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Abstract

One approach to solving planning problems is to compile
them to another problem for which powerful off-the-shelf
solvers are available; common targets include SAT, CSP, and
MILP. Recently, a novel optimization technique has become
available: quantum annealing (QA). QA takes as input prob-
lem instances encoded as Quadratic Unconstrained Binary
Optimization (QUBO). Early quantum annealers are now
available, and more sophisticated quantum annealers will
likely be built over the next decades. Specific quantum an-
nealing hardware implementations have specific constraints,
restricting the types of QUBOs each can take as input. In
this paper, we introduce the planning community to the key
steps involved in compiling planning problems to quantum
annealing hardware: a hardware-independent step, mapping,
and a hardware-dependent step, embedding. After describ-
ing two approaches to mapping general planning problems to
QUBO, we provide preliminary results from running an early
quantum annealer on a parameterized family of hard planning
problems. The results show that different mappings can lead
to a substantial difference in performance, even when many
superficial features of the resulting instances are similar. We
also provide some insights gained from this early study, and
suggest directions for future work.

Introduction
One approach to solving planning problems is to compile
them to another problem for which powerful off-the-shelf
solvers are available; common targets include SAT, CSP, and
MILP. Recently, a novel optimization technique has become
available: quantum annealing. Quantum annealing is one of
the most accessible quantum algorithms for a computer sci-
ence audience not versed in quantum computing because of
its close ties to classical optimization algorithms such as
simulated annealing.

While large-scale universal quantum computers are likely
decades away from realization, we expect to see a variety of
special-purpose quantum-computational hardware emerge
within the next few years. Already, early quantum anneal-
ers are available, and more sophisticated quantum annealers
will be built over the next decades. While certain classes
of problems are known to be more efficiently solvable on
a universal quantum computer (Rieffel and Polak 2011;
Nielsen and Chuang 2001), for the vast majority of prob-
lems the computational power of quantum computing is un-

known. Until quantum hardware became available it was
impossible to empirically evaluate heuristic quantum algo-
rithms such as quantum annealing.

While there are intuitive reasons why quantum anneal-
ing may be able to outperform classical methods on some
classes of optimization problems, the effectiveness of quan-
tum annealing is as yet poorly understood. Our work is
the first to explore the use of quantum annealing to attack
problems arising in planning and scheduling. This work ex-
plores compilation of planning problems to quadratic uncon-
strained binary optimization (QUBO) problems, the type of
problem that quantum annealers are designed for. While the
immaturity of the technology means that current results are
limited, the significant performance differences that result
from different compilation approaches suggest that subtle
issues are at play in determining the best compilation ap-
proaches for quantum annealers.

In this paper, we introduce the planning community to the
key steps involved in compiling planning problems to quan-
tum annealing hardware. Figure 1 shows the main steps in
our framework of solving STRIPS planning problems (Fikes
and Nilsson 1972; Ghallab, Nau, and Traverso 2004) repre-
sented in PDDL using a D-Wave quantum annealer housed
at NASA Ames Research Center: mapping the problems
to QUBO, and embedding, which takes these hardware-
independent QUBOs to other QUBOs that matches the spe-
cific quantum annealing hardware that will be used. While
debate continues as to the extent to which the D-Wave ma-
chine is quantum (Johnson et al. 2011b; Boixo et al. 2013;
Smolin and Smith 2013; Wang et al. 2013; Boixo et al. 2014;
Shin et al. 2014b; Vinci et al. 2014; Shin et al. 2014a), these
machines provide the first opportunity for researchers to ex-
periment with quantum annealing. This work does not aim to
contribute to that debate, but rather examines different map-
pings of application problems to quantum annealing to give
insight into their relative strengths and weaknesses as best
we can with current technology.

We describe two approaches to mapping general STRIPS
planning problems to QUBO problems. The mappings were
described in (Rieffel et al. 2014b), where one is a variant
of the mapping described in (Smelyanskiy et al. 2012). We
explore the properties of these mappings for a parametrized
family of scheduling-type planning problems based on graph
coloring (Rieffel et al. 2014a). We discuss preliminary re-
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Figure 1: The main steps in our approach of using quantum
annealer to solve a planning problem.

sults from an early quantum annealer, a D-Wave Two ma-
chine, applied to these problems under the two general map-
pings. Due to the current hardware limitation of existing
quantum annealers, our empirical evaluation has been con-
ducted on a limited set of small planning problems. Never-
theless, these early results show that different compilations
to QUBO can lead to substantial differences in performance,
even when many features of both the mapping and embed-
ded QUBOs are similar.

Our paper is a reworking and deepening of our paper
(Rieffel et al. 2014b) to target planning and scheduling re-
searchers, rather than quantum computing researchers. Our
main contributions are:

• A description of quantum annealing with example appli-
cations to planning;

• Two different ways of compiling general planning prob-
lems to QUBO; and

• Results from runs of a parametrized family of scheduling-
type planning problems on an early quantum annealer.

We begin with an overview of quantum annealing, includ-
ing the mapping and embedding compilation steps.

