
increment column matrix, Δσ̄h = Δσh/Ω, and Δσ̄ε = Δσε/Ω.

Till now, the affine instantaneous effective material properties can be fully determined. In addition, if the
local fields are of interest, they can be recovered using the global displacement increments, Δv, the global
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strain increments, Δε̄, and the fluctuation functions, χ. Specifically, the local displacement increments can
be recovered as

Δu = Δv +

⎡
⎢⎢⎢⎢⎢⎣

∂Δv1
∂x1

∂Δv1
∂x2

∂Δv1
∂x3

∂Δv2
∂x1

∂Δv2
∂x2

∂Δv2
∂x3

∂Δv3
∂x1

∂Δv3
∂x2

∂Δv3
∂x3

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

y1
y2
y3

⎫⎪⎬
⎪⎭ + S

(
X̄0Δε̄+ X̄1

)
, (50)

where Δu and Δv denote the local and global displacement increment column matrices, respectively, X̄0

denotes the nodal values of fluctuation functions modified from X0 by the periodic conditions and Eq. (41),
and X̄1 is determined similarly to X̄0. The local strain increments can be recovered as

Δε = Δε̄+ ΓhS
(
X̄0Δε̄+ X̄1

)
, (51)

where Δε denotes the the local strain increment column matrix. The local stress increments can be recovered
from the local strain increments as

Δσ = D (Δε−Δε̃) . (52)

In addition, the global stress increments, Δσ̄, can be obtained from Eq. (49) as

Δσ̄ = D̄Δε̄−XT
0 Δσ̄h −Δσ̄ε. (53)

V. Elasto-Viscoplastic Algorithms

Figure 1 depicts the VAMUCH code structure for the problems of elasto-viscoplastic heterogeneous
materials. The code starts with reading the finite element model and initializing all the state variables (i.e.,
the displacements, the strains, the stresses, and their increments). After this, it will iteratively perform the
following steps in sequence:

• Perform the constitutive modeling to obtain the affine instantaneous effective material properties and
the fluctuation functions;

• Impose the stress/strain increments;

• Perform the recovery to recover the local fields using the output of the constitutive modeling and the
imposed stress/strain increments as the input;

• Save the updated state variables as the inputs for the next iteration;

• Check whether to continue the iteration.

The code will continue the iteration till the end of the loading history. After this, it will generate the history
or field output as needed.

In addition, the code also needs a subroutine calculating the affine instantaneous stiffness matrix at each
integration point. The algorithm of this subroutine can be described as follows:

• Read the material data and state variables at the integration point;

• Check whether the constituent exhibits an elasto-viscoplasticity;

• If yes, check whether σe ≥ σY ;

• If σe ≥ σY , set the loading flag at the integration point to be true and calculate the affine instantaneous
stiffness matrix using Eq. (37);

• If any of the above two criteria is not met, save the inputting elastic stiffness matrix as the affine
instantaneous stiffness matrix;

• Return the resulting affine instantaneous stiffness matrix.

Especially, during the recovery, once this subroutine is called, the code will check the status of the loading
flag. If the loading flag is true, the code will also update εvpe , σY , and α at the integration point.
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Read finite element model

Start

Initialize state variables

Constitutive modeling

Recovery

Update state variables

End

Generate history output

Impose stress/strain increments

�

End of loading history

Figure 1. VAMUCH code structure for the problems of elasto-viscoplastic heterogeneous materials.
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VI. Validation Examples

In this section, several examples are presented to validate the applicability, power, and accuracy of the
current version of VAMUCH. The examples include predicting the stress-strain hysteresis loops of fiber rein-
forced composites consisting of matrices of various material properties, subject to various loading conditions.
The results predicted by VAMUCH are compared with those predicted by ANSYS.

A. Isotropic Hardening

Let the composite be consist of an elasto-viscoplastic aluminum matrix embedded with numerous cylindrical,
linearly elastic SiC fibers arranged in a square array and of volume fraction of fibers (VOF) 9.2%, and first let
the aluminum matrix merely exhibit isotropic hardening with a hardening law taking the form of Eq. (16).
Following Refs. [16] and [23], let the material parameters of aluminum and SiC take the values listed in table
1, where E and ν denote Young’s modulus and Poisson’s ratio, respectively. The UC of this composite can
be identified as consisting of a square matrix embedded with a circular fiber located at its center. Introduce
a local Cartesian coordinate system y = (y1, y2, y3) with the origin located at the center of the UC and
the y1 axis parallel to the fiber direction. For notational convenience, let εij , σij , and ε̇ij denote the global
strains, stresses, and strain rates, respectively.

Table 1. Material parameters of aluminum and SiC.

E (GPa) ν σ0 (MPa) K (MPa) n γ
(
s−1

)
m

Aluminum 70 0.33 60 40 54.9 4.4× 10−6 4.61

SiC 490 0.17 - - - - -

Figures 2 and 3 shows the stress-strain hysteresis loops of the composite subject to uniaxial loading along
the y1- and y2-directions, respectively, where ε̇ denotes the major strain rate and equals ε̇11 and ε̇22 in figures
2 and 3, respectively. In the validation examples, the loading histories for the hysteresis loops are set to
consist of the following steps:

• Initial loading: the major strain(s) is increased from 0 to 0.01;

• Initial unloading: the major strain(s) is decreased from 0.01 to 0;

• Reverse loading: the major strain(s) is decreased from 0.0 to −0.01;

• Reverse unloading: the major strain(s) is increased from −0.01 to 0.

As can be seen in figures 2 and 3, the composite exhibits a rate-dependent behavior in both the fiber
and transverse directions, i.e., as the major strain rate increases, the composite becomes stiffer. However,
due to the existence of the fiber, in figure 2, the composite approximately exhibits a bilinear stress-strain
relationship, while in figure 3, it exhibit a highly nonlinear one. In addition, in figures 2 and 3, the results
predicted by VAMUCH are in good agreement with those predicted by ANSYS. This indicates that VAMUCH
is capable of handling the problems involving isotropic hardening and complex loading histories.

Figures 4 shows the stress-strain hysteresis loops of the composite subject to equal biaxial loading along
the y2- and y3-directions, where ε̇ becomes ε̇22 and ε̇33 here. Similarly to figure 2, the composite approximately
exhibits a bilinear stress-strain relationship here. However, compared to figure 2, it becomes stiffer here due
to equal biaxial loading. In addition, in figure 4, the results predicted by VAMUCH are in good agreement
with those predicted by ANSYS. This indicates that VAMUCH is capable of handling the problems involving
complex loading conditions.

B. Plastic Anisotropy

Next let the aluminum matrix also exhibit plastic anisotropy. Specifically, consider three aluminum matrices
of the material parameters listed in table 1 but of different R-values. For simplicity, let the three matrices all
exhibit plastic transverse isotropy in the y2-y3 plane but of different values of R (see table 2). More details
on plastic transverse isotropy can be found in appendix A.

Figure 5 shows the stress-strain hysteresis loops of three composites consisting of the aforementioned
three matrices, respectively, where the composites are subject to uniaxial loading along the y2-direction
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Figure 2. Stress-strain hysteresis loops of the composite subject to uniaxial loading along the y1-direction.
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Figure 3. Stress-strain hysteresis loops of the composite subject to uniaxial loading along the y2-direction.
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Figure 4. Stress-strain hysteresis loops of the composite subject to equal biaxial loading along the y2- and
y3-directions.

Table 2. R-values of the three aluminum matrices.

R1 R2 R3 R4 R5 R6

1 1 1 0.5 1 0.5 2

2 1 1 1 1 1 1

3 1 1 2 1 2 0.5
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and ε̇ = 1 × 10−4s−1. Further investigation will show that the three matrices are of the same yield stress
along the y1-direction but of different yield stresses along the y2- and y3-directions and that the matrices of
lower values of R are of higher yield stresses along the y2- and y3-directions. Accordingly, in figure 5, the
composites of lower values of R are stiffer. In addition, in figure 5, the results predicted by VAMUCH are in
good agreement with those predicted by ANSYS. This indicates that VAMUCH is also capable of handling
the problems involving plastic anisotropy.

�
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�

�

�����	

Figure 5. Stress-strain hysteresis loops of composites consisting of matrices of different values of R.

C. Kinematic Hardening

Last let the aluminum matrix further exhibit combined isotropic and kinematic hardening. Specifically, let
the aluminum matrix be of the material parameters listed in table 1 and also exhibit kinematic hardening
with α̇ being given by

α̇ =
2

3
C1ε̇

vp − γ1ε̇
vp
e α. (54)

Following Ref. [38], let C1 = 7019MPa and γ1 = 118.6.
Figure 6 shows the stress-strain hysteresis loops of the composite consisting of the aforementioned matrix,

where the composite is subject to uniaxial loading along the y2-direction and ε̇ = 1× 10−4s−1. Similarly to
figure 3, the composite exhibits a highly nonlinear stress-strain relationship here. To illustrate the effect of
kinematic hardening on the hysteresis loops, figure 7 compares the results in figure 3 with those in figure
6. Figure 7 indicates that the composite consisting of a combined isotropic and kinematic hardening matrix
is stiffer than that consisting of an isotropic hardening matrix. This is in agreement with the theory of
viscoplasticity. In addition, in figure 6, the results predicted by VAMUCH are in good agreement with
those predicted by ANSYS. This indicates that VAMUCH is also capable of handling the problems involving
kinematic hardening.

VII. Conclusions

In this paper, VAMUCH, a general-purpose micromechanics approach, has been extended to handle the
problems of elasto-viscoplastic heterogeneous materials. An affine formulation of the constitutive relation-
s for the constituents is derived. The Perzyna model, Hill’s yield criterion, the Voce hardening law, and
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Figure 6. Stress-strain hysteresis loops of a composite consisting of a combined isotropic and kinematic
hardening matrix.
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Figure 7. Comparison between the stress-strain hysteresis loops of a composite consisting of an isotropic
hardening matrix and those of a composite consisting of a combined isotropic and kinematic hardening matrix.
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the Chaboche model are implemented into the affine formulation to enable it to couple the effects of vis-
coplasticity, plastic anisotropy, nonlinear isotropic hardening, and nonlinear kinematic hardening. The affine
formulation is implemented into the incremental formulations of VAMUCH. A nonlinear algorithm is devel-
oped for the VAMUCH code. The applicability, power, and accuracy of the current version of VAMUCH
have been extensively validated using examples such as predicting the stress-strain hysteresis loops of fiber
reinforced composites consisting of matrices of various material properties, subject to uniaxial/biaxial load-
ing. The current version of VAMUCH is found to be capable of handling the problems involving complex
constitutive relations for the constituents, complex loading conditions, and complex loading histories. VA-
MUCH provides an powerful and convenient tool for scientists and engineers to efficiently and accurately
solve the problems of elasto-viscoplastic heterogeneous materials. More sophisticated user-defined material
models can be implemented into it.

Appendix

A. Plastic Anisotropic Parameters

The R-value is widely used to characterize the plastic anisotropy of rolled sheet metals. It can be measured
from a series of uniaxial tensile tests. Specifically, when a tensile specimen cut from a sheet is stretched, its
R-value is defined as the ratio of the plastic strain in the width direction to that in the thickness direction,
that is,

R =
εW
εT

. (55)

In general, the R-value varies with the cut angle relative to the rolling direction of the sheet, α. In this case,
an averaged R-value is often adopted. It is defined as

R̄ =
R0 + 2R45 +R90

4
, (56)

where Rα denotes the R-value obtained using a tensile specimen of cut angle α.
Benzerga and Besson35 extended the concept of the R-value by introducing six strain rate ratios, Rij .

These six Rij ’s are capable of fully characterizing the plastic anisotropy of a 3D structure, and each of them
can be measured from a uniaxial tensile or simple shear test. Specifically, introduce a Cartesian coordinate
system x = (x1, x2, x3) with its three axes parallel to the orthotropic axes of the constituent, and the six
Rij ’s can be defined as the following strain rate ratios:

R11 =
ε̇22
ε̇33

, R12 =
ε̇12
ε̇33

, R22 =
ε̇33
ε̇11

, (57)

R13 =
ε̇13
ε̇22

, R23 =
ε̇23
ε̇11

, R33 =
ε̇11
ε̇22

. (57′)

Let Rij be written in the the Voigt notation as

R1 = R11, R2 = R12, R3 = R22, (58)

R4 = R13, R5 = R23, R6 = R33. (58′)

It can be obtained from Eq. (57) that R6 = 1/R1R3. This implies that only five out of the six Ri’s are
independent of each other. Without loss of generality, let R6 be expressed in terms of R1 and R3 in following
derivations.

The components of H in the material coordinate system, Hijkl, can be written in the Voigt notation as
Hij . According to Ref. [35], the diagonal components of Hij can be related to Ri by

H11 = −2

3

R1R3 − 2R1 − 2

R1 + 1
,

H22

H11
= −1

2

(2R2 + 1) (R1R3 + 1)

R1R3 − 2R1 − 2
, (59)

H33

H11
= 1− 3 (R1R3 − 1)

R1R3 − 2R1 − 2
,

H44

H11
= −1

2

(2R4 + 1) (R3 + 1)R1

R1R3 − 2R1 − 2
, (59′)

H55

H11
= −1

2

(2R5 + 1) (R1 + 1)

R1R3 − 2R1 − 2
,

H66

H11
= 1− 3R1 (R3 − 1)

R1R3 − 2R1 − 2
, (59′′)
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while the off-diagonal components vanish. More details on H can be found in Ref. [35], appendix A.
A special case of plastic anisotropy is plastic transverse isotropy, that is, there exists a plane of plastic

isotropy in which the plastic material properties are equal in all directions. For example, if the x2-x3 plane
is the plane of plastic isotropy, the Ri’s can be expressed as

R3 = R5 =
1

R6
= R, R2 = R4 = R′, (60)

where R and R′ can be measured from two uniaxial tensile tests. Accordingly, substituting Eq. (60) into Eq.
(59) and rearranging the equations give

H11 =
1

3
(4−R) , H22 = H44 =

1

6
(R+ 1) (2R′ + 1) , (61)

H33 = H55 = H66 =
1

3
(2R+ 1) . (61′)

B. Partial Derivatives

Recall that the partial derivatives whose explicit expressions are to be derived are

K =
∂ε̇vp

∂σ
, L =

∂ε̇vp

∂εvpe
, M =

∂ε̇vp

∂α
, N =

∂ε̇vpe
∂σ

, P =
∂ε̇vpe
∂εvpe

, Q =
∂ε̇vpe
∂α

, (62)

R =
∂α̇

∂σ
, S =

∂α̇

∂εvpe
, T =

∂α̇

∂α
. (62′)

Let K, L, and M be the first set of partial derivatives of interest. Eq. (8) shows that ε̇vp is proportional to
∂g/∂σ. This leads one to seek for ∂g/∂σ. Note that the constituent obeys Hill’s yield criterion along with
an associated flow rule. This implies that ∂g/∂σ = ∂f/∂σ. In addition, Eqs. (11) and (12) also imply that
∂f/∂σ = ∂σ̃e/∂σ. The task hereby becomes finding ∂σ̃e/∂σ. Eq. (12) implies that σ̃e can be treated as an
explicit function of neither σ nor α but σ̃, where σ̃ = σ−α. It is beneficial to first find the relations among
∂σ̃e/∂σ̃, ∂σ̃e/∂σ, and ∂σ̃e/∂α. Specifically, ∂σ̃e/∂σ and ∂σ̃e/∂α can be related to ∂σ̃e/∂σ̃ using the chain
rule by

∂σ̃e

∂σ
=

∂σ̃e

∂σ̃
:
∂σ̃

∂σ
=

∂σ̃e

∂σ̃
: I =

∂σ̃e

∂σ̃
and

∂σ̃e

∂α
=

∂σ̃e

∂σ̃
:
∂σ̃

∂α
=

∂σ̃e

∂σ̃
: (−I) = −∂σ̃e

∂σ̃
, (63)

respectively. In fact, if a variable can be treated as an explicit function of neither σ nor α but σ̃, its partial
derivatives with respect to σ̃, σ, and α can always be related to each other by a relation similar to Eq. (63).
This finding will help to simplify the derivations. According to Ref. [35], the explicit expression for ∂σ̃e/∂σ̃
(also ∂σ̃e/∂σ and −∂σ̃e/∂α) can be derived as

∂σ̃e

∂σ̃
=

1

2σ̃e

∂σ̃2
e

∂σ̃
=

1

2σ̃e

(
3

2
2
∂σ̃′

∂σ̃
: H : σ̃′

)
=

3

2σ̃e
J : H : σ̃′ =

3

2σ̃e

(
H : σ̃′)′, (64)

where J denotes the fourth-order deviatoric projection operator and takes the form of J = I − 1
3I⊗ I with

I denoting the second-order identity tensor. Eq. (9) indicates that λ̇ is proportional to Φ, which is given by
Eq. (10). Substituting Eq. (11) into Eq. (10) gives

Φ (σ̃, σY ) =

(
σ̃e

σY
− 1

)N

. (65)

Eqs. (8), (9), (64), and (65) imply that ε̇vp can also be treated as an explicit function of neither σ nor α
but σ̃. As mentioned above, this implies that

∂ε̇vp

∂σ̃
=

∂ε̇vp

∂σ
= −∂ε̇vp

∂α
or M = −K. (66)

By definition, K can be expressed as

K =
∂ε̇vp

∂σ̃
=

∂

∂σ̃

(
λ̇
∂g

∂σ

)
= γ

∂

∂σ̃

(
Φ
∂σ̃e

∂σ̃

)
= γ

[
∂Φ

∂σ̃
⊗ ∂σ̃e

∂σ̃
+Φ

∂

∂σ̃

(
∂σ̃e

∂σ̃

)]
, (67)
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where
∂Φ

∂σ̃
= N

(
σ̃e

σY
− 1

)N−1
∂

∂σ̃

(
σ̃e

σY
− 1

)
=

N

σY

(
σ̃e

σY
− 1

)N−1
∂σ̃e

∂σ̃
(68)

and

∂

∂σ̃

(
∂σ̃e

∂σ̃

)
=

∂

∂σ̃

(
3

2σ̃e
J : H : σ̃′

)
=

3

2

∂

∂σ̃

(
1

σ̃e

)
⊗J : H : σ̃′ +

3

2σ̃e
J : H :

∂σ̃′

∂σ̃

=
3

2

(
− 1

σ̃2
e

∂σ̃e

∂σ̃

)
⊗J : H : σ̃′ +

3

2σ̃e
J : H : J = − 1

σ̃e

∂σ̃e

∂σ̃
⊗ ∂σ̃e

∂σ̃
+

3

2σ̃e
J : H : J .

(69)

Substituting Eqs. (68) and (69) into Eq. (67) gives and rearranging the equation give

K =
∂ε̇vp

∂σ̃
= γ

(
σ̃e

σY
− 1

)N−1 [(
N − 1

σY
+

1

σ̃e

)
∂σ̃e

∂σ̃
⊗ ∂σ̃e

∂σ̃
+

3

2

(
1

σY
− 1

σ̃e

)
J : H : J

]
. (70)

Similarly to K, L can be expressed as

L =
∂ε̇vp

∂εvpe
=

∂

∂εvpe

(
λ̇
∂g

∂σ

)
= γ

∂

∂εvpe

(
Φ
∂σ̃e

∂σ̃

)
= γ

∂Φ

∂εvpe

∂σ̃e

∂σ̃
, (71)

where
∂Φ

∂εvpe
= N

(
σ̃e

σY
− 1

)N−1
∂

∂εvpe

(
σ̃e

σY
− 1

)
= −N

σ̃e

σ2
Y

(
σ̃e

σY
− 1

)N−1
dσY

dεvpe
. (72)

Substituting Eqs. (72) into Eq. (71) gives and rearranging the equation give

L =
∂ε̇vp

∂εvpe
= −γN

σ̃e

σ2
Y

(
σ̃e

σY
− 1

)N−1
dσY

dεvpe

∂σ̃e

∂σ̃
. (73)

Let N, P , and Q be the next set of partial derivatives of interest. Substituting Eqs. (8), (12) and (64)
into the term to the right of the equal sign of Eq. (13) gives

σ̃′ : ε̇vp′ = σ̃′ : λ̇
∂g

∂σ
= λ̇

3

2σ̃e
σ̃′ : J : H : σ̃′ = λ̇

3

2σ̃e
σ̃′ : H : σ̃′ = λ̇

σ̃2
e

σ̃e
= σ̃eλ̇. (74)

Comparing Eq. (74) with Eq. (13) gives λ̇ = ε̇vpe , which has been proven valid for a material obeying the von
Mises yield criterion along with an associated flow rule. Eqs. (9) and (65) imply that εvpe can also be treated
as an explicit function of neither σ nor α but σ̃. This implies that

∂ε̇vpe
∂σ̃

=
∂ε̇vpe
∂σ

= −∂ε̇vpe
∂α

or Q = −N. (75)

By definition, N and P can be expressed as

N =
∂ε̇vpe
∂σ̃

=
∂λ̇

∂σ̃
= γ

∂Φ

∂σ̃
= γ

N

σY

(
σ̃e

σY
− 1

)N−1
∂σ̃e

∂σ̃
(76)

and

P =
∂ε̇vpe
∂εvpe

=
∂λ̇

∂εvpe
= γ

∂Φ

∂εvpe
= −γN

σ̃e

σ2
Y

(
σ̃e

σY
− 1

)N−1
dσY

dεvpe
, (77)

respectively.
Now the remaining partial derivatives become R, S, and T . Recall that the Chaboche model writes

α =
∑

αi, (78)

where

α̇i =
2

3
Ciε̇

vp − γiε̇
vp
e αi. (79)
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Substituting Eqs. (78) and (79) into the last three equations of Eq. (62) gives

R =
∂α̇

∂σ
=

∂
∑

α̇i

∂σ
=

∑ ∂α̇i

∂σ
=

∑ (
2

3
Ci

∂ε̇vp

∂σ
− γi

∂ε̇vpe
∂σ

⊗αi

)
=

∑ (
2

3
CiK− γiN⊗αi

)
, (80)

S =
∂α̇

∂εvpe
=

∑ ∂α̇i

∂εvpe
=

∑ (
2

3
Ci

∂ε̇vp

∂εvpe
− γi

∂ε̇vpe
∂εvpe

αi

)
=

∑ (
2

3
CiL− γiPαi

)
, (80′)

T =
∂α̇

∂α
=

∑ ∂α̇i

∂α
=

∑ [
2

3
Ci

∂ε̇vp

∂α
− γi

(
∂ε̇vpe
∂α

⊗αi + ε̇vpe
∂αi

∂α

)]

= −
∑ (

2

3
Ci

∂ε̇vp

∂σ
− γi

∂ε̇vpe
∂σ

⊗αi

)
−

∑
γiε̇

vp
e I = −R−

∑
γiε̇

vp
e I.

(80′′)

Note that, in Eq. (80), T �= −R because α̇ can merely be treated as an explicit function of both σ̃ and α.
Till now, the explicit expressions for all the partial derivatives in Eq. (62) (or Eq. (23)) have been derived

and are ready to be substituted into the general affine formulation.

C. Affine Formulations for Isotropic/Kinematic Hardening Constituents

First let the constituent merely exhibit isotropic hardening, and accordingly, let ε̇vp and ε̇vpe be functions of
σ and εvpe , respectively, i.e.,

ε̇vp (t) = ε̇vp (σ (t) , εvpe (t)) and ε̇vpe (t) = ε̇vpe (σ (t) , εvpe (t)) , (81)

and accordingly, the evolution equations of ε̇vp and ε̇vpe become

ε̇vp (tn+1) = ε̇vp (tn) +K (tn+1) : Δσ + L (tn+1)Δεvpe , (82)

ε̇vpe (tn+1) = ε̇vpe (tn) +N (tn+1) : Δσ + P (tn+1)Δεvpe , (82′)

where K, L, N, and P are still given by Eq. (23). Substituting Δεvpe = ε̇vpe (tn+1)Δt into the second equation
of Eq. (82) and rearranging the equation give

ε̇vpe (tn+1) =
ε̇vpe (tn) +N (tn+1) : Δσ

1− P (tn+1)Δt
. (83)

Substituting Eq. (83) into the first equation of Eq. (81) and rearranging the equation give

ε̇vp (tn+1) = ˙̃ε (tn+1) + C̃−1
(tn+1) : Δσ, (84)

where

˙̃ε (tn+1) = ε̇vp (tn) +
ε̇vpe (tn)

1− P (tn+1)Δt
L (tn+1)Δt (85)

and

C̃−1
(tn+1) = K (tn+1) +

L (tn+1)⊗N (tn+1)

1− P (tn+1)Δt
Δt. (86)

Since Eq. (84) is almost the same as Eq. (30) except that ˙̃ε (tn+1) and C̃−1
(tn+1) take different forms, Eqs.

(33) - (37) remain valid here.
Next let the constituent merely exhibit kinematic hardening, and accordingly, let ε̇vp and α̇ be functions

of σ and α, respectively, i.e.,

ε̇vp (t) = ε̇vp (σ (t) ,α (t)) and α̇ (t) = α̇ (σ (t) ,α (t)) , (87)

and accordingly, the evolution equations of ε̇vp and α̇ become

ε̇vp (tn+1) = ε̇vp (tn) +K (tn+1) : Δσ +M (tn+1) : Δα, (88)

α̇ (tn+1) = α̇ (tn) +R (tn+1) : Δσ + T (tn+1) : Δα, (88′)
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where K, M, R, and T are still given by Eq. (23). Substituting Δα = α̇ (tn+1)Δt into the second equation
of Eq. (88) and rearranging the equation give

α̇ (tn+1) = [I − T (tn+1)Δt]
−1

: [α̇ (tn) +R (tn+1) : Δσ] , (89)

Substituting Eq. (89) into the first equation of Eq. (87) and rearranging the equation give

ε̇vp (tn+1) = ˙̃ε (tn+1) + C̃−1
(tn+1) : Δσ, (90)

where
˙̃ε (tn+1) = ε̇vp (tn) +M (tn+1) : [I − T (tn+1)Δt]

−1
: α̇ (tn)Δt (91)

and
C̃−1

(tn+1) = K (tn+1) +M (tn+1) : [I − T (tn+1)Δt]
−1

: R (tn+1)Δt. (92)

Similarly to the case of an isotropic hardening constituent, Eqs. (33) - (37) also remain valid here.
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a b s t r a c t

The variational asymptotic method for unit cell homogenization (VAMUCH) has emerged as a general-
purpose micromechanics code capable of predicting the effective properties of heterogeneous materials
and recovering the local fields. The objective of this paper is to propose a micromechanics approach
enabling VAMUCH to homogenize elasto-viscoplastic heterogeneous materials. An affine formulation
of the constitutive relations for an elasto-viscoplastic constituent, which exhibits viscoplastic anisotropy
and combined isotropic–kinematic hardening, is derived. The weak form of the problem is derived using
an asymptotic method, discretized using finite elements, and implemented into VAMUCH. The new fea-
tures of VAMUCH are validated with examples such as homogenizing binary, fiber-reinforced, and parti-
cle-reinforced composites. VAMUCH is found to be capable of handling various microstructure, complex
material models, complex loading conditions, and complex loading paths. More sophisticated material
models can be implemented into it.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneous materials are widely used in structural
components due to their capabilities of exhibiting designated
in-plane stiffness, bending stiffness, ultimate strength, or thermal
expansion coefficient. When they are deformed to certain extents
at high temperatures, their constituents often exhibit elasto-
viscoplastic behaviors. It is challenging to evaluate theirmechanical
responses because their deformations are often accompanied by
material nonlinearity, history dependency, and rate dependency.
Moreover, it is difficult and time consuming to manufacture a great
amount of specimens and to perform various tests on them, while it
is computationally prohibitive to analyze them with all the micro-
structural details because the dimensions of the macroscopic struc-
tures are usually several orders of magnitude greater than the
heterogeneity length scale. Therefore, it is of great practical value
to solve such problems using a micromechanics approach.

In recent decades, numerous efforts have been devoted to
micromechanics. A micromechanics approach generally consists
of the following steps (Yu and Tang, 2007a):

1. Identify the unit cell (UC) of a heterogeneous material.

2. Compute the effective material properties through the constitu-
tive modeling of the UC.

3. Assign these properties to the macroscopic structure and obtain
the global response.

4. Feedback the global response to the local scale and recover the
local fields (e.g., the displacement, strain, and stress fields).

If the deformation is restricted in the linearly elastic regime it is
history- and rate-independent. In this case, the effective material
properties remain constant all the time, and one just needs to per-
form the constitutive modeling. The micromechanics theories of
linearly elastic heterogeneous materials are well established. These
theories include the mean-field homogenization (MFH) (Hill,
1965a; Mori and Tanaka, 1973), Hashin and Shtrikman’s varia-
tional approach (Hashin and Shtrikman, 1963), the third-order
bounds (Milton, 1981), the method of cells (MOC) (Aboudi,
1981), the recursive cell method (Banerjee and Adams, 2004),
and the mathematical homogenization theories (MHT)
(Bensoussan et al., 1978; Murakami and Toledano, 1990), and some
others. If the deformation is extended to the viscoplastic regime, it
becomes history- and rate-dependent. In this case, there does not
exist a correspondence principal between the stress and strain
rates, and one must linearize the constitutive relations and
perform an incremental analysis.

MFH is among the most popular micromechanics approaches
and consists of two major approaches, i.e., the tangent and secant

http://dx.doi.org/10.1016/j.ijsolstr.2014.07.003
0020-7683/� 2014 Elsevier Ltd. All rights reserved.
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approaches. As the name suggests, the tangent approach is based
on a tangent linearization of the constitutive relations (Hill,
1965b; Lebensohn and TomT, 1993), while the secant approach is
based on a secant linearization (Berveiller and Zaoui, 1978;
Tandon and Weng, 1988; Suquet, 1995). Hutchinson (1976) first
enabled Hill’s incremental approach to homogenize rigid-
viscoplastic polycrystals. Weng (1982) proposed a secant approach
to homogenizing elasto-viscoplastic polycrystals, in which the
inelastic strain is treated as a stress-free eigenstrain such that
the problem is transformed to an elastic one. Nemat-Nasser and
Obata (1986) later improved this approach by taking account into
finite deformation. These early approaches are unable to take
account into the viscoplastic interactions among different constit-
uents and tend to generate too stiff predictions.

Elaborate efforts have been devoted to overcoming these draw-
backs. Li and Weng (1998) improved the secant approach by trans-
forming the problem to a viscoelastic one, while Molinari et al.
(1987, 1997) improved the tangent approach by transforming the
problem to a thermoelastic one. Despite improvements, these
two approaches either require a two-phase heterogeneous mate-
rial or tend to underestimate the flow stress. Masson and his
coworkers (Masson and Zaoui, 1999; Masson et al., 2000) proposed
an affine approach, in which the constitutive relations are first lin-
earized in the time domain and then transformed to the Laplace
domain such that the problem is transformed to a thermoelastic
one, and Pierard and his coworkers (Pierard and Doghri, 2006;
Pierard et al., 2007) later enabled this approach to handle two-
phase heterogeneous materials. Although the affine approach is
capable of generating close predictions, it requires the inverse
Laplace transformation, which is computationally costly. To over-
come this drawback, Doghri et al. (2010) proposed an incremen-
tally affine approach, in which the constitutive relations are
linearized in numerous discrete time intervals such that the
inverse Laplace transformation is avoided. Despite success, none
of the aforementioned approaches can either recover the local
fields or incorporate viscoplastic anisotropy and combined isotro-
pic–kinematic hardening. Therefore, there is a need for a more
powerful approach.

Numerous attempts have been made not only to linearize the
constitutive relations but also to recover the local fields. Aboudi
and his co-workers (Aboudi, 1982; Paley and Aboudi, 1992) devel-
oped the method of cells (MOC) and later the generalized method
of cells (GMC) to achieve this goal. A detailed review on these
approaches can be found in Adoudi (2004). The basic ideas of these
approaches include subdividing the UC into numerous cuboid sub-
cells, solving for the average strains and stresses over each subcell,
and estimating the local fields. Despite improvements, these
approaches suffer two major drawbacks: first, discretizing the UC
using cuboid subcells may introduce considerable domain approx-
imation errors; second, approximating the local fields using the
average local strains and stresses may introduce considerable
approximation errors. In fact, it is always more accurate to discret-
ize the UC using a finite element mesh and to approximate the
local fields using shape functions and nodal values. To overcome
these drawbacks, Aboudi et al. (2002) developed the high fidelity
generalized method of cells (HFGMC). Despite high accuracy,
HFGMC is found to be quite computationally costly (Williams
et al., 2007). All these lead one to seek for a more accurate and
efficient approach.

In recent years, Yu and his co-workers (Yu and Tang, 2007a,b;
Tang and Yu, 2007, 2008a,b) developed the variational asymptotic
method for unit cell homogenization (VAMUCH). VAMUCH is a
general-purpose micromechanics code capable of predicting the
effective material properties and recovering the local fields. One
of its unique features is that it has the minimum number of
assumptions:

1. The heterogeneous material can be homogenized.
2. The effective material properties of a UC are independent of the

geometry and boundary conditions of the macroscopic
structure.

These two assumptions place the fewest restrictions on problem
solving. Although VAMUCH seems as versatile as the traditional
finite element method (FEM), it is distinct to FEM at least in the fol-
lowing aspects:

1. VAMUCH is specially developed for the constitutive modeling,
while FEM is not, or to say, VAMUCH directly solves for the
constitutive relations, while FEM directly solves for the
displacements, strains, and stresses under certain load
conditions.

2. VAMUCH can model the UC using the smallest mathematical
building block, not necessarily a 3D volume, while FEM cannot
(e.g., VAMUCH can use 1D and 2D UCs to compute the complete
set of 3D properties of binary and fiber-reinforced composites,
respectively (Yu and Tang, 2007a), while FEM has to use 3D
UCs to achieve this).

3. VAMUCH solves for the fluctuation functions (see Eq. (49)),
while FEM solves for the displacements.

4. VAMUCH deals with periodic boundary conditions, while FEM
mostly deals with displacement and traction boundary
conditions.

5. VAMUCH can obtain the complete set of effective material
properties through one analysis, while FEM cannot (e.g., for
linearly elastic materials, FEM has to run six times to do this
(Xia et al., 2003)).

The objective of this paper is to propose a micromechanics
approach enabling VAMUCH to homogenize elasto-viscoplastic
heterogeneous materials. An affine formulation of the constitutive
relations for an elasto-viscoplastic constituent, which exhibits
viscoplastic anisotropy and combined isotropic–kinematic harden-
ing, is derived. The weak form of the problem is derived using an
asymptotic method, discretized using finite elements, and imple-
mented into VAMUCH. The new features of VAMUCH are validated
with examples such as homogenizing binary, fiber-reinforced, and
particle-reinforced composites.

2. Thermodynamic formulations

Consider a heterogeneous material of an identifiable UC. With-
out loss of generality, let its constituents all be elasto-viscoplastic.
Note that an elastic constituent can be treated as an elasto-visco-
plastic one with infinite yield stress. In this section, some funda-
mentals of thermodynamics will be briefed.

Let w denote the Helmholtz free energy per unit mass of the
constituent. According to the theory of thermodynamics, w can
be expressed as a function of a suitable set of independent state
variables characterizing the elastic and viscoplastic behaviors of
the constituent, e.g.,

w ¼ w �e;a; rð Þ; ð1Þ
where �e denotes the elastic strain tensor, a is a second-order ten-
sor accounting for kinematic hardening, and r is a scalar accounting
for isotropic hardening. Assume that the constituent exhibits
uncoupled elastic and viscoplastic behaviors. In this case, w can be
decomposed into its elastic part, we, and its hardening part, wvp, i.e.,

w �e;a; rð Þ ¼ we �eð Þ þ wvp a; rð Þ: ð2Þ

The thermodynamic forces conjugate to the state variables in Eq. (1)
can be defined as
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r ¼ q
@w
@�e

¼ q
@we

@�e
; X ¼ q

@w
@a

¼ q
@wvp

@a
; R ¼ @w

@r
¼ q

@wvp

@r
; ð3Þ

where r denotes the stress tensor, X denotes the back stress tenor, R
is related to the current yield stress, and q denotes the density of
the constituent.

If the deformation is isothermal, the Clausius–Duhem inequal-
ity writes

/ ¼ r : _�� q _w P 0; ð4Þ
where / denotes the dissipation per unit volume, and the overdot
denotes the time derivative of the quantity. Note that the strain ten-
sor, �, can be decomposed into its elastic and viscoplastic parts, i.e.,

� ¼ �e þ �vp: ð5Þ
Combining Eqs. (2)–(5) gives

/ ¼ r : _�vp � X : _a� R_r P 0: ð6Þ
Assume that there exists a viscoplastic potential, U, which is a func-
tion of the thermodynamic forces and governs the evolution of the
state variables, i.e.,

_�vp ¼ @U
@r

; _a ¼ � @U
@X

; _r ¼ � @U
@R

: ð7Þ

Without loss of generality, let

f ¼ f r;X;Rð Þ ð8Þ
denote the yield function, and let

U ¼ U fð Þ and _k ¼ @U
@f

: ð9Þ

Eq. (7) can then be rewritten using the chain rule as

_�vp ¼ _k
@f
@r

; _a ¼ � _k
@f
@X

; _r ¼ � _k
@f
@R

; ð10Þ

where the specific forms of _k and f are to be determined.
Till now, some fundamentals of thermodynamics have been

briefed. In the next section, the viscoplasticity model will be
specified.

3. Viscoplasticity model

For notational convenience, let ~r ¼ r� X. Without loss of gen-
erality, let f take the form of Hill’s yield function, i.e.,

f r;X;Rð Þ ¼ ~re � rY ; ð11Þ
where

~re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
~r0 : H : ~r0

r
; ð12Þ

with �ð Þ0 denoting the deviatoric part of the tensor and H denoting
the fourth-order anisotropy tensor, and rY denotes the current yield
stress and is related to R by

rY ¼ r0 þ R; ð13Þ
where r0 denotes the initial yield stress. Substituting Eq. (12) into
the modified viscoplastic work equivalence principle,

~r : _�vp ¼ ~re _p; ð14Þ
gives the Hill equivalent viscoplastic strain rate as

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_�vp : H�1 : _�vp

r
; ð15Þ

where H : H�1 ¼ I with I denoting the fourth-order identity ten-
sor (Benzerga and Besson, 2001). H can be obtained from the R-val-

ues, which characterize viscoplastic anisotropy and can be
measured from experiments (see Appendix A for more details).

It is beneficial to find the relation between _k and _p. Specifically,
substituting the first equation of Eq. (10) into Eq. (14) gives

~r : _k
@f
@r

� �
¼ ~re _p: ð16Þ

The explicit expression for @f=@r can be derived as (Benzerga and
Besson, 2001)

@f
@r

¼ @~re

@~r
¼ 1

2~re

@~r2
e

@~r
¼ 1

2~re

3
2
2
@~r0

@~r
: H : ~r0

� �
¼ 3

2~re
J : H : ~r0;

ð17Þ
where J denotes the fourth-order deviatoric projection operator
and takes the form of J ¼ I � 1

3 I� I with I denoting the second-
order identity tensor. Substituting Eq. (17) into Eq. (16) gives

~re
_k ¼ ~re _p or _k ¼ _p: ð18Þ
Eq. (10), together with Eq. (11), implies that nonlinear kine-

matic hardening is inadmissible. This indicates that Eq. (10) places
too strict restrictions (Chaboche, 1997). To overcome this draw-
back, introduce a pseudo-potential g, which is related to f by

g ¼ f þ 3
4
c
C
X : Xþ R2

2K
ð19Þ

with C and c being two constants accounting for nonlinear kine-
matic hardening and K being a constant accounting for isotropic
hardening, and rewrite Eq. (10) as

_�vp ¼ _k
@g
@r

; _a ¼ � _k
@g
@X

¼ _�vp � 3
2
c
C
X _k; ð20Þ

_r ¼ � _k
@g
@R

¼ 1� R
K

� �
_k: ð200 Þ

Since @g=@r ¼ @f=@r, Eq. (18) remains valid here. Let qwvp take the
form of

qwvp ¼ 1
3
Ca : aþ 1

2
Knr2; ð21Þ

where n is another constant accounting for isotropic hardening.
Substituting Eq. (21) into the last two equations of Eq. (3) gives

X ¼ 2
3
Ca and R ¼ Knr: ð22Þ

Substituting the last two equations of Eq. (20) into the rate form of
Eq. (22) and noting that _k ¼ _p give

_X ¼ 2
3
C _�vp � cX _p and _R ¼ K � Rð Þn _p; ð23Þ

which are the Chaboche hardening law (Chaboche, 1989) and the
rate form of the Voce hardening law (Voce, 1955), respectively. Note
that the second equation of Eq. (23) can be further integrated into
the Voce hardening law as

R ¼ K 1� exp �npð Þ½ �: ð24Þ
More details on the derivation in this paragraph can be found in
Besson et al. (2010).

The Perzyna model (Perzyna, 1966) suggests that

U ¼
1
g

rY
Nþ1

f
rY

� �Nþ1
f > 0;

0 f 6 0

8<
: ð25Þ

or

_k ¼
1
g

f
rY

� �N
f > 0;

0 f 6 0;

8<
: ð26Þ
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where g denotes a fluidity parameter, and N denotes a rate-sensitiv-
ity parameter. Substituting Eq. (26) into Eq. (20) fully specifies the
viscoplasticity model.

Till now, the viscoplasticity model has been specified. In the
next section, an affine formulation of the constitutive relations
for a constituent will be derived.

4. Affine formulation of the constitutive relations

Suppose that all the variables at time tn are known. The task is
to find the variables at time tnþ1 ¼ tn þ Dt, where D �ð Þ denotes the
increment in a quantity over this time interval. This leads one to
derive the correspondence principal between Dr and D�.

Note that Hooke’s law writes

r ¼ Ce : �e; ð27Þ
where Ce denotes the fourth-order elasticity tensor. Substituting the
incremental form of Eq. (27) into the incremental form of Eq. (5)
gives

D� ¼ D�e þ D�vp ¼ Ceð Þ�1
: Drþ D�vp: ð28Þ

Eq. (28) leads one to first derive the correspondence principal
between Dr and D�vp. Without loss of generality, let _�vp, _p, and _X
be functions of r, p, and X, respectively, i.e.,

_�vp tð Þ ¼ _�vp r tð Þ; p tð Þ;X tð Þð Þ; _p tð Þ ¼ _p r tð Þ;p tð Þ;X tð Þð Þ; ð29Þ

_X tð Þ ¼ _X r tð Þ;p tð Þ;X tð Þð Þ: ð290 Þ
Following Doghri et al. (2010), let D�vp be related to _�vp tnþ1ð Þ using
the backward Euler method by

D�vp ¼ _�vp tnþ1ð ÞDt; ð30Þ

and let the evolution of _�vp, _p, and _X be governed by

_�vp tnþ1ð Þ ¼ _�vp tnð Þ þK tnþ1ð Þ : Drþ L tnþ1ð ÞDpþM tnþ1ð Þ : DX;
ð31Þ

_p tnþ1ð Þ ¼ _p tnð Þ þ N tnþ1ð Þ : Drþ P tnþ1ð ÞDpþ Q tnþ1ð Þ : DX; ð310 Þ

_X tnþ1ð Þ ¼ _X tnð Þ þR tnþ1ð Þ : Drþ S tnþ1ð ÞDpþ T tnþ1ð Þ : DX; ð3100 Þ
where

K ¼ @ _�vp

@r
; L ¼ @ _�vp

@p
; M ¼ @ _�vp

@X
; ð32Þ

N ¼ @ _p
@r

; P ¼ @ _p
@p

; Q ¼ @ _p
@X

; ð320 Þ

R ¼ @ _X
@r

; S ¼ @ _X
@p

; T ¼ @ _X
@X

ð3200 Þ

with K, M, R, and T being fourth-order tensors, L, N, Q , and S
being second-order tensors, and P being a scalar (see Appendix B
for more details on the derivation of the explicit expressions for
these partial derivatives). Also let Dp and DX be related to _p and
_X using the backward Euler method by

Dp ¼ _p tnþ1ð ÞDt and DX ¼ _X tnþ1ð ÞDt; ð33Þ

respectively. Substituting Eq. (33) into the last two equations of Eq.
(31) and rearranging the equations gives

A11 _p tnþ1ð Þ þ A12 : _X tnþ1ð Þ ¼ B1; ð34Þ

A21 _p tnþ1ð Þ þA22 : _X tnþ1ð Þ ¼ B2; ð340 Þ

where

A11 ¼ 1� P tnþ1ð ÞDt; A12 ¼ �Q tnþ1ð ÞDt; ð35Þ

A21 ¼ �S tnþ1ð ÞDt; A22 ¼ I � T tnþ1ð ÞDt; ð350 Þ

B1 ¼ _p tnð Þ þ N tnþ1ð Þ : Dr; B2 ¼ _X tnð Þ þR tnþ1ð Þ : Dr: ð3500 Þ
Rearranging the second equation of Eq. (34) gives

_X tnþ1ð Þ ¼ A�1
22 : B2 � A21 _p tnþ1ð Þ½ �: ð36Þ

Substituting Eq. (36) into the first equation of Eq. (34) and rearrang-
ing the equation give

_p tnþ1ð Þ ¼ B1 � A12 : A�1
22 : B2

A11 � A12 : A�1
22 : A21

: ð37Þ

Substituting Eq. (37) into Eq. (36) gives

_X tnþ1ð Þ ¼ A�1
22 : B2 � B1 � A12 : A�1

22 : B2

A11 � A12 : A�1
22 : A21

A21

 !
: ð38Þ

Substituting Eqs. (37) and (38) into Eq. (33), substituting the equa-
tion into the first equation of Eq. (31), and rearranging the equation
give

_�vp tnþ1ð Þ ¼ _~� tnþ1ð Þ þ ~C�1 tnþ1ð Þ : Dr; ð39Þ
where

_~� tnþ1ð Þ¼ _�vp tnð ÞþM tnþ1ð Þ :A�1
22 : _X tnð ÞDt

þ _p tnð Þ�A12 :A
�1
22 : _X tnð Þ

A11�A12 :A
�1
22 :A21

L tnþ1ð Þ�M tnþ1ð Þ :A�1
22 :A21

h i
Dt ð40Þ

and

~C�1 tnþ1ð Þ¼K tnþ1ð ÞþM tnþ1ð Þ :A�1
22 :R tnþ1ð ÞDt

þ
L tnþ1ð Þ�M tnþ1ð Þ :A�1

22 :A21

h i
� N tnþ1ð Þ�A12 :A

�1
22 :R tnþ1ð Þ

h i
A11�A12 :A

�1
22 :A21

Dt:

ð41Þ
Substituting Eq. (39) into Eq. (30) gives

D�vp ¼ D~�þ ~C�1 tnþ1ð ÞDt� �
: Dr; ð42Þ

where D~� ¼ _~� tnþ1ð ÞDt. Substituting Eq. (42) into Eq. (28) gives

D� ¼ D�e þ D�vp ¼ Ceð Þ�1
: Drþ D~�þ ~C�1 tnþ1ð ÞDt� �

: Dr: ð43Þ
Rearranging Eq. (43) gives an affine formulation of the constitutive
relations for the constituent as

D�� D~� ¼ Ceð Þ�1 þ ~C�1 tnþ1ð ÞDt
h i

: Dr ð44Þ

or

Dr ¼ Cevp tnþ1ð Þ : D�� D~�ð Þ; ð45Þ
where Cevp denotes the fourth-order affine instantaneous elasto-
viscoplastic stiffness tensor and is given by

Cevp tnþ1ð Þ ¼ Ceð Þ�1 þ ~C�1 tnþ1ð ÞDt
h i�1

: ð46Þ

Till now, an affine formulation of the constitutive relations has
been derived. In the next section, the weak form of the problemwill
be derived.

5. Weak form

Introduce global coordinates x ¼ x1; x2; x3ð Þ describing the mac-
roscopic structure and local coordinates y ¼ y1; y2; y3ð Þ describing
the UC, and let y be related to x by (Berdichevsky, 2009)

y ¼ x=�; ð47Þ
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where �� 1 denotes a scale ratio. Suppose that, at time tn:

1. The UC is in a state of static equilibrium.
2. The global and local variables are known.
3. Periodic boundary conditions are satisfied.

Also note that the rate of a quantity can be converted to its incre-
ment by multiplying it by Dt. The task hereby becomes solving for
the exact velocity vector within the UC, _ui, at tnþ1.

_ui must have its volume average over the UC, say _v i, such that
the heterogeneous material can be homogenized (Yu and Tang,
2007a). By definition, _v i is related to _ui by

_v i ¼ 1
X

Z
X

_uidV � _uih i; ð48Þ

where X denotes the domain occupied by the UC (with boundary
@X) and also its volume, and �h i denotes the volume average of a
quantity over X. _ui can be decomposed into _v i and a fluctuation
function, vi, i.e., (Berdichevsky, 2009)

_ui y;xð Þ ¼ _v i xð Þ þ �vi y;xð Þ; ð49Þ
where vi is a periodic function of y and may also depend on x, and
�vi should be asymptotically smaller than _v i. Eqs. (48) and (49)
imply that

vi

� � ¼ 0: ð50Þ
In fact, although �vi negligibly affects _ui, it can significantly affect
the derivatives of _ui. Specifically,

@ _ui

@xj
¼ 1
�
@ _ui

@yj


x¼const

þ @ _ui

@xj


y¼const

¼ @ _v i

@xj
þ @vi

@yj
þ �

@vi

@xj
; ð51Þ

where �@vi=@xj is a high-order term and can be omitted. Note that,
by definition,

_�ij ¼ 1
2

@ _ui

@xj
þ @ _uj

@xi

� �
: ð52Þ

Let

_��ij ¼ 1
2

@ _v i

@xj
þ @ _v j

@xi

� �
and v ijjð Þ ¼

1
2

@vi

@yj
þ @vj

@yi

 !
; ð53Þ

where _��ij actually denotes the global strain rate tenor. Combining
Eqs. (49), (52), and (53) gives

_�ij ¼ _��ij þ v ijjð Þ: ð54Þ
The strong form of the problem can be formulated as seeking vi

satisfying

_rij;j ¼ 0 in X ð55Þ
subject to constraint Eq. (50) and periodic boundary conditions

vi yð Þ ¼ vi y þ lð Þ and _rijnj
� �

yð Þ ¼ � _rijnj
� �

y þ lð Þ on @X; ð56Þ
where l denotes the periodicity vector of the UC, and ni denotes the
unit normal vector. Let dvi denote the virtual fluctuation function
being arbitrary in X and satisfying periodic boundary conditions

dvi yð Þ ¼ dvi y þ lð Þ on @X: ð57Þ
The rate form of the principle of virtual work can be expressed in
terms of dvi as

dPX ¼ � 1
X

Z
X

_rij;jdvidV ¼ 1
X

Z
X

_rijdv ijjð ÞdV � 1
X

Z
X

_rijnjdvidS ¼ 0:

ð58Þ
Substituting Eq. (57) and the second equation of Eq. (56) into Eq.
(58) gives

dPX ¼ 1
X

Z
X

_rijdv ijjð ÞdV ¼ 0: ð59Þ

The weak form of the problem can then be formulated as seeking vi

satisfying Eq. (59) subject to constraint Eq. (50) and periodic bound-
ary conditions

vi yð Þ ¼ vi y þ lð Þ on @X: ð60Þ
Substituting Eq. (54) into the rate form of Eq. (45) gives

_rij ¼ Cevp
ijkl

_��kl þ v kjlð Þ � _~�kl
h i

: ð61Þ

Substituting Eq. (61) into Eq. (59) gives

dPX ¼ 1
X

Z
X
dv ijjð ÞCevp

ijkl
_��kl þ v kjlð Þ � _~�kl
h i

dV ¼ 0: ð62Þ

Eq. (62) implies that, once _��ij and Cevp
ijkl are specified, vi can be

uniquely determined.
It is beneficial to also relate the local stress and strain rate ten-

sors to the global ones. Specifically, _rij _�ij
� �

can be expressed as

1
X

Z
X

_rij _�ijdV ¼ 1
X

Z
X

_rij
_��ijdV þ 1

X

Z
X

_rijv ijjð ÞdV : ð63Þ

Eq. (63), together with Eq. (59), implies that

1
X

Z
X

_rij _�ijdV ¼ 1
X

Z
X

_rij
_��ijdV ¼ _��ij

1
X

Z
X

_rijdV
� �

� _�rij
_��ij; ð64Þ

In fact, Eq. (64) is a variation of the Hill–Mandel lemma.
Till now, the weak form of the problem has been derived. In the

next section, it will be discretized using finite elements such that
the fluctuation functions can be determined.

6. Finite element implementation

Introduce the following matrix notations:

_�� ¼ _��11 2 _��12 _��22 2 _��13 2 _��23 _��33
� �T

; ð65Þ

@v1
@y1

@v1
@y2

þ @v2
@y1

@v2
@y2

@v1
@y3

þ @v3
@y1

@v2
@y3

þ @v3
@y2

@v3
@y3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

@
@y1

0 0
@

@y2
@

@y1
0

0 @
@y2

0
@

@y3
0 @

@y1

0 @
@y3

@
@y2

0 0 @
@y3

2
666666666664

3
777777777775

v1

v2

v3

8><
>:

9>=
>; � Chv; ð65 0gÞ

where Ch denotes an operator matrix, and v denotes a column
matrix containing the three components of the fluctuation func-
tions. Let v be discretized using finite elements as

v yi; xið Þ ¼ S yið ÞX xið Þ; ð66Þ

where S denotes the shape functions, and X denotes a column
matrix of the nodal values of the fluctuation functions at all the
active nodes. The discretized version of Eq. (62) can then be
obtained as

dPX ¼ 1
X
dXT DhhXþ Dh�

_��� _rh

� �
¼ 0; ð67Þ

where

Dhh ¼
Z
X

ChSð ÞTD ChSð ÞdV ; Dh� ¼
Z
X

ChSð ÞTDdV ; ð68Þ

_rh ¼
Z
X

ChSð ÞTD _~�dV ð680 Þ
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with D denoting the 6� 6 instantaneous stiffness matrix condensed
from Cevp

ijkl . In Eq. (67), equality holds only if

DhhX ¼ �Dh�
_��þ _rh or X ¼ X0

_��þ X1; ð69Þ
where

DhhX0 ¼ �Dh� and DhhX1 ¼ _rh: ð70Þ
Eq. (69) implies that X is linearly dependent on _��. In addition,
Eq. (64) can be rewritten as

_��ij _�rij ¼ 1
X

Z
X

_��ij _rijdV ¼ 1
X

Z
X

_��ijCevp
ijkl

_��kl þ v kjlð Þ � _~�kl
h i

dV : ð71Þ

The discretized version of Eq. (71) can be obtained as

_��T _�r ¼ 1
X

_��TD�hXþ _��TD��
_��� _��T _r�

� �
¼ 1
X

_��T D�hX0 þ D��ð Þ _��þ D�hX1 � _r�

h i
� _��T �D _��þ 1

X
D�hX1 � _r�ð Þ

	 

; ð72Þ

where _�r denotes the global stress rate column matrix, and

D�h ¼
Z
X
D ChSð ÞdV ; D�� ¼

Z
X
DdV ; _r� ¼

Z
X
D _~�dV : ð73Þ

The rate form of the global constitutive relations can then be
obtained from Eq. (72) as

_�r ¼ �D _��þ 1
X

D�hX1 � _r�ð Þ; ð74Þ

where D denotes the affine instantaneous effective stiffness matrix.
Once _��; _�r, or a suitable combination of the components of _�� and _�r is
specified, the global response of the UC can be fully determined
using Eq. (74). In addition, the real value of X0, say �X0, can be
obtained by modifying X0 such that v satisfies Eqs. (50) and (60).
Once _�� and �X0 are specified, the local fields can be fully recovered.
Specifically, the local strain rates can be recovered as

_� ¼ _��þ ChS �X0
_��þ �X1

� �
; ð75Þ

where _� denotes the local strain rate column matrix, and �X1 is
obtained similarly to �X0. The local stress rates can be recovered
from the local strain rates as

_r ¼ D _�� _~�
� �

: ð76Þ

Till now, the fluctuation functions can be determined. In the
next section, the code structure will be presented.

7. Code structure

VAMUCH employs the second-order implicit Runge–Kutta
method as its time integration method (see Fig. 1 for its code struc-
ture). It starts with reading the finite element model and initializ-
ing the global and local variables. After this, it will perform the
following steps within each load increment:

1. Compute the effective material properties and the fluctuation
functions.

2. Impose the global stress/strain increments.
3. Recover the local fields.
4. Update the global and local variables.
5. Continue to the next increment if needed.

At last, it will output the results as needed.

VAMUCH uses the Gaussian quadrature to compute the element
stiffness matrices. The corresponding algorithm is described as
follows:

1. Read the data associated with an integration point.
2. Check whether the constituent is elasto-viscoplastic.
3. If yes, check whether f > 0.
4. If yes, compute the stiffness matrix using Eq. (46) and return it.
5. If either of the two criteria is not met, return the elastic stiffness

matrix.

Especially, if f > 0, VAMUCHwill update the corresponding p and X
during the recovery.

8. Validation examples

In this section, the new features of VAMUCH will be validated
with examples such as homogenizing binary, fiber-reinforced,
and particle-reinforced composites. For validation purposes, the
results obtained using VAMUCH will be compared with those
obtained using ANSYS.

8.1. Fiber-reinforced composite

First consider a fiber-reinforced composite consisting of an elas-
to-viscoplastic aluminum matrix and numerous cylindrical, elastic
SiC fibers arranged in a square array with the volume fraction of
fibers being 10%. With loss of generality, let aluminum exhibit
combined isotropic–kinematic hardening (see Eqs. (23)–(25)).
Following Li and Weng (1998), Doghri et al. (2010) and Zhao and
Lee (2001), let the material parameters of SiC and aluminum take
the values listed in Table 1, where E and m denote Young’s modulus
and Poisson’s ratio, respectively. Let the UC of this composite con-
sist of a square matrix and a circular fiber located at its center.
Recall that yi denotes the local coordinates describing the UC with
its origin located at the geometric center of the UC (see Section 5).
Here let the y1-axis be parallel to the fiber direction, and let the

Fig. 1. Code structure.
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y2- and y3-axes be parallel to the length and width directions of the
UC, respectively.

In VAMUCH, a 2D UC is meshed using 4-node quadrilateral ele-
ments having 3 degrees of freedom (DOFs) at each node, and the
meshed UC consists of 1216 elements. Periodic boundary condi-
tions are applied using the master–slave elimination method. In
ANSYS, a 3D UC is meshed using 8-node hexahedra elements
(SOLID185), and the meshed UC consists of 2432 elements. For val-
idation purposes, the UC is set to undergo uniaxial or biaxial exten-
sion in which cases periodic boundary conditions becomes
homogeneous ones. Both finite element models are found to be
capable of producing converged results.

Fig. 2 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial extension in the y1- and y2-directions, respec-
tively. For illustration purposes, let the loading path in each exam-
ple consist of the following steps:

1. Initial loading: the major strain(s) is increased from 0 to 0:01.
2. Initial unloading: the major strain(s) is decreased from 0:01 to

0.
3. Reverse loading: the major strain(s) is decreased from 0:0 to

�0:01.
4. Reverse unloading: the major strain(s) is increased from �0:01

to 0.

It can be seen that the composite exhibits an approximately bilin-
ear stress-strain relationship when loaded in the y1-direction and a
highly nonlinear one when loaded in the y2-direction. This can be
understood by investigating the stress distribution in the matrix.
Specifically, in Fig. 2(a), the stress distribution in the matrix
remains approximately uniform during continued deformation,
causing yielding to simultaneously occur at different locations in
the matrix; in Fig. 2(b), it remains highly nonuniform, causing
yielding to subsequently occur. In addition, in Fig. 2, the composite
becomes stiffer as the major strain rate increases. This agrees with
the theory of viscoplasticity. At last, in Fig. 2, the results obtained
using VAMUCH perfectly agree with those obtained using ANSYS.
In fact, VAMUCH can generate the same predictions using 2D and
3D UCs, while ANSYS has to use a 3D UC to handle the out-of-plane
loads and displacements. All these indicate that VAMUCH is capa-
ble of homogenizing fiber-reinforced composites using 2D UCs and
handling complex loading paths.

