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Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in
which there are no currents. To generate persistent currents, either detailed balance must be broken or the
system must be driven in a time-dependent manner. A stationary system that violates detailed balance
evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that
satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—
also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases,
these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios
effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium
stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary
probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same
(time-averaged) values. The mapping works in the opposite direction as well. These results establish a
proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium
steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics.
Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular
motors driven by chemical reactions and artificial molecular machines steered by the variation of external,
macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an
artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic
proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be
effectively mimicked by a constrained periodic driving.
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I. INTRODUCTION AND MOTIVATION

While there is currently no single theory that unifies all
nonequilibrium phenomena, a number of useful paradigms
of nonequilibrium behavior have emerged. These include
small perturbations near equilibrium [1], systems driven
away from an initial state of equilibrium [2], spontaneous
relaxation towards equilibrium [3], nonequilibrium steady
states generated by fixed thermodynamic forces [4],
and stochastic pumps driven by the time-periodic variation
of external parameters [5,6]. Theoretical frameworks
developed within each paradigm—for instance, linear
response theory to describe near-equilibrium perturbations
[7]—have contributed to a broader understanding of non-
equilibrium processes.

In this work, we focus on two of these paradigms:
nonequilibrium steady states and stochastic pumps.
These share certain features, notably the persistence of
nonvanishing currents and entropy production, which
invite a comparison between the two. As elaborated below,
we devise a mapping from one paradigm to the other;
given a system in a nonequilibrium steady state charac-
terized by certain occupation probabilities, currents, and
entropy production rates, we show how to construct a
stochastic pump that exhibits the same (time-averaged)
properties. The inverse direction, namely, the construction
of a nonequilibrium steady state with the same properties
as a given, time-averaged stochastic pump, will also be
discussed.
In the nonequilibrium steady-state (NESS) paradigm, a

system driven by fixed thermodynamic forces—such as
temperature gradients or chemical potential differences—
reaches a steady state in which its statistical properties are
stationary with time. Unlike an equilibrium state, a non-
equilibrium steady state exhibits nonvanishing currents,
reflecting the violation of detailed balance. In order to
maintain such a state, a thermodynamic cost must be paid.
This cost is measured by the continual depletion of a
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thermodynamic resource, such as a chemical fuel, resulting
in the production of entropy in the system’s thermal
surroundings.
Biomolecular motors illustrate the NESS paradigm [8,9]:

A reaction such as ATP hydrolysis (ATP → ADPþ Pi)
produces entropy in the surrounding solution, and the
chemical potential difference between reactants and prod-
ucts provides the thermodynamic force. The “current” in
this situation corresponds to the mechanical motion pro-
duced by the motor, for instance, the stepping motion of the
kinesin motor toward the positive end of a microtubule
filament [10,11], or the rotary motion of the F1 domain in
ATP synthase [12,13]. For a recent review of the stochastic
theory of nonequilibrium steady states, as applied to
biochemical processes, see Ref. [4].
In the stochastic pump paradigm, a system is driven by the

time-periodic variation of external parameters in the pres-
ence of a thermal reservoir. It is typically assumed that the
dynamics satisfy detailed balance at every instant in time—
in other words, if the parameters were suddenly frozen at
their instantaneous values, the system would relax to
equilibrium.Under suitable conditions, a periodically driven
system reaches a time-periodic state with nonvanishing
time-averaged currents. These currents are effectively
“pumped” by the periodic variation of the parameters,
and the cost associated with pumping these currents is the
work invested in driving the parameters. Ultimately, the
energy provided by this work is dissipated into the thermal
reservoir, resulting in the production of entropy.
The study of stochastic pumps has been stimulated by

experiments on artificial molecular machines [14–16],
which are manipulated by the variation of external param-
eters to achieve some desired behavior. For instance, in
experiments on catenanes—mechanically interlocked ring-
like molecules—the aim was to produce unidirectional
rotation of one ring around the other [17]. Theoretical
investigations of SP have focused on slowly driven [5,18]
as well as weakly driven [19] pumps, “no-pumping”
theorems [20–24], the role of interactions [25] and fluc-
tuations [26], and the ability to extract work from stochastic
pumps [27].
Underlying both the experimental work on artificial

molecular machines and the theoretical work on stochastic
pumps is the broad goal of understanding how to achieve
controlled, directed motion at the molecular level. The
focus on time-dependent driving is motivated in part by the
difficulty of synthesizing artificial molecular systems that
take advantage of chemical potential differences to generate
motion. It is often simpler to manipulate the system by
varying external parameters such as temperature and the
surrounding chemical environment. From a theoretical
perspective, it is then natural to investigate the range of
behaviors that can be achieved when driving a stochastic
system by varying its parameters. Biomolecular motors
driven by chemical reactions are capable of accomplishing

a remarkably diverse array of tasks. In principle, are
artificial molecular machines driven by time-periodic
forcing equally versatile?
In both nonequilibrium steady states and stochastic

pumps, the generated currents can be viewed as desired
outcomes, and entropy production is the cost of achieving
them. In this perspective, fixed thermodynamic forces
(NESS) and time-periodic external driving (stochastic
pump, SP) represent the tools at our disposal. We compare
these two sets of tools with respect to the degree of control
that can be achieved. In particular, we investigate whether
time-periodic driving can always produce the same out-
come (identical currents) as fixed thermodynamic forces,
and at the same cost (identical entropy production), after
time averaging. In other words, can a stochastic pump
“mimic” an arbitrary nonequilibrium steady state?
Somewhat different aspects of the relationship between

nonequilibrium steady states and stochastic pumps have
recently been addressed by two other groups. Esposito and
Parrondo [28] have shown that hidden, rapidly driven,
reversible stochastic pumps can generate currents that—to
an observer who is unaware of the pumps—appear to
violate detailed balance. Uzdin, Levy, and Kosloff [29]
have established a thermodynamic equivalence between
three types of quantum heat engines, in the limit of weak
thermalization and a weak driving field.
A different context in which similar ideas were recently

suggested is topological insulators [30,31], where temporal
periodic driving can be used to mimic material properties
that are difficult to achieve in equilibrium. In these systems,
commonly denoted as “Floquet topological insulators,” the
properties of interest are not the probabilities, currents, and
entropy production rates as in our case, but rather the
topological classification of the effective Hamiltonian and
the existence of protected edge states. In recent years,
Floquet topological insulators have been experimentally
demonstrated in various setups [32,33].
In this manuscript, we begin by considering a generic

Markov process of random transitions among n states of a
system. The transition rates are fixed in time and do not
satisfy detailed balance; hence, the dynamics lead to a
NESS with nonvanishing currents and entropy production.
We then show how to prescribe a stochastic pump that has,
in the limit of many cycles, the same time-averaged
probabilities, currents, and entropy production rates as
the NESS. This prescription is constructive though not
unique. Surprisingly, the construction does not require the
solution of any differential equations, only linear algebraic
equations. By contrast, a mapping in the opposite direction
(from SP to NESS) requires that we first determine the
periodic state of the system, which involves solving a set of
coupled ordinary differential equations with time-periodic
parameters. Typically, this can only be done numerically.
In some applications, transition rates are constrained by

experimental or fundamental considerations. An example
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for fundamentally constrained rates is kinetic proofreading
[34,35], where the ratio between the steady-state proba-
bilities of two specific states is controlled without manipu-
lating their energies. Kinetic proofreading provides a model
for understanding how low error rates in biomolecular
synthesis can be achieved at the cost of hydrolyzing ATP
into ADPþ Pi. As an application for the tools developed in
this manuscript, it is shown that kinetic proofreading in a
three-state system can be achieved by SP, with exactly the
same controllability over the time-averaged probability
distribution and at exactly the same cost in terms of entropy
production rates, as in the NESS kinetic proofreading.
The rest of the manuscript is organized as follows: In

Sec. IV, we formulate the problem and review some useful
known results. We then consider in Sec. V the simpler
direction, namely, mapping a stochastic pump into a NESS.
In Sec. VI, we present two types of transformations
for detailed balance matrices, which play a key role
in our construction of a SP that mimics NESS, and the
“no-current-loops” property that sets a constraint on pump-
ing with a time-dependent detailed balance matrix. The
construction of a pumping protocol is described in Sec. VII.
As an application, NESS and SP kinetic proofreading of a
three-state system are analyzed in Sec. VI. We finish with a
few concluding remarks in Sec. VII.

II. SETUP AND BACKGROUND

A. Definitions

We consider an ergodic, continuous-time Markovian
system with n states. The evolution of the system consists
of random, Poissonian transitions among these states,
with transition rates that are governed either by a time-
independent rate matrixR (when analyzing nonequilibrium
steady states) or a time-periodic rate matrix WðtÞ (for
stochastic pumps), as described in more detail below. It is
convenient to picture the system in terms of a “connectivity
graph”with n nodes and a finite number of edges connecting

given pairs of nodes. An edge between states i and j implies
that the system can make transitions between these states
(see Fig. 1). We use ~pðtÞ to denote the vector of the
probabilities whose ith component piðtÞ is the probability
for the system to be in state i at time t.
In the NESS scenario, the evolution of the system obeys

the master equation

∂t ~p ¼ R~p: ð1Þ
For i ≠ j, the matrix elementRij is the probability per unit
time for a system in state j to make a transition to state i.
The diagonal elements of R are negative and are deter-
mined by conservation of probability:

P
iRij ¼ 0. For the

system to be ergodic, we demand that (i) if Rij ≠ 0, then
also Rji ≠ 0, and (ii) the graph associated with R is
connected. In other words, for any pair of nodes (states)
j and i, there exists a path from j to i, possibly through a
sequence of intermediate nodes, along the edges of the
graph. Under these conditions, Eq. (1) has a unique steady-
state solution, which we denote by ~pss, and any solution of
Eq. (1) converges to this steady state in the long-time
limit [36].
In addition to the steady-state probabilities ~pss, we are

interested in the steady-state currents, defined by

J ss
ij ¼ Rijpss

j −Rjipss
i ; ð2Þ

and the entropy production rates associated with these
currents [36,37]:

σssij ¼ J ss
ij log

Rijpss
j

Rjipss
i
: ð3Þ

We assume that some of these currents, and therefore the
corresponding entropy production rates, are nonvanishing.
In other words, we assume the dynamics violate detailed
balance; hence, ~pss is a genuinely nonequilibrium steady
state.
In the stochastic pump scenario, the system obeys a

master equation with a time-periodic rate matrix,

∂t ~p ¼ WðtÞ~p; ð4Þ
where

WðtÞ ¼ Wðtþ TÞ ð5Þ
for some finite period T. If we momentarily treat t in Eq. (4)
as a parameter of the rate matrix (rather than as the time
variable), then for any fixed value of this parameter, we
assume the rate matrix WðtÞ has a unique stationary
solution ~πðtÞ, and we further assume that

