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1. INTRODUCTION 

Foliage presents a type of terrain characteristic that can obstruct information required by the 

warfighter. Traditional remote sensing offers rather limited, if any, capabilities to acquire data 

under the canopy. Recently, state-of-the-art LiDAR technology, in particular waveform 

processing, can provide not only foliage penetration but can also support better object 

identification and material classification under the canopy. To make use of this relatively new 

technology, not yet operational in the Army’s surveillance and reconnaissance practice, this 

project aims at contributing too much needed research necessary to bridge the gap between the 

potential of an active sensor technology and the implementation of deployable systems. The 

proposed approach is based on combining the use of targets and materials, assessed by full 

waveform LiDAR, to understand and, consequently, develop the acquisition strategy, processing, 

and product generation necessary to best exploit the mission. Our objective is to model full 

waveform LiDAR acquisition parameters designed around various canopy and foliage types 

(e.g., single to multi- storied canopies, temperate, tropical, sub-tropical) that are of major interest 

from the Army’s operational standpoint. Matching canopy type to LiDAR acquisition would 

more effectively drive any given sortie and optimize the mission acquisition and support the 

Army’s field operations, including planning, battlefield command and logistics in general. 

 

2. RESEARCH OBJECTIVES 

With significant advancements in LiDAR technology, the information content available to 

applications is rapidly growing. In particular, waveform processing offers a new opportunity for 

surface material characterization and subsequently object classification. The primary goal of this 

research project is to analyze the waveform potential with respect to object material 

identification and classification under various canopy conditions that are important to support the 

Army’s field operations, including planning, battlefield command and logistics. The research 

objectives span over three major fields, including (1) full waveform LiDAR processing in 

general, (2) the use of LiDAR-specific targets, and (3) full waveform application in forestry. 
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The review on current waveform processing methods, LiDAR-specific targets and forestry 

applications clearly indicates that while research is active in all fields, these works are generally 

disconnected, and there is rather limited effort devoted to combining these three activities to 

exploit the full potential of waveform information extraction. The actual objectives are the 

followings: 

1. Characterize LiDAR waveform with respect to ARO-specific requirements, including 

information extraction in general to support tactical identification, localization, and 

tracking, and surveillance and reconnaissance. 

2. Extend investigation (1) into the use GmAPD sensing (Geiger-mode avalanche photo-

diode); depending on data availability. 

3. Create a material and terrain surface model database to establish empirical or, if 

possible, analytical relationship to LiDAR waveform; this would be based on 

analyzing field data, including the use of dedicated targets and reference materials.  

4. Develop methods based on (3) to process waveform data in real-time and post-

processing mode to support near real time decision-making for the Joint Operating 

Environment. 

5. Provide performance metrics for the waveform-based terrain characterization, 

including benchmarking of the developed methods and identifying the material and 

surface classes that can be reliably extracted. 

6. Investigate the tradeoff between on-board processing, transmission, centralized 

processing, and dissemination; develop recommendation for system developments 

and deployment.  

The above tasks include a balanced amount of algorithmic research, initial implementation, 

testing, data acquisition (jointly, by ARO and other government agencies), data analysis, 

software developments and technical report preparation. Most of the algorithmic developments 

are implemented in the Matlab environment, while some programs may be compiled with 

Microsoft Visual C++ on the Windows platform. The format of LiDAR data includes both 
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manufacturer-specific as well as the LiDAR data exchange format, i.e., the industry standard 

LAS format. 

 

3. INCIDENCE ANGLE DEPENDENCE STUDY 

This research task is aimed at improving our understanding of the impact of the incidence angle 

of the laser beam, as it is backscattered from the target, on full waveform data. In addition, a 

secondary aspect of the study is to investigate the material dependency of waveforms. 

3.1 Background 

The relationship between transmitted and received photons and the physical environment is 

described by the following equation: 

௦ܰሺλ, Rሻ ൌ ܰሺλሻ ∗ ,ሺλߚ λ, ,ߠ ܴሻ∆ܴ ∗
ܣ
ܴଶ

∗ ܶሺλ, ܴሻܶሺλ, ܴሻ ∗ ,ߣሺߤ ሺܴሻܩሻߣ  ܰ  

where ௦ܰሺλ, Rሻ is the number of received photons from distance ܴ, ܰሺλሻ is the number of 

transmitted photons, ߚሺλ, λ, ,ߠ ܴሻ is the volume scatter coefficient at distance ܴ for incidence 

angle ߠ, ∆ܴ is the thickness of the range bin, ܣ is the aperture of the sensor, ܶሺλ, ܴሻܶሺλ, ܴሻ is 

one-way rate of the loss photons while it is transmitted from laser source to target and from 

target to receiver in distance ܴ, ߤሺߣ,  ሺܴሻ is the geometricܩ ,ሻ is the system optical efficiencyߣ

factor of the optics and ܰ is the photon counts from background radiation. From our 

perspective, the ߚሺλ, λ, ,ߠ ܴሻ part of the equation, called the probability to be scattered, is of 

importance. The expression is a function of ߠ, which is the incidence angle, ܴ is the distance 

between the instrument and the target, λ is the incoming wavelength, and λ is the outgoing 

wavelength. The construction of the equation above suggests that the impact of incidence angle 

and the intensity of the materials may be detected. 

To determine the theoretical impact of the incidence angle on waveform, consider that the distance 

between the laser source and the target is ܴ ൌ 300	݉, the angle between the object and the X axis is ߙ ൌ

45° and the beam divergence is ߤ ൌ  see Error! Reference source not found.. In this special ݀ܽݎ݉	0.3

case, when the laser beam is nearly perpendicular to the X axis, the incidence angle is the same as α (for 
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general case, see Figure 1).Note these parameters reflect the measurement arrangement of the Riegl 

VZ400 laser scanner, used to collect data for this investigation. 

 

Figure 1 Impact of incidence angle 

The first photons are scattered back from point Pf, while the last ones come back from point Pl. 

Since the backscattering takes more time than the pulse width, by T, the resulting waveform is 

stretched. The footprint of the laser beam in R distance is: 

ܨ ൎ ܴߤ ൌ ݀ܽݎ݉	0.3 ∗ 300	݉ ൌ 9	ܿ݉ 

If the shape of the transmitted waveform was a Gaussian-like function, after the backscatter, the 

width of the function, at least, must have increased. The quantitative value of this change can be 

easily calculated. The geometrical distance between points Pf and Pl in Y-axis direction is: 

݀ ൌ cosሺߙሻ ∗ ܨ ൌ sinሺ45°ሻ ∗ 9ܿ݉ ൌ 6.36	ܿ݉ 

The waveform is a function of the time, thus to determine the travel time of the pulse on the T 

distance is: 

2 ∗ ݐ∆ ൌ 	
݀
ܿ
ൌ 2 ∗

6.36	ܿ݉
ݏ/݉	458	792	299

ൌ  ݏ݊	0.42
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Since the pulse travels forth and back, there is multiplication by 2. When the laser beam is 

perpendicular to the target surface, the incidence angle is close to zero. Error! Reference source 

not found. for the changes of width as the function of incidence angle in the left side and the 

shapes of waveforms in different incidence angles. Figure 2b clearly shows that for the relatively 

short range and laser beam narrow convergence angle the impact is small. 

 
 
 
 

 

(a) (b) 
Figure 2 Time delay as a function of the incidence angle (a), and changes of the shape of the Gaussian waveform due 

different incidence angles (b) 

 

3.2 Test Dataset 

In cooperation with the USACE ERDC Remote Sensing and Fluorescence Spectroscopy Lab, a 

data collection campaign was conducted at the OSU West Campus on October 15, 2012. The 

OSU GPSVan was outfitted with different targets and the Riegl VZ-400 laser scanner of the 

USACE ERDC mobile measurement system was acquiring laser data in different configurations; 

vehicles and scanner are shown in Figure 3. The geographical location of the field survey is 

shown in Figure 4. The laser surveys included three areas with four data collections, as listed in  

Table 1 and shown in Figure 4; the target-based data collection was interrupted by rain, so the 

data for the targets was acquired in two sub-sessions. Besides the usual system check, the 

shakeup test provided a short range survey of the targets on the GPSVan, see Figure 5. ScanPos2 
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and ScanPos3 datasets contain the measurement from different types and orientations of the 

target discs. Finally, ScanPos4 includes scans from two different types of building: a parking 

garage with horizontal extent and an office building with more vertical extent. In these cases the 

walls of the building is considered for analyzing the impact of the incidence angle. 

 
(a) 

 
(b) 

Figure 3 USACE ERDC mobile measurement system with Riegl VZ‐400 laser scanner (a) and OSU GPSVan with targets (b) 
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Figure 4 Field survey locations, OSU West Campus; shakeup area is marked in green, survey range with targets is marked by 
red line, and survey of man‐made objects area is marked by yellow 

 

Table 1 Description of the datasets 

Name  Description  Time (EST)  Marked 

ScanPos1  Shakeup test at CFM  13:45:29 – 13:50:39  Green 

ScanPos2  Surveying disc targets (session 1)  14:31:54 – 14:54:41  Red  

ScanPos3  Surveying disc targets (session 2)  17:20:19 – 17:55:31  Red 

ScanPos4  Surveying buildings  18:17:19 – 18:18:43  Yellow 
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Figure 5 Shakeup are point cloud 

The circular targets installed on the GPSVan were covered by six different materials to support 

the investigation of waveform dependency on physical properties. The different coatings are 

shown in Figure 6, and they represent several materials of interest. 

 

Figure 6 Target materials 

The data preprocessing primarily included the extraction of all the relevant information to 

waveform from the raw measurement files. The direct access to the data was provided through 

the Riegl software toolkit, RiWaveLib library. Note USACE ERDC provided all the raw 

measurement files as well as the point clouds in LAS format later. In addition, the GPSVan 

location and orientation was computed to provide accurate georeferencing for the targets. The 

overall workflow of this preprocessing is shown in Figure 7. 

50 cm 
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Figure 7 Workflow of the raw data processing 

WFM files and the index files are provided from the measurements, and the coordinates of the 

points can be calculated with the WfmCoordCalc program developed by OSU. The Riegl VZ-400 

scanner uses low and high channel units for digitizing the waveforms, and, thus, waveforms from 

the WFM files are derived from low or high or both channels. In our data processing, first the 

low level channel is used when available. If only the high channel is available, the high channel 

intensities are converted to low channel intensities. For this reason, the gain between the two 

channels had to be determined, and thus this function can be used to convert from high channel 

to low channel intensity. Note that Riegl provides no information on the relation between 

channel intensity values. Based on test data, linear regression between the relative gain and high 

channel intensity was established, as shown in Figure 8a. In the subsequent processing, the following 

equation was applied for scaling the high channel intensities to low level intensity domain: 

௪ܫ ൌ
ܫ

0.006781497  0.000240794 ∗ ܫ
. 
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(a) (b) 
Figure 8 Relative channel gain and high channel intensities (a), actual and computed low and high channel intensities (b) 

The differences between the measured and computed intensities can be seen in Figure 8b. Note 

that the fitting is not satisfactory enough, and, thus, this determined correlation was only used for the 

coordinate calculation, and it was not directly applied to the processing of waveform intensities. 