Fig. 3 shows the stress–strain hysteresis loops of the composite
undergoing equal biaxial extension in the y2- and y3-directions. It
can be seen that the stress–strain relationships here are similar
to those in Fig. 2(a). Therefore, the discussion for Fig. 2(a) holds
here. In addition, in Fig. 3, the results obtained using VAMUCH per-
fectly agree with those obtained using ANSYS. This indicates that
VAMUCH is capable of handling complex loading conditions.

Next let aluminum exhibit viscoplastic transverse isotropy in
the y2-y3 plane here, and allow its Ri’s to take three sets of values
listed in Table 2 for three cases (see Appendix A for more details).
For validation purposes, let aluminum exhibit no kinematic hard-
ening here such that ANSYS can handle the material model.

Fig. 4 shows the stress–strain hysteresis loops of the
composite undergoing uniaxial extension in the y2-direction,

Table 1
Material parameters of SiC and aluminum.

(a) Elastic constants
E GPað Þ m

SiC 490 0.17
Aluminum 70 0.33

(b) Viscoplastic material parameters of aluminum
r0 MPað Þ K MPað Þ n g sð Þ m C MPað Þ c

60 40 54.9 2:27� 105 4.61 7019 118.6

Fig. 2. Stress–strain hysteresis loops of a fiber-reinforced composite undergoing
uniaxial extension.

Fig. 3. Stress–strain hysteresis loops of a fiber-reinforced composite undergoing
equal biaxial extension in the y2- and y3-directions.
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_��22 ¼ 10�4 s�1. In fact, the following findings can be obtained after
some calculation:

1. All three sets of the values yield the same yield stress in the
y1-direction.

2. The set of values with the lowest value of R3 yields the lowest
yield stress in the y2- (or y3-) direction and vice versa.

Accordingly, in Fig. 4, as R3 increases, the composite becomes more
flexible. In addition, in Fig. 4, the results obtained using VAMUCH
perfectly agree with those obtained using ANSYS. This indicates
that VAMUCH is capable of handling complex material models.

8.2. Binary composite

Next consider a binary composite consisting of a SiC constituent
and an aluminum constituent with their volume fractions being
10% and 90%, respectively. Let the material parameters of SiC and
aluminum take the values listed in Table 1. Let the UC of this
composite be a line segment consisting of two connecting sub-line
segments. Here let the y1-axis be parallel to the line segment
representing the UC.

In VAMUCH, a 1D UC is meshed using 2-node line elements hav-
ing 3 DOFs at each node, and the meshed UC consists of 2 elements.
In ANSYS, a 3D UC is meshed using SOLID185, and the meshed UC
consists of 64 elements. Both finite element models are found to be
capable of producing converged results.

Fig. 5 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial extension in the y1- and y2-directions, . It can
be seen that the stress–strain relationships here are similar to those
in Fig. 2(a). Therefore, the discussion for Fig. 2(a) holds here. In addi-
tion, in Fig. 5, the results obtained using VAMUCH perfectly agree
with those obtained using ANSYS. This indicates that VAMUCH is
capable of homogenizing binary composites using 1D UCs.

8.3. Particle-reinforced composite

Last consider a particle-reinforced composite consisting of an
aluminum matrix and numerous spherical SiC particles arranged
in a cubic array with the volume fraction of particles being 10%.
Let the material parameters of SiC and aluminum take the values
listed in Table 1. Let the UC of this composite consist of a cubic
matrix and a spherical particle located at its center. Here let the
y1-, y2-, and y3-axes be parallel to the length, width, and height
directions of the UC, respectively.

In VAMUCH and ANSYS, the same UC is meshed using 8-node
hexahedra elements having 3 DOFs at each node, and the meshed
UC consists of 1512 elements. Both finite element models are
found to be capable of producing converged results.

Fig. 6 shows the stress–strain hysteresis loops of the composite
undergoing uniaxial extension in the y1-direction. It can be seen
that the stress–strain relationships here are similar to those in
Fig. 2(b). Therefore, the discussion for Fig. 2(b) holds here. In addi-
tion, in Fig. 6, the results obtained using VAMUCH agree well with
those obtained using ANSYS. This indicates that VAMUCH is
capable of homogenizing heterogeneous materials of 3D heteroge-
neity such as particle-reinforced composites.

Table 2
Ri’s for different cases.

R1 R2 R3 R4 R5 R6

1 1 1 0.5 1 0.5 2
2 1 1 1 1 1 1
3 1 1 2 1 2 0.5

Fig. 4. Stress–strain hysteresis loops of a fiber-reinforced composite with a
viscoplastically anisotropic matrix undergoing uniaxial extension in the
y2-direction.

Fig. 5. Stress–strain hysteresis loops of a binary composite undergoing uniaxial
extension.
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9. Conclusions

VAMUCH has emerged as a general-purpose micromechanics
code capable of predicting the effective properties of heteroge-
neous materials and recovering the local fields. In this paper, a
micromechanics approach is proposed to enable VAMUCH to
homogenize elasto-viscoplastic heterogeneous materials. An
affine formulation of the constitutive relations for an elasto-visco-
plastic constituent, which exhibits viscoplastic anisotropy and
combined isotropic–kinematic hardening, is derived. The weak
form of the problem is derived using an asymptotic method, dis-
cretized using finite elements, and implemented into VAMUCH.
The new features of VAMUCH are validated with examples such
as homogenizing binary, fiber-reinforced, and particle-reinforced
composites. VAMUCH is found to be capable of handling various
microstructure, complex material models, complex loading condi-
tions, and complex loading paths. It provides a versatile and
convenient tool allowing scientists and engineers to accurately
and efficiently homogenize elasto-viscoplastic heterogeneous
materials. More sophisticated material models can be
implemented into it.
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Appendix A. Viscoplastic anisotropy parameters

The R-value is widely used to characterize the viscoplastic
anisotropy of rolled sheet metals and can be measured from a ser-
ies of uniaxial tensile tests. Specifically, when a tensile specimen
cut from a sheet is stretched, its R-value is defined as the ratio of
the viscoplastic strain in the width direction to that in the thick-
ness direction, i.e.,

R ¼ �W
�T

: ðA:1Þ

In general, the R-value varies with the cut angle with respect to the
rolling direction of the sheet, a. In this case, an averaged R-value is
often adopted. It is defined as

�R ¼ R0 þ 2R45 þ R90

4
; ðA:2Þ

where Ra denotes the R-value obtained from a tensile specimen of
cut angle a.

Benzerga and Besson (2001) enriched the concept of the R-value
by introducing six strain rate ratios, Rij, which are capable of fully
characterizing the viscoplastic anisotropy of a 3D structure. Simi-
larly to the R-value, each of these ratios can be measured from
either a uniaxial tensile test or a simple shear test. Specifically,
introduce Cartesian coordinates x ¼ x1; x2; x3ð Þ with its three axes
parallel to the orthotropic axes of the constituent. These ratios
can then be defined as

R11 ¼ _�22
_�33

; R12 ¼ _�12
_�33

; R22 ¼ _�33
_�11

; ðA:3Þ

R13 ¼ _�13
_�22

; R23 ¼ _�23
_�11

; R33 ¼ _�11
_�22

: ðA:30 Þ

Rij can be written in the Voigt notation as

R1 ¼ R11; R2 ¼ R12; R3 ¼ R22; ðA:4Þ

R4 ¼ R13; R5 ¼ R23; R6 ¼ R33: ðA:40 Þ
It can be obtained from Eq. (A.3) that R6 ¼ 1=R1R3. This implies that
only five out of the six Ri’s are independent.

Hijkl can be written in the Voigt notation as Hij. The diagonal
components of Hij can be related to Ri by (Benzerga and Besson,
2001)

H11 ¼ �2
3
R1R3 � 2R1 � 2

R1 þ 1
;

H22

H11
¼ �1

2
2R2 þ 1ð Þ R1R3 þ 1ð Þ
R1R3 � 2R1 � 2

; ðA:5Þ

H33

H11
¼ 1� 3 R1R3 � 1ð Þ

R1R3 � 2R1 � 2
;

H44

H11
¼ �1

2
2R4 þ 1ð Þ R3 þ 1ð ÞR1

R1R3 � 2R1 � 2
; ðA:50 Þ

H55

H11
¼ �1

2
2R5 þ 1ð Þ R1 þ 1ð Þ
R1R3 � 2R1 � 2

;
H66

H11
¼ 1� 3R1 R3 � 1ð Þ

R1R3 � 2R1 � 2
; ðA:500 Þ

while the off-diagonal components vanish. More details on H can
be found in Benzerga and Besson (2001), Appendix A.

A special case of viscoplastic anisotropy is viscoplastic trans-
verse isotropy, in which case there exists a plane of viscoplastic
isotropy. Without loss of generality, let the x2 � x3 plane be the
plane of viscoplastic isotropy. Ri can then be expressed as

R3 ¼ R5 ¼ 1
R6

¼ R and R2 ¼ R4 ¼ R0; ðA:6Þ

where R and R0 can be measured from a uniaxial tensile test and a
simple shear test, respectively. Substituting Eq. (A.6) into Eq. (A.5)
and rearranging the equations give

H11 ¼ 1
3

4� Rð Þ; H22 ¼ H44 ¼ 1
6

Rþ 1ð Þ 2R0 þ 1
� �

; ðA:7Þ

H33 ¼ H55 ¼ H66 ¼ 1
3

2Rþ 1ð Þ: ðA:70 Þ

Appendix B. Partial derivatives

Recall that the partial derivatives whose explicit expressions are
to be derived are

K ¼ @ _�vp

@r
; L ¼ @ _�vp

@p
; M ¼ @ _�vp

@X
; ðB:1Þ

N ¼ @ _p
@r

; P ¼ @ _p
@p

; Q ¼ @ _p
@X

; ðB:10 Þ

Fig. 6. Stress–strain hysteresis loops of a particle-reinforced composite undergoing
uniaxial extension in the y1-direction.
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R ¼ @ _X
@r

; S ¼ @ _X
@p

; T ¼ @ _X
@X

: ðB:100 Þ

Let K; L, and M be the first set of partial derivatives of interest.
Recall that

@f
@r

¼ @g
@r

¼ @~re

@~r
¼ 3

2~re
J : H : ~r0: ðB:2Þ

In addition, Eq. (12) indicates that ~re ¼ ~re ~rð Þ. Also recall that
~r ¼ r� X. It can then be obtained using the chain rule that

@~re

@r
¼ @~re

@~r
:
@~r
@r

¼ @~re

@~r
: I ¼ @~re

@~r
; ðB:3Þ

@~re

@X
¼ @~re

@~r
:
@~r
@X

¼ @~re

@~r
: �Ið Þ ¼ � @~re

@~r
: ðB:30 Þ

Recall that, when f > 0; _k is given by

_k ¼ 1
g

f
rY

� �N

¼ 1
g

~re

rY
� 1

� �N

: ðB:4Þ

The first equation of Eq. (20), together with Eqs. (B.2) and (B.4),
implies that _�vp ¼ _�vp ~r;pð Þ. Similarly to Eq. (B.3), one obtains

@ _�vp

@~r
¼ @ _�vp

@r
¼ � @ _�vp

@X
or M ¼ �K: ðB:5Þ

By definition, K can be expressed as

K ¼ @ _�vp

@~r
¼ @

@~r
_k
@g
@r

� �
¼ @ _k

@~r
� @~re

@~r
þ _k

@

@~r
@~re

@~r

� �" #
; ðB:6Þ

where

@ _k
@~r

¼ N
g

~re

rY
� 1

� �N�1
@

@~r

~re

rY
� 1

� �
¼ N
grY

~re

rY
� 1

� �N�1
@~re

@~r
; ðB:7Þ

and

@

@~r
@~re

@~r

� �
¼ @

@~r
3

2~re
J : H : ~r0

� �
¼ 3

2
@

@~r
1
~re

� �
�J : H

¼ ~r0 þ 3
2~re

J : H :
@~r0

@~r
¼ 3

2
� 1

~r2
e

@~re

@~r

� �
�J : H

¼ ~r0 þ 3
2~re

J : H : J ¼ � 1
~re

@~re

@~r
� @~re

@~r
þ 3
2~re

J

¼ H : J : ðB:8Þ
Substituting Eqs. (B.7) and (B.8) into Eq. (B.6) and rearranging the
equation give

K ¼ @ _�vp

@~r
¼ 1
g

~re

rY
� 1

� �N�1

� N � 1
rY

þ 1
~re

� �
@~re

@~r
� @~re

@~r
þ 3
2

1
rY

� 1
~re

� �
J : H : J

	 

: ðB:9Þ

Similarly to K, L can be expressed as

L ¼ @ _�vp

@p
¼ @

@p
_k
@g
@r

� �
¼ @ _k

@p
@~re

@~r
; ðB:10Þ

where

@ _k
@p

¼ N
g

~re

rY
� 1

� �N�1
@

@p
~re

rY
� 1

� �

¼ �N
g

~re

r2
Y

~re

rY
� 1

� �N�1 dR
dp

: ðB:11Þ

Substituting Eq. (B.11) into Eq. (B.10) and rearranging the equation
give

L ¼ @ _�vp

@p
¼ �N

g
~re

r2
Y

~re

rY
� 1

� �N�1 dR
dp

@~re

@~r
: ðB:12Þ

Let N, P, and Q be the next set of partial derivatives of interest.
Recall that _p ¼ _k. This, together with Eq. (B.4), implies that
_p ¼ _p ~r; pð Þ. Similarly to Eq. (B.3), one obtains

@ _p
@~r

¼ @ _p
@r

¼ � @ _p
@X

or Q ¼ �N: ðB:13Þ

By definition, N and P can be expressed as

N ¼ @ _p
@~r

¼ @ _k
@~r

¼ N
grY

~re

rY
� 1

� �N�1
@~re

@~r
ðB:14Þ

and

P ¼ @ _p
@p

¼ @ _k
@p

¼ �N
g

~re

r2
Y

~re

rY
� 1

� �N�1 dR
dp

; ðB:15Þ

respectively.
Now the remaining partial derivatives are R, S, and T . Recall

that

_X ¼ 2
3
C _�vp � cX _p: ðB:16Þ

Substituting Eq. (B.16) into the last three equations of Eq. (B.1) gives

R ¼ @ _X
@r

¼ 2
3
C
@ _�vp

@r
� c

@ _p
@r

� X ¼ 2
3
CK� cN� X; ðB:17Þ

S ¼ @ _X
@p

¼ 2
3
C
@ _�vp

@p
� c

@ _p
@p

X ¼ 2
3
CL � cPX; ðB:170 Þ

T ¼ @ _X
@X

¼ 2
3
C
@ _�vp

@X
� c

@ _p
@X

� Xþ _p
@X
@X

� �

¼ � 2
3
C
@ _�vp

@r
� c

@ _p
@r

� X
� �

� c _pI ¼ �R� c _pI : ðB:1700 Þ

Note that, in Eq. (B.17), T – �R because _X ¼ _X r;X;pð Þ– _X ~r; pð Þ.
Till now, the explicit expressions for all the partial derivatives in

Eq. (B.1) (or Eq. (32)) have been derived.
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On the Constitutive Relations for Damaged

Elastoplastic Materials Coupling Anisotropic Damage

and Plasticity

Liang Zhang∗
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Wenbin Yu†

Purdue University, West Lafayette, IN 47907-2045, USA

The objective of this paper is to propose the constitutive relations for damaged elasto-
plastic materials, which are capable of coupling anisotropic damage, damage hardening,
plastic anisotropy, and isotropic/kinematic hardening. Some fundamentals of continuum
damage mechanics and thermodynamics are briefed, and the conventional damage tensors
are modified to be of more concise forms and clearer physical meanings. The constitutive
relations in the undamaged configuration, the damage evolution law, and the constitutive
relations in the damaged configuration are subsequently derived. The applicability and
power of the proposed constitutive relations are validated using examples such as predict-
ing the stress-strain and damage factor-strain curves of damaged elastoplastic materials of
various material properties. More sophisticated material properties can be incorporated.

I. Introduction

Microscopic defects, such asmicrocracks, microvoids, and dislocations, are inevitable in realmaterials. As
a material undergoes a certain extent of deformation, the microscopic defects within the material will start
propagating, nucleating, growing, coalescing, or moving. Such activities of the defects often cause irreversible
microstructure changes in the microstructure of the material, most of which are harmful and should be
avoided or monitored. It is doable to experimentally monitor the activities of microscopic defects, in which
the microstructure change can be detected. However, it is expensive and time consuming to manufacture a
great amount of materials and to perform various tests on them. Although possible, it is computationally
prohibitive to analyze a material with all the microstructural details because the macroscopic dimensions of
the material are usually several orders of magnitude greater than the microscopic length scale. Therefore,
it is of great practical value to seek for a precise and concise mathematical description of the behaviors of a
damaged material, i.e., the constitutive relations for the damaged material.

Microscopic defects can be classified into three categories, i.e., line defects (dislocations), planar defects
(macrocracks and grain doundries), and volume defects (microvoids). The theory of plasticity deals with
the macroscopic effect of dislocation motion, while continuum damage mechanics deals with the macroscopic
effect of microcrack propagation and microvoid growth. Continuum damage mechanics, which combines the
internal state variable theory and the theory of irreversible thermodynamics, provides a solid framework
for the derivation of the constitutive relations for damaged materials. In recent decades, elaborate efforts
have been devoted to enabling it to handle more and more complex problems, such as those involving
complex material behaviors, complex loading conditions, and complex loading histories. Some authors1–7

have extensively enriched the framework based on isotropic damage, while some others8–23 extended the
framework by considering anisotropic damage.

The theory of plasticity has been well established and is capable of perfectly solving various problems
involving dislocation motion. However, neither continuum damage mechanics nor the theory of plasticity is

∗Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering.
†Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow.
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capable of perfectly handling the problems of damaged elastoplastic materials alone. This leads numerous
researchers to seek for a suitable combination of these two theories. The related works can be classified into
two groups. Specifically, one group of works is formulated based on the stress-based theory of plasticity, in
the undamaged (effective) configuration, in which the so-called effective stresses are defined as the average
microscopic stresses acting on the undamaged materials among the microscopic defects.4,6, 7, 12–14,17,22,23 In
contrast, the other group is formulated also based on stress-based theory of plasticity, but in the damaged
(nominal) configuration, in which the so-called nominal stresses are defined as the macroscopic stresses
acting on both the damaged and undamaged materials.2,11,20 More details on the undamaged and damaged
configurations can be found in Section II). However, due to the complexity of the problem, there is still a
lack of theories capable of perfectly coupling anisotropic damage and plasticity. Therefore, there is a need
for such powerful theories.

The objective of this paper is to propose the constitutive relations for damaged elastoplastic material-
s, which are capable of coupling anisotropic damage, damage hardening, plastic anisotropy, and isotrop-
ic/kinematic hardening. Some fundamentals of continuum damage mechanics and thermodynamics are
briefed, and the conventional damage tensors are modified to be of more concise forms and clearer physical
meanings. The constitutive relations in the undamaged configuration, the damage evolution law, and the
constitutive relations in the damaged configuration are subsequently derived. The applicability and power
of the proposed constitutive relations are validated using examples such as predicting the stress-strain and
damage factor-strain curves of damaged elastoplastic materials of various material properties.

II. Undamaged Configuration and Damage Tensors

In this section, some fundamentals of continuum damage mechanics will be briefed, while the conventional
damage tensors will be modified to be of more concise forms and clearer physical meanings. Specifically, the
derivation of the constitutive relations for a damaged material generally starts with two basic but important
assumptions:

1. Each damaged material has an equivalent undamaged material;

2. There exists a one-to-one correspondence between each pair of physical quantities in the damaged and
undamaged (effective) configurations.

As these two assumption are made, the task can be accomplished by subsequently deriving the constitutive
relations in the undamaged configuration, the damage evolution law, and the constitutive relations in the
damaged configuration.

The stress tensor in the undamaged configuration can be related to that in the damaged configuration,
σ, by

σ̄ = M : σ or σ = M−1 : σ̄, (1)

where the overbar denotes the quantity in the undamaged configuration, M denotes the fourth-order damage
effect tensor, and σ̄ is often referred to as the effective stress tensor. Without loss of generality, let ω and
D denotes the second- and fourth-order damage tensors, respectively. Also let ω be symmetric, and let D
be related to ω by

D =
3∑

i=1

3∑
j=1

ωijei ⊗ ej ⊗ ei ⊗ ej , (2)

where ei denotes the unit vector. It can be verified that D fulfills both the major and minor symmetries (i.e.,
Dijkl = Dklij , Dijkl = Djikl, and Dijkl = Dijlk). Moreover, Dijkl can be written in the Voigt notation as Dij

with the diagonal components of Dij being ωi (ωij in the Voigt notation) and the off-diagonal components
vanishing. At last, for the special case of isotropic damage, ω = ωI, where ω denotes the damage factor,
and I denotes the second-order identity tensor. Let M−1 be related to D by

M−1 = I −D, (3)

where I denotes the fourth-order identity tensor. It can be verified that M−1 also fulfills both the major
and minor symmetries.
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Let Ψe and εe denote the elastic strain energy density and the elastic strain tensor, respectively. The
correspondence between the stress and elastic strain tensors in the damaged configuration and those in the
undamaged configuration can be defined as

Ψe (εe,ω) = Ψe (ε̄e) or
1

2
σ : εe =

1

2
σ̄ : ε̄e, (4)

where ε̄e is often referred to as the effective elastic strain tensor. Substituting Eq. (1) into Eq. (4) gives

ε̄e = M−1 : εe or εe = M : ε̄e. (5)

Hooke’s law can be expressed in the damaged and undamaged configurations as

σ = Ce : εe and σ̄ = C̄e
: ε̄e, (6)

respectively, where Ce and C̄e
denotes the fourth-order elastic stiffness tensor and the fourth-order undamaged

elastic stiffness tensor with C̄e
being constant. Substituting Eqs. (1), (5), and (6) into Eq. (4) gives

Ce = M−1 : C̄e
: M−1 or (Ce)

−1
= M :

(
C̄e)−1

: M. (7)

Recall that M−1 fulfills both the major and minor symmetries. This, together with Eqs. (1), (5), and (7),
implies that, if σ and ε are symmetric, σ̄ and ε̄ are also symmetric and that, if C̄e fulfills both the major
and minor symmetries, Ce also fulfills both the major and minor symmetries. In addition, Eqs. (1), (5), and
(7) also imply that each component of ω actually provides a measure of the damages associated with the
corresponding components of σ and ε.

Till now, some fundamentals of continuum damage mechanics have been briefed, while the conventional
damage tensors have been modified to be of more concise forms and clearer physical meanings. In the next
section, some fundamentals of thermodynamics will be briefed.

III. Thermodynamic Formulations

Let ψ denote the Helmholtz free energy per unit mass of the constituent. According to the theory of ther-
modynamics, ψ can be expressed as a function of a suitable set of independent state variables characterizing
the elastic, plastic, and damage behaviors of the material, e.g.,

ψ = ψ (εe,ω,α, r, s) , (8)

where α is a second-order tensor accounting for kinematic hardening, and r and s are two scalars accounting
for isotropic and damage hardening, respectively. Assume that the material exhibits uncoupled elastic,
plastic, and damage behaviors. In this case, ψ can be expressed as the sum of its elastic part, ψe, and its
plastic hardening part, ψp, and its damage hardening part, ψd, i.e.,

ψ (εe,ω,α, p, q) = ψe (εe,ω) + ψp (α, r) + ψd (s) . (9)

The thermodynamic forces conjugate to the state variables in Eq. (8) can be defined as

σ = ρ
∂ψ

∂εe
= ρ

∂ψe

∂εe
, Y = −ρ

∂ψ

∂ω
= −ρ

∂ψe

∂ω
, (10)

X = ρ
∂ψ

∂α
= ρ

∂ψp

∂α
, R = ρ

∂ψ

∂r
= ρ

∂ψp

∂r
, S = ρ

∂ψ

∂s
= ρ

dψd

ds
, (10′)

where Y denotes the damage conjugate force tensor, X denotes the back stress tensor, and R and S are
related to the current yield stress and the current damage threshold, respectively.

If the deformation is isothermal, the Clausius-Duhem inequality writes

φ = σ : ε̇− ρψ̇ ≥ 0, (11)

where φ denotes the dissipation per unit volume, and the overdot denotes the time derivative of the quantity.
Note that the strain tensor, ε, can be decomposed into its elastic and plastic parts, i.e.,

ε = εe + εp. (12)
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Combining Eqs. (9)–(12) gives

φ = σ : ε̇p +Y : ω̇ −X : α̇−Rṙ − Sṡ ≥ 0, (13)

Similarly to ψ, φ can be decomposed into its plastic hardening and damage hardening parts, φp and φd, i.e.,

φ = φp + φd, (14)

where
φp = σ : ε̇p −X : α̇−Rṙ ≥ 0 and φd = Y : ω̇ − Sṡ ≥ 0. (15)

Let the yield and damage criteria take the forms of

fp (σ,X, R) = 0 and fd (Y, S) = 0, (16)

respectively. The maximum dissipation principle states that the actual state of the thermodynamic forces
should maximize φ subject to constraint Eq. (16).24 This implies that the actual state of the thermodynamic
forces should maximize Lagrange functions

Λp = φp − λ̇pfp and Λd = φd − λ̇dfd, (17)

where λ̇p and λ̇d are two Lagrange multipliers. Λp and Λd reach their respective maximums only if

∂Λp

∂σ
= 0,

∂Λp

∂X
= 0,

∂Λp

∂R
= 0,

∂Λd

∂Y
= 0,

∂Λd

∂S
= 0. (18)

Substituting Eqs. (13)–(17) into Eq. (18) gives

ε̇p = λ̇p ∂f
p

∂σ
, α̇ = −λ̇p ∂f

p

∂X
, ṙ = −λ̇p ∂f

p

∂R
, ω̇ = λ̇d ∂f

d

∂Y
, ṡ = −λ̇d ∂f

d

∂S
, (19)

which governs the evolution of the state variables.
Till now, some fundamentals of thermodynamics will have been briefed. In the next section, the consti-

tutive relations in the undamaged configuration will be derived.

IV. Constitutive Relations in the Undamaged Configuration

Note that the plastic deformation can only occur in the undamaged part of the material. This implies
that

fp (σ,X, R) = fp
(
σ̄, X̄, R̄

)
. (20)

Eq. (20) leads one to first derive the constitutive relations in the undamaged configuration. In this section,
this task will be accomplished.

For notational convenience, let ˜̄σ = σ̄ − X̄. Without loss of generality, let the material obey Hill’s yield
criterion. i.e.,

fp
(
σ̄, X̄, R̄

)
= ˜̄σe − σ̄Y = 0, (21)

where

˜̄σe =

√
3

2
˜̄σ′ : H̄ : ˜̄σ′, (22)

with (·)′ denoting the deviatoric part of the tensor and H̄ denoting the fourth-order anisotropy tensor, and
σ̄Y denotes the current yield stress and is related to R̄ by

σ̄Y = σ̄0 + R̄ (23)

with σ̄0 denoting the initial yield stress. Note that, if X̄ vanishes, ˜̄σ = σ̄, and ˜̄σe reduces to the Hill
equivalent stress.25 Substituting Eq. (22) into the modified plastic work equivalence principle,

˜̄σ : ˙̄ε
p
= ˜̄σe ˙̄p, (24)
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gives the Hill equivalent plastic strain rate as

˙̄p =

√
2

3
˙̄ε
p
: H̄−1

: ˙̄ε
p
, (25)

where H̄ : H̄−1
= I.25 H̄ can be obtained from the R-values, which characterize plastic anisotropy and can

be measured from experiments. More details on H̄ can be found in Appendix A.

It is beneficial to find the relation between ˙̄λ
p
and ˙̄p. Similarly to the first three equations of Eq. (19),

one can obtain that

˙̄ε
p
= ˙̄λ

p ∂fp

∂σ̄
, ˙̄α = − ˙̄λ

p ∂fp

∂X̄
, ˙̄r = − ˙̄λ

p ∂fp

∂R̄
(26)

in the undamaged configuration. Substituting the first equation of Eq. (26) into Eq. (24) gives

˜̄σ :

(
˙̄λ
p ∂fp

∂σ̄

)
= ˜̄σe ˙̄p. (27)

According to Ref. [25], the explicit expression for ∂fp/∂σ̄ can be derived as

∂fp

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
=

1

2˜̄σe

∂ ˜̄σ2
e

∂ ˜̄σ
=

1

2˜̄σe

(
3

2
2
∂ ˜̄σ′

∂ ˜̄σ
: H̄ : ˜̄σ′

)
=

3

2˜̄σe
J : H̄ : ˜̄σ′, (28)

where J denotes the fourth-order deviatoric projection operator and takes the form of J = I − 1
3I ⊗ I.

Substituting Eq. (28) into Eq. (27) gives

˜̄σe
˙̄λ
p
= ˜̄σe ˙̄p or ˙̄λ

p
= ˙̄p. (29)

Accordingly, the Kuhn-Tucker conditions (loading/unloading conditions) write

fp ≤ 0, ˙̄λ
p ≥ 0, ˙̄λ

p
fp = 0. (30)

Eq. (26), together with Eq. (21), implies that nonlinear kinematic hardening is inadmissible. This indi-
cates that Eq. (26) places too strict restrictions.26 To overcome this drawback, introduce a pseudo-potential
gp, which is related to fp by

gp = fp +
3

4

γ̄

C̄
X̄ : X̄+

R̄2

2K̄
(31)

with C̄ and γ̄ being two constants accounting for kinematic hardening and K̄ being a constant accounting
for isotropic hardening, and rewrite Eq. (26) as

˙̄ε
p
= ˙̄λ

p ∂gp

∂σ̄
, ˙̄α = − ˙̄λ

p ∂gp

∂X̄
= ˙̄ε

p − 3

2

γ̄

C̄
X̄ ˙̄λ

p
, ˙̄r = − ˙̄λ

p ∂gp

∂R̄
=

(
1− R̄

K̄

)
˙̄λ
p
. (32)

Since ∂gp/∂σ̄ = ∂fp/∂σ̄, Eq. (29) remains valid here. Let ρψp take the form of

ρψp =
1

3
C̄ᾱ : ᾱ+

1

2
K̄n̄r̄2, (33)

where n̄ is another constant accounting for isotropic hardening. Note that, by definition,

X̄ =
2

3
C̄ᾱ and R̄ = K̄n̄r̄. (34)

Substituting the last two equations of Eq. (32) into the rate form of Eq. (34) and noting that ˙̄λ
p
= ˙̄p give

˙̄X =
2

3
C̄ ˙̄ε

p − γ̄X̄ ˙̄p and ˙̄R =
(
K̄ − R̄

)
n̄ ˙̄p, (35)

which are the Chaboche hardening law27 and the rate form of the Voce hardening law,28 respectively. Note
that the second equation of Eq. (35) can be further integrated into the Voce hardening law as

R̄ = K̄ [1− exp (−n̄p̄)] . (36)
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More details on the derivation in this paragraph can be found in Ref. [29].
The consistency condition can be obtained from Eq. (21) as

ḟp =
∂fp

∂σ̄
: ˙̄σ +

∂fp

∂X̄
: ˙̄X+

∂fp

∂R̄

dR̄

dp̄
˙̄p = 0. (37)

Combining Eqs. (32), (35), and (37) and noting that ∂fp
/
∂X̄ = −∂fp/∂σ̄, ∂fp

/
∂R̄ = −1, and ˙̄λ

p
= ˙̄p give

∂fd

∂σ̄
: ˙̄σ =

2

3
C̄ ˙̄λ

p ∂fp

∂σ̄
:
∂gp

∂σ̄
−

(
γ̄
∂fp

∂σ̄
: X̄− dR̄

dp̄

)
˙̄λ
p
. (38)

Note that ˙̄ε can be expressed as

˙̄ε = ˙̄ε
e
+ ˙̄ε

p
=

(
C̄e)−1

: ˙̄σ + ˙̄λ
p ∂gp

∂σ̄
. (39)

Multiplying both sides of Eq. (39) by ∂fp/∂σ̄ : C̄e
gives

∂fp

∂σ̄
: C̄e

: ˙̄ε =
∂fp

∂σ̄
: ˙̄σ + ˙̄λ

p ∂fp

∂σ̄
: C̄e

:
∂gp

∂σ̄
. (40)

Substituting Eq. (38) into Eq. (39) gives

∂fp

∂σ̄
: C̄e

: ˙̄ε =
2

3
C̄ ˙̄λ

p ∂fp

∂σ̄
:
∂gp

∂σ̄
−

(
γ̄
∂fp

∂σ̄
: X̄− dR̄

dp̄

)
˙̄λ
p
+ ˙̄λ

p ∂fp

∂σ̄
: C̄e

:
∂gp

∂σ̄
. (41)

˙̄λ
p
can hereby be obtained as

˙̄λ
p
=

∂fp

∂σ̄
: C̄e

: ˙̄ε

2

3
C̄
∂fp

∂σ̄
:
∂gp

∂σ̄
− γ̄

∂fp

∂σ̄
: X̄+

dR̄

dp̄
+

∂fp

∂σ̄
: C̄e

:
∂gp

∂σ̄

. (42)

Substituting Eq. (42) into Eq. (39), multiplying both sides of the equation by C̄e
, and rearranging the

equation give the rate form of the constitutive relations in the undamaged configuration as

˙̄σ = C̄ep
: ˙̄ε, (43)

where C̄ep
denotes the fourth-order instantaneous elastoplastic stiffness tensor in the undamaged configura-

tion and is given by

C̄ep
= C̄e −

(
C̄e

:
∂gp

∂σ̄

)
⊗

(
∂fp

∂σ̄
: C̄e

)
2

3
C̄
∂fp

∂σ̄
:
∂gp

∂σ̄
− γ̄

∂fp

∂σ̄
: X̄+

dR̄

dp̄
+

∂fp

∂σ̄
: C̄e

:
∂gp

∂σ̄

. (44)

Till now, the constitutive relations in the undamaged configuration have been derived. In the next
section, the damage evolution law will be derived.

V. Damage Evolution Law

Following Ref. [30], let the damage criterion take a Hill-type form, i.e.,

fd (Y, S) = Ye − YT = 0, (45)

where Ye denotes a Hill-type equivalent damage conjugate force and takes the form of

Ye =
√
Y : L : Y (46)
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with L denoting a fourth-order tensor accounting for anisotropic damage, and YT denotes the current damage
threshold and is related to S by

YT = Y0 + S, (47)

with Y0 denoting the initial damage threshold. Lijkl can be written in the Voigt notation as Lij . According
to Ref. [30], the diagonal components of Lij are around 1, while the off-diagonal components are smaller
than the diagonal ones. More details on L can be found in Ref. [30]. One can write the damage dissipation
equivalence principle as

Y : ω̇ = Yeq̇, (48)

where q̇ denotes a Hill-type equivalent damage rate. Following to Ref. [25], taking the partial derivatives
with respect to Y on both sides of Eq. (48) gives

ω̇ =
∂Ye

∂Y
q̇. (49)

Similarly to Eq. (28), ∂Ye/∂Y can be obtained as

∂Ye

∂Y
=

1

2Ye

∂Y 2
e

∂Y
=

1

2Ye

(
2
∂Y

∂Y
: L : Y

)
=

L : Y

Ye
. (50)

Substituting Eq. (50) into Eq. (49) gives

ω̇ =
L : Y

Ye
q̇ or Y =

L−1 : ω̇

q̇
Ye, (51)

where L : L−1 = I. Substituting the second equation of Eq. (51) into Eq. (48) and rearranging the equation
give

q̇2 = ω̇ : L−1 : ω̇ or q̇ =
√
ω̇ : L−1 : ω̇. (52)

Similarly to Section IV, it is beneficial to find the relation between λ̇d and q̇. Recall that the last two
equations of Eq. (19) writes

ω̇ = λ̇d ∂f
d

∂Y
and ṡ = −λ̇d ∂f

d

∂S
. (53)

Substituting the first equation of Eq. (53) into Eq. (48) gives

Y :

(
λ̇d ∂f

d

∂Y

)
= Yeq̇. (54)

Note that ∂fd
/
∂Y = ∂Ye/∂Y. Substituting Eq. (50) into Eq. (54) gives

Yeλ̇
d = Yeq̇ or λ̇d = q̇. (55)

Accordingly, the Kuhn-Tucker condition (loading/unloading conditions) write

fd ≤ 0, λ̇d ≥ 0, λ̇dfd = 0. (56)

Similarly to Section IV, introduce a pseudo-potential gd, which is related to fd by

gd = fd +
S2

2L
(57)

with L being a constant accounting for damage hardening, and rewrite Eq. (53) as

ω̇ = λ̇d ∂g
d

∂Y
and ṡ = −λ̇d ∂g

d

∂S
. (58)

Since ∂gd
/
∂Y = ∂fd

/
∂Y, Eq. (55) remains valid here. Let ρψd take the form of

ρψd =
1

2
Los2, (59)
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where o is another constant accounting for damage hardening. Substituting Eq. (59) into the last equation
of Eq. (10) gives

S = Los. (60)

Substituting the last equation of Eq. (58) into the rate form of Eq. (60) and noting that λ̇d = q̇ give

Ṡ = (L− S) oq̇ or S = L [1− exp (−oq)] . (61)

The consistency condition can be obtained from Eq. (45) as

ḟd =
∂fd

∂Y
: Ẏ +

∂fd

∂S

dS

dq
q̇ = 0. (62)

Rearranging Eq. (62) and noting that ∂fd
/
∂S = −1 and λ̇d = q̇ and give

λ̇d =

∂fd

∂Y
: Ẏ

dS

dq

. (63)

Substituting Eq. (63) into the first equation of Eq. (58) gives

ω̇ =

∂fd

∂Y
: Ẏ

dS

dq

∂gd

∂Y
=

∂gd

∂Y
⊗ ∂fd

∂Y
dS

dq

: Ẏ ≡ Sd : Ẏ, (64)

which is the damage evolution law. It is worth notice that Sd is not always invertible.
Till now, the damage evolution law has been derived. In the next section, the constitutive relations in the

damaged configuration will be derived from those in the undamaged configuration and the damage evolution
law.

VI. Constitutive Relations in the Damaged Configuration

The constitutive relations in the damaged configuration can be derived by subsequently accomplishing
the following tasks:

1. Relate ˙̄ε
e
to ε̇e;

2. Relate ˙̄σ to σ̇;

3. Relate ˙̄ε
p
to ε̇p, and complete the derivation.

In this section, these tasks will be accomplished in turn.
To relate ˙̄ε

e
to ε̇e, recall that

ε̄e = M−1 : εe. (65)

Taking time derivatives on both sides of Eq. (65) gives

˙̄ε
e
= Ṁ−1

: εe +M−1 : ε̇e. (66)

The first term to the right of the equal sign in Eq. (71) can be further expressed as

Ṁ−1
ijmnε

e
mn =

(
∂M−1

ijmn

∂ωkl
ω̇kl

)
εemn =

(
∂M−1

ijmn

∂ωkl
εemn

)
ω̇kl. (67)

For notational convenience, let

Kijklmn = −∂M−1
ijmn

∂ωkl
= − ∂

∂ωkl
(Iijmn −Dijmn) =

∂Dijmn

∂ωkl
. (68)
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Substituting Eq. (2) into Eq. (68) gives

KKK =
3∑

i=1

3∑
j=1

ei ⊗ ej ⊗ ei ⊗ ej ⊗ ei ⊗ ej . (69)

Substituting Eq. (68) into Eq. (67) gives

Ṁ−1
ijmnε

e
mn = −Kijklmnω̇klε

e
mn = − (Kijklmnε

e
mn) ω̇kl or Ṁ−1

: εe = − (KKK : εe) : ω̇. (70)

Substituting Eq. (70) into Eq. (66) gives

˙̄ε
e
= − (KKK : εe) : ω̇ +M−1 : ε̇e. (71)

Eq. (71) implies that, to relate ˙̄ε
e
to ε̇e, one needs to first relate ω̇ to ε̇e. Note that ψe can be expressed as

ψe =
1

2
σ : εe =

1

2
εe : Ce : εe =

1

2
εe :

(
M−1 : C̄e

: M−1
)
: εe. (72)

Substituting Eq. (72) into the second equation of Eq. (10) gives

Y = −∂ψe

∂ω
=

1

2
εe :

(
KKK : C̄e

: M−1 +M−1 : C̄e
: KKK

)
: εe. (73)

Eq. (73) implies that Y can be treated as a function of εe and ω. Accordingly, Ẏ can be expressed in terms
of ε̇e and ω̇ using the chain rule as

Ẏ =
∂Y

∂εe
: ε̇e +

∂Y

∂ω
: ω̇, (74)

where the expressions for ∂Y/∂εe and ∂Y/∂ω can be obtained from Eq. (73) as

∂Y

∂εe
=

1

2

[(
KKK : C̄e

: M−1 +M−1 : C̄e
: KKK

)
: εe + εe :

(
KKK : C̄e

: M−1 +M−1 : C̄e
: KKK

)]
(75)

and
∂Y

∂ω
= −1

2
εe :

(
KKK : C̄e

: KKK +KKK : C̄e
: KKK

)
: εe = −εe : KKK : C̄e

: KKK : εe, (76)

respectively. Substituting Eq. (74) into Eq. (64) and rearranging the equation give

ω̇ =

[(
I − Sd :

∂Y

∂ω

)−1

:

(
Sd :

∂Y

∂εe

)]
: ε̇e ≡ A : ε̇e, (77)

which relates ω̇ to ε̇e. Substituting Eq. (77) into Eq. (71) gives

˙̄ε
e
= − (KKK : εe) : A : ε̇e +M−1 : ε̇e =

[− (KKK : εe) : A+M−1
]
: ε̇e ≡ Ñ−1

: ε̇e, (78)

which relates ˙̄ε
e
to ε̇e.

To relate ˙̄σ to σ̇, recall that
σ = Ce : εe. (79)

Taking time derivatives on both sides of Eq. (79) gives

σ̇ = Ċe
: εe + Ce : ε̇e. (80)

Recall that
Ce = M−1 : C̄e

: M−1. (81)

The first term to the right of the equal sign in Eq. (71) can be further expressed as

Ċe
ijrsε

e
rs =

(
Ṁ−1

ijmnC̄e
mnpqM−1

pqrs +M−1
ijmnC̄e

mnpqṀ−1
pqrs

)
εers

= − (
Kijklmnω̇klC̄e

mnpqM−1
pqrs +M−1

ijmnC̄e
mnpqKpqklrsω̇kl

)
εers

= − [(
KijklmnC̄e

mnpqM−1
pqrs +M−1

ijmnC̄e
mnpqKpqklrs

)
εers

]
ω̇kl ≡ − (Bijklrsε

e
rs) ω̇kl

(82)
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or
Ċe

: εe = − [(
KKK : C̄e

: M−1 +M−1 : C̄e
: KKK

)
: εe

]
: ω̇ ≡ − (BBB : εe) : ω̇. (83)

Substituting Eq. (83) into Eq. (80) gives

σ̇ = − (BBB : εe) : ω̇ + Ce : ε̇e = − (BBB : εe) : A : ε̇e + Ce : ε̇e = [− (BBB : εe) : A+ Ce] : ε̇e. (84)

Note that
˙̄σ = C̄e

: ˙̄ε
e
. (85)

ε̇e can hereby be related to ˙̄σ by

ε̇e = Ñ : ˙̄ε
e
= Ñ :

(
C̄e)−1

: ˙̄σ. (86)

Substituting Eq. (86) into Eq. (84) gives

σ̇ =
{
[− (BBB : εe) : A+ Ce] : Ñ :

(
C̄e)−1

}
: ˙̄σ ≡ N−1 : ˙̄σ, (87)

which relates ˙̄σ to σ̇.
To relate ˙̄ε

p
to ε̇p, let

σ : ε̇p = σ̄ : ˙̄ε
p
. (88)

Substituting Eq. (1) into Eq. (88) gives

˙̄ε
p
= M−1 : ε̇p or ε̇p = M : ˙̄ε

p
. (89)

Eq. (44) can be written as
˙̄σ = C̄ep

: ˙̄ε = C̄ep
: ˙̄ε

e
+ C̄ep

: ˙̄ε
p
. (90)

Substituting Eqs. (78), (79), and (89) into Eq. (90) gives

N : σ̇ = C̄ep
: Ñ−1

: ε̇e + C̄ep
: M−1 : ε̇p = C̄ep

: Ñ−1
: ε̇e + C̄ep

: M−1 : (ε̇− ε̇e)

= C̄ep
: M−1 : ε̇+ C̄ep

:
(
Ñ−1 −M−1

)
: ε̇e.

(91)

Note that ε̇e can be related to σ̇ by

ε̇e = Ñ : ˙̄ε
e
= Ñ :

(
C̄e)−1

: ˙̄σ = Ñ :
(
C̄e)−1

: N : σ̇. (92)

Substituting Eq. (92) into Eq. (91) and rearranging the equation give[
I − C̄ep

:
(
Ñ−1 −M−1

)
: Ñ :

(
C̄e)−1

]
: N : σ̇ = C̄ep

: M−1 : ε̇. (93)

Rearranging Eq. (93) gives the rate form of the constitutive relations in the damaged configuration as

σ̇ =

{
N−1 :

[
I − C̄ep

:
(
Ñ−1 −M−1

)
: Ñ :

(
C̄e)−1

]−1

: C̄ep
: M−1

}
: ε̇ ≡ Cep : ε̇, (94)

where Cep denotes the fourth-order instantaneous elastoplastic stiffness tensor in the damaged configuration.

VII. Validation Examples

In this section, several examples are presented to validate the applicability and power of the proposed
constitutive relations and also to investigate some characteristics of damaged elastoplastic materials. The
examples include predicting the stress-strain curves of damaged elastoplastic materials exhibiting various
material properties.
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Table 1. Material parameters of aluminum and SiC.

E (GPa) ν σ0 (MPa) K (MPa) n C (MPa) γ Y0 (MPa) o

71 0.32 142 40 54.9 7019 118.6 0.071 5

A. Damage Hardening

Without loss of generality, first let the damaged elastoplastic material merely exhibit isotropic hardening,
kinematic hardening, and damage hardening. Specifically, let the material parameters take the values listed
in Table 1, where E and ν denote Young’s modulus and Poisson’s ratio, respectively, and let the diagonal
and off-diagonal components of Lij take the values of 1 and 0.32, respectively. In this section, allow L in
Eq. (61) to take the values of 2.5Y0, 5Y0, and 10Y0 for different cases. Introduce a Cartesian coordinate
system x = (x1, x2, x3), and let its three axes coincide with the three axes of damage orthotropy. It can be
obtained from Table 1 that the material becomes damaged at ε11 = 0.001 and yields at ε11 = 0.002 when
subject to uniaxial tension in the x1-direction.

Figures 1 and 2 show the stress-strain and ω11-ε11 curves of the material subject to uniaxial tension in the
x1-direction, respectively. For illustration purposes, the loading path here is set to consist of the following
steps:

• Initial loading: ε11 is increased from 0 to 0.002;

• Unloading I: ε11 is decreased from 0.002 till σ11 is decreased to 0MPa, or to say, ε11 is decreased to εp11
at ε11 = 0.002 (a residual strain);

• Reloading I: ε11 is increased to 0.004;

• . . .

• Reloading IV: ε11 is increased to 0.01.

As can be seen, as damages initiate and evolve, the material exhibits a nonlinear stress-strain relation in
the elastic regime and even exhibits strain softening in case L is sufficiently small, and as L decreases, the
stress-strain curve of the damaged material more significantly shifts downward with respect to that of the
undamaged one. In addition, it is worth notice that, for different values of L, the ω11-ε11 curves exhibit quite
different trends. Note that the residual strains in Figure 1 actually characterize howmuch plastic deformation
is induced at different stages of the deformation. Figure 1 indicates that, for L = 2.5Y0, negligible plastic
deformation is induced. In this case, damages initiate at a very low stress level and evolve rapidly, and
the subsequent damage evolution further inhibits the increase in the modified Hill equivalent stress in the
undamaged configuration, ˜̄σe, and hereby the plastic deformation. Accordingly, the corresponding ω11-ε11
curve exhibits an approximately monotonically increasing, which is typical for a damaged elastic material.
Meanwhile, Figure 1 also indicates that, for L = 10Y0, considerable plastic deformation is induced. In this
case, the plastic deformation is induced just after damages initiate, and the subsequent plastic deformation
inhibit the increases in the stresses and hereby the damage evolution. Accordingly, the corresponding ω11-ε11
curve exhibits an approximately bilinear trend. At last, it is interesting to note that the stress-strain curve
for L = 5Y0 exhibits a trend different from those for L = 2.5Y0 and L = 10Y0. In fact, its trend is similar to
that for L = 10Y0 before ε11 attains 0.006 and to that L = 2.5Y0 after ε11 attains 0.008. The reason for such
a transition of the trend is that the damage evolution gradually takes the place of the plastic deformation
and becomes dominant within 0.006 < ε11 < 0.008. Accordingly, the corresponding ω11-ε11 curve exhibits
an unexpected nonlinear trend within this interval.

Figures 3 and 4 show the stress-strain and ω11-ε11 curves of the material subject to pure shear in the
x1-x2 plane, respectively. The loading path here is similar to that in the last paragraph:

• Initial loading: ε12 is increased from 0 to 0.002;

• Unloading I: ε12 is decreased from 0.002 till σ12 is decreased to 0MPa;

• Reloading I: ε12 is increased to 0.004;

• . . .
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Figure 1. Stress-strain curves of the material subject to uniaxial tension in the x1-direction.

� �

� �

� �

Figure 2. ω11-ε11 curves of the material subject to uniaxial tension in the x1-direction.
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It can be seen that the trends of the curves here are quite similar to those in Figure 1 and 2. Therefore,
most discussion in the last paragraph holds here. In addition, it is worth notice that, even if L is small,
considerable plastic deformation can still be induced here. This can be understood by noting that the mean
and deviatoric stresses (or strictly speaking, their increments) differently affects the damage evolution and
the plastic deformation. Specifically, both the mean and deviatoric stresses contribute the damage evolution,
while only the deviatoric stresses contributes to ˜̄σe and hereby the plastic deformation. Therefore, when
the material is subject to uniaxial tension, the damage evolution is easier to become dominant; when the
material is subject to pure shear, the plastic deformation is easier to become dominant. In fact, Figure 4
also indicates that ω12 increases very slowly over continued deformation here. This again demonstrates that,
relatively speaking, the damage evolution is inhibited here.

�
�
�

� �

� �

� �

���������

Figure 3. Stress-strain curves of the material subject to pure shear in the x1-x2 plane.

Figures 5 and 6 show the stress-strain and ω11-ε11 curves of the material subject to equal triaxial tension,
respectively. The loading path here is similar to that in the last paragraph:

• Initial loading: ε11, ε22, and ε33 are increased from 0 to 0.001;

• Unloading I: ε11, ε22, and ε33 are decreased from 0.001 till σ11, σ22, and σ33 are decreased to 0MPa;

• Reloading I: ε11, ε22, and ε33 are increased to 0.002;

• . . .

Note that, since all the diagonal components of Lij all equal 1, the stresses in the undamaged configuration
are purely hydrostatic, or to say, ˜̄σe always vanishes. This implies that on plastic deformation is induced, or
to say, that the material behaves like a damaged elastic material. Therefore, all the discussion for L = 2.5Y0

in the paragraph before last holds here. In addition, it is worth notice that the damages evolution here is
more rapid than that in Figures 2. Note that the off-diagonal components of Lij are non-zero. This implies
that, for example, an increase σ11 may induce not only an increase ω11 but also those in σ22 and σ33. In fact,
it can be verified that the speed of the damage evolution here is at least 1.64 times of that in Figures 2. At
last, if the diagonal components of Lij becomes highly distinct to each other, it is possible that ˜̄σe attains
such a high value that the yield criterion is met, or to say, it is possible that some plastic deformation is
induced here.

13 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
14

-1
17

0 

DISTRIBUTION A: Distribution approved for public release.
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Figure 4. ω12-ε12 curves of the material subject to pure shear in the x1-x2 plane.

�
�
�

� �

� �

� �

���������

Figure 5. Stress-strain curves of the material subject to equal triaxial tension.
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Figure 6. ω11-ε11 curves of the material subject to equal triaxial tension.

B. General Damage Anisotropy

Next let the material also exhibit a more general type of damage anisotropy, where the term “more general”
means that the diagonal components of Lij can be distinct. Specifically, let the material parameters take
the values listed in Table 1 with L = 5Y0, and let the components of Lij here except L11 be the same as
those in Section VII-A. In this section, allow L11 to take the values of 0.707, 1, and 1.414 for different cases.

Figures 7 and 8 show the stress-strain and ω11-ε11 curves of the material subject to uniaxial tension in
the x1-direction, respectively. The loading path here is set to be the same as that for uniaxial tension in
Section VII-A. In fact, it can be obtained from Eqs. (45) and (46) that, as L11 increases, the material become
more vulnerable to σ11, while similar findings can be obtained for some other cases of damage anisotropy. For
this reason, in Figure 7, as L11 increases, the stress-strain curve of the damaged material more significantly
shifts downward with respect to that of the undamaged one. Other than this, it can be seen that the trends
of the curves here are quite similar to those in Figures 1 and 2. Therefore, most discussion in the second
paragraph of Section VII-A holds here.

C. Plastic Anisotropy

At last, let the material exhibit plastic anisotropy instead of general damage anisotropy. Specifically, let the
material parameters take the values listed in Table 1 with L = 5Y0, and let Lij here be the same as that in
Section VII-A. In this section, let the material exhibit plastic transverse isotropy in the x2-x3 plane, and
allow the R-values of the material to take the three sets of values listed in Table 2 for different cases. More
details on plastic transverse isotropy can be found in Appendix A.

Table 2. R-values of the three matrices.

R1 R2 R3 R4 R5 R6

1 1 1 0.5 1 0.5 2

2 1 1 1 1 1 1

3 1 1 2 1 2 0.5
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Figure 7. Stress-strain curves of the material exhibiting general damage anisotropy subject to uniaxial tension
in the x1-direction.

�

�

�

Figure 8. ω11-ε11 curves of the material exhibiting general damage anisotropy subject to uniaxial tension in
the x1-direction.
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Figures 9 and 10 show the stress-strain and ω22-ε22 curves of the material subject to uniaxial tension
in the x2-direction, respectively. The loading path here is set to be almost the same as that in the second
paragraph of Section VII-A except that ε22 and σ22 take the places of ε11 and σ11. As can be seen, the trends
of the stress-strain and ω-ε curves for R3 = R5 = 0.5 here are quite similar with those for L = 2.5Y0 in
Figures 9 and 10 except that the stress-strain curve here seems to be scaled-up, while those for R3 = R5 = 2
here are quite similar with those for L = 10Y0 in Figures 9 and 10 except that the stress-strain curve here
seems to be scaled-down. This can be understood by noting that the R-values can affect the initial yield
stress and hereby the damage evolution and the plastic deformation. Specifically, one can obtain the following
findings first by substituting the R-values in Table 2 into Eq. (99) and then by substituting the resulting
values of Hij into Eq. (22):

• Different sets of the R-values yields the same yield stress of the material loaded in the y1-direction;

• The set of the R-values of lowest value of R3 (or R5) yields at the lowest yield stress of the material
loaded in the y2- (or y3-) direction and vice versa.

Therefore, for R3 = R5 = 0.5, damages can evolve to a considerable extent before the yield criterion, which
becomes more restrictive in this case, is met, and the subsequent damage evolution further inhibits the plastic
deformation. This leads the material to behave like a damaged elastic one. Accordingly, the corresponding
ω22-ε22 curve exhibits an approximately monotonically increasing trend. In contrast, for R3 = R5 = 2, the
yield criterion, which becomes less restrictive in this case, can be met just after damages initiate, and the
subsequent plastic deformation further inhibits the damage evolution. This leads the material to behave like
an elastoplastic one. Accordingly, the corresponding ω22-ε22 curve exhibits an approximately bilinear trend.

�
�
�

� �

� �

� �

Figure 9. Stress-strain curves of the material exhibiting plastic anisotropy subject to uniaxial tension in the
x2-direction.

VIII. Conclusions

In this paper, the constitutive relations for damaged elastoplastic materials, which are capable of coupling
anisotropic damage, damage hardening, plastic anisotropy, and isotropic/kinematic hardening, are proposed.
Some fundamentals of continuum damage mechanics and thermodynamics are briefed, and the conventional
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� �

Figure 10. ω11-ε11 curves of the material exhibiting plastic anisotropy subject to uniaxial tension in the
x2-direction.

damage tensors are modified to be of more concise forms and clearer physical meanings. The constitutive
relations in the undamaged configuration, the damage evolution law, and the constitutive relations in the
damaged configuration are subsequently derived. The applicability and power of the proposed constitutive
relations are validated using examples such as predicting the stress-strain and damage factor-strain curves of
damaged elastoplastic materials of various material properties. More sophisticated material properties can
be incorporated.
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Appendix

A. Plastic Anisotropic Parameters

The R-value is widely used to characterize the plastic anisotropy of rolled sheet metals. It can be measured
from a series of uniaxial tensile tests. Specifically, when a tensile specimen cut from a sheet is stretched, its
R-value is defined as the ratio of the plastic strain in the width direction to that in the thickness direction,
that is,

R =
εW
εT

. (95)

In general, the R-value varies with the cut angle relative to the rolling direction of the sheet, α. In this case,
an averaged R-value is often adopted. It is defined as

R̄ =
R0 + 2R45 +R90

4
, (96)

where Rα denotes the R-value obtained using a tensile specimen of cut angle α.
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Benzerga and Besson25 extended the concept of the R-value by introducing six strain rate ratios, Rij .
These six Rij ’s are capable of fully characterizing the plastic anisotropy of a 3D structure, and each of them
can be measured from a uniaxial tensile or simple shear test. Specifically, introduce a Cartesian coordinate
system x = (x1, x2, x3) with its three axes parallel to the orthotropic axes of the material, and the six Rij ’s
can be defined as the following strain rate ratios:

R11 =
ε̇22
ε̇33

, R12 =
ε̇12
ε̇33

, R22 =
ε̇33
ε̇11

, (97)

R13 =
ε̇13
ε̇22

, R23 =
ε̇23
ε̇11

, R33 =
ε̇11
ε̇22

. (97′)

Let Rij be written in the the Voigt notation as

R1 = R11, R2 = R12, R3 = R22, (98)

R4 = R13, R5 = R23, R6 = R33. (98′)

It can be obtained from Eq. (97) that R6 = 1/R1R3. This implies that only five out of the six Ri’s are
independent of each other. Without loss of generality, let R6 be expressed in terms of R1 and R3 in following
derivations.

Hijkl can be written in the Voigt notation as Hij . According to Ref. [25], the diagonal components of
Hij can be related to Ri by

H11 = −2

3

R1R3 − 2R1 − 2

R1 + 1
,

H22

H11
= −1

2

(2R2 + 1) (R1R3 + 1)

R1R3 − 2R1 − 2
, (99)

H33

H11
= 1− 3 (R1R3 − 1)

R1R3 − 2R1 − 2
,

H44

H11
= −1

2

(2R4 + 1) (R3 + 1)R1

R1R3 − 2R1 − 2
, (99′)

H55

H11
= −1

2

(2R5 + 1) (R1 + 1)

R1R3 − 2R1 − 2
,

H66

H11
= 1− 3R1 (R3 − 1)

R1R3 − 2R1 − 2
, (99′′)

while the off-diagonal components vanish. More details on H can be found in Ref. [25], Appendix A.
A special case of plastic anisotropy is plastic transverse isotropy, in which case there exists a plane of

plastic isotropy. Without loss of generality, let the x2-x3 plane be the plane of plastic isotropy. Ri can then
be expressed as

R3 = R5 =
1

R6
= R and R2 = R4 = R′, (100)

where R and R′ can be measured from a uniaxial tensile test and a simple shear test, respectively. Substi-
tuting Eq. (100) into Eq. (99) and rearranging the equations give

H11 =
1

3
(4−R) , H22 = H44 =

1

6
(R+ 1) (2R′ + 1) , (101)

H33 = H55 = H66 =
1

3
(2R+ 1) . (101′)
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On the Closed-Form Constitutive Relations for

Damageable Elasto-Viscoplastic Materials

Liang Zhang∗ and Wenbin Yu†

Purdue University, West Lafayette, IN 47907-2045, USA

The objective of this paper is to derive the closed-form constitutive relations for dam-
ageable elasto-viscoplastic materials exhibiting damage anisotropy, damage hardening, vis-
coplastic anisotropy, and combined isotropic-kinematic hardening. Some fundamentals of
continuum damage mechanics and thermodynamics are briefed, and the second-order dam-
age tensor is redefined with an emphasis on a clear physical meaning. An affine formulation
of the constitutive relations in the undamaged configuration, the damage evolution law, and
the constitutive relations in the damaged configuration are subsequently derived. The use
of the current constitutive relations is demonstrated by modeling an aluminium alloy ex-
hibiting various material behaviors. The current constitutive relations are found to be
capable of handling complex material models. More sophisticated material behaviors can
be incorporated.