Ingredients of Quantum Annealing
Quantum annealing (Farhi et al. 2000; Das
and Chakrabarti 2008; Johnson et al. 2011a;
Smelyanskiy et al. 2012) is a metaheuristic for solving
optimization problems which bears some resemblance to
simulated annealing, a classical metaheuristic. Quantum
annealers are special-purpose devices designed to run
only this type of quantum algorithm. Other types of quan-
tum algorithms are known that take on quite a different
form, and are aimed at solving other types of problems.
Quantum annealing can be applied to any optimization
problem that can be expressed as a quadratic uncon-
strained binary optimization (QUBO) problem (Choi 2008;

Figure 2: The (3, 4)-Chimera graph. A schematic di-
agram from (Smelyanskiy et al. 2012) of the (M,L)-
Chimera graph underlying D-Wave’s architecture. In the
(3, 4)-Chimera graph shown, there are M2 = 9 unit cells,
each of which is a fully-connected bipartite graph K4,4 con-
taining 2L qubits. The qubits in the left column of each unit
cell are connected to the analogous qubits in the unit cells
above and below and the qubits in the right column of each
unit cell are connected to the analogous qubits in the unit
cells to the right and left.

Smelyanskiy et al. 2012; Lucas 2013). Quantum anneal-
ing is motivated by the possibility that quantum effects
such as tunneling allow for efficient exploration of the cost-
function landscape in ways unavailable to classical methods.

Input for quantum annealing: QUBO problems
QUBO problems are minimization problems with cost func-
tions of the form

q(z1, . . . , zN ) = −
N∑

i=1

hizi +
N−1∑
i=1

N∑
j=i+1

Ji,jzizj , (1)

where the zi are binary variables. A QUBO can be eas-
ily translated to an Ising Hamiltonian, the form of input a
quantum annealer takes, through the linear transformation:
zi = 1

2 (si + 1).
The simplicity of the QUBO formalism belies its expres-

sivity. There exist many techniques for mapping more com-
plicated problems to QUBO:

• Many optimization problems can be expressed in terms
of cost functions that are polynomials over finite sets of
binary variables. Any such function can be re-expressed,
through degree-reduction techniques using ancilla vari-
ables, as quadratic functions over binary variables. We de-
scribe such degree-reduction technique in our section on
the CNF mapping of planning problems to QUBO below.
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• Cost functions involving non-binary, but finite-valued,
variables can be rewritten in terms of binary variables
alone, and optimization problems with constraints can of-
ten be written entirely in terms of cost functions over bi-
nary variables through the introduction of slack variables.

For these reasons, the QUBO setting is more general than it
may, at first, seem.

Before describing the more complex QUBO mappings
for general STRIPS planning problems, we give an example
of a simple mapping from graph coloring to QUBO to give
a feel of how mapping to QUBO works.

Example 1: Mapping of Graph Coloring, in which all ver-
tices are to be colored so any two vertices connected by an
edge have different colors, to QUBO.

Let G = (V,E) be a graph with n = |V | vertices, where
E is the set of edges. The QUBO problem corresponding to
the graph coloring problem with k colors on graph G, will
have kn binary variables, zic, where zic = 1 means that
vertex i is colored with color c, and zic = 0 means it is not.

The QUBO contains two different types of penalty terms.
The first corresponds to the constraint that each vertex must
be colored by exactly one color:

∑k
c=1 zic = 1. So for each

vertex i, we have a term(
1−

k∑
c=1

zic

)2

.

The second corresponds to the constraint that two vertices
connected by an edge cannot be colored with the same color.
For each vertex i, we have a term∑

(i,j)∈E

k∑
c=1

ziczjc.

Altogether, the QUBO is

n∑
i=1

(
1−

k∑
c=1

zic

)2

+
∑

(i,j)∈E

k∑
c=1

ziczjc.

Example 2: Mapping of Hamiltonian Path problem, in
which the goal is a path that visits each vertex in a graph
G = (V,E) exactly once, to QUBO.

For a Hamiltonian path problem with n sites, we have n2

variables

{x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn.}

The subscripted indices indicate, in order, a site and the time
slot in which it is visited; xij = 1 means that the ith site is
the jth site visited, and xij = 0 means that the ith site is not
visited in the jth time slot.

There are three types of terms in the QUBO cost function.
The first type of term enforces that each site is visited exactly
once. Thus, for each site i, we will have a constraint: n∑

j=1

xij − 1

2

.

The second type of term enforces that in each time slot no
more than one site is visited. Thus, for each time slot j:(

n∑
i=1

xij − 1

)2

.

The third type of term is a single term penalizing the vi-
olation of edge constraints. It penalizes visiting the i′th site
right after the ith site if they are not connected by an edge:

j=n−1∑
j=1

∑
{i,i′|(i,i′)/∈E}

xijxi′,j+1.

Embedding QUBOs in Specific Quantum
Annealing Hardware
As outlined for planning in Figure 1, once an application in-
stance has been mapped to a QUBO problem, a second step
is required to compile it to the specific quantum annealing
hardware that will be used. Typically, each quantum device
has a set of physical quantum bits (qubits) that are linked in
a certain way. Ideally, each binary variable zi in a QUBO
formula would be represented by a single qubit qi of the ma-
chine. Hardware constraints place limits, however, on which
qubits can be connected to which other qubits.