In the subsequent calculations, as mainly low channel we used, though the coordinate calculation 

high channel data was also used after transformation. After finishing coordinate calculation, the 

CRD file contains the coordinates of the waveforms. 

 

3.3 Processing ScanPos1 and ScanPos2 Datasets 

The GPSVan, equipped with six target discs, see Figure 3b, was positioned at a distance from the Riegl 

VZ-400 station of about 330 meter. Unfortunately, the digitizer uses a 2 ns sampling rate that is 

below of the normal 1 ns value, widely used in airborne LiDAR, making the measurement of the 

impact of the incidence angle on waveform difficult. The targets were scanned in 11 different 

orientations of the van, representing a broad range of the angle of incidence. Note the laser 

scanner station was in a fixed position during the scans and only the van did move to change 

orientation. The intensity values of a sample point cloud obtained from the targets at close to zero 

incidence angle is shown in Figure 9. While keeping the vehicle center at the same location and just 

changing the orientation of the van was attempted, there was a minor deviation in the vehicle center as 

shown in Figure 10. 
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Figure 9 Intensity values at near zero incidence angle 

 

Figure 10 Various positions and orientations of the van in the XY plane 
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Though the GPS/IMU system of the van provided highly accurate georeferencing for the targets, 

as a test, the directions of the discs, i.e. the van orientation, was also determined from measured 

point cloud. In this exercise, two methods were used: (1) grouping, and (2) eigenvector based 

solution. In the case of grouping method, the dataset is divided into two parts by the indexes of 

the point, and then the angle between the two centers of the groups is determined in the XY 

plane, defining the direction of the van. The eigenvector based method first computes the 

covariance matrix, and then solves for the eigenvalues. The direction of the greatest eigenvalue 

approximates the direction of the van, which is identical to line defined by the targets. The overall 

results with remarks are listed in Table 2. Note that in most cases, a 180 degree difference can be 

detected between the grouping and the eigenvalue solutions. This is caused by the fact that the 

direction of the largest eigenvector shows the major extension of the point set, while the 

direction obtained by the group method depends on the direction of the scan. With the center 

point of the point cloud of the targets and the direction of the targets, the incidence angle can be 

easily calculated; Figure 11 shows the principle of the calculation. 

 

Figure 11 Calculation of the incidence angle 
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Table 2 Direction of the disks, determined from measurements 

ID 

Solution 
from 
group 

method 

Solution 
from 

eigenvector 
method 

Final 
direction 

(β) 

Angle 
of 

center 
(α) 

Angle of 
incidence 

(x) 

Orien-
tation 

Remarks 

 [degree] [degree] [degree] [degree] [degree]   

172120 -30.1 149.7 149.7 69.0 9.3 \ Few points 

172411 151 150.9 150.9 69.1 8.2 \ 

172807 -28.8 151 151 69.0 8 \  

173132 133.9 133.5 133.5 69.3 25.8 \ 
A disk from the 
center is missing 

173523 -61.1 118.6 118.6 69.3 40.7 \ 
A disk from the 
center is missing 

173842 99.1 98.9 98.9 69.4 60.5 | 
A disk from  the 
center is missing 

174216 83.7 -96.2 83.8 69.4 75.6 | 

174655 83.3 76.4 76.4 69.4 83.0 / 
Large difference 
of the solutions 

175044 -22.5 157.7 157.7 69.0 1.3 \ 

175325 167.4 69.7 69.7 69.0 89.3 / 
Very few points, 
large difference 
of the solutions 

175531 -22.5 157.7 157.7 69.0 1.3 \ 

 

 

3.3.1 Point	filtering	

The point filtering was used to determine the points backscattered from each disk. Since the 

target disks are in a plane, positioned slightly in front of the van, the point cloud can be easily 

thresholded to an envelope containing all the points of the six targets. Also, the gaps between the 

disk can be used to separate the initial point cloud into six groups. Next, fitting planes are 

calculated for all the six targets. In the datasets the standard deviation of the distances from the 

plane was ~6-8 cm, and then those points are selected which are within that distance from the 

fitting plane. After filtering, these points are rotated to the XZ plane, as shown in Figure 12. Filtered 

points on the fitted plane are shown in Figure 13. The points, which lie within 0.25 m (that was the radius 
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of the discs) from the center, are selected and they are subject of all the subsequent analysis, as there is a 

high confidence that these point are from the target disc. 

Initial point cloud  Filtered point cloud 
Figure 12 Point cloud of a disk target (red) with fitting plane, points within 1 cm distance from plane (blue), points after 

rotation to XZ plane (green) 

 

 

Figure 13 Points within 25 cm from the center 
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3.3.2 Basic	characterization	of	waveform	groups	

The visualization of the waveforms form the six targets is provided in Figure 14. Note that the materials 

with strong reflective properties can easily differ from the ones with non-reflectivity properties. Other 

material properties cannot be recognized, and thus, suggesting that materials should be classified by 

reflectivity on this dataset. Consequently, the materials can be grouped by reflectivity; using three classes, 

the materials are grouped, as listed in Table 3. 

 

Figure 14 Full waveforms grouped by materials (blue), and average waveforms (red) 

 

Table 3 Coarse target reflectivity grouping 

Material  Class by reflectivity 

Retro reflective  1 

Wood  3 

Reflective metal  2 

Fluffy plastic  3 

Card board paper  3 

Painted wood  3 
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Waveforms from all groups with respect to the incidence angle are visualized in Figure 15. Notice that 

target 3 is not used in this analysis, as the highly reflective metal material has a mirror-type of reflection; 

no returns exist if there is any incidence angle. Figure 16 illustrates incidence angles where no data 

available from target 3 (marked by red circle). 

 

Figure 15 Full waveforms from all targets grouped by incidence angle (blue), and average waveforms (red) 
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Figure 16 Directions illustrating when no waveforms are obtained from target 3 (highly reflective metal) 

 

3.3.3 Gaussian	waveform	decomposition	

Gaussian waveform decomposition is the most widely used waveform processing method. The idea is that 

if the outgoing laser pulse has a Gaussian shape, then the backscattered pulse should have similar shape 

too. Or for sparse vertical structures, such as vegetation, the returning waveform is composed of several 

reflections, and thus the waveform is the sum of several pulses of Gaussian shape. Once the waveform is 

decomposed, all the shapes will represent an object surface/boundary, and, in addition, the shape 

parameters can be used for further investigation, such as correlation the surface geometrical or material 

properties. Since the outgoing pulse is rarely of perfect Gaussian shape, and during the backscattering the 

shape of the reflected pulse can be distorted, generalized Gaussian shapes are frequently used in 

waveform processing. In theory, the shape of the outgoing pulse can be used for decomposition, which 

leads to an ill-posed deconvolution. In this investigation, a generalized Gaussian shape model is used, as 

described by the following equation: 

݂ሺݔሻ ൌ ݉݅ሺ݉ሻ ቈ
atan൫ܽሺݔ െ ሻ൯ݐ

ߨ

1
2
 ݁ିቚ

௫ି௧
௦ ቚ

್

 



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

25 
 

 

where t (time) is the translation of the function, a is the skewness parameter, b is the flattening, s is the 

width (i.e. the sigma), mi(m) is the scaling variable (the magnitude of the function). Figure 17 show 

example of shape functions with various parameterization. 

 

Figure 17 Generalized Gaussian shape functions 

The result of a typical waveform fitting is shown in  

 

Figure 18. The discrete full waveform data is represented by a polyline marked with blue color. Note that 

in our tests, hard surface targets were used, so only single returns are expected. In fact, the multiple peak 

waveforms, very rare cases, were filtered out during processing. For the parameter estimation, the least 

squares method was used; the fitted Gaussian shape is shown in green in  
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Figure 18. The quality of the fit was also checked and the cases, where the fit was unsuccessful or of poor 

quality, i.e., the fitting parameter, the norm of the residuals of the regression, was larger than 10, were 

removed.  

 

 

Figure 18 Fitting Gaussian shape to a typical waveform 

 

The generalized Gaussian shape parameters were determined for each waveform, and the statistics for the 

five target groups with different incidence angles were computed. Figure 19 lists the results for all the 

fitting parameters for each target with all incidence angles. In addition, the number waveforms as well as 

adjustment quality parameters are also included. The small circles show the mean of the parameter values, 

and the vertical lines indicate the standard deviations.  

To identify trends, a 2nd order polynomial regression was applied to the datasets; these curves are also 

shown in Figure 19, and the norm of the regression residuals is listed in the titles of each figures. Clearly, 

there is a visible difference between the highly-reflective and normal reflectivity targets; though, no 

obvious trend can be observed. Removing the retro-reflective target group, Figure 20 shows the statistics, 

allowing for better differentiation of targets with normal reflectivity. Visibly, the fitted polynomials look 

more attractive, but the residuals are also noticeably large. 
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Figure 19 Gaussian fitting parameters as a function of incidence angle, grouped by the five target materials (red: retro 
reflective, blue: wood, cyan: fluffy plastic, yellow: cardboard, and black: painted wood) 
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Figure 20 Gaussian fitting parameters as a function of incidence angle, grouped by the four target materials (blue: wood, 
cyan: fluffy plastic, yellow: cardboard, and black: painted wood) 

 

3.3.4 Incidence	angle	estimation	with	feed	forward	neural	network	

Since there is no obvious analytical model for the incidence angle estimation from decomposed 

waveform parameters, a neural network based approach was selected, where by learning, the 

classifier parameters can be determined. Feed forward (FF) neural network is a basic network 

type that can be a good choice for classification, pattern recognition and several other problems. 

In our investigation, the network was trained for estimating the incidence angle. In neural 

network applications, one of the first questions is the complexity of the network, such as the 

number of hidden layers, the number of neuron, etc. The selection is mostly done empirically, 



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

29 
 

 

based on testing with various data. Another question is the input and/or the selection of 

parameters derived from the input data. In our case, we decided to apply the more generic 

approach of directly using the waveform, i.e., the intensity vectors, as it potentially allows for 

better performance by using all the information in the data. The output of the network is one 

variable that is the estimated incidence angle. 

To train a neural network, the dataset is generally divided into two parts: training set and 

validation set. Following general practice, the training set contains every waveform with odd 

numbers from the dataset while waveforms with even numbers form the validation set. The aim 

of this selection methodology is to provide consistent data in the training and validation set. For 

training the neural network, the Levenberg-Marquardt algorithm was used. After the training, the 

network was checked on the validation set. The incidence angles for elements in the validation 

set are known, thus the “must ” and “is” value can be compared as the residuals of the system 

model. In addition, the mean and the standard deviation of the residuals are also calculated. 