I. Introduction

Microscopic defects, such as microcracks, microvoids, and dislocations, are inevitable in real materials.
When a material is deformed to a certain extent at a high temperature, its deformation often becomes
nonlinear, history dependent, and rate dependent due to the propagation, nucleation, growth, coalescence,
or motion of its microscopic defects. Such activities of microscopic defects often cause irreversible changes in
the microstructure of a material, most of which are harmful and should be avoided or monitored. One major
challenge is to predict the responses of damageable elasto-viscoplastic materials based on the microstructural
details: on the one hand, it is often difficult or expensive to measure their responses; on the other hand, the
scales of the macroscopic materials are usually several orders of magnitude greater than those of microscopic
defects, making it computationally prohibitive to capture all the microstructural details. All these lead one
to derive the closed-form constitutive relations for such materials.

Microscopic defects can be classified into three categories, i.e., line defects (dislocations), planar defects
(macrocracks and grain doundries), and volume defects (microvoids). Continuum damage mechanics deals
with the macroscopic effect of microcrack propagation and microvoid growth. It combines the internal state
variable theory and the theory of irreversible thermodynamics and enables one to derive the constitutive re-
lations for damaged materials. Elaborate efforts have been devoted to enabling it to handle complex material
behaviors, complex loading conditions, and complex loading histories. Some authors1–7 extensively enriched
its framework based on isotropic damage, while some others8–23 extended its framework by incorporating
anisotropic damage. The theory of viscoplasticity deals with the macroscopic effect of dislocation motion
at high temperatures. Masson and his coworkers24,25 linearized the constitutive relations for viscoplastic
materials in the Laplace domain and obtained an affine formulation similar to the constitutive relations for
thermoelastic materials, while Doghri et al.26 later derived an affine formulation in the time domain and
avoided the computationally costly inverse Laplace transformation required by Refs. [24,25]. Unfortunately,
neither continuum damage mechanics nor the theory of viscoplasticity can perfectly deal with damageable
elasto-viscoplastic materials alone. This leads numerous researchers to seek for a suitable combination of
these two theories.

Elaborated efforts have been devoted to deriving the constitutive relations for damageable elastoplastic
materials. Most authors derived their constitutive relations in two different ways: some of them4,6, 7, 12–14,17,22,23

∗Postdoctoral Researcher, School of Aeronautics and Astronautics.
†Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow.

1 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
70

2 

 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 
 5-9 January 2015, Kissimmee, Florida 

 AIAA 2015-0702 

 Copyright © 2015 by Liang Zhang and Wenbin Yu. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech 

DISTRIBUTION A: Distribution approved for public release.



formulated their plasticity models in terms of the so-called effective stresses, i.e., the average microscopic
stresses acting on the undamaged microbonds of the material, while the others2,11,20 formulated their models
in terms of the so-called nominal stresses, i.e., the macroscopic stresses acting on the macroscopic material.
It is more challenging to derive the theory for damageable elasto-viscoplastic materials because the defor-
mations become rate-dependent. Although several authors27–30 provided valuable insights into the problem,
there is still a need for the closed-form constitutive relations capable of handling damage anisotropy, damage
hardening, viscoplastic anisotropy, and combined isotropic-kinematic hardening.

The objective of this paper is to derive the closed-form constitutive relations for damageable elasto-
viscoplastic materials exhibiting damage anisotropy, damage hardening, viscoplastic anisotropy, and com-
bined isotropic-kinematic hardening. Some fundamentals of continuum damage mechanics and thermody-
namics are briefed, and the second-order damage tensor is redefined with an emphasis on a clear physical
meaning. An affine formulation of the constitutive relations in the undamaged configuration, the damage
evolution law, and the constitutive relations in the damaged configuration are subsequently derived. The use
of the current constitutive relations is demonstrated by by modeling an aluminium alloy exhibiting various
material behaviors.

II. Basic Concepts of Continuum Damage Mechanics

In this section, some fundamentals of continuum damagemechanics will be briefed, while the second-order
damage tensor will be redefined with an emphasis on a clear physical meaning.

The derivation of the constitutive relations for a damaged material generally starts with two assumptions:

1. Each damaged material can be idealized as an equivalent undamaged material;

2. There exists a one-to-one correspondence between each pair of physical quantities in the damaged and
undamaged configurations.

With these two assumptions, one can subsequently derive an affine formulation of the constitutive relations
in the undamaged configurations, the damage evolution law, and the constitutive relations in the damaged
configuration.

Let an overbar denote the quantity in the effective material. The stress tensor in the undamaged config-
uration, σ̄, can be related to that in the damaged configuration, σ, by

σ̄ = M : σ or σ = M−1 : σ̄, (1)

where M denotes the fourth-order damage effect tensor, and σ̄ is often referred to as the effective stress
tensor. Without loss of generality, let ω and D denote the second- and fourth-order damage tensors,
respectively. Also let ω be symmetric, and let D be related to ω by

D =
3∑

i=1

3∑
j=1

ωijei ⊗ ej ⊗ ei ⊗ ej , (2)

where ei denotes the unit vector. It can be verified that:

1. D fulfills the major and minor symmetries (i.e., Dijkl = Dklij , Dijkl = Djikl, and Dijkl = Dijlk);

2. Dijkl can be written in the Voigt notation as Dij with its diagonal components being ωi (ωij in the
Voigt notation) and its off-diagonal components vanishing.

Let M−1 take the form of
M−1 = I −D (3)

where I denotes the fourth-order identity tensor. It can be verified that M−1 also fulfills the major and
minor symmetries.

Let ρ, ψe, and εe denote the density of thematerial, the elastic strain energy per unitmass of thematerial,
and the elastic strain tensor, respectively. For the effectivematerial to be equivalent to the damagedmaterial,
the elastic strain energy of the damaged material should equal that of the equivalent undamaged material,
i.e.,31

ρψe (εe,ω) = ρψe (ε̄e) or
1

2
σ : εe =

1

2
σ̄ : ε̄e. (4)
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Substituting Eq. (1) into Eq. (4) gives

ε̄e = M−1 : εe or εe = M : ε̄e. (5)

Hooke’s law can be expressed in the damaged and undamaged configurations as

σ = Ce : εe and σ̄ = C̄e
: ε̄e, (6)

respectively, where Ce denotes the fourth-order elastic stiffness tensor, and C̄e
denotes the fourth-order

undamaged elastic stiffness tensor. Combining Eqs. (1), (4), (5), and (6) gives

Ce = M−1 : C̄e
: M−1 or (Ce)

−1
= M :

(
C̄e)−1

: M. (7)

Recall that M−1 fulfills the major and minor symmetries. This, together with Eqs. (1), (5), and (7), implies
that

1. If σ and εe are symmetric, so do σ̄ and ε̄e;

2. If C̄e fulfills the major and minor symmetries, so does Ce;

3. ωij provides a measure of the damage associated with σij or εeij .

Till now, some fundamentals of continuum damage mechanics have been briefed, while the second-order
damage tensor has been redefined with an emphasis on a clear physical meaning. In the next section, some
fundamentals of thermodynamics will be briefed.

III. Thermodynamics

Let ψ denote the Helmholtz free energy per unit mass of the constituent. According to the theory of ther-
modynamics, ψ can be expressed as a function of a suitable set of independent state variables characterizing
the elastic, viscoplastic, and damage behaviors of the material, e.g.,

ψ = ψ (εe,ω,α, r, s) , (8)

where α is a second-order tensor accounting for kinematic hardening, and r and s are two scalars accounting
for isotropic and damage hardening, respectively. Assume that the material exhibits uncoupled elastic,
viscoplastic, and damage behaviors. In this case, ψ can be decomposed into its elastic, viscoplastic hardening,
and damage hardening parts, i.e.,

ψ (εe,ω,α, r, s) = ψe (εe,ω) + ψvp (α, r) + ψd (s) . (9)

The thermodynamic forces conjugate to the state variables in Eq. (8) can be defined as

σ = ρ
∂ψ

∂εe
= ρ

∂ψe

∂εe
, Y = −ρ

∂ψ

∂ω
= −ρ

∂ψe

∂ω
, (10)

X = ρ
∂ψ

∂α
= ρ

∂ψvp

∂α
, R = ρ

∂ψ

∂r
= ρ

∂ψvp

∂r
, S = ρ

∂ψ

∂s
= ρ

dψd

ds
, (10′)

where Y denotes the damage conjugate force tensor, X denotes the back stress tensor, and R and S are
related to the current yield stress and damage threshold, respectively.

If the deformation is isothermal, the Clausius-Duhem inequality writes

φ = σ : ε̇− ρψ̇ ≥ 0, (11)

where φ denotes the dissipation per unit volume, and the overdot denotes the time derivative of the quantity.
Note that the strain tensor, ε, can be decomposed into its elastic and viscoplastic parts, i.e.,

ε = εe + εvp. (12)

Combining Eqs. (9)–(12) gives

φ = σ : ε̇vp +Y : ω̇ −X : α̇−Rṙ − Sṡ ≥ 0, (13)
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Similarly to ψ, φ can be decomposed into its viscoplastic hardening and damage hardening parts, φvp and
φd, i.e.,

φ = φvp + φd, (14)

where
φvp = σ : ε̇vp −X : α̇−Rṙ ≥ 0 and φd = Y : ω̇ − Sṡ ≥ 0. (15)

Assume that there exists a viscoplastic potential, Φvp, which is a function of the corresponding thermody-
namic forces and governs the evolution of the corresponding state variables, i.e.,

ε̇vp =
∂Φvp

∂σ
, α̇ = −∂Φvp

∂X
, ṙ = −∂Φvp

∂R
. (16)

Without loss of generality, let
fvp = fvp (σ,X, R) (17)

denote the yield function, and let

Φvp = Φvp (fvp) and λ̇vp =
∂Φvp

∂fvp
. (18)

Eq. (16) can then be rewritten using the chain rule as

ε̇vp = λ̇vp ∂f
vp

∂σ
, α̇ = −λ̇vp ∂f

vp

∂X
, ṙ = −λ̇vp ∂f

vp

∂R
. (19)

Also let the damage criterion take the form of

fd (Y, S) = 0. (20)

The maximum dissipation principle states that the actual thermodynamic forces should maximize φd subject
to constraint Eq. (20),32 or to say, that the actual thermodynamic forces should maximize Lagrange function

Λd = φd − λ̇dfd, (21)

where λ̇d is a Lagrange multiplier. Λd reaches its maximum only if

∂Λd

∂Y
= 0 and

∂Λd

∂S
= 0. (22)

This gives

ω̇ = λ̇d ∂f
d

∂Y
and ṡ = −λ̇d ∂f

d

∂S
. (23)

Till now, some fundamentals of thermodynamics have been briefed. In the next section, the viscoplasticity
model will be specified.

IV. Viscoplasticity Model

The so-called effective stress space (visco)plasticity states that the (visco)plastic deformation can only
occur within the undamaged microbonds of the material.33 This allows one to derive the constitutive relations
in the undamaged configuration.

For notational convenience, let ˜̄σ = σ̄− X̄. Without loss of generality, let the undamaged material obey
Hill’s yield function, i.e.,

fvp
(
σ̄, X̄, R̄

)
= ˜̄σe − σ̄Y , (24)

where

˜̄σe =

√
3

2
˜̄σ′ : H̄ : ˜̄σ′, (25)

denotes the Hill equivalent stress with (·)′ denoting the deviatoric part of the tensor and H̄ denoting the
fourth-order anisotropy tensor, and

σ̄Y = σ̄0 + R̄ (26)
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denotes the current yield stress with σ̄0 denoting the initial yield stress. Substituting Eq. (25) into the
modified viscoplastic work equivalence principle,

˜̄σ : ˙̄ε
vp

= ˜̄σe ˙̄p, (27)

gives the Hill equivalent viscoplastic strain rate as34

˙̄p =

√
2

3
˙̄ε
vp

: H̄−1
: ˙̄ε

vp
. (28)

Note that H̄ can be obtained from the so-called R-values (see Appendix A for more details).

It is beneficial to find the relation between ˙̄λ
vp

and ˙̄p. Similarly to Eq. (19), one can obtain that

˙̄ε
vp

= ˙̄λ
vp ∂fvp

∂σ̄
, ˙̄α = − ˙̄λ

vp ∂fvp

∂X̄
, ˙̄r = − ˙̄λ

vp ∂fvp

∂R̄
. (29)

Substituting the first equation of Eq. (29) into Eq. (27) gives

˜̄σ :

(
˙̄λ
vp ∂fvp

∂σ̄

)
= ˜̄σe ˙̄p. (30)

The explicit expression for ∂fvp/∂σ̄ can be derived as34

∂fvp

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
=

1

2˜̄σe

∂ ˜̄σ2
e

∂ ˜̄σ
=

1

2˜̄σe

(
3

2
2
∂ ˜̄σ′

∂ ˜̄σ
: H̄ : ˜̄σ′

)
=

3

2˜̄σe
J : H̄ : ˜̄σ′, (31)

where J = I − 1
3I ⊗ I with I denotes the fourth-order deviatoric projection operator with I denoting the

second-order identity tensor. Substituting Eq. (31) into Eq. (30) gives

˜̄σe
˙̄λ
vp

= ˜̄σe ˙̄p or ˙̄λ
vp

= ˙̄p, (32)

which implies that the viscoplastic deformation is irreversible.
Eq. (29), together with Eq. (24), implies that nonlinear kinematic hardening is inadmissible. This indi-

cates that Eq. (29) places too strict restrictions.35 To overcome this drawback, introduce a pseudo-potential
gvp, which is related to fvp by

gvp = fvp +
3

4

γ̄

C̄
X̄ : X̄+

R̄2

2K̄
(33)

with C̄ and γ̄ being two constants accounting for kinematic hardening and K̄ being a constant accounting
for isotropic hardening, and rewrite Eq. (29) as

˙̄ε
vp

= ˙̄λ
vp ∂gvp

∂σ̄
, ˙̄α = − ˙̄λ

vp ∂gvp

∂X̄
= ˙̄ε

vp − 3

2

γ̄

C̄
X̄ ˙̄λ

vp
, ˙̄r = − ˙̄λ

vp ∂gvp

∂R̄
=

(
1− R̄

K̄

)
˙̄λ
vp
. (34)

Note that Eq. (32) remains valid because ∂gvp/∂σ̄ = ∂fvp/∂σ̄. Let ρψvp take the form of

ρψvp =
1

3
C̄ᾱ : ᾱ+

1

2
K̄n̄r̄2, (35)

where n̄ is another constant accounting for isotropic hardening. Accordingly,

X̄ =
2

3
C̄ᾱ and R̄ = K̄n̄r̄. (36)

Substituting the last two equations of Eq. (34) into the rate form of Eq. (36) and noting that ˙̄λ
vp

= ˙̄p give

˙̄X =
2

3
C̄ ˙̄ε

vp − γ̄X̄ ˙̄p and ˙̄R =
(
K̄ − R̄

)
n̄ ˙̄p, (37)

which are the Chaboche hardening law36 and the rate form of the Voce hardening law,37 respectively. The
second equation of Eq. (37) can be further integrated into the Voce hardening law as

R̄ = K̄ [1− exp (−n̄p̄)] . (38)
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More details on the derivation in this paragraph can be found in Ref. [38].
The Perzyna model39 suggests that

Φvp =

⎧⎪⎨
⎪⎩

1

η̄

σ̄Y

N̄ + 1

(
fvp

σ̄Y

)N̄+1

fvp > 0,

0 fvp ≤ 0

(39)

or

˙̄λ
vp

=

⎧⎪⎨
⎪⎩

1

η̄

(
fvp

σ̄Y

)N̄

fvp > 0,

0 fvp ≤ 0,

(40)

where η̄ denotes a fluidity parameter, and N̄ denotes a rate-sensitivity parameter. Substituting Eq. (40) into
Eq. (34) fully specifies the viscoplasticity model.

Till now, the viscoplasticity model has be specified. In the next section, an affine formulation of the
constitutive relations in the undamaged configuration will be derived.

V. Affine Formulation of the Constitutive Relations in the Undamaged
Configuration

Suppose that all the variables at time tn are known. The task is to find the variables at time tn+1 =
tn + Δt, where Δ (·) denotes the increment in a quantity over this time interval. This leads one to derive
the correspondence principle between Δσ̄ and Δε̄.

Recall that
σ̄ = C̄e

: ε̄e. (41)

Substituting the incremental form of Eq. (41) into the incremental form of Eq. (12) gives

Δε̄ = Δε̄e +Δε̄vp =
(
C̄e)−1

: Δσ̄ +Δε̄vp. (42)

Eq. (42) leads one first to derive the correspondence principle between Δσ̄ and Δε̄vp. Without loss of

generality, let ˙̄ε
vp
, ˙̄p, and ˙̄X all be functions of σ̄, p̄, and X̄, i.e.,

˙̄ε
vp

(t) = ˙̄ε
vp (

σ̄ (t) , p̄ (t) , X̄ (t)
)
, ˙̄p (t) = ˙̄p

(
σ̄ (t) , p̄ (t) , X̄ (t)

)
, (43)

˙̄X (t) = ˙̄X
(
σ̄ (t) , p̄ (t) , X̄ (t)

)
. (43′)

Following Ref. [26], let Δε̄vp be related to ˙̄ε
vp

(tn+1) using the backward Euler method by

Δε̄vp = ˙̄ε
vp

(tn+1)Δt, (44)

and let the evolution of ˙̄ε
vp
, ˙̄p, and ˙̄X be governed by

˙̄ε
vp

(tn+1) = ˙̄ε
vp

(tn) +K (tn+1) : Δσ̄ + L (tn+1)Δp̄+M (tn+1) : ΔX̄, (45)

˙̄p (tn+1) = ˙̄p (tn) +N (tn+1) : Δσ̄ + P (tn+1)Δp̄+Q (tn+1) : ΔX̄, (45′)
˙̄X (tn+1) =

˙̄X (tn) +R (tn+1) : Δσ̄ + S (tn+1)Δp̄+ T (tn+1) : ΔX̄, (45′′)

where

K =
∂ ˙̄ε

vp

∂σ̄
, L =

∂ ˙̄ε
vp

∂p̄
, M =

∂ ˙̄ε
vp

∂X̄
, N =

∂ ˙̄p

∂σ̄
, P =

∂ ˙̄p

∂p̄
, Q =

∂ ˙̄p

∂X̄
, (46)

R =
∂ ˙̄X

∂σ̄
, S =

∂ ˙̄X

∂p̄
, T =

∂ ˙̄X

∂X̄
(46′)

with K, M, R, and T being fourth-order tensors, L, N, Q, and S being second-order tensors, and P
being a scalar (see Appendix B for more details on the derivation of the explicit expressions for these partial

derivatives). Also let Δp̄ and ΔX̄ be related to ˙̄p and ˙̄X using the backward Euler method by

Δp̄ = ˙̄p (tn+1)Δt and ΔX̄ = ˙̄X (tn+1)Δt, (47)

6 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
70

2 

DISTRIBUTION A: Distribution approved for public release.



respectively. Substituting Eq. (47) into the last two equations of Eq. (45) and rearranging the equations give

A11 ˙̄p (tn+1) +A12 : ˙̄X (tn+1) = B1, (48)

A21 ˙̄p (tn+1) +A22 : ˙̄X (tn+1) = B2, (48′)

where

A11 = 1− P (tn+1)Δt, A12 = −Q (tn+1)Δt, A21 = −S (tn+1)Δt, A22 = I − T (tn+1)Δt, (49)

B1 = ˙̄p (tn) +N (tn+1) : Δσ̄, B2 = ˙̄X (tn) +R (tn+1) : Δσ̄. (49′)

Rearranging the second equation of Eq. (48) gives

˙̄X (tn+1) = A−1
22 : [B2 −A21 ˙̄p (tn+1)] . (50)

Substituting Eq. (50) into the first equation of Eq. (48) and rearranging the equation give

˙̄p (tn+1) =
B1 −A12 : A−1

22 : B2

A11 −A12 : A−1
22 : A21

. (51)

Substituting Eq. (51) into Eq. (50) gives

˙̄X (tn+1) = A−1
22 :

(
B2 − B1 −A12 : A−1

22 : B2

A11 −A12 : A−1
22 : A21

A21

)
. (52)

Substituting Eqs. (51) and (52) into Eq. (47), substituting the equation into the first equation of Eq. (45),
and rearranging the equation give

˙̄ε
vp

(tn+1) = ˙̃ε (tn+1) + C̃−1
(tn+1) : Δσ̄, (53)

where

˙̃ε (tn+1) = ˙̄ε
vp

(tn) +M (tn+1) : A−1
22 : ˙̄X (tn)Δt

+
˙̄p (tn)−A12 : A−1

22 : ˙̄X (tn)

A11 −A12 : A−1
22 : A21

[
L (tn+1)−M (tn+1) : A−1

22 : A21

]
Δt,

(54)

and

C̃−1
(tn+1) = K (tn+1) +M (tn+1) : A−1

22 : R (tn+1)Δt

+

[
L (tn+1)−M (tn+1) : A−1

22 : A21

] ⊗ [
N (tn+1)−A12 : A−1

22 : R (tn+1)
]

A11 −A12 : A−1
22 : A21

Δt.
(55)

Substituting Eq. (53) into Eq. (44) gives

Δε̄vp = Δε̃+
[
C̃−1

(tn+1)Δt
]
: Δσ̄, (56)

where Δε̃ = ˙̃ε (tn+1)Δt. Substituting Eq. (56) into Eq. (42) gives

Δε̄ = Δε̄e +Δε̄vp =
(
C̄e)−1

: Δσ̄ +Δε̃+
[
C̃−1

(tn+1)Δt
]
: Δσ̄. (57)

Rearranging Eq. (57) gives an affine formulation of the constitutive relations in the undamaged configuration
as

Δε̄−Δε̃ =
[(
C̄e)−1

+ C̃−1
(tn+1)Δt

]
: Δσ̄ (58)

or
Δσ̄ = C̄evp

(tn+1) : (Δε̄−Δε̃) , (59)

where

C̄evp
(tn+1) =

[(
C̄e)−1

+ C̃−1
(tn+1)Δt

]−1

(60)

denotes the fourth-order affine instantaneous elasto-viscoplastic stiffness tensor in the undamaged configu-
ration.

Till now, an affine formulation of the constitutive relations in the undamaged configuration has been
derived. In the next section, the damage evolution law will be derived.
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VI. Damage Evolution Law

Without loss of generality, let the damage criterion take a Hill-type form, i.e.,

fd (Y, S) = Ye − YT = 0, (61)

where
Ye =

√
Y : L : Y (62)

denotes a Hill-type equivalent damage conjugate force with L denoting a fourth-order damage anisotropy
tensor, and

YT = Y0 + S, (63)

denotes the current damage threshold with Y0 denoting the initial damage threshold. Lijkl can be written
in the Voigt notation as Lij . In general, the diagonal components of Lij are around 1, while the off-diagonal
components are smaller than the diagonal ones (see Ref. [40] for more details on L). Similarly to Eq. (27),
one can write the damage dissipation equivalence principle as

Y : ω̇ = Yeq̇, (64)

where q̇ denotes a Hill-type equivalent damage rate. Following Ref. [34], taking the partial derivatives with
respect to Y on both sides of Eq. (64) gives

ω̇ =
∂Ye

∂Y
q̇. (65)

Similarly to Eq. (31), ∂Ye/∂Y can be obtained as

∂Ye

∂Y
=

1

2Ye

∂Y 2
e

∂Y
=

1

2Ye

(
2
∂Y

∂Y
: L : Y

)
=

L : Y

Ye
. (66)

Substituting Eq. (66) into Eq. (65) gives

ω̇ =
L : Y

Ye
q̇ or Y =

L−1 : ω̇

q̇
Ye. (67)

Substituting the second equation of Eq. (67) into Eq. (64) and rearranging the equation give

q̇2 = ω̇ : L−1 : ω̇ or q̇ =
√
ω̇ : L−1 : ω̇. (68)

It is also beneficial to find the relation between λ̇d and q̇. Recall that Eq. (23) writes

ω̇ = λ̇d ∂f
d

∂Y
and ṡ = −λ̇d ∂f

d

∂S
. (69)

Substituting the first equation of Eq. (69) into Eq. (64) gives

Y :

(
λ̇d ∂f

d

∂Y

)
= Yeq̇. (70)

Note that ∂fd
/
∂Y = ∂Ye/∂Y. Substituting Eq. (66) into Eq. (70) gives

Yeλ̇
d = Yeq̇ or λ̇d = q̇, (71)

which implies that the damage evolution is irreversible. One can also write the damage evolution conditions
as

fd ≤ 0, λ̇d ≥ 0, λ̇dfd = 0. (72)

Also introduce a pseudo-potential gd, which is related to fd by

gd = fd +
S2

2L
(73)
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with L being a constant accounting for damage hardening, and rewrite Eq. (69) as

ω̇ = λ̇d ∂g
d

∂Y
and ṡ = −λ̇d ∂g

d

∂S
. (74)

Note that Eq. (71) remains valid because ∂gd
/
∂Y = ∂fd

/
∂Y. Let ρψd take the form of

ρψd =
1

2
Los2, (75)

where o is another constant accounting for damage hardening. Substituting Eq. (75) into the last equation
of Eq. (10) gives

S = Los. (76)

Substituting the last equation of Eq. (74) into the rate form of Eq. (76) and noting that λ̇d = q̇ give

Ṡ = (L− S) oq̇ or S = L [1− exp (−oq)] . (77)

The consistency condition can be obtained from Eq. (61) as

ḟd =
∂fd

∂Y
: Ẏ +

∂fd

∂S

dS

dq
q̇ = 0. (78)

Rearranging Eq. (78) and noting that ∂fd
/
∂S = −1 and λ̇d = q̇ give

λ̇d =

∂fd

∂Y
: Ẏ

dS

dq

. (79)

Substituting Eq. (79) into the first equation of Eq. (74) gives

ω̇ =

∂fd

∂Y
: Ẏ

dS

dq

∂gd

∂Y
=

∂gd

∂Y
⊗ ∂fd

∂Y
dS

dq

: Ẏ ≡ Sd : Ẏ, (80)

which is the damage evolution law. Note that Sd is generally non-invertible.
Till now, the damage evolution law has been derived. In the next section, the constitutive relations in

the damaged configuration will be derived.

VII. Affine Formulation in the Damaged Configuration

Note that the rate of a quantity can be converted to its increment by multiplying it by Δt. The con-
stitutive relations in the damaged configuration can be derived by subsequently finding the ˙̄ε

e
-ε̇e, ˙̄σ-σ̇, and

˙̄ε
p
-ε̇p relations.
Recall that

ε̄e = M−1 : εe. (81)

Taking time derivatives on both sides of Eq. (81) gives

˙̄ε
e
= Ṁ−1

: εe +M−1 : ε̇e. (82)

The first term to the right of the equal sign in Eq. (88) can further be expressed as

Ṁ−1
ijmnε

e
mn =

(
∂M−1

ijmn

∂ωkl
ω̇kl

)
εemn =

(
∂M−1

ijmn

∂ωkl
εemn

)
ω̇kl. (83)

For notational convenience, let

Iijklmn = −∂M−1
ijmn

∂ωkl
= − ∂

∂ωkl
(Iijmn −Dijmn) =

∂Dijmn

∂ωkl
. (84)
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Substituting Eq. (2) into Eq. (84) gives

III =

3∑
i=1

3∑
j=1

ei ⊗ ej ⊗ ei ⊗ ej ⊗ ei ⊗ ej . (85)

Substituting Eq. (84) into Eq. (83) gives

Ṁ−1
ijmnε

e
mn = −Iijklmnω̇klε

e
mn = − (Iijklmnε

e
mn) ω̇kl (86)

or
Ṁ−1

: εe = − (III : εe) : ω̇. (87)

Substituting Eq. (87) into Eq. (82) gives

˙̄ε
e
= − (III : εe) : ω̇ +M−1 : ε̇e. (88)

Eq. (88) leads one first to find the relation between ω̇ and ε̇e. Note that ρψe can be expressed as

ρψe =
1

2
σ : εe =

1

2
εe : Ce : εe =

1

2
εe :

(
M−1 : C̄e

: M−1
)
: εe. (89)

Substituting Eq. (89) into the second equation of Eq. (10) gives

Y = −ρ
∂ψe

∂ω
=

1

2
εe :

(
III : C̄e

: M−1 +M−1 : C̄e
: III

)
: εe. (90)

Eq. (90) implies that Y is a function of εe and ω. Ẏ can hereby be expressed using the chain rule as

Ẏ =
∂Y

∂εe
: ε̇e +

∂Y

∂ω
: ω̇, (91)

where the explicit expressions for ∂Y/∂εe and ∂Y/∂ω can be obtained as

∂Y

∂εe
=

1

2

[(
III : C̄e

: M−1 +M−1 : C̄e
: III

)
: εe + εe :

(
III : C̄e

: M−1 +M−1 : C̄e
: III

)]
(92)

and
∂Y

∂ω
= −1

2
εe :

(
III : C̄e

: III +III : C̄e
: III

)
: εe = −εe : III : C̄e

: III : εe, (93)

respectively. Substituting Eq. (91) into Eq. (80) and rearranging the equation give

ω̇ =

[(
I − Sd :

∂Y

∂ω

)−1

:

(
Sd :

∂Y

∂εe

)]
: ε̇e ≡ A : ε̇e, (94)

Substituting Eq. (94) into Eq. (88) gives

˙̄ε
e
= − (III : εe) : A : ε̇e +M−1 : ε̇e =

[− (III : εe) : A+M−1
]
: ε̇e ≡ Ñ−1

: ε̇e. (95)

Recall that
σ = Ce : εe (96)

and that
Ce = M−1 : C̄e

: M−1. (97)

Taking time derivatives on both sides of Eq. (96) gives

σ̇ = Ċe
: εe + Ce : ε̇e. (98)

The first term to the right of the equal sign in Eq. (98) can further be expressed as

Ċe
ijrsε

e
rs =

(
Ṁ−1

ijmnC̄e
mnpqM−1

pqrs +M−1
ijmnC̄e

mnpqṀ−1
pqrs

)
εers

= − (
Iijklmnω̇klC̄e

mnpqM−1
pqrs +M−1

ijmnC̄e
mnpqIpqklrsω̇kl

)
εers

= − [(
IijklmnC̄e

mnpqM−1
pqrs +M−1

ijmnC̄e
mnpqIpqklrs

)
εers

]
ω̇kl ≡ − (Bijklrsε

e
rs) ω̇kl

(99)
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or
Ċe

: εe = − [(
III : C̄e

: M−1 +M−1 : C̄e
: III

)
: εe

]
: ω̇ ≡ − (BBB : εe) : ω̇. (100)

Combining Eqs. (94), (98), and (100) gives

σ̇ = − (BBB : εe) : ω̇ + Ce : ε̇e = − (BBB : εe) : A : ε̇e + Ce : ε̇e

= [− (BBB : εe) : A+ Ce] : ε̇e ≡ C̃e
: ε̇e.

(101)

Recall that
˙̄σ = C̄e

: ˙̄ε
e
. (102)

Combining Eqs. (95) and (102) gives

ε̇e = Ñ : ˙̄ε
e
= Ñ :

(
C̄e)−1

: ˙̄σ. (103)

Substituting Eq. (103) into Eq. (101) gives

σ̇ =
[
C̃e

: Ñ :
(
C̄e)−1

]
: ˙̄σ ≡ N−1 : ˙̄σ. (104)

The (visco)plastic dissipation equivalence hypothesis states that the (visco)plastic dissipation of a dam-
aged material should equal that of its equivalent undamaged material, i.e.,41

σ : ε̇vp = σ̄ : ˙̄ε
vp
. (105)

Substituting Eq. (1) into Eq. (105) gives

˙̄ε
vp

= M−1 : ε̇vp or ε̇vp = M : ˙̄ε
vp
. (106)

The rate form of Eq. (59) can be written as

˙̄σ = C̄evp
:
(
˙̄ε− ˙̃ε

)
= C̄evp

: ˙̄ε
e
+ C̄evp

: ˙̄ε
vp − C̄evp

: ˙̃ε. (107)

Substituting Eqs. (95), (96), and (106) into Eq. (107) gives

N : σ̇ = C̄evp
: Ñ−1

: ε̇e + C̄evp
: M−1 : ε̇vp − C̄evp

: ˙̃ε

= C̄evp
: Ñ−1

: ε̇e + C̄evp
: M−1 : (ε̇− ε̇e)− C̄evp

: ˙̃ε

= C̄evp
: M−1 : ε̇+ C̄evp

:
(
Ñ−1 −M−1

)
: ε̇e − C̄evp

: ˙̃ε.

(108)

Eq. (101) can be rewritten as

ε̇e =
(
C̃e

)−1

: σ̇. (109)

Substituting Eq. (109) into Eq. (108) and rearranging the equation give[
N − C̄evp

:
(
Ñ−1 −M−1

)
:
(
C̃e

)−1
]
: σ̇ = C̄evp

: M−1 : ε̇− C̄evp
: ˙̃ε. (110)

Multiplying both sides of Eq. (110) by Δt and rearranging the equation give the constitutive relations in the
damaged configuration as

Δσ =

{[
N − C̄evp

:
(
Ñ−1 −M−1

)
:
(
C̃e

)−1
]−1

: C̄evp
: M−1

}
: (Δε−M : Δε̃)

≡ Cevp : (Δε−M : Δε̃) ,

(111)

where Cevp denotes the fourth-order affine instantaneous elasto-viscoplastic stiffness tensor in the damaged
configuration.
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VIII. Validation Examples

In this section, the use of the current constitutive relations will be demonstrated by modeling an alu-
minium alloy exhibiting various material behaviors.

A. Damage Hardening

First consider an aluminium alloy exhibiting combined isotropic-kinematic hardening and damage hardening.
Following Refs. [26], [42], and [43], let its material parameters take the values listed in Table 1, where Ē and
ν̄ denote the undamaged Young’s modulus and Poisson’s ratio, respectively, and allow L to take the values
of 10Y0 and 20Y0 in different cases. Recall that Lijkl can be written in the Voigt notation as Lij . Following
Ref. [40], let Lij take the form of

Lij =

{
1 i = j,

0.32 i �= j.
(112)

Table 1 and Eq. (112) imply that the material yields and becomes damaged simultaneously under uniaxial
extension. Introduce a Cartesian coordinate system x = (x1, x2, x3), and let its three axes coincide with the
three axes of damage orthotropy.

11.5

Table 1. Material parameters.

(a) Elastic constants.

Ē (GPa) ν̄

70 0.33

(b) Viscoplastic constants.

σ̄0 (MPa) K̄ (MPa) n̄ η̄ (s) m̄ C̄ (MPa) γ̄

60 40 54.9 2.27× 105 4.61 7019 118.6

(c) Damage constants.

Y0 (MPa) L (MPa) o

0.0514 – 5

Figures 1 shows the stress-strain curves of a perfect material undergoing uniaxial extension in the x1-
direction. It can be seen that, as the major strain rate increases, the material becomes stiffer. This agrees
with the theory of viscoplasticity. In the rest of the examples, the major strain rate will be set to equal
10−4 s−1 with an emphasis of the damage behavior of the material.

Figure 2 shows the stress-strain and ω11-ε11 curves of the damageable material undergoing uniaxial
extension in the x1-direction. Note that L provides a measure of the resistance of a material to damages,
i.e., a low value of L corresponds to a material vulnerable to damages and vice versa. Accordingly, in
Figure 2, as L decreases, the stress-strain curve shifts downwards, while the ω11-ε11 shifts upwards. In
addition, in Figure 2(b), both ω11-ε11 curves exhibit highly nonlinear trends. Such trends actually result
from the interactions among the elastic, viscoplastic, and damage behaviors of the material. Especially, for
L = 10Y0, the material exhibits strain softening at an early stage of deformation. The numerical results
shows that, as the material is further deformed, the damage evolution gradually takes the place of the
viscoplastic deformation and becomes dominant. Figure 2 indicates that, after this, the material behaves
like a damagable elastic one exhibiting an asymptotic behavior near fracture.

B. General Damage Anisotropy

Next let the material also exhibit general damage anisotropy, where the term “general” means that the
components of Lij are independent of each other. Specifically, let the material parameters take the values
listed in Table 1 with L = 20Y0, and let Eq. (112) hold except that L11 can take the values of 0.707, 1, and
1.414 in three cases.
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Figure 1. Stress-strain curves of a perfect alloy undergoing uniaxial extension in the x1-direction.

� �

� �

�������

�
�
�

(a) Stress-strain curves.
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� �

� �

(b) ω11-ε11 curves.

Figure 2. Stress-strain and ω11-ε11 curves of a damageable alloy undergoing uniaxial extension in the x1-
direction.

Figures B shows the stress-strain and ω11-ε11 curves of the material undergoing uniaxial extension in
the x1-direction. It can be verified that, as L11 increases, the material becomes more vulnerable to σ11.
Accordingly, in Figure B, as L11 increases, the stress-strain curve shifts downwards, while the ω11-ε11 curve
shifts upwards. Meanwhile, it can be seen that the curves here exhibit trends similar to those in Figures 2(a).
Therefore, the corresponding discussion for Figures 2(a) holds here.

C. Viscoplastic Anisotropy

At last, let the material exhibit viscoplastic transverse isotropy in the x2-x3 plane. Specifically, let the
material parameters take the values listed in Table 1 with L = 20Y0, and let Eq. (112) hold here. Also let
the Ri’s of the material take three sets of values listed in Table 2 in three cases (see Appendix A for more
details).

Table 2. Ri’s in three cases.

R1 R2 R3 R4 R5 R6

1 1 1 0.707 1 0.707 1.414

2 1 1 1 1 1 1

3 1 1 1.414 1 1.414 0.707

Figures 4 shows the stress-strain and ω11-ε11 curves of the material undergoing uniaxial extension in the
x2-direction. In fact, the following findings can be obtained after some calculation:

1. All sets of values yield the same initial yield stress in the x1-direction;

2. The initial yield stress in the x2-direction decreases with increasing R3.
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(a) Stress-strain curves.

�

�

�

(b) ω11-ε11 curves.

Figure 3. Stress-strain and ω11-ε11 curves of an alloy exhibiting general damage anisotropy, undergoing uniaxial
extension in the x1-direction (continued).
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Accordingly, for R3 = R5 = 0.707, σ22 attains a high level at an early stage of deformation, enabling
damages to evolve to a considerable extent. This leads the material to behave like a damageable elastic one
afterwards. In contrast, for R3 = R5 = 1.414, σ22 remains at a low level during continued deformation,
prohibiting damages from evolving. This leads the material to behave like a perfect elasto-viscoplastic one.

� �

� �

� �

�
�
�

(a) Stress-strain curves.

IX. Conclusions

In this paper, the closed-form constitutive relations for damageable elasto-viscoplastic materials, which
exhibit damage anisotropy, damage hardening, viscoplastic anisotropy, and combined isotropic-kinematic
hardening, are derived. Some fundamentals of continuum damage mechanics and thermodynamics are
briefed, and the second-order damage tensor is redefined with an emphasis on a clear physical meaning.
An affine formulation of the constitutive relations in the undamaged configuration, the damage evolution
law, and the constitutive relations in the damaged configuration are subsequently derived. The current
constitutive relations are validated by modeling an aluminium alloy exhibiting various material behaviors.
They are found to be capable of handling complex material models.

The following conclusions can be drawn:

1. The interaction between the rate dependency and damage behavior of a material can also be evaluated;

2. More complex loading conditions and loading paths can be involved;

3. More sophisticated material behaviors can be incorporated into the current constitutive relations.

Acknowledgements

This work is supported by the US AFOSR Multiscale Structural Mechanics and Prognosis Program. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsement, either expressed or implied, of the sponsor.

16 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
15

-0
70

2 

DISTRIBUTION A: Distribution approved for public release.



� �

� �

� �

(b) ω22-ε22 curves.

Figure 4. Stress-strain and ω22-ε22 curves of a damageable alloy exhibiting viscoplastic anisotropy, undergoing
uniaxial extension in the x2-direction.

Appendix

A. Viscoplastic Anisotropic Parameters

The R-value is widely used to characterize the viscoplastic anisotropy of rolled sheet metals and can be
measured in a series of uniaxial tensile tests. Specifically, when a tensile specimen cut from a sheet is
stretched, its R-value is defined as the ratio of the viscoplastic strain in the width direction to that in the
thickness direction, i.e.,

R =
εW
εT

. (113)

In general, the R-value varies with the cut angle with respect to the rolling direction of the sheet, α. In this
case, an averaged R-value is often adopted. It is defined as

R̄ =
R0 + 2R45 +R90

4
, (114)

where Rα denotes the R-value measured in a tensile specimen of cut angle α.
Benzerga and Besson34 enriched the concept of the R-value by introducing six strain rate ratios, Rij ,

which are capable of fully characterizing the viscoplastic anisotropy of a 3D structure. Similarly to the R-
value, each of these ratios can be measured in either a uniaxial tensile test or a simple shear test. Specifically,
introduce Cartesian coordinates x = (x1, x2, x3) with its three axes parallel to the orthotropic axes of the
constituent. These ratios can then be defined as

R11 =
ε̇22
ε̇33

, R12 =
ε̇12
ε̇33

, R22 =
ε̇33
ε̇11

, (115)

R13 =
ε̇13
ε̇22

, R23 =
ε̇23
ε̇11

, R33 =
ε̇11
ε̇22

. (115′)
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Rij can be written in the Voigt notation as

R1 = R11, R2 = R12, R3 = R22, (116)

R4 = R13, R5 = R23, R6 = R33. (116′)

It can be obtained from Eq. (115) that R6 = 1/R1R3. This implies that only five out of the six Ri’s are
independent.

Hijkl can be written in the Voigt notation as Hij . The diagonal components of Hij can be related to Ri

by34

H11 = −2

3

R1R3 − 2R1 − 2

R1 + 1
,

H22

H11
= −1

2

(2R2 + 1) (R1R3 + 1)

R1R3 − 2R1 − 2
, (117)

H33

H11
= 1− 3 (R1R3 − 1)

R1R3 − 2R1 − 2
,

H44

H11
= −1

2

(2R4 + 1) (R3 + 1)R1

R1R3 − 2R1 − 2
, (117′)

H55

H11
= −1

2

(2R5 + 1) (R1 + 1)

R1R3 − 2R1 − 2
,

H66

H11
= 1− 3R1 (R3 − 1)

R1R3 − 2R1 − 2
, (117′′)

while the off-diagonal components vanish. More details on H can be found in Ref. [34], Appendix A.
A special case of viscoplastic anisotropy is viscoplastic transverse isotropy, in which case there exists a

plane of viscoplastic isotropy. Without loss of generality, let the x2-x3 plane be the plane of viscoplastic
isotropy. Ri can then be expressed as

R3 = R5 =
1

R6
= R and R2 = R4 = R′, (118)

where R and R′ can be measured in a uniaxial tensile test and a simple shear test, respectively. Substituting
Eq. (118) into Eq. (117) and rearranging the equations give

H11 =
1

3
(4−R) , H22 = H44 =

1

6
(R+ 1) (2R′ + 1) , (119)

H33 = H55 = H66 =
1

3
(2R+ 1) . (119′)

B. Partial Derivatives

Recall that the partial derivatives whose explicit expressions are to be derived are

K =
∂ ˙̄ε

vp

∂σ̄
, L =

∂ ˙̄ε
vp

∂p̄
, M =

∂ ˙̄ε
vp

∂X̄
, N =

∂ ˙̄p

∂σ̄
, P =

∂ ˙̄p

∂p̄
, Q =

∂ ˙̄p

∂X̄
, (120)

R =
∂ ˙̄X

∂σ̄
, S =

∂ ˙̄X

∂p̄
, T =

∂ ˙̄X

∂X̄
. (120′)

Let K, L, and M be the first set of partial derivatives of interest. Recall that ˜̄σe = ˜̄σe (˜̄σ) = ˜̄σe

(
σ̄ − X̄

)
(see Eq. (25)). It can then be obtained using the chain rule that

∂ ˜̄σe

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
:
∂ ˜̄σ

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
: I =

∂ ˜̄σe

∂ ˜̄σ
, (121)

∂ ˜̄σe

∂X̄
=

∂ ˜̄σe

∂ ˜̄σ
:
∂ ˜̄σ

∂X̄
=

∂ ˜̄σe

∂ ˜̄σ
: (−I) = −∂ ˜̄σe

∂ ˜̄σ
. (121′)

Recall that, when fvp > 0, ˙̄λ
vp

is given by

˙̄λ
vp

=
1

η̄

(
fvp

σ̄Y

)N̄

=
1

η̄

(
˜̄σe

σ̄Y
− 1

)N̄

(122)

and that
∂fvp

∂σ̄
=

∂gvp

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
=

3

2˜̄σe
J : H : ˜̄σ′. (123)
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The first equation of Eq. (34), together with Eqs. (122) and (123), implies that ˙̄ε
vp

= ˙̄ε
vp

(˜̄σ, p̄). Similarly
to Eq. (121), one obtains

∂ ˙̄ε
vp

∂ ˜̄σ
=

∂ ˙̄ε
vp

∂σ̄
= −∂ ˙̄ε

vp

∂X̄
or M = −K. (124)

By definition, K can be expressed as

K =
∂ ˙̄ε

vp

∂ ˜̄σ
=

∂

∂ ˜̄σ

(
˙̄λ
vp ∂g

∂σ̄

)
=

[
∂ ˙̄λ

vp

∂ ˜̄σ
⊗ ∂ ˜̄σe

∂ ˜̄σ
+ ˙̄λ

vp ∂

∂ ˜̄σ

(
∂ ˜̄σe

∂ ˜̄σ

)]
, (125)

where
∂ ˙̄λ

vp

∂ ˜̄σ
=

N̄

η̄

(
˜̄σe

σ̄Y
− 1

)N̄−1
∂

∂ ˜̄σ

(
˜̄σe

σ̄Y
− 1

)
=

N̄

η̄σ̄Y

(
˜̄σe

σ̄Y
− 1

)N̄−1
∂ ˜̄σe

∂ ˜̄σ
, (126)

and

∂

∂ ˜̄σ

(
∂ ˜̄σe

∂ ˜̄σ

)
=

∂

∂ ˜̄σ

(
3

2˜̄σe
J : H : ˜̄σ

′)
=

3

2

∂

∂ ˜̄σ

(
1
˜̄σe

)
⊗J : H : ˜̄σ′ +

3

2˜̄σe
J : H :

∂ ˜̄σ′

∂ ˜̄σ

=
3

2

(
− 1

˜̄σ
2
e

∂ ˜̄σe

∂ ˜̄σ

)
⊗J : H : ˜̄σ′ +

3

2˜̄σe
J : H : J = − 1

˜̄σe

∂ ˜̄σe

∂ ˜̄σ
⊗ ∂ ˜̄σe

∂ ˜̄σ
+

3

2˜̄σe
J : H : J .

(127)

Substituting Eqs. (126) and (127) into Eq. (125) and rearranging the equation give

K =
∂ ˙̄ε

vp

∂ ˜̄σ
=

1

η̄

(
˜̄σe

σ̄Y
− 1

)N̄−1 [(
N̄ − 1

σ̄Y
+

1
˜̄σe

)
∂ ˜̄σe

∂ ˜̄σ
⊗ ∂ ˜̄σe

∂ ˜̄σ
+

3

2

(
1

σ̄Y
− 1

˜̄σe

)
J : H : J

]
. (128)

Similarly to K, L can be expressed as

L =
∂ ˙̄ε

vp

∂p̄
=

∂

∂p̄

(
˙̄λ
vp ∂g

∂σ̄

)
=

∂ ˙̄λ
vp

∂p̄

∂ ˜̄σe

∂ ˜̄σ
, (129)

where
∂ ˙̄λ

vp

∂p̄
=

N̄

η̄

(
˜̄σe

σ̄Y
− 1

)N̄−1
∂

∂p̄

(
˜̄σe

σ̄Y
− 1

)
= −N̄

η̄

˜̄σe

σ̄2
Y

(
˜̄σe

σ̄Y
− 1

)N̄−1
dR̄

dp̄
. (130)

Substituting Eqs. (130) into Eq. (129) gives and rearranging the equation give

L =
∂ ˙̄ε

vp

∂p̄
= − N̄

η̄

˜̄σe

σ̄2
Y

(
˜̄σe

σ̄Y
− 1

)N̄−1
dR̄

dp̄

∂ ˜̄σe

∂ ˜̄σ
. (131)

Let N, P , and Q be the next set of partial derivatives of interest. Recall that ˙̄p = ˙̄λ
vp
. This, together

with Eq. (122), implies that ˙̄p = ˙̄p (˜̄σ, p̄). Similarly to Eq. (121), one obtains

∂ ˙̄p

∂ ˜̄σ
=

∂ ˙̄p

∂σ̄
= − ∂ ˙̄p

∂X̄
or Q = −N. (132)

By definition, N and P can be expressed as

N =
∂ ˙̄p

∂ ˜̄σ
=

∂ ˙̄λ
vp

∂ ˜̄σ
=

N̄

η̄σ̄Y

(
˜̄σe

σ̄Y
− 1

)N̄−1
∂ ˜̄σe

∂ ˜̄σ
(133)

and

P =
∂ ˙̄p

∂p̄
=

∂ ˙̄λ
vp

∂p̄
= − N̄

η̄

˜̄σe

σ̄2
Y

(
˜̄σe

σ̄Y
− 1

)N̄−1
dR̄

dp̄
, (134)

respectively.
Now the remaining partial derivatives are R, S, and T . Recall that

˙̄X =
2

3
C̄ ˙̄ε

vp − γ̄X̄ ˙̄p. (135)
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Substituting Eq. (135) into the last three equations of Eq. (120) gives

R =
∂ ˙̄X

∂σ̄
=

2

3
C̄
∂ ˙̄ε

vp

∂σ̄
− γ̄

∂ ˙̄p

∂σ̄
⊗ X̄ =

2

3
C̄K− γ̄N⊗ X̄, (136)

S =
∂ ˙̄X

∂p̄
=

2

3
C̄
∂ ˙̄ε

vp

∂p̄
− γ̄

∂ ˙̄p

∂p̄
X̄ =

2

3
C̄L− γ̄P X̄, (136′)

T =
∂ ˙̄X

∂X̄
=

2

3
C̄
∂ ˙̄ε

vp

∂X̄
− γ̄

(
∂ ˙̄p

∂X̄
⊗ X̄+ ˙̄p

∂X̄

∂X̄

)

= −
(
2

3
C̄
∂ ˙̄ε

vp

∂σ̄
− γ̄

∂ ˙̄p

∂σ̄
⊗ X̄

)
− γ̄ ˙̄pI = −R− γ̄ ˙̄pI.

(136′′)

Note that, in Eq. (136), T �= −R because ˙̄X �= ˙̄X (˜̄σ, p̄).
Till now, the explicit expressions for all the partial derivatives in Eq. (120) (or Eq. (46)) have been

derived.
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A Micromechanics Approach to Homogenizing

Damageable Elastoplastic Heterogeneous Materials

Liang Zhang∗ and Wenbin Yu†

Purdue University, West Lafayette, IN 47907-2045, USA

The objective of this paper is to propose a micromechanics approach to homogeniz-
ing damageable elastoplastic heterogeneous materials. The derivation of the constitutive
relations for a constituent, which exhibits damage anisotropy, damage hardening, plastic
anisotropy, and combined isotropic-kinematic hardening, is briefed. The weak form of
the problem is derived using an asymptotic method, discretized using finite elements, and
solved using the second-order Runge-Kutta method. The capability of the proposed ap-
proach is demonstrated by homogenizing a binary composite with a constituent exhibiting
various mechanical behaviors. The proposed approach is found to be capable of handling
complex material models. More sophisticated material models can be implemented into
the proposed approach.

I. Introduction

Heterogeneous materials are widely used in structural components due to their capability of exhibiting
designated in-plane or bending stiffness, ultimate strength, thermal conductivity, or even negative Pois-
son’s ratio. Unfortunately, many of their constituents have plenty of microscopic defects (e.g., microcracks,
microvoids, and dislocations), whose evolution often causes harmful changes in the microstructure of such
materials. One major challenge is to predict the global responses of damageable elastoplastic heterogeneous
materials based on the constituent properties and the microstructural details: on the one hand, it is often
difficult or expensive to measure such responses; on the other hand, the scales of the resulting structures
are usually several orders of magnitude greater than those of the heterogeneities, making it computation-
ally prohibitive to capture all the microstructural details. All these lead one to seek for a micromechanics
approach to solve such problems on the microscopic scale.

The mean field approach is a popular analytical micromechanics approach. Its nonlinear version consists
of two major branches, i.e., the tangent and secant approaches. As the name suggests, the tangent approach
is based on a tangent linearization of the local constitutive relations,1–3 while the secant approach is based on
a secant linearization.4,5 Unfortunately, both approaches tend to generate too stiff predictions because they
assume uniform linearized constitutive relations in each constituent. To overcome this drawback, several
authors6–9 made use of the second-order moment of the stress or strain within each constituent of a linear
comparison composite. The so-call second-order method is capable of generating close predictions and
homogenizing high-contrast composites (e.g., rigidly reinforced composites and porous materials). Recently,
Wu et al.10 implemented a so-called gradient-enhanced damage model into the mean field approach and
enabled it to homogenize damageable elastoplastic composites. Despite success, the mean field approach
suffers from two drawbacks. First, it requires randomly distributed Eshelby-type inclusions. This restricts
its application to many realistic materials (e.g., woven composites and open-cell foams). Second, it cannot
recover the local fields. This may lead to inaccurate predictions if complex loading paths are involved or
prohibit engineers from inspecting the local fields if necessary.

Several computational approaches have been developed to overcome the aforementioned drawbacks. Such
an approach often involves a fine discretization of the unit cell (UC) of a heterogeneous material to better
capture the microstructural details. The asymptotic homogenization is a popular computational approach.

∗Postdoctoral Researcher, School of Aeronautics and Astronautics.
†Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow.
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Bensoussan et al.11 developed its fundamental theory, and Ref. [12] appears as the first implementation
of this theory using the finite element method. This approach is based on an asymptotic expansion of the
displacement into its average over the UC and a periodic fluctuating part, making it capable of easily applying
periodic boundaries conditions using the master-slave elimination method. Fish and his coworkers13,14

further enabled this approach to homogenize damageable elastic composites. Aboudi15,16 developed another
computational approach, themethod of cells (MOC) or the generalizedmethod of cells (GMC), which involves
a discretization of the UC into rectangular (2D) or parallelepiped (3D) subcells and an approximation of
the local quantities using their averages over each subcell. Despite improvements, MOC or GMC cannot
generate very accurate predictions because their microstructural details and local fields are captured without
sufficient accuracies.

Several authors also developed computational approaches based on the displacement-based finite element
method (no asymptotic expansion of the displacement). Unlike the asymptotic homogenization, here it
becomes challenging to apply periodic boundary conditions because the displacement itself is aperiodic.
Markovic and Ibrahimbegovic17 proposed an approach to handling the micro-macro transitions in multiscale
finite element models, yet requiring displacement or traction boundary conditions at the UC level. Sun and
Vaidya18 successfully applied periodic boundary conditions to the UC of a long fiber-reinforced composite,
while Smit et al.19 used a similar approach in their multiscale finite element models. Miehe20 proposed an
implicit approach to applying periodic boundary conditions, requiring a Newton-Raphson iteration, while
Xia and his coworkers21,22 proposed an explicit approach in which a master stiffness equation has to be
solved for six times. Despite success, both approaches are more computationally costly than those in the
asymptotic homogenization.

Microscopic defects can be classified into three categories, i.e., line defects (dislocations), planar defects
(microcracks and grain boundaries), and volume defects (microvoids). Continuum damage mechanics deals
with the macroscopic effect of microcrack propagation and microvoid growth. It combines the internal state
variable theory and the theory of irreversible thermodynamics and enables one to derive the constitutive rela-
tions for damaged materials. The theory of plasticity deals with the macroscopic effect of dislocation motion
and is well established. Unfortunately, neither continuum damage mechanics nor the theory of plasticity can
perfectly deal with damageable elastoplasticmaterials alone. Elaborated efforts have been devoted to deriving
the constitutive relations for such materials. Most authors derived their constitutive relations in two different
ways: some of them23–31 formulated their plasticity models in terms of the so-called effective stresses, i.e.,
the average microscopic stresses acting on the undamaged microbonds of the material, while the others32–34

formulated their models in terms of the so-called nominal stresses, i.e., the macroscopic stresses acting on
the macroscopic material. Recently, Zhang and Yu35 derived closed-form constitutive relations capable of
handling damage anisotropy, damage hardening, plastic anisotropy, and combined isotropic-kinematic hard-
ening. In this paper, such constitutive relations will be adopted to characterize the mechanical behavior of
a damageable elastoplastic constituent.

The objective of this paper is to propose a micromechanics approach to homogenizing damageable elasto-
plastic heterogeneous materials. The derivation of the constitutive relations for a constituent, which exhibits
damage anisotropy, damage hardening, plastic anisotropy, and combined isotropic-kinematic hardening, is
briefed. The weak form of the problem is derived using an asymptotic method, discretized using finite ele-
ments, and solved using the second-order Runge-Kutta method. The capability of the proposed approach is
demonstrated by homogenizing a binary composite with a constituent exhibiting various mechanical behav-
iors.

II. Constitutive Relations

Consider a heterogeneous material having an identifiable UC. Without loss of generality, let its con-
stituents all be elastoplastic and damageable. Note that an perfect elastic constituent can be treated as
a damageable elastoplastic one of infinite initial yield stress and damage threshold. In this section, the
derivation of the constitutive relations for a constituent will be briefed. More details on the derivation in
this section can be found in Ref. [35].

The derivation of the constitutive relations for a damaged material generally starts with two assumptions:

1. Each damaged material can be idealized as an equivalent undamaged material;

2. There exists a one-to-one correspondence between each pair of physical quantities in the damaged and
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undamaged configurations.