The strength of the coupling between two qubits qi and
qj representing two binary variables zi and zj can model
the term Ji,jzizj in the QUBO formula 1 introduced above.
The D-Wave processors use a Chimera architecture in which
each qubit is connected to at most 6 other qubits (Fig. 2), so
any QUBO variable that appears in more than 6 terms must
be represented by multiple physical qubits in order for the
problem to be implemented in this architecture. The D-Wave
Two used in the experiments has a (8, 4)-Chimera graph ar-
chitecture, but with 3 broken qubits that are not used. Other
limitations, beyond the degree 6 constraint, exist as well.
Therefore, each logical qubit must be mapped to a connected
set of physical qubits, which, together with the connecting
edges, is called the logical qubit’s vertex-model. The overall
mapping of logical qubits and couplers to physical ones is
called a model, as discussed below.

Consider, for example, a simple QUBO

z1z2 + z1z3 + z2z3,

which can be represented as a triangle, with the three vari-
ables as the vertices, and the edge between each pair of
vertices indicating a quadratic term of the QUBO. Ideally,
we would represent each of these variables by qubits q1,
q2, and q3 with hardware connections between each pair
so that the three terms in the QUBO can be directly real-
ized in the hardware. Fig. 2 shows the qubit connections for
the type of quantum annealing architecture we used in these
experiments. In that graph, no three qubits are all mutually
connected to each other. The best we can do is to use four
qubits to represent the three variables z1, z2, and z3. We may
take, for example, z1 to be represented by q52 and q56, z2 to
be represented by q51, and z3 to be represented by q55, so
that there is a connection corresponding to each of the three
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terms in the QUBO: the term z1z2 can be implemented us-
ing the connection between qubits q56 and q51, the term z1z3

can be implemented using the connection between qubits q52

and q55, and the term z1z2 can be implemented using the
connection between qubits q51 and q55. We will also need
to use the connection between qubits q52 and q56 to enforce
that the two qubits take on the same value since together they
are meant to represent a single variable.

Mapping General STRIPS Planning Problems
to QUBO

In this section, we describe two different mappings from a
general class of planning problems to QUBO. Specifically,
we consider STRIPS planning problems, classical planning
problems that are expressed in terms of binary state vari-
ables and actions. The first mapping takes a time-slice ap-
proach. The second approach first maps a planning problem
to SAT, and then reduces higher order terms to quadratic
terms through a series of gadgets. Our mappings allow both
positive and negative preconditions.

Time-slice Mapping
This mapping from general classical planning problems to
QUBO form is a variant of the one developed and described
in (Smelyanskiy et al. 2012). This approach shares many
similarities with existing compilation approaches (to SAT,
CSP, MILP etc.) derived from the Plan Graph (Blum and
Furst 1997). Specifically, it presets a horizon L and then en-
code the interleaving proposition and action layers up to the
preset level L.

If the original planning problem has N state variables xi

and M actions yj and we are looking for a plan of length
L, then we define a time-slice QUBO problem in terms of
N(L+ 1) + LM binary variables. There are two groups of
binary variables. The first group consists ofN(L+1) binary
variables x(t)

i that indicate whether the state variable xi is 0
or 1 at time step t, for t ∈ {0, . . . , L}. The second group
consists of LM binary variables y(t)

j that indicate whether
or not the action yj is carried out between time steps t − 1
and t.

The total cost function is written as a sum

H = Hinitial +Hgoal +Hprecond

+Heffects +Hno− op +Hconflicts.

The first two terms capture the initial condition and the
goal condition. Let I(+) be the set of state variables that are
1 in the initial condition and I(−) be the set of state variables
that are initially set to 0. Similarly, let G(+) (resp. G(−)) be
the set of goal variables with value 1 (resp. 0). To capture the
requirement that a plan start in the appropriate initial state
and meets the goals, we include in the cost function:

Hinitial =
∑

i∈I(+)

(
1− x(0)

i

)
+
∑

i∈I(−)

x
(0)
i

and
Hgoal =

∑
i∈G(+)

(
1− x(L)

i

)
+
∑

i∈G(−)

x
(L)
i .

We next add terms to the cost function that penalize a plan
if an action is placed at time t but the prior state does not
have the appropriate preconditions:

Hprecond =
L∑

t=1

M∑
j=1

 ∑
i∈C(+)

j

(
1− x(t−1)

i

)
y

(t)
j

+
∑

i∈C
(−)
j

x
(t−1)
i y

(t)
j

 ,

where C(+)
j is the set of positive preconditions for action j

and C(−)
j is the set of negative preconditions.

Next, we must penalize variable changes that are not the
result of an action. We start with this term, the Hno-op term,
that penalizes variable changes:

Hno-op =
L∑

t=1

N∑
i=1

[
x

(t−1)
i + x

(t)
i − 2x(t−1)

i x
(t)
i

]
.

This term gives a cost penalty of 1 every time a variable is
flipped. Of course, when the effect of an action does result
in a variable flipping, we do not want this penalty, so we
will make up for this penalty when we add the term that
corresponds to the effects of an action. Specifically, we need
to penalize if the subsequent state does not reflect the effects
of a given action. Let E(+)

j be the set of positive effects for

action j and E(−)
j the set of negative effects. The penalty if

the appropriate effects do not follow the actions is captured
by the following term:

Heffects =
L∑

t=1

M∑
j=1

 ∑
i∈E(+)

j

y
(t)
j

(
1 + x

(t−1)
i − 2x(t)

i

)

+
∑

i∈E(−)
j

y
(t)
j

(
2x(t)

i − x
(t−1)
i

) .