WijðtÞπjðtÞ −WjiðtÞπiðtÞ ¼ 0 ∀ i; j; t: ð6Þ
In other words, the dynamics generated by WðtÞ (for fixed
t) satisfy detailed balance. We refer to ~πðtÞ as the

FIG. 1. A four-state system described by a graph. Each node
represents a state of the system. The edges represent nonvanish-
ing transition rates between states. In this example, direct
transitions between states 1 and 3 are not allowed.
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equilibrium state of WðtÞ. This is the state to which the
system would relax if all the rates Wij were “frozen” in
time. Note that in our notation, Rij denotes a nondetailed-
balance rate matrix, and Wij represent a detailed-balance
rate matrix. Therefore, NESS systems are associated with a
rate matrix Rij, whereas SP systems are described through
a periodic WijðtÞ, though in Sec. VI, we also refer to a
time-independent detailed-balance rate matrix as Wij.
Let us now return to thinking of t as time. For any

solution of Eq. (4), the quantities

J ijðtÞ ¼ Wijpj −Wjipi; ð7Þ

σijðtÞ ¼ J ij log
Wijpj

Wjipi
ð8Þ

(suppressing the argument t on the right side) represent
instantaneous currents and entropy production rates. Under
Eqs. (4) and (5), the statistical state of the system evolves
asymptotically to a unique time-periodic state,

~ppsðtÞ ¼ ~ppsðtþ TÞ; ð9Þ
with currents and entropy production rates

J ps
ij ðtÞ ¼ Wijp

ps
j −Wjip

ps
i ; ð10Þ

σpsij ðtÞ ¼ J ps
ij log

Wijp
ps
j

Wjip
ps
i
: ð11Þ

These are analogous to the quantities appearing in Eqs. (2)
and (3), only J ps

ij ðtÞ and σpsij ðtÞ are periodic with time,
whereas J ss

ij and σssij do not vary with time.
Throughout this paper, we are interested in the asymp-

totic properties of the system; therefore, we consider only
the steady state ~pss and the periodic state ~ppsðtÞ, and not
the process of relaxation to either of these states.
In order to compare the NESS and stochastic pump (SP)

scenarios, let us define the time-averaged quantities in the
periodic state of the SP:

pps
i ¼ 1

T

Z
T

0

pps
i ðtÞdt;

J ps
ij ¼ 1

T

Z
T

0

J ps
ij ðtÞdt;

σpsij ¼ 1

T

Z
T

0

σpsij ðtÞdt: ð12Þ

The problem that we wish to study can now be formulated
as follows.
Problem formulation.—Given a time-independent rate

matrixR corresponding to steady-state quantities ~pss, J ss,
and σss, construct a time-periodic detailed-balance rate
matrix WðtÞ whose periodic state is described by the same

quantities, after averaging over time:

pps
i ¼ pss

i ; J ps
ij ¼ J ss

ij ; σpsij ¼ σssij : ð13Þ
We denote the above problem as the “forward” problem.
We are also interested in the “inverse” problem: Given a
time-dependent detailed balance rate matrix WðtÞ corre-
sponding to the time-averaged quantities pps

i , J ps
ij , and σ

ps
ij ,

we want to construct a time-independent rate matrixR such
that Eq. (13) holds. As we discuss in more detail below, the
solution of the inverse problem follows directly from
known results; therefore, we focus mainly on the forward
problem in this paper.
When R and WðtÞ give rise to dynamics that satisfy

Eq. (13), we say that the stochastic pump “mimics” the
nonequilibrium steady state, and vice versa.

B. Two useful decompositions

The two well-known decompositions described below—
the first, an algebraic decomposition of rate matrices, and
the second, a topological decomposition of the connectivity
graph—will be extensively used in what follows.

1. Rate matrix decomposition

The following (unique) decomposition of any rate matrix
R, obtained by Zia and Schmittmann [38], will prove to be
useful:

R ¼
�
S þ 1

2
J ss

�
P−1: ð14Þ

Here, the multiplication is an ordinary matrix multiplica-
tion, and S is a symmetric matrix whose elements in each
column add up to zero, with negative entries only on the
diagonal.J ss is the antisymmetric current matrix defined in
Eq. (2), and P ¼ diagð~pssÞ is a diagonal matrix with
elements Pii ¼ pss

i .
An immediate corollary of Eq. (14) is the following

statement: If a rate matrix R is the product of a symmetric
rate matrix S and the inverse of a diagonal matrix P (with
positive diagonal entries summing to unity), then R
satisfies detailed balance; i.e., there are no currents in
the stationary state.

2. Cycle decomposition

The currents that characterize a NESS are, in general, not
independent of one another, as they must satisfy constraints
arising from the conservation of probability. These con-
straints embody Kirchoff’s law of currents. The cycle
decomposition method provides a convenient tool to
account for these constraints [36]. Briefly, in a connected
network with N nodes and E edges, the conservation of
probability imposes N − 1 constraints among the E cur-
rents (one current per edge). It is then convenient to identify
C ¼ E − N þ 1 fundamental currents, using the following
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procedure. First, we build a connectivity graph for the
system, as described above and illustrated in Fig. 2 for the
case of four nodes and six edges (hence, C ¼ 3). We then
construct a maximal spanning tree, by removing C edges
without breaking the connectivity of the graph; this tree,
illustrated by the red dash-dotted lines in Fig. 2, has no
cycles. In the context of the original graph, the C edges that
are removed to form the spanning tree are called funda-
mental edges. The currents along these edges are the
fundamental currents (the black arrows in the figure),
and the currents along the edges of the tree are the
spanning-tree currents (the red arrows in the figure).
For NESS, the steady-state currents along the C funda-

mental edges can take on any values, independently of one
another. However, once these fundamental currents are set,
the spanning-tree currents are then uniquely determined by
conservation of probability: The sum of incoming and
outgoing currents at each node must vanish in the steady
state. Therefore, the number of degrees of freedom in the
matrix J ss is not ðn2 − nÞ=2 as for an arbitrary antisym-
metric matrix but is determined by the graph topology.
Unlike NESS, for stochastic pumps the fundamental

currents at each moment do not fix the currents on the
spanning-tree edges since probabilities can temporarily
accumulate on the vertices (Kirchoff’s current law does
not apply at every instant of time). However, J ps on the
fundamental edges does dictate J ps on the spanning tree
since the average probabilities are conserved.

III. MAPPING SP TO NESS

In this section, we consider the inverse problem defined
at the end of Sec. II A, which conceptually is the simpler
direction: Given a time-dependent periodic rate matrix
WðtÞ, how do we construct a time-independent rate matrix
R whose steady-state properties satisfy Eq. (13)?

To construct R, we first solve for the periodic averages
pps
i , J ps

ij , and σpsij associated with WðtÞ. These can be
calculated by obtaining the periodic solution of the master
equation, pps

i ðtÞ, and then plugging this solution into
Eq. (12). In most cases, finding the periodic solution must
be done numerically.
Once pps

i , J ps
ij , and σpsij are known, we must build a rate

matrix R whose steady-state properties, ~pss, J ss, and σss,
satisfy Eq. (13). A nice consequence of Eq. (14) is that if all
the currents along the graph edges are nonzero, then the
quantities ~pss, J ss, and σss uniquely determine R. We
express this relationship by the shorthand notation

f~pss;J ss; σssg ⇒ R: ð15Þ
To see this, we use Eq. (14) to write the entropy production
rates as

σssij ¼ J ss
ij log

Sij þ 1
2
J ss

ij

Sij − 1
2
J ss

ij
: ð16Þ

By this equation, the elements of J ss and σss uniquely
determine S, if the currents are nonzero:

fJ ss; σssg ⇒ S: ð17Þ

If some of the currents are zero, then the corresponding
elements of S are not uniquely determined from the
currents and entropy production alone, and they can be
arbitrarily chosen. Once S has been obtained consistently
with J ss and σss, it can be combined with P and J ss, via
Eq. (14), to give R.
In the remainder of this paper, we address the forward

problem, namely, how to construct, for a given NESS, a
mimicking SP protocol. While this problem is conceptually
more complicated than the inverse problem discussed
above, it turns out that it is computationally simpler and
does not require any solution of differential equations.

IV. KEY IDEAS

Here, we establish three technical results that will play a
crucial role in the construction of WðtÞ.

A. No current loops in detailed balance systems

A system satisfying detailed balance has nonvanishing
currents when the instantaneous probability distribution
differs from the equilibrium state of the instantaneous rate
matrix. These currents, however, cannot form a current
loop. In other words, no loop i; j; k;…; m; i on the graph
associated with the system can have all the currents
oriented in the same direction around the loop. As an
example of a current loop, consider the system described in
Fig. 2. No detailed balance system can have instantaneous
currents equal to the currents in the loop 1 → 3 → 4 → 1

FIG. 2. A concrete example of a NESS for which we build an
equivalent stochastic pump. In this example, Rij ≠ 0 for all i, j.
The spanning tree was chosen to be the 2-1, 2-3, and 2-4 edges
(dashed red lines), and the fundamental currents are the currents
along the 1-4, 1-3, and 3-4 edges (solid black lines). In this
system, there are two current loops: 1 → 3 → 4 → 1 and
2 → 3 → 4 → 2.
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(or in the loop 2 → 3 → 4 → 2) since they all have the
same orientation.
To see why a current loop is inconsistent with detailed

balance, let us consider the currents along the edges of a
loop i; j; k;…; m; i. Using Eq. (14) to decompose the
detailed balance rate matrix W ¼ SΠ−1, the currents
generated by a distribution ~q satisfy

J ij

Sij
¼ π−1j qj − π−1i qi; ð18Þ

J jk

Sjk
¼ π−1k qk − π−1j qj; ð19Þ

..

.

J mi

Smi
¼ π−1i qi − π−1m qm: ð20Þ

Summing these equations, we get that
PðJ =SÞ ¼ 0

around the loop. This means that not all the currents can
have the same sign since each Sij > 0. Therefore, there are
no current loops. (A similar argument was used
in Ref. [20]).
By contrast, the steady-state currents of a NESS must

form at least one current loop. To see this, just choose a site
(denoted by i) through which some of the steady-state
currents flow. Conservation of probability implies that at
least one of these currents is going out of site i, so we
choose such a current, say, from i into site j. Now, from site
j again, there is at least one current going out, say, to site k.
Following the same argument, from any site, we can “flow”
with a current into a new site, but since the number of sites
is finite, after no more than n such steps, we must come
back to a site we already visited. Therefore, there must exist
at least one current loop.