Table 4 shows the results of the feed forward network applied only to the retro reflective target 

dataset. Note that as the number of neurons is increasing the mean of the deviation becomes 

worse. This is caused by over-fitting or over-learning. In the table, the best configuration is the 

{4, 2, 1} alignment, and for that case various waveform sizes are analyzed; the cut-off value in 

the table shows the number of waveform element used in the process, for instance, the value of 

16 means that the first 16 intensity values are the input of the neural network. The table shows 

that no significant differences between the cut-off values of 16, 32, and 50, suggesting that the 

first 16 intensity values contain most of the information about the waveforms, as expected. 
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Table 4 Feed forward neural network for incidence angle determination for the retro reflective target 

  Hidden layer(s) 

{6, 3, 1}  {14, 6, 1}  {4, 2, 1}  {4, 2, 1}  {4, 2, 1}  {4, 2, 1} 

Input neurons’ 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

Hidden neurons’ 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

pure 
linear 

Output neuron’s 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

Cut off [‐]  16  16  16  32  50  16 

Norm of residuals [o]  298.5  498.0  240.5  248.3  252.0  301.0 

Mean [o]  0.3  2.2  0.4  0.3  0.3  0.5 

Standard deviation [o]  9.1  15.1  7.4  7.6  7.7  9.2 

 

The results of neural network on the whole dataset (including all targets) is shown in  

Table 1. Note that changing the cut-off edge value has practically no impact on the results. Not 

surprisingly compared to the retro target case, a different network structure provides the best 

solution, resulting in a mean value of 0.1 degree and standard deviation of 11.7 degree. To assess 

this performance in absolute sense, the coarse sampling rate (2 ns), the relatively short object 

distance, and the small footprint should be taken into account, and under these conditions, the 10 

degree variance is a good and realistic value. 

Table 5 Feed forward neural network for incidence angle determination for all the targets 

  Hidden layer(s) 

  {4,2,1}  {4,2,1}  {4,2,1}  {14, 6, 1}  {6,3,1} 

Input neurons’ 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

Hidden neurons’ 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

pure 
linear 

tangent 
sigmoid 

tangent 
sigmoid 

Output neuron’s 
activation function 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

tangent 
sigmoid 

Cut off  50  16  16  16  16 

Norm of residuals [o]  856.9  955.3  918.1  867.2  572.9 

Mean [o]  ‐0.0  0.1  0.5  0.2  0.1 

Standard deviation [o]  12.2  13.6  13.1  12.4  11.7 
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3.3.5 Surface	material	classification	based	on	waveform	data	

In this task, a basic investigation was carried out to identify potential correlation between 

waveform shapes and object materials. The waveform vector is defined as 

ݓ ൌ ൛ܫ௧భ
௪, ௧మܫ

௪, ௧యܫ
௪, … , ௧ܫ

௪ൟ, 

where ݓ is the waveform, ܫ௧
௪ is the intensity at the time moment ݐ in waveform ݓ. Given that 

the number of intensity values of the two waveforms ݓଵ,ݓଶ is the same (i.e., same length) and 

the sampling rate is identical (ݐ
௪భ ൌ 	 ݐ

௪మ), the distance between two waveforms can be defined 

as: 

݀ሺݓଵ, ଶሻݓ ൌหܫ௧
௪భ െ ௧ܫ

௪మห



ୀଵ

. 

Similarly to incidence angle estimation, the dataset is divided to learning and validation system. 

From the learning dataset the average waveform is calculated for each target as: 

௧ഢܫ ൌ
∑ ௧ܫ

௪ೕ
ୀଵ

݉
, 

where ݉ is the number of the full waveforms. The average waveforms are determined for each 

reflectivity class. Then the classification is based on calculating the distance between an 

incoming waveform and the average waveforms, and then the nearest one will determine the 

reflectivity class of the income waveform: 

min

݀ሺݓ,  ,ෞሻݓ

where ܿ is the class of reflectivity, ݓ is the incoming waveform, and ݓෞ is the average 

waveform of the reflectivity class c. To assess the performance, the algorithm was tested on the 

validation set and the results are listed in Table 6. 

  



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

32 
 

 

Table 6 Classification results for three classes 

Reflectivity class  Success rate 

1  87.8 % 

2  0.5 % 

3  99.2% 

Overall  84.5% 

 

Clearly, Class 2 shows an unacceptable performance, which may be somewhat related to the 

small number of waveforms from target 2, see Figure 21. Note that the shape of the class 2 is 

halfway between classes 1 and 2. 

 

 

Figure 21 Waveforms shapes of in the three classes 

Merging classes 2 and 3, the results are shown in Table 7; the success rate of the class 1 slightly 

decreased, but the overall rate increased. 
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Table 7 Classification results for two classes 

Reflectivity class  Success rate 

1  79.9 % 

2  99.6 % 

Overall  93.1% 

 

3.4 Processing ScanPos4 Dataset 

The aim of this investigation was to use vertical and horizontal walls to estimate the incidence 

angle. For this reason, an area with tall buildings was chosen; see Figure 22(a) for the scanned 

area. For the vertical analysis, a parking garage was selected (Building I, Figure 22 (b), and 

Figure 22 (d)), and an office building was the object with some measurable height dimension 

(Building II, Figure 22 (c), Figure 22 (e)). In the case of the office building, trees hide the lower 

part of the building, and were subsequently removed (Figure 22 (e)).  The points of the front wall 

was used for data analysis (Figure 22 (g), Figure 22 (h)). 

 

(a) Area of scan (b) Building I (parking garage) 
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(c) Building II (office building) (d) Point cloud from Building I 

 
 

 
 

(e) Point cloud from Building II (f) Point cloud from Building II after cleaning 
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(g) Selected point cloud from the front of Building I 
(h) Selected point cloud from the front of 

Building II 
Figure 22 Buildings used in investigation 

In the case of Building I., the angle of the surface (i.e. wall) is constant, thus the incidence angle 

only depends on the angle of laser beam. The angle of the wall that it close with X-axis of the 

coordinate system of the instrument was 148.6o (reverse clockwise).  The intensities of points 

are also same. The limits of scanned angle were between 75 and 88 degree on vertical plane and 

between 56 and 81 degree on horizontal plane. The waveforms can be seen in Figure 21. 

 

Figure 23 Waveforms as functions of horizontal (left) and vertical (right) incidence angle (Building I) 



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

36 
 

 

3.4.1 Gaussian	parameters	

Having performed Gaussian shape decomposition, the parameters were computed as a function 

of the incidence angle. Note that no special trend properties can be seen. 

 

Figure 24 Gaussian parameters of Building I 

 

The results of Building II can be seen in Figure 23. The horizontal angles are not incidence angle 

but the angle of the laser beam in the figure. Note that correlation can be detected between the 

magnitude and incidence angle, but the number of outliers is significant. 
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Figure 25 Gaussian parameters of Building II 

 

3.4.2 Solution	with	feed‐forward	neural	network	

On the ScanPos4 dataset, we also used the feed forward neural network for incidence angle 

estimation as in 3.2.5. In this case, 16 intensity values were applied as input parameters of the 

neural network, and the outputs were the horizontal and vertical components of the incidence 

angles. The network layer alignment was {6, 4, 2}, and tangent sigmoid type transfer functions 

were used. Every odd point was the training set, and the validation set consisted of even points.  

Applying neural network to the Building I dataset, the mean of the differences are nearly zero in 

the case of both incidence angle directions. The standard deviation of the vertical angle was 3.7, 
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while in the horizontal plane it was 10.5. But this result on the examined dataset is clearly not 

acceptable, see Figure 26. Note that though the standard deviation seems to be low, yet the 

measurement ranges of the angle is also small, especially in the case of vertical angles. 

 

Figure 26 Calculated and correct solution for Building I 

In the case of Building II, the mean of the residuals is also nearly zero, and the standard 

deviation of the horizontal angle is 8.9, while the vertical angle deviation is 7.8. These results 

are also not acceptable. The comparison between the calculated and correct values can be seen in 

Figure 27. 
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Figure 27 Calculated and correct solution for Building II 

 

4. WAVEFORM-BASED CLASSIFICATION FROM AIRBORNE LIDAR 

4.1 Background 

Chapter 3 discussed the concept of waveform decomposition and the theory of applying the 

decomposed waveform parameters to incidence angle estimation. Using terrestrial scanner data, 

described in Section 3.2, the methodology was tested and the results were evaluated in Chapter 3. 

In the next phase, airborne LiDAR data, acquired in a normal mission, was processed to obtain 

performance evaluation for typical operational environment. Extracting or identifying incidence 

angle features from waveforms allows to obtain object information based on a single waveform; 
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without knowing their spatial position or using neighborhood points’ information. Obviously, 

determining the orientation surface, in general, is not a challenged topic when information from 

the point environment can be used, but it becomes rather difficult if these neighbor points are not 

available, and the estimation has to be based on only the shape of the waveform. 

4.2 Data set 

NOAA acquired a unique airborne data set in the summer of 2013 to support comparative 

analysis of airborne LiDAR data. A unique aspect of the data acquisition campaign was that 

three sensor units were installed in an aircraft to simultaneously acquire data. The three Riegl 

systems included the Q680i and Q780 models that have full waveform capabilities and, 

subsequently were used in this study. The waveform data was sampled at 1 ns, and two 

digitizers, low and high channels, were used in both instruments, see Table 8 The main parameters 

of the NOAA data acquisition data setsThe airborne campaign covered two sites: Corbin, VA and 

Duck, NC. 

Table 8 The main parameters of the NOAA data acquisition data sets 

 Site 1 – Corbin, VA Site 2 – Duck, NC 

Waveforms 

Scanner (SN) Q680i (9997902) Q780 (9999173) Q680i (9997902) Q780 (9999173)

Sampling interval [ns] 1 1 1 1 

Number of facets 4 4 4 4 

Number of records 12,357,036 11,983,916 8,840,996 8,496,610 

Blocks of low power channel 3) 2 2 2 2 

Number of reference channel 
samples 

24 28 24 28 

Number of low power channel 
samples 

60 or 120 60 or 120 60 or 120 60 or 120 

Pulses in the scan line  
(s dimension) 

1431-(1432) 1435-(1436) 1431-(1432) 1435-(1436) 

Scan lines 
(l dimension) 

550 532 1011 977 

Bands (w dimension) 120 120 120 120 

Corresponding point cloud (LAS) 

No. of points in the whole strip 19,412,881 21,434,764 7,862,489 7,796,281 

Max. no of returns 7 7 6 7 

Points in corresponding cloud 936,285 960,664 1,378,814 1,348,555 
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Max. no of returns 7 7 6 6 

4.3 Data processing 

This study covers two types of investigation on waveforms. The first one is classification by 

incidence angle, while the second topic is land type classification. Different methods and 

approaches are used to solve the classification problem.  