In order to understand this term, we must consider it together
with the no-op term. When y(t)

j = 1, the corresponding term

for i ∈ E(+)
j (resp. i ∈ E(−)

j ), taken together with the no-op
term, can be written(

1 + 2x(t−1)
i

)(
1− x(t)

i

)
(resp. (

3− 2x(t−1)
i

)
x

(t)
i

for negative effects), resulting in a positive penalty unless
x

(t)
i = 1 (resp. x(t)

i = 0). By using this form we have
corrected for the corresponding no-op term.

Parallel Plans: Classical planners often allow for parallel
plans in which more than one action can take place at one

Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15)

14



time if those actions could have been done in any order.
Encodings that allow parallel plans are often significantly
smaller due to the big reduction in the preset horizon value
L. The QUBO encoding described so far works fine for
domain with linear plans, but when more than one action
can take place at a given time, we are in danger of over-
correcting for the no-op term. If multiple actions at the same
time have the same effect, the Heffects term will add a term
for each of those actions, thus overcompensating for the no-
op penalty. To avoid overcompensating, we penalize mul-
tiple actions at the same time having the same effect, dis-
couraging all such actions1. To ensure that two actions that
conflict in the sense that positive preconditions of one over-
lap with negative effects of the other or vice versa, and to
avoid overcompensating, we include the penalty

Hconflict =
L∑

t=1

N∑
i=1

 ∑
n

j
˛̨̨
i∈C(+)

j ∪E(−)
j

o
∑

n
j′ 6=j

˛̨̨
i∈E(−)

j′

o y(t)
j y

(t)
j′

+
∑

n
j
˛̨̨
i∈C(−)

j ∪E(+)
j

o
∑

n
j′ 6=j

˛̨̨
i∈E(+)

j′

o y(t)
j y

(t)
j′

 .

Encoding Size Improvements: While for explanatory pur-
poses it was useful to include variables for the state at time
t = 0, those specified by initial conditions can be set ahead
of time, so that we don’t need to include the Hinitial term.
The same is true of theHgoal term. We can also replace all of
their occurrences inHno-op,Hprecond, andHeffect with these
set values to simplify those constraints. Furthermore, reach-
ability and relevant analysis starting from the initial and goal
states, preprocessing techniques employed by compilation-
based planners such as Blackbox (Kautz and Selman 1999)
and GP-CSP (Do and Kambhampati 2001), can be used to
remove or preset the values of variables in different lay-
ers. These simplifications result in modified terms H ′no-op,
H ′precond, and H ′effects. Additionally, since in our setting we
have followed the convention that preconditions must be
positive, we can use a simpler version of the Hprecond term:

H ′precond =
L∑

t=1

M∑
j=1

∑
i∈C(+)

j

(
1− x(t−1)

i

)
y

(t)
j .

For the scheduling problems we consider here, the QUBO
simplifies to

H = H ′no-op +H ′precond +H ′effects +Hconflict.

CNF-based Mapping
Besides direct mapping, we also experimented with getting
the QUBO encoding by first mapping planning problems to

1A less stringent way to avoid overcompensating would be to
add this penalty only when the effect changes the variable, as we
have done in the no-op term. The problem is that natively that is
not a quadratic term. Of course one could then reduce that term,
but here we choose to use the more stringent solution.

SAT (in CNF form) and then using the known approach to
map the resulting CNF encoding to QUBO.

A SAT’s conjunctive normal form (CNF) expression over
n Boolean variables {xi} consists of a set of clauses {Ca}
each consisting of k variables, possibly negated, connected
by logical ORs:

b1 ∨ b2 ∨ · · · ∨ bk,
where

bi ∈ {x1, x2, ..., xn,¬x1,¬x2, ...,¬xn},

and the number of variables k in the clause can vary from
clause to clause. In a CNF, all of the clauses must be satis-
fied, which means they are connected by an AND operator.

We used the first of the four PDDL to CNF transla-
tors built into the SATPLAN planner (Kautz 2004). This
“action-based” encoding starts with the time-slice encoding
approach and then further removes all variables represent-
ing state variables while adding constraints that capture the
relationships between actions in consecutive time steps that
were previously enforced by relationships between actions
and state variables. We chose this encoding because it tends
to produce the smallest SAT encodings. While it may not be
the easiest to solve by a SAT solver, it’s more likely to be
translatable to a QUBO that can fit within our very limited
number of available qubits in the D-Wave machine.

We convert a CNF instance to QUBO by first transform-
ing it to Polynomial Unconstrained Binary Optimization
(PUBO), a generalization of QUBO in which the objective
function is a pseudo-Boolean of arbitrary degree. For each
clause in a given CNF instance, we introduce a term to the
PUBO instance equal to the conjunction of the negation of
all the literals in that clause. Thus, an original negative lit-
eral is replaced by the corresponding binary variable and a
positive literal is replaced by the difference of one and the
corresponding binary variable. For example, the CNF clause
(x1 ∨¬x2 ∨¬x3 ∨x4) would correspond to the PUBO term
(1− x1)x2x3(1− x4).