B. Transformation for the diagonal part
of the decomposition of W

Suppose we have a detailed balance rate matrix Ŵ and
two instantaneous probability distributions ~q and ~p, neither
of which necessarily corresponds to a stationary distribu-
tion. We would like to transform Ŵ into a different detailed
balance rate matrix, W, such that Ŵ ~q ¼ W ~p. This is
achieved by the following transformation:

W ¼ ŴQP−1; ð21aÞ
where P and Q are the diagonal matrices corresponding to
~p and ~q, respectively. Using indices, this reads

Wij ¼ Ŵijqjp−1
j : ð21bÞ

The transformation given by Eq. (21a) affects only the
diagonal part of the decomposition and has the following
properties:

(1) If Ŵ satisfies the detailed balance condition,
then so does W. This can be seen by using the
decomposition of Ŵ as in Eq. (14) in the above
transformation and noting thatW is a symmetric rate
matrix times a diagonal matrix; therefore, it has no
currents in its steady state.

(2) The instantaneous currents of a system described by
Ŵ with probabilities ~q are the same as those of a
system described by W with the probabilities ~p.
This follows by substituting Eq. (21b) into Eq. (7).

(3) From Eqs. (8) and (21b), it follows that the instanta-
neous entropy production rates along each edge (σij)
for a system described by Ŵ with probabilities ~q and
for a system described byW with probabilities ~p are
the same.

The significance of this transformation can be stated as
follows. If we have a rate matrix Ŵ and probabilities ~q,
which produce instantaneous currents J and entropy
production rates σ, then for any other probability distribu-
tion ~p, we can construct the rate matrix W that generates
the same J and σ.

C. Transformation for the symmetric part
of the decomposition of W

Currents arise in a system described by a detailed
balance W when the instantaneous probability distribution
~p differs from the equilibrium distribution ~π. We next show
how to vary the magnitudes of these currents (but not their
directions) while keeping ~p and ~π fixed. As the directions
of the currents do not vary under this transformation, no
loops can be formed in accordance with the “No loop
condition” in Sec. IVA.
Let us use the decomposition W ¼ SΠ−1, where S is

symmetric andΠ ¼ diagð~πÞ. The currents are then given by

J ij ¼ Sijðπ−1i pj − π−1j piÞ: ð22Þ

We see that by varying Sij, we vary the magnitude of the
current J ij, but not its sign, since Sij ≥ 0.
This transformation is complementary to the one given

by Eq. (21): It enables us to adjust the currents and entropy
production rates while keeping the probabilities ~p and ~π
fixed, by tuning the symmetric part of W in the decom-
position given by Eq. (14). By contrast, with the previous
transformation, we can vary the probabilities ~p and ~π at
fixed currents and entropy production rates, by tuning the
diagonal part of W.

V. CONSTRUCTION OF THE
PUMPING PROTOCOL

Given a rate matrix R, one can calculate its steady state
~pss (the null eigenvector of R) and thus J ss and σss using
Eqs. (2) and (3). Our goal is to construct a periodic
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pumping protocol—a time-dependent detailed balance rate
matrixWðtÞwith some period T—such that Eq. (13) holds,
in other words, a SP that mimics the NESS. For simplicity,
we assume that there are no edges along which the steady-
state currents are zero. The case involving zero currents
along some edges is analyzed in the Appendix B.
We note that, in general, there are many SPs that mimic

any specific NESS—the mapping is not one to one. Out of
the many SPs that mimic the NESS, we choose one using a
relatively simple construction, yet generic enough to mimic
any NESS. Naively, we would like to have a SP whose
periodic state gives rise to time-independent quantities,
pps
i ðtÞ ¼ pss

i , J ps
ij ðtÞ ¼ J ss

ij , and σpsij ðtÞ ¼ σssij . Such a
construction is, unfortunately, impossible. This can be seen
from the result of Sec. IVA, which states that for all t,
J ps

ij ðtÞ cannot have any current loops, whereas J ss
ij must

have at least one current loop. Thus, we can only hope to
achieve a mapping between the time-averaged quantities
associated with the SP and those of the NESS, as in
Eq. (13). This also implies that at least some of the currents
of the SP must be time dependent.
Though it was the simplest we could find, the con-

struction described below is nevertheless somewhat con-
voluted. We therefore first give an overview before
proceeding to the detailed description. The main reason
for the complication is the fact that the periodic solution
pps
i ðtÞ is a highly nontrivial function of the pumping

protocol WðtÞ. To avoid this complication, we simulta-
neously construct both the pumping protocol WðtÞ and its
periodic solution pps

i ðtÞ. This is achieved in five steps.
In the first step, described in Sec. VA, we divide the

pumping protocol temporal interval of duration T into two
equal half-intervals, designated as a and b. We then assign
an arbitrary fixed detailed-balance matrix ~Wa and an
arbitrary fixed probability distribution ~qa, to be associated
with the first half-period of driving. We refer to ~Wa and ~qa

together as the seed for that half-cycle, and these quan-
tities will be used to set the current directions during that
time interval. Next, the seed and current directions for the
first half-cycle are used to assign a seed ( ~Wb, ~qb) and
current directions for the second half-cycle. The current
directions during the first half-cycle are opposite of those
of the second half-cycle, and both sets are, by construc-
tion, consistent with the no-current-loop condition in
Sec. IVA.
In the next two steps, we use the seeds to construct fixed

sets of currents (J a
ij and J b

ij) and entropy production rates
(σaij and σbij) for the first and second halves of the cycle,
whose averages over the two halves are equal to the steady-
state values that we wish to mimic:

J ss
ij ¼ 1

2
ðJ a

ij þ J b
ijÞ; σssij ¼ 1

2
ðσaij þ σbijÞ ð23Þ

for all i ≠ j. This is done first for the fundamental currents
in Sec. V B and then for the spanning-tree currents in
Sec. V C.
Up to this point, the currents and entropy production

rates for the two half-cycles have been constructed from the
initial, arbitrary seeds, but the corresponding time-periodic
rate matrices WaðtÞ and WbðtÞ that actually generate these
currents and entropies are not yet known. In the fourth step,
described in Sec. V D, we use the transformation of Sec. IV
C to adjust the symmetric part of the seed matrices, ~Wa;b,
arriving at new, time-independent rate matrices Ŵa;b that
produce the desired currents J a;b, for the seed probabilities
~qa;b. These currents, together with the desired averaged
probabilities pps

i , fix pps
i ðtÞ. In the last step (Sec. V E), we

use the transformation of Sec. IV B, together with the
symmetric parts of Ŵa;b, to construct time-dependent rate
matrices WaðtÞ and WbðtÞ for which pps

i ðtÞ is the periodic
solution of the master equation.
In the specific protocol described below, the entries of

the matrix WðtÞ are not continuous functions of time, as
they have discontinuities between the two T=2 intervals.
These discontinuities are not essential and can be removed
at the expense of making the construction less transparent.
For clarity of presentation, some of the formal definitions

of the construction are followed by a concrete application to
the example of the four-state system described in Fig. 2. In
this example, the NESS system has four states with
~pss ¼ ð0.1; 0.2; 0.3; 0.4Þ. The fundamental currents were
chosen to be J ss

31 ¼ 3, J ss
43 ¼ 2, and J ss

14 ¼ 1. The currents
for the spanning-tree edges are then dictated by Kirchoff’s
law—the sum of currents in each vertex must be zero. The
corresponding current matrix is

J ss ¼

0
BBBBB@

0 2 −3 1

−2 0 1 1

3 −1 0 −2
−1 −1 2 0

1
CCCCCA: ð24Þ

Finally, we choose the entropy production rate to be 1 along
all the edges: σij ¼ 1 for all i ≠ j. Using Eq. (16), the
matrix S can be calculated, and it is given in Eq. (A2) in
Appendix A. The matrix R giving rise to this particular
NESS can be constructed using Eq. (14).

A. Step 1: Choosing the seed

In what follows, superscripts a and b indicate quantities
associated with the first and second halves of the period,
respectively.
Our first step is to choose an arbitrary detailed balance

matrix on the graph. This is done by choosing an equilib-
rium state for the first half-period ~πa and a symmetric rate
matrix ~S from which we compose ~Wa ¼ ~SðΠaÞ−1, where
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Πa ¼ diagð~πaÞ. Next, we choose a fixed probability dis-
tribution ~qa ≠ ~πa that satisfies���� log πai qajqai π

a
j

���� <
���� logRijpss

j

Rijpss
i

���� ð25Þ

for any i ≠ j. It is always possible to satisfy this condition
by choosing ~qa close enough to ~πa. As we see in the next
section, this condition is necessary for the consistency of
our construction.
For the second half of the period, we replace ~πa and ~qa

by vectors with components πbi ¼ 1=πai—from which we
construct ~Wb ¼ ~SðΠbÞ−1—and qbi ¼ 1=qai . The two prob-
ability vectors ~πb and ~qb are not normalized, but as will
become clear, this normalization does not play any role; it
will prove to be simpler to work with these unnormalized
vectors. We note that the currents generated by ~Wa and ~qa,

~J a
ij ¼ ~Sijðπaj qaj − πai q

a
i Þ; ð26Þ

have, on each edge, opposite signs to those generated by
~Wb and ~qb, given by

~J b
ij ¼ ~Sij

�
1

πaj q
a
j
− 1

πai q
a
i

�
: ð27Þ

The values of ~J a;b
ij will not explicitly be used in what

follows—only their directions, which by construction are
consistent with detail balance. We additionally note that

log
πai q

a
j

qai π
a
j
¼ − log

πbi q
b
j

qbi π
b
j
: ð28Þ

Normalizing the probabilities ~πb and ~qb does not change
Eq. (28), nor the sign of ~J b

ij in Eq. (27). Thus, working
with the non-normalized probabilities is justified.
To illustrate this part of the construction with our four-

state example, we choose

~S ¼

0
BBB@

−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3

1
CCCA; ~πa ¼

0
BBB@

1=4

1=4

1=4

1=4

1
CCCA: ð29Þ

We emphasize that both ~S and ~πa are arbitrary.
We next note that minij½logRijpss

j − logRjipss
i � ¼ 1=3.