4.3.1 Data	preprocessing	

The sensor level data preprocessing steps included the matching of records from the two data 

formats (SDF and LAS), conversion the binary data into Matlab readable format, etc. For the 

classification, the different categories (classes) had to be defined, requiring the spatial 

delimitation of the dataset, as part of the preprocessing.  

Matching LAS and SDF records by timestamps 

The LAS file specification supports the waveform storage, but in our case, the waveforms are 

stored separately in SDF file. Since the SDF does not contain the coordinates of the waveforms 

in the object space, and, unfortunately, it cannot be calculated because the global coordinates of 

the sensor reference point is not stored in the files, the records between LAS and SDF are 

matched based on the global reference timing (UTC). Note that the matches showed about 0-2 µs 

differences between the timestamps, equivalent of about 600 m distance at the speed of light. in 

this time interval, which means that the 2 µs difference is just caused by the different processing 

techniques, and matches with this time discrepancy are fine. 

Footprint size 

The average flight height (h) was ~680 m, and the beam divergence (δ) of the Riegl’s Q780 

system is 0.25 mrad, thus the footprint can be calculated with the following expression: 

f = h * δ  = 0.17 m 

  



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

42 
 

 

Calculating the scan angles 

The Riegl SDF file format contains several parameters to georeference the waveforms in a 

spatial coordinate system. The locations of the waveform sample (si) can be determined by the 

following expression: 

ݏ ൌ   ݀
ݒ
2
ሺݐ െ  ሻݐ

where o is the origin vector, d is the direction of the emitted pulse, tref is the reference time, vg  is 

the group velocity, see Figure 28. 

 

Figure 28 Locations in the sensor coordinate system from the Riegl Waveform Extraction Library Manual (Page 6) 

 

Where the direction and the residual vector can be calculated by: 

௩ߜ ൌ arctan	ሺ
ଷݒ

ඥݒଵଶ  ଶଶݒ
ሻ 

where v is any vector and δv is the direction of v in the X-Y plane.  First, just the d (direction of 

the emitted pulse) is used to calculate this direction. The results for a rooftop are shown in Figure 

29. 
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Figure 29 Laser beam directions 

 

The LAS files contain the scan angle, but the precision of these data is at degree-level. The 

comparison of the calculated scan angle from the direction vector (ݒ ൌ  with the scan angle (

provided by the LAS file can be seen in Figure 30. Note that the 11 and 12 scan angles are 

from the LAS file, and the red graph in the figures shows the calculated scan angles. The dashed 

lines depict the assumed rounding limits. 
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Figure 30 Scan angles from LAS file and calculated values from the SDF file using the direction vector 

 

The direction is also determined from the sensor reference point by calculating the residual 

vector of the origin and direction vectors of the emitted pulse (ݒ ൌ   ݀). In this case the 

comparison between LAS and the SDF files shows larger discrepancies, see Figure 31. 

 

Figure 31 Scan angles provided by LAS file and the calculated angles from the SDF file using the origin and direction vectors 
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4.3.2 Feature	extraction	

The features extraction provides the input data for the all the subsequent processing. The feature 

vector includes both derived and original samples from the waveforms; Table 9 lists the features 

used in this investigation. 

Table 9 Features 

# Feature (parameter) Description 
FP1 Parameters of Generalized 

Gaussian  
Parameter vector of the fitting by the generalized 
Gaussian function 

FP2 Kurtosis and skewness The statistical estimation of kurtosis and skewness 
from the samples 

FP3 Vector of waveform samples The waveforms are represented as the vector of the 
intensities (samples) 

FP4 Translated vector of waveform 
samples 

Same as P4, but the maximum place is translated 
to the middle of the vector 

FP5 Median waveform  Median waveforms calculated from the classified 
waveforms, generally the groups are determined 
by the user (training-validating process) 

 

Generalized Gaussian function parameters 

There are four parameters to model the generalized Gaussian function as defined below: 

,ݔሺܩ ሻ ൌ ଵ݁
ି
ሺ௫ିమሻ
య

൨
ఱ

  ସ

where p1 is the amplitude, p2 is the position of the peak (mean), p3 is the dispersion of the 

function (standard deviation), p5 is the shape parameter (it is Gaussian distribution, if p5 = 2), and 

p4 is the translation in Y direction. Figure 1 shows waveform shapes after changing one of the 

parameter. 
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Figure 32 The effect of the parameters on the shape of the function 

 

The parameter estimation is based on the minimization of the L2 norm of the residuals. 

Assuming that the (x,y) pairs are the digitized discrete samples of the waveform, the Gaussian 

function can be determined by the following expression: 

min

ݕ‖ െ ,ݔሺܩ  ‖ሻ

The optimization problem was solved by numerical methods using Matlab. 

Kurtosis and skewness 

The general discussion, including illustrations, is provided in 3.3.3. These parameters are 

estimated from the standardized third and fourth central moments of the samples by the 

following expressions: 

ܭ ൌ
ሾܺܧ െ ሿସߤ

ସߪ
ൎ

1
݊∑ ሺݔ െ ሻସݔ̅

ୀଵ

ቀ1݊∑ ሺݔ െ ሻଶݔ̅
ୀଵ ቁ

ଶ 

and 
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ܵ ൌ
ሾܺܧ െ ሿଷߤ

ଷߪ
ൎ

1
݊∑ ሺݔ െ ሻଷݔ̅

ୀଵ

ቆට1݊∑ ሺݔ െ ሻଶݔ̅
ୀଵ ቇ

ଷ 

where X is the random variable (vector) of the samples, μ is the expected value, σ is the standard 

deviation, xi are the samples, ̅ݔ is the sample mean and n is the sample size. 

Vector and translated vector of waveform samples 

The representation of the waveform in the SDF file is realized as the C-type vector of the 

intensity values, called sample vector. The time differences between the vector elements are 

constant 1 ns. Obviously, this vector can be the input of the classifier. The advantage of using 

these vectors is all the information of the waveform is preserved. The disadvantage, obviously, is 

the high dimensionality of the input vector. Furthermore, there is data redundancy that is not 

exploited for input data dimension reduction. Thus, in an extreme case, the classifier may not be 

able to detect the differences due to handling the large number of input variables. Note that no 

time information, such as start time of the wave, etc., is contained by these vectors. 

The length of the sample vectors in the two data sets can be 60 or 120, and the values are from 

the low or the high channel digitizers. In this study, data from the low channel was used, as more 

waveforms are available from that sensor. The length of the sample vectors from the low channel 

is 60; those few, of which the vector size is 120, was removed from the examined dataset. 

Analyzing the sample vectors, it was noted that the sample maximum peak locations of the 

waveforms are fluctuating with 1-2 indices around the median peak location. It is probably 

caused by the digitizing process of the LiDRA sensor; no explanation was provided by the 

vendor. Further investigations proved that the location of the maximum peak has no information 

about the object from that was backscattered, and, therefore, these differences may trouble the 

classification process. For this reason, the elimination of these differences is preferred to obtain 

better performance. The elimination process is shown in Figure 33 and Table  10, the whole 

samples (1) move to the standard location of the peak (2), and the empty sample places are filled 

with the first sample value (3).  Note again that the translated vectors have no timing 

information. 
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Figure 33 Shift correction of waveforms 

 

Table 10 Shift corrections 

   Sample #  1 2 3 4 5 6 7 8 9 10  11 

(1)  Original vector  1 4 7 8 6 3 2 1 1 1    

(2)  Moving     1 4 7 8 6 3 2 1 1  1 

(3)  Translated vector  1 1 4 7 8 6 3 2 1 1    

added, removed 

 

Median/average waveforms 

The median or the average waveforms can be calculated from the sample vectors or translated 

sample vectors. An example of the computation is shown in Figure 34 and Table 11. 

The median and average waveforms are determined as the part of the training process, when the 

classes of the waveforms are determined by the investigator. The residual vectors, such as 

median and average vectors, are calculated for each class from the class members, and thus, 

theoretically, these estimated common vectors are the typical sample vectors. 
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Figure 34 Median and average waveforms 

Table 11 Median and average waveforms 

Vector # 
Samples 

1 2 3 4 5 6 7 8 9 10 

1  1 4 7 6 8 7 2 1 1 1 

2  1 4 6 7 9 8 5 1 1 1 

3  2 3 4 7 8 6 3 2 1 1 

4  1 2 3 4 6 5 3 1 2 1 

5  1 5 2 3 9 7 4 3 2 1 

Median  1 4 4 6 8 7 3 1 1 1 

Average  1 4 4 5 8 7 3 2 1 1 

 

4.4 Data classification 

The classifiers tested in this investigation are listed in Table 12, including the input parameters 

used. Of course, the question of selecting the optimal classifier for a certain data characteristics, 

in general, is difficult. Similarly, the input parameter selection has challenges too, though, it is 

less problematic. This is the reason that several features, extracted from waveforms are tested 

with the most commonly used classifiers (that seemed to be adequate for the waveform data). 

Finally, the selection of classes is also part of the classification process. Note that in most cases, 

supervised classification is used; the classes are defined by experts. 
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Table 12 Classifiers 

Feature Method Description 
FP1, FP2 Linear discriminant analysis Linear classifier, based on statistical 

considerations, normal distribution of the input 
assumed   

FP5 Measuring distance from median 
waveform 

The closest matching median waveforms 
indicate the class 

FP1, FP2, 
FP3, FP4 

Feed forward neural networks Commonly used neural network, which can 
handle non-linear classification problems, and 
also effective for other problems (regression, 
etc.) 

FP4 Self-organizing map neural 
network (Kohonan network) 

This type of neural network is used for 
unsupervised classifying, and can detect the 
similarities between the input 

 

4.4.1 Classifiers	

Linear discriminant analysis 

Linear discriminant analysis (LDA) is a widely used, general statistical tool for classification. 

The method assumes that the linear combination of the features can produce the class 

information: 

ܦ ൌ ݀,  ݀ଵ,ݔଵ  ݀ଶ,ݔଶ  ⋯ ݀,ݔ, 

where ܦ is the jth discriminant function, the ݀, …݀, are the “weights” or coefficients of the 

function and ݔଵ   are the elements of the feature vector. The jth discriminant functionݔ…

measures whether the sample is included by the jth class or not. The discriminant analysis 

assumes that the independent variables (the features) are of normal distribution, and they follow 

different normal distributions in the classes. In other words, different classes generate samples 

corrupted by different type of normal error. Note that the method has other assumptions.  

During the training phase, the algorithm estimates the coefficients of the discriminant function. 