We then reduce higher degree terms in the PUBO in-
stance using an iterative greedy algorithm that is related
to one described in (Boros and Hammer 2002). At each
step, the pair of variables that appears in the most terms
is replaced by an ancilla variable corresponding to their
conjunction. If there are multiple such pairs, then one is
chosen arbitrarily. A penalty term is introduced to enforce
that the ancilla variable indeed corresponds to the requi-
site conjunction. For example, to reduce the degree of a
term x1x2x3, we may introduce an ancilla variable y12 that
we will encourage to equal x1x2 by using a penalty term
3y12+x1x2−2x1y12−2x2y12, which is 0 if y12 = x1x2 and
> 0 otherwise. The term x1x2x3 is removed from the PUBO
and replaced with y12x3 +3y12 +x1x2− 2x1y12− 2x2y12.
The penalty weight we use is equal to one plus the greater of
the sums of the magnitudes of the positive coefficients and
negative coefficients of the terms the ancilla is used to reduce
(Babbush, O’Gorman, and Aspuru-Guzik 2013). The one is
added to ensure that the constraint-satisfying solutions have
lower total cost than the constraint-violating solutions. One
is convenient, and in keeping with the integer coefficients
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for the other terms, but any positive constant would do. This
procedure is repeated until the resulting PUBO is quadratic.

Experimental Setup
To evaluate our approach, we use the benchmark set of
planning instances based on graph-coloring (Rieffel et al.
2014a) that consist of parametrized families of hard plan-
ning problems. Having parametrized families enables the in-
vestigation of scaling behavior using small problems, which
is crucial for evaluating early technology that is not mature
enough to run real-world problems. Even when setting the
encoding horizon of the graph-coloring to 1 to fit them onto
the 512 qubits available in current quantum annealers, the
problems can still be considered hard. Note that vertex color-
ing, an NP-complete problem, is strongly related to the core
scheduling aspect of many planning applications (Chien et
al. 2012). A scheduling problem in which no pair of tasks
can be assigned the same time-slot is analogous to a color-
ing instance in which the the tasks are vertices, conflicts are
edges, and the minimum makespan is the chromatic number,
i.e. the minimum number of colors necessary to color each
of the vertices such that no two adjacent ones have the same
color.

Because of the overhead in mapping and embedding plan-
ning problems, even the smallest IPC problems (IPC 2004)
are more than an order of magnitude too large to be run on
the current D-Wave device. Therefore, we currently do not
include the any result on existing IPC benchmarks.

Vertex Coloring as Planning
Given an undirected graph G = {V,E} with n vertices and
k colors, the vertex coloring problem asks for a solution in
which: (1) all vertices are colored and (2) any pair of vertices
connected by an edge is colored differently. The correspond-
ing planning problem is as follows: for each vertex v there
are:

• k actions ac
v representing coloring v with color c;

• A ‘goal variable’ sg
v representing whether or not v has

been colored at all; and

• A state variable sc
v representing whether or not v has been

colored with the color c.

Let C(v) be the set of neighboring vertices that are
connected to v by an edge. For each action ac

v , there are
|C(v)|+1 preconditions: (1) sg

v = F , which indicates that v
is not already colored; and (2) for each w ∈ C(v), sc

w = F ,
guaranteeing that none of neighboring vi are already colored
with color c.

Each action ac
v has two effects: sg

v = T and sc
v = T .

In the initial state, none of the vertices are colored:
∀v ∈ V,∀c ∈ [k] : sg

v = F , and sc
v = F . The goal state

requires that all vertices are colored: ∀v ∈ V : sg
v = T .

A plan is a sequence of n actions, each of which colors a
vertex v.

Problem generation: We parametrically generate instances
using Erdös-Rényi model of random graphs Gn,p, where n
is the number of vertices and p is the probability of an edge

between each pair of vertices, using an extension of Cul-
berson et al.’s (Culberson, Beacham, and Papp 1995) graph
generator program. Our extension generates PDDL files (Ri-
effel et al. 2014b), at the phase transition c = pn = 4.5
(Achlioptas and Friedgut 1999; Dubois and Mandler 2002;
Achlioptas and Moore 2003; Coja-Oghlan 2013).

We preset the number of colors to k = 3 and for that k
value the maximum problem size that we can embed in the
D-Wave Two machine with 509 qubits is n = 16. Specif-
ically, for each of n = 8, 9, . . . , 16, we use 100 solvable
problem instances at the phase transition for each size. For
n = 12 to n = 16, we reuse problems generated in (Rieffel
et al. 2014a), and for n = 8 to n = 11, we generate new
ones using the same approach.

For each generated instance, we then generate 3 different
QUBOs, each described in the previous sections: (i) direct
mapping; (ii) time-slice mapping; and (iii) CNF-based
mapping.

Embedding: From a mapped QUBO instance, we generate
a vertex model by running D-Wave’s heuristic embedding
software (Cai, Macready, and Roy 2014) on the mapped
QUBO instance, using the software’s default parameters.
The output of the embedding software is a set of pairwise-
disjoint, connected vertex models {Ci} in the hardware
graph corresponding to the variables {zi} in the original
QUBO, which will then be converted to Ising form to be
run on the D-Wave machine. Before running, the Ising is
rescaled so that all coefficients are between [−1, 1]. We
performed our own parameter setting following (Rieffel
et al. 2014b), rather than using D-Wave’s defaults. The
parameter settings for these runs are discussed in detail in
(Rieffel et al. 2014b).