Therefore, if we choose ~qa such that j log πai − log qai j <
1=6, then Eq. (25) is satisfied. Any vector close enough
to ~πa will do. As an example, we use
~qa ¼ ð0.23; 0.24; 0.26; 0.27Þ. In the second half of the

period, these correspond to ~πb ¼ ð4; 4; 4; 4Þ and ~qb ¼
ð4.3478; 4.1667; 3.8462; 3.7037Þ.

B. Step 2: Fundamental edge currents

In this step, we set the currents along the fundamental
edges to be constant during each of the two half cycles,
such that their time averages (the average between the first
and second halves) is equal to J ss, and the time average of
the entropy production rates is equal to σss. Moreover, we
choose these fundamental currents to have the same
directions as the fundamental currents in ~J a during the
first half-cycle and to be reversed in direction during the
second half-cycle.
We first make sure that for each fundamental edge, the

average of J a
ij and J b

ij, and therefore the time-averaged
current, is exactly J ss

ij . To that effect, we introduce the
following rules:

(i) If the direction of the NESS current, J ss
ij , is the same

as the direction of ~J a
ij defined above, then we set in

the first half of the period J a
ij ¼ ð2þ αijÞJ ss

ij and in
the second half of the period J b

ij ¼ −αijJ ss
ij , where

αij are positive and will be determined below.
(ii) If the direction of the NESS current, J ss

ij , is not the
same as the direction of ~J a

ij, then we set in the first
half of the period J a

ij ¼ −αijJ ss
ij and in the second

half J b
ij ¼ ð2þ αijÞJ ss

ij .
According to this rule, the directions of the currents during
the first half of the period are the same as those of ~J a

ij and
are opposite to those in the second half. Moreover, by the
above construction, the time-averaged currents on the
fundamental edges have the required values

1

2
ðJ a

ij þ J b
ijÞ ¼ J ss

ij : ð30Þ

Next, we determine the values of the αij’s so as to satisfy
the requirement on the entropy production rates. Assuming,
for the moment, that the probability distributions in the first
and second halves of the period are given by ~qa and ~qb and
that the equilibrium distributions of the detailed balance
matrices during the first and second halves of the period are
given by ~πa and ~πb, respectively, then the entropy pro-
duction rates with the currents J a

ij and J b
ij during the two

halves of the cycle are given by

σaij ¼ J a
ij log

πaj q
a
j

πai q
a
i
;

σbij ¼ J b
ij log

πbj q
b
j

πbi q
a
i
: ð31Þ

Substituting in these equations J a
ij and J b

ij in terms of αij
and demanding that 1

2
ðσaij þ σaijÞ ¼ σssij , we get an equation

for αij whose solution is
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αij ¼
����
�
log

πai q
a
j

qai π
a
j

�−1
log

Rijpss
j

Rijpss
i

���� − 1: ð32Þ

Equation (25) ensures that indeed αij > 0.
To illustrate this step, we examine the signs of the

currents generated by the matrix ~Wa ¼ ~SðΠaÞ−1 and the
probability ~qa, denoted by ~J a, on the fundamental edges:

signð ~J a
13Þ ¼ þ1;

signð ~J a
14Þ ¼ þ1;

signð ~J a
34Þ ¼ þ1: ð33Þ

While the direction of the current along the 1-4 edge is the
same as the current orientation of J ss, for the other two
fundamental edges, the directions of J a and J ss are not
the same.
We next solve Eq. (32) for αij. The explicit expression,

as well as the currents, is given in the Appendix A. Figure 3
shows the currents on the first half-period (left) and second
half-period (right). Note that (i) the direction of the currents
along each edge is opposite in the two halves of the period,
and (ii) as discussed above, in the first half-period the
direction of the current along the 1-4 edge is the same as
that of Fig. 2, but the direction of currents along the other
fundamental edges is different from that of Fig. 2, and
(iii) there are no current loops in Fig. 3.

C. Step 3: Spanning-tree currents

So far, we have described how to construct the funda-
mental edge currents. Next, we discuss the currents along
the edges of the spanning tree. For both the first and the
second half-periods, we impose the following two
constraints:
(1) The sum of currents feeding into any site i during the

first half-period must be equal to minus the same
quantity during the next half-period:X

j

J a
ij ¼ −X

j

J b
ij: ð34Þ

These constraints ensure that we indeed have a
periodic time evolution: Δpi ¼

R
T
0 ∂tpidt ¼

ðT=2ÞPjðJ a
ij þ J b

ijÞ ¼ 0. Note that these are only
n − 1-independent equations since conservation of
probability adds the constraint

P
ijJ

a;b
ij ¼ 0.

(2) For each spanning-tree edge, we demand that

J a
ij log

πai q
a
j

qai π
a
j
þ J b

ij log
πbi q

b
j

qbi π
b
j
¼ 2σssij : ð35Þ

The number of edges in the spanning tree is n − 1,
and therefore, these are n − 1 additional equations.
They ensure that the time-averaged entropy produc-
tion rate along the i, j edge is the same as σssij .

Equations (34) and (35) are 2ðn − 1Þ linear equations for
2ðn − 1Þ unknowns: J a;b on the spanning tree, which has
n − 1 edges [39]. Moreover, the directions J a;b

ij that solve

these equations are the same as those of ~J a;b
ij , respectively.

To see this, let us use the definition of ~qb and ~πb in the
second condition above, together with the definition of σssij
[Eq. (3)]:

ðJ a
ij − J b

ijÞ ¼ 2J ss
ij

�
log

πai q
a
j

qai π
a
j

�−1
log

Rijpss
j

Rjipss
i
: ð36Þ

Taking the absolute value of both sides in the above
equation and using Eq. (25) implies that

jJ a
ij − J b

ijj > 2jJ ss
ij j: ð37Þ

However, by the construction of J a
ij and J

b
ij, their average

is equal to the steady-state current, J ss
ij ; therefore,

ðJ a
ij þ J b

ijÞ=2 ¼ J ss
ij : ð38Þ

Equations (37) and (38) are consistent with each other only
if the sign of J a

ij is opposite to that of J b
ij. Moreover, as

σssij > 0 [this follows from Eq. (16)], the signs of J a
ij and

J b
ij must be the same as those of log πai q

a
j =q

a
i π

a
j and

log πbi q
b
j =q

b
i π

b
j , respectively; otherwise, the left-hand side

FIG. 3. The currents of the stochastic pump constructed to mimic the NESS in Fig.(2). The pumped currents during the first (left) and
second (right) half-periods are shown. On each of the edges, the current directions in the two half periods are opposite. Note that there
are no current loops in both of the half periods.
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of Eq. (35) will be negative. Therefore, it is also the same as
the sign of ~J a

ij.

D. Step 4: Transforming the symmetric part
for the currents

At this stage, we have constructed the time-dependent
currents for both half-cycles with the same directions as the
currents of ~Wa;b with ~qa;b. We can now use the trans-
formation of the symmetric part of the decomposition of the
rate matrix (defined in Sec. IV C) to adjust the symmetric
part of ~W such that the currents generated by the trans-
formed matrix and the seed probabilities ~qa;b have the
constructed values

Sa
ij ¼

J a
ij

ðπaj Þ−1qaj − ðπai Þ−1qai
;

Sb
ij ¼

J b
ij

ðπbj Þ−1qbj − ðπbi Þ−1qbi
: ð39Þ

Importantly, all these off-diagonal elements are positive.
This follows from the fact that the denominators are just
~J a;b
ij = ~Sij, but by our construction, the sign of J a;b

ij is the

same as that of ~J a;b
ij . The diagonal elements of Sa;b are now

determined by the requirement that the sum of each of the
columns is zero.

E. Step 5: Forming a solution to the master equation

We have now arrived at the matrices Ŵa;b ¼
Sa;bðΠa;bÞ−1. These are the transformed seed matrices,
which have been constructed (by tuning the elements of
Sa;b) so as to produce the desired currents and entropy
production rates when the probability vectors are ~qa;b.
However, the time average of ~qa;b is not ~pss, and in fact,
~qa;b are not solutions of the master equation:
∂t~qa;b ≠ Ŵa;b~qa;b. To remedy this situation, we use the
transformation of the diagonal part of the decomposition of
Ŵ, defined in Sec. IV B.
First, we want the time-averaged probabilities to be equal

to ~pss. Second, we already know what ∂tpi should be, in
terms of the desired currents J a;b. Namely, ∂tpi ¼

P
jJ ij.

Therefore, we do the following:
(1) Calculate ~ma;b ¼ ∂t ~p ¼ Ŵa;b~qa;b. These are the

temporal slopes of the probabilities that solve the
master equation, during the first and second halves
of the period.

(2) Choose T such that 0 < pss
i � ðT=4Þma;b

i < 1 for
any i. This choice ensures that the probabilities stay
bounded between 0 and 1, and is always possible by
taking T to be small enough.

(3) Construct pa
i ðtÞ ¼ pss

i − ðT=4Þma
i þ ma

i t and
pb
i ðtÞ ¼ pss

i − ð3T=4Þmb
i þmb

i t. These are the

solutions of the master equation in the first and
second halves of the period, respectively. It follows
from Eq. (34) that mb

i ¼ −ma
i . This further implies

that the probabilities defined above are continuous
functions of time, i.e., pa

i ðT=2Þ ¼ pb
i ðT=2Þ and

pa
i ð0Þ ¼ pb

i ðTÞ, as they should be.
(4) From the above, we define

WðtÞ ¼
�
SaðΠaÞ−1QaðPaÞ−1ðtÞ t < T=2

SbðΠbÞ−1QbðPbÞ−1ðtÞ t > T=2:
ð40Þ

The matrix WðtÞ has all the periodic state averages we
demand, and its periodic state solutions in the two halves of
the period are, by construction, pa;bðtÞ.
For our example, we calculate the slopes ∂t ~p on the two

half-cycles by proper summation of the currents: ∂t ~pa ¼
ð37.89;−2.51; 5.85;−41.22Þ and ∂t ~pb ¼ ð−37.89; 2.51;
−5.85; 41.22Þ, which, as expected, are equal in magnitude
and opposite in sign. To satisfy 0 < piðtÞ < 1, we must
choose T small enough, say, T ¼ 0.01. Using T, we can
obtain the time-dependent probability distributions ~pa;bðtÞ.
These linear functions are plotted in Fig. 4. Plugging these
into Eq. (40) gives WðtÞ. To verify that the solution of the
master equation with the constructedWðtÞ has the required
properties, we solve this system numerically. The numeri-
cal results for ~pðtÞ, shown as red circles in Fig. 4, agree (up
to numerical error) with the analytical solution.