In the validation phase, when the classifier is used, the discriminant functions have to be 

evaluated, which probvides the class prediction. In this study, this classifier is used for land type 
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classification, based on the Gaussian parameters and the kurtosis-skewness pairs as feature 

vector for inputs 

Measuring distance from median waveform 

This method is very simple and efficient in computational sense. As it was presented above, each 

median or average waveform represents one class. The idea is to calculate the distances between 

the examined waveforms and the median or the average waveform. The shortest distance 

indicates the class. An example1 is shown in Table 13. The sample vector, to be classified, is in 

the first row and the median sample vectors are in the 2nd and 3rd line. First, the distance of the 

samples has to be calculated, this distance can be defined by different measures, and here L2 

norm (the squared root is the Euclidean distance) is used. Finally, these distances have to be 

summarized and the smallest sum indicates the class; Class 1 in this example. 

Table 13 Classification using L2 norm 

Samples  Sum 

Sample vector  1 2 5 6 8 6 2 1 1 1

Class 1 median waveform  1 1 3 6 9 7 4 3 2 1

Class 2 median waveform  1 4 6 7 9 8 5 1 1 1

Distance from Class 1  0 1 4 0 1 1 4 4 1 0 16 

Distance from Class 2  0 4 1 1 1 4 9 0 0 0 20 

In another approach, the maximum norm is used instead of the L2 norm. The usage of this norm 

is suggested by its robustness and its connection with other statistical assumptions (Kolmogorov-

Smirnov distance). In this case, the class is selected where the maximum distance between the 

sample and median waveforms is minimal. Table 14 shows an example. 

Table 14 Classification using max norm 

Samples  Max 

Sample vector  1 2 5 6 8 6 2 1 1 1

Class 1 median waveform  1 1 3 6 9 7 4 3 2 1

Class 1 median waveform  1 4 6 7 9 8 5 1 1 1

Distance from Class 1  0 1 2 0 1 1 2 2 1 0 2 

Distance from Class 2  0 2 1 1 1 2 3 0 0 0 3 

 
                                                            
1 http://davis.wpi.edu/~matt/courses/soms/ 
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Feed forward neural networks 

The feed forward neural network is a general type of neural network which can be used for 

regression, classification, pattern recognition, etc. In this study, the feed forward networks are 

used as a pattern recognition tool because the expectations are that the waveform similarities can 

be recognized. The input of the network is the sample vectors. To reduce the dimensionality, 

only half of the waveform record is used; earlier tests indicated that the regions away from the 

pulse have less contribution. The input vector to the network is formed from indices 10th to 40th. 

The implementation was based on the Matlab built-in feed forward network (patternnet), which 

was especially developed for pattern recognition. Several configurations of hidden layers and 

neurons were tested, and the results showed that the best performance was achieved with 2 

hidden layers and neurons of 5 and 10, respectively, shown in Figure 35. The activation 

functions are of sigmoid-type in the hidden layers, and the performance was measured by cross-

entropy. 

 

Figure 35 Final configuration of the pattern recognition neural network 

 

The number of output depends on the number of the classes. If there are two classes, the output is 

1 or 0, which indicates that the sample of the input belongs to Class 1 or not. In this study, this 

type of network is used with 2 classes roof extraction; discussed in subsequent section. In the 

training process, N number of sample vectors of 31 samples were used with their predetermined 

classes on the output. After forming the networks, the validation was executed on M number of 

sample vectors.  

In order to prove the ability of the feed forward neural networks for classifying the waveforms as 

a pattern recognition problem, a preliminary simulation study was performed. Two reference 
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waveforms were defined; see the upper part of Figure 36. The Ref2 waveform is the modification 

of Ref1 with increasing the ଶ	and ଷparameters with +0.2. 

 

Figure 36 References (upper) and simulated waveforms (lower) 

 

The simulated waveforms are created from these reference waveforms by adding a Gaussian 

noise with 1.5 standard deviation and shifting the sample indices randomly. The results as 

confusion matrix can be seen in Figure 37. Note that the total performance is 88.9% in the 

validation set, which implies that this type of network can distinguish the waveforms, that comes 

from different base signal, such as the waveform that is typical in the class. In the simulation, 

600 random samples were used. 
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Figure 37 The pattern recognition feed forward neural network results on the simulated data 

 

Self-organizing map 

The self-organizing maps (SOM), aka Kohonen networks, are different neural networks, as these 

types of networks are very effective for clustering the data without prior knowledge. This 

process is the so-called unsupervised learning. SOM applies neighbor functions to keep the 
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topology of the input properties. The method can detect the similarities between the input 

patterns2. The SOM network determines groups (clusters), in which the features are close enough 

to each other. These are also called as classes, but the word “classes” is restricted here for the 

user defined classes, and the word “group” for SOM created classes is used 

One of the disadvantages of the SOM is that the groups are not known, as mentioned above. 

Therefore, a statistical comparison between the classes found by the SOM and the actual classes 

provided by the investigator is used. This evaluation results in the decision on which SOM 

groups represent which “real” class or classes. Furthermore, it may happen that more than one 

SOM group belong to one or more “real” classes, and more than one “real” class cover one or 

more SOM groups. Finally, a SOM group may have no pair within the “real” classes, indicating 

similarities in data, which has not been considered earlier. 

The general configuration of the SOM network is shown in Figure 38. In this study, the translated 

sample vectors were used as input. The translation is required because of the “keep the topology” 

property of the SOM. Therefore, all the 60 samples of the vectors are used as features; no 

elements were removed to prevent any loss of waveform information. The number of the output 

of a SOM network depends on the layer structure. The network layer starting configuration is a 

NxM dimensional neuron grid; thus, for example, 2x2 grid has 4 outputs, while a 3x3 grid has 9 

outputs. The dimension determines the number of groups that will be determined by the SOM; 

thus, 4 outputs provide the 4 groups of the clustered sample vectors. 

 

Figure 38 Configuration of the SOM network3 

 

                                                            
2 http://www.mathworks.com/help/nnet/ug/cluster‐with‐self‐organizing‐map‐neural‐network.html  
3 http://www.mathworks.com/help/nnet/gs/cluster‐data‐with‐a‐self‐organizing‐map.html  
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In the training session, there is no need to know prior the classes of the training sample vectors. 

The SOM will discover those hidden properties, and will decide on the grouping of the sample 

vectors. Thus, the inputs of the network are the number of the groups and the sample vectors. 

After the SOM clustered the waveforms into groups, the match to the “real” classes should be 

determined. These correspondences are done by comparing the suggestions of the SOM and the 

“real” classes; for this reason, knowing the prior classes of the input vectors is necessary. 

The SOM will provide the “weights” for the 60 input samples. These weights represent the 

common sample vector of the SOM’s class. In the validation phase, the algorithm measures 

distances between the weights and the validation sample vectors to decide on which class they 

belong to. The closest one will determine this class. This process is same as it was introduced in 

the “Measuring distance from median waveform” section, but the median waveforms are the 

weight vectors in this case.  

 

4.4.2 Confusion	matrix	

The concept of the confusion matrix is the most widely used framework to validate the 

performance of classification methods. Here, a short discussion is provided. 

Table 15 Confusion matrix 

   road1  road2  grass  tree  building 
False 

negative 

road1 
15  1  11  0  0 

44.4% 
55.6%  2.0%  21.2%  0.0%  0.0% 

road2 
0  10  0  0  0 

0.0% 
0.0%  41.7%  0.0%  0.0%  0.0% 

grass 
0  0  25  2  0 

7.4% 
0.0%  0.0%  65.8%  4.8%  0.0% 

tree 
0  13  0  15  0 

46.4% 
0.0%  33.3%  0.0%  50.0%  0.0% 

building 
0  0  0  0  4 

0.0% 
0.0%  0.0%  0.0%  0.0%  100.0% 

False 
positive 

0.0%  58.3%  30.6%  11.8%  0.0%  71.9% 
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Table 15 shows an example; the rows represent the classes of the waveforms, are the columns 

are the classes selected by the classifier. Thus, the bold numbers in the (i,j) cells give us the 

number of those waveforms which are in the ith class, while the classifier selected the jth class. If 

the classifier works perfectly, all the elements except the diagonals should be zero. The 

percentages under the numbers in the table are calculated by the following expression: 

,ܥ ൌ
݊,

∑ ݊,ே
ୀଵ  ∑ ݊, െ ݊,ே

ୀଵ
∗ 100	%, 

where ݊, is the number of the (i,j) cell and N is the number of the classes. Thus, the percentage 

shows the ratio of the total matches and mismatches; obviously, it is independent from the 

number of the points within the classes The cells are color-coded; darker color indicates higher 

percentage. If the same shades repeat within a column, it means that the classifier cannot 

distinguish the classes properly; for example, see the column of road2. The ratios of false 

positives and false negatives are found in the last rows and columns. The false negative shows 

the ratio of the mismatches, when the class indicated by the column was selected, but the class of 

the row was supposed to be selected. The calculation is the following: 

ܰ ൌ
݊,

∑ ݊,ே
ୀଵ

∗ 100	% 

In the case of false positive, the classifier chooses the class of the row, but it was supposed to be 

in the class of the column: 

ܲ ൌ
݊,

∑ ݊,
ே
ୀଵ

∗ 100	% 

Finally, the total classification error is the ratio of the all of the matches against the all samples: 

ܶ ൌ
∑ ݊,
ே
ୀଵ

∑ ݊,ே
,ୀଵ

∗ 100	%. 

The evaluation of the total matches depends on the number of the classes. For example, if two 

classes are examined, the 50% match rate is same as randomly choosing a class (flip the coin). 
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But if the number of classes is greater, the 50% can be evaluated as a better result as the random 

selection. The total ratio of a random classifier is ଵ
ே
∗ 100%. 

4.4.3 The	library	and	tools	

Tools 

A MATLAB library was developed to support this project, including basic data manipulation 

operations, organizing the data, implementing algorithm, and to evaluate and visualize results. 

The source code is available from Google Codes using SVN connection 

(https://code.google.com/p/lidar-wf-classification/, 2014). All the tools used are listed in Table 16 

Table 16 Software and 3rd party libraries (links from 2014) 

LASTools 
LAS file operation, some functions are free, others are limited, 
download from http://www.cs.unc.edu/~isenburg/lastools/  

Riegl’s Waveform extraction 
library 

Riegl’s library for extracting data from SDF file 

Matlab General mathematical framework 

FugroViewer 
Free LAS file viewer from Fugro Ltd., download from 
http://www.fugroviewer.com/request/default.asp  

QGIS 
Free and open source GIS desktop application, download from 
http://www.qgis.org/en/site/  

 

4.5 Classification evaluation 

4.5.1 Incidence	angle	estimation	

Data preparation 

The estimation of the incidence angle from waveform shape deformation was investigated based 

on using targets in Chapter 3. Here the focus was on using typical airborne data, in which case no 

ground control is available in general. Therefore, objects that can be easily described by 

geometrical primitives should be considered in order to obtain some local relative reference 

necessary for the evaluation. For this reason, a point cloud from a roof was selected from the 

Corbin data set, see Figure 39. The scan angle of these points covers 11-12. Note that the point 

cloud was divided into two classes (data sets), depicted by green and red. Both point sets define a 
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plane, and the angle between these planes is around 60. As the normal vectors of the planes are 

notably different, the material of the backscattering object (target) is the same, and the scan angle 

is also nearly identical, the comparison of the waveforms between these two classes is expected 

to show the difference caused by the incidence angle. 