Solving: All quantum annealing runs were performed on the
509-qubit D-Wave Two machine housed at NASA Ames.
While debate continues as to the best physical model for
D-Wave machines (Johnson et al. 2011b; Boixo et al. 2013;
Smolin and Smith 2013; Wang et al. 2013; Boixo et al. 2014;
Shin et al. 2014b; Vinci et al. 2014; Shin et al. 2014a), these
machines provide the first opportunity for researchers to ex-
periment with quantum annealing. In all cases, we used an
annealing time of 20 µsec, the shortest available on the hard-
ware, though evidence suggests that a shorter time may be
optimal for problems of the present size. For each embed-
ded QUBO instance, we performed 45, 000 anneals using
each of ten gauges (i.e. local symmetry transformations that
leave the objective function invariant but physically change
the effect of biases (Perdomo-Ortiz et al. 2015)), for a total
of 450, 000 anneals per QUBO instance.

Because all of the problems we consider are solvable, we
know the ground state energy (i.e., optimal value for the
function q in Equation 1) in all cases; zero, the minimal
value of the QUBO in all cases is attainable, and from that
we can compute the ground state energy of the embedded
Ising problem that was actually run. (Even for unsolvable
instances, the quantum annealer would return solutions in
exactly the same way it does when it fails to find a schedule
when it exists.) For each embedded instance, once we obtain
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the 450, 000 results from the run, we check how many times
the ground state energy was obtained, which gives us the
probability of solution r for a 20 µsec anneal. We then com-
pute the expected number of runs R = ln(1−0.99)

ln(1−r) required
to obtain a 99% success probability, multiply by the anneal
time of 20 µsec, and report 20 × R µsec, the expected to-
tal anneal time to obtain a 99% success probability. We are
effectively using a 0.9 sec. cutoff time, since the expected
anneal time when only one anneal solves is 0.9 secs. Given
that classical planners solve these problems in less than 0.1
secs., with the best planners for these problems solving them
in less than 0.01 secs. (Rieffel et al. 2014a), this cutoff time
seems reasonable.

We report the median expected total anneal time across
100 instances, with error bars corresponding to the 35th
and 65th percentiles. Thus each data point shown represents
45 million anneals. While the total annealing time for each
point is only 90 seconds, because the process to read-out
the state of all qubits (i.e. solution extraction) takes consid-
erably longer than the anneal time, and because of shared
use of the machine, the wall clock time to obtain a single
data point is hours not minutes. Finding the embedding, by
far the longest step in the process, can take minutes for the
largest instances, but fortunately needs to be performed only
once per QUBO instance.

Results and Analysis
Fig. 3 shows the relative performance, in terms of median
expected total annealing time for 99% percent success, of
the D-Wave Two on the family of graph coloring-based plan-
ning problems described above. When at least half of the in-
stances do not solve within the 0.9 sec. effective cutoff time,
we no longer show the point. For the CNF mapping, that
happens by problem size 11. For the time-slice instances, at
least half do not solve within the cutoff time by problem size
13. The figure also shows the performance using a direct
map of graph coloring to QUBO.This direct mapping per-
forms better than both of the general mappings for planning
problems; it is more compact (due to its being specific to this
type of problem) and likely benefits from an homogeneous
parameter setting (Venturelli et al. 2014), as it generates a
more uniform distribution of vertex model sizes (see Fig. 5)
than the other two mappings.

There is a substantial difference between the performance
on the time-slice instances and the CNF instances, with
the median expected total annealing time to achieve 99%
success being about a factor of 5 greater for the CNF
instances than the time-slice instances (Fig. 3). The scaling
for the time-slice approach is also significantly better than
for the CNF approach, with an α value of 1.37 rather than
1.76 (though the scaling is estimated on very few data
points).

QUBO size: (Rieffel et al. 2014b) compared some straight-
forward properties of both the mapped and embedded QU-
BOs for the two mappings, but these simple properties were
all sufficiently similar across the two mappings that they
could not account for so marked a difference in perfor-
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Figure 3: Comparison of the median expected total an-
neal time to 99% percent success for the two mappings.
Each data point shows the median expected total annealing
time to achieve 99% success over the 100 problems of each
size given on the x-axis. The error bars are at the 35th and
65th percentiles. When at least half of the instances do not
solve within the 0.9 sec. effective cutoff time, we no longer
show the point. Also, when fewer than 65% solve, the top of
the error bar is indeterminate, as happened for the last point
shown in both the CNF and time-slice series.

mance. In summary, the time-slice and CNF mappings yield
comparably-sized QUBOs, with similar numbers of cou-
plings. For problem size n, the time-slice mapping yields
a QUBO of size 8n qubits. The CNF approach yields vari-
able size mapped QUBOs, with the median size CNF QUBO
over 100 problems only 4–8 qubits larger than the median
size of the time-slice QUBOs for problem sizes 8–12. This
slight difference in size cannot account for the difference
in performance because for larger size problems, when the
time-slice QUBOs begin to exceed the CNF QUBOs in size,
the performance of the former is still better. Similarly, the
median number of couplings for the CNF QUBOs exceeds
that of the time-slice QUBOs by only 8–16 for problem sizes
8–12.

The most obvious properties of the embedded QUBOs
are also similar. The median embedding sizes of the CNF
QUBOs are only 7–28 qubits larger than the embedded
time-slice QUBOs in this range, no more than a 10%
difference. Large embedded vertex models contribute to
poor performance, but the median (over the 100 problems)
average vertex model size, and the median 90th percentile
vertex model size of the embedded QUBOs for the two
different mappings are virtually indistinguishable. A small
difference between the median maximum vertex model sizes
is seen, but it is not statistically significant. Furthermore,
throughout the size range tested, the median median vertex
model size – the median over the 100 problem instances
of the median vertex model size of each instance – and
even the median 65th percentile vertex model size, for both
mappings is 1.