Let an overbar denote the quantity in the undamaged configuration. The stress tensor in the undamaged
configuration (or the effective stress tensor), σ̄, can be related to that in the damaged configuration, σ, by

σ̄ = M : σ or σ = M−1 : σ̄, (1)

where M denotes the fourth-order damage effect tensor whose form varies with the form of the damage
tensor (see Refs. [36–38] for example). Let ω and D denote the second- and fourth-order damage tensors,
respectively. Also let ω be symmetric, and let D be related to ω by

D =
3∑

i=1

3∑
j=1

ωijei ⊗ ej ⊗ ei ⊗ ej , (2)

where ei denotes the unit vector. It can be verified tha D fulfills the major and minor symmetries (i.e.,
Dijkl = Dklij , Dijkl = Djikl, and Dijkl = Dijlk). Let M−1 take the form of

M−1 = I −D (3)

throughout this paper, where I denotes the fourth-order identity tensor. It can be verified that M−1 also
fulfills both the major and minor symmetries. Let ρ, ψe, and εe denote the density of the material, the
elastic strain energy per unit mass of the material, and the elastic strain tensor, respectively. The elastic
strain energy equivalence hypothesis states that the elastic strain energy of a damaged material should equal
that of its equivalent undamaged material, i.e.,37

ρψe (εe,ω) = ρψe (ε̄e) or
1

2
σ : εe =

1

2
σ̄ : ε̄e. (4)

Substituting Eq. (1) into Eq. (4) gives

ε̄e = M−1 : εe or εe = M : ε̄e. (5)

Hooke’s law can be expressed in the damaged and undamaged configurations as

σ = Ce : εe and σ̄ = C̄e
: ε̄e, (6)

respectively, where Ce denotes the fourth-order elastic stiffness tensor, and C̄e
denotes the fourth-order

undamaged elastic stiffness tensor and is constant. Combining Eqs. (1), (4), (5), and (6) gives

Ce = M−1 : C̄e
: M−1 or (Ce)

−1
= M :

(
C̄e)−1

: M. (7)

It can be verified that ωij provides a measure of the damage associated with σij or εeij .
Let ψ denote the Helmholtz free energy per unit mass of the constituent. According to the theory of ther-

modynamics, ψ can be expressed as a function of a suitable set of independent state variables characterizing
the elastic, plastic, and damage behaviors of the constituent, e.g.,

ψ = ψ (εe,ω,α, r, s) , (8)

where α is a second-order tensor accounting for kinematic hardening, and r and s are two scalars accounting
for isotropic and damage hardening, respectively. Assume that the constituent exhibits uncoupled elastic,
plastic, and damage behaviors. In this case, ψ can be decomposed into its elastic, plastic hardening, and
damage hardening parts, i.e.,

ψ (εe,ω,α, r, s) = ψe (εe,ω) + ψp (α, r) + ψd (s) . (9)

The thermodynamic forces conjugate to the state variables in Eq. (8) can be defined as

σ = ρ
∂ψ

∂εe
= ρ

∂ψe

∂εe
, Y = −ρ

∂ψ

∂ω
= −ρ

∂ψe

∂ω
, (10)

X = ρ
∂ψ

∂α
= ρ

∂ψp

∂α
, R = ρ

∂ψ

∂r
= ρ

∂ψp

∂r
, S = ρ

∂ψ

∂s
= ρ

dψd

ds
, (10′)
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where Y denotes the damage conjugate force tensor, X denotes the back stress tensor, and R and S are
related to the current yield stress and the current damage threshold, respectively. Let the yield and damage
criteria take the forms of

fp (σ,X, R) = 0 and fd (Y, S) = 0, (11)

respectively. It can be verified that the evolution of the state variables are governed by

ε̇p = λ̇p ∂f
p

∂σ
, α̇ = −λ̇p ∂f

p

∂X
, ṙ = −λ̇p ∂f

p

∂R
, ω̇ = λ̇d ∂f

d

∂Y
, ṡ = −λ̇d ∂f

d

∂S
, (12)

where εp denotes the plastic strain, and λ̇p and λ̇d are two Lagrange multipliers.
The so-called effective stress space plasticity states that the plastic deformation can only occur within

the undamaged microbonds of the material.39 This allows one to derive the constitutive relations in the
undamaged configuration. Let ˜̄σ = σ̄ − X̄, and let the constituent obey Hill’s yield criterion,

fp
(
σ̄, X̄, R̄

)
= ˜̄σe − σ̄Y = 0, (13)

where

˜̄σe =

√
3

2
˜̄σ′ : H̄ : ˜̄σ′ (14)

denotes the Hill equivalent stress with (·)′ denoting the deviatoric part of the tensor and H̄ denoting the
fourth-order anisotropy tensor, and

σ̄Y = σ̄0 + R̄ (15)

denotes the current yield stress with σ̄0 denoting the initial yield stress. Substituting Eq. (14) into the
modified plastic work equivalence principle,

˜̄σ : ˙̄ε
p
= ˜̄σe ˙̄p, (16)

gives the Hill equivalent plastic strain rate as

˙̄p =

√
2

3
˙̄ε
p
: H̄−1

: ˙̄ε
p
. (17)

Note that H̄ can be obtained from the so-called R-values (see Appendix A for more details). It can be
verified that

˙̄λ
p
= ˙̄p. (18)

Let the constituent obey the Chaboche hardening law,40

˙̄X =
2

3
C̄ ˙̄ε

p − γ̄X̄ ˙̄p, (19)

and the Voce hardening law,41

R̄ = K̄ [1− exp (−n̄p̄)] , (20)

where C̄ and γ̄ are two constants accounting for kinematic hardening, and K̄ and n̄ are two constants ac-
counting for isotropic hardening. The rate form of the constitutive relations in the undamaged configuration
can then be derived as

˙̄σ = C̄ep
: ˙̄ε, (21)

where

C̄ep
= C̄e −

(
C̄e

:
∂fp

∂σ̄

)
⊗

(
∂fp

∂σ̄
: C̄e

)
2

3
C̄
∂fp

∂σ̄
:
∂fp

∂σ̄
− γ̄

∂fp

∂σ̄
: X̄+

dR̄

dp̄
+

∂fp

∂σ̄
: C̄e

:
∂fp

∂σ̄

(22)

denotes the fourth-order instantaneous elastoplastic stiffness tensor in the undamaged configuration. The
explicit expression for ∂fp/∂σ̄ can be derived as42

∂fp

∂σ̄
=

∂ ˜̄σe

∂ ˜̄σ
=

1

2˜̄σe

∂ ˜̄σ2
e

∂ ˜̄σ
=

1

2˜̄σe

(
3

2
2
∂ ˜̄σ′

∂ ˜̄σ
: H̄ : ˜̄σ′

)
=

3

2˜̄σe
J : H̄ : ˜̄σ′, (23)
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where J denotes the fourth-order deviatoric projection operator and takes the form of J = I − 1
3I⊗ I with

I denoting the second-order identity tensor. At last, the Kuhn-Tucker loading/unloading conditions write

fp ≤ 0, ˙̄λ
p ≥ 0, ˙̄λ

p
fp = 0. (24)

Also let the damage criterion take a Hill-type form,43

fd (Y, S) = Ye − YT = 0, (25)

where
Ye =

√
Y : L : Y (26)

denotes a Hill-type equivalent damage conjugate force with L denoting a fourth-order damage anisotropy
tensor, and

YT = Y0 + S (27)

denotes the current damage threshold with Y0 denoting the initial damage threshold. Lijkl can be written
in the Voigt notation as Lij . In general, the diagonal components of Lij are around 1, while the off-diagonal
components are smaller than the diagonal ones (see Ref. [43] for more details on L). It can be verified that
here the equivalent damage rate writes

q̇ =
√
ω̇ : L−1 : ω̇ (28)

and that
λ̇d = q̇. (29)

Let the constituent obey a Voce-type damage hardening law,

Ṡ = (L− S) oq̇ or S = L [1− exp (−oq)] . (30)

The damage evolution law can then be derived as

ω̇ =

∂fd

∂Y
: Ẏ

dS

dq

∂fd

∂Y
=

∂fd

∂Y
⊗ ∂fd

∂Y
dS

dq

: Ẏ ≡ Sd : Ẏ, (31)

where
∂fd

∂Y
=

∂Ye

∂Y
=

1

2Ye

∂Y 2
e

∂Y
=

1

2Ye

(
2
∂Y

∂Y
: L : Y

)
=

L : Y

Ye
. (32)

Note that Sd is generally non-invertible. At last, the damage evolution conditions write

fd ≤ 0, λ̇d ≥ 0, λ̇dfd = 0. (33)

The constitutive relations in the damaged configuration can be derived using those in the undamaged
configuration and the damage evolution law. Specifically, ω̇ can be related to ε̇e using Eq. (31) by

ω̇ =

[(
I − Sd :

∂Y

∂ω

)−1

:

(
Sd :

∂Y

∂εe

)]
: ε̇e ≡ A : ε̇e, (34)

where

∂Y

∂εe
=

1

2

[(
III : C̄e

: M−1 +M−1 : C̄e
: III

)
: εe + εe :

(
III : C̄e

: M−1 +M−1 : C̄e
: III

)]
(35)

and
∂Y

∂ω
= −1

2
εe :

(
III : C̄e

: III +III : C̄e
: III

)
: εe = −εe : III : C̄e

: III : εe (36)

with

III =
3∑

i=1

3∑
j=1

ei ⊗ ej ⊗ ei ⊗ ej ⊗ ei ⊗ ej . (37)
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˙̄ε
e
can be related to ε̇e using Eq. (34) by

˙̄ε
e
= − (III : εe) : A : ε̇e +M−1 : ε̇e =

[− (III : εe) : A+M−1
]
: ε̇e ≡ Ñ−1

: ε̇e. (38)

It can be verified that

Ċe
: εe = − [(

III : C̄e
: M−1 +M−1 : C̄e

: III
)
: εe

]
: ω̇ ≡ − (BBB : εe) : ω̇. (39)

σ̇ can be related to ε̇e using Eqs. (34) and (39) by

σ̇ = − (BBB : εe) : ω̇ + Ce : ε̇e = − (BBB : εe) : A : ε̇e + Ce : ε̇e = [− (BBB : εe) : A+ Ce] : ε̇e ≡ C̃e
: ε̇e. (40)

˙̄σ can be related to σ̇ using Eqs. (38) and (40) by

σ̇ =
[
C̃e

: Ñ :
(
C̄e)−1

]
: ˙̄σ ≡ N−1 : ˙̄σ. (41)

The plastic dissipation equivalence hypothesis states that the plastic dissipation of a damaged material
should equal that of its equivalent undamaged material, i.e.,44

σ : ε̇p = σ̄ : ˙̄ε
p
. (42)

Substituting Eq. (1) into Eq. (42) gives

˙̄ε
p
= M−1 : ε̇p or ε̇p = M : ˙̄ε

p
. (43)

Combining Eqs. (22), (38), (40), (41), and (43) gives the rate form of the constitutive relations in the
damaged configuration as

σ̇ =

{[
N − C̄ep

:
(
Ñ−1 −M−1

)
:
(
C̃e

)−1
]−1

: C̄ep
: M−1

}
: ε̇ ≡ Cep : ε̇, (44)

where Cep denotes the fourth-order instantaneous elastoplastic stiffness tensor in the damaged configuration.
Till now, the derivation of the constitutive relations for a constituent has been briefed. In the next

section, the weak form of the problem will be derived.

III. Weak Form

Introduce global coordinates x = (x1, x2, x3) describing the macroscopic structure and local coordinates
y = (y1, y2, y3) describing the UC, and let y be related to x by45

y = x/ε, (45)

where ε � 1 denotes a scale ratio. Suppose that, at time tn:

1. The UC is in a state of static equilibrium;

2. The global and local variables are known;

3. Periodic boundary conditions are satisfied.

The task is to solve for the exact velocity vector within the UC, u̇i, at tn+1.
u̇i must have its volume average over the UC, say v̇i, such that the heterogeneous material can be

homogenized.46 By definition, v̇i is related to u̇i by

v̇i =
1

Ω

∫
Ω

u̇idV ≡ 〈u̇i〉 , (46)

where Ω denotes the domain occupied by the UC (with boundary ∂Ω) and also its volume, and 〈·〉 denotes
the volume average of a quantity over Ω. u̇i can be decomposed into v̇i and a fluctuation function, say χi,
i.e.,45

u̇i (y,x) = v̇i (x) + εχi (y,x) , (47)
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where χi is a periodic function of y and may also depend on x, and εχi should be asymptotically smaller
than v̇i. Combining Eqs. (46) and (47) gives

〈χi〉 = 0. (48)

Although εχi negligibly affects u̇i, it can significantly affect the derivatives of u̇i. Specifically,

∂u̇i

∂xj
=

1

ε

∂u̇i

∂yj

∣∣∣∣
x=const

+
∂u̇i

∂xj

∣∣∣∣
y=const

=
∂v̇i
∂xj

+
∂χi

∂yj
+ ε

∂χi

∂xj
, (49)

where ε∂χi/∂xj is a high-order term and can be omitted. Note that, by definition,

ε̇ij =
1

2

(
∂u̇i

∂xj
+

∂u̇j

∂xi

)
. (50)

Let

˙̄εij =
1

2

(
∂v̇i
∂xj

+
∂v̇j
∂xi

)
and χ(i|j) =

1

2

(
∂χi

∂yj
+

∂χj

∂yi

)
, (51)

where ˙̄εij actually denotes the global strain rate tenor. Combining Eqs. (47), (50), and (51) gives

ε̇ij = ˙̄εij + χ(i|j). (52)

The strong form of the problem can be formulated as seeking χi satisfying

σ̇ij,j = 0 in Ω (53)

subject to constraint Eq. (48) and periodic boundary conditions

χi (y) = χi (y + l) and (σ̇ijnj) (y) = − (σ̇ijnj) (y + l) on ∂Ω, (54)

where l denotes the periodicity vector of the UC, and ni denotes the unit normal vector. Let δχi denote the
virtual fluctuation function being arbitrary in Ω and satisfying periodic boundary conditions

δχi (y) = δχi (y + l) on ∂Ω. (55)

The rate form of the principle of virtual work can be expressed in terms of δχi as

δΠΩ = − 1

Ω

∫
Ω

σ̇i,jδχidV =
1

Ω

∫
Ω

σ̇ijδχ(i|j)dV − 1

Ω

∫
Ω

σ̇ijnjδχidS = 0. (56)

Substituting Eq. (55) and the second equation of Eq. (54) into Eq. (56) gives

δΠΩ =
1

Ω

∫
Ω

σ̇ijδχ(i|j)dV = 0. (57)

The weak form of the problem can then be formulated as seeking χi satisfying Eq. (57) subject to constraint
Eq. (48) and periodic boundary conditions

χi (y) = χi (y + l) on ∂Ω. (58)

Substituting Eq. (52) into Eq. (44) gives

σ̇ij = Cep
ijkl

[
˙̄εkl + χ(k|l)

]
. (59)

Substituting Eq. (59) into Eq. (57) gives

δΠΩ =
1

Ω

∫
Ω

δχ(i|j)Cep
ijkl

[
˙̄εkl + χ(k|l)

]
dV = 0. (60)

Eq. (60) implies that, once ˙̄εij and Cep
ijkl are specified, χi can be uniquely determined.
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It is beneficial to also relate the local stress and strain rate tensors to the global ones. Specifically, 〈σ̇ij ε̇ij〉
can be expressed as

1

Ω

∫
Ω

σ̇ij ε̇ijdV =
1

Ω

∫
Ω

σ̇ij ˙̄εijdV +
1

Ω

∫
Ω

σ̇ijχ(i|j)dV . (61)

Eq. (61), together with Eq. (57), implies that

1

Ω

∫
Ω

σ̇ij ε̇ijdV =
1

Ω

∫
Ω

σ̇ij ˙̄εijdV = ˙̄εij

(
1

Ω

∫
Ω

σ̇ijdV

)
≡ ˙̄σij ˙̄εij , (62)

In fact, Eq. (62) is a variation of the Hill-Mandel lemma.
Till now, the weak form of the problem has been derived. In the next section, it will be discretized using

finite elements such that the fluctuation function can be determined.

IV. Finite Element Implementation

Introduce the following matrix notations:

˙̄ε =
⌊

˙̄ε11 2 ˙̄ε12 ˙̄ε22 2 ˙̄ε13 2 ˙̄ε23 ˙̄ε33

⌋T

, (63)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂χ1

∂y1
∂χ1

∂y2
+

∂χ2

∂y1
∂χ2

∂y2
∂χ1

∂y3
+

∂χ3

∂y1
∂χ2

∂y3
+

∂χ3

∂y2
∂χ3

∂y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
0 0

∂

∂y2

∂

∂y1
0

0
∂

∂y2
0

∂

∂y3
0

∂

∂y1

0
∂

∂y3

∂

∂y2

0 0
∂

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

χ1

χ2

χ3

⎫⎪⎬
⎪⎭ ≡ Γhχ, (63′)

where Γh denotes an operator matrix, and χ denotes a column matrix containing the three components of
the fluctuation function. Let χ be discretized using finite elements as

χ (yi, xi) = S (yi)X (xi) , (64)

where S denotes the shape functions, and X denotes a column matrix of the nodal values of the fluctuation
function at all the active nodes. The discretized version of Eq. (60) can then be obtained as

δΠΩ =
1

Ω
δXT (DhhX+Dhε ˙̄ε) = 0, (65)

where

Dhh =

∫
Ω

(ΓhS)
T
D (ΓhS) dV and Dhε =

∫
Ω

(ΓhS)
T
DdV (66)

with D denoting the 6 × 6 instantaneous stiffness matrix condensed from Cep
ijkl. In Eq. (65), equality holds

only if
DhhX = −Dhε ˙̄ε or X = X0 ˙̄ε. (67)

Eq. (67) implies that X is proportional to ˙̄ε. In addition, Eq. (62) can be rewritten as

˙̄εij ˙̄σij =
1

Ω

∫
Ω

˙̄εij σ̇ijdV =
1

Ω

∫
Ω

˙̄εijCep
ijkl

[
˙̄εkl + χ(k|l)

]
dV . (68)

The discretized version of Eq. (68) can be obtained as

˙̄ε
T ˙̄σ =

1

Ω

(
˙̄ε
T
DεhX+ ˙̄ε

T
Dεε ˙̄ε

)
=

1

Ω
˙̄ε
T
(DεhX0 +Dεε) ˙̄ε ≡ ˙̄ε

T
D̄ ˙̄ε, (69)
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where ˙̄σ denotes the global stress strain rate column matrix, and

Dεh =

∫
Ω

D (ΓhS) dV and Dεε =

∫
Ω

DdV . (70)

The rate form of the global constitutive relations can then be obtained from Eq. (69) as

˙̄σ = D̄ ˙̄ε, (71)

where D̄ denotes the instantaneous effective stiffness matrix. Once ˙̄ε, ˙̄σ, or a suitable combination of the
components of ˙̄ε and ˙̄σ is specified, the global response of the UC can be fully determined using Eq. (71). In
addition, the real value of X0, say X̄0, can be obtained by modifying X0 such that χ satisfies Eqs. (48) and
(58). Once ˙̄ε and X̄0 are specified, the local fields can be fully recovered. Specifically, the local strain rates
can be recovered as

ε̇ = ˙̄ε+ ΓhSX̄0 ˙̄ε, (72)

where ε̇ denotes the local strain rate column matrix. The local stress rates can be recovered from the local
strain rates as

σ̇ = Dε̇. (73)

Till now, the fluctuation function have been determined. In the next section, the code structure will be
presented.

V. Code Structure

The code employs the second-order Runge-Kutta method as its time integration method (see Figure 1
for its structure). It starts with reading the finite element model and initializing the global and local stresses
and strains. After this, it will perform the following steps within each load increment:

1. Compute the effective material properties and the fluctuation function;

2. Impose the global stress/strain increments;

3. Recover the local fields;

4. Update the global and local variables;

5. Continue to the next increment if needed.

At last, it will output the results as needed.

The code uses the Gaussian quadrature to compute the element stiffness matrices. The corresponding
algorithm is described as follows:

1. Read the data associated with an integration point;

2. Check whether the constituent is damageable elastoplastic;

3. If yes, check whether Eqs. (24) and (33) is satisfied;

4. If yes, compute the stiffness matrix using Eq. (44) and return it;

5. If either of the two criteria is not met, return the elastic stiffness matrix;

Especially, if either Eq. (24) or Eq. (33) is satisfied, the code will update the corresponding local variables
during the recovery.

VI. Results and Discussion

In this section, the capability of the proposed approach will be demonstrated by homogenizing a binary
composite with a constituent exhibiting various mechanical behaviors.
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Read finite element model

Start

Initialize variables

Constitutive modeling

Recovery

Update variables

End

Output results

Impose stress/strain increments

�

End of loading path

Figure 1. Code structure.
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A. Damage Hardening

Consider a binary composite consisting of an elastic SiC constituent and a damageable elastoplastic alu-
minum constituent with their volume fractions being 10% and 90%, respectively. With loss of generality,
let aluminum exhibit combined isotropic-kinematic hardening (see Eqs. (19) and (20)). Following Refs. [47]
and [48], let the material parameters of SiC and aluminum take the values listed in Table 1, where Ē and ν̄
denote the undamaged Young’s modulus and Poisson’s ratio, respectively. Recall that Lijkl can be written
in the Voigt notation as Lij . Following Ref. [43], let the Lij ’s of aluminum take the form of

Lij =

{
1 i = j,

0.32 i �= j.
(74)

Let the UC of this composite be a line segment consisting of two connecting sub-line segments. Recall that
yi denotes the local coordinates describing the UC with its origin located at the geometric center of the UC
(see Section III). Here let the y1-axis be parallel to the line segment representing the UC.

Table 1. Material parameters of SiC and aluminum.

(a) Elastic constants.

Ē (GPa) ν̄

SiC 490 0.17

Aluminum 65 0.3

(b) Plastic constants of aluminum.

σ̄0 (MPa) K̄ (MPa) n̄ C̄ (MPa) γ̄

154 140.2 54.9 7019 118.6

(c) Damage constants of aluminum.

Y0 (MPa) L (MPa) o

0.0912 1.824 5

In the proposed approach, a 1D UC is meshed using 2-node line elements having 3 degrees of freedom at
each node, and the meshed UC consists of 2 elements. Note that this finite element model is much simpler
than a 3D one in a commercial finite element software.

Figure 2 shows the stress-strain curve of the damageable composite undergoing uniaxial extension in
the y1-direction. For comparison purposes, it also shows a similar curve of a perfect composite. It can be
seen that the damageable composite becomes more and more flexible compared with the perfect one during
continued deformation and even exhibits strain softening to the end of deformation. This is because here
aluminum is severely deformed and becomes heavily damaged. Moreover, the numerical results show that,
as aluminum is deformed to a certain extent, the damage evolution gradually takes the place of the plastic
deformation and becomes dominant within it and that, after this, the composite will exhibit an asymptotic
behavior near fracture, just like a damageable elastic material.

Figure 3 shows the stress-strain curves of the composite undergoing uniaxial extension in the y1-directions.
It can be seen that the two curves here are very close to easy other. This is because here aluminum is not
severely deformed and remains almost undamaged. As can be seen in Figures 2 and 3, the global stress state
determines the local stress distribution and hereby the local responses of damageable constituents, while
such responses can further react to the global response of the UC. Therefore, it is of great significance to
accurately recover the local fields within the UC.

B. General Damage Anisotropy

Next let aluminum also exhibit general damage anisotropy, where the term “general” means that the com-
ponents of Lij are independent of each other. Specifically, let the material parameters of aluminum still take
the values listed in Table 1, and let Eq. (74) hold except that L11 can take the values of 0.707, 1, and 1.414
in three cases.
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Figure 2. Stress-strain curves of perfect and damageable binary composites undergoing uniaxial extension in
the y1-direction.

�
�
�

�������

��	�
�����

Figure 3. Stress-strain curves of perfect and damageable binary composites undergoing uniaxial extension in
the y2-direction.
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Figures 4 shows the stress-strain curves of the composite undergoing uniaxial extension in the Y1-direction,
respectively. It can be verified that, as L11 increases, the material becomes more vulnerable to σ11. Accord-
ingly, in Figure 4, as L11 increases, the stress-strain curve shifts downwards. Meanwhile, it can be seen that
the curves here exhibit trends similar to that for the damageable composite in Figures 2. Therefore, the
corresponding discussion for Figures 2 holds here.

�

�

�

�
�
�

Figure 4. Stress-strain curves of a binary composite with a constituent exhibiting general damage anisotropy,
undergoing uniaxial extension in the y1-direction.

C. Plastic Anisotropy

At last, let aluminum exhibit plastic transverse isotropy in the x2-x3 plane. Specifically, let aluminum
parameters take the values listed in Table 1 with its initial yield stresses in the y2- and y3-directions remaining
unchanged, and let Eq. (74) hold here. Also let the Ri’s of aluminum take three sets of values listed in Table 2
in three cases (see Appendix A for more details).

Table 2. Ri’s in three cases.

R1 R2 R3 R4 R5 R6

1 1 1 0.5 1 0.5 2

2 1 1 1 1 1 1

3 1 1 2 1 2 0.5

Figures 5 shows the stress-strain curves of the composite undergoing uniaxial extension in the x2-direction.
It can be verified from Table 2 that, if the initial yield stresses in the y2- and y3-directions remain unchanged,
that in the x2-direction increases with increasing R3. Accordingly, for R3 = R5 = 2, σ11 attains a high level at
an early stage of deformation, enabling damages to evolve to a considerable extent. This leads the composite
to behave like a damageable elastic material afterwards. In contrast, for R3 = R5 = 0.5, σ11 increases more
slowly, prohibiting damages from evolving too early. This leads the composite not to exhibit strain softening
very soon.
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� �

� �

� �
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�

Figure 5. Stress-strain curves of a binary composite with a plastically anisotropic matrix, undergoing uniaxial
extension in the y1-direction.

VII. Conclusions

In this paper, a micromechanics approach to homogenizing damageable elastoplastic heterogeneous ma-
terials is proposed. The derivation of the constitutive relations for a constituent, which exhibits damage
anisotropy, damage hardening, plastic anisotropy, and combined isotropic-kinematic hardening, is briefed.
The weak form of the problem is derived using an asymptotic method, discretized using finite elements, and
solved using the second-order Runge-Kutta method. The capability of the proposed approach is demon-
strated by homogenizing a binary composite with a constituent exhibiting various mechanical behaviors.
The proposed approach is found to be capable of handling complex material models. More sophisticated
material models can be implemented into the proposed approach.

The following conclusions can be drawn:

1. More complex microstructure can be modeled;

2. More complex loading conditions and loading paths can be involved;

3. More sophisticated material models can be incorporated into the proposed approach.
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Appendix

A. Plastic Anisotropic Parameters

The R-value is widely used to characterize the plastic anisotropy of rolled sheet metals and can be measured
in a series of uniaxial tensile tests. Specifically, when a tensile specimen cut from a sheet is stretched, its
R-value is defined as the ratio of the plastic strain in the width direction to that in the thickness direction,
i.e.,

R =
εW
εT

. (75)

In general, the R-value varies with the cut angle with respect to the rolling direction of the sheet, α. In this
case, an averaged R-value is often adopted. It is defined as

R̄ =
R0 + 2R45 +R90

4
, (76)

where Rα denotes the R-value measured in a tensile specimen of cut angle α.
Benzerga and Besson42 enriched the concept of the R-value by introducing six strain rate ratios, Rij ,

which are capable of fully characterizing the plastic anisotropy of a 3D structure. Similarly to the R-value,
each of these ratios can be measured in either a uniaxial tensile test or a simple shear test. Specifically,
introduce Cartesian coordinates x = (x1, x2, x3) with its three axes parallel to the orthotropic axes of the
constituent. These ratios can then be defined as

R11 =
ε̇22
ε̇33

, R12 =
ε̇12
ε̇33

, R22 =
ε̇33
ε̇11

, (77)

R13 =
ε̇13
ε̇22

, R23 =
ε̇23
ε̇11

, R33 =
ε̇11
ε̇22

. (77′)

Rij can be written in the Voigt notation as

R1 = R11, R2 = R12, R3 = R22, (78)

R4 = R13, R5 = R23, R6 = R33. (78′)

It can be obtained from Eq. (77) that R6 = 1/R1R3. This implies that only five out of the six Ri’s are
independent.

Hijkl can be written in the Voigt notation as Hij . The diagonal components of Hij can be related to Ri

by42

H11 = −2

3

R1R3 − 2R1 − 2

R1 + 1
,

H22

H11
= −1

2

(2R2 + 1) (R1R3 + 1)

R1R3 − 2R1 − 2
, (79)

H33

H11
= 1− 3 (R1R3 − 1)

R1R3 − 2R1 − 2
,

H44

H11
= −1

2

(2R4 + 1) (R3 + 1)R1

R1R3 − 2R1 − 2
, (79′)

H55

H11
= −1

2

(2R5 + 1) (R1 + 1)

R1R3 − 2R1 − 2
,

H66

H11
= 1− 3R1 (R3 − 1)

R1R3 − 2R1 − 2
, (79′′)

while the off-diagonal components vanish. More details on H can be found in Ref. [42], Appendix A.
A special case of plastic anisotropy is plastic transverse isotropy, in which case there exists a plane of

plastic isotropy. Without loss of generality, let the x2-x3 plane be the plane of plastic isotropy. Ri can then
be expressed as

R3 = R5 =
1

R6
= R and R2 = R4 = R′, (80)

where R and R′ can be measured in a uniaxial tensile test and a simple shear test, respectively. Substituting
Eq. (80) into Eq. (79) and rearranging the equations give

H11 =
1

3
(4−R) , H22 = H44 =

1

6
(R+ 1) (2R′ + 1) , (81)

H33 = H55 = H66 =
1

3
(2R+ 1) . (81′)
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A Thermodynamically Consistent Cohesive Zone

Model for Mixed-Mode Fracture

Liang Zhang∗

Utah State University, Logan, UT 84322-4130, USA

Wenbin Yu†

Purdue University, West Lafayette, IN 47907-2045, USA

The objective of this paper is to propose a thermodynamically consistent cohesive zone
model for mixed-mode fracture, which enables a cohesive element to exhibit designated
behaviors when subject to mixed-mode loading. Some fundamentals of the cohesive zone
model, continuum damage mechanics, and thermodynamics are briefed, and the concept
of the irreversible deformation is introduced. The cohesive law in the undamaged config-
uration, the damage evolution law, and the cohesive law in the damaged configuration are
subsequently derived, and a novel delamination criterion is proposed. The applicability
and power of the proposed cohesive zone model are demonstrated using examples such
as predicting the traction-relative displacement and damage factor-relative displacement
curves of cohesive elements of various cohesive properties. More sophisticated cohesive
properties can be incorporated into the proposed model.

I. Introduction

Cohesive zone models are among the most powerful tools for solving the problems of material fracture.
A self-contained cohesive zone model should consist of a geometric representation, a cohesive law, and a
delamination criterion. Specifically, the geometric representation of a cohesive zone can be a finite element,
often named as a cohesive zone element. A cohesive element is generally a line (2D) or surface (3D) element,
or to say, it is of zero thickness. This is because the microscopic length scale associated with material fracture
is a priori infinitely smaller than the scale of the macroscopic structure. In addition, this also implies that
the model is intrinsically a multiscale approach.1 The cohesive law relates the traction vector acting across
the line/surface cohesive element to the so-call relative displacement vector (or displacement discontinuities).
It brings the model a great advantage, i.e., it enables the model to be implemented into some sophisticated
user-defined traction-separation relations such that the model is capable of handling the problems involving
mixed-mode fracture, complex loading conditions, and complex loading histories. The delamination criterion
is generally first experimentally determined and then implemented into the model. It enables the results
predicted by the model to agree with those predicted by linear elastic fracture mechanics (LEFM) in case
LEFM applies.2 Till now, it becomes clear that the selection or determination of these three components is
crucial to the development of a powerful cohesive zone model.

The facts that the cohesive zone model is a multiscale approach and that its predictions must agree
with the LEFM results imply that the model should be thermodynamically consistent. In recent decades,
elaborate efforts have been devoted to developing powerful cohesive zone models.1–16 However, few of them
have been validated to be a thermodynamically consistent model for mixed-mode fracture. One reason for
this is that some of the cohesive laws are not thermodynamically consistent. Note that, most likely, the
constraints imposed by the principles of thermodynamics are not automatically satisfied and require special
attention. However, since these constraints are easy to be ignored, the cohesive laws are often derived in
an ad-hoc manner. Another reason is that some of the cohesive laws have difficulties in being associated
with a delamination criterion in the presence of mixed-mode fracture. Specifically, for mixed-mode fracture,

∗Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering.
†Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow.
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both the cohesive law and the experimentally determined delamination criterion should be anisotropic. But
unfortunately, they are generally not anisotropic in the same manner, i.e., they are governed by different sets
of anisotropic parameters, and it is quite challenging to relate one to another. Moreover, in this case, it is
even more difficult to simultaneously enable the model to handling the problems involving non-proportional
loading/unloading. All in all, there is a need for a powerful cohesive zone model.

The objective of this paper is to propose a thermodynamically consistent cohesive zone model for mixed-
mode fracture, which enables a cohesive element to exhibit designated behaviors when subject tomixed-mode
loading. Some fundamentals of the cohesive zone model, continuum damage mechanics, and thermodynam-
ics are briefed, and the concept of the irreversible deformation are introduced. The cohesive law in the
undamaged configuration, the damage evolution law, and the cohesive law in the damaged configuration
are subsequently derived, and a novel delamination criterion is proposed. The applicability and power of
the proposed cohesive zone model are demonstrated using examples such as predicting the traction-relative
displacement and damage factor-relative displacement curves of cohesive elements of various cohesive prop-
erties.

II. Cohesive Zone Model

Cohesive elements are a group of elements developed for the cohesive zone model. A cohesive element is a
line (2D) or surface (3D) element whose constitutive relation relates the so-call relative displacement vector
(or displacement discontinuities) to the traction vector across the tangential line/plane of the element, while
the constitutive relation for a cohesive element is often called the cohesive law (see Figure 1).

Figure 1. Sketch of a 8-node cohesive element (reproduced from Ref. [11]).

Without loss of generality, consider the linear cohesive element for a 3D problem depicted in Figure 1.
Introduce two Cartesian coordinate systems, (x, y, z) and (ξ, η, ζ). Let (x, y, z) denote the global coordinates
describing the global structure, and let (ξ, η, ζ) denote the local coordinates describing the element, with
its origin located at the geometric center of the element and the ξ-direction normal to the tangential plane
of the element (see Figure 1). Let u, v, and w denote the displacements in the x-, y-, and z-directions,
respectively. The displacements within the element can be expressed in terms of the standard Lagrangian
shape functions, Ni, and the nodal displacements, ui, vi, and wi, as

u =
∑
i

Niui, v =
∑
i

Nivi, w =
∑
i

Niwi, (1)

where i denotes the node number. Let the superscripts + and − denote the quantities on the top and
bottom surfaces of the element, respectively. The displacements on the top and bottom surfaces can hereby
be expressed as

u+ =
∑
i

Niu
+
i , v+ =

∑
i

Niv
+
i , w+ =

∑
i

Niw
+
i i ∈ {top nodes} , (2)

u− =
∑
i

Niu
−
i , v− =

∑
i

Niv
−
i , w− =

∑
i

Niw
−
i i ∈ {bottom nodes} , (2′)

respectively. Following Refs. [17] and [18], define the relative displacement vector as follows:

[[u]] = u+ − u− =
∑
i

Ni

(
u+
i − u−

i

)
, [[v]] = v+ − v− =

∑
i

Ni

(
v+i − v−i

)
, (3)

[[w]] = w+ − w− =
∑
i

Ni

(
w+

i − w−
i

)
. (3′)
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In general, the relative displacement vector and the traction vector must be determined in the local
coordinate system. This leads one to seek for the transformation matrix from (x, y, z) to (ξ, η, ζ). Specifically,
let V be a arbitrary vector lying in the tangential plane of the element, and let V = xi+yj+zk in the global
coordinate system, where i, j, and k denote the unit vectors in the x-, y-, and z-directions, respectively.
Also let n, s, and t denote the unit vectors in the ξ-, η-, and ζ-directions, respectively. Note that the vector
projections of V on s and t, Vη and Vζ , can be expressed as

Vη =
∂V

∂η
dη =

∂x

∂η
dηi+

∂y

∂η
dηj+

∂z

∂η
dηk, (4)

Vζ =
∂V

∂ζ
dζ =

∂x

∂ζ
dζi+

∂y

∂ζ
dζj+

∂z

∂ζ
dζk, (4′)

respectively. n, s, and t can then be obtained from Vη and Vζ as

n =
Vη ×Vζ

|Vη ×Vζ | , s =
Vη

|Vη| , t =
Vζ

|Vζ | , (5)

and the transformation matrix from the global coordinate system to the local one can be obtained from n,
s, and t as

Ω =

⎡
⎢⎣ n1 s1 t1

n2 s2 t2

n3 s3 t3

⎤
⎥⎦ . (6)

Let [[υ]], [[�]], and [[ω]] denote the relative displacement vector in (ξ, η, ζ), respectively. [[υ]], [[�]], and [[ω]] can
be related to [[u]], [[v]], and [[w]] by⌊

[[υ]] [[�]] [[ω]]
⌋T

= Ω
⌊

[[u]] [[v]] [[w]]
⌋T

. (7)

For notational convenience, let γ denote the relative displacement vector in (ξ, η, ζ) with its components
being

γ =
⌊

[[υ]] [[�]] [[ω]]
⌋T

, (8)

and let τ denote the traction vector in (ξ, η, ζ). The cohesive law, which relates γ to τ , will be derived later
in this paper.

There are two types of interface boundary conditions in the cohesive zone, i.e., the relative displacement
boundary conditions and the traction boundary conditions. As the name suggests, for the former boundary
conditions, the relative displacement vector is prescribed on the relative displacement boundaries, while for
the latter ones, the traction vector is prescribed on the traction boundaries. For notational convenience, let
u, [[u]], and T denote the displacement vector, the relative displacement vector, and the traction vector in
(x, y, z), respectively. The aforementioned two types of boundary conditions can be expressed as

[[u]] = [[ū]] on Γ[[u]], (9)

T = T̄ on ΓT (4′)

respectively, where Γ[[u]] and ΓT denote the relative displacement and traction boundaries, respectively, and
[[ū]] and T̄ denote the prescribed values of [[u]] and T, respectively. Also note that γ and τ are related to
[[u]]and T by

γ = Ω · [[u]] and τ = Ω ·T, (10)

respectively.
Introduce a local coordinate system x = (x1, x2, x3), and let the x1-, x2-, and x3-axes correspond to

modes I, II, and III loading, respectively. According to Ref. [11], the modes I, II, and III energy release rates
can be expressed as

GI =

∫ γ1

0

τ1dγ1, GII =

∫ γ2

0

τ2dγ2, GIII =

∫ γ3

0

τ3dγ3, (11)

respectively, and the mixed-mode energy release rate can be expressed as

G = GI +GII +GIII. (12)

3 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

en
bi

n 
Y

u 
on

 M
ar

ch
 3

0,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
14

-1
37

8 

DISTRIBUTION A: Distribution approved for public release.



γ and τ actually take the forms of

γ =
⌊

〈γ1〉 γ2 γ3

⌋T

and τ =
⌊

〈τ1〉 τ2 τ3

⌋T

, (13)

where 〈·〉 denotes the Macaulay bracket, i.e.,

〈x〉 =
{

x x > 0,

0 x ≤ 0.
(14)

This can be understood by noting that negative γ1 and τ1 do not contribute to GI and are hereby physically
meaningless. As mentioned above, the cohesive law relates τ to γ. This, together with Eq. (11), implies
that, once the cohesive law is specified, the variations of GI, GII, and GIII during continued deformation are
fully determined.

It is often assumed that delamination occurs as G attains a critical value, say Gc. According to Ref. [19],
the mixed-mode critical energy release rate, Gc, can be expressed as

Gc = Gc (GIc, GIIc, GIIIc,β) , (15)

where GIc, GIIc, and GIIIc denote the modes I, II, and III critical energy release rates, respectively, which are
known as material constants, and β denotes a mode mixity vector with its form being specified later, while
the specific form of Eq. (15) can be determined by finding an expression fitting the experimental results well.
Since Eq. (15) specifies the delamination conditions, it is also referred to as the delamination criterion. It
is worth notice that Eq. (15) is not the only option of the delamination criterion. In this paper, a novel
delamination criterion will be proposed.

As mentioned above, a self-contained cohesive zone model should consist of a geometric representation,
a cohesive law, and a delamination criterion. Since the geometric representation is well developed, the
major tasks become specifying the cohesive law and the delamination criterion. These two tasks will be
accomplished in the next several sections. In the next section, some fundamentals of continuum damage
mechanics will be briefed. This will help the understanding of the problem from the perspective of continuum
damage mechanics.

III. Undamaged Configuration and Damage Factor

Tan and his coworkers20 have demonstrated that the delamination of a cohesive zone is always accom-
panied by a monotonic traction decrease with increasing relative displacement vector. Meanwhile, several
authors1,2, 11,13,15,16,21 also introduced a damage factor to describe this phenomenon and formulated the
cohesive law in the framework of continuum damage mechanics. For this reason, it is beneficial to brief some
fundamentals of continuum damage mechanics here.

Without loss of generality, let γ consist of a reversible part, γe, and an irreversible part, γp, i.e.,

γ = γe + γp. (16)

Also let τ be related to γe by
τ = Ce · γe, (17)

where Ce denotes the second-order reversible stiffness tensor. In this paper, the off-diagonal components of
Ce are set to be vanish. This physically means that different modes of fracture do not interfere each other.

There are two basic but important assumptions in continuum damage mechanics:

1. Each damaged material has an equivalent undamaged material;

2. There exists a one-to-one correspondence between each pair of physical quantities in the damaged and
undamaged (effective) configurations.

As these two assumption aremade, the task can be accomplished by subsequently deriving the cohesive law in
the undamaged configuration, the damage evolution law, and the cohesive law in the damaged configuration.

The traction vector in the undamaged configuration can be related to that in the damaged configuration,
τ , by

τ̄ = M · τ or τ = M−1 · τ̄ , (18)
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where the overbar denotes the quantity in the undamaged configuration, M denotes the second-order damage
effect tensor, and τ̄ can be referred to as the effective traction vector. Without loss of generality, let ω and
D denote the damage vector and the second-order damage tensors, respectively, and let D be related to ω
by

D =
3∑

i=1

ωiei ⊗ ei, (19)

where ei denotes the unit vector. Eq. (19) implies that the off-diagonal components of D vanish. Let M−1

be related to D by
M−1 = I−D, (20)

where I denotes the second-order identity tensor. Similarly to D, the off-diagonal components of M−1 also
vanish.

Let ψe denote the reversible free energy density. The correspondence between the traction vector and
relative displacement vector in the damaged configuration and those in the undamaged configuration can be
defined as

ρψe (γe,ω) = ρψe (γ̄e) or
1

2
τ · γe =

1

2
τ̄ · γ̄e. (21)

Substituting Eq. (18) into Eq. (21) gives

γ̄e = M−1 · γe or γe = M · γ̄e. (22)

Eq. (17) can be expressed in the undamaged configuration as

τ̄ = C̄e · γ̄e, (23)

where C̄e denotes the second-order reversible stiffness tensor and is constant. Substituting Eqs. (17), (18),
(22), and (101) into Eq. (21) gives

Ce = M−1 · C̄e ·M−1 or (Ce)
−1

= M · (C̄e
)−1 ·M. (24)

Recall that the off-diagonal components of M−1 vanish. This, together with Eqs. (18), (22), and (24), implies
that each component of ω actually provides a measure of the damages associated with the corresponding
components of τ and γe.

Till now, some fundamentals of continuum damage mechanics have been briefed. In the next section,
some fundamentals of thermodynamics will be briefed.

IV. Thermodynamic Formulations

Let ψ denote the Helmholtz free energy per unit area of the cohesive element. According to the the-
ory of thermodynamics, ψ can be expressed as a function of a suitable set of independent state variables
characterizing the reversible, irreversible, and damage behaviors of the element, e.g.,

ψ = ψ (γ,ω, r, s) , (25)

where r and s are two scalars accounting for the isotropic hardening due to the irreversible deformation and
damage hardening, respectively. Assume that the element exhibits uncoupled reversible, irreversible, and
damage behaviors. In this case, ψ can be expressed as the sum of its reversible part, ψe, its irreversible
hardening part, ψp, and its damage hardening part, ψd, i.e.,

ψ (γ,ω, r, s) = ψe (γe,ω) + ψp (r) + ψd (s) , (26)

where ψp and ψd denote the free energy densities due to isotropic hardening and damage hardening, respec-
tively. The thermodynamic forces conjugate to the state variables in Eq. (25) can be defined as

τ =
∂ψ

∂γe
=

∂ψe

∂γe
, Y = −∂ψ

∂ω
= −∂ψe

∂ω
, R =

∂ψ

∂r
=

dψp

dr
, S =

∂ψ

∂s
=

dψd

ds
, (27)
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where Y denotes the damage conjugate force vector, and R and S are related to the current yield traction
and the current damage threshold.

If the deformation is isothermal, the Clausius-Duhem inequality writes

φ = τ · γ̇ − ψ̇ ≥ 0, (28)

where φ denotes the dissipation per unit area, and the overdot denotes the time derivative of the quantity.
Combining Eq. (16) and Eqs. (26)–(28) gives

φ = τ · γ̇p +Y · ω̇ −Rṙ − Sṡ ≥ 0, (29)

Similarly to ψ, φ can be decomposed into its plastic hardening and damage hardening parts, φp and φd, i.e.,

φ = φp + φd, (30)

where
φp = τ · γ̇p −Rṙ ≥ 0 and φd = Y · ω̇ − Sṡ ≥ 0. (31)

Let the yield and damage criteria take the forms of

fp (τ , R) = 0 and fd (Y, S) = 0, (32)

respectively. The maximum dissipation principle states that the actual state of the thermodynamic forces
should maximize φ subject to constraint Eq. (32).22 This implies that the actual state of the thermodynamic
forces should maximize Lagrange functions

Λp = φp − λ̇pfp and Λd = φd − λ̇dfd, (33)

where λ̇p and λ̇d are two Lagrange multipliers. Λp and Λd reach their respective maximums only if

∂Λp

∂τ
= 0,

∂Λp

∂R
= 0,

∂Λd

∂Y
= 0,

∂Λd

∂S
= 0. (34)

Substituting Eqs. (29)–(33) into Eq. (34) gives

γ̇p = λ̇p ∂f
p

∂τ
, ṙ = −λ̇p ∂f

p

∂R
, ω̇ = λ̇d ∂f

d

∂Y
, ṡ = −λ̇d ∂f

d

∂S
, (35)

which governs the evolution of the state variables.
Till now, some fundamentals of thermodynamics have been briefed. In the next section, the cohesive law

in the undamaged configuration will be derived.

V. Cohesive Law in the Undamaged Configuration

It is reasonable that the irreversible deformation can only occur in the undamaged part of the cohesive
element. This implies that

fp (τ , R) = fp
(
τ̄ , R̄

)
. (36)

Eq. (36) leads one to first derive the cohesive law in the undamaged configuration. In this section, this task
will be accomplished.

Without loss of generality, let the cohesive element obey a Hill-type yield criterion, which writes

fp
(
τ̄ , R̄

)
= τ̄e − τ̄Y = 0, (37)

where τ̄e denotes a Hill-type equivalent traction and takes the form of

τ̄e =
√
τ̄ · H̄ · τ̄ (38)

with H̄ denoting a second-order anisotropy tensor, and τ̄Y denotes the current yield traction and is related
to R̄ by

τ̄Y = τ̄0 + R̄ (39)
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with τ̄0 denoting the initial yield stress. In this paper, the off-diagonal components of H̄ are set to vanish.
One can write the irreversible work equivalence principle as

τ̄ · ˙̄γp
= τ̄e ˙̄p, (40)

where ˙̄p denotes a Hill-type irreversible equivalent velocity. Following Ref. [23], taking the partial derivatives
with respect to τ̄ on both sides of Eq. (40) gives

˙̄γ
p
=

∂τ̄e
∂τ̄

˙̄p. (41)

The explicit expression for ∂τ̄e/∂τ̄ can be derived as

∂τ̄e
∂τ̄

=
1

2τ̄e

∂τ̄ 2
e

∂τ̄
=

1

2τ̄e

(
2
∂τ̄

∂τ̄
· H̄ · τ̄

)
=

H̄ · τ̄
τ̄e

. (42)

Substituting Eq. (42) into Eq. (41) gives

˙̄γ
p
=

H̄ · τ̄
τ̄e

˙̄p or τ̄ =
H̄−1 · ˙̄γp

˙̄p
τ̄e, (43)

where H̄ · H̄−1 = I. Substituting the second equation of Eq. (43) into Eq. (40) and rearranging the equation
give

˙̄p
2
= ˙̄γ

p · H̄−1 · ˙̄γp
or ˙̄p =

√
˙̄γ
p · H̄−1 · ˙̄γp

. (44)

It is beneficial to find the relation between ˙̄λ
p
and ˙̄p. Similarly to the first three equations of Eq. (35),

one can obtain that

˙̄γ
p
= ˙̄λ

p ∂fp

∂τ̄
, or ˙̄r = − ˙̄λ

p ∂fp

∂R̄
(45)

in the undamaged configuration. Substituting the first equation of Eq. (45) into Eq. (40) gives

τ̄ ·
(
˙̄λ
p ∂fp

∂τ̄

)
= τ̄e ˙̄p. (46)

Note that ∂fp/∂τ̄ = ∂τ̄e/∂τ̄ . Substituting Eq. (42) into Eq. (46) gives

τ̄e
˙̄λ
p
= τ̄e ˙̄p or ˙̄λ

p
= ˙̄p. (47)

Accordingly, the Kuhn-Tucker conditions (loading/unloading conditions) write

fp ≤ 0, ˙̄λ
p ≥ 0, ˙̄λ

p
fp = 0. (48)

According to Ref. [24], Eq. (45) sometime places too strict restriction. Following Ref. [25], introduce a
pseudo-potential gp, which is related to fp by

gp = fp +
R̄2

2K̄
(49)

with K̄ being a constant accounting for isotropic hardening, and rewrite Eq. (45) as

˙̄γ
p
= ˙̄λ

p ∂gp

∂τ̄
and ˙̄r = − ˙̄λ

p ∂gp

∂R̄
=

(
1− R̄

K̄

)
˙̄λ
p
. (50)

Since ∂gp/∂τ̄ = ∂fp/∂τ̄ , Eq. (47) remains valid here. Let ψp take the form of

ψp =
1

2
K̄n̄r̄2, (51)

where n̄ is another constant accounting for isotropic hardening. Note that, by definition,

R̄ = K̄n̄r̄. (52)
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Substituting the last equation of Eq. (50) into the rate form of Eq. (52) and noting that ˙̄λ
p
= ˙̄p give

˙̄R =
(
K̄ − R̄

)
n̄ ˙̄p or R̄ = K̄ [1− exp (−n̄p̄)] . (53)

The consistency condition can be obtained from Eq. (37) as

ḟp =
∂fp

∂τ̄
· ˙̄τ +

∂fp

∂R̄

dR̄

dp̄
˙̄p = 0. (54)

Rearranging Eq. (54) and noting that ∂f
/
∂R̄ = −1 and ˙̄λ

p
= ˙̄p give

∂fp

∂τ̄
· ˙̄τ =

dR̄

dp̄
˙̄λ
p
. (55)

Note that ˙̄γ can be expressed as

˙̄γ = ˙̄γ
e
+ ˙̄γ

p
=

(
C̄e

)−1 · ˙̄τ + ˙̄λ
p ∂gp

∂τ̄
. (56)

Multiplying both sides of Eq. (56) by ∂fp/∂τ̄ · C̄e gives

∂fp

∂τ̄
· C̄e · ˙̄γ =

∂fp

∂τ̄
· ˙̄τ + ˙̄λ

p ∂fp

∂τ̄
· C̄e · ∂g

p

∂τ̄
. (57)

Substituting Eq. (55) into Eq. (56) gives

∂fp

∂τ̄
· C̄e · ˙̄γ =

dR̄

dp̄
˙̄λ
p
+ ˙̄λ

p ∂fp

∂τ̄
· C̄e · ∂g

p

∂τ̄
. (58)

˙̄λ
p
can hereby be obtained as

˙̄λ
p
=

∂fp

∂τ̄
· C̄e · ˙̄γ

dR̄

dp̄
+

∂fp

∂τ̄
· C̄e · ∂g

p

∂τ̄

. (59)

Substituting Eq. (59) into Eq. (56), multiplying both sides of the equation by C̄e
, and rearranging the

equation give the rate form of the cohesive law in the undamaged configuration as

˙̄τ = C̄ep · ˙̄γ, (60)

where C̄ep denotes the second-order instantaneous cohesive stiffness tensor in the undamaged configuration
and is given by

C̄ep = C̄e −

(
C̄e · ∂g

p

∂τ̄

)
⊗

(
∂fp

∂τ̄
· C̄e

)
dR̄

dp̄
+

∂fp

∂τ̄
· C̄e · ∂g

p

∂τ̄

. (61)

Till now, the cohesive law in the undamaged configuration has been derived. In the next section, the
damage evolution law will be derived.

VI. Damage Evolution Law

Let the damage criterion take a Hill-type form, i.e.,

fd (Y, S) = Ye − YT = 0, (62)

where Ye denotes a Hill-type equivalent damage conjugate force and takes the form of

Ye =
√
Y · L ·Y (63)
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with L denoting a second-order damage anisotropy tensor, and YT denotes the current damage threshold
and is related to S by

YT = Y0 + S (64)

with Y0 denoting the initial damage threshold. Following to Ref. [26], let the diagonal components of Lij be
greater than the off-diagonal ones. More details on the damage anisotropy tensor can be found in Ref. [26].
One can write the damage dissipation equivalence principle as

Y · ω̇ = Yeq̇, (65)

where q̇ denotes a Hill-type equivalent damage rate. Similarly to Section V, taking the partial derivatives
with respect to Y on both sides of Eq. (65) gives

ω̇ =
∂Ye

∂Y
q̇. (66)

∂Ye/∂Y can be obtained as

∂Ye

∂Y
=

1

2Ye

∂Y 2
e

∂Y
=

1

2Ye

(
2
∂Y

∂Y
· L ·Y

)
=

L ·Y
Ye

. (67)

Substituting Eq. (67) into Eq. (66) gives

ω̇ =
L ·Y
Ye

q̇ or Y =
L−1 · ω̇

q̇
Ye, (68)

where L · L−1 = I. Substituting the second equation of Eq. (68) into Eq. (65) and rearranging the equation
give

q̇2 = ω̇ · L−1 · ω̇ or q̇ =
√
ω̇ · L−1 · ω̇. (69)

Similarly to Section V, it is beneficial to find the relation between λ̇d and q̇. Recall that the last two
equations of Eq. (35) writes

ω̇ = λ̇d ∂f
d

∂Y
and ṡ = −λ̇d ∂f

d

∂S
. (70)

Substituting the first equation of Eq. (70) into Eq. (65) gives

Y ·
(
λ̇d ∂f

d

∂Y

)
= Yeq̇. (71)

Note that ∂fd
/
∂Y = ∂Ye/∂Y. Substituting Eq. (67) into Eq. (71) gives

Yeλ̇
d = Yeq̇ or λ̇d = q̇. (72)

Accordingly, the Kuhn-Tucker condition (loading/unloading conditions) write

fd ≤ 0, λ̇d ≥ 0, λ̇dfd = 0. (73)

Similarly to Section V, introduce a pseudo-potential gd, which is related to fd by

gd = fd +
S2

2L
(74)

with L being a constant accounting for damage hardening, and rewrite Eq. (70) as

ω̇ = λ̇d ∂g
d

∂Y
and ṡ = −λ̇d ∂g

d

∂S
. (75)

Since ∂gd
/
∂Y = ∂fd

/
∂Y, Eq. (72) remains valid here. Let ψd take the form of

ψd =
1

2
Los2, (76)
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where o is another constant accounting for damage hardening. Substituting Eq. (76) into the last equation
of Eq. (27) gives

S = Los. (77)

Substituting the last equation of Eq. (75) into the rate form of Eq. (77) and noting that λ̇d = q̇ give

Ṡ = (L− S) oq̇ or S = L [1− exp (−oq)] . (78)

The consistency condition can be obtained from Eq. (62) as

ḟd =
∂fd

∂Y
· Ẏ +

∂fd

∂S

dS

dq
q̇ = 0. (79)

Rearranging Eq. (79) and noting that ∂fd
/
∂S = −1 and λ̇d = q̇ and give

λ̇d =

∂fd

∂Y
· Ẏ

dS

dq

. (80)

Substituting Eq. (80) into the first equation of Eq. (75) gives

ω̇ =

∂fd

∂Y
· Ẏ

dS

dq

∂gd

∂Y
=

∂gd

∂Y
⊗ ∂fd

∂Y
dS

dq

· Ẏ ≡ Sd · Ẏ, (81)

which is the damage evolution law. It is worth notice that Sd is not always invertible.
Till now, the damage evolution law has been derived. In the next section, the cohesive law in the damaged

configuration will be derived.

VII. Cohesive Law in the Damaged Configuration

The cohesive law in the damaged configuration can be derived by subsequently accomplishing the following
tasks:

1. Relate ˙̄γ
e
to γ̇e;

2. Relate ˙̄τ to τ̇ ;

3. Relate ˙̄γ
p
to γ̇p, and complete the derivation.

To relate ˙̄γ
e
to γ̇e, recall that

γ̄e = M−1 · γe. (82)

Taking time derivatives on both sides of Eq. (82) gives

˙̄γ
e
= Ṁ−1 · γe +M−1 · γ̇e. (83)

The first term to the right of the equal sign in Eq. (88) can be further expressed as

Ṁ−1
ij γe

j =

(
∂M−1

ij

∂ωk
ω̇k

)
γe
j =

(
∂M−1

ij

∂ωk
γe
j

)
ω̇k. (84)

Let

Kikj = −∂M−1
ij

∂ωk
= − ∂

∂ωk
(Iij −Dij) =

∂Dij

∂ωk
. (85)

Substituting Eq. (19) into Eq. (85) gives

K =
3∑

i=1

ei ⊗ ei ⊗ ei. (86)
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Substituting Eq. (85) into Eq. (84) gives

Ṁ−1
ij γe

j = − (Kikjγ
e
j

)
ω̇k or Ṁ−1 · γe = − (K · γe) · ω̇. (87)

Substituting Eq. (87) into Eq. (83) gives

˙̄γ
e
= − (K · γe) · ω̇ +M−1 · γ̇e. (88)

Eq. (88) implies that, to relate ˙̄γ
e
to γ̇e, one needs to first relate ω̇ to γ̇e. Note that ψe can be expressed as

ψe =
1

2
τ · γe =

1

2
γe ·Ce · γe =

1

2
γe · (M−1 · C̄e ·M−1

) · γe. (89)

Substituting Eq. (89) into the second equation of Eq. (27) gives

Y = −∂ψe

∂ω
=

1

2
γe · (K · C̄e ·M−1 +M−1 · C̄e ·K) · γe. (90)

Eq. (90) implies that Y can be treated as a function of γe and ω. Accordingly, Ẏ can be expressed in terms
of γ̇e and ω̇ using the chain rule as

Ẏ =
∂Y

∂γe
· γ̇e +

∂Y

∂ω
· ω̇, (91)

where the expressions for ∂Y/∂γe and ∂Y/∂ω can be obtained from Eq. (90) as

∂Y

∂γe
=

1

2

[(
K · C̄e ·M−1 +M−1 · C̄e ·K) · γe + γe · (K · C̄e ·M−1 +M−1 · C̄e ·K)]

(92)

and
∂Y

∂ω
= −1

2
γe · (K · C̄e ·K+K · C̄e ·K) · γe = −γe ·K · C̄e ·K · γe, (93)

respectively. Substituting Eq. (91) into Eq. (81) and rearranging the equation give

ω̇ =

[(
I− Sd · ∂Y

∂ω

)−1

·
(
Sd · ∂Y

∂γe

)]
· γ̇e ≡ A · γ̇e, (94)

which relates ω̇ to γ̇e. Substituting Eq. (94) into Eq. (88) gives

˙̄γ
e
= − (K · γe) ·A · γ̇e +M−1 · γ̇e =

[− (K · γe) ·A+M−1
] · γ̇e ≡ Ñ−1 · γ̇e, (95)

which relates ˙̄γ
e
to γ̇e.

To relate ˙̄τ to τ̇ , recall that
τ = Ce · γe. (96)

Taking time derivatives on both sides of Eq. (96) gives

τ̇ = Ċe · γe +Ce · γ̇e. (97)

The first term to the right of the equal sign in Eq. (88) can be further expressed as

Ċijmγe
m =

(
Ṁ−1

ik C̄e
klM

−1
lm +M−1

ik C̄e
klṀ

−1
lm

)
γe
m = − (Kijkω̇jC̄

e
klM

−1
lm +M−1

ik C̄e
klKljmω̇j

)
γe
m

= − [(KijkC̄
e
klM

−1
lm +M−1

ik C̄e
klKljm

)
γe
m

]
ω̇j ≡ − (Bijmγe

m) ω̇j

(98)

or
Ċe · γe = − [(

K · C̄e ·M−1 +M−1 · C̄e ·K) · γe
] · ω̇ ≡ − (B · γe) · ω̇. (99)

Substituting Eq. (99) into Eq. (97) gives

τ̇ = − (B · γe) · ω̇ +Ce · γ̇e = − (B · γe) ·A · γ̇e +Ce · γ̇e = [− (B · γe) ·A+Ce] · γ̇e. (100)

Note that
˙̄τ = C̄e · ˙̄γe

. (101)
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γ̇e can hereby be related to ˙̄τ by

γ̇e = Ñ · ˙̄γe
= Ñ · (C̄e

)−1 · ˙̄τ . (102)

Substituting Eq. (102) into Eq. (100) gives

τ̇ =
{
[− (B · γe) ·A+Ce] · Ñ · (C̄e

)−1
}
· ˙̄τ ≡ N−1 · ˙̄τ , (103)

which relates ˙̄τ to τ̇ .
To relate ˙̄γ

p
to γ̇p, further let

τ · γ̇p = τ̄ · ˙̄γp
. (104)

Substituting Eq. (18) into Eq. (104) gives

˙̄γ
p
= M−1 · γ̇p or γ̇p = M · ˙̄γp

. (105)

Eq. (61) can be written as
˙̄τ = C̄ep · ˙̄γ = C̄ep · ˙̄γe

+ C̄ep · ˙̄γp
. (106)

Substituting Eqs. (95), (96), and (105) into Eq. (106) gives

N · τ̇ = C̄ep · Ñ−1 · γ̇e + C̄ep ·M−1 · γ̇p = C̄ep · Ñ−1 · γ̇e + C̄ep ·M−1 · (γ̇ − γ̇e)

= C̄ep ·M−1 · γ̇ + C̄ep ·
(
Ñ−1 −M−1

)
· γ̇e.