 

 

 

Figure 39 Roof with two classes (left) and aerial photo of the building (right) 

 

In order to make sure that all the points belong to the roof, a fitting plane was estimated for both 

sides, and points with a distance from the plane more than 3-times of the standard deviation of all 

distances (3-sigma rule) were removed from the point sets. The outputs of this calculation with 

the results are shown in Figure 40 and Table 17. 
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Figure 40 Plan fitting and outlier removal 

Table 17 Statitics of point removal 

 Class 1 Class 2 
Number of points 172 158 
Standard deviation (STD) [m] 0.1 0.3 
Number of removed points 7 4 
STD after removal [m] 0.04 0.03 
 

Gaussian parameter estimation 

The generalized Gaussian parameters were calculated for both classes based, as described in 

section 4.3.2. The averages and standard deviations of the parameters and the histograms for all 

parameters are shown in Figure 41 and Table 18. Note that the parameters are quite similar for 

both classes; the order-of-magnitude of the differences are two times less than the standard 

deviation. Therefore, the classification based only on these parameters is difficult. 
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Figure 41 Histograms of the six Gaussian parameters 

Table 18 Statistics of the Gaussian parameters 

 ܘ ܘ ܘ ܘ ܘ 

Class 1 
 AVG 133.131 17.367 2.637 3.858 2.001 
 STD 7.933 1.210 0.100 0.279 0.000 

Class 2 
 AVG 134.336 17.376 2.623 3.935 2.001 
 STD 10.764 1.204 0.064 0.914 0.001 

 

Unfortunately, calculating the skewness and the kurtosis parameters resulted in a similar 

conclusion, i.e., the average and the median values are very close to each other for the two 

classes, and the standard deviation is much higher, see Table 19 and Figure 42. 

Table 19 Skewness and Kurtosis results 

 Skewness Kurtosis 
AVG Median AVG Median

Class 1 2.291 2.292 6.909 6.911 
Class 2 2.295 2.296 6.927 6.939 
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Figure 42 Histograms of skewness and kurtosis; mean and median are marked be red and green, respectively 

 

Although the first look of the Gaussian, skewness and kurtosis parameters show no desired 

differences, a routine discriminant analysis was performed on these parameters. The results as 

confusion matrix are shown in Figure 43. Note that the success ratio is 53.9%, which is about 

same as just randomly selecting a class (50%). 

   roof1  roof2 
False 

negative 

roof1 
102  63 

38.2% 
41.1%  26.7% 

roof2 
83  71 

53.9% 
32.4%  32.7% 

False 
positive 

44.9%  47.0%  54.2% 

 

Figure 43 Confusion matrix from the discriminant analysis 
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Median waveforms 

The above presented results clearly indicate that the Gaussian parameters cannot be used for 

describing the changes on waveforms due to different incidence angles. Therefore, the next 

logical step is to use the entire waveform for classification, as opposed to the six parameters. 

First, the average and median waveforms are analyzed for the classes; Figure 44 shows these 

functions, marked by red and blue lines. The ranges of the standard deviation at the samples are 

depicted with dashed lines and then the black lines indicate the minimum and maximum values. 

Note that spline interpolation is used on the data. 

 

Figure 44 Typical waveforms with spline interpolation used for visualization 

Figure 45 shows the median waveforms between the 10 and 40 samples, dashed lines depict the 

range of the standard deviation. Note that the upper and lower bounds are not parallel because of 

the spline interpolation. Analyzing the figure, a little difference can be noticed between the two 

classes around the maximum peak, but, unfortunately, the standard deviation is much higher than 

this difference, consequently, it is statistically not relevant. 



Exploitation of Full-waveform LiDAR to Characterize/Exploit under Canopy Targets - Foliage Penetration (FOPEN) 
 

64 
 

 

 

Figure 45 Median waveforms for the two classes 

Neural networks 

As it was presented above the Gaussian parameters and the median waveforms could not provide 

acceptable results. Therefore, as the last attempt, pattern recognition neural networks with the 

translated sample vectors as inputs were tested; the neural network may provide better result due 

to its capability to handle nonlinear classification problems. The 85% of the data formed the 

training set and 15% of the waveforms were used for validation. The results, including 

visualization are shown in Figure 46.  The Figures 46 (a)-(c) show the confusion matrix on the 

overall, the training and the validation set. As we can see, the total score is ~58% which is the 

best result comparing the other classification methods, but it is still just slightly better than 

choosing the classes by coin flipping (50%). 
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(a) Confusion matrix of overall data (b) Confusion matrix of training set 

 

(c) Confusion matrix of validation set (d) Translated sample vectors (waveforms) 
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(e) Histogram of the Neural network (f) Classified points in the 3D space 

 

Figure 46 Neural network based classification performance 

 

Discussion 

Based on the test data set, the classification of the Gaussian parameters, extended with skewness 

and kurtosis, showed that the classification performance is at the same level as the error by 

choosing a class with flipping coins (50%). It indicates that these parameters are unable to 

predict the incidence angle. Using the sample vectors, a slightly better performance can be 

achieved, about ~60%, but it is still not an acceptable rate. Overall, the roof tests confirmed that 

no reliable results on the impact of incidence angle on the waveform can be obtained. 

4.5.2 Clustering	with	SOM	neutral	network	

After the negative outcome of the roof tests, a SOM neural network to detect any features in a 

larger dataset was used. Figure 47 shows this selected dataset, a 120 m long paved road. The 

surface of the road is nearly planar, the changes in elevation is less than 0.5 m. The scan 

direction was perpendicular to the road, and the scan angles vary between 11 and 21. Here the 

objective is similar: (1) detecting the scan angle from waveform, and (2) the impact of the 

topography on the performance,  
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(a) 

 
(b) 

 
(c) 

 

Figure 47 Road test area; orthophoto (a), altitude (b), and scan angle (c) 

 

Using sample vectors 

In our first approach, the original length sample vectors were used without any translation. The 

neural network was the same as it was introduced earlier. The neuron configuration was 2x2, 

which implies that 4 groups are determined by the SOM. The detected classes are shown in a 

local coordinate system in Figure 48.   
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(a) Result of SOM with the density of the class points in the cross section (lines) 

(b) Original sample vectors by groups (c) Weights 

 

Figure 48 SOM result from original waveforms 

 

In Figure 48, the lines between the 15 and -5 values of the Y axis show the class densities, the X 

axis is split to equidistance sections, and the number of the points within the classes is 

accumulated like a histogram. These lines indicate that the densities of the different points in the 

direction of X axis are uniform. 
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In Figure 48, the pavement markings on the road (Groups 3 and 4) and the road body (Groups 1 

and 2) are easily distinguishable. In addition, a pattern is also noticeable in the data, see the 

waveforms regarding the groups in In Figure 48b and the weights provided by the SOM in 

Figure 48c. Note that the location of the maximum peaks of Groups 1 and 3 are different than in 

the case of Groups 2 and 4. We assume that these differences are caused by the measuring or the 

processing components of the LiDAR system, and it does not indicate any impact of incidence 

angle or other phenomenon. 

Using translated sample vectors 

In the next step, the translated sample vectors were applied to the same SOM network. Figure 49 

shows the results of this test. Note that the patterns are disappeared, as expected. The Group 4 is 

clearly representing the pavement markings. Group 2 may be able to detect the topographic 

changes, compare this result to Figure 48b. The Group 3 and Group 4 may be interpreted as the 

detection of the changes of the scan. The density line of Group 3 shows that the numbers of the 

Group 3 points are higher at the beginning and it is decreasing, while the Group 1 point density 

is lower at the beginning and higher in the end. Note that the changes of the scan angles are in 

the X direction, see Figure 47c, and thus the Groups 3 and 4 may predict the impact of the 

incidence angle. 

 

(a) Result of SOM with the density of the class points in the cross section (lines) 
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(b) Translated sample vectors by groups (c) Weights 

 

Figure 49 SOM result from translated waveforms 

 

4.5.3 Land	classification	

The aim of this examination is to classify the waveforms by the backscattering object type. In 

this study, the five types of land categories are investigated. Figure 50 shows these categories: 

road1 (paved road), road2 (mud road), grass, building and tree. 

The point clouds of these categories are selected by the area, as it is shown in Figure 50. Each 

point cloud needs to be corrected with removing those points that correspond to other category. 

Typically, the tree canopy can overlap to another land type area, and these points are removed. In 

addition, in the tree category, the grass is also removed. Note, in this study, the multiple 

detections are not used; they are known to be able to predict the laser beam backscattering from 

trees.  Thus points with than one number of returns are eliminated. The return number is 

extrcated from the LAS file. After removing these points, the laser beams in the tree category are 

supposed to be backscattered from the canopies. 

The corrected point clouds can be seen in the Figure 51. These point sets are the classifier inputs 

and the categories are the classes. The aim of the investigation is to find the best classifier for 

predicting the class from the inputs. 
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Figure 50 Land type categories (classes) 
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Figure 51 Land type classes after filtering 

Median waveforms 

First, the sample vectors of the classes were examined. The median waveforms from the 60 

sample input for each class is shown in Figure 52. Note that the maximum intensity can be used 

for distinguishing some classes and that the standard deviation at each pulse is also large making 

the classification a challenge. 

To compare the median sample vectors, see in the left part of Figure 53. The range of the median 

absolute deviation is depicted by the dashed lines. Clearly, the maximum intensity helps separate 

classes road2 and grass from classes road1, tree and building. Also note that the tree median 

sample also has a different tail shape than road1, road2 and the building. Unfortunately, this tail 

shape is similar to that of the road1, though the amplitude is lower. The two class regions of the 

median deviation are overlapping with each other, which can cause problems in the class 
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separation. Also note that the shape Gaussian parameter (ହ) is different in the road1 class than 

in any other classes. 

 

Figure 52 Statistics of sample vectors per class 

 

The classification bases on these median waveforms are shown by the right part of Figure 53. 

Note that there is pattern not representing any categories. The same pattern was seen in the 4.5.2, 

Clustering with SOM neural network, section. Both observations confirm the use of the 

translated sample vectors instead of original sample vectors. 

The median sample vector from the translated sample vectors can be seen in the Figure 54. Note 

that the shapes of the waveforms are nearly the same, suggesting that the maximum peak 

location difference is caused by the different shapes of median waveform from the original 
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sample vectors (presented in Figure 53). Also note that the distinguishable tail shape of the 

vectors from the tree class is still present. 