F. Remarks

We conclude this section with a few comments on our
construction. First, the protocol presented above is clearly
not unique. For example, different seeds or choices of a
spanning tree result in different protocols. The nonunique-
ness might be used, in principle, to match additional
quantities, e.g., fluctuations around the average or the rate
of decay towards the steady and periodic states. In addition,

FIG. 4. ~pðtÞ of the proposed construction for our four-state
example. The blue line is the exact (constructed) solution, and the
red dots represent the numerical solution of the master equation.
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as mentioned previously, in our construction, WðtÞ has
discontinuities between the two halves of the period. This
results from discontinuities in S, Π, and Q. The disconti-
nuities in S can be avoided if the currents are not taken to
be fixed during the two halves of the period but changing
with time, such that the currents at t ¼ T=2 vanish. The
discontinuities inΠ andQ can be avoided if we change ~q as
a function of time, crossing ~π at t ¼ T=2. This, however,
makes the construction more cumbersome. Next, we note
that in the above construction, both the symmetric and the
diagonal parts of the decomposition of W change with
time. This is known to be an essential feature of all
pumping protocols [21].
Lastly, we note that for NESS, there is no minimal

entropy production rate associated with a given set of
currents, as is evident from Eq. (16): For any J , the entropy
production rates of the NESS can be made arbitrarily small
by taking S to be sufficiently large [38]. Our mapping
implies this is also the case for stochastic pumps: Finite
currents can be pumped with arbitrarily small values of
dissipation. This is surprising, though a similar result was
obtained in the context of hidden, reversible pumps [28].
Stated more generally, for any connected graph, both a
NESS and a SP can be constructed to have any desired set
of (time-averaged) probabilities, nonzero currents, and
positive entropy production rates, provided the currents
obey Kirchhoff’s law.
Let us now consider the construction of a stochastic

pump with small entropy production rates but large
currents. For the entropy production rates of the NESS
to be very small with nonvanishing currents,
log ðRijpss

j =Rjipss
i Þ must be very small, say, of order ε.

Equation (25) then implies that log ðπai qaj =πaj qai Þ ∼OðεÞ as
well. Exponentiating this gives ðπai qaj =πaj qai Þ ¼ 1þOðεÞ;
thus, ðπaj Þ−1qaj − ðπai Þ−1qai ∼OðεÞ. By Eq. (39), this
implies S ∼Oðε−1Þ. Therefore, in stochastic pumps—as
in NESS—small entropy production rates with nonvanish-
ing currents come at the cost of large values in the
symmetric part of the rate matrix. But when the elements
of S are large, the corresponding transitions occur very
rapidly. Thus, we obtain finite currents at arbitrarily low
dissipation when there is a large separation of time scales,
with transitions among the n states of the system—and
therefore relaxation to equilibrium—occurring much more
rapidly than the external driving of parameters. The greater
the separation of time scales, the more the stochastic pump
approaches the adiabatic (quasistatic) limit [5], in which the
system remains in thermal equilibrium at all times and there
is no entropy production.

VI. APPLICATION: KINETIC PROOFREADING

In the previous section, we have introduced a mapping
from any NESS to a SP with the same set of averaged
currents, probabilities, and entropy production rates.

However, this construction requires the ability to control
all the elements of the rate matrix WðtÞ, which might be
experimentally challenging, or even impossible, in some
applications. Can the NESS-SP mapping be achieved even
with constrainedWðtÞ? The answer to this question clearly
depends on the details of the constraints. Nevertheless, the
tools developed so far might be useful even for constrained
systems. We next demonstrate this through a concrete
example: kinetic proofreading in a simple system. In this
example, the constraints are set not by experimental
limitations but by the structure of the problem itself. In
the next subsections, we present the main idea of kinetic
proofreading and how it can be achieved using NESS. We
then show that despite the constraints, kinetic proofreading
has a NESS-SP equivalence in terms of averaged proba-
bilities, currents, and entropy production rates.

A. Kinetic proofreading by NESS

1. Introduction to kinetic proofreading

Kinetic proofreading was originally introduced by
Hopfield [34] and Ninio [35] to explain the small error
rates in biochemical reactions such as protein synthesis.
The system in kinetic proofreading is described by a
discrete-state continuous-time Markovian model. Each
state in the system is associated with an energy Ei, and
the transition rates between the states are of Arrhenius type,

Wij ¼
(
e−ðBij−EjÞ i ≠ j

−P
k≠j

Wik i ¼ j; ð41Þ

where Bij ¼ Bji is the height of the barrier between the ith
and jth states; for simplicity, we work in units where the
inverse temperature is β ¼ 1. The rate matrix W defined
above is detailed balanced, and its equilibrium distribution
is given by the Boltzmann distribution,

πi ¼
e−Ei

Z
; where Z ¼

X
i

e−Ei : ð42Þ

The quantity of greatest interest in kinetic proofreading is
the discrimination ratio D defined as the ratio between the
steady-state probability to be in one of the states, c (the
“correct” state), and the probability to be in some other
specific state, w (the “wrong” or incorrect state). The reason
whyD is the important quantity (rather than the probability
to be in the correct state) is that, in the process of protein
synthesis, there is a small probability per unit time to jump
from the two specific states, w and c, into the next stage in
the synthesis (which is not part of the system described so
far). This probability per unit time is assumed to be small
enough not to have any significant effect on the evolution of
the system itself, which therefore relaxes into its steady
state. As there are no direct transitions to the next stage
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from other than the c or w states, the error rate is equal to
the ratio between the probabilities to be in states c and w.
If the system is in equilibrium, then D is given by

Deq ¼
πc
πw

¼ eðEw−EcÞ: ð43Þ

This ratio depends only on the energy difference between
the two states. Kinetic proofreading is a method used by
nature to increase the discrimination ratio beyond its
equilibrium value. The main challenge in kinetic proof-
reading is therefore to control the discrimination ratio
without changing the energies Ec and Ew, as well as the
barrier between them; namely, these energies and barrier
are given as constraints.
For simplicity, in what follows, we consider a specific

example of a three-state system, shown in Fig. 5, whose
states are c, w, and an auxiliary state denoted by x. This
system, which is the minimal system in which detailed
balance can be violated, is not the standard system for
kinetic proofreading in biological context, which has five
states [40]. Nevertheless, the main idea can be demon-
strated through this example, which is significantly simpler.
In biological systems, kinetic proofreading is achieved

through breaking detailed balance, e.g., coupling the
w ↔ x transition to the hydrolysis of ATP into ADP,
whose concentrations are constantly maintained out of
equilibrium. Such a coupling modifies the Arrhenius rates:
Denoting the rate matrix now by R (as it is not detailed
balanced anymore), its off-diagonal elements are the same
as those of W, i.e., Rij ¼ Wij, except for the wx and xw
rates, which become

Rwx ¼ Wwxeþϕ=2; ð44Þ

Rxw ¼ Wxwe−ϕ=2: ð45Þ

Here, the affinity ϕ is the Gibbs free energy released by the
hydrolysis of one ATP molecule, and it can be viewed as a
thermodynamic force that drives current around the loop
x → w → c → x [36]. In principle, this affinity could have
been assigned to the xc edge, or split between the xc and
xw edges, without fundamentally affecting the results. As
the dynamics no longer satisfy detailed balance, the steady-
state probabilities ~pss are not given by the Boltzmann
distribution; thus, kinetic proofreading is possible.

2. Constructing a NESS kinetic proofreading with
arbitrary steady-state distribution

Let us demonstrate that given the energies Ec, Ew and the
barrier Bcw, it is possible to achieve any desired probability
distribution ~pss as the steady state of the system, by
controlling the affinity ϕ, the auxiliary state energy Ex,
and the barriers between the auxiliary state and the other
states—Bxc and Bxw. In other words, we assume that the
properties of the two states c and w and the transitions
between them are given, and our goal is to show that by
choosing the affinity and the auxiliary state properties, it is
possible to achieve any probability distribution as the
steady state of the system. To show this, we first note that
there is only a single current in the system since there is
only one loop. This current can be expressed [substituting
R in Eq. (2)] in terms of the known quantities Ec, Ew, Bcw
and the desired steady-state probabilities pss

c and pss
w :

J ss ¼ e−BcwðeEcpss
c − eEwpss

w Þ: ð46Þ

Note that the known steady-state probabilities pss
w , pss

c , the
energies Ec, Ew, and the barrier Bcw uniquely define the
steady-state current J ss; namely, it cannot be tuned by
changing the other parameters. In the steady state, the same
current must also flow through the cx edge; thus,

J ss
cx ¼ e−BcxðeExpss

x − eEcpss
c Þ ¼ J ss: ð47Þ

Given pss
c , pss

x , and J ss, we can choose Ex such that the
sign of eExpss

x − eEcpss
c is the same as the sign of J ss, and

once Ex is chosen, we can set Bxc to be

Bxc ¼ − ln
J ss

eEcpss
c − eExpss

x
:

Next, we can set the affinity ϕ such that the current in the
xw edge is in the same direction as in the cw edge: Using

J ss
wx ¼ e−BwxðeEx−1

2
ϕpss

x − eEwþ1
2
ϕpss

w Þ ¼ J ss; ð48Þ

we can first choose ϕ such that the sign of eExþ1
2
ϕpss

x −
eEw−1

2
ϕpss

w agrees with the sign of J ss, and then calculate
Bwx such that the above equation holds.
So far, we have seen that by choosing the energy Ex, the

barriers Bcx, Bwx, and the affinity ϕ, it is possible to “tune”

FIG. 5. A three-state system, through which we demonstrate
kinetic proofreading. The system has three states: the correct state
c, the wrong state w, and the auxiliary state x. Each state is
associated with internal energies Ec, Ew, and Ex, respectively.
Between any two states, there is a (symmetric) barrier,
Bcw ¼ Bwc, Bcx ¼ Bxc, and Bwx ¼ Bxw. The transition rates
between the different states are given by the corresponding
Arrhenius rates.
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the system to have any steady-state distribution. However,
once the steady-state distribution is chosen, the current is
set by Eq. (46) and cannot be changed. This proves that the
constraints indeed limit the system; without them, any J ss

can be achieved with any ~pss by tuning Ew, Ec, and Bcw
in Eq. (46).
Next, let us consider the cost of kinetic proofreading,

namely, the total entropy production rate: It has three
contributions from the three edges. The currents in all three
edges are identical and are set by the choice of steady-state
probabilities; thus, the differences between the entropy
production rates in the different edges are only due to the
differences in the lnðRijpss

j =Rjipss
i Þ factors. Any (positive)

value of σsscx can be achieved by choosing the energy of the
auxiliary state to be