(107)

Note that γ̇e can be related to τ̇ by

γ̇e = Ñ · ˙̄γe
= Ñ · (C̄e

)−1 · ˙̄τ = Ñ · (C̄e
)−1 ·N · τ̇ . (108)

Substituting Eq. (108) into Eq. (107) and rearranging the equation give[
I− C̄ep ·

(
Ñ−1 −M−1

)
· Ñ · (C̄e

)−1
]
·N · τ̇ = C̄ep ·M−1 · γ̇. (109)

Rearranging Eq. (109) gives the rate form of the cohesive law in the damaged configuration as

τ̇ =

{
N−1 ·

[
I− C̄ep ·

(
Ñ−1 −M−1

)
· Ñ · (C̄e

)−1
]−1

· C̄ep ·M−1

}
· γ̇ ≡ Cep · γ̇, (110)

where Cep denotes the second-order instantaneous cohesive stiffness tensor in the damaged configuration.
Till now, the cohesive law in the damaged configuration has been derived. In the next section, a novel

delamination criterion will be proposed.

VIII. Delamination Criterion

As mentioned above, the conventional delamination criterion states that delamination occurs as G attains
a critical value, Gc, which can be expressed as

Gc = Gc (GIc, GIIc, GIIIc,β) , (111)

while the specific form of the delamination criterion can be determined by finding an expression fitting
the experimental results well. Eq. (111) enables a cohesive zone model to provide close predictions and is
definitely very powerful. However, there exists several reasons for which it cannot be directly adopted here.
First of all, specify the mode mixity vector, β, and define the term “proportional loading”. Specifically, let
β denote a dimensionless vector obtained by normalizing γ, using a nonzero component of γ as a measure
of scale, and let proportional loading denote a loading process in which β remains constant, or to say,
in which all the components of γ proportionally vary. According to Ref. [11], Eq. (111) is applicable to
proportional loading and performs well. However, it remains unclear that whether Eq. (111) is applicable
to non-proportional loading/unloading. In addition, it is commonly assumed that, as the delamination
criterion is met, the scalar-valued damage factor is smoothly increased to 1.1–4,11,13,15,16 This assumption
seems reasonable but places too strict restrictions. Specifically, it requires that the damage factor can only
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be a scalar, or to say, that no damage anisotropy is allowed. In addition, the numerical results indicate
that, if a cohesive element obeying the proposed cohesive law is subject to proportional loading, one or more
components of the damage vector tend to approach but never to attain 1 during continued deformation.
This finding may seem odd but is actually very common in continuum damage mechanics, and it also leads
one to seek for an alternative delamination criterion.

In this paper, let the delamination criterion state that delamination occurs as the cumulative equivalent
damage factor, q, attains a critical value, say qc, which can be expressed as

qc = qc (β) . (112)

Note that q is related to its rate by

q =

∫ t

0

q̇dt (113)

and that q̇ is related to ω̇ by Eq. (69). Eq. (112) has several advantages. First, it has a clear physical
meaning. Note that qc is intrinsically a measure of damages. Eq. (69) hereby implies that delamination
occurs as an equivalent measure of damages attains a critical value. Second, it is also physically admissible.
This is because qc can always take a certain value such that only a negligible traction discontinuity arises
at the onset of delamination. On the one hand, this treatment eliminates the strict restrictions placed by
the thermodynamic formulations and it almost has no impacts on the predictions. Third, it allows damage
anisotropy. In fact, if damage isotropy is assumed, the coupling among different modes of fracture are strong.
In contrast, if damage anisotropy is assumed, this coupling becomes adjustable. Last but not least, it is
applicable to non-proportional loading/unloading. Moreover, it can even be expected that Gc is no longer a
function of β but also becomes path-dependent. Of course, all the element parameters and the specific form
of Eq. (112) should be properly selected to fit the experimental results.

IX. Demonstration Examples

In this section, several examples are presented to validate the applicability and power of the proposed
model and also to investigate some characteristics of the cohesive element. The examples include predicting
the traction-relative displacement and damage factor-relative displacement curves of cohesive elements of
various cohesive properties.

A. Damage Hardening

Without loss of generality, first let the element merely exhibit irreversible hardening and damage hardening.
For illustration purposes, let the element exhibit the same response when subject to purely modes I, II,
and III loading. This implies that the diagonal components of Cij take the same value, say C. Of course,
these components can take distinct values to incorporate more realistic responses. Following Ref. [1], let
the element parameters take the values listed in Table 1 such that the resulting values of γ and τ will be
in realistic orders of magnitude. In addition, let H̄ = I, and let the diagonal and off-diagonal components
of Lij take the values of 1 and 0.32, respectively. In this section, allow L in Eq. (78) to take the values of
2.5Y0, 5Y0, and 10Y0 for different cases. It can be obtained from Table 1 that the element becomes damaged
at γ1 = 0.005mm and yields at γ1 = 0.01mm when subject to mode I loading.

Table 1. Element parameters.

C (MPa/mm) τ0 (MPa) K (MPa) n Y0

(
J
/
m2

)
o

500 5 1.5 50 12.5 5

Figures 2 and 3 show the τ1-γ1 and ω1-γ1 curves of the element subject to mode I loading, respectively.
For illustration purposes, the loading path here is set to consist of the following steps:

• Initial loading: γ1 is increased from 0 to 0.02mm;

• Unloading I: γ1 is decreased from 0.02mm till τ1 is decreased to 0MPa, or to say, γ1 is decreased to γp
1

at γ1 = 0.02mm (a residual relative displacement);
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• Reloading I: γ1 is increased to 0.04mm;

• . . .

• Reloading IV: γ1 is increased to 0.1mm.

According to Ref. [1], there exist three commonly used τ -γ relations, i.e., linear softening, power-law harden-
ing/softening, and softening with a traction plateau. As can be seen, for L = 2.5Y0, the τ1-γ1 curve exhibits
a typical power-law hardening/softening trend, while the ω1-γ1 curve exhibits an approximately monotoni-
cally increasing trend; for L = 5Y0, the τ1-γ1 curve exhibits a softening with a traction plateau trend with
a plateau located in 0.01 < γ1 < 0.03, while the ω1-γ1 curve has a plateau located in the same interval; for
L = 10Y0, the τ1-γ1 and ω1-γ1 curves both have wider plateaus. It is of interest to investigate the cause
of the plateaus. Specifically, note that the residual relative displacements in Figure 2 actually characterize
how much irreversible deformation is induced at different stages of the deformation. Figure 2 indicates
that, for L = 2.5Y0, negligible irreversible deformation is induced. In this case, damages initiate at a very
low traction level and evolve rapidly, and the subsequent damage evolution further inhibits the increase in
the Hill equivalent traction in the undamaged configuration, τ̄e, and hereby the irreversible deformation.
Accordingly, the element behaves like a damaged elastic material. Meanwhile, Figure 2 also indicates that,
for L = 5Y0, considerable irreversible deformation is induced. In this case, the irreversible deformation is
induced just after damages initiate, and the subsequent irreversible deformation inhibit the increases in the
tractions and hereby the damage evolution. This causes the corresponding τ1-γ1 and ω1-γ1 curves to have
plateaus. In this case, the element behaves like a damaged elastoplastic material. Accordingly, for L = 10Y0,
the irreversible deformation is easier to become dominant. At last, it is worth notice that, although the τ1-γ1
curves here all exhibit commonly used trends, they are actually differently obtained. Specifically, since the
commonly used relations are assumed a priori, their corresponding cohesive laws are not necessarily ther-
modynamically consistent and may not be applicable to non-proportional loading/unloading (or additional
assumptions have to be made). In contrast, the proposed cohesive law is strictly thermodynamically consis-
tent, and since Eqs. (48) and (73) fully specify the irreversible and damage loading/unloading conditions, it
is also applicable to non-proportional loading/unloading.

�
�
�

��

� �

� �

� �

Figure 2. τ1-γ1 curves of the element subject to mode I loading.

Figures 4 and 5 show the τ1-γ1 and ω1-γ1 curves of the element subject to mixed-mode loading, respec-
tively, where L = 5Y0. The loading path here is similar to that in the last paragraph:
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��

� �

� �

� �

Figure 3. ω1-γ1 curves of the element subject to mode I loading.

• Initial loading: γ1, γ2, and γ3 are increased from 0 to 0.02mm;

• Unloading I: γ1, γ2, and γ3 are decreased from 0.02mm till τ1, τ2, and τ3 are decreased to 0MPa;

• Reloading I: γ1, γ2, and γ3 are increased to 0.04mm;

• . . .

It can be seen that all the τ1-γ1 and ω1-γ1 curves here exhibit trends similar to those for L = 5Y0 in Figures 2
and 3. Therefore, all the discussion for L = 5Y0 in the last paragraph holds here. In addition, it is worth
notice that the element seems more vulnerable to mixed-mode loading. This can be understood by noting
that the off-diagonal components of Lij are non-zero. For example, it can be verified that an increase in τ1
may induce not only an increase in ω1 but also those in ω2 and ω3. In fact, if all the off-diagonal components
of Lij approach to 1, the element would approximately exhibit damage isotropy.

B. General Damage Anisotropy

Next let the element also exhibit a more general type of damage anisotropy, where the term “more general”
means that the diagonal components of Lij can be distinct. Specifically, let the element parameters take the
values listed in Table 1 with L = 5Y0, and let the components of Hij and Lij here except L11 be the same as
those in Section IX-A. In this section, allow L11 to take the values of 0.707, 1, and 1.414 for different cases.

Figures 6 and 7 show the τ1-γ1 and ω1-γ1 curves of the element subject to mode I loading, respectively.
The loading path here is set to be the same as that for mode I loading in Section IX-A. In fact, it can be
obtained from Eqs. (62) and (63) that, as L11 increases, the element becomes more vulnerable to mode I
loading, while similar findings can be obtained for some other cases of damage anisotropy. For this reason,
in Figure 6, as L11 increases, the τ1-γ1 curve shifts downward. Other than this, it can be seen that all the
τ1-γ1 and ω1-γ1 curves here exhibit trends similar to those for L = 5Y0 in Figures 2 and 3. Therefore, all
the discussion L = 5Y0 in the second paragraph of Section IX-A holds here.
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Figure 4. Stress-strain curves of the element subject to mixed-mode loading, where L = 5Y0.
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Figure 5. ω1-γ1 curves of the element subject to mixed-mode loading, where L = 5Y0.
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Figure 6. τ1-γ1 curves of the element exhibiting general damage anisotropy subject to mode I loading.
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Figure 7. ω1-γ1 curves of the element exhibiting general damage anisotropy subject to mode I loading.
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C. Irreversible Anisotropy

At last, let the element exhibit irreversible anisotropy instead of general damage anisotropy. Specifically, let
the element parameters take the values listed in Table 1 with L = 5Y0, and let the components of Hij and
Lij here except H11 be the same as those in Section IX-A. In this section, allow H11 to take the values of
0.707, 1, and 1.414 for different cases.

Figures 8 and 9 show the τ1-γ1 and ω1-γ1 curves of the element subject to mode I loading, respectively.
The loading path here is set to be the same as that in the second paragraph of Section IX-A. As can be seen,
the τ1-γ1 and ω1-γ1 curves for H11 = 0.707 exhibit trends similar to those for L = 2.5Y0 in Figures 8 and 9
except that the τ1-γ1 curve here seems to be scaled-up, while those for H11 = 1.414 exhibit trends similar
to those for L = 10Y0 in Figures 8 and 9 except that the τ1-γ1 curve here seems to be scaled-down. In fact,
this can be understood by noting that the value of Hij can affect the initial yield traction. Specifically, one
can obtain the following findings by substituting the values of H11 here into Eq. (38):

• The value of H11 does not affect the yield traction of the element subject to purely mode II or III
loading;

• The lowest value of H11 yields the lowest yield traction of the element subject to purely mode I loading
and vice versa.

Therefore, for H11 = 0.707, damages can evolve to a considerable extent before the yield criterion, which
becomes more restrictive here, is met, and the subsequent damage evolution further inhibits the irreversible
deformation. This leads the element to behave like a damaged elastic material. Accordingly, the correspond-
ing ω1-γ1 curve exhibits an approximately monotonically increasing trend. In contrast, for H11 = 1.414,
the yield criterion, which becomes less restrictive here, can be met just after damages initiate, and the
subsequent irreversible deformation further inhibits the damage evolution. This leads the element to more
significantly behave like a damaged elastoplastic material. Accordingly, the corresponding ω1-γ1 curve has
a wide plateau.
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�
�

��

�

�

�

Figure 8. τ1-γ1 curves of the element exhibiting irreversible anisotropy subject to mode I loading.
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Figure 9. ω1-γ1 curves of the element exhibiting irreversible anisotropy subject to mode I loading.

X. Conclusions

In this paper, a thermodynamically consistent cohesive zone model for mixed-mode fracture, which
enables a cohesive element to exhibit designated behaviors when subject to mixed-mode loading, is proposed.
Some fundamentals of the cohesive zone model, continuum damage mechanics, and thermodynamics are
briefed, and the concept of the irreversible deformation is introduced. The cohesive law in the undamaged
configuration, the damage evolution law, and the cohesive law in the damaged configuration are subsequently
derived, and a novel delamination criterion is proposed. The applicability and power of the proposed cohesive
zone model are validated using examples such as predicting the traction-relative displacement and damage
factor-relative displacement curves of cohesive elements of various cohesive properties. More sophisticated
cohesive properties can be incorporated into the proposed model.
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ABSTRACT

Delamination, or interlaminar debonding, is a commonly observed failure mech-

anism in composite laminates. The objective of this paper is to develop a 2D and

a 3D numerical approach to simulating the double-cantilever beam (DCB), the end-

notched flexure (ENF), and the mixed-mode bending (MMB) tests with a commercial

software, Abaqus, and to seek for appropriate simplifications of the simulations. An

explicit dynamic time integration scheme and a viscosity parameter is adopted to

yield close predictions of the specimen responses. The load rate and the specimen

mass density are properly selected to approximate a quasi-static loading process. A

linear cohesive zone model is used to characterize the mechanical response of the

interface. The validity of different strategies of simplifying the finite element model

is discussed. The 2D and the 3D predictions are both found to fit the experimental

results well, but the 2D predictions are found to be more accurate and stable than the

3D predictions. The 2D approach is found to better handle the mixed-mode progres-

sive delamination in composite laminates satisfying plane stress condition. Although

the present approaches are developed with Abaqus/Explicit, they are also amendable

to other finite element codes.

Purdue University, West Lafayette, Indiana 47907

 

DISTRIBUTION A: Distribution approved for public release.



INTRODUCTION

Delamination, or interlaminar debonding, is a commonly observed failure mecha-

nism in composite laminates. When a composite laminate is subject to a certain extent

of transverse load, either during its manufacturing or in use, progressive delamination

may occur within it. Such phenomenon should be avoided because it may harm the

performance of a composite structure (e.g., load-carrying capability and structural

integrity). One major challenge is to predict the onset of such phenomenon: first,

it is often difficult or expensive to experimentally quantify delamination, especially

with mixed-mode delamination; second, the interfacial properties significantly affect

delamination and vary case by case. All these lead one to seek for a comprehen-

sive method for numerically simulating the progressive mixed-mode delamination in

composite laminates.

There are three basic testing methods for measuring the progressive delamination

in composite laminates, either pure mode or mixed-mode. The double-cantilever

beam (DCB) and the end-notched flexure (ENF) tests are designed to measure pure

mode I and II delamination, respectively (see Figure 1), and the mixed-mode bending

(MMB) test the mixed-mode delamination (Figure 2) [1]. For a class of composite

laminates, three tests require an identical pre-cracked composite laminate consisting

of two plies glued with one layer of adhesive but different loading conditions:

1. in a DCB test, two opposite vertical forces opening the crack are applied at the

free end of a cantilever beam;

2. in an ENF test, a downward force is applied at the middle of a simply supported

beam;

3. in an MMB test, a downward force is applied at one end of a loading lever

placed above the beam to yield an upward force at the free end of a simply

supported beam and a downward force at the middle of the beam, where the

loading level length is adjusted to yield designated mode-mixing ratio.

Several direct and indirect numerical approaches have been developed to model

the delamination in composite laminates. A direct approach involves directly com-

puting the strain energy release rate with the theory of fracture mechanics, from some

finite element analysis (FEA) results. The virtual crack closure technique (VCCT) is

a widely used direct approach. It involves making use of the crack-closure integral,

or to say, the total work needed to close a crack. Rybicki and Kanninen first proposed

the VCCT for 2D problems [2]. Shivakumar et al. enabled this approach to handle 3D

Figure 1. Schematics of the DCB and ENF tests
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Figure 2. The mixed-mode bending test

problems [3]. It can predict the onset and stability of delamination but is incapable

of predicting the damage initiation because it requires initial delamination defined a

priori. Meanwhile, VCCT implicitly assumes that the crack growth is self-similar,

which means the crack front remains straight throughout the delamination process.

This, however, is often not the case because even in DCB tests, the crack surfaces

will become curved after crack propagation [4]. In contrast, the indirect approaches,

which make use of some idealization of the interface (e.g., a cohesive zone model),

can overcome these drawbacks.

Researchers have used different finite element models to simulate the delamina-

tion of composite laminates with cohesive elements and cohesive laws. A cohesive

element acts as a geometric representation of the interface and is often placed between

two glued plies, where delamination is expected to occur. A set of cohesive elements

can be modeled by the usual elements provided in existing finite element packages

and form into a continuous adhesive layer, where in the thickness direction there is

only one element. While one can model a composite laminate as a 3D body, this

significantly increases computation cost compared with other models with simplifi-

cations. Dávila et al. [5] have described using shell elements to model delamination

with cohesive elements in implicit time integration. Borg et al. [6], and Balzani and

Wagner [7], simulated the DCB, the ENF, and the MMB tests with shell element

model. A more common used and more simplified way to model the delamination

is to idealize the composite laminate as one under plane stress conditions where the

delamination specimen only has length and thickness directions [8]. The reduction in

degrees of freedom of the whole model can further reduce the computation cost.

Cohesive elements can be implemented into both 2D and 3D finite element mod-

els. In a 2D model, one can identify these delamination tests as plane stress problems

and mesh the model with 2D plane stress elements. In a 3D model, one can mesh the

body with 3D brick elements. In this case, some issues may arise and await resolu-

tion:

1. an implicit static integration scheme may not give converged results, and one

has to use an explicit dynamic one to solve the problems of non-uniqueness of

solution and snap-back instability in the presence of high interface strength and
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TABLE I. SPECIMEN GEOMETRY

length width thickness
dimension (mm) 102 25.4 3.12

mixed-mode delamination [9];

2. once an explicit dynamic integration scheme is adopted, the laminate mass den-

sity and the load rate have to be properly selected to yield converged and accu-

rate results;

3. some viscosity terms and fine meshes around the interface need to be intro-

duced to improve load-displacement curve quality.

The objective of this paper is to develop a 2D and a 3D numerical approach to sim-

ulating the DCB, the ENF, and the MMB tests with a commercial software, Abaqus,

and to seek for appropriate simplifications of the simulations. An explicit dynamic

time integration scheme and a viscosity parameter is adopted to yield close predic-

tions of the specimen responses. The load rate and the specimen mass density are

properly selected to approximate a quasi-static loading process. A linear cohesive

zone model is used to characterize the mechanical response of the interface. The va-

lidity of different strategies of simplifying the finite element model is discussed. The

2D and 3D predictions are compared with the experimental results. The stabilities

and accuracy of the 2D and 3D predictions are evaluated.

NUMERICAL METHODS

In this section, a 2D and a 3D numerical approach will be developed following

the experimental setups of DCB, ENF, and MMB tests in Ref. [1]. The method of

properly selecting the time integration scheme, the viscosity parameter and the mass-

scaling factor will be presented such that the numerical approaches can produce con-

verged and accurate results.

Experimental Setups and Finite Element Model

In this paper, the finite element models are developed with reference to the ex-

periment setups in Ref. [1]. Table I lists the specimen dimensions. In the DCB and

the ENF tests, the load is directly applied to the specimen, while in the MMB test,

the load is applied at one end of a loading lever placed above the specimen. The

experiment results on such tests plot the relation between the load acting on the arm

and the displacement at the loading point. For different mode-mixing ratios, different

initial crack lengths are used, which is obtained from experiments. Table II lists the

crack length for different tests and mode-mixing ratios. The loading level length is

adjusted to yield designated mode-mixing ratio. The weight of the lever is negligible.

To get a specimen model that can lead to converged and accurate results, some model

parameters need to be adjusted and tested.
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TABLE II. CRACK LENGTH

mode-mixing ratio 0% (DCB) 20% 50% 80% 100% (ENF)
crack length (mm) 33 34 34 31 39

The MMB test apparatus can be modeled with Abaqus in a 2D finite element

model by modeling the arm as a rigid body, tying the end of the arm to the specimen,

and defining a contact pair in the middle (Figure 3). To simplify the finite element

model, the two loading arm branches shown in Figure 2 are removed. The crack is on

the right for all figures. The MMB test can be simulated by prescribing a displacement

at the end of the arm varying from 0 to desired value (Figure 4). The specimen is

simply supported at the cracked end, and roller supported at the other end, allowing

it to move in the longitudinal direction. A 3D finite element model can be obtained

from a 2D one with the same boundary conditions and loading method by extruding

along the width direction.

Time Integration Scheme and Viscosity

Simulations with cohesive elements often experience convergence difficulties af-

ter cracks start propagating. Specially, an implicit integration scheme often fails

to converge after the traction in a cohesive element reaches its maximum. Fortu-

nately, one can avoid most of these convergence problems with an explicit integra-

tion scheme, Abaqus/Explicit, with which the real time process of delamination can

be simulated. Due to the dynamic nature of delamination problems and the required

small load rate of the delamination tests, one has to solve the problem in a quasi-static

set-up. A standard is that the kinetic energy should not be greater than 5% of the total

energy at most times during the analysis. Otherwise, the results will be unrealistic and

X

Y

Z

Figure 3. 2D model for the MMB test
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Y

Z

Figure 4. Deformed MMB test apparatus

thus inaccurate. As long as the dynamic steps are quasi-static, an explicit integration

scheme can make close predictions for the load-displacement curves.

To alleviate the fluctuation in an explicit analysis, an effective way is to include

a small viscosity parameter in the cohesive law, which is simple and productive. The

viscosity parameter should be sufficiently great to guarantee curve quality, but suffi-

ciently small to maintain reasonable solving time. In summary, one can guarantee the

convergence of the finite element analysis by adopting an explicit integration scheme,

and by applying viscosity to simulation, one can get better curve quality when mod-

eling with 3D elements. To further improve the results, other parameters need to be

considered.

Mass Scaling and Load Rate

The requirement of the quasi-static set-up can be fulfilled by adjusting load rates

and material densities. But applying a real material mass density may lead to much

more computation time. By increasing the mass density, one can also reduce the

solving time. This is often referred to as mass scaling for explicit dynamic analysis.

Mass scaling can affect the computation time because Abaqus approximates the stable

time increment as [10]:

Δt =
Lc

cd
(1)

where Δt is the stable time increment, Lc is the element characteristic length, and cd
is the dilatational wave speed, which is approximated as:

cd =

√
E

ρ
(2)

where E is the elastic modulus and ρ is the mass density of material. This shows that

increasing the mass density of material (applying mass scaling) causes the stable time

increment to increase and the number of increments to decrease. The mass scaling
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factor (or the material mass density of model) should be sufficiently great to ensure

analysis efficiency, but sufficiently small to keep the kinetic energy less than 5% of

the total energy throughout the process. Because of the raise in kinetic energy ratio

when increasing mass scaling factor, one needs to adjust load rate to keep the quasi-

static set-up. The load rate should be sufficiently great to ensure analysis efficiency,

but sufficiently small to guarantee a quasi-static problem state. One can significantly

improve the accuracy of the finite element solution and computation efficiency at the

same time by choosing suitable coupling between mass scaling and load rate.

Mesh Density

For complex finite element models, the accuracy of the solution highly depends

on the mesh density because the dissipated energy during the fracture process is pro-

portional to the volume of failed elements rather than the area of fracture surface.

Models with higher mesh density can surely yield more accurate results at the cost

of computation efficiency. Coarser meshes tend to over-predict the results of the load

applied to the specimen or the loading lever [11]. One needs to test the mesh density

of a finite element model to yield realistic results.

Cohesive Zone Model

A self-contained cohesive zone model should consist of a geometric representa-

tion, a cohesive law, and a delamination criterion, where the geometric representation

is a cohesive element. Such cohesive elements can form a cohesive layer where the

delamination may occur. There is a hypothesis that fracture in such a failure plane

formed by the length and width of the element, fracture is caused by normal traction

vector and two shear traction vectors acting on it. Thus only these traction vectors

will be accounted for fracture of the element. The relative displacement (or sepa-

ration), δ, is defined as the displacement of a point located on the top surface with

respect to a corresponding point located on the bottom surface of the element, u+
i and

u−
i :

δi = u+
i − u−

i (3)

where, for a 3D 8-node cohesive element (Figure 5(a)):

u+
i = Nku

+
ki, k = 5, 6, 7, 8

u−
i = Nku

−
ki, k = 1, 2, 3, 4

(4)

where u+
ki and u−

ki are the displacements of top and bottom nodes in the element in i
direction, respectively, and Nk are Lagrangian shape functions. The element tractions

are defined as:

σ = D · δ (5)

throughout the loading process, where D is the constitutive relation matrix. In this

paper, it writes:
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(a) 8-node cohesive element (b) Linear cohesive law

Figure 5. Cohesive zone model with linear cohesive law

⎛
⎜⎝τ1

τ2

σ

⎞
⎟⎠ =

⎛
⎜⎝D11 0 0

0 D22 0

0 0 D33

⎞
⎟⎠

⎛
⎜⎝δ1

δ2

δ3

⎞
⎟⎠ (6)

where δi is the local relative displacement with 3 denoting the normal direction. Co-

hesive laws can be developed based on the relations between tractions and relative

displacements [12]. D11, D22, and D33 are determined with respect to the cohesive

law adopted. The cohesive law used in this paper is the linear cohesive law (Fig-

ure 5(b)), where the slope Kp of the first linear part is the penalty stiffness and the

triangular area under the linear relations is the critical energy release rate Gc. For the

linear elastic part:

Dii = Kpi, i = 1, 2, 3 (7)

while for the linear softening part:

Dii = (1− d)Kpi, i = 1, 2, 3 (8)

where d is a damage parameter going from 0 to 1 as the relative displacement goes

from δ0 to δf for each direction. A cohesive law is always accompanied by a mixed-

mode criterion such that the displacement for total decohesion δf for each direction

can be uniquely determined because for each direction:

Gc =
σ0δf
2

(9)

Following Ref. [12], the B-K criterion proposed by Benzeggagh and Kenane [13] is

used here. It writes:

GIc + (GIIc −GIc)

(
Gshear

GT

)η

= Gc (10)

where GIc and GIIc are the critical energy release rates for mode I and mode II fracture,

respectively, and GT and Gshear are the total energy release rate and shear energy
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TABLE III. MATERIAL PROPERTIES

E11 (GPa) E22=E33 (GPa) G12=G13 (GPa) G23 (GPa) ν12=ν13

122.7 10.1 5.5 3.7 0.25
ν23 GIc (KJ/m2) GIIc (KJ/m2) σ0 (MPa) τ0 (MPa)

0.45 0.969 1.719 80 100

release rate, respectively. The B-K parameter η in Eq. (10) takes the value determined

in Ref. [12] which is 2.284. Note that no mode III fracture is present in the tests under

consideration, which means:

Gshear = GII, GT = GI +GII (11)

In this case, the mode-mixing ratio β is defined as:

β =
Gshear

GT

=
GII

GI +GII

(12)

RESULTS AND DISCUSSION

The test specimen is a 2-ply plate-shaped AS4/PEEK carbon-fiber reinforced

composite laminate. Table III lists the material parameters, where σ0 and τ0 denote

the layer strength in normal and shear directions, respectively. The laminate only

consists of long fiber-reinforced plies.

While a 3D model with brick elements can simulate the tests as it is, a 2D model

with elements under planes stress condition is also valid because the in-plane stresses

are negligible in this problem. Both 2D model with plane stress elements and 3D

model with brick elements are used to simulate the tests.

In the present approach, the specimen is meshed using 4-node plane stress el-

ements for the 2D model and 8-node brick elements for the 3D model, with 408

elements in the longitudinal direction, 12 elements in the thickness direction, and 5

elements in the width direction for the 3D model. The cohesive layer is meshed with

zero-thickness 4-node cohesive elements for the 2D model and 8-node cohesive ele-

ments for the 3D model. Geometrically, the 3D model is obtained by extruding the

2D model along the width direction.

As mentioned before, the viscosity parameter, the mass scaling factor, and the

loading rate all affect the load-displacement curve quality and computation cost. Nu-

merical tests show that the parameters listed in Table IV provide satisfactory conver-

gence, accuracy, and efficiency for both 2D and 3D models.

Figure 6 compares load-displacement curves of the DCB, ENF and the MMB tests

predicted by the present 3D finite element model with the experiment results shown

in Ref. [12]. The percentages in the figure show the mode-mixing ratios defined in

Eq. (12). The displacement denotes the load point displacement in the tests. The

experiment was carried out by Reeder and Crews [1]. The numerical ENF curve
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TABLE IV. FINITE ELEMENT MODEL PARAMETERS

mass density (ton/mm3) viscosity load rate (mm/s)
10-4 0.6 0.5
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Figure 6. Load-displacement curves of the 3D model

exhibits an unexpected trend. Specifically, it becomes nonlinear at a low traction

lever but exhibits no softening which arises in other cases. One possible reason is

that the explicit integration scheme failed to propagate along the real loading path.

It will be seen below that the 2D model, which has better convergence due to its

simplicity, predicts a corresponding curve with an expected trend.

Figure 7 shows the results from all the tests using the 2D model and the compari-

son with experiment results. All the numerical results agree well with the experiment

results. This implies that the finite element model and the parameters selected are

validated.

Simulations with both 2D and 3D models give similar trends of the load-displace-

ment curves. The 3D result roughly agrees with the experiment results, while the 2D

result agrees with the experiment better. The 2D result is also prominently more ac-

curate than the 3D result in the MMB test with a mode-mixing ratio of 20%. The 3D

result significantly fluctuates especially in the MMB test with a mode-mixing ratio

of 80%, which makes it hard to tell whether the 3D model is better than 2D in this

test. Table V lists the differences in the maximum loads reached in loading history
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Figure 7. Load-displacement curves of the 2D model

TABLE V. MAXIMUM LOADS FOR DCB, ENF AND MMB TESTS

mode-mixing ratio 0% (DCB) 20% 50% 80% 100% (ENF)
experimental (N) 147.1 108.1 275.4 518.7 734.0
2D numerical (N) 137.4 101.5 271.7 478.9 708.9

error (%) -6.6 -6.1 -1.3 -7.7 -3.4
3D numerical (N) 142.9 106.6 257.0 473.5 N/A

error (%) -2.9 -1.4 -6.7 -8.7 N/A

of the tests. For the maximum load, the 3D model only shows better results than the

2D model in the DCB test and the MMB test with a mode-mixing ratio of 20%. With

the large fluctuations in the load-displacement curves of the 3D model, the results of

the maximum loads are also not accurate enough to show the real trend of the curves.

Meanwhile, the 3D model for the specimen has 191,412 degrees of freedom in total

compared with the 2D model’s 15,951 degrees of freedom, and this led to consid-

erably more solving time for the 3D model. In summary, the 2D approach is found

to better handle the mixed-mode progressive delamination in composite laminates

satisfying plane stress condition.
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CONCLUSIONS

In this paper, a 2D and a 3D numerical approach to simulating DCB, the ENF,

and the MMB tests is developed with a commercial software, Abaqus. An explicit

dynamic time integration scheme and a viscosity parameter is adopted to yield close

predictions of the specimen responses. The load rate and the specimen mass density

are properly selected to approximate a quasi-static loading process. A linear cohesive

zone model is used to characterize the mechanical response of the interface. The

validity of different strategies of simplifying the finite element model is discussed.

The following findings can be obtained from the results:

1. the 2D and the 3D predictions are both found to fit the experimental results

well, but the 2D predictions are found to be more accurate and stable than the

3D predictions;

2. the 2D approach is found to better handle the mixed-mode progressive delami-

nation in composite laminates satisfying plane stress condition.

The following conclusions can be drawn from the above findings:

1. more sophisticated cohesive zone models can be implemented in the present ap-

proaches, with the user-defined material subroutine for Abaqus/Explicit, VU-

MAT;

2. the present approach can be further extended to handle the interfacial debond-

ing in many other heterogeneous materials (e.g., fiber- and particle-reinforced

composites);

3. although the present approaches are developed with Abaqus/Explicit, they are

also applicable to other finite element codes.
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ABSTRACT

A general anisotropic laminated plate model with thermal deformation and two-

way coupled piezoelectric effect and pyroelectric effect is constructed using the vari-

ational asymptotic method, without any ad hoc assumptions. Total potential energy

contains strain energy, electric potential energy and energy caused by temperature

change. Three-dimensional strain field is built based on the concept of warping func-

tion and decomposition of the rotation tensor. The feature of small thickness and

large in-plane dimension of plate structures helped to asymptotically simplify the

three-dimensional analysis to a two-dimensional analysis on the reference surface

and a one-dimensional analysis through the thickness. Several numerical examples

are studied. The present model is validated by the excellent agreements between the

results from 3D finite element analyses and the presented model.

INTRODUCTION

Modelling for plate structures bonded with piezoelectric materials is more and

more popular in recent years because they can achieve active shape and vibration

control ([1], [2]and [3]). Piezoelectric effect leads to a coupling between electric en-

ergy and mechanical energy, making the modelling more difficult than conventional

plates. Besides, most piezoelectric materials also have pyroelectricity coupling the

electric energy with thermal energy. Since thermal stress and strain affect the perfor-

mance of laminates significantly, it is valuable to take pyroelectric effect and thermal

deformation into consideration when modelling multi-layered piezoelectric plates.

Although many efforts are made to get exact 3D solutions for piezoelectric plates,

they are still only available to limited cases ([4], [5], [6] and [7]). As a result, mod-

elling is still highly relying on plate theories. However, most of the existing works

are based on ad hoc assumptions for simplification, making stresses and strains in

the structure unnecessarily restricted before any analyses are proceeded. Lee [8] de-

Yufei Long and Wenbin Yu, Purdue University, West Lafayette, Indiana 47907, U.S.A
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veloped an isotropic laminated plate model based on Kirchhoff-Love assumptions.

Chandrashekhara and Agarwal [2] modified his formulation to a Reissner-Mindlin

model and used it for vibration control. Pai et al. [9] proposed a refined geometri-

cally nonlinear model for composite plates with piezoelectric sensors and actuators,

but the piezoelectricity and mechanical forces are not fully coupled. Mitchell and

Reddy [10] derived a composite laminated piezoelectric plate model including the

energy from electrostatic charge, using a third-order shear deformation theory [11].

Wang et al. [12] studied vibration of a piezoelectric circular plate using the Kirchhoff-

Love plate model. Orthotropy of piezoelectric material is considered and electric and

mechanical fields are fully coupled to ensure the satisfaction of Maxwell equation.

Qu [13] derived finite element formulations for composite laminated plates with cou-

pled direct and converse piezoelectric effects. Beginning from 3D formulations of

a piezoelectric plate, Figueiredo and Leal [14] used asymptotic analysis to get a 2D

piezoelectric model. By applying a hypothesis of zero elastic constants in thickness

direction, the model converges to the Kirchhoff-Love theory when the thickness goes

to zero. Kapuria and Achary [15] used a modified zigzag theory along with von

Karman geometric nonlinearity to analyze the buckling of piezoelectric plates.

Many researchers also concern the effect of temperature load on piezoelectric

plates. Since most piezoelectric materials also present pyroelectric effect, thermal

expansion would not be the only effect to be considered when temperature changes

[16]. Tauchert [17] proposed an analysis on thermal deformation of a piezoelectric

laminated plate based on Kirchhoff assumptions. Krommer and Irschik [18] derived

a Reissner-Mindlin type piezoelectric plate under thermal load. Concentration is put

on the influence of direct piezoelectric and pyroelectric effect on plate stiffness. Cho

and Oh [19] constructed a fully coupled thermopiezoelastic composite plate model,

in which temperature and electric field are treated as variables, using a higher order

zigzag theory. Kapuria and Achary [20] introduced another zigzag theory in third-

order that can achieve the consistency of no shear traction on the top and bottom

surfaces. Oh et al. [21] developed a lower-order shear deformation theory averaged

from higher-order zigzag theory and applied it on modelling fully coupled electro-

thermo-mechanical laminated plates.

Even though many results from plate models with ad hoc assumptions can provide

acceptable accuracy, those assumptions can be avoided and can make the models pre-

dict wrong results when these assumptions are violated. In contrast, the variational-

asymptotic method (VAM), developed by Berdichevsky [22], is a mathematical ap-

proach capable of analyzing functionals with relatively small parameters. By using

the VAM, taking the advantage of small parameter of h/l in plate structures, where

h is the thickness and l indicates the characteristic in-plane dimension, a model with

desired accuracy can be acquired without priori assumptions.

Early application of VAM on composite plate modelling includes the work by

Atilgan and Hodges [23]. Their work is extended by Sutyrin and Hodges [24, 25] to

make the model practical for multi-layered composite plates by transforming the for-

mula to a Reissner-Mindlin-like model. Yu et al. [26, 27] developed a general com-

posite laminated plate model based on the geometrically nonlinear theory in [28].

Using a finite element approach, Yu and Hodges extended their previous work for

applying on a thermopiezoelastic composite plate [29], but electric field and temper-
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ature field are only one way coupled with mechanical field. Liao and Yu [30, 31]

developed the model to accommodate a fully coupled piezoelectric composite plate.

Recently, Chen and Yu [32] further induced magnetic field in the composite laminate

model.

The purpose of this paper is to derive a model for multi-layered surfaces and in-

terfaces electroded piezoelectric plates under thermal loads. With the help of decom-

position of rotation tensor [33] and warping functions, 3D strains can be expressed

in terms of 2D generalized strains. Energy expression of the plate contains potential

energy, kinetic energy and virtual work from external loads. Since the main purpose

is to study the deformation of plates, converse effect of pyroelectricity is not included

to avoid heat conduction problem. 3D model is then reduced to a 2D formulation by

applying the VAM. The reduced 2D plate model can be solved in the same way as

classical or Reissner-Mindlin plate theory. 3D displacement, stress and strain fields

can be recovered using warping functions derived from energy expression.

THREE-DIMENSIONAL FORMULATION

Plate kinematics

B1(x1, x2)

B2(x1, x2)

B3(x1, x2)

b1

b2

b3

R(x1, x2)

u(x1, x2)

r(x1, x2)

wi(x1, x2, x3)Bi(x1, x2)

r(x1, x2, x3)

O

ˆ

R(x1, x2, x3)ˆ

Undeformed shape Deformed shape

Figure 1: Schematic of plate deformation.

Position of a point in a plate can be determined by its Cartesian coordinates xi, as

shown in Figure 1, where xα are two orthogonal coordinates in the reference surface

and x3 is the normal coordinate with the origin locating at the middle of the thickness.

Greek letter indices refer to 1 and 2 while Latin letter indices refers to 1, 2 and 3

here and after. Orthogonal triad bi denote the unit vectors in xi directions of the

undeformed plate, so any material point in the undeformed plate can have a position
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vector r̂ from a fixed point O so that

r̂ (x1, x2, x3) = r (x1, x2) + x3b3 (1)

where r denotes the position vector of intersection point of the reference surface and

the normal line on which the described point is located.

When deformation happens, the material point described by vector r̂ in the unde-

formed state will have the position vector R̂ in the deformed state. For expression,

orthogonal unit vector triad for the deformed plate Bi is introduced. Relation between

bi and Bi is indicated in a similar way as coordinate transformation using direction

cosine matrix Cij (x1, x2)

Bi = Cijbj, Cij = Bi · bj (2)

Now R̂ can be expanded to the following form for any definition of Bi

R̂ (x1, x2, x3) = R (x1, x2) + x3B3 (x1, x2) + wi (x1, x2, x3)Bi (x1, x2) (3)

where wi are warping functions to ensure equation (3) to be able to describe all pos-

sible deformation. No assumption is made on the shape of warping functions and

their exact expression will be solved later. In order to uniquely determine Bi, six

constraints are introduced. The first three constraints is set in the way of〈
w‖ (x1, x2, x3)

〉
= c‖, 〈w3 (x1, x2, x3)〉 = 0 (4)

where ( )‖ = [( )1 ( )2]
T

and c‖ is a free variable independent of x3. Angle brackets

indicate definite integral on x3 direction from the bottom to the top of the plate.

Two more constraints can be specified by setting B3 normal to the reference sur-

face of the deformed plate. Here transverse shear and thickness change are still al-

lowed because of the warping functions, which dissociates the present work from any

kinematic hypotheses. It is still possible for Bα to rotate around B3, so introducing

B1 ·R,2 = B2 ·R,1 (5)

to be the last constraint.

Terms in the deformation gradient tensor is defined as

Fij = Bi ·Gj (6)

where Gi are the covariant base vectors in the deformed state and Gi =
∂R̂
∂xi

. Then

the 3D strain field can be derived from decomposition of the rotation tensor [34]

Γij =
1

2
(Fij + Fji)− δij (7)

where δij is the Kronecker symbol.

For expressing 3D strain field in terms of 2D strains, one can define 2D general-

ized strains in the same way as [28]

R,α = Bα + εαβBβ (8)
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Bi,α = (−KαβBβ ×B3 +Kα3B3)×Bi (9)

where εαβ and Kαβ are 2D generalized membrane strains and curvatures, a comma in

subscript implies partial derivative. Strains are assumed to be small compared to unity

and warping functions are of the similar magnitude of strain when only geometric

nonlinearity is considered. Now one can derive the 3D strain field expression to be

Γe = ε+ x3κ+ Iαw‖,α, 2Γs = w‖′ + eαw3,α, Γt = w3
′ (10)

where ( )′ implies partial derivative with respect to x3 and

Γe = [ Γ11 2Γ12 Γ22 ]T, 2Γs = [ 2Γ13 2Γ23 ]T, Γt = Γ33 (11)

and

ε = [ ε11 2ε12 ε22 ]T, κ = [ K11 K12 +K21 K22 ]T (12)

and

I1 =

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ , I2 =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ , e1 =

{
1
0

}
, e2 =

{
0
1

}
(13)

So far kinematics of a plate is formulated. However, for a coupled piezoelectric

laminated plates, electric field should also be in concern along with the mechanical

field. Electric field can be defined using electric potential φ (x1, x2, x3)

Es = [ E1 E2 ]T = −[ φ,1 φ,2 ]T, Et = E3 = −φ′ (14)

In this study electrodes of the piezoelectric plate are coated on the top and bottom

surfaces or interfaces between layers. Electrodes are assumed to be of negligible

thickness and have no influence on mechanical properties of the plate. Then electric

potential can be specified at x3 = hi, where hi refers to the position of surface or

interface and here i indicates the numbering of layers varying from 1 to k + 1 and k
is the total number of layers. Although temperature load is considered in the work, it

is only one-way coupling so temperature change T (x1, x2, x3) is treated as a known

function.

Energy formulation

The elastodynamic behavior of a piezoelectric laminated plate is governed by the

extended Hamiltion’s principle [35]∫ t2

t1

[
δ(K − U) + δW]

dt = 0 (15)

where t1 and t2 are arbitrary fixed time; K is the kinetic energy; U is the internal

potential energy related to strain, electric field and temperature; δW is the virtual

work of external loads. Kinetic energy can be neglected in static problems, and virtual

work is considered in the process of dimensional reduction, so here concentration is

on expressing U in terms of 2D plate variables.
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For piezoelectric structures with thermal loads, the internal potential energy U
can be expressed as the integral of area potential energy density

U =

∫
Ω

HdΩ (16)

where Ω is the area domain of the reference surface and

H =
1

2

〈⎧⎨
⎩

Γe

2Γs

Γt

⎫⎬
⎭

T ⎡
⎣ Ce Ces Cet

CT
es Cs Cst

CT
et CT

st Ct

⎤
⎦

⎧⎨
⎩

Γe

2Γs

Γt

⎫⎬
⎭

〉

−
〈⎧⎨

⎩
Γe

2Γs

Γt

⎫⎬
⎭

T ⎡
⎣ eb eet

es ea
ec et

⎤
⎦ {

Es

Et

}〉

−
〈⎧⎨

⎩
Γe

2Γs

Γt

⎫⎬
⎭

T ⎡
⎣ Ce Ces Cet

CT
es Cs Cst

CT
et CT

st Ct

⎤
⎦

⎧⎨
⎩

αe

αs

at

⎫⎬
⎭T

〉

− 1

2

〈{
Es

Et

}T [
ds det
dTet dt

] {
Es

Et

}〉
−

〈{
Es

Et

}T {
ps
pt

}
T

〉

(17)

where Ce, Ces, Cet, Cs, Cst and Ct are the submatrices of the partitioned 6 × 6
material’s elastic constant matrix; eb, eet, es, ea, ec and et are the submatrices of the

partitioned transpose of the 3 × 6 piezoelectric stress coefficient matrix; αe, αs and

αt are the submatrices of the partitioned 6 × 1 thermal expansion coefficient matrix;

ds, det and dt are the submatrices of the partitioned 3 × 3 dielectric constant matrix;

ps and pt are the submatrices of the partitioned 3× 1 pyroelectric coefficient matrix.

Up to this point, the 3D continuum model of the thermopiezoelastic plate is ready

to be reduced to a 2D plate model by a through-the-thickness analysis using the VAM.

DIMENSIONAL REDUCTION

Zeroth-order reduction

In the zeroth-order reduction, the energy is expanded into the order of (hl2)με2.
Because of the order of external loads [30], warping functions wi and electric poten-

tial φ only appears in the area potential energy density, so it is more convenient to

directly work on H0. The variation of H0 can be calculated to be

δH0 =
〈[

(ε+ x3κ)
TCes + w‖′TCs + w3

′CT
st + φ′eTa

− (αT
e Ces + αT

s Cs + αtC
T
st)T

]
δw‖′ + λ‖δw‖

+
[
(ε+ x3κ)

TCet + w‖′TCst + w3
′Ct + φ′et

− (αT
e Cet + αT

s Cst + αtCt)T
]
δw3

′ + λ3δw3

+
[
(ε+ x3κ)

Teet + w‖′Tea + w3
′et − φ′dt + ptT

]
δφ′

〉
(18)
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where λ‖ and λ3 are Lagrange multipliers for introducing the constraints in equation

(4). Warping functions wi are free to vary at the top and bottom surfaces but electric

potential is free to vary only when it is not prescribed at those locations. Euler-

Lagrange equations of equatio (18) can be written as

(ε+ x3κ)
TCes + w‖′TCs + w3

′CT
st + φ′eTa

−(αT
e Ces + αT

s Cs + αtC
T
st)T = 0

(19)

(ε+ x3κ)
TCet + w‖′TCst + w3

′Ct + φ′et
−(αT

e Cet + αT
s Cst + αtCt)T = 0

(20)

(ε+ x3κ)
Teet + w‖′Tea + w3

′et − φ′dt + ptT = P (21)

where P is an arbitrary function independent of x3 generated by indefinite integration.

Expressions of the warping function and electric potential for each layer can be solved

from equations (19), (20) and (21), giving

w‖′T = −(ε+ x3κ− αeT )
TC∗∗

esC
−1
s + P e∗Ta C−1

s

d∗t
− p∗tT

e∗Ta C−1
s

d∗t
+ αT

s T (22)

w3
′ = −(ε+ x3κ− αeT )

TC∗∗
et C

∗−1
t + P e∗tC

∗−1
t

d∗t
− p∗tT

e∗tC
∗−1
t

d∗t
+ αtT (23)

φ′ = (ε+ x3κ− αeT )
T e

∗
et

d∗t
− P 1

d∗t
+ p∗tT

1

d∗t
(24)

where the starred quantities are introduced for simplifying the expression, and

C∗
et = Cet − CesC

−1
s Cst, C∗

t = Ct − CT
stC

−1
s Cst, C∗

es = Ces − C∗
etC

T
st

C∗
t

C∗∗
et = C∗

et +
e∗ete

∗
t

d∗t
, C∗∗

es = C∗
es +

e∗ete
∗T
a

d∗t
, e∗t = et − eTaC

−1
s Cst

e∗a = ea − Cste
∗
t

C∗
t

, e∗et = eet − C∗
esC

−1
s ea − C∗

etet
C∗

t

d∗t = dt + e∗Ta C−1
s ea +

e∗t et
C∗

t

, p∗t = pt + αT
e eet + αT

s ea + αtet

(25)

It is impossible to determine the expression of P without knowing the electric bound-

ary condition, but a most general form of function P can be written as

P = εTPε + κTPκ + Pφ (26)

Substituting equations (22), (23)and (24) into H0, the zeroth-order asymptotically

correct expression of the potential energy density can be obtained as

2H0 =

{
ε
κ

}T [
A∗ B∗

B∗T D∗

] {
ε
κ

}
− 2

{
Sε

Sκ

}T {
ε
κ

}
(27)
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with

A∗ =
〈
C∗

e −
PεPT

ε

d∗t

〉
, B∗ =

〈
x3C

∗
e −

PεPT
κ

d∗t

〉

D∗ =
〈
x3

2C∗
e −

PκPT
κ

d∗t

〉 (28)

and

Sε =

〈
PεPT

φ

d∗t
+ T

[
C∗

eαe − e∗et
d∗t

p∗t

]〉

Sκ =

〈
PκPT

φ

d∗t
+ T

[
x3C

∗
eαe − x3

e∗et
d∗t

p∗t

]〉 (29)

where

C∗
e = Ce − C∗

esC
−1
s CT

es −
C∗

etC
T
et

C∗
t

+
e∗ete

∗T
et

d∗t
(30)

Terms not relating to 2D generalized strains are all dropped because they will not

affect the total energy when the plate is deformed. It can be found from equation

(28) that the stiffness matrices A∗, B∗ and D∗ not only depend on material elastic

constants, but also piezoelectric coefficients and dielectric constants. Temperature

change and applied electric field can affect the values of Sε and Sκ, which provide

additional contributions to the total potential energy.

Up to this point, the original 3D problem has been reduced to a 2D plate problem.

It is obvious that even though the plate is a piezoelectric smart plate, the 2D energetics

has the same form as the classical lamination theory (CLT) with thermal load except

the temperature related term is extended to contain piezoelectric effect.

The stiffness matrices in equation (27) can be used in a plate analysis for predic-

tion of global plate behavior. However, in many cases it is also valuable to acquire

the 3D quantities of the plate structure. In such situations, 3D fields are required to be

recovered via the 2D results. For the zeroth-order approximation, the 3D strain field

and electric field can be recovered by neglecting terms with derivatives with respect

to xα in equation (10) and (14), obtaining

Γ0
e = ε+ x3κ, 2Γ0

s = w‖′, Γ0
t = w3

′ (31)

E0
s = 0, E0

t = −φ′ (32)

The 3D stress field and electric displacement field can be obtained using 3D consti-

tutive relations of elasticity and piezoelectricity.

From the second equation in (31) it can be found that the transverse shear and

normal strains are not zero, which means lines normal to the reference surface in

the undeformed plate are deformable, differing the current model from the CLT. In

zeroth-order reduction, transverse shear and normal stresses are identically zero be-

cause their expressions coincide the Euler-Lagrange equations in (19) and (20). This

result is a direct deduction from the variational statement instead of an ad hoc as-

sumption. Similarly, electric displacement in x3 direction always equals to P because

of Euler-Lagrange equation (21). Though at this stage transverse shear and normal

stresses cannot be predicted, they can be estimated in a higher-order approximation.
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First-order reduction

To improve the accuracy as well as predict transverse stresses, dimensional re-

duction of the first-order is required. In this reduction, strains are expanded into the

order of h
l
ε and the resultant energy is in the order of (hl2)μ(h

l
)2ε2. Then warping

functions and electric potential are perturbed to be

w‖ = w0
‖ + v‖ + o

(
h2

l
ε

)
, w3 = w0

3 + v3 + o

(
h2

l
ε

)

φ = φ0 + ϕ+ o

(
h2

l
ε

) (33)

Up to this order virtual work of applied loads are not negligible, so total potential

density with virtual work added can be defined as

Π = H−W (34)

with

W =
〈
PT
‖ w‖

〉
+ τT‖ w

+
‖ + βT

‖ w
−
‖ + 〈P3w3〉+ τ3w

+
3 + β3w

−
3 (35)

In the zeroth-order approximation, the formulation is for fully anisotropic ma-

terials, but it becomes tedious in higher order derivation. Since most piezoelectric

and composite materials present at least monoclinic symmetry about the mid-plane,

it would be enough for practical use when applying this material symmetry. Conse-

quently, Ces, Cst, eb, ea, ec, det and αs will always vanish. Then warping functions

and electric potential in each layer solved during the zeroth-order reduction can be

rewritten as

w0
‖ = 0, w0

3 = C⊥E + w0
3e, φ0 = CφE + φ0

e (36)

with E = [ ε κ ]T and

C⊥′ =
[
−C∗∗T

et

C∗
t

+
e∗t

d∗tC∗
t

PT
ε − x3

C∗∗
et

T

C∗
t

+
e∗t

d∗tC∗
t

PT
κ

]

w0
3e

′
= T

(
C∗∗T

et αe

C∗
t

− e∗tp
∗
t

d∗tC∗
t

+ αt

)
+

e∗t
d∗tC∗

t

Pφ

(37)

Cφ
′ =

[
e∗Tet
d∗t

− 1

d∗t
PT

ε x3
e∗Tet
d∗t

− 1

d∗t
PT

κ

]

φ0
e
′
= T

(
−e∗Tet αe

d∗t
+

p∗t
d∗t

)
− 1

d∗t
Pφ

(38)

where the “0” in superscript denotes that the quantity is from the zeroth-order reduc-

tion.

Taking the variation of the total potential density, gives

δΠ1 =
〈[

(ε+ x3κ− αeT )
TC∗

e + (p∗tT − P)
e∗Tet
d∗t

]
Iαδv‖,α

+
[
(v‖′ + eαw

0
3,α)

TCs + φ0T
,‖ es

T
]
δv‖′ +

[
v3

′Ct + ϕ′et
]
δv3

′

+
[
pTs T

]
δϕ,‖ +

[
P + v3

′et − ϕ′dt
]
δϕ′

〉
− 〈

PT
‖ δv‖

〉 − τT‖ δv
+
‖ − βT

‖ δv
−
‖ +

〈
λ̄‖δv‖

〉
+

〈
λ̄3δv3

〉
(39)
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Driving it to be zero, the simplified Euler-Lagrange equations can be derived to be

v3
′Ct + ϕ′et = 0 (40)

v3
′et − ϕ′dt = −θT‖ ps + P̂ (41)

Cs(v‖′ + eαw
0
3,α) + esφ

0
,‖ = DαE,α + g + λ̄‖x3 + Λ̄‖ (42)

where P̂ is a function independent from x3, and

Dα
′ = −ITα

[
C∗

e −
e∗et
d∗t

PT
ε x3C

∗
e −

e∗et
d∗t

PT
κ

]

g′ = ITα

(
T,αC

∗
eαe − e∗et

d∗t
Pφ,α + T,αp

∗
t

e∗et
d∗t

)
− P‖, θ‖

′ = T,‖

(43)

Boundary terms generated by integration by parts about the xα coordinates is not

considered as the study aims at seeking an internal solution. As a result, integration by

parts with respect to the in-plane coordinates can be freely adopted when convenient

in the following derivation.

From equations (40), (41) and (42), it can be found that v‖ is decoupled from v3
and ϕ, so they can be solved separately. Solving equation (40) and (41) gives

v3
′ = −(θT‖ ps − P̂)

et
d∗tCt

(44)

ϕ′ = (θT‖ ps − P̂)
1

d∗t
(45)

Warping functions v‖ can be solved using equation (42) to be

v‖ = (D̄α + Lα)E,α + ḡ (46)

with

D̄′
α = C−1

s D∗
α, ḡ′ = C−1

s g∗ (47)

and

D∗
α = Dα − CseαC⊥ − eseαCφ −

(
x3

h
+

1

2

)
D+

α +

(
x3

h
− 1

2

)
D−

α (48)

g∗ = g − Cseαw
0
3e,α − eseαφ

0
e,α +

(
x3

h
+

1

2

)
τ‖ +

(
x3

h
− 1

2

)
β‖

−
(
x3

h
+

1

2

)
g+ +

(
x3

h
− 1

2

)
g−

(49)

where Lα are constants generated by integral and will be used as optimization param-

eters later. In order to satisfy the constraints in equation (4), coefficients in equation

(46) should have
〈
D̄α

〉
= 0, 〈ḡ〉 = 0, and LαE,α = c‖/h.

Substituting the solution of v‖, v3 and ϕ back, the asymptotically correct expres-

sion of the total potential density Π1 to the second-order is

2Π1 = ETAE + ET
,1BE,1 + 2ET

,1CE,2 + ET
,2DE,2 − 2ETF (50)

DISTRIBUTION A: Distribution approved for public release.



where

A =

[
A∗ B∗

B∗T D∗

]
(51)

B =
〈 −D∗T

1 C−1
s D∗

1 + Cs(11)C
T
⊥C⊥ + es(11)C

T
⊥Cφ

+ es(11)C
T
φC⊥ − ds(11)C

T
φCφ

〉
+

〈
D1

′T〉
L1 + LT

1

〈
D1

′〉 (52)

C =
〈 −D∗T

1 C−1
s D∗

2 + Cs(12)C
T
⊥C⊥ + es(12)C

T
⊥Cφ

+ es(12)C
T
φC⊥ − ds(12)C

T
φCφ

〉
+

〈
D1

′T〉
L2 + LT

1

〈
D2

′〉 (53)

D =
〈 −D∗T

2 C−1
s D∗

2 + Cs(22)C
T
⊥C⊥ + es(22)C

T
⊥Cφ

+ es(22)C
T
φC⊥ − ds(22)C

T
φCφ

〉
+

〈
D2

′T〉
L2 + LT

2

〈
D2

′〉 (54)

F = Sεκ +
〈
−Rεκ −D∗T

α C−1
s g∗,α +

[
ps(α)C

T
φ T

]
,α

+
[
Cs(αβ)C

T
⊥w

0
3e + es(αβ)C

T
⊥φ

0
e + es(αβ)C

T
φw

0
3e − ds(αβ)C

T
φ φ

0
e

]
,αβ

〉
+

〈
CT

⊥P3

〉
+ C+T

⊥ τ3 + C−T
⊥ β3 − LT

α

(
τ‖ + β‖ −

〈
g′

〉)
,α

(55)

with

Sεκ =

{
Sε

Sκ

}
, Rεκ =

{
Pε

(
θT‖ ps − P̂)

/d∗t
Pκ

(
θT‖ ps − P̂)

/d∗t

}
(56)

and (αβ) in the subscript indicates the α, βth element in the corresponding matrix.