 

Figure 53 Median sample vectors from translated sample vectors samples (left), and the classification results (right) 

 

 

Figure 54 Median sample vectors from translated sample vectors 
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In the Figure 54, it is seen that the median standard deviation is still large, and they are 

overlapping each other. In order to determine how these median vectors describe the classes, the 

classification by these common waveforms is done. The distance between the samples and the 

median waveforms are measured by the maximum norm, because it is found to be the best 

distance definition in these circumstances. In order to increase the classification reliability, the 

approach presented in 4.4.1 section was extended: the minimal threshold is applied to accept if 

the sample belongs to the selected class. This threshold requires a minimal distance between the 

sample and the class to accept the class. The threshold is the N times the standard deviation of 

the distances. Those samples of which distances are larger than the threshold will not be 

classified. 

The overall classification errors and the ratio of the positive and negative mismatches can be 

seen in Figure 55. On the X axis the N value shows the threshold and Y axis is the matching and 

mismatching ratios. Also shown is the number of the remaining sample numbers (i.e. data ratio), 

because increasing the threshold causes to decrease the number of those points that are able to be 

examined. 

 

Figure 55 Distances from median waveform 
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Figure 55 shows that the ratio of the overall matches is 53% and it is increasing with decreasing 

the threshold.  

The confusion matrices at no threshold (i.e. infinity threshold), 0.5 and 0.2 sigma are shon in the 

Table 20, Table 21, and Table 22, respectively. Note that without any threshold, the 

classification error is 54%. Not that it is already better than select the class randomly (20%). This 

error can achieve 71.3%, but note that practically the classifier only works for the road1, grass 

and tree classes. The results at other thresholds also indicate that this classifier only works 

correctly for these classes. 

 

Table 20 Classification by the distance from the median waveform without threshold 

   road1  road2 grass  tree  building
False 

negative 

road1 
2220  269  45  625  150 

32.9% 
43.1%  2.3%  0.8%  9.9%  3.6% 

road2 
128  5126  565  351  116 

18.5% 
1.3%  51.8% 7.2%  3.7%  1.6% 

grass 
41  2525  915  178  20 

75.1% 
0.5%  25.5% 18.9% 2.5%  0.4% 

tree 
761  363  372  1927  371 

49.2% 
10.7%  3.0%  6.8%  35.2% 8.4% 

building 
916  458  192  519  343 

85.9% 
16.4%  4.3%  4.4%  9.4%  11.1% 

False 
positive 

45.4%  41.4% 56.2% 46.5% 65.7%  54.0% 
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Table 21 Classification by the distance from the median waveform with at 0.5 sigma threshold 

   road1  road2 grass  tree  building
False 

negative 

road1 
1124  18  5  198  101 

22.3% 
68.9%  0.7%  0.3%  10.8% 6.3% 

road2 
9  591  102  21  22 

20.7% 
0.4%  46.3% 10.7% 1.6%  2.3% 

grass 
6  427  129  4  5 

77.4% 
0.3%  33.7% 17.1% 0.3%  0.6% 

tree 
96  54  54  328  90 

47.3% 
5.2%  3.2%  6.1%  37.5% 11.6% 

building 
74  32  22  30  29 

84.5% 
5.2%  2.5%  4.6%  4.1%  7.2% 

False 
positive 

14.1%  47.3% 58.7% 43.5% 88.3%  61.6% 

 

Table 22 Classification by the distance from the median waveform with 0.2 sigma threshold 

   road1  road2 grass  tree  building
False 

negative 

road1 
125  0  0  0  4 

3.1% 
88.0%  0.0%  0.0%  0.0%  3.0% 

road2 
1  39  3  0  0 

9.3% 
0.6%  40.6% 5.5%  0.0%  0.0% 

grass 
1  47  9  0  1 

84.5% 
0.5%  45.6% 14.1% 0.0%  1.5% 

tree 
6  6  1  19  1 

42.4% 
3.6%  5.0%  2.1%  57.6% 2.5% 

building 
5  0  2  0  2 

77.8% 
3.5%  0.0%  9.1%  0.0%  13.3% 

False 
positive 

9.4%  57.6% 40.0% 0.0%  75.0%  71.3% 
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Gaussian parameters 

In the next step, the extended Gaussian parameters and the kurtosis-skewness pairs were also 

examined. The histograms of the Gaussian parameters by the classes are shown in Figure 56. The 

histograms of the kurtosis and skewness values are in Figure 57. 

 

 

Figure 56 Histograms of the Gaussian parameters by the categories 

 

The linear discriminant analysis (LDA) was applied on these parameters (Gaussian + kurtosis + 

skewness). The confusion matrix of the result is shown in Table 23. The total classification error 

(60%) provides slightly better results than the median waveform approach when no threshold is 

applied. Also this method can only distinguish the road1, road2 and tree classes; it cannot handle 

the classification of grass and buildings. The Gaussian parameters predict that the grass and the 

dirt road (road2) are same. 
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Figure 57 Kurtosis and skewness 

 

Table 23 Linear discriminant analysis of the Gaussian parameters 

   road1  road2 grass  tree  building
False 

negative 

road1 
2864  367  0  12  66 

13.4% 
64.9%  2.5%  0.0%  0.2%  1.5% 

road2 
131  5956  0  57  142 

5.2% 
1.3%  50.1% 0.0%  0.6%  2.0% 

grass 
17  3602  0  45  15 

100.0% 
0.2%  30.9% 0.0%  0.7%  0.3% 

tree 
216  606  0  2624  348 

30.8% 
2.9%  4.1%  0.0%  64.4% 7.7% 

building 
738  1031  0  167  492 

79.7% 
13.0%  8.0%  0.0%  3.2%  16.4% 

False 
positive 

27.8%  48.5% 0%  9.7%  53.7%  61.2% 
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SOM 

Clustering the translated sample vectors provides better separation between grass and road1, and 

to select buildings. Two SOM configurations were tested. The first is 3x3, which creates 9 

groups, and second is 2x2, which creates 4 groups. The results can be seen in  

Figure 58.  

Group #  road1  road2  grass  tree  building 

1  8.4%  0.7%  1.1%  17.7%  72.0% 

2  79.1%  2.3%  0.4%  13.1%  5.1% 

3  4.6%  17.5%  5.2%  38.4%  34.4% 

4  0.2%  1.6%  0.8%  93.5%  3.9% 

5  1.2%  44.0%  44.7%  7.0%  3.1% 

6  5.6%  68.9%  19.1%  0.7%  5.8% 

7  4.9%  14.8%  4.1%  45.6%  30.6% 

8  1.6%  41.6%  44.7%  8.5%  3.6% 

9  4.3%  70.3%  18.8%  0.8%  5.8% 
 

Group #  road1  road2  grass  tree  building 

1  64.2%  1.4%  0.5%  18.0%  15.9% 

2  4.7%  11.7%  1.8%  55.1%  26.7% 

3  1.9%  38.8%  43.5%  10.4%  5.4% 

4  4.5%  69.4%  19.7%  0.8%  5.7% 
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Figure 58 Land classification by SOM with 4x4 neuron configuration (left) and 2x2 neuron configuration (right) 

The result matrix of the 4x4 SOM shows that Group 2 represents road1, Group 1 represents 

building, Groups 6 and 9 are road2. The estimation of the grass is available from Group 5 and 

Group 8. The misclassification of the grass can be decreased using the Groups 6 and 9, which 

indicate that the samples are from road2. The shape of the common sample waveforms (the 

weight vectors) shows that the shape of Group 8 is similar to that of the median waveforms with 

original sample vectors.  

The 4 groups produced by 2x2 SOM also shows better classification performance between road2 

and grass than the previous methods, but the results of other classes are worse. Overall, the SOM 

analysis claims that the main features of the waveforms are the value of the maximum intensity.  

Combined method 

The above presented three methods (median waveform distances, discriminant analysis and 

SOM) are combined to achieve the best performance. First, the algorithm uses Bayesian decision 

to classify the sample vectors. The Bayesian decision is based on the confusion matrix provided 

by the median waveform distance classifier and the discriminant analysis of the Gaussian 

parameters. After that, those points, which are selected as road2, will be classified again by the 

2x2 SOM. In this step, the algorithm distinguishes road2 and grass. The last step will split the 

previously determined road1 class to road1 and building classes. The steps of the algorithm are 

presented by Table 24. 

Table 24 Combined method 

 Method From To 

1 
Bayesian decision using the confusion 
matrices of median waveforms and 
discriminant analysis 

all vectors 
 

road1, road2, 
grass, tree, 
building 

2 Select grass points from road2 with 2x2 SOM  road2 road2, grass 
3 Select building from road1 with 4x4 SOM road1 road1, building 
 

The dataset has been divided into train and validation set. The training set included the 70% of 

the total dataset and the validation set contained the remaining 30%. The confusion matrices that 
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are used for the Bayesian decision and the SOM networks are calculated from the training set. 

The solution is tested on both sets. In order to improve the results, we applied a mode filter on 

the dataset. It corrects the class of single waveforms by the mode of the waveforms found within 

3 m.  Note that it already uses the location of the waveforms (i.e. 3D point), not just the shape, 

thus, it is an improved solution. 