Ex ¼ Ec þ
σsscx
J ss þ ln

pss
c

pss
x
; ð49Þ

as can be verified by substituting the above Ex in the
definition of the entropy production rate. Similarly, it is
possible to achieve any positive value of σsswx by choosing
the affinity to be

ϕ ¼ Ex − Ew − σsswx
J ss þ ln

pss
x

pss
w
: ð50Þ

The last contribution to the total entropy production comes
from the cw edge and is given by

σsscw ¼ J ssðEc − Ew þ lnDNESSÞ; ð51Þ

where

DNESS ¼
pss
c

pss
w

ð52Þ

is the NESS discrimination ratio. In contrast to the other
two edges, this entropy production rate is set by the steady-
state distribution and the given state’s energies; hence, it
cannot be controlled at all. It is therefore a minimum bound
on the entropy production rate for any NESS kinetic
proofreading to achieve the target probabilities in this
system. If DNESS ¼ Deq, then lnDNESS ¼ Ew − Ec; hence,
the minimal entropy production is zero, as expected.
In this simple three-state system, any discrimination ratio

DNESS can, in principle, be achieved with an arbitrary low
cost in terms of the total entropy production rate, by
decreasing both pss

c and pss
w while keeping their ratio

fixed. The price for having low entropy production,
however, is that most of the time, the system is neither
in the correct state c nor in the incorrect state w, but in the
auxiliary state x. It is possible to achieve pss

c arbitrarily
close to 1, but with a logarithmic price in the discrimination
ratioDNESS (even if pss

c ¼ 1, J ps is finite). This trade-off is

common in NESS kinetic proofreading; see, e.g.,
Refs. [41,42].
Increasing the discrimination ratio between two possible

outcomes beyond its equilibrium value might have other
applications, for example, in self-assembly. Many self-
assembly schemes are based on free-energy minimization,
where the ratio of success is dictated by the equilibrium
distribution. Controlling this ratio, either in NESS or
through periodic driving, might enable self-assembly of
structures that cannot be achieved in equilibrium [43].

B. Kinetic proofreading by periodic driving

1. Constraints on periodic driving
for kinetic proofreading

Can kinetic proofreading be achieved without breaking
detailed balance but through periodic driving? As we have
seen, any NESS system that describes kinetic proofreading
can, in principle, be mapped into a SP that mimics the
NESS. However, in the construction suggested in Sec. V,
Ec and Ew are not constant as they change throughout the
cycle. This makes the construction unsuitable for kinetic
proofreading: A periodic driving kinetic proofreading is a
time-dependent detailed-balance matrix WðtÞ, with the
additional constraints

_EcðtÞ ¼ 0; _EwðtÞ ¼ 0; _BcwðtÞ ¼ 0: ð53Þ

Without the constraints on Ec and Ew, it is possible to
directly change the equilibrium discrimination ratio, and
thus, there is no need for kinetic proofreading. The
constraint on Bcw is motivated by the physical argument
that if the two states c and w are not affected by the external
manipulation, the barrier between them should not be
affected either. Note that these constraints do not mean
that the πc and πw are time independent since they are also a
function of the time-dependent ExðtÞ through the partition
function Z. However, their ratio,

πcðtÞ
πwðtÞ

¼ δ; ð54Þ

is time independent. The only physical parameters in WðtÞ
that can be manipulated are those of the auxiliary state x,
namely, its energy Ex and its barrier heights, Bwx and Bcx.
Mapping between the kinetic proofreading NESS to a
constrained WðtÞ such that Eq. (13) holds shows that the
effect of any external drive ϕ can be exactly mimicked by a
time-dependent auxiliary state.
As in the NESS kinetic proofreading, once the target

averaged probabilities pps
i are chosen, J ps is set by the

constraints in Eq. (53):
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J ps
cw ¼

Z
T

0

ðWcwðtÞpps
w ðtÞ −WwcðtÞpps

c ðtÞÞdt

¼ Wcw

Z
T

0

pps
w ðtÞdt −Wwc

Z
T

0

pps
c ðtÞdt

¼ e−BcwðeEwpps
w − eEcpps

c Þ: ð55Þ

Comparing with Eq. (46), we note that pps
i ¼ pss

i implies

J ps
cw ¼ J ss

cw. In other words, the choice of distribution, pss
i

or pps
i , uniquely defines the corresponding currents, J ss

cw or

J ps
cw, and a given set of probabilities pss

i ¼ pps
i gives rise to

the same currents in both the periodic and steady-state
systems.
In what follows, we construct a periodic detailed balance

rate matrixWðtÞ with a given Ec, Ew, and Bcw, such that its
time averaged probabilities can be any (normalized) prob-
ability vector pps

i , using the tools developed in the previous
sections. For simplicity, we first show how to construct the
protocol without considering the entropy production rates.
Then, we show that the entropy production rates can be
controlled by tuning the free parameters in the construction
and that the bound on the minimal averaged total entropy
production rate is equal to the bound in NESS kinetic
proofreading.

2. Construction of a proofreading protocol

We start with a simple, physical intuition for the kinetic
proofreading protocol. As evident from Eq. (55), the
energies of the states c and w, together with the barrier
between them, as well as the target averaged probabilities,
dictate the averaged current that flows between these states.
Without loss of generality, we assume that δ < 1 but pps

c >
pps
w (the other cases can be worked out similarly). Under

this assumption, J ps
wc > 0; namely, on average, probability

flows along the wc edge from the state c into the state w.
However, because of the no-current-loops condition, it is
not possible to compensate for both the probability that
flows out of c and the probability that flows into w at each
instance of time since the former requires current from x
into c and the latter from w into x, which, together with the
current on the wc edge, form a current loop. Thus, as in
Sec. V, we divide the cycle time into two halves. In the first
half-cycle, the probability current J a

cx that flows into the
state c and which is the only probability current flowing
into the state c over the entire cycle must compensate for all
the probability currents that flow out of the state c during a
complete cycle, namely, for J a

wc, J a
wc, and J a

xc (see Fig. 6
for the current pattern in the two halves of the cycle). By the
no-loop condition, during the same half-cycle, the current
along the xw edge must flow from x into w, further
increasing the accumulated probability in w. These currents
can be achieved by increasing the energy of the auxiliary
state, lowering the barrier between x and c and increasing

the barrier between x and w, to ensure that most of the
probability from x flows into c and not w. In the second
half-cycle, the probability that accumulates during a cycle
in w is evacuated into x. To avoid a current loop, in this
half-cycle some of the probability from c must also
backflow into x. This is achieved by lowering the energy
of x, lowering the barrier between w and x, and raising the
barrier between x and c, to ensure that most of the
probability that flows into x comes from w, rather than
from c.
To make this intuitive heuristic into a quantitative

protocol, we apply the tools developed so far. This is done
in three steps. In the first step, we choose the master
equation’s solution, ~ppsðtÞ, such that pps

i are the target
probabilities. In the second step, we set Ex in the two half-
periods such that the current pattern is consistent with the
no-current-loops condition. In the last step, we use the
transformation of the symmetric part of the rate matrix
(described in Sec. IV C) to set BwxðtÞ and BcxðtÞ such that
~ppsðtÞ is the solution of the master equation. These steps
are detailed below.

Step 1: Choosing the solution ~pðtÞ.—To construct WðtÞ,
we first set pps

i ðtÞ to be continuous and piecewise-linear in
time, with opposite slopes in the two half-cycles and with
the target averaged probabilities

pps
c ðtÞ ¼

(
pps
c − mT

4
þmt 0 ≤ t ≤ T

2

pps
c þ 3mT

4
−mt T

2
< t ≤ T;

ð56Þ

pps
w ðtÞ ¼

(
pps
w − mT

4
þmt 0 ≤ t ≤ T

2

pps
w þ 3mT

4
−mt T

2
< t ≤ T:

ð57Þ

The mT=4 and 3mT=4 constants assure that the average
probabilities are indeed pps

c and pps
w . Note that the slopes of

pps
c ðtÞ and pps

w ðtÞ are equal to each other but are opposite in
sign to the slope of pps

x ðtÞ ¼ 1 − ppt
c ðtÞ − pps

w ðtÞ, which is
2m in amplitude. The slope m is chosen subject to the
following constraint:

FIG. 6. Patters of currents in periodically driven kinetic proof-
reading. In the first half-cycle (left), both currents are out of the
state x, and in the second half-cycle (right), they are both into the
state x.
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m > e−Bcw max
0≤t≤T

����pps
w ðtÞ
e−Ew

− pps
c ðtÞ
e−Ec

����; ð58Þ

where T > 0 is chosen arbitrarily. Once m is chosen, we
have to check that all the probabilities are bounded away
from 1 and 0. If they are not, we rechoose T to be short
enough such that they become bounded away from 0 and 1,
and update ~pps

w ðtÞ and ~pps
w ðtÞ, but not m, accordingly. The

condition on m ensures that the magnitude of the current
between states c and w, given by

jJ ps
cwðtÞj ¼ e−Bcw

����pps
w ðtÞ
e−Ew

− pps
c ðtÞ
e−Ec

����; ð59Þ

is smaller than the magnitudes _pps
c ¼ _pps

w ¼ �m at all t.
Since _pps

c ¼ J ps
cx þ J ps

cw and similarly _pps
w ¼ J ps

wx þ J ps
wc,

the signs ofJ cx andJ wx are always identical to the signs of
_pps
c and _pps

w , and hence to each other. Therefore, J ps
cx and

J ps
wx are either both into the auxiliary state x or are both out

of it, and there are no current loops.
The condition on m can also be viewed as a condition

that assures that the dynamics is far from the adiabatic limit:
If the changes in ~p are slow enough such that the dynamics
follows the adiabatic approximation, then ~ppsðtÞ ≈ ~πðtÞ;
thus, D ≈Deq and there is no kinetic proofreading.