Transformation to the Reissner-Mindlin model

Though equation (50) is asymptotically correct to the second order, it is incon-

venient for practical use because it contains derivatives of the 2D generalized strain,

making the boundary conditions hard to define. For practical use, we can transform

it into a model having the same form as the Reissner-Mindlin theory. To do so, two

transverse shear strains need to be introduced along with another orthogonal triad B∗
i

in the deformed plate to redefine the 2D generalized strains, so that

R,α = B∗
α + ε∗αβB

∗
β + 2γα3B

∗
3 (57)

B∗
i,α = (−K∗

αβB
∗
β ×B∗

3 +K∗
α3B

∗
3)×B∗

i (58)

with the transverse shear strains as γ = [ 2γ13 2γ23 ]T.

Kinematic identity can be found between the former 2D generalized strain E and

Reissner-Mindlin 2D generalized strain R as

E = R−Dαγ,α (59)

where

D1 =

[
0 0 0 1 0 0
0 0 0 0 1 0

]T

, D2 =

[
0 0 0 0 1 0
0 0 0 0 0 1

]T

(60)

R = [ ε∗11 2ε∗12 ε∗22 K∗
11 K∗

12 +K∗
21 K∗

22 ]T (61)

DISTRIBUTION A: Distribution approved for public release.



Substituting equation (59) back into equation (50) and neglecting higher-order

terms, it becomes

2Π1 = RTAR− 2RTAD1γ,1 − 2RTAD2γ,2

+RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 − 2RTF

(62)

Compared to the potential energy of the Reissner-Mindlin model, which has the form

of

2ΠR = RTAR+ γTGγ − 2RTFR − 2γTFγ (63)

further derivation is still required to completely eliminate terms with partial deriva-

tives of the 2D generalized strains in equation (62). This can be achieved by utilizing

the plate equilibrium equations about in-plane moments and transverse shear forces.

Then equation (62) can be rewritten as

2Π1 = RTAR+ γTGγ − 2RTF − 2γTFγ + U∗ (64)

where

Fγ = −DT
αSεκ,α, U∗ = RT

,1B̄R,1 + 2RT
,1C̄R,2 +RT

,2D̄R,2 (65)

and

B̄ = B + AD1G
−1D1

TA, C̄ = C + AD1G
−1D2

TA

D̄ = D + AD2G
−1D2

TA
(66)

In the most ideal case, U∗ can be driven to be zero for any R and transverse shear

stiffness matrix can be solved exactly, leading the asymptotically correct total poten-

tial in equation (64) to have the same form as the Reissner-Mindlin model in equation

(63). However, this is impossible for most multi-layered, piezoelectric composite

plate, so an optimization process is required to minimize U∗ and thus minimize the

error between the asymptotically correct expression and the Reissner-Mindlin form

expression. The accuracy of the Reissner-Mindlin-like model is influenced by the

deviation of U∗ from zero. Considering symmetry, there are totally 78 quantities in

B̄, C̄ and D̄ that are desirable to be zero, and there are 27 optimization parameters,

3 in G and 24 in Lα. To make U∗ as close to zero as possible under any strain field,

an overdetermined linear system with 78 equations and 27 unknowns is constructed,

then the least square method is implemented to solve for the 27 unknowns.

By the optimization process, the best transverse shear stiffness matrix G can be

obtained to complete the transformation to the Reissner-Mindlin-like model. Similar

to the zeroth-order model, the current first-order model can be directly applied in any

thermopiezoelastic Reissner-Mindlin plate analyses with equivalent stiffness matrices

A, G, F and Fγ calculated from plate geometry and material constants. Piezoelectric-

ity, thermal expansion and pyroelectricity are coupled in the stiffness matrices along

with elasticity.

From equation (3), the 3D displacement field Ui can be easily recovered using 2D

displacement field ui and warping functions wi, that is

Ui = ui + x3(C3i − δ3i) + wjCji (67)
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For the first-order approximation, the 3D strain field can be recovered to be

Γ1
e = ε+ x3κ, 2Γ1

s = v‖′ + eαw
0
3,α, Γ1

t = w0
3
′
+ v3

′ (68)

Then 3D stresses up to the first-order can be obtained. The first-order model can

predict the transverse shear strains and stresses, but the transverse normal stress still

vanishes. For predicting transverse normal stress, the warping functions should be

perturbed once more to be

w‖ = w0
‖ + v1‖ + y‖ + o

(
h3

l2
ε

)
, w3 = w0

3 + v13 + y3 + o

(
h3

l2
ε

)

φ = φ0 + ϕ1 + ψ + o

(
h3

l2
ε

) (69)

Using a similar procedure as the first-order reduction, the expression of the warping

functions and electric potential can be obtained. That is

y‖′ = − C−1
s eseαϕ

1
,α − C−1

s ITα e
∗
etϕ

1
,α

+

(
x3

h
+

1

2

)
ITα e

∗
etϕ

1+
,α −

(
x3

h
− 1

2

)
ITα e

∗
etϕ

1−
,α

(70)

y3
′ = − C∗∗T

et

Ct

[
Iβ(D̄α + Lα)E,αβ + Iβ ḡ,β

]
+

et
d∗tCt

(
EφαβE,αβ + Sφ +

ˆ̂P)
+

dt
d∗tCt

[
E⊥αβE,αβ + S⊥ +

(
x3

h
+

1

2

)
τ3 +

(
x3

h
− 1

2

)
β3

−
(
x3

h
+

1

2

)
E+

⊥αβE,αβ +
(
x3

h
− 1

2

)
E−

⊥αβE,αβ

−
(
x3

h
+

1

2

)
S+
⊥ +

(
x3

h
− 1

2

)
S−
⊥

]
(71)

ψ′ =
e∗Tet
d∗t

[
Iβ(D̄α + Lα)E,αβ + Iβ ḡ,β

] − 1

d∗t

(
EφαβE,αβ + Sφ +

ˆ̂P)
+

et
d∗tCt

[
E⊥αβE,αβ + S⊥ +

(
x3

h
+

1

2

)
τ3 +

(
x3

h
− 1

2

)
β3

−
(
x3

h
+

1

2

)
E+

⊥αβE,αβ +
(
x3

h
− 1

2

)
E−

⊥αβE,αβ

−
(
x3

h
+

1

2

)
S+
⊥ +

(
x3

h
− 1

2

)
S−
⊥

]
(72)

with

E⊥αβ
′ = −(

eTβD
∗
α + Cs(αβ)C⊥ + es(αβ)Cφ

)
(73)

S⊥′ = −(
eTβ g

∗
,β + Cs(αβ)w

0
3e,αβ + es(αβ)φ

0
e,αβ + P3

)
(74)

Eφαβ
′ = −(

eTβ esC
−1
s D∗

α + es(αβ)C⊥ − ds(αβ)Cφ

)
(75)

Sφ
′ = −(

eTβ esC
−1
s g∗,β + es(αβ)w

0
3e,αβ − ds(αβ)φ

0
e,αβ

)
(76)

and
ˆ̂P is an arbitrary function of xα.
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Even though it is possible to derive the energy expression to the fourth-order with

warping functions and electric potential presented above, it is unnecessary to do so

because it is too complex for practical use. Consequently, 2D plate model derived

from first-order reduction is still adopted, while the recovery considers the strains in

second-order, that is

Γ2
e = ε+ x3κ+ Iαv

1
‖,α, 2Γ2

s = v1‖
′
+ y‖′ + eα(w

0
3,α + v13,α)

Γ2
t = w0

3
′
+ v13

′
+ y3

′ (77)

and the electric field to be

E2
s = −φ0

,‖ − ϕ1
,‖, E2

t = −φ0′ − ϕ1′ − ψ′ (78)

3D stress field and electric displacement can be recovered based on equation (17).

NUMERICAL EXAMPLES

Four examples are provided to verify the present work. The plates in four exam-

ples have the same in-plane dimensions, 140 mm × 140 mm, with different layups,

thicknesses, or boundary conditions. Origin of the coordinate system locates at the

bottom left. Materials used in the examples are shown in Table I. Results are com-

pared with 3D finite element analysis in ABAQUS.

In example 1, the plate has two layers. The bottom layer is a PVDF piezoelectric

layer, with the thickness of 0.05 mm, and the upper layer is a polyimide layer, with

the thickness of 0.1 mm. Since the aspect ratio of this plate is very large, using

the zeroth-order model can have enough accuracy. The plate has a simply-supported

boundary. Thermal load is 5 K in the whole plate. The bottom surface is charged with

300 V, and the interface between two layers is grounded. Result of transverse normal

strain is shown in Figure 2, from which it is obvious that Γ33 is not zero. Though not

shown here, other quantities also have excellent accuracy.
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Figure 2: Distribution of transverse normal strain through thickness at the center.

In example 2, the plate consist of three layers. From the bottom to the top, the

first layer is PZT-4, the second is S glass/epoxy orienting 90 degree, the third is
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TABLE I: MATERIAL PROPERTIES OF THE PLATES

Properties PVDF Polyimide PZT-4 S glass/epoxy

C11 (GPa) 3.61 3.85 139.02 48.5

C12 (GPa) 1.61 1.98 77.85 5.82

C13 (GPa) 1.42 1.98 74.33 5.82

C22 (GPa) 3.13 3.85 139.02 12.7

C23 (GPa) 1.31 1.98 74.33 6.7

C33 (GPa) 1.63 3.85 115.45 12.7

C44 (GPa) 0.55 0.93 25.6 3

C55 (GPa) 0.59 0.93 25.6 4.5

C66 (GPa) 0.69 0.93 30.6 4.5

e31 (C/m2) 0.0105 0 -5.2 0

e32 (C/m2) -0.0117 0 -5.2 0

e33 (C/m2) -0.0284 0 15.08 0

e24 = e15 (C/m2) -0.0122 0 12.72 0

d11 (×10−9 C2/(Nm2)) 0.0651 0.031 13.06 0.056

d22 (×10−9 C2/(Nm2)) 0.0821 0.031 13.06 0.056

d33 (×10−9 C2/(Nm2)) 0.0686 0.031 11.51 0.056

α1 (×10−6 K−1) 130 20 3.8 5

α2 (×10−6 K−1) 130 20 3.8 26

α3 (×10−6 K−1) 130 20 1.2 26

p1 = p2 (×10−6 C/(Km2)) 30 0 0 0

p3 (×10−6 C/(Km2)) 30 0 -170 0

S glass/epoxy orienting 0 degree. Each layer has the thickness of 5 mm. As this

plate is much thicker, the first-order model is adopted. Thermal load is 5 K in the

whole plate. The bottom surface has a prescribed electric potential of 600 V, and

the interface between the first and second layer is grounded. Representative results

are shown in Figure 3 and 4. From Figure 3 it can be found that the present work

can predict the quadratic distribution of transverse shear strain and stress through the

thickness. From Figure 4, though relatively small, the transverse normal stress is not

zero either.

In example 3, the plate is the same as the one in example 2, but with a fixed

boundary condition. In addition to the thermal load and electric charge, a uniformly

distributed load of 10 kPa is applied downwards on the top surface. The results are

shown in Figure 5 and 6. It can be found that the accuracy of the model remains well

with different boundary condition. From Figure 6 it can be seen that σ33 predicted by

the theory can satisfy the boundary condition at the top surface.

In example 4, the plate has two PZT-4 layers with each on the top and bot-

tom surfaces, and six S glass/epoxy layers between them, orienting [90◦/0◦/45◦/ −
45◦/0◦/90◦]. The boundary condition is simply-supported. Besides the loads in ex-

ample 3, the top surface is also charged with 600 V, and interfaces between PZT-4

and contacting S glass/epoxy layers are grounded. Results are shown in Figure 7 and

8. We can see that the agreement remains well for more complex lamination.
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Figure 3: Distribution of transverse shear strain and stress through thickness at x1 = 0.07 m,

x2 = 0.105.
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Figure 4: Distribution of transverse normal strain and stress through thickness at the center.

CONCLUSION

In this paper, a laminated anisotropic plate model with thermal expansion and

piezoelectric effect is constructed based on the variational-asymptotic method. The

main focus is on the interior constitutive model of the plate. For modelling, the

original 3D plate problem is separated into a 1D through the thickness analysis and

a 2D reference surface analysis. Recovery of 3D fields using 2D plate solution is

also made possible in the model. Following accomplishments are achieved during

the study:

1. In formulating the 3D strain field, warping functions are introduced to describe

every possible shape in the deformed state. Then 3D strains containing 2D

generalized strains and warping functions are obtained.

2. Beginning from the energy expression, the dimensional reduction is imple-

mented by first dropping smaller terms. Then, variation of the energy is taken
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Figure 5: Distribution of transverse shear strain and stress through thickness at x1 = 0.07 m,

x2 = 0.105.
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Figure 6: Distribution of transverse normal strain and stress through thickness at the center.

to solve for warping functions and electric potential, and construct equivalent

constitutive relation. The warping functions are perturbed twice resulting a

zeroth-order model resembling the CLT and a first-order model being trans-

formed into the Reissner-Mindlin model.

3. Several numerical examples are studied for validating both the zeroth-order

model and the first-order model. The zeroth-order model is proved to have

high fidelity when analyzing thin plates. The first-order model can keep a good

accuracy even though the aspect ratio of the plate goes smaller. Different lami-

nations, boundary conditions and load combinations in the examples verify the

robustness of the model.

It should be emphasized that the mathematical derivation of the present work

follows a rigorous procedure that does not involves any ad hoc assumptions. Terms

dropped in the current model are because of their smallness in order and will appear

if the model is further derived into a higher order.
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Figure 7: Distribution of transverse shear strain and stress through thickness at x1 = 0.07 m,

x2 = 0.105.
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Figure 8: Distribution of transverse normal strain and stress through thickness at the center.
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Abstract
A general anisotropic laminated plate model with thermal deformation and two-way coupled
piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic
method. Total potential energy contains strain energy, electric potential energy and energy
caused by temperature change and external loads. The feature of small thickness and large in-
plane dimension of plate structures helps to asymptotically simplify the three-dimensional
analysis to a two-dimensional analysis on the reference surface and a one-dimensional analysis
through the thickness. Several numerical examples are studied. The present model is validated by
the excellent agreement between the results from 3D finite element analyses and the present
model.

Keywords: piezoelectric, plate, composite, variational asymptotic method

(Some figures may appear in colour only in the online journal)

1. Introduction

Modeling for plate structures bonded with piezoelectric
materials is more and more popular in recent years because
they can achieve active shape and vibration control [1–3]. The
piezoelectric effect leads to a coupling between electric
energy and mechanical energy, making the modeling more
difficult than conventional plates. Besides, most piezoelectric
materials also have pyroelectricity coupling the electric
energy with thermal energy. Since thermal stress and strain
affect the performance of laminates significantly, it is valuable
to take the pyroelectric effect and thermal deformation into
consideration when modeling multi-layered piezoelectric
plates.

Although much effort has been applied to obtain exact
3D solutions for piezoelectric plates, they are still only
available to limited cases [4–7]. As a result, modeling is still
highly reliant on plate theories. However, most of the existing
works are based on ad hoc assumptions for simplification,
making stresses and strains in the structure unnecessarily
restricted before any analyses can proceed. Lee [8] developed
an isotropic laminated plate model based on Kirchhoff–Love

assumptions. Chandrashekhara and Agarwal [2] modified his
formulation to a Reissner–Mindlin model and used it for
vibration control. Pai et al [9] proposed a refined geome-
trically nonlinear model for composite plates with piezo-
electric sensors and actuators, but the piezoelectricity and
mechanical forces are not fully coupled. Mitchell and Reddy
[10] derived a composite laminated piezoelectric plate model
including the energy from electrostatic charge, using a third-
order shear deformation theory [11]. Wang et al [12] studied
vibration of a piezoelectric circular plate using the Kirchhoff–
Love plate model. Orthotropy of piezoelectric material is
considered and electric and mechanical fields are fully cou-
pled to ensure satisfaction of the Maxwell equation. Qu [13]
derived finite element formulations for composite laminated
plates with coupled direct and converse piezoelectric effects.
Beginning from 3D formulations of a piezoelectric plate,
Figueiredo and Leal [14] used asymptotic analysis to get a 2D
piezoelectric model. By applying a hypothesis of zero elastic
constants in the thickness direction, the model converges to
the Kirchhoff–Love theory when the thickness goes to zero.
Kapuria and Achary [15] used a modified zigzag theory along
with von Karman geometric nonlinearity to analyze the
buckling of piezoelectric plates.

Many researchers have also studied the effects of tem-
perature load on piezoelectric plates. Since most piezoelectric
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materials also display pyroelectric effects, thermal expansion
would not be the only effect to be considered when tem-
perature changes [16]. Tauchert [17] proposed an analysis on
thermal deformation of a piezoelectric laminated plate based
on Kirchhoff assumptions. Krommer and Irschik [18] derived
a Reissner–Mindlin type piezoelectric plate under thermal
load, focusing on the influence of the direct piezoelectric and
pyroelectric effects on plate stiffness. Cho and Oh [19] con-
structed a fully coupled thermopiezoelastic composite plate
model, in which temperature and electric field are treated as
variables, using a higher-order zigzag theory. Kapuria and
Achary [20] introduced another zigzag theory in third order
that can achieve the consistency of no shear traction on the
top and bottom surfaces. Oh et al[21] developed a lower-
order shear deformation theory averaged from higher-order
zigzag theory and applied it to modeling fully coupled elec-
tro-thermo-mechanical laminated plates.

Even though many results from plate models with ad hoc
assumptions can provide acceptable accuracy, those
assumptions are avoidable and can make the models predict
wrong results when these assumptions are violated. In con-
trast, the variational-asymptotic method (VAM), developed
by Berdichevsky [22], is a mathematical approach capable of
analyzing functionals with relatively small parameters. By
using the VAM, taking advantage of small values of h/l in
plate structures, where h is the thickness and l indicates the
characteristic in-plane dimension, a model with the desired
accuracy can be derived without a priori assumptions.

Early application of the VAM on composite plate modeling
includes the work by Atilgan and Hodges [23]. Their work is
extended by Sutyrin and Hodges [24, 25] to allow more accurate
recovery of stresses for multi-layered composite plates by
transforming the formula to a Reissner–Mindlin-like model. Yu
et al[26, 27] developed a general composite laminated plate
model based on the geometrically nonlinear theory in [28]. Using
a finite element approach, Yu and Hodges extended their pre-
vious work for applying to a thermopiezoelastic composite plate
[29], but the electric and temperature fields are only coupled one
way with the mechanical field. Liao and Yu [30, 31] developed
the model to accommodate a fully coupled piezoelectric com-
posite plate. Recently, Chen and Yu [32] further induced a
magnetic field in the composite laminate model.

The purpose of this paper is to derive a model for multi-
layered surface and interface electroded piezoelectric plates
under thermal loads. With the aid of decomposition of the
rotation tensor [33] and warping functions, 3D strains can be
expressed in terms of 2D generalized strains. The energy
expression of the plate contains potential energy, kinetic
energy and virtual work from external loads. Since the main
purpose is to study the deformation of plates, the converse
effect of pyroelectricity is not included to avoid the heat
conduction problem. The 3D model is then reduced to a 2D
formulation by applying the VAM. The reduced 2D plate
model can be solved in the same way as classical or Reissner–
Mindlin plate theory. 3D displacement, stress, strain, electric
potential, electric field and electric displacement can be
recovered based on the global response obtained from the
plate analysis.

2. Three-dimensional formulation

2.1. Plate kinematics

The position of a point in a plate can be determined by its
Cartesian coordinates xi, as shown in figure 1, where xα are
two orthogonal coordinates in the reference surface and x3 is
the normal coordinate with the origin located at the middle of
the thickness. Greek letter indices refer to 1 and 2 while Latin
letter indices refer to 1, 2 and 3 hereafter. The orthogonal triad
bi denotes the unit vectors in xi directions of the undeformed
plate, so any material point in the undeformed plate can have
a position vector r̂ from a fixed point O so that

x x x x x xr r b, , , , 11 2 3 1 2 3 3ˆ ( ) ( ) ( )
where r denotes the position vector of the intersection point of
the reference surface and the normal line on which the
described point is located. Integrating both sides of
equation (1), we have

x x x h x xr r, , , , 21 2 3 1 2ˆ ( ) ( ) ( )

where h is the thickness of the plate, and angle brackets
indicate the definite integral in the x3 direction from the
bottom to the top of the plate.

When deformation happens, the material point described
by vector r̂ in the undeformed state will have the position
vector R̂ in the deformed state. For clarity, the orthogonal unit
vector triad for the deformed plate Bi is introduced. The
relation between bi and Bi is indicated in a similar way as the
coordinate transformation using the direction cosine matrix

x x,ij 1 2( )
B b B b, . 3i ij j ij i j· ( )

Now R̂ can be expanded to the following form for any
definition of Bi:

x x x

x x x x x w x x x x x

R
R B B
, ,

, , , , , , 4i i

1 2 3

1 2 3 3 1 2 1 2 3 1 2

ˆ ( )
( ) ( ) ( ) ( ) ( )

where wi are warping functions to ensure equation (4) is able
to describe all possible deformations. No assumption is made

Figure 1. Schematic of plate deformation.
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on the shape of warping functions and their exact expression
will be solved later. In order to uniquely determine Bi, six
constraints are introduced. The first three constraints are set in
the way of

w x x x c w x x x, , , , , 0, 51 2 3 3 1 2 3( ) ( ) ( )

where 1 2
T( ) [( ) ( ) ] and c contain three free variables

independent of x3.
Two more constraints can be specified by setting B3

normal to the reference surface of the deformed plate. Here
transverse shear and thickness change are still allowed
because of the warping functions, which differentiate the
present work from those based on hypotheses. It is still pos-
sible for Bα to rotate around B3, so we introduce

B R B R 61 ,2 2 ,1· · ( )
to be the last constraint.

Terms in the deformation gradient tensor are defined as

F B G g b , 7ij i k
k

j· · ( )
where Gi are the covariant base vectors in the deformed state

and G g,i x
iR

i

ˆ
are the contravariant base vectors in the

undeformed state and for plates, gi=bi. Then the 3D strain
field can be derived from decomposition of the rotation tensor
[34]

F F
1

2
, 8ij ij ji ij( ) ( )

where δij is the Kronecker symbol.
For expressing the 3D strain field in terms of 2D strains,

one can define 2D generalized strains in the same way as [28]

R B B , 9, ( )
K KB B B B B , 10i i, 3 3 3( ) ( )

where εαβ  and Kαβ  are 2D generalized membrane strains
and curvatures, and a comma in the subscript implies partial
derivative. Strains are assumed to be small compared to unity
and warping functions are of similar magnitude to strain when
only geometric nonlinearity is considered. Now one can
derive the 3D strain field expression to be

x I w w e w w, 2 , ,

11
e s t3 , 3, 3

( )
where ( )′ implies partial derivative with respect to x3 and

2 , 2 2 2 ,

12
e s t11 12 22

T
13 23

T
33[ ] [ ]
( )

and

K K K K2 , 1311 12 22
T

11 12 21 22
T[ ] [ ] ( )

and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥I I e e

1 0
0 1
0 0

,
0 0
1 0
0 1

, 1
0

, 0
1

14

1 2 1 2{ } { }
( )

So far kinematics of a plate is formulated. However, for
coupled piezoelectric laminated plates, the electric field
should also be taken into account along with the mechanical
field. The electric field can be defined using the electric
potential f(x1, x2, x3)

⎡⎣ ⎤⎦E E E E E, . 15s t1 2
T

,1 ,2
T

3[ ] ( )

In this study the electrodes of the piezoelectric plate are
coated on the top and bottom surfaces or interfaces between
layers. The electrodes are assumed to be of negligible thickness
and have no influence on the mechanical properties of the plate.
Then the electric potential can be specified at x3=hi, where hi
refers to the position of surface or interface and where i indi-
cates the numbering of layers varying from 1 to k+1 and k is
the total number of layers. Although temperature load is con-
sidered in the work, it is only one-way coupling so temperature
change T(x1, x2, x3) is treated as a known function.

2.2. Energy formulation

The elastodynamic behavior of a piezoelectric laminated plate
is governed by the extended Hamilton’s principle [35]

⎡⎣ ⎤⎦ td 0, 16
t

t

1

2 ( ) ( )

where t1 and t2 are arbitrary fixed times; is the kinetic
energy; is the internal potential energy related to strain,
electric field and temperature; is the virtual work of
external loads. Kinetic energy can be neglected in static
problems, so it is not discussed here, even though the theory
developed here is also applicable to dynamic problems of
plate structures vibrating at low frequencies.

For piezoelectric structures with thermal loads, the
internal potential energy can be expressed as the integral of
the area potential energy density

d , 17( )

where Ω is the area domain of the reference surface and
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where Ce, Ces, Cet, Cs, Cst and Ct are the submatrices of the
partitioned 6×6 material’s elastic constant matrix; eb, eet, es,
ea, ec and et are the submatrices of the partitioned transpose of
the 3×6 piezoelectric stress coefficient matrix; αe, αs and αt

are the submatrices of the partitioned 6×1 thermal
expansion coefficient matrix; ds, det and dt are the submatrices
of the partitioned 3×3 dielectric constant matrix; ps and pt
are the submatrices of the partitioned 3×1 pyroelectric
coefficient matrix.

The virtual work in the plate due to the applied loads can
be calculated as

*, 192D ( )
where

f q m Q q x Q sd d ,

20
i i

s
i i

2D

3( ) ( )
( )

*

P w w w Q w sd d

21
i i i i i i

s
i i( )

( )
and s is the boundary of the reference surface; Pi is the
applied body force; τi is the applied traction on the top surface
and βi is the applied traction on the bottom surface; Qi are the
applied tractions on the lateral boundary surfaces. The + and
− signs in superscripts denote the value at the top and bottom
surface respectively. The virtual displacement and rotation
can be defined in a similar way as the definition of 2D general
strains, so that

qR B B B B B B, ,

22
i i i i2 1 1 2 3 3( )

( )
where qi and i are the virtual displacement and rotation
components in the Bi bases respectively. Generalized forces
and moments fi and mα are defined as

f P m x P
h

,
2

. 23i i i i 3 ( ) ( )

In this study, the goal is to obtain a constitutive relation of the
interior part of the plate, so the second term in equation (21)
can be safely neglected as it represents the edge effects.

Up to this point, the 3D continuum model of the ther-
mopiezoelastic plate is ready to be reduced to a 2D plate
model by a through-the-thickness analysis using the VAM.

3. Dimensional reduction

Before using the VAM, it is necessary to recognize the order
of terms in the expression. Based on the definition of a plate
structure, the ratio of thickness over the characteristic in-plane
dimension of the reference surface is much smaller than one,
that is, h l 1. As only geometric nonlinearity is con-
sidered, strains are assumed to be small, that is, Γij∼εαβ
∼hKαβ∼ò 1, so ò can represent the order of all strains.
Because of the equilibrium condition for plate structures, the

orders of external loads can be determined to be

⎜ ⎟⎛
⎝

⎞
⎠

hP
h

l
Q

hP
h

l

Q
h

l

,

,

, 24

3 3 3

2

3 ( )

where material constants have the order of μ.

3.1. Zeroth-order reduction

In the zeroth-order reduction, the energy is expanded into the
order of (hl2)μò2. Because of the order of external loads,
warping functions wi and electric potential f only appear in
the area potential energy density, so it is more convenient to
directly work on .0 The variation of 0 can be calculated to
be

⎡⎣
⎤⎦

⎡⎣
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where and λ3 are Lagrange multipliers for introducing the
constraints in equation (5). Warping functions wi are free to
vary at the top and bottom surfaces but electric potential is
free to vary only when it is not prescribed at those locations.
The Euler–Lagrange equations of equation (25) can be written
as

x C w C w C e

C C C T 0, 26
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where is an arbitrary function independent of x3 generated
by indefinite integration. Expressions of the warping function
and electric potential for each layer can be solved from
equations (26)–(28), giving
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where the starred quantities are introduced for simplifying the
expression, and
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It is impossible to determine the expression of without
knowing the electric boundary condition, but a general form
of function can be written as

. 33T T ( )

Substituting equations (29)–(31) into ,0 the zeroth-
order asymptotically correct expression of the potential
energy density can be obtained as
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* *
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Terms not relating to 2D generalized strains are all dropped
because they will not affect the total energy when the plate is
deformed. It can be found from equation (35) that the stiffness
matrices A*, B* and D* not only depend on material elastic
constants, but also piezoelectric coefficients and dielectric

constants. Temperature change and applied electric field can
affect the values of Sò and Sκ, which provide additional
contributions to the total potential energy.

Up to this point, the original 3D problem has been
reduced to a 2D plate problem. It is obvious that even though
the plate is a piezoelectric smart plate, the 2D energetics has
the same form as the classical lamination theory (CLT) with
thermal load except that the temperature related term is
extended to contain the piezoelectric effect.

The stiffness matrices in equation (34) can be used in a
plate analysis for prediction of global plate behavior. How-
ever, in many cases it is also valuable to acquire the 3D
quantities of the plate structure. In such situations, 3D fields
are required to be recovered via the 2D results. For the zeroth-
order approximation, the 3D strain field and electric field can
be recovered by neglecting terms with derivatives with
respect to xα in equations (11) and (15), obtaining

x w w, 2 , , 38e s t
0

3
0 0

3 ( )

E E0, . 39s t
0 0 ( )

The 3D stress field and electric displacement field can be
obtained using 3D constitutive relations of elasticity and
piezoelectricity.

From the second equation in (38) it can be found that the
transverse shear and normal strains are not zero, which means
lines normal to the reference surface in the undeformed plate
are deformable, distinguishing the current model from the
CLT. In the zeroth-order reduction, transverse shear and
normal stresses are identically zero because their expressions
coincide with the Euler–Lagrange equations in (26) and (27).
This result is a direct deduction from the variational statement
instead of an ad hoc assumption. Similarly, electric dis-
placement in x3 direction is always equal to because of the
Euler–Lagrange equation (28). Though at this stage transverse
shear and normal stresses cannot be predicted, they can be
estimated in a higher-order approximation.

3.2. First-order reduction

To improve the accuracy as well as predict transverse stresses,
dimensional reduction of the first-order is required. In this
reduction, strains are expanded into the order of h

l
and the

resultant energy is in the order of hl .h

l
2

2
2( )( ) Then the

warping functions and electric potential are perturbed to be
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Up to this order, virtual work of applied loads is not
negligible, so the total potential density with virtual work
added can be defined as

W , 41( )
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w P w w w . 42

T T

T
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In the zeroth-order approximation, the formulation is for fully
anisotropic materials, but it becomes tedious in higher-order
derivation. Since most piezoelectric and composite materials
present at least monoclinic symmetry about the mid-plane, it
would be adequate for practical use to consider this material
symmetry. Consequently, Ces, Cst, eb, ea, ec, det and αswill always
vanish. Then the warping functions and electric potential in each
layer solved during the zeroth-order reduction can be rewritten as
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where the ‘0’ in the superscript denotes that the quantity is
from the zeroth-order reduction.

Taking the variation of the total potential density gives
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Equaling this to zero, the simplified Euler–Lagrange
equations can be derived to be
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where ˆ is a function independent from x3, and
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Boundary terms generated by integration by parts about the xα
coordinates are not considered as the study aims at seeking an
internal solution. As a result, integration by parts with respect
to the in-plane coordinates is freely used when convenient in
the following derivation.

From equations (47)–(49), it can be found that v is
decoupled from v3 and j, so they can be solved separately.
Solving equations (47) and (48) gives
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Warping functions v can be solved using equation (49)
along with the boundary conditions of

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
C v e w e

C v e w e

,

53

s s

s s

3,
0

,
0

3,
0

,
0

( )
( ) ( )

resulting in
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where Lα are constants generated by the integral and will be
used as optimization parameters to find the optimal Reissner–
Mindlin model later. In order to satisfy the constraints in
equation (5), the coefficients in equation (54) should have
D g0, 0,¯ ¯ and L c h.,

Substituting the solution of v v, 3 and j, the asymptoti-
cally correct expression of the total potential density Π1 to the
second-order is
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and (αβ) in the subscript indicates the (α, β)th element in the
corresponding matrix.

3.3. Transformation to the Reissner–Mindlin model

Though equation (58) is asymptotically correct to the second
order, it is inconvenient for practical use because it contains
derivatives of the 2D generalized strain, making the boundary
conditions hard to define physically. For practical use, we can
transform it into a model having the same form as the Reissner–
Mindlin model. To do so, two transverse shear strains need to
be introduced along with another orthogonal triad *Bi in the
deformed plate to redefine the 2D generalized strains, so that

* * * *R B B B2 , 65, 3 3 ( )

* * * * * * *K KB B B B B 66i i, 3 3 3( ) ( )

with the transverse shear strains as ⎡⎣ ⎤⎦2 2 .13 23
T

Kinematic identity can be found between the former 2D
generalized strain and Reissner–Mindlin 2D generalized
strain as

, 67, ( )
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Substituting equation (67) back into equation (58) and
neglecting higher-order terms, it becomes
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Compared to the potential energy of the Reissner–Mindlin
model, which has the form of

A G F F2 2 2 71T T T T ( )
further derivation is still required to completely eliminate
terms with partial derivatives of the 2D generalized strains in
equation (70). This can be achieved by utilizing the plate
equilibrium equations about in-plane moments and transverse
shear forces. Then equation (70) can be rewritten as

*A G F F U2 2 2 , 721
T T T T ( )

where

*F S U B C D, 2

73

T
, ,1

T
,1 ,1

T
,2 ,2

T
,2¯ ¯ ¯

( )
and

B B A G A C C A G A
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2
T
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In the most ideal case, U* can be driven to be zero for any
and the transverse shear stiffness matrix can be solved

exactly, leading the asymptotically correct total potential in
equation (72) to have the same form as the Reissner–Mindlin
model in equation (71). However, this is impossible for most
multi-layered, piezoelectric composite plates, so an optimiz-
ation process is required to minimize U* and thus minimize
the error between the asymptotically correct expression and
the Reissner–Mindlin form. The accuracy of the Reissner–
Mindlin model is influenced by the deviation of U* from zero.
Considering symmetry, there are totally 78 quantities in B C,¯ ¯
and D̄ that are required to be zero, and there are 27 optimi-
zation parameters, 3 in G and 24 in Lα. To make U* as close
to zero as possible under any strain field, an overdetermined
linear system with 78 equations and 27 unknowns is con-
structed, then the least-squares method is implemented to
solve for the 27 unknowns.

By the optimization process, the best transverse shear
stiffness matrix G can be obtained to complete the transfor-
mation to the Reissner–Mindlin-like model. Similar to the
zeroth-order model, the current first-order model can be
directly applied in any thermopiezoelastic Reissner–Mindlin
plate analyses with equivalent stiffness matrices A, G, F and
Fγ calculated from plate geometry and material constants.
Piezoelectricity, thermal expansion and pyroelectricity are
coupled in the stiffness matrices along with elasticity.

From equation (4), the 3D displacement field Ui can be
easily recovered using the 2D displacement field ui and
warping functions wi, that is

U u x w . 75i i i i j ji3 3 3( ) ( )
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For the first-order approximation, the 3D strain field can be
recovered to be

x v e w w v, 2 , .
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Then 3D stresses up to the first-order can be obtained. The
first-order model can predict the transverse shear strains and
stresses, but the transverse normal stress still vanishes. For
predicting transverse normal stress, the warping functions
should be perturbed once more to be
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Using a similar procedure as the first-order reduction, the
expression of the warping functions and electric potential can
be obtained. That is
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and ˆ̂ is an arbitrary function of xα.

Table 1. Material properties of the plates.

Properties PVDF Polyimide PZT-4
S glass/
epoxy

C11 (GPa) 3.61 3.85 139.02 48.5
C12 (GPa) 1.61 1.98 77.85 5.82
C13 (GPa) 1.42 1.98 74.33 5.82
C22 (GPa) 3.13 3.85 139.02 12.7
C23 (GPa) 1.31 1.98 74.33 6.7
C33 (GPa) 1.63 3.85 115.45 12.7
C44 (GPa) 0.55 0.93 25.6 3
C55 (GPa) 0.59 0.93 25.6 4.5
C66 (GPa) 0.69 0.93 30.6 4.5
e31 (C/m

2) 0.0105 0 −5.2 0
e32 (C/m

2) −0.0117 0 −5.2 0
e33 (C/m

2) −0.0284 0 15.08 0
e24=e15
(C/m2)

−0.0122 0 12.72 0

d11 (×10−9

C2/(Nm2))
0.0651 0.031 13.06 0.056

d22 (×10−9

C2/(Nm2))
0.0821 0.031 13.06 0.056

d33 (×10−9

C2/(Nm2))
0.0686 0.031 11.51 0.056

α1 (×10−6 K−1) 130 20 3.8 5
α2 (×10−6 K−1) 130 20 3.8 26
α3 (×10−6 K−1) 130 20 1.2 26
p1=p2 (×10−6

C/(Km2))
30 0 0 0

p3 (×10−6

C/(Km2))
30 0 −170 0

Figure 2. Distribution of transverse normal strain through thickness
at the center.
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Even though it is possible to derive the energy expression
to the fourth-order for the plate analysis with warping func-
tions and electric potential presented above, it is unnecessary
to do so because it is too complex for practical use. Conse-
quently, 2D plate model derived from first-order reduction is
still adopted, while the recovery considers the strains in
second-order, that is

x I v
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The 3D stress field and electric displacement can be recovered
based on equation (18).

4. Numerical examples

Four examples are provided to verify the present work. The
plates in the four examples have the same in-plane dimen-
sions, 140 mm×140 mm, with different layups, thicknesses,
or boundary conditions. The origin of the coordinate system is
located at the bottom left. Materials used in the examples are
shown in table 1. The model in this paper is implemented in
ABAQUS using the shell element S8R, with sectional stiff-
ness calculated using the presented theory. Results are

Figure 3. Distribution of transverse shear strain and stress through thickness at x1=0.07 m, x2=0.105.

Figure 4. Distribution of transverse normal strain and stress through thickness at the center.
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compared with 3D finite element analysis with detailed
material properties of each layer in ABAQUS.

4.1. Two-layer plate

In example 1, the plate has two layers. The bottom layer is a
PVDF piezoelectric layer, with the thickness of 0.05 mm, and
the upper layer is a polyimide layer, with the thickness of
0.1 mm. Since the aspect ratio of this plate is very large, using
the zeroth-order model can have sufficient accuracy. The plate
has a simply supported boundary. Thermal load is 5 K in the
whole plate. The bottom surface is charged with 300 V, and
the interface between two layers is grounded. The 3D finite
element model uses 240 000 C3D20RE 3D piezoelectric
quadratic elements. In the thickness direction, 9 nodes are in
the polyimide layer and 5 in the PVDF layer.

The result of transverse normal strain is shown in
figure 2. Thickness coordinate x3 is normalized by z x h3¯
in the plots. Since this plate is very thin, the strain distribution
is quite linear through the thickness. Due to the large α3 of
PVDF, transverse normal strain in the PVDF layer is much
larger. Note that this accurate prediction in comparison to the
detailed 3D analysis, is directly obtained from the present
theory and a 2D plate analysis in ABAQUS. Though not
shown here, other quantities also have excellent accuracy.

4.2. Three-layer simply supported plate

In example 2, the plate consists of three layers. From the
bottom to the top, the first layer is PZT-4 orienting 0°, the
second is S glass/epoxy orienting 90° and the third is S glass/
epoxy orienting 0°. Each layer has a thickness of 5 mm. As

Figure 5. Distribution of transverse shear strain and stress through thickness at x1=0.07 m, x2=0.105.

Figure 6. Distribution of transverse normal strain and stress through thickness at the center.
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this plate is much thicker, the first-order model is used.
Thermal load is 5 K in the whole plate. The bottom surface
has a prescribed electric potential of 600 V, and the interface
between the first and second layer is grounded. The 3D finite
element model contains 797 970 C3D10E tetrahedron ele-
ments, with 17 nodes through the thickness in each layer.

Representative results are shown in figures 3 and 4. It can
be found that the continuity of transverse shear and normal
stresses through the thickness is satisfied. A quadratic dis-
tribution of transverse shear strain and stress through the
thickness that is similar to a 3D theory is accurately predicted
by the present single-layer equivalent model. σ33 is an order
smaller than σ23 because transverse shear stresses are recov-
ered from the first-order model while transverse normal stress
is from the second-order model.

4.3. Three-layer clamped plate

In example 3, the plate is the same as the one in example 2,
but with a clamped boundary condition. In addition to the
thermal load and electric charge, a uniformly distributed load
of 10 kPa is applied downwards on the top surface. The 3D
model is also the same as the one in example 2 except for the
loads, while in order to ensure the plate model to have the
same boundary condition as the 3D model, its boundary
region is modelled in 3D, with a solid to plate coupling with
the interior region.

The results are shown in figures 5 and 6. It can be found
that the accuracy of the model remains well with different
boundary conditions. In this example, the pressure applied on
the top surface generates a traction of τ3=−10 kPa at

Figure 7. Distribution of transverse shear strain and stress through thickness at x1=0.07 m, x2=0.105.

Figure 8. Distribution of transverse normal strain and stress through thickness at the center.
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z 0.5,¯ which is a boundary condition for σ33. From
figures 5 and 6 it can be observed that stresses predicted by
the theory can satisfy the traction boundary conditions at the
top surface.

4.4. Eight-layer plate

In example 4, the plate has two PZT-4 layers on the top and
bottom surfaces, and six S glass/epoxy layers between them
with stacking sequence as [90°/0°/45°/−45°/0°/90°]. All
layers have the same thickness of 2 mm. The boundary con-
dition is simply supported. Temperature change is 5 K in the
plate; a 10 kPa downward pressure is applied on the top; the
top and bottom surfaces are charged with 600 V, and inter-
faces between PZT-4 and S glass/epoxy layers are grounded.
1 053 966 C3D10E elements are used in the 3D FEA, with 9
nodes through the thickness in each layer.

Results are shown in figures 7 and 8. It can be observed
that transverse normal stresses can still satisfy the boundary
condition at the top, though the distribution through the
thickness is more complex. For transverse shear strains and
stresses, quadratic distribution is not as obvious as in the
previous two examples because the thickness of every single
layer is relatively small, while discrepancies occur as the
complicated layup causes a stronger 3D behavior, making the
higher-order terms contribute more to the results. If more
accurate results are required, higher-order models should be
developed.

5. Conclusion

In this paper, a laminated anisotropic plate model with ther-
mal and piezoelectric effect is constructed based on the VAM.
The main focus is on the interior constitutive model of the
plate. For modeling, the original 3D plate problem is sepa-
rated into a 1D through-the-thickness analysis and a 2D
reference surface analysis. Recovery of 3D fields using 2D
plate behavior is also made possible in the model. The fol-
lowing accomplishments are achieved in this work.

(i) In formulating the 3D strain field, warping functions are
introduced to describe every possible shape in the
deformed state. Then 3D strains containing 2D general-
ized strains and warping functions are obtained.

(ii) Beginning from the energy expression, the dimensional
reduction is implemented by first dropping smaller
terms. Then, variation of the energy is taken to solve for
warping functions and electric potential, and to
construct equivalent constitutive relation. The warping
functions are solved for a zeroth-order model resem-
bling the CLT and a first-order model being trans-
formed into the Reissner–Mindlin model. Higher-order
warping functions are also solved for better recovery of
the 3D fields.

(iii) Several numerical examples are studied for validating
both the zeroth-order model and the first-order model.
The zeroth-order model is shown to be accurate for thin

plates. The first-order model can provide an accurate
prediction even if the plate gets thicker. Different
laminations, boundary conditions and load combina-
tions in the examples verify the robustness of the
model.

It should be emphasized that the mathematical derivation
of the present work follows a rigorous procedure that does not
involves any a priori kinemtic assumptions as commonly
invoked in other approaches. Terms dropped in the current
model are because of their smallness in order and will appear
if the model is further derived into a higher order.
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ABSTRACT

To avoid the difficulty of applying periodic boundary conditions and deal with

aperiodic heterogeneous materials, a new micromechanics theory is developed based

on the mechanics of structure genome. This new theory starts with expressing the

kinematics including both displacements and strains of the original heterogeneous

material in terms of those of the equivalent homogeneous material and fluctuating

functions with the kinematic equivalency enforced through integral constraints of the

fluctuating functions. Then the principle of minimum total potential energy can be

used along with the variational asymptotic method to formulate the variational state-

ment for the micromechanics theory. As this theory does not require boundary condi-

tions, one is free to choose the analysis domain of arbitrary shape and they need not

be volumes with periodic boundaries. This theory can also handle periodic materials

by enforcing the periodicity of the fluctuating functions. To demonstrate the appli-

cation of this new theory, we will compare the results of different micromechanics

approaches for both periodic and aperiodic materials.

INTRODUCTION

Micromechanics seeks to model heterogeneous material as an equivalent homoge-

nous material. The first aim of micromechanics is to predict the effective macroscopic

properties, commonly called homogenization. The second aim of micromechanics is

to predict the local fields such as stress and strain fields within the microstructure

from the macroscopic behavior. This step is commonly called dehomogenization or

localization, which is very critical for evaluating the strength and failure of heteroge-
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neous materials, although usually neglected by most micromechanics models.

In addition to the governing equations established in continuum mechanics, most

micromechanics models need to choose an analysis domain, commonly called rep-

resentative volume element (RVE), and prescribe boundary conditions (BCs). RVE

was defined as a material volume entirely typical of the whole mixture on average

and contains a sufficient number of inclusions for the apparent overall properties to

be effectively independent of the boundary conditions [1]. Although this definition

is theoretically sound on the ergodic principle, it creates a paradox. On one hand,

RVE must include a large number of heterogeneities to be representative, while on

the other hand, it must be small enough to be justified as a material point for the

macroscopic structural analysis. For periodic materials, the smallest RVE can be the

repeating unit cell (UC) of the material if periodic boundary conditions are applied.

For aperiodic materials, RVEs are usually chosen out of practical considerations de-

spite the requirements of a rigorous RVE based on the ergodic principle.

The boundary conditions we can apply to an RVE is usually governed by the

Hill-Mandel macrohomogeneity condition so that the homogenized material is ener-

getically equivalent to the original heterogeneous material. Three types of boundary

conditions satisfying Hill-Mandel macrohomogeneity condition are commonly used:

statically uniform boundary conditions (SUBCs), kinematically uniform boundary

conditions (KUBCs), and periodic boundary conditions (PBCs).

Pindera et al. [2] summarized the literature which numerically investigated the

influence of the RVE size and boundary conditions. SUBCs and KUBCs lead to

lower and upper estimates of the effective properties, respectively, compared to PBCs.

In addition, predictions using SUBCs and KUBCs converge to those of PBCs with

increasing analysis domain size.

In addition, Mesarovic et al. [3] proposed Minimal Kinematic Boundary Condi-

tions (MKBCs) with linearized kinematics for simulations of disordered microstruc-

tures based on Cauchy continuum, later this theory is extended in [4] for higher-order

numerical homogenization schemes. For three-dimensional (3D) problems, MKBCs

include three constraints to remove rigid translation, three constraints to remove rigid

rotation, and constraints corresponding to the homogenized strain definitions. Later,

in [5], the three rotation constraints are removed from MKBCs for micromechanics

using infinitesimal strains. It has later been proved that the first-order homogeniza-

tion schemes based on the MKBCs predicts uniform traction on the boundary of RVE

if no body force is included [5].

Recently, de Souza Neto et al. proposed a generalized unified micromechnics the-

ory [6], in which the Hill-Mandel Principle is rephrased as a variational statement by

requiring the total macro-scale virtual power to coincide with the volume average of

its micro-scale counterpart, named the principle of multiscale virtual power. With this

new principle, various problems such as dynamics, high order strain effects, material

failure can be addressed.

In this paper, we will develop a new theory based on the the concept of structure

genome (SG), which is defined as the smallest mathematical building block of the

structure in [7]. This new theory starts with expressing the kinematics including both

displacements and strains of the original heterogeneous material in terms of those

of the equivalent homogeneous material and fluctuating functions with the kinematic
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equivalency enforced through integral constraints of the fluctuating functions. Then

the principle of minimum total potential energy is used along with the variational

asymptotic method to formulate the micromechanics theory. As this theory does not

require boundary conditions, one is free to choose SG of arbitrary shape and they need

not be volumes with straight boundaries. This theory can also accommodate periodic

materials by enforcing the periodicity of the fluctuating functions. The new theory

is implemented using the finite element method into a general-purpose multiscale

constitutive modeling code called SwiftCompTM. To demonstrate the application of

this new theory and the companion SwiftCompTM code, we will compare the results

of different micromechanics approaches for both periodic and aperiodic materials.

THEORY OF THE NEW MICROMECHANICS

Concept of structure genome

SG is so named to emphasize the fact that it contains all the constitutive informa-

tion needed for a structure the same fashion as the genome contains all the intrinsic

information for an organism’s growth and development. For periodic structures, it is

easy to identify the SG as described later. However, for real structures in engineering,

we rely on the expert opinion of the analysts to determine what will be the smallest,

representative building block of the structure. This liberal definition is intended for

maximizing the freedom in choosing the SG. It can be justified from the view point

of material characterization using experiments. When experimentalists want to find

properties of a material, they cut representative pieces of the material according to

their own judgment, make a specimen out of it and do the testing to get the proper-

ties and associated statistics. As we are not doing physical experiments, SG is thus

defined as the smallest mathematical building block.

SG generalizes from the RVE concept with two fundamental differences. First,

SG allows a direct connection with the macroscopic structural analysis, particularly

for dimensionally reducible structures which have one or two dimensions much smaller

than the other dimensions. Second, even if the macroscopic structural analysis uses

a 3D model (Figure 1), SG-based theory could be more efficient than those based

on RVE. For a structure made of composites featuring one-dimensional (1D) hetero-

geneity (e.g. binary composites made of two alternating layers), SG will be a straight

line with two segments denoting corresponding layers. Mathematically speaking, we

can repeat this straight line in plane to build the two layers of the binary composite,

then we can repeat the binary composite out of plane to build the entire structure. For

a structure made of composites featuring 2D heterogeneity (e.g. continuous unidirec-

tional fiber reinforced composites), the SG will be a two-dimensional (2D) domain,

and for a structure made of composites featuring 3D heterogeneity (e.g. particle re-

inforced composites), the SG will be a 3D volume. Despite of the dimensionality

of SGs, the effective properties obtained from SG are 3D. For example, for linear

elastic behavior, one should be able to carry out a 1D analysis over the SG of binary

composites to obtain the complete 6× 6 stiffness matrix. Clearly, SG uses the lowest

dimension, thus highest efficiency, to describe the heterogeneity, while RVE dimen-
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sion is determined by heterogeneity and by what type of properties required for the

macroscopic structural analysis. If 3D properties are needed for a 3D structural anal-

ysis of continuous unidirectional fiber reinforced composites, a 3D RVE is usually

required.

+

2D SG 3D SG

1D SG

Figure 1. SG for 3D structure (cited from Ref.[7])

Theoretical formulation

To facilitate the formulation, two coordinate systems are set up. The macro co-

ordinate system x = (x1, x2, x3) is applied to describe the original heterogeneous

structure, while micro coordinate system y = (y1, y2, y3) is introduced to denote the

rapid change in the material characteristics in SG, (Here and throughout the paper

Latin indices assume 1, 2, and 3. Repeated indices are summed over their range

except where explicitly indicated). As the size of SG is much smaller than the wave-

length of the macroscopic deformation, we denote yi = xi/ε, with ε being a small

parameter. A field function of the original heterogeneous structure can be generally

written as a function of the macro coordinates xi and the micro coordinates yi. The

partial derivative of a function f(xi, yj) can be expressed as

∂f(xi, yj)

∂xi

=
∂f(xi, yj)

∂xi

|yj=const +
1

ε

∂f(xi, yj)

∂yi
|xi=const ≡ f,i +

1

ε
f|i (1)

As stated before, SG can be 1D, 2D or 3D based on the microstructure heterogeneity.

If a SG is 1D, only y3 is needed; if a SG is 2D, y2 and y3 are needed; if a SG is

3D, all three coordinates y1, y2, y3 are needed. For generality, we will formulate the

theory for 3D SG which can be easily reduced to deal with 1D or 2D SGs. Although

the proposed framework is general to handle most of micromechanics problems, this
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paper focuses only on the linear, elastic, static behavior of Cauchy continuum with

infinitesimal strains.

To replace the original heterogeneous material with an equivalent homogeneous

material, we need to first assume that the average displacement can be represented by

the equivalent homogeneous material, in other words,

vi =
1

Ω

∫
Ω

ui dΩ ≡ 〈ui〉 (2)

where ui denotes the displacement of the heterogenous material, vi denotes the dis-

placement of the homogeneous material, Ω denotes the domain occupied by the SG

and its volume, 〈·〉 denotes the volume average over a SG.

We are free to express the displacement of the original heterogeneous material as

ui(x;y) = vi(x) + εχi(x;y) (3)

with χi termed as fluctuating functions. According to Eq. (2)

〈χi〉 = 0 (4)

If the original heterogeneous structure is made of materials described using a

Cauchy continuum, the infinitesimal strains is defined as

εij(x;y) =
1

2

[
∂ui(x;y)

∂xj

+
∂uj(x;y)

∂xi

]
= ε̄ij + χ(i|j) + εχ(i,j) (5)

with ε̄ij = v(i,j). Here, the parenthesis in the subscripts denotes a symmetric oper-

ation, for example, v(i,j) =
1
2
(vi,j + vj,i). The last term in Eq. (5) is asymptotically

smaller than the first two terms and its contribution to the energy can be neglected

according to the variational asymptotic method [8]. As the equivalent homogeneous

material is what we created mathematically to approximate the original heteroge-

neous material, we need to define the strain field in terms of that of the original

heterogeneous material. For 3D structures, the natural choice is

ε̄ij ≡ 〈εij〉 (6)

In view of Eq. (5) and (6), we have the following constraints on the fluctuating func-

tion: 〈
χ(i|j)

〉
= 0 (7)

The elastic behavior of the original heterogeneous is governed by the principle of

minimum total potential energy. If we are only interested in the constitutive relations,

we can neglect the effects of loads and the potential energy becomes strain energy.

Then we need to minimize the strain energy of the heterogeneous material along with

the constraints in Eqs. (4) and (7), which means we need to minimize the following

functional:

J = 〈1
2
Cijklεijεkl〉 = 〈1

2
Cijkl

(
ε̄ij + χ(i|j)

) (
ε̄kl + χ(k|l)

)〉 − λkl〈χ(k|l)〉 − ηi 〈χi〉 (8)

where λkl and ηi are Lagrange multipliers to enforce the constraints in Eqs. (7) and

(4), respectively. Note λij = λji.
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Finite element implementation

To solve Eq. (8) for general cases, we need to turn to numerical techniques such

as the finite element method (FEM). It is possible to formulate the FEM solution

based on Eq. (8) directly, however since the constraints in Eq. (4) do not affect the

minimum value of J but help uniquely determine χi, in practice we can constrain the

fluctuating functions at an arbitrary node to be zero and later use these constraints to

recover the unique fluctuating functions. Introduce the following matrix notations

ε̄ = ε̄11 ε̄22 ε̄33 2ε̄23 2ε̄13 2ε̄12�T (9)

ε = ε11 ε22 ε33 2ε23 2ε13 2ε12�T (10)

λ = λ11 λ22 λ33 λ23 λ13 λ12�T (11)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂χ1

∂y1
∂χ2

∂y2
∂χ3

∂y3
∂χ2

∂y3
+ ∂χ3

∂y2
∂χ1

∂y3
+ ∂χ3

∂y1
∂χ1

∂y2
+ ∂χ2

∂y1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂y1

0 0

0 ∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 ∂
∂y1

∂
∂y2

∂
∂y1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ χ1

χ2

χ3

⎤
⎥⎦ = Γhχ (12)

where Γh is an operator matrix and χ is a column matrix containing the three compo-

nents of the fluctuating functions. Discretize χ using the finite elements as

χ(xi; yj) = S(yj)V (xi) (13)

where S represents the shape functions and V a column matrix of the nodal values of

the fluctuating functions.

Substituting Eqs. (9), (10), and (13) into Eq. (8), we obtain a discretized version

of the functional J as

J =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄

) − λTDT
hλV (14)

where

E =
〈
(ΓhS)

T D (ΓhS)
〉

Dhε =
〈
(ΓhS)

T D
〉

Dεε = 〈D〉 Dhλ = 〈ΓhS〉T

(15)

with D as the 6× 6 material matrix condensed from the fourth-order elasticity tensor

Cijkl of the heterogeneous material. Minimizing J in Eq. (14) gives us the following

linear system [
E −Dhλ

−DT
hλ 0

] [
V

λ

]
=

[
−Dhεε̄

0

]
(16)

It is clear that V will linearly depend on ε̄, and the solution can be symbolically

written as

V = V0ε̄ (17)
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With the solution in Eq. (17), we can calculate the strain energy storing in the SG as

the first approximation as

U =
1

2
ε̄T

(
Dεε + V T

0 Dhε

)
ε̄ ≡ Ω

2
ε̄TD̄ε̄ (18)

where D̄ is the effective stiffness matrix to be used in the macroscopic structural

analysis.

The local fields within the SG can also be recovered easily based on the global

displacement vi and global strain ε̄. First knowing ε̄, we can compute the fluctuating

function as

χ = SV0ε̄ (19)

The local strain field can be recovered using Eq. (12) as

ε = ε̄+ ΓhSV0ε̄ (20)

The local stress field can be obtained directly using the Hooke’s law as

σ = Dε. (21)

VALIDATION AND APPLICATION

The present theory is implemented in the general-purpose multiscale constitutive

modeling code, SwiftCompTM. Note that within the framework of the proposed the-

ory, other constraints can be easily added to Eq. (8). For example, if a microstructure

has periodicity in three directions, PBCs can be used. In this case, PBCs automati-

cally satisfy the constraints in Eq. (7). The present theory can also handle structures

with partial periodicity. For example, if a composite structure has periodicity only

in the in-plane directions x1 and x2, applying PBCs to all the three dimensions of

the SG will result in significant errors which can be seen in the examples in the next

section. In this case in SwiftCompTM, the user are allowed to apply periodic con-

straints to surfaces normal to y1 and y2 according to the periodicity of the material

microstructure, while keep the constraints related to y3 defined by Eq. (7) still be

satisfied in SG. We name these combined constraints as ‘MIX001’, where the ‘0’ at

the first place denotes periodicity in x1 direction, the ‘0’ at the second place denotes

periodicity in x2 direction, and ‘1’ at the third place denotes no extra constraint is

applied at constraints in Eq. (7) related to y3. Following the same way, different com-

bination of constraints can be named as ‘MIXijk’, where the place of the number i, j,

k denotes the corresponding axis direction, and number ‘0’ at i denotes periodicity in

xi direction. Therefore, ‘MIX011’ means periodic constraints are applied to surfaces

normal to x1, ‘MIX010’ means periodic constraints are applied to parallel surfaces

normal to x1 and x3 respectively.

In this section, the convergence study of effective properties calculated by intro-

ducing different constraints is first conducted to show the influence of the different

constraints, and then a realistic woven composite structure is studied using the cur-

rent theory and the SwiftCompTM code. The results are compared with 3D FEA

direct numerical simulation to demonstrate the effectiveness of the theory in both

homogenization and dehomogenization.
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Convergence study: Unidirectional fiber reinforced composite with different
constraints

In order to understand the influence of the different constraints, a case study of

a unidirectional fiber reinforced composite is used. It is made of an isotropic matrix

material (E = 3.54 GPa, ν = 0.37) and a transversely isotropic fiber (EL = 58.61
GPa, ET = 14.49 GPa, GLT = 5.38 GPa, νLT = 0.250, νTT = 0.247) with volume

fraction of fiber equal to 0.6. 3D SG and 2D SG are shown in Figure 2. In the

convergence study, the number of SGs are increased from 1 to 3 in each direction,

therefore the the total number of SGs increased from 1 to 8 and then to 27.