Deeper analysis: We took a deeper look at the distributions
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Figure 4: Vertex degree histogram. Histograms of the ver-
tex degrees for the mapped QUBO graphs for each problem
size under the three mappings: direct mapping, time-slice
mapping, and CNF mapping.

of various simple properties related to the mapped and em-
bedding QUBOs arising from the two mappings. We also
show the distributions for the direct map for comparison.
In the mapped QUBOs, we looked at the distribution of of
vertex degrees (the number of quadratic terms in which a
variable zi appears in the mapped QUBO). As can be seen
in Fig. 4, the histograms for the time-slice and CNF map-
pings are very similar, while they differ markedly from the
histograms for the direct map. In the embedded QUBOs, we
looked at the distribution of the vertex model sizes (Fig. 5)
and also the distribution of the graph diameter of the vertex
models (not shown), but found little difference between the
distributions for the time-slice and CNF embedded QUBOs.
Therefore these properties can contribute at most a small
amount to the performance difference between the two map-
pings.

We begin to see differences when we look at distribu-
tions of the coefficients in the mapped QUBOs. Fig. 6 shows
histograms of the coefficient of the mapped QUBOs (Equa-
tion 1) , converted to Ising, and rescaled so that all of the hi

and Jij coefficients are between [−1, 1]. Let ji =
∑

j Jij .
Fig. 7 shows a histogram of the hi and ji. Both histograms
show significant differences between the two mappings.

Another potential origin of the performance difference is
the topology of the vertex models. A quick analysis showed
that for all three mappings nearly all (> 99%) of the vertex
models of the embedded QUBOs are trees. We intend to do a
further classification of the graph structures, and to examine
differences in the frequency of different structures between
the mappings.
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Figure 5: Vertex model size histogram. Histograms of the
vertex model sizes in the embedded QUBOs for each prob-
lem size under the three mappings: direct mapping, time-
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Conclusions and Future Work
We show how quantum annealing can solve planning prob-
lems via mapping to QUBO. We introduced two general
mapping techniques and applied them to planning problems
based on graph-coloring. We ran these problems on an early
quantum annealer and saw significant performance differ-
ences. We began an investigation of various properties of the
mapped and embedded QUBOs to understand which proper-
ties do and do not contribute to the performance differences.

In the future, we will examine the differences in distri-
bution of coefficients and the topology of vertex-models to
generate hypotheses regarding properties that could explain
the performance differences. To test these hypotheses, we
will generate small, artificial instances capturing those prop-
erties and evaluate the annealer’s performance. For the prop-
erties that pass this initial test, we will perform a statisti-
cal analysis of the correlation between them and the per-
formance of the annealer on the family of scheduling-type
problems.

While at this early stage there is no advantage in solv-
ing STRIPS planning problems via quantum annealing over
classical compilation approaches such as SAT, CSP, or
MILP, we believe quantum annealing, and especially com-
pilation techniques for quantum annealing, are both worth
exploring even on primitive quantum hardware for several
reasons. First, certain quantum algorithms have been proven
to outperform classical algorithms on classes of problems of
practical interest, sometimes, as for factoring, reducing the
complexity from superpolynomial to polynomial. Many of
the most useful classical algorithms in use today are heuris-

tic algorithms, which have not been mathematically proven
to outperform other approaches, but have been shown to be
more effective empirically. Until recently, it was not possible
to explore existing quantum heuristic algorithms, because
without quantum hardware an empirical analysis could not
be done. One of the biggest open questions in quantum com-
puting is the breadth of its applications, with the potential
of heuristic quantum algorithms, such as quantum anneal-
ing, being the biggest unknown. Major hardware develop-
ment efforts are underway to build better quantum computa-
tional hardware. In order to fully explore the potential of this
hardware, we must understand how best to compile practical
problems to a form that is suitable for quantum hardware.

While early quantum annealing hardware can handle only
small instances, by analyzing the results obtained under
these limitations, we can nevertheless gain insights into the
best programming and compilation techniques for quantum
annealers, and ultimately into the potential of quantum an-
nealing to solve problems of practical interest in planning
and scheduling and beyond.

Acknowledgements
The authors are grateful to Zhihui Wang for helpful discus-
sions and feedback on the draft, and to Vadim Smelyanskiy
for useful discussions and support. This work was supported
in part by the Office of the Director of National Intelligence
(ODNI), the Intelligence Advanced Research Projects Ac-
tivity (IARPA), via IAA 145483; by the AFRL Informa-
tion Directorate under grant F4HBKC4162G001. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of ODNI, IARPA, AFRL, or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purpose notwithstanding
any copyright annotation thereon. The authors also would
like to acknowledge support from the NASA Advanced Ex-
ploration Systems program and NASA Ames Research Cen-
ter and NASA grant NNX12AK33A.