Step 2: Setting ExðtÞ.—In the previous step, the values of
_~pðtÞ, and therefore of the currents in the system, were
chosen. This was done consistently with the no-current-
loops condition. Next, we choose the auxiliary state energy
in the two halves of the cycle, Ea

x and Eb
x (as before,

superscripts a and b stand for the first and second half-
cycles, respectively) in a way that is consistent with the
directions of the currents. To this end, we can express the
periodic state current between the ith and jth states as

J ps
ij ðtÞ ¼ e−BijðtÞ

�
pps
j ðtÞ

e−EjðtÞ −
pps
i ðtÞ

e−EiðtÞ

�
: ð60Þ

The direction of the current J ps
ij ðtÞ is thus given by the sign

of f½pps
j ðtÞ�=½e−EjðtÞ�g − f½pps

i ðtÞ�=½e−EiðtÞ�g. To ensure that
in the first half-cycle the directions of the currents are
indeed from the auxiliary state x into states c and w, we
therefore must choose Ea

x such that both

pps
x ðtÞ
e−Ea

x
− pps

c ðtÞ
e−Ec

> 0 ð61Þ

and

pps
x ðtÞ
e−Ea

x
− pps

w ðtÞ
e−Ew

> 0; ð62Þ

which means

pps
x ðtÞ

pps
c ðtÞ >

e−Ea
x

e−Ec
¼ πax

πc
; ð63Þ

pps
x ðtÞ

pps
w ðtÞ >

e−Ea
x

e−Ew
¼ πax

πw
: ð64Þ

By the assumption δ < 1 and pps
c ðtÞ > pps

w ðtÞ, the second
inequality follows from the first one. Using πw ¼ πcδ

−1
[from Eq. (54)] and πw þ πc þ πx ¼ 1 (probability nor-
malization), we can express

πx ¼ 1 − πcð1þ δ−1Þ:

Substituting this in the above inequality gives

pps
x ðtÞ

pps
c ðtÞ >

1 − πcð1þ δ−1Þ
πc

¼ π−1c − ð1þ δ−1Þ: ð65Þ

This gives the exact condition for choosing πac :

1

1þ δ−1
> πac > max

t

1
pps
x ðtÞ

pps
c ðtÞ þ 1þ δ−1

; ð66Þ

where the left inequality follows from the equality πpsc ðtÞ ¼
δ−1πpsw ðtÞ and probability normalization. From πac (and
similarly for πbc), we can solve for Ea

x (for Eb
x). Using

e−Ec

e−Ea;b
x þ e−Ec þ e−Ew

¼ πa;bc ; ð67Þ

we can extract

Ea;b
x ¼ − ln

�
e−Ec

�
1

πa;bc
− 1

�
− e−Ew

�
: ð68Þ

A similar argument can be applied to the second half-cycle.
In this case, the currents should be from states c and w into
the state x; thus,

pps
x ðtÞ
e−Eb

x
− pps

c ðtÞ
e−Ec

< 0; ð69Þ

pps
x ðtÞ
e−Eb

x
− pps

w ðtÞ
e−Ew

< 0: ð70Þ

By the assumption δ < 1 and pps
c ðtÞ > pps

w ðtÞ, the first
inequality follows from the second one, which can be
written as

pps
x ðtÞ

pps
w ðtÞ <

e−Eb
x

e−Ew
¼ πbx

πw
¼ 1 − πcð1þ δ−1Þ

δ−1πc
; ð71Þ

namely,
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πbc < min
t

1

1þ δ−1ð1þ pps
x ðtÞ

pps
w ðtÞÞ

: ð72Þ

Once πbc is chosen, Eb
x can be expressed through Eq. (68).

Note that both Ea
c and Eb

c are not uniquely set but can be
chosen in some range of values. Although different choices
lead to the same averaged probabilities and current, their
averaged entropy production rates are different.

Step 3: Transforming the symmetric part of the rate
matrix.—So far, the instantaneous equilibrium distribution
~πðtÞ and the periodic solution ~ppsðtÞ were chosen such that
there are no current loops. It is therefore possible to use the
transformation of the symmetric part of the rate matrix,
discussed in Sec. IV C, to adjust the magnitudes of the

currents J ps
cxðtÞ and J ps

wxðtÞ to agree with _~p. In the first half-
cycle,

J ps
cx ¼ _pc − J ps

cw ¼ mþ e−Bcw

�
pps
c

e−Ec
− pps

w

e−Ew

�
; ð73Þ

J ps
wx ¼ _pw − J ps

wc ¼ m − e−Bcw

�
pps
c

e−Ec
− pps

w

e−Ew

�
; ð74Þ

where the explicit time dependence is omitted. The con-
dition on m in Eq. (58) ensures that both of these currents
are indeed positive. Moreover, by the current definition,

J ps
cxðtÞ ¼ e−BxcðtÞ

�
pps
c ðtÞ
e−Ec

− pps
x ðtÞ
e−Ea

x

�
; ð75Þ

J ps
wxðtÞ ¼ e−BxwðtÞ

�
pps
w ðtÞ
e−Ew

− pps
x ðtÞ
e−Ea

x

�
: ð76Þ

Combining Eq. (75) with Eq. (73), it is straightforward to
solve for BxcðtÞ, and similarly from Eq. (76)) with Eq. (74)
to solve for BxwðtÞ. The second half-cycle values of Bxw and
Bxc can be solved in the same way. As expected from the
heuristic description, in the first half-cycle, BxcðtÞ < BxwðtÞ
and in the second half-cycle, BxcðtÞ > BxwðtÞ. Using these
BcxðtÞ and BwxðtÞ together with Ea

x in the first half-cycle
and Eb

x in the second half, we get, by construction, the
targeted probabilities as the averages of the periodic
solution ~ppsðtÞ.
The construction for periodically driven kinetic proof-

reading protocol given above uses the same tools as the
construction of the NESS-SP mapping, with a crucial
difference: In the NESS-SP mapping, the symmetric part
of the rate is kept fixed during each half-cycle, and the
equilibrium distribution changes with time; in the kinetic
proofreading protocol, it is exactly the opposite. This
difference makes it simpler to construct a protocol that
respects the constraint on the equilibrium distribution.

3. Entropic cost of kinetic proofreading SP

To complete the NESS-SP equivalence in this three-state
system kinetic proofreading example, we should, in prin-
ciple, match the entropy production rates of each of the
edges in the SP protocol to those of the NESS. While this is
definitely possible, for simplicity, we limit our discussion
only to the total averaged entropy production rate, which is
the total cost of the kinetic proofreading protocol. In what
follows, we show that the total entropy production is
bounded from below and that its minimal value is the
same as that of the NESS process. In other words, NESS
and SP kinetic proofreading can be achieved at the same
entropy production cost. To this end, we first split the total
entropy production rate as follows:

σij ¼
1

T

Z
T

0

J ijðtÞ ln
WijðtÞpps

j ðtÞ
WjiðtÞpps

i ðtÞ dt

¼ 1

T

Z
T

0

�
J ijðtÞ ln

WijðtÞ
WjiðtÞ

þ J ijðtÞ ln
pps
j ðtÞ

pps
i ðtÞ

�
dt:

ð77Þ
The first term,

R
T
0 J ijðtÞ lnf½WijðtÞ�=½WjiðtÞ�gdt, is com-

monly associated with the entropy production of the heat
bath to which the system is coupled, and the second term,R
T
0 J ijðtÞ lnf½pps

j ðtÞ�=½pps
i ðtÞ�gdt, to the entropy produc-

tion of the system itself. For the periodic state, the sum of
all the latter vanishes [37],

X
ij

Z
T

0

J ijðtÞ ln
pps
j ðtÞ

pps
i ðtÞ dt ¼ 0: ð78Þ

Thus, the total entropy production rate is given by

X
i<j

σij ¼
1

T

X
i<j

Z
T

0

J ijðtÞ ln
WijðtÞ
WjiðtÞ

dt

¼ 1

T

X
i<j

Z
T

0

J ijðtÞðEj − EiÞdt: ð79Þ

As the energies are fixed during each half-cycle, this
expression can be simplified into

X
i;j

σij ¼ J ps
wcðEc − EwÞ þ

1

2
J a

wxðEa
x − EwÞ

þ 1

2
J a

cxðEa
x − EcÞ þ

1

2
J b

xwðEw − Eb
xÞ

þ 1

2
J b

xcðEc − Eb
xÞ

¼ mðEa
x − Eb

xÞ; ð80Þ

where we used J b
xw − J a

wx ¼ 2J ps
xw, J b

xc − J a
cx ¼ −2J ps

cx ,
and as there is only one averaged current in the system,
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J ps
xw ¼ J ps

wc ¼ J ps
cx as well. In addition, we used J a

wx þ
J a

cx ¼ − _pa
x ¼ 2m and similarly for the second half-

cycle, J b
xw þ J b

xc ¼ _pb
x ¼ 2m.

We can now bound the minimal total entropy production
rate required to achieve a given SP discrimination factor,
DSP, defined by

DSP ¼ pps
c =pps

w ; ð81Þ
using the above protocol. We first note that the constraint
on m in Eq. (58) implies that m ≥ J ps

wc, where the equality
is achieved only in the limit T → 0. In addition, we can
bound Ea

x and Eb
x , using Eqs. (66), (68), and (72):

Ea
x > − ln

�
e−Ec

�
δ−1 þmin

t

pps
x ðtÞ

pps
c ðtÞ

�
− e−Ew

�
; ð82Þ

Eb
x < − ln

�
e−Ecδ−1

�
1þmax

t

pps
x ðtÞ

pps
w ðtÞ

�
− e−Ew

�
; ð83Þ

but e−Ecδ−1 ¼ e−Ew ; thus,

Ea
x > Ec − ln

�
min
t

pps
x ðtÞ

pps
c ðtÞ

�
; ð84Þ

Eb
x < Ew − ln

�
max

t

pps
x ðtÞ

pps
w ðtÞ

�
: ð85Þ

Substituting these bounds into the total entropy production
rate Eq. (80) and using

max
t

pps
c ðtÞ

pps
w ðtÞ ≥ DSP;

we get

σ̄ ≥ J ps
wcðEc − Ew þ lnDSPÞ: ð86Þ

This bound, which can be attained in the T → 0 limit by a
proper choice of m, Ea

x and Eb
x , is exactly the bound on

NESS kinetic proofreading (for the same target probabil-
ities) given in Eq. (51). On the other hand, the total
averaged entropy production rate can be made arbitrarily
large by choosing m to be large enough. This shows that
any NESS kinetic proofreading in this system, namely, any
value of ϕ, Ex, Bxw, and Bxc, can be mimicked (in terms of
probabilities, current, and total entropy production rate) by
the protocol described above.