1y

2y
3y

(a) 3D SG

2y

3y

1y

(b) 2D SG

Figure 2. SG of the unidirectional fiber reinforced composite

Homogenization are conducted with different constraints, including PBCs, KUBCs,

SUBCs, and three combined constraints MIX011, MIX010 and MIX001. The results

are presented in Figure 3, in which the vertical axis value r is the relative difference

calculated by Eq. (22)

r = (P − PPBCs)/PPBCs × 100(%) (22)

where P is a certain effective property calculated using the considered constraints,

PPBCs is the corresponding effective property obtained with PBCs using 27 SGs. It is

shown that E1, E2, G12, G13 obtained from combined constraints MIX011, MIX010

and MIX001 lie between the bound values from using KUBCs and SUBCs. And

all the effective properties P show an expected convergence to PPBCs. For SG with

periodicity in all three directions, results remain the same not matter how many SGs

used in the analysis. In addition, if periodicity in any direction is reserved, the re-

lated effective properties will be closer to that obtained from PBCs. Apparently, this

phenomenon is consistent with well accepted observation that KUBCs model gives

the stiffest (most kinematically constrained solution) to the microscopic equilibrium

problem, followed in order of decreasing stiffness by PBCs, and SUBCs.

It is also note worthy that in this case the 3D SG features no heterogeneity in

x1 direction, therefore a 2D SG as shown in Figure 2(b) can be used to produce

exactly the same effective property values with 3D SG once the applied constraints

are identical. For example, if the constraints in Eq. (7) is applied on a 2D SG, the

resulting effective properties are exactly the same with that produced by 3D SG with

MIX011 constraint, since the availability of 2D SG is based on the periodicity in the

x1 direction. The principle also applies to microstructures featuring 1D heterogeneity.
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Figure 3. Convergence study of results
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It is clear that SG uses the lowest dimension, thus has the highest efficiency, as a

micromechanics theory.

Example of 3D orthogonal interlock composites

To demonstrate the potential usage of the proposed theory in practice, a realistic

3D orthogonal interlock composites structure is studied under two loading cases. The

composites structure is constructed by repeating the microstructure of Figure 4 only

in the in-plane direction. The material properties of constituents is listed in Table I.

It is important to note that there is a horizontal portion of z-tow in the upper part of

the repeating SG. Hence only in-plane periodicity is preserved, PBC in the thickness

direction should not be used. To deal with this partial periodicity, Ref. [9] studied this

composite structure by asymptotic expansion homogenization method, predicted the

lamina constants (E1, E2, G12, ν12) of the composite structure and compared them

with that obtained from homogenization implementing PBCs. Furthermore, local

stress fields obtained from biaxial tensile loading are recovered but not compared

with direct FEA results in [9]. According to [9], free traction must be ensured at the

top and bottom surfaces as this is what was assumed in the derivation.

Applying the present theory for this specific case, a good choice of constraints

are periodic constraints applied to the surfaces of SG normal to the micro y1 and

y2 directions in addition to the necessary constraints in Eq. (7) (named ‘MIX001’).

In Table II, the 3D effective properties (E1, E2, E3, G23, G13, G12, ν23, ν13, ν12) pre-

dicted with this set of constraints are presented and compared with those calculated

by applying PBCs to all the directions. Both sets of effective properties are calculated

using the same mesh with global mesh size of 0.15 mm using SwiftCompTM. It is

shown the major differences are in the properties (E3, ν23, ν13) which are related to

the y3 direction.

Next, we want to carry out the dehomogenization procedure to obtain the local

stress distribution and compare those using 3D FEA results. To perform dehomoge-

nization, a 3D structure analysis using 3D elements with obtained effective material

properties is carried out, from which the volume average strain ε̄ of SG is obtained

and then used in dehomogenization. Local stresses from dehomogenization using

constraints MIX001 and PBCs are also compared to show the capability of the cur-

rent theory.

The first case has the same configuration as the biaxial loading case in [9]. The

plate structure has a dimension of 75 × 30 × 3.576 mm3, which contains 25 SGs

along x1 and 5 SGs along x2. The model configuration is shown in Figure 5. De-

homogenization is performed at the SG located at the center of the structure. The

stress distributions on three sampling paths Line A, Line B and Line C shown in Fig-

ure 5 are investigated. The macro coordinates (x1, x2) of the three paths A, B and C

are (37.5, 7.5), (37.5, 8.925) and (38.925, 6.075) respectively. Interested users can

refer to Ref.[9] for specific corresponding SG constituents along thickness direction

of each line. The dominant stress components σ11, σ22 and σ33 at these three paths

through the thickness of the plate structure are compared in (a), (c), (e) of Figure 7,

Figure 8 and Figure 9.

The second case is under a uniform compression loading 1 MPa at the top and
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bottom surfaces through the thickness direction. The detailed settings of the second

loading cases are shown in Figure 6. Normal stresses at Line A (37.5, -7.5), Line B

(37.5, -6.075) and Line C (38.925, -8.925) are compared in (b), (d), (f) of Figure 7,

Figure 8 and Figure 9. It is shown that for such highly heterogeneous composite

structure, the stress distributions agree well with that of 3D FEA except some minor

discrepancy close to the top and bottom surfaces in the thickness direction. Partic-

ularly, σ33 at all the three paths predicted by MIX001 constraints show much better

correspondence compared with those predicted by PBC. In the uniform compres-

sion loading case, some of the shear stress components are in the same order with

the normal stress components. The shear stress components at Line C are shown in

Figure 10. Similarly, the stress distributions predicted by the constraints MIX001

can capture both the variation and the magnitude compared with 3D FEA results.

However while the 3D FEA took 75 minutes with 20 CPUs, the homogenization and

dehomogenization process of the current case cost only 80 seconds with only 1 CPU.

The present theory is clearly more efficient and accurate. Note this structure can also

be analyzed as a plate with the corresponding constitutive relations obtained using a

plate SG in SwiftComp, which is studied in [10].

Microstructure details in each stack 
except the top one

Figure 4. SG of the orthogonal interlock composites (cited from Ref.[9] )
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TABLE I. MATERIAL PROPERTIES OF THE ORTHOGONAL INTERLOCK COMPOS-

ITES

Properties X-tow Y-tow Z-tow Resin region
E1 (GPa) 122.55 7.13 4.96 3.40
E2 (GPa) 7.13 122.55 4.96 3.40
E3 (GPa) 7.13 7.13 148.70 3.40
G12 (GPa) 3.25 3.25 2.45 1.26
G31 (GPa) 3.25 2.53 3.21 1.26
G23 (GPa) 2.53 23.25 3.21 1.26

ν12 0.263 0.015 0.476 0.35
ν31 0.015 0.414 0.335 0.35
ν23 0.414 0.263 0.011 0.35

TABLE II. COMPARISON OF EFFECTIVE PROPERTIES OF WOVEN COMPOSITE

Properties MIX001 PBC Diff % (based on PBC)
E1 (GPa) 59594 59642 -0.08
E2 (GPa) 57145 57515 -0.64
E3 (GPa) 8576 8914 -3.79
G12 (GPa) 2974 2980 -0.20
G13 (GPa) 2658 2663 -0.16
G23 (GPa) 2653 2657 -0.16

ν12 0.0335 0.0342 -1.86
ν13 0.3661 0.3525 3.85
ν23 0.3702 0.3556 4.09

1x

2x

Symmetrical 
Boundary condition

Stress recovery location

3x

10 KN

10 KN
Line B 

Line C
Line A 

Figure 5. Configuration of the 3D orthogonal interlock composite plate under biaxial load
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1x

2x

Fix all Dofs

Symmetrical boundary condition

Stress recovery location

Line B 

3x

Line C
Line A 

Free boundary condition

Uniform compression 1 MPa at
top and bottom surfaces  

Figure 6. Configuration of the 3D orthogonal interlock composite plate under compression

load
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Figure 7. Comparison of stress distributions through the normalized thickness along line A
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Figure 8. Comparison of stress distribution through the normalized thickness along line B
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Figure 9. Comparison of stress distribution through the normalized thickness along line C
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Figure 10. Shear stress distribution through the normalized thickness along line C under

compressive load
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CONCLUSIONS

A new micromechanics theory is developed for both homogenization and deho-

mogenization. The theory is based on the concept of structure genome through mini-

mizing the energy of the original heterogeneous materials. As no boundary conditions

are involved except the constraints to ensure kinematics equivalency between the het-

erogeneous material and the equivalent homogeneous material, the theory can be ap-

plied to SG of arbitrary shape. In addition, this theory provides a general framework

for homogenization and dehomogenization of heterogeneous materials. It can handle

aperiodic materials, materials with partial periodicity, or material with complete peri-

odicity. Second, SG can use the lowest dimension to describe the heterogeneity. This

theory has been implemented into a general-purpose computer code SwiftCompTM

using the finite element method. By using realistic numerical examples, it is demon-

strated that the new theory shows good accuracy compared with the 3D direct FEA

with meshing all the microstructural details. Although in this paper, the most simple

case of linear elastic material undergo small deformation is studied, the present the-

ory can be easily extended to handle more complex situations. The general-purpose

multiscale constitutive modeling code SwiftCompTM can be accessed in the cloud at

cdmHUB.org.
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t̄i
u0
i

0 =

∫
V

u0
iσ

−1
ij,jdV =

∮
∂V

u0
iσ

−1
ij njdS −

∫
V

u0
i,jσ

−1
ij dV

u0
i

σ−1
ij nj

∫
V

u0
i,jCijklu

0
k,ldV = 0

Cijkl

u0
i,j = 0

u0
i (x, y) = u0

i (x) ≡ ūi(x) σ−1
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DISTRIBUTION A: Distribution approved for public release.



u1
k

u1
k = Hmn

k ε̄mn

u1
k Hmn

k

ε1ij

ε0ij(x, y) = ε̄ij +Hmn
(i,j)ε̄mn

ε̄ij =

∫
V

ε0ij(x, y)dV

Hmn
k σ0

ij

σ0
ij(x, y) = Cijklε

0
kl = Cijkl

(
ε̄kl +Hmn

(k,l)ε̄mn

)
=

(
Cijmn + CijklH

mn
(k,l)

)
ε̄mn

σ1
ij

σ̄ij|j + f̄i = 0

σ̄ij =
〈
σ0
ij

〉
=

〈(
Cijmn + CijklH

mn
(k,l)

)
ε̄mn

〉 ≡ C∗
ijmnε̄mn

C∗
ijmn =

〈
Cijmn + CijklH

mn
(k,l)

〉

σ̄ij ε̄ij
ūi
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ABSTRACT

Composite multilayer structures are often modeled using lamination theories. All

lamination theories inherently assume the composite laminate is made of homoge-

neous layers characterized with lamina constants, which will restrict the lamination

theories from capturing the real microstructural details of the composite material,

and thus create artificial layer boundaries and result in many phenomena predicted

by lamination theories occurred at wrong locations. Another drawback of lamina-

tion theories is that the lamina constants can not be rigorously defined. Recently a

new theory called Mechanics of Structure Genome (MSG) has been developed with-

out the homogeneous layer assumption. The variational asymptotic method (VAM)

has been used to minimize the loss of information between the original 3D hetero-

geneous structures and the final equivalent plate model without invoking any ad hoc

kinematic assumptions. To analyze multilayer plates/shells, MSG decouples the orig-

inal 3D problem into a plate analysis and a constitutive modeling over a Structure

Genome (SG), where SG is the mathematical smallest building block of the multilayer

plate/shell structure. Through the analysis of SG, a constitutive relation between the

generalized 2D strains and stress resultants is obtained for the plate analysis which

can be solved at the same computational cost as Classical Laminate Theory (CLT).

Dehomogenization can also be conducted to obtain the displacements, strains and

stresses in the original heterogeneous structure. Several examples will be used to dis-

close the aforementioned flaws of lamination theories and the advantage of MSG. It

is numerically demonstrated that while using the same plate elements in ABAQUS,

MSG has an excellent accuracy compared to 3D FEA in terms of all the displace-

ments and in-plane stress components, as well as a fair agreement of the transverse

normal stress.

Purdue University, West Lafayette, Indiana 47907
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INTRODUCTION

Composite plates and shells are widely used in engineering applications such as

aerospace, naval, automotive and construction industries. They provide the merits

of high strength-to-weight, high stiffness to weight ratios, good fatigue strength and

resistance to corrosion, and the design flexibility of tailoring the material microstruc-

tures to achieve the ever-increasing performance requirements [1]. Composite plates

are usually constructed layered structures, such as laminates, sandwich panels and

part of the woven-fabric textile composites. An economical and reliable design of

such plate and shell structures motivates the researchers to actively seek for efficient

and accurate theories over decades.

The most investigated methods are axiomatic type approaches, which present the

advantage that the important physical behaviors of the structures can be modeled

using the ’intuition’ of eminent scientists [2]. Axiomatic approaches take advantage

of the characteristics of the plates/shells of which the thickness is at least one order

smaller than the in-plane dimensions. Thus it is possible to reduce a 3D model to

a 2D model, and model the multilayer structures with lamination theories. Such a

dimensional reduction is enabled by some ad hoc kinematic assumptions to express

the 3D displacements in terms of unknown 2D functions of the in-plane coordinates

and known functions of the thickness coordinate. Different kinematic assumptions

result in different theories, which are generally classified into Equivalent Single Layer

(ESL) models and Layer-Wise (LW) models based on the choice of variables. In ESL

model, variables are introduced for the whole plate/shell, while in LW models the

number of the independent variables is dependent on the number of layers [3].

The earliest ESL theory is the Classical Laminate Theory (CLT), which can be

dating back to 1960s [4]. The principal assumption in CLT is that normal lines to the

reference surface before deformation remain straight rigid and normal to the reference

surface after deformation. Although this assumption leads to a simple plate model, it

neglects the transverse strains and stresses, which will result in the overestimation of

the structural stiffness and will introduce large error for thick plates.

To overcome the limitation, transverse shear deformation is considered in the

later developed theories. First-order shear-deformation theory (FOSDT) proposed

by Mindlin [5] and Reissner [6] included a constant transverse shear strain in the

model. Later FOSDT is significantly improved by Vlasov [7], Reddy [8], Phan [9]

by enforcing zero traction on the upper and the bottom plate/shell surfaces.

Given the possibility to increase the accuracy of numerical evaluations for moder-

ately thick plates, various higher-order shear-deformation theories (HOSDTs) based

on an assumption of nonlinear stress variation through the thickness were developed

in Ref. [10], [11], and [12], to name only a few. Different forms of functions, such

as trigonometric functions, exponential functions, polynomials are implemented to

represent shape functions determining the distribution of the transverse shear strains

along the thickness [12]. Zigzag effect and interlaminar continuity(IC) can be con-

sidered in HOSDTs [11, 13]. Some of these models are numerically compared in

Ref. [11, 12].

To improve the transverse shear stress prediction, LW theories implement the

mentioned CLT, FOSDT, HOSDT in each layer of the multilayer plate/shell struc-
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tures, which intrinsically consider the Zigzag effect but not necessarily IC. These

theories are more accurate in terms of transverse stresses than ESLs, but suffer from

the deficiency of expensive computation cost.

Detailed reviews on multilayered composite plates/shells can be read or referred

in detail in Refs. [1, 3]. Numerical comparison of different models can be found in

Ref. [2, 13, 14], etc. Especially, there are reviews on sandwich plates [13], and for

woven composite [15].

In summery, most of the above mentioned lamination theories inherently assume

the composite laminate is made of homogeneous layers. There are at least two con-

sequences of this assumption. First, any lamination theory, despite of its complexity,

can only approximate a 3D body made of homogeneous layers and cannot capture

the real microstructural details of the composite material. As this assumption actu-

ally introduces artificial layer boundaries, many phenomena predicted by lamination

theories will occur at wrong locations. For example, the maximum stress predicted

by lamination theory may exist at the interlaminar surface while in fact the maximum

stresses may exist at the interface of different phases of materials. Second, the lamina

constants are not rigorously defined. There are two ways to obtain the lamina con-

stants. One can measure four in-plane lamina constants (E1, E2, G12, ν12) for a layer

in a plane stress state. However, layers are not necessarily behave in plane stress

state within a laminate. One can also numerically compute the lamina constants us-

ing micromechanics based on a unit cell [15]. However, micromechanics inherently

assumes that one can repeat the same unit cell to build the entire structure, which

is often not the case. For example, Ref. [16] stated that phase shift of woven-fabric

textile composites will influence the effective properties of plate. In addition, the lam-

ination theories are mainly based on various a priori assumptions. Such theories are

either efficient but too simplistic to be predictive, or accurate but too computationally

intensive to be used for effective design.

Very recently, a new theory called Mechanics of Structure Genome (MSG) has

been developed without any apriori assumptions including the homogeneous layer

assumption [17].

Applying MSG, a constitutive relation between the generalized 2D strains and

stress resultants is obtained for the plate analysis, in which no ad hoc kinematic

assumptions are introduced, the problem of dealing with IC does not exist. Deho-

mogenization can also be conducted to obtain the displacements, strains and stresses

in the original heterogeneous structure. In the following sections, first the basics

of MSG will be introduced, and then several examples will be used to disclose the

aforementioned flaws of lamination theories and the advantage of MSG by compare

their results with direct 3D finite element analysis (FEA). This study also suggests a

few possible improvements for MSG including a shear refined model for better cap-

turing transverse shear and normal stresses, and applying this new theory for failure

analysis.
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MECHANICS OF STRUCTURE GENOME FOR PLATES/SHELLS

MSG is a unified theory proposed to fill the gap between material microstructures

and structural analysis, which is capable of dealing with homogenization and deho-

mogenization of 3D structures, plates/shells, and beams. Ref. [17] first introduced

MSG in a systematic way, in which works focusing on plate/shells in MSG has been

proposed in earlier papers [14, 18] although the term ‘MSG’ was not used back at

that time. Therefore the current section only provides a brief introduction to MSG

applying to plate/shell.

For heterogeneous plate/shell structures which have a thickness much smaller

than the in-plane dimensions, MSG treats their reference surfaces as 2D continuum,

and every material point of this continuum has a constitutive relation between the

generalized 2D strains and stress resultants from SG analysis (such as A, B, D ma-

trices for the CLT). Therefore, the original 3D heterogeneous body is decoupled into

a plate analysis and a constitutive modeling over a SG.

SG is a very important basic concept in MSG, which acts as the basic building

block of the structure connecting materials to structures. SG can be 1D, 2D or 3D

which depends on the heterogeneity of the plates/shells. For example, if the plate-like

structures feature no in-plane heterogeneities such as those assumed in composite

lamination theories, the SG is a material line along the thickness direction with each

segment denoting the corresponding material of each layer. For a sandwich panel with

a core corrugated in one direction, the SG is 2D, and if the panel is heterogeneous in

both in-plane directions, the SG is 3D [17].

The original heterogeneous structure can be described by macro coordinates xi,

where xα are two orthogonal arc-length coordinates in the reference surface and x3

is the thickness coordinate. In the final homogenized 2D plate/shell model, xα will

remain while x3 will be delimited due to the fact that thickness h is much smaller

than the in-plane dimensions. (Here and throughout the paper, Greek indices assume

values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated indices are summed

over their range except where explicitly indicated).

A set of micro coordinates yi = xi/ε are introduced to denotes the rapid change in

the material characteristics in SG, with ε being a small parameter denoting the order

of a term. If the SG is 1D, only y3 is needed; if the SG is 2D, y2 and y3 are needed; if

the SG is 3D, all three coordinates y1, y2, y3 are needed.

Therefore a field function of the original heterogeneous structure can be generally

written as a function of the macro coordinates xα and the micro coordinates yj . The

partial derivative of a function f(xα, yj) can be expressed as

∂f(xα, yj)

∂xi

=
∂f(xα, yj)

∂xi

|yj=const +
1

ε

∂f(xα, yj)

∂yi
|xα=const ≡ f,i +

1

ε
f|i (1)

Based on these definitions, the deformation of the original heterogeneous plate

structures can be formulated by contributions from the reference surface, the rotation

of the local deformed coordinate system and the fluctuation function w(xα, yj) in SG,

where yj are the micro coordinates used to describe the SG. Using a proper definition

of strain, the strain energy U stored in the original heterogeneous plate structure can

be obtained. Similarly, the virtual work δW done by the applied loads can also be cal-

culated. Therefore a complete statement of the problem can be presented in terms of
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the principle of virtual work. To this end, by exploiting the smallness of SG and plate

thickness compared with the reference surface in terms of the in-plane dimension,

VAM is applied to construct an asymptotically correct macroscopic plate model. By

assessing the orders of all the quantities in the variational statement and neglecting

the terms in the order of ε , the first approximation of the variational statement can be

obtained as

δU ≡ δ
1

2

〈
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)
〉
= 0 (2)

where fluctuation function w = w1 w2 w3�T , ε̄ = ε11 2ε12 ε22 κ11 κ12+κ21 κ22�T
with εαβ denoting the in-plane strains and καβ denoting the curvature strains of the

plate model. The notation 〈•〉 is used to denote a weighted integration over the do-

main of the SG, D(y1, y2, y3) is the 3D 6 × 6 material matrix, which consists of

elements of the fourth-order elasticity tensor expressed in the yi coordinate system.

In Eq. (2), we introduce the following matrix notations for strain components:

Γ =
[
Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12

]T
= Γεε̄+ Γhw (3)

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂y1

0 0

0 ∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 ∂
∂y1

∂
∂y2

∂
∂y1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 y3 0 0

0 0 1 0 0 y3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 y3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

To solve Eq. (2), for general cases we need to turn to numerical techniques such

as finite element method. By expressing w using shape functions defined over SG as

w(xα; yj) = S(yj)V (xα) (5)

where S represents the shape functions and V a column matrix of the nodal values

of the fluctuation functions. Substituting Eq. (5) into Eq. (2), we obtain the leading

terms for the zeroth-order approximation in the following discretized form as

U =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄

)
(6)

where

E =
〈
(ΓhS)

T D (ΓhS)
〉

Dhε =
〈
(ΓhS)

T DΓε

〉
Dεε =

〈
ΓT
ε DΓε

〉
(7)

Minimizing U in Eq. (6) subject to the constraints, gives us the following linear

system

EV = −Dhεε̄ (8)

It is clear that V will linearly depend on ε̄, and the solution can be symbolically

written as

V = V0ε̄ (9)
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Substituting Eq. (9) back into Eq. (6), we can calculate the strain energy storing in

the SG as the first approximation as

U =
1

2
ε̄T

(
V T
0 Dhε +Dεε

)
ε̄ ≡ ω

2
ε̄T D̄ε̄ (10)

where D̄ is the effective plate stiffness to be used for in the classical plate model

which contains the well-known A, B, and D matrices in CLT. However, unlike the

standard procedure of CLT, the effective plate stiffness are calculated from knowl-

edge of complex geometric and material characteristics in a SG at the microscopic

level considering the smallness of both thickness and heterogeneity. In addition, there

is no ad hoc kinematic assumptions in the derivation of MSG theory, where the only

assumptions applied are the smallness of the SG in comparison to the in-plane di-

mensions and the existence of an effective plate constitutive model. The local fields

within the SG can also be recovered easily based on the 2D global displacements, 2D

global strains and curvatures ε̄. Especially, the local strain field can be obtained as

Γ = (ΓhSV0 + Γε) ε̄. (11)

The local stress field can be obtained directly using the Hooke’s law as

σ = DΓ. (12)

The presented derivation is based on a zeroth-order approximation of the variational

statement, if higher accuracy are required, a first-order approximation of the vari-

ational statement can be carried out and refined to obtain an effective constitutive

relation used in FOSDT [18, 14].

EXAMPLES AND RESULTS

In this section, three examples are used to disclose the aforementioned flaws of

lamination theories and the advantage of MSG. A general-purpose computer code

called SwiftCompTM implemented MSG, is applied to obtain the effective plate con-

stants and also carry out the dehomogenization to get the 3D stresses within the orig-

inal plate structure. Since currently the plate model in SwiftCompTM is corrected

to O(ε) which is of the same order of the CLT, the results from CLT and MSG are

compared. Both the result from CLT and MSG are compared with direct 3D FEA

using ABAQUS to assess the loss of accuracy of MSG and CLT. In the plate anal-

ysis, as the only element type theoretically based on Kirchhoff-Love assumption in

ABAQUS, STRI3 is implemented.

Example 1: Single-layer plate

The configuration of first example is the same with the second example in section

4.2 in Ref. [18], which is a plate made of a single layer of unidirectional composites

as shown in Figure 1 with d1 = h = 10μm, L = 200μm . The unidirectional com-

posite is constituted of epoxy matrix (Em = 3.5 GPa, vm = 0.35) and E-glass fiber
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(Ef = 70 GPa, νf = 0.2) with volume fraction of fiber (vof) 0.6. Note SwiftCompTM

can also be used as a general-purpose micromechanics code to obtain 3D properties,

for instance, the lamina constants for this case. The effective lamina constants ob-

tained using SwiftCompTM are given in Table I. The structure genome, which is the

smallest mathematical building block of this plate can be viewed as that shown in

Figure 1(b). The fiber direction is along x1 and the plate is periodic along x2. The

non-zero items in plate stiffness matrix obtained from SwiftCompTM and CLT are

compared in Tables II and III. Significance differences are observed in the bending

stiffness.

(a) 3D mesh in ABAQUS

3y

2 2,x y1 1,x y
Fiber

Matrix

1d

h
Structure Genome

2D mesh by plate elements

(b) 2D structure genome with plate elements

Figure 1. FEA of the plate-like structure with one ply

TABLE I. EFFECTIVE LAMINA CONSTANTS PREDICTED BY SWIFTCOMP

E11 (GPa) E22 = E33 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23

43.43 15.23 4.71 3.37 0.250 0.266

TABLE II. COMPARISON OF THE EXTENSIONAL STIFFNESS

A11 (103 N/m) A12 (103 N/m) A22 (103 N/m) A33 (103 N/m)
CLT 444 39 156 47

SwiftComp 443 35 145 47

TABLE III. COMPARISON OF THE BENDING STIFFNESS

D11 (10−9 Nm) D12 (10−9 Nm) D22 (10−9 Nm) D33 (10−9 Nm)
CLT 3700 324 1297 1297

SwiftComp 2247 177 653 547

Consider a square plate containing 20 fibers and subjected to a uniform pressure

of 1MPa. This plate is simply supported at the four edges. Only one-fourth of the
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structure is analyzed because of symmetry as shown in Figure 1(a). The plate is

modeled as a 2D plate as shown in Figure 1(b) in ABAQUS, using the two sets of

plate constants in Tables II and III. It can be clearly observed in Table IV that the

maximum deflection of the plate using plate stiffnesses prediction by using CLT is

poor.

TABLE IV. COMPARISON OF THE MAXIMUM DEFLECTION

Max Deflection (μm) Difference (%)
3D FEA (ABAQUS) 4.792 Control Group

SwiftComp 4.755 -0.77
CLT 3.605 -24.77

The dehomogenization analysis can be carried out at any interested point of the

2D plate model by using the global plate strains as the input in SwiftCompTM. In this

example, the stress dehomogenization is carried out at point (45, 45) of the plate if

the origin of the plate model is set at the center of the whole plate. Figure 2 shows the

stress distributions at this point through the thickness of plate from SwiftCompTM,

3D FEA using ABAQUS, and from the CLT method using the embedded compos-

ite layer-up model in ABAQUS. It can be seen that for one layer plate, the compo-

nents of σ11, σ22, σ12, results from SwiftCompTM result in a perfect agreement with

3D FEA, while CLT cannot predict the details of the stress distribution. Although

SwiftCompTM does not predicted a very accurate σ33, it did capture both the magni-

tude and the distribution tendency. Note that CLT can not predict this stress compo-

nent. Another thing note worthy that if a 3D SG with its cross-section identical to the

chosen 2D SG in this example, SwiftCompTM produce the same plate stiffness and

stress field.
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Figure 2. Comparison of the stress distribution through the normalized thickness

Example 2: Double-layer plate

The second example is a two-layer plate structure constructed by a 0 degree layer

and 90 degree layer shown in Figure 3, where L = 30 m, d1 = d2 = 0.5h = 1m. The

plate is simply supported and under uniform pressure of 500 KPa. Similar to the first

example, only one-fourth of the plate is modeled. The material properties of the fiber

are E1 = 58.61 GPa, E2 = E3 = 14.49 GPa, G12 = G13 = 5.38 GPa, G23 = 5.81
GPa, ν12 = ν13 = 0.250, ν23 = 0.247. For the matrix, E = 3.45 GPa, ν = 0.37. The

vof is 0.6. The effective lamina constants obtained using SwiftCompTM are given in

Table V.

(a) 3D mesh in ABAQUS

Structure Genome
2D mesh by plate elements

1d
2d

h

3y

2 2,x y

1 1,x y

(b) 2D structure genome with plate elements

Figure 3. FEA of the plate-like structure with two plies
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TABLE V. EFFECTIVE LAMINA CONSTANTS PREDICTED BY SWIFTCOMP

E11 (GPa) E22 = E33 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23

36.56 8.59 2.79 2.49 0.294 0.362

The plate stiffnesses obtained from SwiftCompTM and CLT are compared in the

Tables VI, VII, and VIII. It is observed that the major differences of about 10% lie in

the bending stiffness. The maximum deflection of the plate analysis using different

models are presented in Table IX. Apparently the plate stiffnesses of MSG resulted

in much more accurate global reaction compared with that from CLT.

TABLE VI. COMPARISON OF THE EXTENSIONAL STIFFNESS

A11 (N/m) A12 (N/m) A22 (N/m) A33 (N/m)
CLT 4.61E+10 5.16E+9 4.61E+10 5.58E+9

SwiftComp 4.58E+10 4.97E+9 4.58E+10 5.61E+9

TABLE VII. COMPARISON OF THE BENDING STIFFNESS

D11 (Nm) D12 (Nm) D22 (Nm) D33 (Nm)
CLT 1.54E+10 1.72E+9 1.54E+10 1.86E+9

SwiftComp 1.39E+10 1.55E+9 1.39E+10 1.78E+9

TABLE VIII. COMPARISON OF THE COUPLING STIFFNESS

B11 (N) B12 (N) B22 (N) B33 (N)
CLT -1.43E+10 0.0 1.43E+10 0.0

SwiftComp -1.44E+10 -2.79E+6 1.44E+10 7.98E+4

TABLE IX. DATA COMPARISON OF THE MAXIMUM DEFLECTION

Max Deflection (m) Difference (%)
3D FEA (ABAQUS) 0.2451 Control Group

SwiftComp 0.2471 -0.82
CLT 0.2088 -14.8
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The stress distributions at location (7.5, 7.5) through the thickness are presented

in Figure 4. Clearly with the same simulation effort, SwiftCompTM can predict the

stress distribution accurately, while CLT cannot predict accurate maximum stresses.

Figure 4 also shows that the maximum stress discrepancy happened at the interface

between fiber and matrix demonstrated by the results of 3D FEA and SwiftCompTM,

instead of the layer interface shown by CLT. This result also indicates the possibility

to implement a simple plate model based on SwiftCompTM to carry out the failure

analysis of composite laminate analysis effectively.
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Figure 4. Comparison of the stress distribution through the normalized thickness

Example 3: 3D orthogonal interlock composites

This example studies a realistic 3D orthogonal interlock composites plane struc-

tures, of which the SG is shown in Figure 5. The material properties are given in

Table X. The example is studied in Ref. [19] by asymptotic expansion homogeniza-

tion method to obtain the lamina constants of the composite structure and local fields,

however no deflection deformation can be captured due to the assumption that zeroth

order deflection is zero. In contrast we investigate a bending behavior of this highly

heterogeneous composite plate structure.
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Microstructure details in each stack 
except the top one

Figure 5. SG of the orthogonal interlock composites(cited from Ref. [19])

TABLE X. MATERIAL PROPERTIES OF THE ORTHOGONAL INTERLOCK COMPOS-

ITES

Properties X-tow Y-tow Z-tow Resin region
E1 (GPa) 122.55 7.13 4.96 3.40
E2 (GPa) 7.13 122.55 4.96 3.40
E3 (GPa) 7.13 7.13 148.70 3.40
G12 (GPa) 3.25 3.25 2.45 1.26
G31 (GPa) 3.25 2.53 3.21 1.26
G23 (GPa) 2.53 23.25 3.21 1.26

ν12 0.263 0.015 0.476 0.35
ν31 0.015 0.414 0.335 0.35
ν23 0.414 0.263 0.011 0.35

Applying plate analysis of MSG using SwiftCompTM, the A,B,D matrices ob-

tained from SwiftCompTM are listed below, where the unit of extension stiffness A is

103 N/m, coupling stiffness B is N, and bending stiffness D is 10−3 Nm.

A =

⎡
⎢⎣ 213339 6857 0

6857 204572 0

0 0 10635

⎤
⎥⎦

B =

⎡
⎢⎣ 357273 12231 0

12231 382208 0

0 0 19019

⎤
⎥⎦

D =

⎡
⎢⎣ 826711 28866 0

28866 918074 0

0 0 45326

⎤
⎥⎦

(13)
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A direct 3D FEA is conducted using a plate structure with 25 SGs in the x1 direc-

tion and 10 SGs along x2 direction, therefore the plate has dimension of 75 × 30 ×
3.576 mm3. The boundary condition is shown in Figure 6. The maximum deflection

of the plate structure predicted by SwiftCompTM-based plate analysis and direct 3D

FEA only has a discrepancy of -1.5%. Three stress sampling paths Line A, Line B

and Line C having macro coordinates (37.5, -7.5), (37.5, -6.075) and (38.925, -8.925)

respectively are taken on the reference surface. Interested users can refer to Ref. [19]

for specific corresponding SG constituents along thickness direction of each line. The

dominant stress component σ11 at this three paths through the thickness of the plate

are compared between SwiftCompTM and 3D FEA in Figure 7. It is shown that for

such highly heterogeneous composite structure, the stress distributions agree well

with that of 3D FEA. However while the 3D FEA took 75 minutes with 20 CPUs,

SwiftCompTM took much less computation time within 3 minutes by only 1 CPU.

1x

2x

Fix all Dofs

Symmetrical boundary condition

Stress recovery location

Line B 

3x
Uniform traction 0.5 MPa along  3x

Line C
Line A 

Free boundary condition

Figure 6. Boundary conditions of the 3D orthogonal interlock composite plate and stress

recovery locations
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Figure 7. Comparison of the stress distribution through the normalized thickness

CONCLUSIONS

The inherent assumption that laminate is made of homogeneous layers in lamina-

tion theories, artificially created layer boundaries which do not actually exist in com-

posite multilayer plate/shell structures, and also deprived the ability of lamination

theories to predict the accurate local fields such as stress considering the complex mi-

crostructures within the plates. However, a recently developed multiscale structural

modeling theory, Mechanics of Structure Genome (MSG), introduced none ad hoc

kinematic assumptions in its derivation. MSG decouple the original problem of 3D

composite plate structures into a 2D plate/shell problem and a constitutive modeling

over a Structure Genome. Through analysis of structure genome, effective plate stiff-

ness matrix and the local fields recovery relations can be obtained based on the infor-

mation of the real microstructures of the original 3D body. Therefore artificial layer

boundaries are elegantly avoided. It is proved numerically by the examples in the

current study that MSG is capable of constructing high-fidelity effective plate/shell

constitutive relations used for CLT for multilayer composite plate/shell structures,

and also can recover accurate local fields compared with 3D direct finite element

analysis. Although the zeroth-order plate model of MSG used in the current study

cannot predict accurate transverse shear stress, a refined model of MSG can give bet-

ter results. The accuracy of localized stress suggests a good prospect of MSG being
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used in failure analysis. Another advantage of MSG is its efficiency. The computa-

tion cost of MSG is comparable with CLT, however the result using MSG is much

more accurate. MSG has been implemented into a general-purpose multiscale con-

stitutive modeling code called SwiftCompTM, which can be accessed in the cloud at

cdmHUB.org.
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A Micromechanical Approach to High Cycle Fatigue

Analysis and Life Prediction of Composites

Hamsasew Sertse∗ and Wenbin Yu†

The objective of this paper is to analyze the high cycle fatigue (HCF) damage and
fatigue life of composites using a micromechanical approach based on mechanics of structure
genome (SG) and its companion code SwiftComp. In this study, local continuum damage
mechanics approach is employed to model and analyze the evolution of fatigue damage.
The constitutive law for elastic damage analysis is derived. The evolution of anisotropic
fatigue damage is iteratively approximated by incremental algorithm at each numerical
integration point using weighted averaged local field. The HCF fatigue damage and life
are estimated for continuous fiber-reinforced composite. The predicted results are in good
agreement with available experimental data. The effects of progressive fatigue damage on
effective properties of the composite are also examined.

I. Introduction

In recent decades, composites are extensively used in cyclic loading working conditions due to their
excellent capability of resisting fatigue failure. Despite their wide applications, there are a number of
challenges related to the applications of these materials. One of the challenges is the lack of accurate tools for
predictions of fatigue damage and its corresponding life under various thermo-mechanical loading conditions.
A great deal of efforts have been devoted to analyze fatigue failure in homogeneous materials. However, the
direct use of this approach to heterogenous materials may not lead to reasonable predictions due to higher
accumulation of damage in the composites.1 Generally speaking, fatigue damage is a multi-scale complex
local phenomena that can be affected by many interacting factors.2–4 Numerous researchers have proposed
various models to analyze fatigue damage and its corresponding life. These models may be categorized
as fatigue life models and phenomenological models.5,6 The fatigue life models predict the fatigue life of
a component from stress-life (S-N) or strain life (ε-N) curves based on a specified failure criteria. This
method does not take into account the local material degradation. Recently, a new energy based fatigue
life analysis is proposed to analyze fatigue life based on both elastic and plastic energy in the material.
This approach correlates the energy in the material with fatigue life.7,8 Interested reader may refer to Refs.
[5, 6] for various similar fatigue models. On the other hand, the phenomenological models use the residual
strength or stiffness to predict the fatigue damage. Continuum damage mechanics approach is a typical
phenomenological method that is extensively used in damage and fatigue life analysis of both homogeneous
and composites.9–11 In composites, fatigue damage and life analysis are generally more complex due to
the interactions among various constituents and their interfaces..12 In these materials, fatigue damage and
life prediction analysis can be performed using both macromechanical and micromechanical approaches.
In macromechanical approach, fatigue damage and life analysis are performed at macro scale or with the
homogenized properties.1,13–17 In this approach, it is evident that fatigue damage analysis does not take
into account the local stress disturbance to various constituents and their interfacial interactions. Thus, the
approach may not reasonably predict fatigue damage and life for composites with complex microstructure.
Whereas, in micromechanical approach, the local strain and stress fields are mainly employed for fatigue
damage analysis. In Refs. [18, 19], fatigue damage and life are analyzed based on the average stress and
strain in each constitute using damage model similar to the well-known Tsai-Hill yield criteria. Fish and
his coworkers20 analyzed fatigue life of elastic and inelastic composites using mathematical homogenization
approach. This analysis is performed using continuum damage mechanics approach based on the average

∗Graduate Research Assistant, School of Aeronautics and Astronautics, Purdue University
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stresses and strains in each constituent by adopting nonlocal isotropic damage parameter. Voyiadjis and
Deliktas21 analyzed anisotropic damage in composites based on the average stress and strains in the each
constitutes. The average local fields are computed using Mori-Tanaka approach. The average stress and
strain approach better predicts fatigue life compared with the macromechanical approach. However, in HCF
damage and life predictions, the local material damage lead to sudden fracture of the material before inducing
large elastic strain, thus the material will unlikely sustain the applied load until the average stress or strain
in each constituent meet the requirement of the failure particularly for the safe life design criteria. Thus,
the average stress and strain approach may not rigorously predict the fatigue damage in HCF.

In continuum damage mechanics, it is commonly postulated that failure in brittle material is dominated
with dissipative mechanisms where viscous, thermal or other non-mechanical effects are not taken into
account and also the plastic strain is assumed to be negligible compared with the elastic strain. These
assumptions lead to elastic damage analysis for HCF damage and life prediction analysis with isotropic
or anisotropic damage assumption..9,22,23 On the other hand, it is hypothesized that damage in brittle
material undergoes the process of nucleation, void formation and coalescence at micro scale, this implies
that the material yields plastic strain locally while the majority of the part remains elastic. On this basis,
Lemaitre and his coworkers24 proposed a two-scaled approach assuming that brittle materials experience a
localized plastic strain. The local stress and strain fields approximated using Eshelby−Kröner localization
law. Desmorat and his coworkers25 extended the two-scaled approach for complex thermomechanical loading
conditions. Doudard and his coworkers also analyzed the fatigue life of homogeneous materials using
the two-scaled based probabilistic approach.26 For detailed numerical implementation of the two−scaled
approach, interested reader may refer to Ref. [27].

The main drawbacks of continuum damage mechanics for numerical implementation are its pathological
mesh dependency and improper convergency which originate from strain localization due to strain softening,
damage localization and stress singularity at crack tip. Numerous researchers proposed possible solutions
to avoid these problems. Interested reader may refer to Refs. [28–30] for various proposed approaches to
solve a mesh dependency problem of local damage approach. The common methods to solve the mesh
dependency problems are nonlocal damage,,31,32 gradient method,,33,34 and viscous regularization.35 The
nonlocal approach described in Refs. [28, 31] proposes averaging local fields at integration points based
on weighted average of the local fields near the integration point. The weighting value is a function of
characteristic length expressed using Gaussian weighting function.

It is obvious that the local field recovery is a critical capability to sufficiently analyze fatigue damage
and life prediction of composites. This capability is important particularly for HCF analysis where fatigue
damage is highly localized and affected by the local stress and strain fields. SwiftComp is a general-purpose
multiscale constitutive modeling code for composites which provides unified modeling for 1D (beams), 2D
(plates/shells), or 3D composite structures. This is accomplished using the concept of structure genome
that unifies structural mechanics and micromechanics.36 The previous version of SwiftComp, VAMUCH
(Variational Asymptotic Method for Unit cell Homogenization), sufficiently demonstrates excellent capability
both in predicting effective properties and recovering the local fields.37,38 Thus, SwiftComp is a natural choice
to perform fatigue damage analysis and life predictions.

In the HCF, the number of cycles for fatigue life prediction are extremely large and running all these
cycles is computationally demanding, thus the cycle jump methods proposed in Ref. [39] is used in this
study to sufficiently obtain a reasonable predictions of the fatigue damage and life cycle.

The objective of this paper is to analyze the high cycle fatigue (HCF) damage and fatigue life of composites
using a micromechanical approach based on mechanics of structure genome (SG) and its companion code
SwiftComp. The fatigue damage and life analysis are performed using local continuum damage mechanics
approach. The damage variables are iteratively solved using the incremental method. The HCF fatigue
damage and life are estimated for continuous fiber-reinforced composite. The prediction of fatigue life of the
composite shows good agreement with experimental data.

II. Basics of Damage Mechanics

The concept of continuum damage mechanics is first formulated based on the hypothesis of Kachanov40

which postulates the gradual deterioration of the effective cross sectional area that sustain the the applied
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load. Thus the damage variable can be expressed as

d =
A− Ã

A
(1)

where A denotes total cross sectional area, Ã denotes effective cross sectional area. The value of d shows
the level of damage in the material when d = 0 shows undamage states (no damage) and, d = Dc ≤ 1 shows
the extent of failure, if d = 1 shows a complete failure. This formulation holds only for the isotropic damage
however in most cases the damage may not be necessarily isotropic thus in general the damage may be
better expressed using a second-order tensor which considers the directional dependency of the the damage
parameter. Thus, let d denote a symmetric second-order tensor for anisotropic damage. It can be expressed
as

d =

⎡
⎢⎣ d11 d66 d55

d66 d22 d44

d55 d44 d33

⎤
⎥⎦ (2)

The damaged second-order compliance tensor proposed in Ref. [15] is adopted here for the general multi-axial
stress state with anisotropic damage. Then, the fourth-order damaged compliance tensor can be expressed
as

S(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1111

1−d11
S1112 S1113 S1123 S1113 S1112

S2222

1−d22
S2223 S2223 S2213 S2216

S3333

1−d33
S3323 S3313 S3312

S2323

1−d44
S2313 S2312

SYMM S1313

1−d55
S1312

S1212

1−d66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Using the strain equivalence approach, the stress in the damaged and undamaged configurations can be
related as

σ̃ = M−1 : σ, M−1 = S−1 : S̃ (4)

where σ̃ denotes effective stress in the undamaged material, σ denotes stress in the damaged material, and
M denotes the fourth-order damage effect tensor as a function of the fourth-order compliance tensor, S̃
denotes effective compliance in the undamaged material, and S denotes compliance in the damaged material.

III. Brief Review of Thermodynamics

In the general thermomechanical problems, the phenomena of elasticity, plasticity, and the thermal effects
may be modeled using irreversible thermodynamics formulation. In this case, the observable state variables
can be second-order elastic strain tensor εe and temperature T with their associated variables second-order
stress σ and entropy S, respectively. The local or internal variables could be accumulated plastic strain r
with its associated variable R and kinematic hardening variable or back stress α with its associated variable
A, respectively. Let the Helmholtz free energy be expressed as a function of the given state variables as

ψ = ψ(εe, T, r,α, Vk) (k = 1, 2, ...., n) (5)

where ψ denotes energy per unit mass of the material and Vk denote other internal variables. For HCF
analysis, it is assumed that the plastic strain is negligible and also let the internal variables Vk be the
second-order damage tensor d and damage hardening parameter β. Thus, the Helmholtz free energy in
Eq. (5) for an isothermal process can be rewritten as

ψ = ψ(εe,d, β) (6)

The Helmholtz free energy per unit mass for uncoupled elastic and damaged part of the material can
further be decomposed as follows:

ψ(εe,d, β) = ψe(ε
e,d) + ψd(β) (7)
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ρψe(ε
e,d) =

1

2
εe : C(d) : εe and ρψd(β) = f(β, o, L) (8)

where o and L denote material constants obtained from experiments. Substituting Eq. (7), in to the
Clausius-Duhem inequality, the following relation is obtained

(σ − ρ
∂ψ

∂εe
) : ε̇e − ρ

∂ψ

∂d
: ḋ− ρ

∂ψ

∂β
β̇ ≥ 0 (9)

This inequality must be satisfied for any values of ε̇e, ḋ and β̇. If damage does not exist in the material,
then the inequality can be satisfied only for σ = ρ ∂ψ

∂εe which gives the elastic constitutive equation. Let Y
and B be thermodynamic conjugate force variables that denote a second-order tensor that represents elastic
energy release rate due to damage and damage hardening parameter, respectively. These variables can be
related to Helmholtz free energy, i.e., Eq. (7), as

y ≡ −ρ
∂ψ

∂d
= −ρ

∂ψe

∂d
, and B ≡ ρ

∂ψ

∂β
= ρ

∂ψd

∂β
(10)

From Eq. (9) and using Eq. (10), it can be postulated that the dissipation per unit volume can be obtained
as

Φ = y : ḋ−Bβ̇ ≥ 0 (11)

Based on this dissipation mechanism, without loss of generality, for an associated flow rule, the dissipation
potential F can be expressed as41

F (y, B;d, β) = fd(y, B;d, β) (12)

where fd denotes damage yield function. Here, it is assumed that there exists the damage yield function
fd = 0 in the space of the thermodynamic conjugate force y and B, thus, the convex surface for the damage
yield function may be expressed as42

fd(y, B) = YEQ − (Bo +B) = 0 (13)

where YEQ =
[
1
2y : L(d) : y

]1/2
denotes equivalent damage energy release rate, Bo denotes damage threshold

(material dependent value). L(d) denotes the fourth-order damage tensor function which can be expressed
using index notation as

Lijkl =
1

2
(δikδjl + δilδjk) +

1

2
cd(δikdjl + dikδjl + δildjk + dilδjk) (14)

where cd denotes material constants. Using the damage yield function, damage evolution and the rate of
change of damage parameter can be expressed as

ḋ = λ̇d
∂fd
∂y

, and β̇ = −λ̇d
∂fd
∂B

(15)

where λ̇d denotes damage independent multiplier and it describes the rate of damage flow, ∂fd
∂y denotes the

direction of flow of damage. Let us assume [41,43],

ρψd(β) =
S2

2Lo
, S = L(1− exp(−oβ)) (16)

Substituting Eq (16) in Eq (10), one can obtain

B = L(1− exp(−oβ)) (17)

where L and o are constant to be obtained from curve fitting with experimental data for monotonic loading.
The loading and unloading conditions of Eq (15) can be obtained using Kuhn-Tucker conditions.

λ̇d ≥ 0, fd ≤ 0, λ̇dfd = 0 (18)

where λ̇d is obtained from consistency condition ḟd = 0 as41,43
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ḟd =
∂fd
∂y

: ẏ +
∂fd
∂B

∂B

∂β
β̇ +

∂fd
∂L

∂L
∂d

: ḋ = 0 (19)

The rate form of the thermodynamic conjugate force may be expressed using Eq. (8) and (10)as

ẏ =
∂y

∂εe
: ε̇e +

∂y

∂d
: ḋ (20)

Substituting Eq. (20) and (15) in Eq (19) and after a few algebraic manipulations, one obtains

ḟd =
1

2YEQ
y :

(
L :

∂y

∂εe

)
: ε̇e +Lλ̇d = 0 (21)

where L = − 1
2YEQ

(y : L : (∂y∂d : ∂fd
∂y ))− 1

4YEQ
(y : (∂L∂d : y) : ∂fd

∂y ) + ∂B
∂β . Then, the damage evolution rate can

be expressed as

λ̇d =
y :

(
L : ∂y

∂εe

)
: ε̇e

1
2YEQ

L
(22)

For a small incremental loading, one can write the stress-strain law in the rate form as

σ̇ =
∂σ

∂εe
ε̇e +

∂σ

∂d
ḋ (23)

It should be noted that the plastic strain is assumed to be negligible. The damage evolution rate in Eq (15)
can be obtained using Eq (22) for the strain space as

ḋ =
1

2YEQL

(
∂fd
∂y

⊗ FLY ε

)
ε̇e (24)

where FLY ε = y :
(
L : ∂y

∂εe

)
Substituting Eq (24) in Eq (23), the constitutive law for elastic damage analysis for a small incremental

load can be found as
δσ = Cedδεe (25)

where Ced denotes tangent operator for elastic damage analysis and it can be expressed as

Ced = C(d) + 1

2YEQL

(
∂C(d)
∂d

εe
) (

∂fd
∂y

⊗ FLY ε

)
(26)

where C(d) denotes the fourth-order damaged stiffness tensor.

IV. Averaging Approach

The pathological mesh dependency of local continuum damage mechanics can be solved using various
nonlocal approaches. The nonlocal field can be obtained by smearing damage variable or local fields over
the entire material or constituents. However, for HCF failure, where localized material degradations play
a major role for sudden failure of a component, it is more reasonable to consider the average local field
computed within its proximity than smearing over the whole material. Thus, the weighted averaged local
field for a given point can be obtained as28,31,32

< f >=

∑
i

wiΔvifi∑
i

wiΔvi
(27)

where< f > denote weighted average local fields (strains/stresses) at integration point, Δvi denote integration

volume, w(l) denotes Gaussian weighting functions expressed as w(l) = e(αwl/λw)2 . The parameter λw

denotes characteristic length which depends on the volume/area considered for averaging the local field, l
denotes the location of points from a point of interest and should not be greater than the λw. The smallest
volume/area could be averaging within an element, and αw denote the distribution of weighing function over
the characteristic length. The damage potential surface (threshold), damage evolution rate, elastic energy
release rate, damage parameter can then be expressed using the pointwise local average field designated as
f̄d, λ̄d, y and β, respectively.
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V. Mechanics of Structure Genome (MSG)

MSG is a unified theory proposed to fill the gap between materials genome and macroscopic structural
analysis. Structure Genome (SG) is the smallest mathematical building block (or a cell in biological contexts)
of the structure containing many such building blocks. SG is not only describes the matter but also carries
the information bridging materials genome and structural analysis. Although in a different way, the basic
concept of the MSG is first introduced in series of papers Refs. [44–46]. Later, the proposed concept
give birth to a unified and systematic approach to solve structural analysis problem called MSG. It is a
general-purpose approach for multiscale structural modeling for various structures such as for 1D (beams),
2D (plates/shells), and 3D composite structures. The theory of MSG is implemented in the computer code
SwiftComp.

The properties of composites varies with scale and also in view of the fact that the size of SG is much
smaller than the overall size of the macroscopic structure, we introduce a set of micro coordinates yi = xi/ε
with ε being a small parameter to describe the SG. This basically enables a zoom-in view of the SG at the
size similar as the macroscopic structure. If the SG is 1D, only y3 is needed; if the SG is 2D, y2 and y3 are
needed; if the SG is 3D, all three coordinates y1, y2, y3 are needed.

In multiscale structural modeling, it is postulated that all the information can be obtained from the
SG in combination with the macroscopic structural model. In other words, a field function of the original
heterogeneous structure can be generally written as a function of the macro coordinates xk which remain in
the macroscopic structural model and the micro coordinates yj . The partial derivative of a function f(xk, yj)
can be expressed as

∂f(xk, yj)

∂xi
=

∂f(xk, yj)

∂xi
|yj=const +

1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (28)

The deformed and undeformed configuration of structure of any type can be expressed using position vector
based on the type of the structure we have, i.e., beam , plate/shell, 3D structure featuring 1D, 2D and 3D
structures. Interested readers can get details of this method in Ref. [36]. Although the SG concept can be
used to analyze various types of behavior of heterogeneous structures, we illustrate the basic idea of MSG
using elastostatic behavior of the composites. The governing equation can be expressed using the following
the variational statement

δU = δW (29)

δ is the usual Lagrangean variation, U is the strain energy and δW is the virtual work of applied loads. The
bars over variations are used to indicate that the virtual quantity needs not be the variation of a functional.
For a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U =
1

2

∫
1

ω

〈
ΓTDΓ

〉
dΩ (30)

where Ω is the volume of the domain spanned by xk remaining in the macroscopic structural model. The
notation 〈•〉 = ∫ •√gdω is used to denote a weighted integration over the domain of the SG, ω, where g is
the determinant of the metric tensor of the undeformed configuration spanned by x1, x2, x3. ω also denotes
the volume of the domain spanned by yk corresponding to the coordinates xk, remaining in the macroscopic
structural model, Γ denotes 3D strain field which can be written for 3D structures as

Γ = Γhw + Γεε̄ (31)

where Γ = Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12�T , w = w1 w2 w3�T , ε̄ is a column matrix containing the
generalized strain measures for the macroscopic structural model. If the macroscopic structural model is
a 3D continuum model we have ε̄ = ε11 ε22 ε33 2ε23 2ε13 2ε12�T with εij denoting the Biot strain
measures in a Cauchy continuum. Γh is an operator matrix which depends on the dimensionality of the SG.
Γε is an operator matrix the form of which depends on the macroscopic structural model. If the macroscopic
structural model is the 3D Cauchy continuum model, Γε is the 6×6 identity matrix. By using the variational
statement in Eq. (29) and the strain energy in Eq. (30) and also by neglecting the terms with small order,
the first approximation of variational statement cab be obtained as36

δ
1

2

〈
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)
〉
= 0 (32)
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For very simple cases, this variational statement can be solved analytically, while for general cases we need
to turn to numerical techniques such as the finite element method for solution which has been implemented
in the computer code SwiftComp.

VI. Proposed HCF Failure and Life Prediction Approach

Anisotropic damage is adopted to analyze the fatigue life of a continuous fiber-reinforced composite. The
fourth-order damaged compliance tensor described in the Eq. (3) is used to estimate damage propagation
and the fatigue life in the composite. The fatigue life prediction is computationally prohibitive if the analysis
is allowed to run until the failure point is reached. Thus, for simplicity, the damage is assumed to be constant
for each cycle throughout the whole analysis. Consequently, without affecting the anisotropic damage growth
rate in each constituent of the composite, a reasonable number of cycle increment, for a specified damage
amount, Δd̄, is added to the cycle number. The cycle increment can be calculated as39

ΔNi =
Δd̄(

δd/δN

) , Ni+1 = Ni +ΔNi, di+1 = di + (δd/δN)ΔNi (33)

where (δd/δN) denotes the rate of change of damage per cycle, it is assumed to be constant for a certain
number of cycle, Ni, Δd̄ denotes the damage amount to be accounted during cycle jump, it is usually obtained
as Dc/50, Dc denotes critical damage level in the material beyond which the material can not sustain any
load. For the current analysis, Δd̄ is determined based on damage rate per cycle and it ranges from 10−3

to 10−5. For given global stress or strain loading, the maximum cycle number or fatigue life N is obtained
based on the critical damage value Dc. The critical damage level is evaluated at each integration point based
on the weighted averaged local field. If the damage at any give point reaches the critical damage level, then
it is assumed that crack starts to propagate indefinitely resulting in the failure of the material. It should
be noted that material constants such Bo, c

d, L and o in Eq. (13), (14) and (16) may be obtained by curve
fitting with experimental data for monotonic loading condition.

For the fatigue life analysis, after each cycle of global loading, the homogenization and dehomogenization
analyses are carried out. This is followed by evaluation of damage at each numerical integration point
using weighted averaged local field based on Eq. (13). The weighted averaged field is computed using the
λw = 0.1 and αw = 0.005. If f̄d > 0, the damage evolution is estimated using incremental algorithm based on

consistency conditions, i.e., f̄d = 0, ˙̄fd = 0. The stress-strain constitutive tangent operator tensor Eq. (26)
are then updated for each loading. The proposed approach is summarized in the flow chart in Figure 1.

VII. Fatigue life of Continuous Fiber-Reinforced Composite

In this section, the proposed approach is partially validated using the predictions obtained from the
experiments. The glass/epoxy composite is used for this prediction. The fiber and matrix are assumed to
have an elastic modulus of 78.5 GPa and 3.45 GPa, respectively, and with the corresponding Poisson ratios
of 0.25 and 0.35, respectively. The fiber matrix volume ratio is 0.6. The stress ratio, R = σmin

σmax
) is 0.10.

The experimental results are obtained from Ref. [47]. In the current prediction, it is assumed that the
material constant in Eq. (14), cd = 0. Since the monotonic loading data are not available, the calibration
of the material constants, Bo, L and o are performed based on the fatigue data, i.e., minimum stress from
S-N curve and its corresponding fatigue life. Finally, the fatigue life of the composite for various loads
is estimated based on the calibrated data. It should be noted that since the current approach is entirely
based on micromechanics analysis particularly on the local fields, the specified material constants for each
constituent are required to sufficiently estimate the fatigue life of the composite. However, if these material
constants are not available, it is suggested to assume the failure mode for each loading direction. For instance,
for continuous fiber reinforced composite, it is reasonable to assume that the fiber controls the failure of the
composite in axial/fiber direction while in the transverse direction the matrix controls the failure. Based on
these assumptions, the specified material constants may be calibrated for each constituent of the composite.

The material constants Bo, L and o can easily be calibrated for uniaxial loading in the fiber direction.
Let the average minimum stress at the specified fatigue life, N , be approximately 0.7375 GPa as it can be
seen from S-N curve depicted in the Figure 2. Then, one can calibrate the damage threshold Bo as follows.
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Figure 1. Summary of the proposed approach.
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First, apply the global load equivalent to the minimum stress then evaluate the damage at each numerical
integration points using Eq. (13). Second, it is known that the initial damage occurs whenever YEQ = Bo.
Thus, we can freely select the value of Bo to have no damage in the composite or infinitesimally small damage
for the given global load. In the current case, Bo = 12.772 MPa is selected for infinitesimally small damage.
The material constants in Eq. (16), L and o, are also obtained using the calibrated value of Bo and minimum
stress with the corresponding fatigue life, N .

In this case, the fatigue life, N , is iteratively simulated for different values of L and o by applying the
global load equivalent to the minimum stress. The process is repeated until the predicted fatigue life is
sufficiently equal to the prediction of experiment. If the two predictions are equal, the values of L and o are
then used as calibrated material constants. These constants are in turn used to estimate the fatigue life of the
composite. For the current case, the calibrated values of L and o are found to be 970 GPa and 8, respectively.
It should be noted that the calibration of these three constants are based on the a single point (minimum
stress). Moreover, one should notice that critical damage Dc is also a material parameter, it is usually
assumed to be between 0.2 < Dc < 0.8..41 In this analysis, 0.35 and 0.55 are used for the fiber and matrix,
respectively. Using the calibrated material constants, the fatigue life of the composite for various loads

3.5 4.0 4.5 5.0 5.5 6.0

0.6

0.8

1.0

1.2

M
ax

.S
tre

ss
(G

Pa
)

Log (N)

Experiment
Predicted

Figure 2. S-N for continuous fiber-reinforced composite.

are generated as shown using the S-N curve in the Figure 2. The prediction shows a good agreement with
experiment. It is also noticeable to see the variation of experimental data which precipitates from various
contributing factors such as variability of manufacturing process, human error, etc. In these predictions, it is
noticed that, at failure, the weighted average damage in the composite does not depend on the magnitude of
the applied load as shown the Figure 3. Similar predictions are also observed for all components of damage
tensor. It is also noticed that the effective stiffness of the composite just before failure is found to be load
independent similar to the d11. It is clear that the progressive fatigue damage affects the effective stiffness
of the composite. For instance, for global load, 1.079 GPA , it is observed that the progressive fatigue
damage induced significant degradation of effective elastic modulus and also affect the Poisson’s ratio of the
composite as shown in the Figure 4. However, the transverse and the shear moduli are insignificantly affected.