References
Achlioptas, D., and Friedgut, E. 1999. A sharp threshold for
k-colorability. Random Structures and Algorithms 14(1):63–
70.
Achlioptas, D., and Moore, C. 2003. Almost all graphs with
average degree 4 are 3-colorable. Journal of Computer and
System Sciences 67(2):441–471.
Babbush, R.; O’Gorman, B.; and Aspuru-Guzik, A. 2013.
Resource efficient gadgets for compiling adiabatic quan-
tum optimization problems. Annalen der Physik 525(10-
11):877–888.
Blum, A., and Furst, M. 1997. Planning through planning
graph analysis. Artificial Intelligence Journal 90:281–330.
Boixo, S.; Albash, T.; Spedalieri, F. M.; Chancellor, N.; and
Lidar, D. A. 2013. Experimental signature of programmable
quantum annealing. Nature communications 4.

Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15)

19



Boixo, S.; Rønnow, T. F.; Isakov, S. V.; Wang, Z.; Wecker,
D.; Lidar, D. A.; Martinis, J. M.; and Troyer, M. 2014. Ev-
idence for quantum annealing with more than one hundred
qubits. Nature Physics 10(3):218–224.
Boros, E., and Hammer, P. L. 2002. Pseudo-boolean opti-
mization. Discrete applied mathematics 123(1):155–225.
Cai, J.; Macready, B.; and Roy, A. 2014. A practical heuris-
tic for finding graph minors. arXiv:1406:2741.
Chien, S.; Johnston, M.; Frank, J.; Giuliano, M.; Kavelaars,
A.; Lenzen, C.; Policella, N.; and Verfailie, G. 2012. A gen-
eralized timeline representation, services, and interface for
automating space mission operations. In 12th International
Conference on Space Operations.
Choi, V. 2008. Minor-embedding in adiabatic quantum com-
putation: I. the parameter setting problem. Quantum Infor-
mation Processing 7(5):193–209.
Coja-Oghlan, A. 2013. Upper-bounding the k-colorability
threshold by counting covers. arXiv:1305.0177.
Culberson, J.; Beacham, A.; and Papp, D. 1995. Hiding our
colors. In Proceedings of the CP95 Workshop on Studying
and Solving Really Hard Problems, 31–42.
Das, A., and Chakrabarti, B. K. 2008. Colloquium: Quan-
tum annealing and analog quantum computation. Rev. Mod.
Phys. 80:1061–1081.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compiling
it into csp. Artificial Intelligence Journal 132(2):151–182.
Dubois, O., and Mandler, J. 2002. On the non-3-
colourability of random graphs. arXiv:math/0209087.
Farhi, E.; Goldstone, J.; Gutmann, S.; and Sipser, M. 2000.
Quantum computation by adiabatic evolution. arXiv:quant-
ph/0001106.
Fikes, R. E., and Nilsson, N. J. 1972. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2(3):189–208.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
2004. The international planning competition website.
http://icaps-conference.org/index.php/Main/Competitions.
Johnson, M. W.; Amin, M. H. S.; Gildert, S.; and et al.
2011a. Quantum annealing with manufactured spins. Na-
ture 473:194–198.
Johnson, M.; Amin, M.; Gildert, S.; Lanting, T.; Hamze, F.;
Dickson, N.; Harris, R.; Berkley, A.; Johansson, J.; Bunyk,
P.; et al. 2011b. Quantum annealing with manufactured
spins. Nature 473(7346):194–198.
Kautz, H. A., and Selman, B. 1999. Unifying sat-based and
graph-based planning. In Proceedings of IJCAI’1999.
Kautz, H. 2004. Satplan04: Planning as satisfiability. Work-
ing Notes on the Fourth International Planning Competition
(IPC-2004) 44–45.
Lucas, A. 2013. Ising formulations of many NP problems.
arXiv:1302.5843.

Nielsen, M., and Chuang, I. L. 2001. Quantum Computing
and Quantum Information. Cambridge: Cambridge Univer-
sity Press.
Perdomo-Ortiz, A.; Fluegemann, J.; Biswas, R.; and
Smelyanskiy, V. N. 2015. A performance estimator for
quantum annealers: Gauge selection and parameter setting.
arXiv preprint arXiv:1503.01083.
Rieffel, E. G., and Polak, W. 2011. A Gentle Introduction to
Quantum Computing. Cambridge, MA: MIT Press.
Rieffel, E. G.; Venturelli, D.; Hen, I.; Do, M.; and Frank,
J. 2014a. Parametrized families of hard planning problems
from phase transitions. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI-14), 2337
– 2343.
Rieffel, E. G.; Venturelli, D.; O’Gorman, B.; Do, M.; Prys-
tay, E.; and Smelyanskiy, V. N. 2014b. A case study in pro-
gramming a quantum annealer for hard operational planning
problems. To Appear in Quantum Information Processing,
and arXiv:1407.2887.
Shin, S. W.; Smith, G.; Smolin, J. A.; and Vazirani, U.
2014a. Comment on “Distinguishing classical and quantum
models for the D-Wave device”. arXiv:1404.6499.
Shin, S. W.; Smith, G.; Smolin, J. A.; and Vazirani,
U. 2014b. How “quantum” is the D-Wave machine?
arXiv:1401.7087.
Smelyanskiy, V. N.; Rieffel, E. G.; Knysh, S. I.; Williams,
C. P.; Johnson, M. W.; Thom, M. C.; Macready, W. G.;
and Pudenz, K. L. 2012. A near-term quantum computing
approach for hard computational problems in space explo-
ration. arXiv:1204.2821.
Smolin, J. A., and Smith, G. 2013. Classical signature of
quantum annealing. arXiv:1305.4904.
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