VII. CONCLUSIONS AND FUTURE PERSPECTIVE

In this paper, we have shown that the NESS and SP
paradigms are equivalent in terms of averaged probabilities,
currents, and entropy production rates, and we obtained an
explicit mapping between them. We then applied these
results to construct a SP kinetic-proofreading protocol in a
three-state system. These results are the first steps in
clarifying the precise relationship between these two
paradigms, and they were established using a powerful

and, in our view, somewhat surprising observation:
Although finding the average properties of an arbitrary
SP protocol is a difficult problem that, in general, can only
be solved numerically, the inverse problem—finding a
time-periodic protocol that has a desired set of averaged
properties—is an easy problem which only requires solving
a set of algebraic linear equations.
The mapping between NESS and SP presented above

was not intended as a set of operational instructions for
experimental realization: Indeed, in most experimental
realizations, not all the rates can be individually controlled;
hence, the specific protocol suggested above might not be
applicable. Rather, our intention is to show that SP are as
versatile a tool as NESS in controlling molecular motors
and other stochastic processes and that it is possible to
design driving protocols with desired outcomes.
Biological systems suggest inspiring examples of com-

plicated molecular machines with different functionalities
—from transport of ingredients by molecular motors to
kinetic proofreading in biomolecular synthesis—all oper-
ating at NESS. Although it is possible to break detailed
balance in the laboratory (e.g., by applying external voltage
or creating temperature or concentration gradients), it is
difficult to design a molecular machine that, similar to
biological molecular machines, exploits external resources
to drive the system in exactly the desired way. Expanding
the tools at our disposal to include periodic driving might
therefore significantly increase our ability to control
molecular motors. The toolbox developed in this manu-
script suggests “design principles” for periodic driving and
shows that tailoring a time-periodic protocol with desired
properties is unexpectedly simple.
Many important theoretical and experimental aspects of

the mapping were not addressed in the current manuscript.
On the theoretical side, these include a comparison of the
fluctuations around the averaged values in the two para-
digms, the relaxation rates to the steady and periodic states,
and the construction of mappings that preserve properties
of interest other than the ones we studied. As an example of
a potentially important theoretical application, consider the
heat, power, and efficiency in heat engines. Some heat
engines, e.g., thermo-electrical heat engines, are best
modeled as NESS: The different heat baths generate heat
fluxes that violate detailed balance. In contrast, recipro-
cating heat engines (e.g., the Carnot, Otto, or Diesel cycles)
are naturally modeled as SP [44]. Mapping the heat, power,
and efficiency between these two paradigms (with addi-
tional constraints on the temperature) might enable trans-
ferring many known relations in NESS heat engines (e.g.,
efficiency at maximal power [45–47]) to SP heat engines,
where such general relations have not been proven yet.
It will be interesting to extend our analysis to other cases

as well: One natural example is diffusive (rather than
discrete-state) stochastic dynamics. Diffusive systems
evolving in time-periodic potentials can act as stochastic
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pumps [48], generating nonvanishing average currents,
provided they satisfy the conditions of a no-pumping
theorem [22,49] analogous to that for discrete-state systems
[20–24]. These similarities suggest that periodically driven
diffusive systems might be able to mimic diffusive non-
equilibrium steady states, and vice versa. A different
possible extension is to find an analogous mapping for
open quantum systems, where in addition to amplitudes,
phases are of importance.
There are a number of experimentally motivated ques-

tions for which the tools we developed might be useful.
Examples include the following: (i) What are the exact
constraints under which the equivalence still holds? In
kinetic proofreading, we have provided a specific example
where the equivalence holds even with partial control over
the system. However, the minimal degree of control
required to achieve equivalence remains an open question.
(ii) What are the attainable values of various properties
(e.g., averaged currents or probability ratios) under a given
set of experimental constraints? For example, consider the
case in which only the surrounding temperature can be
controlled: Can significant changes in the ratio of proba-
bilities be achieved by periodically changing the temper-
ature only? (iii) In some experiments, it might be possible
both to break detailed balance and to drive the system
periodically. Finding protocols that optimize properties of
interest under specific experimental constraints then
becomes a natural question.
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APPENDIX A: DETAILS OF THE
SPECIFIC EXAMPLE

The example we consider is shown in Fig. 2. It has four
states with ~pss ¼ ð0.1; 0.2; 0.3; 0.4Þ. The spanning-tree
edges are the dashed-dotted lines (red), and the funda-
mental current edges are the solid line lines (black). The
fundamental currents were chosen such that they form a
loop, and their values are J ss

31 ¼ 3, J ss
43 ¼ 2, and J ss

14 ¼ 1.
Once these currents are chosen, the currents for the
spanning-tree edges are dictated by Kirchoff’s law—the
sum of currents in each vertex must be zero. The corre-
sponding current matrix is

J ss ¼

0
BBBBB@

0 2 −3 1

−2 0 1 1

3 −1 0 −2
−1 −1 2 0

1
CCCCCA: ðA1Þ

To set S, we choose the entropy production rate to be 1
along all the edges. Using Eq. (16), the matrix S is given in
this case by

S ¼

0
BBBBB@

−14.248 4.083 9.0832 1.082

4.083 −6.2469 1.082 1.082

9.0832 1.0820 −14.2481 4.083

1.082 1.082 4.083 −6.2469

1
CCCCCA;

ðA2Þ
and using Eq. (14),R can be calculated, though we will not
need it in what follows.
Let us demonstrate our construction on this NESS. For

the first step, we choose

~S ¼

0
BBBBB@

−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3

1
CCCCCA; ~πa ¼

0
BBBBB@

1
4

1
4

1
4

1
4

1
CCCCCA: ðA3Þ

We next note that minij½logRijpss
j − logRjipss

i � ¼ 1=3. If
we therefore choose ~qa such that j log πai − logqai j < 1=6,
condition (25) is automatically satisfied. Any vector close
enough to ~πa will do. As an example, we use
~qa ¼ ð0.23; 0.24; 0.26; 0.27Þ. In the second half of the
period, these correspond to ~πb ¼ ð4; 4; 4; 4Þ and ~qb ¼
ð4.3478; 4.1667; 3.8462; 3.7037Þ.
The next step requires the signs of the currents generated

by ~Ra ¼ ~SðΠaÞ−1 with the probability ~qa:

signð ~J 1
13Þ ¼ þ1; signð ~J 1

14Þ ¼ þ1; signð ~J 1
34Þ ¼ þ1:

ðA4Þ
Note that the direction of the current in the 1-4 edge is the
same as the desired current orientation, but for the other two
edges, the directions are different from the desired currents.
In the second step, we solve Eq. (32) for αij, which gives

α13 ¼ 1.7188; ðA5Þ
α14 ¼ 5.2366; ðA6Þ
α34 ¼ 12.2484: ðA7Þ

Together with the directions, the fundamental currents in
the two half-cycles are given by

J 1
13 ¼ 5.156; J 1

14 ¼ 7.2366; ðA8Þ
J 1

34 ¼ 24.4969; J 2
13 ¼ −11.156; ðA9Þ

J 2
14 ¼ − 5.2366; J 2

34 ¼ −28.4969: ðA10Þ

Note that the averages are the same as the desired values.
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In the third step, we solve for the spanning-tree currents,
by solving Eqs. (34) and (35) for J 1;2

12 , J
1;2
23 , and J

1;2
24 . They

are given by

J 1
12 ¼ −25.4965; J 1

23 ¼ 13.4933; ðA11Þ

J 1
24 ¼ 9.4902; J 2

12 ¼ −21.4965; ðA12Þ

J 2
23 ¼ −11.4933; J 2

24 ¼ −7.4902: ðA13Þ

In the fourth step, we calculate Sa and Sb using Eq. (39).
Here, we present only the upper part as they are symmetric:

Sa ¼

0
BBB@

−725.6 637.4 43 45.2

−885.2 168.7 79.1

−842.1 612.4

−736.7

1
CCCA; ðA14Þ

Sb ¼

0
BBB@

−596.1 474.6 89 32.5

−682.8 143.4 64.7

−1032.6 800.2

−897.4

1
CCCA: ðA15Þ

In the last step, we first calculate ∂t ~p on the two half-
cycles by proper summation of the currents: ∂t ~pa ¼
ð37.89;−2.51; 5.85;−41.22Þ and ∂t ~pb ¼ ð−37.89; 2.51;
−5.85; 41.22Þ, which, as expected, cancel each other.
These are the slopes of the pðtÞ’s in the first and second
halves of the period. To keep 0 < pðtÞ < 1, we need to
choose T small enough, say, for simplicity, T ¼ 0.01.
Using T, we can calculate ~pa;bðtÞ, which are the actual
probability distributions in the two halves. These linear
functions are plotted in Fig. 4. Plugging these into Eq. (40)
gives WðtÞ.

APPENDIX B: ZERO CURRENTS IN THE NESS

If J ss
ij ¼ 0 for some edges, then clearly σssij ¼ 0 for the

same edges as well. However, since σpsij ðtÞ ≥ 0 identically
[this follows from Eqs. (10) and (11)], we must have
σpsij ðtÞ ¼ 0 for all t in order for the time-averaged entropy
production rate of the periodic state to be zero. This can
only happen if the currents along these edges are zero at all
times, J ps

ij ðtÞ ¼ 0. A simple prescription to set these
currents to zero is to use the following modified rate matrix:

~Rij ¼
�
~S þ 3

4
J ss

�
P−1; ðB1Þ

where P is the matrix with the steady state of R on its
diagonal, J ss is the steady-state current matrix of R (but
with a different factor in front of it), and

~Sij ¼
(
0 J ij ¼ 0 and i ≠ j
3
2
Sij J ij ≠ 0;

ðB2Þ

with the diagonal elements of ~S changed to make the sum
of columns zero. This modified rate matrix, in which the
edges with zero steady-state currents have been “removed”
( ~Rij ¼ 0 on these edges), has the same steady state as R,
but its steady-state currents are 1.5 times larger than those
of R. From Eq. (16), it also follows that ~σssij ¼ 1.5σssij .

Note that forcing some of the ~Rij to be zero might make
the time-dependent system nonergodic since it might
disconnect some of the states from the others at all times.
This, however, can be overcome by dividing the time
interval into three equal intervals rather than two. In the first
two parts, we repeat the construction as before, but using ~R
instead of R. In the last interval, we choose
WðtÞ ¼ ScðΠcÞ−1, with Sc

ij ¼ 1 for any i ≠ j and Πc

the diagonal matrix with ~ppsðt ¼ 0Þ on its diagonal.
With this construction, there are no currents in the periodic
solution during the last time interval, the average currents
and entropy production rates are the required ones, and the
last interval ensures that the system is ergodic.
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