In another estimation of fatigue life, the material property listed in the Table 1 are used. The fiber
matrix volume ratio is 0.70. In this analysis, let the composite be loaded unidirectionally in transverse
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Figure 3. Weighted averaged damage at failure.
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Figure 4. Degradation of effective stiffness and Poisson’s ratio.
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direction. Thus, it is reasonable to assume the matrix controls the failure of the composite. Consequently,
the materials constants Bo, L, and o are calibrated as described for the first case based on the matrix and
are approximately found to be 0.5588 MPa, 5 GPa and 6, respectively. In this case also, cd = 0. The critical
damage, Dc, 0.33 and 0.53 are used for the fiber and matrix, respectively. The fatigue life for transversely
loaded composite is estimated based on the calibrated material. The prediction is fairly in good agreement
with the experiments as shown in the Figure 5.

Table 1. Material property for fatigue analysis (Ref et al. [48])

Material E22 GPa E22 GPa G12 GPa ν12 ν23

Fiber 194.30 15.00 18.10 0.275 0.275

Matrix 3.45 3.45 - 0.350 0.350
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Figure 5. S-N for transversely loaded continuous fiber-reinforced composite.

For transverse load, one can expect higher stress distribution in the fiber matrix interphase due to the
interaction between the two constituents with higher material property mismatch. This stress disturbance
may result in significant material degradation locally. For instance, for 37 MPa transverse cyclic load, the
effect of stress disturbance can be seen from the weighted averaged damage propagation in the matrix as
shown in the Figure 6. It can easily be noticed that the damage propagation in the transverse direction
d22 is significantly larger than the other damage tensor components which results from the higher stress
disturbance for transversely continuous fiber-reinforced composite.

VIII. Conclusion

The damage and fatigue life of continuous fiber-reinforced composite are analyzed using micromechanical
approach. The proposed method is incorporated into SwiftComp to estimate the fatigue life and anisotropic
damage evolution of the composite. The fatigue life is estimated and found to be good agreement with the
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Figure 6. Weighted averaged damage propagation in the matrix.

experimental data. As the proposed approach is mainly based on micromechanics particularly on the local
fields, it requires material properties specific to each constituent. The current prediction may be improved
if all material data are available. The current calibration approach is limited to unidirectional loading
option. It is suggested to make this approach applicable for multi directional loading conditions. Additional
validations are also required to examine the capability of the current approach.
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A Micromechanical Approach to Low Cycle Fatigue

Analysis and Life Prediction of Composites

Hamsasew Sertse∗ and Wenbin Yu†

The objective of this paper is to analyze low cycle fatigue (LCF) damage and fatigue life
of composites using a micromechanical approach based on mechanics of structure genome
(SG) and its companion code SwiftComp. In this study, the overall tangent modulus of
uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of
plasticity and damage in each constituent are evaluated at each numerical integration points
using averaged weighted local fields. The accumulated plastic strain and anisotropic damage
evolution variables are iteratively solved using incremental algorithm. The proposed
approach is used to predict the stress-strain curve. The predicted stress-strain curve
for monotonic loading shows good agreement with experimental data. The LCF life is
estimated for continuous fiber-reinforced composite and particle reinforced composite.
The combined effects of strain hardening and progressive fatigue damage on the effective
properties of the composite are also examined.

I. Introduction

Recently, the application of composites in cyclic loading working conditions has gained a considerable
momentum due to their excellent capability of accumulating damage compared with conventional
homogeneous material. Despite its wide application, the investigation of powerful tools for accurate
predictions of damage accumulation, failure and fatigue life prediction remains to be the main research topic
in this area. In LCF, particularly in a ductile material, fatigue damage undergoes process of nucleation,
coalescence and growth of micro cavity induced by large plastic deformation. A number of researchers
have proposed various model to analyze this process of failure, usually termed as a ductile failure, in
homogeneous materials..1,2 These models may be categorized as micromechanical and phenomenological
modeling approach. In micromechanical approach, both analytical tools and micromechanical based
constitutive models have been proposed to model the growth and coalescence of voids, and ductile failure..3,4

The other approach is phenomenological approach which is formulated based on a consistent thermodynamic
framework called continuum damage mechanics..5–7 A brief review of various approach may be obtained from
Ref. [8]. Numerous researchers used continuum damage mechanics approach to analyze ductile fracture in
homogenous material..6,9–11 The ductile damage is more complex in composites due to interactions among
various constituents and also their interfaces. Various approaches have been proposed to analyse ductile
damage and LCF in the composites using continuum damage mechanics. Voyiadjis and Deliktas12 proposed
anisotropic damage model for inelastic response of composite materials for both rate-independent and
rate-dependent material properties. Maire and Chaboche13 analyzed ductile damage failure in composites
with a local micro closure effect. Fish and his co-workers14 also analyzed damage in the composites
using mathematical homogenization approach for isotropic damage variable. Chaboche and his coworkers15

also examined damage propagation in plastically deformed composite using micromechanical approaches
(Mori-Tanaka and Eshelby).

According to Ref. [16], it is experimentally observed that for LCF both fiber and matrix can contribute
for the failure of a composite for any loading direction. It is also further noted that fiber, matrix and
interface independently or all together determine the failure of the composite based on the stress level. In
Refs. [11, 17], continuum damage mechanics is adopted to analyze low cycle fatigue for various loading
options. Interested readers may refer to Refs. [18–21] for additional reference for LCF analysis.

∗Graduate Research Assistant, School of Aeronautics and Astronautics, Purdue University
†Associate Professor, School of Aeronautics and Astronautics, Purdue University, AIAA Associate Fellow.
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The main drawbacks of continuum damage mechanics for numerical implementation are its pathological
mesh dependency and improper convergency which originate from strain localization due to strain softening,
damage localization and stress singularity at crack tip. Numerous researchers proposed possible solutions to
avoid these problems. Interested reader may refer to Refs. [22–27] for various proposed approaches to solve a
mesh dependency problem of local damage approach. In Refs. [28,29], it is demonstrated that for numerical
implementation, major effect comes from stress singularity particularly at the critical damage level. It is
also shown that loss of ellipticity of equilibrium equation may not be usually due to crack initiation. The
nonlocal approach described in Refs. [22, 25] proposes averaging local fields at integration points based on
weighted average of the local fields in the neighbourhood of each integration point. The weighting value is
a function of characteristic length expressed using a Gaussian weighting function.

It should be noted that the fatigue limit of many materials may be much smaller than their yield limit
in a global sense. However, locally the material undergoes a process of nucleation and void formation.
This process is more significant in the composite material due to higher local stress disturbance resulting
from the interaction of various constituents. This phenomena can be well captured and integrated in
fatigue analysis by considering the local fields. Thus, the local field recovery is a critical capability for
any micromechanics approach to sufficiently analyze the fatigue damage and life prediction of composite.
SwiftComp is a general-purpose multiscale constitutive modeling code for composites which provides unified
modeling for 1D (beams), 2D (plates/shells), or 3D composite structures. This is accomplished using
the concept of structure genome that unifies structural mechanics and micromechanics.30 The previous
version of SwiftComp, VAMUCH (Variational Asymptotic Method for Unit cell Homogenization), sufficiently
demonstrates excellent capability both in predicting effective properties and dehomogenization of the local
fields.31,32 Thus, SwiftComp is a natural choice to perform fatigue damage analysis and life predictions.

The objective of this paper is to analyze the low cycle fatigue (LCF) damage and fatigue life predictions
of composites using a micromechanical approach based on mechanics of structure genome (SG) and its
companion code SwiftComp. The overall uncoupled elastoplastic tangent modulus is derived by assuming
the effect of back stress (kinematic hardening) to be negligible. The accumulated plastic strain and the
growth of damage in each constituent are evaluated at each numerical integration points using weighted
averaged local fields. The accumulation of plastic strain and evolution of damage variables are iteratively
solved using the incremental method. The stress-strain curve for monotonic loading shows good agreements
with the experimental data. The LCF fatigue damage and life prediction are estimated for continuous
fiber-reinforced composite and particle-reinforced composite. The combined effects of strain hardening and
progressive fatigue damage on effective properties are also analyzed.

II. Basics of Damage Mechanics

The concept of continuum damage mechanics is first formulated based on the hypothesis of Kachanov33

which postulates the gradual deterioration of the effective cross sectional area that sustain the the applied
load. Thus, the damage variable can be expressed as

d =
A− Ã

A
(1)

where A denotes total cross sectional area, Ã denotes effective cross sectional area. The value of d shows
the level of damage in the material when d = 0 shows undamage states (no damage) and, d = Dc ≤ 1
shows the extent of failure if d = 1 shows a complete failure. This formulation holds only for the isotropic
damage however in most cases the damage may not be necessarily isotropic thus in general the damage may
be better expressed using a second-order tensor which considers the directional dependency of the damage
parameter.

First, let d and D denote the second-order and fourth-order damage tensors, respectively. Let d be
symmetric, then D can be written as using d as

D =

3∑
i=1

3∑
j=1

dijei ⊗ ej ⊗ ei ⊗ ej (2)
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The damage effect tensor M can be expresses as

M = I −D (3)

where I denotes fourth-order identity tensor. Based on the elastic strain energy equivalence of the damaged
and fictitious undamaged material, the stiffness of

C = M : C̃ : M (4)

where C denotes the fourth-order damaged elasticity tensor of the material, and C̃ denotes the fourth-order
fictitious undamaged elasticity tensor of the material.

Secondly, let the damage only affect the diagonal terms of the compliance tensor of the material then the
damaged compliance matrix can be expressed as

S(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1111

1−d11
S1112 S1113 S1123 S1113 S1112

S2222

1−d22
S2223 S2223 S2213 S2216

S3333

1−d33
S3323 S3313 S3312

S2323

1−d44
S2313 S2312

SYMM S1313

1−d55
S1312

S1212

1−d66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Using the strain equivalence approach, the stress in the damaged and undamaged configuration can be
related as

σ̃ = M−1 : σ, M−1 = S−1 : S̃ (6)

where σ̃ denotes effective stress in the undamaged material, σ denotes stress in the damaged material, andM
denotes the fourth-order damage effect tensor as a function of the fourth-order compliance tensor, S̃ denotes
effective compliance in the undamaged material, and S denotes compliance in the damaged material. It
should be noted that M in Eq. (3) and Eq. (6) are different. Both types of the damage models are revisited
in section VI for selecting the thermodynamically consistent model.

III. Brief Review of Thermodynamics

In the general thermomechanical problems, the phenomena of elasticity, plasticity, and the thermal
effects may be modeled using irreversible thermodynamics formulation. In this case, the observable state
variables can be elastic strain εe, and temperature T with their associated variables stress σ and entropy S,
respectively. Let the Helmholtz free energy be expressed as a function of the given state variables as

ψ = ψ(ε, T, Vk) (k = 1, 2, ...., n) (7)

where ψ denotes energy per unit mass of the material, Vk denote other internal variables. It is
usually observed that ductile damage starts after significant inelastic deformation that precipitates from
accumulation of plastic damage. Thus, it is reasonable to assume the elastic strains are smaller compared
with the plastic strains. From additive decompositions of strain one can have

ε = εe + εp (8)

It is also observed that the effect of kinematic harding in a fatigue analysis is obsrved to be negligible..5,34

Thus, let accumulated plastic strain r with their associated variable R, the second-order damage tensor d
and damage hardening parameter β, be the internal variables. Moreover, let the material exhibit uncoupled
plastic and damage behaviour. Thus, the Helmholtz free energy for isothermal process can be written as

ψ = ψe(ε
e,d) + ψp(r) + ψd(β) (9)

Substituting Eq. (9), in to the Clausius-Duhem inequality, the following relation is obtained

(σ − ρ
∂ψ

∂εe
) : ε̇e + σ : ε̇p − ρ

∂ψ

∂r
ṙ − ρ

∂ψ

∂d
: ḋ− ρ

∂ψ

∂β
β̇ ≥ 0 (10)
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This inequality must be satisfied for any values of εe, εp, ṙ, ḋ and β̇. If the damage and plastic strains εp

do not exist in the material, then the inequality can be satisfied only for σ = ρ ∂ψ
∂εe which give the elastic

constitutive equation. Let y and B be thermodynamic conjugate force variables (elastic energy release rate
due to damage) and damage hardening parameter, respectively. These variables can be related to Helmholtz
free energy as

R ≡ ρ
∂ψp

∂r
, y ≡ −ρ

∂ψe

∂d
, B ≡ ρ

∂ψd

∂β
(11)

where R denotes accumulated plastic strain associated variables. Using Eq. (10) and (11), dissipation
potential per unit volume can be described as

Φ = σ : ε̇p −Rṙ + y : ḋ−Bβ̇ ≥ 0 (12)

For uncoupled the plastic and damage behaviour, the dissipation potential per unit volume Φ can decomposed
into

Φ = Φp +Φd (13)

where
Φp = σ : ε̇p −Rṙ and Φd = y : ḋ−Bβ̇ (14)

Thus, the yield and damage criteria can then be expressed as

fp(σ, R) ≤ 0 and fd(y, B) ≤ 0 (15)

One can assume a pseudo-plastic and damage potential to be Fp(σ,R) and Fd(d, β), respectively. Based on
the dissipation mechanism, the flow rule for uncoupled plasticity and damage can be expressed using two
independent multipliers, λ̇p and λ̇d, such that the plastic and damage evolution rate can be written as34

ε̇p = λ̇p
∂Fp

∂σ
, ṙ = −λ̇p

∂Fp

∂R
, ḋ = λ̇d

∂Fd

∂y
, β̇ = −λ̇d

∂Fd

∂B
(16)

Once ψ, Fp, fp, Fd, fd are known, the two independent multipliers can be uniquely determined. For plastically
deformed part of the material, it should be noted that plastic deformation can only occur in the effective
stress space, i.e., the undamaged part. Thus, Hill’s yield criterion can be used to analyze yield surface of
the undamaged part.

fp(σ, R) = σeq −R− σy ≤ 0, σeq =

√
3

2
(σ̃)′ : H : (σ̃)′ (17)

where fp denotes yield function, R denotes isotropic hardening, and σy denotes stress threshold, H denotes
a positive semi-definite tensor of the fourth-order characterizing the yield condition of orthotropic materials,
σ̃ denotes effective stress, ()

′
denotes deviatoric part of the field. Let R be expressed using Voce hardening

law as34,35

R = Q[1− e(−br)] (18)

where Q and b denote isotropic hardening parameters and also let the plastic flow obey the associative
flow rule Fp = fp. The loading and unloading conditions of Eq. (16) can be obtained using Kuhn-Tucker
conditions.

λ̇p ≥ 0, fp ≤ 0, λ̇pfp = 0 (19)

Then, independent multiplier of plasticity in Eq (16) can be uniquely obtained from consistency equation
ḟp = 0.

ḟp =
∂fp
∂σ̃

˙̃σ +
∂fp
∂R

∂R

∂r
ṙ (20)

The rate equation of effective stress space for decoupled plastic damage can be written as

˙̃σ = C(d) (ε̇− ε̇p) (21)

Substituting Eq. (21) into Eq. (20) and using Eq. (16) and Eq. (17), after a few algebraic manipulations,
one obtains

λ̇p =

(
∂fp
∂σ̃ : C(d) : ε̇

∂fp
∂σ̃ : C(d) :

∂fp
∂σ̃ + ∂R

∂r

)
, ṙ = λ̇p (22)
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Then, the evolution of plastic strain ε̇p in Eq. (16) can be written using Eq. (22) as

ε̇p =

(
∂fp
∂σ̃ : C(d) : ε̇

∂fp
∂σ̃ : C(d) :

∂fp
∂σ̃ + ∂R

∂r

)
∂fp
∂σ̃

(23)

For damaged part, it is assumed that there exists the damage potential fd = 0 in the space of the
thermodynamic conjugate force y and B, thus, the convex surface for the damage criterion may be expressed
as36

fd(y, B) = YEQ − (Bo +B) = 0 (24)

where YEQ =
[
1
2y : L(d) : y]1/2

denotes equivalent damage energy release rate, Bo denotes damage threshold
(material dependent value). L(d) denotes the fourth-order damage tensor function which can be expressed
using index notation as

Lijkl =
1

2
(δikδjl + δilδjk) +

1

2
cd(δikdjl + dikδjl + δildjk + dilδjk) (25)

where cd denotes material constants. Using the damage potential, damage evolution rate and the rate of
change of damage parameter can be expressed as

ḋ = λ̇d
∂fd
∂y

, and β̇ = −λ̇d
∂fd
∂B

(26)

where ḋ denotes the rate of damage flow, ∂fd
∂y denotes the direction of flow of damage. Let ρψd(β) be

expressed as34,35

ρψd(β) =
S2

2Lo
, S = L(1− exp(−oβ)) (27)

Substituting Eq. (27) into Eq. (11), one can obtain

B = L(1− exp(−oβ)) (28)

where L and o are constant to be obtained from curve fitting with experimental prediction for monotonic
loading. The loading and unloading conditions of Eq. (26) can be obtained using Kuhn-Tucker conditions.

λ̇d ≥ 0, fd ≤ 0, λ̇dfd = 0 (29)

where λ̇d is obtained from consistency conditions ḟd = 0 as34

ḟd =
∂fd
∂y

: ẏ +
∂fd
∂B

∂B

∂β
β̇ +

∂fd
∂L

∂L
∂d

: ḋ = 0 (30)

From Eq. (11), one can write

ẏ =
∂y

∂εe
: ε̇e +

∂y

∂d
: ḋ (31)

Using Eq. (31), (26) and after a few algebraic manipulations, Eq. (30) can be rewritten as

ḟd =
1

2YEQ
y : L : (

∂y

∂εe
: ε̇e) +Lλ̇d = 0 (32)

where L = − 1
2YEQ

(y : L : (∂y∂d : ∂fd
∂y ))− 1

4YEQ
(y : (∂L∂d : y) : ∂fd

∂y ) + ∂B
∂β . Then, the damage evolution rate can

be expressed as

λ̇d =

1
2YEQ

y : L : ( ∂y
∂εe : ε̇e)

L
(33)

The rate equation for stress can be written as

˙̃σ =
∂σ̃

∂εe
ε̇e +

∂σ̃

∂d
ḋ (34)
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In the low cycle fatigue analysis, it can be postulated that the material undergoes excessive plastic
deformation before failure occurs. Thus, using Eq. (8), Eq. (34) can be rewritten as

˙̃σ = C(d)(ε̇− ε̇p) +
∂σ̃

∂d
ḋ (35)

Substituting Eq (23) in Eq (35) and using Eq (33) and (26), The rate equation for uncoupled damaged
elastoplastic constitutive equation can be expressed for small incremental loading as

δσ̃ = Cepd : δε (36)

where Cepd denotes damaged elastoplastic tangent stiffness tensor and it can be expressed as

Cepd = C(d)−
(
C(d) :

∂fp
∂σ̃

)
⊗

(
∂fp
∂σ̃ : C(d)

)
∂fp
∂σ̃ : C(d) :

∂fp
∂σ̃ + ∂R

∂r

+
1

YEQ L

(
∂C(d)

∂d
ε

) (
∂fd
∂y

⊗ (FLyε)

)
+ Cpd (37)

where FLyε = y : L : ∂y
∂εe ,

(
∂C(d)
∂d ε

)
= ∂σ

∂d and

Cpd =
1

YEQ L

(
∂C(d)

∂d
ε

) (
∂fd
∂y

⊗ (FLyε)

) ⎛
⎝ ∂fp

∂σ̃ ⊗
(

∂fp
∂σ̃ : C(d)

)
∂fp
∂σ̃ : C(d) :

∂fp
∂σ̃ + ∂R

∂r

⎞
⎠ (38)

where C(d) denotes the damaged fourth-ordered stiffness tensor, the first term in Eq (37) represents elastic
case, the second term for plastic case, the third term is for damage, and the fourth term represents the
combined effect of both plasticity and damage. It should be noted that the effect of kinematic hardening
assumed to be negligible due to cyclic loading.

IV. Averaging Approach

The pathological mesh dependency of local continuum damage mechanics can be solved using various
nonlocal approaches. The nonlocal field can be obtained by smearing damage variable or local fields over
the entire material or constituents. However, for LCF failure, where localized material degradations play
a major role for sudden failure of a component, it is more reasonable to consider the average local field
computed within its proximity than smearing over the whole material domain. Thus, the weighted averaged
local field for a given point can be obtained as22,25,26

< f >=

∑
i

wiΔvif∑
i

wiΔvi
(39)

where < f > denote weighted average local fields (strains/stresses) at integration point, Δvi denote

integration volume, w(l) denotes Gaussian weighting functions expressed as w(l) = e(αl/λw)2 . The parameter
λw denotes characteristic length which depends on the volume/area considered for averaging the local field,
l denotes location of points from a point of interest and should not be greater than the λw. The smallest
volume/area could be averaging within an element, and α denote the distribution of weighing function over
the characteristic length. The damage potential surface (threshold), damage evolution rate, elastic energy
release rate, damage parameter can then be expressed using the pointwise local average field designated as

fd, Λ̇d, y and β, respectively.

V. Mechanics of Structure Genome (MSG)

MSG is a unified theory proposed to fill the gap between materials genome and macroscopic structural
analysis. Structure Genome (SG) is the smallest mathematical building block (or a cell in biological contexts)
of the structure containing many such building blocks. SG not only describes the matter but also carries the
information bridging materials genome and structural analysis. Although in a different way, the basic concept
of the MSG is first introduced in series of papers Refs. [37–39]. Later, the proposed concept gave birth to
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a unified and systematic approach to solve structural analysis problem called MSG. It is a general-purpose
approach for multiscale structural modeling for various structures such as for 1D (beams), 2D (plates/shells),
and 3D composite structures. The theory of MSG is implemented in the computer code SwiftComp.

The properties of composites varies with scale and also in view of the fact that the size of SG is much
smaller than the overall size of the macroscopic structure, we introduce a set of micro coordinates yi = xi/ε
with ε being a small parameter to describe the SG. This basically enables a zoom-in view of the SG at the
size similar as the macroscopic structure. If the SG is 1D, only y3 is needed; if the SG is 2D, y2 and y3 are
needed; if the SG is 3D, all three coordinates y1, y2, y3 are needed.

In multiscale structural modeling, it is postulated that all the information can be obtained from the
SG in combination with the macroscopic structural model. In other words, a field function of the original
heterogeneous structure can be generally written as a function of the macro coordinates xk which remain in
the macroscopic structural model and the micro coordinates yj . The partial derivative of a function f(xk, yj)
can be expressed as

∂f(xk, yj)

∂xi
=

∂f(xk, yj)

∂xi
|yj=const +

1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (40)

The deformed and undeformed configuration of structure of any type can be expressed using position vector
based on the type of the structure we have, i.e., beam , plate/shell, 3D structure featuring 1D, 2D and 3D
structures. Interested readers can get details of this method in Ref. [30]. Although the SG concept can be
used to analyze various types of behavior of heterogeneous structures, we illustrate the basic idea of MSG
using elastostatic behavior of the composites. The governing equation can be expressed using the following
the variational statement

δU = δW (41)

δ is the usual Lagrangean variation, U is the strain energy and δW is the virtual work of applied loads. The
bars over variations are used to indicate that the virtual quantity needs not be the variation of a functional.
For a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U =
1

2

∫
1

ω

〈
ΓTDΓ

〉
dΩ (42)

where Ω is the volume of the domain spanned by xk remaining in the macroscopic structural model. The
notation 〈•〉 = ∫ •√gdω is used to denote a weighted integration over the domain of the SG, ω, where g is
the determinant of the metric tensor of the undeformed configuration spanned by x1, x2, x3. ω also denotes
the volume of the domain spanned by yk corresponding to the coordinates xk, remaining in the macroscopic
structural model, Γ denotes the 3D strain field which can be written for 3D structures as

Γ = Γhw + Γεε̄ (43)

where Γ = Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12�T , w = w1 w2 w3�T , ε̄ is a column matrix containing the
generalized strain measures for the macroscopic structural model. If the macroscopic structural model is
a 3D continuum model we have ε̄ = ε11 ε22 ε33 2ε23 2ε13 2ε12�T with εij denoting the Biot strain
measures in a Cauchy continuum. Γh is an operator matrix which depends on the dimensionality of the SG.
Γε is an operator matrix the form of which depends on the macroscopic structural model. If the macroscopic
structural model is the 3D Cauchy continuum model, Γε is the 6×6 identity matrix. By using the variational
statement in Eq. (41) and the strain energy in Eq. (42) and also by neglecting the terms with small order,
the first approximation of variational statement cab be obtained as30

δ
1

2

〈
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)
〉
= 0 (44)

For very simple cases, this variational statement can be solved analytically, while for general cases we need
to turn to numerical techniques such as the finite element method for solution which has been implemented
in the computer code SwiftComp.

VI. Proposed LCF Damage and Life Prediction Approach

The two damage models described in section II are considered in this study. However, the first damage
model does not give the predictions of thermodynamic conjugate force y consistence with the dissipation
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potential Φd in Eq (14) that require y ≡ −ρ∂ψe

∂d ≥ 0. For instance, for uniaxial global loading, the model
gives y22 < 0 and y33 < 0 while y11 > 0. Moreover, as one assumes large value of damage in axial direction
and small values for all other damage, all components of y < 0. In a global sense, this problem is partly due
to the effect of Poisson’s ratio. For unidirectional loading, there will be deformation particularly contractions
in transverse direction. Thus, the effect of the transverse strain yields y22 < 0 and y33 < 0. However, the
problem may not be encountered for multi-directional loadings. It should also be noted that the diagonal
terms of damage effect tensor in Eq (3) with

√
1− dij components also suffers similar problem.

For the second damage model, thermodynamic conjugate force y can alteratively be obtained from
complementary energy G using the proposed damage model, Eq (5), as40

y =
∂G

∂d
, G =

1

2
σ : S(d) : σ (45)

The second damage model is adopted in this paper to analyse the LCF damage and the corresponding
fatigue life of composites. Generally, for fatigue loading case, it is computational demanding to subdivide
a load in one cycle in to small incremental loads. Thus, it is assumed that a single step loading for each
cycle with constant plastic strain and damage. The critical damage level is evaluated at each integration
point based on the weighted averaged local field. The weighted averaged fields are computed using λw = 0.1
and α = 0.005. The critical damage level Dc is a material dependent constant that can be obtained from
experiments. It usually assumed to be 0.2 < Dc < 0.8..34 The critical damage level determines the fatigue
life N of the composite. The material constants, σy, Q, and b in Eqs. (17) and (18) and also Bo, L, and
o in Eqs. (24) and (28) are obtained by curve fitting with experimental data for monotonic loading. Once
the material constants are obtained. The prediction either for monotonic or fatigue loading can be performed.

The proposed fatigue life prediction approach for LCF can be summarized as follows:

1. Apply the specified load ε or σ.

2. Predict the effective properties of the composite and obtain the weighted averaged local fields
(dehomogenization).

3. Evaluate plastic yield Eq. (17), if fp < 0 go to the next step else solve for accumulated plastic strain r

based on the consistency equation ḟp = 0 using incremental algorithm

4. Evaluate damage limit Eq. (24), if fd < 0 go to the next step else using consistency ḟd = 0 obtain λd,
β and d iteratively using incremental algorithm.

5. Update p, λd, β and d.

6. Evaluate the critical damage level for each constituent, if damage level is less than Dc go to the next
step else, the analysis will be terminated.

7. Update effective stiffness tensor Eq (37) damaged elastoplastic tangent stiffness tensor.

8. Repeat steps from 1 to 7.

The Step 1 to 6 are performed for all integration points where plastic strain and/or damage occur.

A. Continuous Fiber-Reinforced Composite

For the current study, the LCF life is predicted for glass/epoxy composite. Let the material constant in
Eq. (25) be cd = 0 and also H is assumed to be diagonal fourth order tensor with all its components equal
to 1. The material constants for the fiber and matrix are listed in Table 1. The fiber volume fraction is 55%.
The monotonic experimental data are not available. Thus, some of material constants are approximated
based on the measured effective tensile strength and tensile failure strain in the composite. First, let σy

be assumed for each constituent as shown in Table 1. The values of b and Q can be approximated using
numerical simulation for a few small incremental loading just after the yield limit of each constituent.

Again, let the stress level 2.64 GPa and 1.50 GPa, for the matrix and fiber, respectively, be the limit
of damage initiation due to excessive plastic strain, the corresponding values of Bo can then be estimated
using Eq. (24). If fd < 0, no damage. Thus, Bo is selected to have infinitesimally small damage in the each
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constituent. The critical damage values are assumed to be 0.2 and 0.23 for the fiber and matrix, respectively.
The values of L, and o are then estimated by numerically simulation. These simulations are performed until
the predicted maximum tensile stress and tensile failure strain fits with the measured values 1.670 GPa and
3.8% of maximum tensile stress and tensile failure strain, respectively, Ref. [21]. The predicted effective
tensile strength maximum tensile stress and tensile failure strain are found to be 1.65 GPa and 3.96%,
respectively. The predicted and measured values maximum tensile stress and tensile failure strain show good
agreements. Thus, it is believed that the calibrated material constants can be used to predict the fatigue
life of the composite.

Table 1. Material constant for fatigue analysis (Ref. [21])

Material E GPa ν σy (GPa) b Q (GPa) Bo(GPa) L(GPa) o

Fiber 78.50 0.189 2.750∗ 9.5∗ 1000∗ 0.052∗ 120.00∗ 8∗

Matrix 3.50 0.350 0.150∗ 15.5∗ 10000∗ 0.058∗ 0.199∗ 7.5∗

∗ estimated
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Figure 1. S-N for continuous fiber-reinforced composite.

Let the stress ratio R = σmin

σmax
be 0.5, the fatigue life of continuous fiber-reinforced composite is then

estimated based on the calibrated material constants as shown in Figure 1.

To analyze the propagation of accumulated plastic strain and damage, let the global load 1.6 GPa be
applied on the structure genome of the composite. The applied load is used to run fatigue analysis to study
the growth of plastic strain and damage during cyclic loading. In this analysis, it is noticed that the fiber
mainly controls the failure of the composite. The plastic strain and damage in the matrix are also observed
to be negligible. The propagation of weighted averaged plastic strain in the matrix and damage growth in the
fiber are depicted in Figures 2 and 3, respectively. The progressive fatigue damage also affects the effective
properties of composites as shown in Figure 4. The degradation of the effective properties are observed to
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Figure 2. Weighted averaged plastic in continuous fiber-reinforced composite.
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Figure 3. Weighted averaged damage in continuous fiber-reinforced composite.
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Figure 4. Effective properties of continuous fiber-reinforced composite.

be gradually decreasing unlike the high cycle fatigue where sudden failure happens. This is because the
material undergoes excessive plastic strain before damage occurs.

B. Particle-Reinforced Composite

In this example, a cuboidal structure genome is used. Let the a spherical particle be embedded at the center
of the structure genome and also let particle volume ratio be 10%. In this case, monotonic stress-strain
experimental data of the composite are available. Thus, the material constants both for plasticity σy, b, and
Q, and damage analysis Bo, L, and o are calibrated by numerically simulations. Let the material constant
in Eq. (25) cd = 0 and also H is assumed to be diagonal fourth-order tensor with all its components equal to
1. The simulations are performed until the predicted curve fits with the experimental data. The yield limit
of the fiber is approximated, while the yield limit of the matrix and the composite is measured as shown in
Table 2. Consequently, plastic strain and damage analysis constants are approximated using the yield limits
of the particle and matrix. It should be noted that, for LCF, damage occurs due to excessive plastic strain.
The material constants b and Q are then calibrated by curve fitting with experimental data for few small
incremental load after yield limit. As the load increases, damage initiates at a specified stress level beyond
the yield limit. In this analysis, let the specified stresses be approximately 2869 MPa and 208 MPa for the
matrix and fiber, respectively. Based on these stresses, one can estimate the values of Bo using Eq. (24).
If fd < 0, no damage. Let the value of Bo be selected for infinitesimally small positive values of fd which
results in infinitesimally small damage in each constituent. The values of L and o are then estimated by
numerically simulation using different values. The estimated material constants are shown in the Table 2.
These material constants are then used to predict the stress-strain curve for the uniaxial loading. As shown
in Figure 5, the predicted results show good agreement with the experimental data.
As seen from the predicted results for monotonic loading, it is reasonable to use estimated material constants
to predict the fatigue life of the composite. In this case, let the stress ratio R = σmin

σmax
be 0.6. The fatigue

life of the particle reinforced composite is estimated as it can be seen from Figure 6.
For LCF, the fatigue life is dependent of on the growth of local accumulated plastic strain and damage

in the composite. To investigate this, let a cyclic load of 1.5 MPa be used. In this analysis, the matrix
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Figure 5. Stress-strain curve for particle-reinforced composite.

Table 2. Material constant for fatigue analysis (Ref. [19])

Material E (GPa) ν σy (GPa) b Q (GPa) Bo(GPa) L(GPa) o

Fiber 234.90 0.204 21 21∗ 2000∗ 8.2∗ 20∗ 10∗

Matrix 69.90 0.330 0.135 12.5∗ 350∗ 0.8∗ 0.3∗ 5∗

∗ estimated.
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Figure 6. S-N curve for particle-reinforced composite.

0.00 0.25 0.50 0.75 1.00 1.25

0.00000

0.00005

0.00010

0.00015

0.00020

d11

ε
p
11

Log (N)

Figure 7. Weighted averaged accumulated plastic strain and damage in particle-reinforced composite.
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mainly controls the failure of the composite. it is also observed that the damage starts to propagate after
excessive accumulated plastic strain. However, the growth of weighted averaged damage is much greater
than accumulated plastic strain as shown in Figure 7. This may be due to larger stress disturbance in
each constituent particularly along the fiber-matrix interface. Morevoer, it is noticed that the progressive
fatigue damage can significantly affect the effective properties of the composite as shown in Figure 8. In this
analysis, the shear moduli are observed to be negligibly affected.

0.00 0.25 0.50 0.75 1.00 1.25
0.0
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Figure 8. Degradation of effective properties of particle-reinforced composite.

VII. Conclusion

The fatigue life analysis of composite materials are studied using a micromechanics approach. The
proposed method is incorporated into SwiftComp to estimate the fatigue life and anisotropic damage
evolution of the composite. The stress-strain curve for monotonic loading is found to be in a good agreement
with the experimental data. As the proposed approach is mainly based on micromechanics particularly on
the local fields, it requires material properties specific to each constituent. The current prediction may be
improved if all material data are available. The current calibration approach is limited to unidirectional
loading option. It is suggested to make this approach applicable for multi directional loading conditions.
Additional validations of the fatigue life with experimental data are also required to examine the capability
of the current approach.
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ABSTRACT

This work systematically constructs multiscale constitutive models for aperiodic

dimensionally reducible structures (beams/plates) using Mechanics of Structure Genome

(MSG). MSG splits the original 3D body into a dimensionally reduced structural anal-

ysis and a constitutive modeling over the Structure Genome (SG). SG is the smallest

mathematical building block of the structure, which can be used to obtain all the nec-

essary constitutive relations for the reduced structural analysis. The approach starts

with expressing the kinematics including both displacements and strains of the origi-

nal heterogeneous material in terms of those of the dimensionally reduced structures

and fluctuating functions. To ensure the kinematic equivalency of the original het-

erogeneous structures and the dimensionally reduced structures, integral constraints

on the fluctuating functions are developed. Then based on the principle of minimum

information loss along with the variational asymptotic method, the variational state-

ment governing the SG only can be formulated and solved. As this theory does not

require boundary conditions, one is free to choose the analysis domain of arbitrary

shape and they need not to be volumes with periodic boundaries. This theory can also

handle periodic microstructures by enforcing the periodicity of the fluctuating func-

tions. To validate this new theory, the results using the current approach are compared

with that obtained from using PBCs for periodic heterogeneous beam/plate structures.

INTRODUCTION

Composites are widely used in engineering applications, especially in aeronau-

tics, which have high strength to weight and stiffness to weight ratios. These struc-

Purdue University, West Lafayette, Indiana 47907
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tures are usually of complex geometries and materials, but displaying a feature that

one or two dimensions of the three-dimensional (3D) body are much smaller than the

remaining dimensions, referred as dimensionally reducible structures (DRS). Exam-

ples are rotor blades with complex cross-section geometries and varying geometric

features along the blade length, or plates with stiffeners or other complicated buildup

features. Despite the highly developed computation capability of today, 3D analysis

is usually replaced with lower-dimensional models to avoid the expensive computa-

tional cost. To ensure the accuracy, the reduced models must be properly constructed

from the original 3D problem, to achieve both good estimation of macroscopic defor-

mation and 3D local fields.

Historically, numerous theories for composite beams and plates are developed as

two different branches of methods. Two important types of beam structures mostly in-

vestigated in the related literatures are rotor blades and heterogeneous beam structures

consisting of unit cells arranged periodically in the longitudinal direction. For rotor

blades, Hodges and Yu developed the Variational Asymptotic Beam Sectional Anal-

ysis (VABS) in [1, 2], in which the beam-like structure is described by a lengthwise

variation of properties associated with cross-sections, and the original 3D problem

is split into a two-dimensional linear cross-sectional analysis and a one-dimensional

beam analysis. In the numerical application of VABS, isoparametric 2D elements are

used. Couturier [3] evaluated the cross-section stiffness matrix by analyzing six inde-

pendent deformation modes corresponding to extension, torsion, bending and shear

on a single element thickness slice represented by 3D solid elements with length-

wise Hermitian interpolation. Rotor blades are often not uniform in the longitudinal

direction, however in these approaches the non-uniformities of the cross-section at

different locations is not handled directly, instead the beam is discretized and the

cross-section stiffness matrix is solved at different locations with an implicit assump-

tion that the cross-section is almost identical in the neighborhood of the considered

location of the macro model. Only Ho in [4] directly dealt with the non-uniformities

effect of a tapered homogeneous beam using VABS, which demonstrated VABS has

a potential to be valid for non-uniform beams composed of arbitrary materials and

geometries with more work required. Heterogeneous beam structures consisting of

unit cells arranged periodically in the longitudinal direction are studied in [5, 6], in

both approaches periodic boundary conditions must be applied.

For heterogeneous plate and shell structures comprised of in-plane periodic unit

cells, the developed theories including asymptotic homogenization method (AHM) [7,

8], variational asymptotic homogenization method [9, 10], and a novel numerical im-

plementation of AHM [11]. These theories are for general in-plane unit cells and

directly resulted in the effective plate properties for the homogenized macro plate

model. There are also numerous approaches take advantage of the geometry char-

acteristics of some specific unit cells such as sandwich structures with honeycomb

core [12, 13] or woven composite plates [14]. Composite plate theories [15, 16, 17]

are also used in heterogeneous plate structures following a two-step scenario. First

the effective properties of the heterogeneous materials of each layer are obtained, and

then the effective properties are used in the various plate theories.

However, there is still more work to do for aperiodic dimensional reducible struc-

tures, such as tapered composite beams, plates without strict in-plane periodic struc-

DISTRIBUTION A: Distribution approved for public release.



+

1D beam analysis

a) 2D SG

b) 3D SG

Reference line

Reference line

Reference line

Actual problem

SG-based 

Representa�on

Figure 1. Analysis of beam-like structures approximated by a constitutive modeling over SG

and a corresponding 1D beam analysis.

tures, or periodic structures in beams or plates which are too complicated to apply

PBCs. The goal of the present paper is to use the recently discovered Mechanics of

Structure Genome (MSG) [18, 19] to model these structures.

MSG allows direct connection between materials and the macroscopic structural

analysis, particularly for dimensionally reducible structures in a consistent way. MSG

has been proved to be very efficient and capable of predicting quite accurate re-

sults when periodic structures exist. In this work, first a basic concept structure

genome(SG) in MSG is introduced on which the current theory is based on. Then

we will proposed the minimum kinematic constraints (MKCs) for DRS so that the

constitutive models of beams and plates with complecated heterogeneous microstruc-

tures can be systematically constructed without relying of periodic assumption. To

validate this new theory, the results using the current approach are compared with

that obtained from using PBCs for periodic heterogeneous beam/plate structures.

CONCEPT OF STRUCTURE GENOME

SG is defined as the smallest mathematical building block of the structure which

contains all the constitutive information needed for a structure the same fashion as

the genome contains all the intrinsic information for an organism’s growth and de-

velopment. For periodic structures, it is easy to identify the SG as shown in Figure

1 for beams and Figure 2 for plates. If the beam has uniform cross-sections which

could be made of homogeneous materials or composites (Fig. 1a), its SG is the 2D

cross-sectional domain because the cross-section can be projected along the beam

reference line to form the beam-like structure.

If the beam is also heterogeneous in the spanwise direction (Fig. 1b), a 3D SG is

needed to describe the microstructure of the 1D continuum. If the structural analysis

uses plate/shell elements, SG can also be chosen properly. If the plate-like structures

feature no in-plane heterogeneities (Fig. 2a), the SG is the transverse normal line

DISTRIBUTION A: Distribution approved for public release.



2D plate/shell analysis

+
a) 1D SG

b) 2D SG
c) 3D SG

Actual problem

SG-based 

Representa�on

Figure 2. Analysis of plate-like structures approximated by a constitutive modeling over SG

and a corresponding 2D plate analysis.

with each segment denoting the corresponding layer. For a sandwich panel with a

core corrugated in one direction (Fig. 2b), the SG is 2D. If the panel is heterogeneous

in both in-plane directions (Fig. 2c), such as a stiffened panel with stiffeners running

in both directions, the SG is 3D.

Despite the different dimensionalities of the SGs, the constitutive modeling out-

puts the effective structural properties for the corresponding structural analysis and

the recovery relations to express the original 3D fields in terms of the global behav-

ior (moments, strains and curvatures, etc.) obtained from the structure analysis. If

a zeroth-order approximation is performed [2], for heterogeneous beam structures

the effective properties is a 4 × 4 stiffness matrix simultaneously accounting for ex-

tension, torsion, and bending in two directions; for plate/shells, the effective prop-

erties are composed of A, B, and D matrices. First-order approximation can also

be performed [2, 10] if necessary but not considered in this work. It is known that

theories of beams/plates/shells traditionally belong to structural mechanics, but the

constitutive modeling of these structures can be treated as special micromechanics

applications using the SG concept. For a dimensionally reducible structure, if the

reference line/surface is considered as a 1D/2D continuum, every material point of

this continuum has an associated SG as its microstructure.

However, in some real structures in engineering, such as rotor blades or plates

with stiffeners or other complicated buildup features, periodic microstructures are not

exist. In this case, we rely on the expert opinion of the analysts to determine what will

be the smallest, representative building block of the structure, which is like volume

representative volume (RVE) in micromechanics in the analogue sense. It can also

be justified from the viewpoint of material characterization using experiments. When

experimentalists want to find properties of a material, they cut representative pieces

of the material according to their own judgment, make a specimen out of it and do the

testing to get the properties and associated statistics through relations form strucutre

analysis. In the process, the effective properties of structures are internel quantities

which however, is what required in this work through modeling.
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THEORY OF THE MSG FOR STRUCTURE ELEMENTS WITH APERIOD-
ICITY

Although the proposed framework is general to handle most of micromechan-

ics problems, this paper focuses only on the linear, elastic, static behavior of di-

mensional reducible heterogeneous structures without initial curvatures. To facilitate

the formulation, two coordinate systems are set up. The macro coordinate system

x = (x1, x2, x3) is applied to describe the original heterogeneous structure, while

micro coordinate system y = (y1, y2, y3) is introduced to denote the rapid change in

the material characteristics in SG. If the structure is dimensionally reducible, some

of the macro coordinates xα, called eliminated coordinates here, correspond to the

dimensions eliminated in the macroscopic structural model. Here and throughout the

paper, Greek indices assume values corresponding to the eliminated macro coordi-

nates, Latin indices k, l,m assume values corresponding to the macro coordinates

remaining in the macroscopic structural model, and other Latin indices assume 1, 2,

3. Repeated indices are summed over their range except where explicitly indicated.

For beam-like structures, only x1, describing the beam reference line, will remain

in the macro beam model; for plate/shell-like structures, x1 and x2, describing the

plate reference surface, will remain in the macro plate model.

The first step in formulating MSG is to express the kinematics, including the

displacement field and the strain field, of the original structures in terms of those of

the macroscopic structural model. As derived in [19], the strain fields of beams and

plates can be expressed in a uniform in Eq. (1) if a zeroth-order approximation is

performed

Γ = Γhw + Γεε̄ (1)

where Γ = Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12�T denotes the strain field of the original

structure, w = w1 w2 w3�T the fluctuating functions, ε̄ is a column matrix con-

taining the generalized strain measures for the macroscopic structural model. If the

macroscopic structural model is a beam model, we have ε̄ = ε11 κ11 κ12 κ13�T
with ε11 denoting the extensional strain, κ11 the twist, κ12 and κ13 the bending cur-

vatures. If the macroscopic structural model is a plate/shell model, we have ε̄ =
ε11 ε22 2ε12 κ2D

11 κ2D
22 κ2D

12 + κ2D
21 �T with εαβ denoting the in-plane strains and κ2D

αβ

denoting the curvature strains.

Γh is an operator matrix which depends on the dimensionality of the SG. If the

SG is 3D,

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂y1

0 0

0 ∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 ∂
∂y1

∂
∂y2

∂
∂y1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

If the SG is a lower-dimensional one, one just needs to vanish the corresponding

term corresponding to the micro coordinates which are not used in describing the SG.
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For example, if the SG is 2D,

Γh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 ∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 0
∂

∂y2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

If the macroscopic structural model is a beam model,

Γε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 y3 −y2

0 0 0 0

0 0 0 0

0 0 0 0

0 y2 0 0

0 −y3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

If the macroscopic structural model is a plate/shell model,

Γε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 y3 0 0

0 1 0 0 y3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Without loss of generality, we consider the origin of the coordinate system of a

SG associated to a point in the of the macro model to be located at the geometric

center of the SG, that is

〈εyα〉 = 0 (6)

where 〈•〉 denotes integration over the domain of SG. To ensure the kinematics equiv-

alency between the original heterogeneous structures and the dimensionally reduced

structures (beams or plates), a unique mapping between the micro-scale kinematic

fields and the macro-scale kinematic fields must be satisfied. As derived in [19], the

fluctuating functions must be constrained according to Eq. (7). For beam structures,

they are additionally constrained by Eq. (8).

〈wi〉 = 0 (7)

〈w2|3 − w3|2〉 = 0 (8)

These constraints only ensure the equivalency of the displacement vector of the macro

model and the average displacement of the original heterogeneous structures, and

thus the rigid body displacement of the SG can be eliminated. Equivalency of strain
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vector of the macro model and the original heterogeneous structures should also be

satisfied. For DRS with periodic microstructures, this is ensured by exerting PBCs

on the fluctuating functions. In this work, MKCs of beam and plate heterogeneous

structures are proposed so that the equivalency of strain can be achieved. If the macro

structure is a beam, the MKCs are〈
wi|1

〉
= 0 (i = 1, 2, 3)〈

yαw1|1
〉
= 0 (α = 2, 3)〈

y2w3|1 − y3w2|1
〉
= 0 (9)

for a 3D SG. It is apparrent that the constraints in Eq. (9) will be automatically be

satisfied for 1D and 2D beam SG in which y1 is a constant.

For plates, these MKCs are〈
wk|l + wl|k

〉
= 0 (l, k = 1, 2)〈

y3(wk|l + wl|k)
〉
= 0 (l, k = 1, 2) (10)

for 3D SG. For 2D SG or 3D SG with PBCs applied on nodes on the boundary

surfaces normal to y1, the terms related to the partial derivative of y1 disappeared.

Eq. (10) is satisfied automatically for 1D SG of plate. Any solution of fluctuating

functions must satify the constraints Eq. (7), Eq. (8) and Eq. (9) for beams or Eqs. (7)

and (10) for plates, which define the most flexible solution space of fluctuating func-

tions. The solution found from this solution space using the principal of minimum

potential will apply least constraints on the fluctuations, which correspond to the

static uniform boundary conditions on RVE. More constraints can be additionally ap-

plied if they are chosen probably according to the physical problem in question to

obtain faster converging results. In fact, it is explicit the fluctuating functions peri-

odically constrained at the periodic boudnary surfaces satisfy Eq. (9) for beams or

Eq. (10) for plates automatically.

Therefore, it enlighten us at least 3 messages: (1) For aperiodic beams or plates,

once the SG is chosen properly, multiscale modeling can be performed using the

proposed constraints. As this theory does not involve any boundary conditions, the

analyst is free to choose SGs of arbitrary shape and they need not be volumes with

straight boundaries. (2) For partially periodic beam or plates, by enforcing the peri-

odicity of the fluctuating functions on the corresponding surfaces in addition to the

MKCs, the best solution can be obtained with the minimum information loss. (3)

For some periodic structures, it is very difficult to generate mesh with all nodes on

boundary surfaces have a corresponding periodic node, but quite often the periodic

node pairs exist partially. In this case, the existed periodic constraints can be applied

along with the MKCs.

For linear elastic problem, the behavior of the original heterogeneous is governed

by the principle of minimum total potential energy. To minimize the loss of infor-

mation between the original model describing the microscopic details and the model

used for the macroscopic structural analysis, for elastic materials we minimize the

difference between the strain energy of the materials stored in SG and that stored in

the macroscopic structural model along with the required constraints. As pointed out

DISTRIBUTION A: Distribution approved for public release.



in [19], the effects of loads can be negnected if we are only interested in the con-

stitutive relations and thus the potential energy becomes strain energy. Therefore the

governing equation is only defined in the SG as

δJ = δ

〈
1

2
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)− λΓkw − ηΓcw

〉
= 0 (11)

where D is the 6 × 6 material matrix of the original heterogeneous DRS. Γkw is the

constraints of beam (Eqs. (9) and Eq. (8)) and plate (Eqs. (10)) written in matrix form,

λ is the corresponding Lagrange multiplier vector. Γcw is the constraints of Eqs. (7)

written in matrix form, and η is the corresponding Lagrange multiplier vector.

Finite element implementation

To solve Eq. (11) for general cases, we need to turn to numerical techniques such

as the finite element method (FEM). It is possible to formulate the FEM solution

based on Eq. (11) directly, however since the constraints of the last term do not affect

the minimum value of J but help uniquely determine the fluctuating functions, in

practice we can constrain the fluctuating functions at an arbitrary node to be zero and

later use these constraints to recover the unique fluctuating functions. Discretize w
using the finite elements as

w(xi; yj) = S(yj)V (xi) (12)

where S represents the shape functions and V a column matrix of the nodal values of

the fluctuating functions.

Substituting Eqs. (12) into Eq. (11), we obtain a discretized version of the func-

tional J as

J =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄

) − λTDT
hλV (13)

where

E =
〈
(ΓhS)

T D (ΓhS)
〉

Dhε =
〈
(ΓhS)

T D
〉

Dεε = 〈D〉 Dhλ = 〈ΓhS〉T

(14)

Minimizing J in Eq. (13) gives us the following linear system[
E −Dhλ

−DT
hλ 0

] [
V

λ

]
=

[
−Dhεε̄

0

]
(15)

It is clear that V will linearly depend on ε̄, and the solution can be symbolically

written as

V = V0ε̄ (16)

With the solution in Eq. (16), we can calculate the strain energy storing in the SG as

the first approximation as

U =
1

2
ε̄T

(
Dεε + V T

0 Dhε

)
ε̄ ≡ Ω

2
ε̄TD̄ε̄ (17)
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where D̄ is the effective stiffness matrix to be used in the macroscopic structural

analysis.

The local fields within the SG can also be recovered easily based on the global

displacement vi and global strain ε̄. First knowing ε̄, we can compute the fluctuating

function as

w = SV0ε̄ (18)

The local strain field can be recovered using Eq. (1) as

ε = ε̄+ ΓhSV0ε̄ (19)

The local stress field can be obtained directly using the Hooke’s law as

σ = Dε. (20)

VALIDATION OF BEAM AND PLATE MODEL

The present theory is implemented in the general-purpose multiscale constitutive

modeling code, SwiftCompTM. Several examples are used to validate the effective-

ness of the constraints for beam and plate model. In all the models the same two

materials are used with properties shown in Table I. The coordinate system notation

x, y, z is used instead of y1, y2, y3 in this section.

TABLE I. MATERIAL PROPERTIES

Materials E1 (GPa) E2 = E3 (GPa) G12 = G13(GPa) G23 (GPa) ν12 = ν13 ν23

Material 1 (Green) 50.0 15.2 4.7 3.28 0.254 0.428
Material 2 (Grey) 2.60 2.60 1.0 1.0 0.30 0.30

Validation of beam model

First a cylinder beam with a span-wise heterogeneity is considered, of which the

3D SG is shown in Figure 3. The SG has a diameter of 2 mm, and the length in x
direction is 1 mm. Each material occupies the same volume in the SG. The approxi-

mate mesh size chosen for this example is 0.24 mm. Using the current configuration,

the effective beam properties obtained using PBCs are presented in Table II.

The effective beam properties obtained from using the MKCs can be found to

converge to the results of using PBCs in the x direction with the increasing of the

number of SGs used (Figure 4). It is shown that the torsional stiffness D22 is not

influenced by the constraints applied for a cylinder beam SG with homogeneous ma-

terial properties across the cross-section in this case.

The discrepancy between using MKCs and PBCs comes from the boundary effect.

When a macro strain ε11 = 0.1 is applied to a beam SG composed of 4 repetitive SGs

of Figure 3, the stress σ11 dehomogenized with MKCs and PBCs are compared in
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Figure 5. If the number of repetitive SGs is increased, this boundary effect will not be

elimilated but the influence to the homogelized beam model will be decreased. From

Fig 6, it is shown that the increasing of the number of SGs exerted litter influence to

σ11 distribution at the path along the x axis of the SG in the boundary region.

Figure 3. Beam SG 1: SG with a circular cross-section.

TABLE II. EFFECTIVE BEAM PROPERTIES OBTAINED USING SG 1 AND APPLYING

PBCS

D11 (N) D22 (N m2) D33 (N m2) D44 (N m2)
1.6740E+4 2.503E-3 4.072E-3 4.079E-3

Figure 4. Convergence study of effective beam stiffness of beam SG 1.
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(a) Using PBCs (b) Using MIX100

Figure 5. σ11 obtained by dehomogenization with macro strain ε11 = 0.1

Figure 6. σ11 along the x axis of beam SG 1. The number after ’M’ denotes the number of

repetitive SGs in Figure 3 analyzed.

In the second example, a more complex beam structure with heterogeneity in all

the directions is studied, the SG of which is shown in Figure 7. The SG has a length

of 2 mm, and the diameters are 1 mm and 2 mm respectively for the inner cylinder

and the outside tube, in which each material occupies the same volume fraction. The

mesh of the SG is purposely made not periodic on the boundary surfaces, with about

16 out of 87 nodes having no periodic corresponding node on the other boundary

surface to apply PBCs. Two kinds of constraints are compared in this example. The

first one is that only the MKCs are applied, the second one is that MKCs are applied

along with PBCs applicable for nodes on the boundary surfaces with corresponding

periodic nodes on the other boundary surface (denoted as ’partial PBCs’).

The converged results obtained from using 64 SGs are presented in Table IV. It

is shown that with the two different set of constraints applied, the obtained effective

beam stiffness properties converged to close values. The bending stiffness D33 and

D44 obtained are slightly deviated from each other since the mesh is coarse and the

nodes are not symmetrical with respect to the y and z axis (Figure 7(b)). From Fig-

ure 8, it can be seen by adding the applicable PBCs to the model, the effective beam

properties will converge within a smaller range compared with applying only MKCs.

However, one should not that adding the applicable PBCs may predict unwanted re-

sults if the nodes without corresponding periodic nodes are not evenly distributed on
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the boundary surfaces.

(a) Geometry and materials (b) Mesh configuration

Figure 7. Beam SG 2

TABLE III. THE CONVERGED EFFECTIVE BEAM PROPERTIES OF SG 2

D11 (N) D22 (N m2) D33 (N m2) D44 (N m2)
Partial PBCs (64SGs) 2.913E+4 2.842E-3 5.623E-3 5.598E-3

MKCs (64SGs) 2.911E+4 2.844E-3 5.629E-3 5.604E-3
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(a) beam SG applying MKCs

(b) beam SG applying MKCs and PBCs when available for nodes on the

boundary surfaces

Figure 8. Convergence study of effective beam stiffness

Validation of plate model

A binary composite plate model is studied with SG shown in Figure 9. For this

plate microstructure, the 3D SG and the 2D SG in Figure 9 both contains all the re-

quired constitutive information of the 2D plate model. The dimension of the SG in

each direction are 2 mm. Four kinds of constraints are applied: (1) MIX110: only

MKCs are applied,(2) MIX100: MKCs along with PBCs applied to nodes on the

boundary surfaces normal to y, (3) MIX010: MKCs along with PBCs applied to

nodes on the boundary surfaces normal to x, (4) PBC: PBCs are applied to boundary

surfaces normal to x and y. From Figure 10, the effective plate properties obtained

from using MIX110, MIX100 and MIX010 converge to the results of using PBCs

with the increasing of the number of SGs in x and y directions. Since the hetero-

geneity is in the y direction, the effective plate stiffness converge much faster when

MIX010 is applied to the SG. For the case applying MIX010, the MSG analysis us-

ing 3D SG and 2D SG will predict exactly the same results, which also proved the

DISTRIBUTION A: Distribution approved for public release.



consistence of the proposed MKCs.

(a) 3D plate SG (b) 2D plate SG

Figure 9. Plate SG: binary composites

TABLE IV. THE CONVERGED EFFECTIVE BEAM PROPERTIES OF THE PLATE SG

A11 (N/m) A22 (N/m) A33 (N/m) A12 (N/m) D11 (N m) D22 (N m) D33 (N m) D12 (N m)
PBCs 5.341E+7 1.021E+7 3.298E+2 2.874E+2 1.785E+1 3.426 1.248 9.890E-1

DISTRIBUTION A: Distribution approved for public release.



(a) Plate SG applying MIX110

(b) Plate SG applying MIX100

(c) Plate SG applying MIX010

Figure 10. Convergence study of effective plate stiffness
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CONCLUSIONS

This paper developed a systematical solution in MSG to deal with multiscale

constitutive modeling of the aperiodic dimensionally reducible structures (beams,

plates/shells).The theory is based on the concept of structure genome through mini-

mizing the energy of the original heterogeneous structures. As no boundary condi-

tions are involved except the constraints to ensure kinematics equivalency between

the heterogeneous material and the equivalent homogeneous material, the theory can

be applied to SG of arbitrary shape. In addition, this theory provides a general frame-

work for homogenization and dehomogenization of heterogeneous dimensional re-

ducible structures. It can handle aperiodic microstructures, microstructures with par-

tial periodicity, or microstructures with complete periodicity. For periodic structures,

the effective properties obtained using MKCs or MKCs along with partial PBCs will

converge consistently to that obtained from using PBCs. Second, SG can use the

lowest dimension to describe the heterogeneity. This theory has been implemented

into a general-purpose computer code SwiftCompTM using the finite element method.

The general-purpose multiscale constitutive modeling code SwiftCompTM can be ac-

cessed in the cloud at cdmHUB.org.
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2. New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

Yes

Please describe and include any notable dates

We developed a code called SwiftComp based on Mechanics of Structure Genome, the theory discovered
in this research. SwiftComp™ provides an efficient and accurate approach for modeling composite
materials and structures. It can be used either independently as a tool for virtual testing of composites or as
a plugin to power conventional FEA codes with high-fidelity multiscale modeling for composites. It was
disclosed to Purdue Research Foundation on March 13, 2015.
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