The results, shown in  

Figure 59 and Figure 60 shows 65% classification error on the train and the validation set. After 

using mode filter, the performance can reach 73-75%. Also note that the diagonal elements of the 

confusion matrix contain the majority of the points within the classes, which means that the 

correct matches are dominant in each class. 
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   road1  road2  grass  tree  building 
False 

negative 

road1 
1909  169  87  16  135 

17.6% 
74.7%  2.7%  1.4%  0.4%  4.0% 

road2 
41  2566  1606  50  137 

41.7% 
0.6%  43.3%  23.7%  0.8%  2.5% 

grass 
6  729  1802  26  12 

30.0% 
0.1%  12.3%  37.8%  0.5%  0.3% 

tree 
83  124  285  1991  173 

25.0% 
1.8%  1.9%  4.5%  68.7%  4.7% 

building 
111  502  216  149  721 

57.6% 
3.0%  9.5%  3.9%  3.9%  33.4% 

False 
positive 

11.2%  37.3%  54.9%  10.8%  38.8%  65.9% 

 

   road1  road2  grass  tree  building 
False 

negative 

road1 
2294  6  16  0  0 

0.9% 
82.5%  0.1%  0.3%  0.0%  0.0% 

road2 
272  2925  1202  0  1 

33.5% 
3.9%  51.0%  18.9%  0.0%  0.0% 

grass 
27  765  1777  3  3 

31.0% 
0.5%  12.6%  44.8%  0.1%  0.1% 

tree 
22  34  143  2435  22 

8.3% 
0.4%  0.5%  2.5%  88.9%  0.6% 

building 
145  525  31  81  917 

46.0% 
3.4%  9.7%  0.6%  2.0%  53.2% 

False 
positive 

16.9%  31.3%  43.9%  3.3%  2.8%  75.8% 

 

Figure 59 Results on the training set before applying mode filter (top) and after if (bottom) 
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   road1  road2  grass  tree  building 
False 

negative 

road1 
815  72  39  7  60 

17.9% 
73.6%  2.7%  1.4%  0.4%  4.2% 

road2 
21  1097  693  16  59 

41.8% 
0.8%  43.2%  23.6%  0.6%  2.5% 

grass 
3  298  778  17  8 

29.5% 
0.1%  11.7%  37.5%  0.8%  0.5% 

tree 
41  64  138  827  68 

27.3% 
2.0%  2.3%  5.0%  67.0%  4.3% 

building 
49  217  100  57  306 

58.0% 
3.0%  9.6%  4.2%  3.6%  33.1% 

False 
positive 

12.3%  37.2%  55.5%  10.5%  38.9%  65.4% 

 

 

   road1  road2  grass  tree  building 
False 

negative 

road1 
981  1  11  0  0 

1.2% 
81.5%  0.0%  0.5%  0.0%  0.0% 

road2 
112  1243  530  0  1 

34.1% 
3.8%  49.6%  19.1%  0.0%  0.0% 

grass 
10  336  755  2  1 

31.6% 
0.4%  12.8%  42.8%  0.1%  0.1% 

tree 
27  50  105  935  21 

17.8% 
1.2%  1.7%  4.3%  79.4%  1.4% 

building 
61  231  15  37  385 

47.2% 
3.3%  9.8%  0.7%  2.2%  51.2% 

False 
positive 

17.6%  33.2%  46.7%  4.0%  5.6%  73.5% 

 

Figure 60 Results on the validation set before applying mode filter (top) and after if (bottom) 
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5. LiDAR SYSTEM PERFORMANCE COMPARISONS 

 

As LiDAR technology continues to develop, new approaches, such as CW FM LiDAR 

(Continuous Waveform Frequency Modulated), are introduced and improved hardware solutions 

are used in the next generation of LiDAR systems. Research started to investigate the impact of 

the new solutions on waveform formation and analysis. The lack of funding prevented to 

completion of this task, but two areas have been partially pursued under other projects: 

 The CW FM system from Bridger Photonics is of interest because of the expectation that 

this approach may provide better penetration capability for certain materials, such 

modestly transparent plastic, glass, and other materials. In addition, this sensing approach 

provides Doppler observations that could be beneficial to separate static and moving 

objects in the image area. 

 LiDAR systems are performance validated using ground control, mainly certain materials 

arranged in simple geometrical shapes; for example, circular targets with material 

characterization. Since it is difficult to provide identical object space environmental 

conditions to repeat tests, variation system performance is rarely validated. Therefore, it 

was of great interest to analyze LiDAR data simultaneously acquired by two differ 

LiDAR systems. 

A peer-reviewed conference paper and a presentation on Bridger Photonics CW FM system, 

HRS-3D-1W, providing a comparison to other sensors, and a journal paper using the two 

simultaneously acquired LiDAR datasets, focused on the compression aspect of LiDAR 

waveform, are included in the Appendix. 
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6. CONCLUSION AND FUTURE TASKS 

 

In these investigation data acquired by a Riegl VZ400 digitizer with 2 ns sampling rate was used. 

Our theoretical investigation shows that in the 300-600 m instrument-to-target range, the impact 

of the incidence angle is in the ~0.6-1.2 ns range that is not easily to detectable with this 

somewhat modest sampling rate. Note that airborne scanners typically work with 1 ns sampling 

rate (or sometime with 0.5 ns), in which case, the incidence angle can be reasonable estimated. 

Despite the less than ideal sampling rate of the waveform, the investigation results suggest that 

the incidence angle can be determined with an approximately 10 standard deviation.  

For material identification/detection, the reflectance properties of the target object were 

examined. In ScanPos2 and ScanPos3 datasets, a small variety of materials was represented.  

Using a simple method based on the distance between an incoming waveform and the average 

waveform, 2-3 reflectance classes could be easily differentiated, with classification preformance 

of 93.1% reliability.  

The based on the experiences so far, the validity of the algorithms has been checked and modest 

results have been achieved, which is due to the modest sampling rate of the waveform. Note that 

the footprint size is also part of the problem, as the impact of incidence angle as well as material 

properties depends on the divergence of the laser beam. For better testing the methods, additional 

measurements are required, and arrangement is in place to acquire airborne waveform data 

simultaneously collected by three scanners. 

With the arrival of two new data sets, acquired by two different airborne scanners, the 

investigation continued on assessing the classification performance of waveform exploitation. 

The current results indicate that the conditions of normal airborne data acquisitions is harsher 

compared to the test environment, and, consequently, not all the results can be achieved at the 

level of the controlled environment tests. Increasing the algorithmic complexity, however, the 

classification results can improve.  
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ABSTRACT:

Topographic Light Detection and Ranging (LiDAR) technology has advanced greatly in the past decade. Pulse repetition rates of
terrestrial and airborne systems have multiplied thus vastly increasing dataacquisition rates. Geiger-mode and FLASH LiDAR have also
become far more mature technologies. However, a new and relatively unknown technology is maturing rapidly: Frequency-Modulated
Continuous Wave Laser Detection and Ranging (FMCW-LADAR). Possessing attributes more akin to modern radar systems, FMCW-
LADAR has the ability to more finely resolve objects separated by very smallranges. For tactical military applications (as described
here), this can be a real advantage over single frequency, direct-detect systems. In fact, FMCW-LADAR can range resolve objects
at 10−7 to 10−6 meter scales. FMCW-LADAR can also detect objects at greater range withless power. In this study, a FMCW-
LADAR instrument and traditional LiDAR instrument are compared. The co-located terrestrial scanning instruments were set up to
perform simultaneous 3-D measurements of the given scene. Several targets were placed in the scene to expose the difference in the
range resolution capabilities of the two instruments. The scans were performed at or nearly the same horizontal and vertical angular
resolutions. It is demonstrated that the FMCW-LADAR surpasses the perfomance of the linear mode LiDAR scanner in terms of range
resolution. Some results showing the maximum range acquisition are discussed but this was not studied in detail as the scanners’ laser
powers differed by a small amount. Applications and implications of this technology are also discussed.

1. INTRODUCTION

1.1 Background

Pulsed light detection and ranging (LiDAR) systems for terres-
trial surveying and topographic mapping have made great strides
in the past 10 to 15 years. Although terrestrial laser scanning
was first used in the 1960’s(Shan and Toth, 2009), only recently
have the scanning mechanisms and computer hardware advanced
enough to support topographic measurements within a reason-
able amount of time. Terrestrial LiDAR instruments are now
able to collect millions of accurately georegistered points within
several seconds. While pulsed LiDAR technology is certainly
more mature than other approaches, frequency-modulated con-
tinuous wave (FMCW) laser detection and ranging (LADAR) is
rapidly gaining ground due to several key benefits. First and
most evident, is the difference in range resolution between the
two technologies. Pulsed LiDAR is limited in range resolution
by the width of the emitted laser pulse. A typical conventional
LiDAR system emits Gaussian-shaped laser pulses. Meanwhile,
FMCW-LADAR is limited in range resolution by the chirped
bandwidth of the emitted beam(Reibel et al., 2014). An exam-
ple of a chirped bandwidth from a FMCW-LADAR system can
be seen in Reibel et al(Reibel et al., 2010), Figure 2. Secondly,
FMCW-LADAR can detect doppler motions in the returned laser
pulse. Finally, FMCW-LADAR requires less power to achieve
range measurements or, conversely, can detect objects at a greater
range than a pulsed LiDAR having the same power. In this study,
the range resolutions of a conventional, pulsed LiDAR system
and a FMCW-LADAR system are compared and contrasted us-
ing real-world targets.

∗Corresponding author.

1.2 Instrument specifications

The instruments used in this comparison experiment were a Riegl
VZ-400 3D terrestrial laser scanner and a Bridger HRS-3D-1W
imager. The VZ-400 is a conventional, pulsed Class I scanning
laser system with a 360◦ horizontal and 100◦ vertical field-of-
view (FOV). The HRS-3D is a FMCW Class IIIb scanning laser
system with a 360◦ horizontal and 60◦ vertical FOV. The phys-
ical dimensions of the scanner heads are very similar (see Table
1). The HRS-3D has a separate processing unit whereas the VZ-
400 performs its processing within the scanner unit. The HRS-3D
weighs about twice as much as the VZ-400 and requires about 3
times as much power. Both scanners are easily tripod mounted.

The VZ-400 and HRS-3D lasers both emit at 1.55µm. The max-
imum pulse repetition rates for the VZ-400 and HRS-3D are 300
kHz and 48 kHz, respectively. The beam divergences for the VZ-
400 and HRS-3D are 0.35 mrad and 0.1 mrad, respectively.

Riegl VZ-400 Bridger HRS-3D

Scanner head
(h x dia)

31 cm x 18 cm 28 cm x 20 cm

Processor size None 48 cm x 43 cm x 23 cm

Weight 9.6 kg 19 kg

Power 65 W 350 W

Table 1: Size, weight, and power comparisons of the two scanners
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Figure 1: (Top) Overview of scan area and target placements (Middle and bottom rows) Images of targets [No image of target 7
available]

2. DATA COLLECTION

For this series of tests, we explored a variety of tactical scenarios
and targets of interest to compare and contrast the technologies.
A data acquisition site was chosen at approximate coordinates:
45.661◦N, 111.345◦W. The site is approximately 14 miles west
of Bozeman, MT. A Riegl VZ-400 terrestrial laser scanner and
a Bridger Photonics HRS-3D-1W terrestrial laser scanner were
mounted on tripods and placed side-by-side (Figure 1, top). Sev-
eral targets were placed in the scene. Targets 1 through 7 were
placed at ranges between approximately 200 and 250 meters. Tar-
gets 8 and 9 were placed at 68 m and 45 m, respectively. The tar-
gets were designed to simulate sniper blinds and to test the range
ambiguity issues that typically arise in direct detect systems. The
targets also were designed to evaluate the obscurant penetration
ability of the scanners. Camouflage netting and various types of
fencing were used to obscure targets. A list of the targets, their
descriptions, and their ranges from the scanners are shown in Ta-
ble 2.

The scans from both instruments were performed with the mea-
surement angular resolution set at 0.001◦ x 0.001◦. The excep-
tion was for Target 9 which was scanned at a 0.005◦ x 0.005◦

resolution. The target scans were not made simultaneously to
avoid interference introduced by each of the system’s lasers.

3. COMPARISONS

The range ambiguity and obscurant penetration performance of
the two scanner technologies was explored. A test of the maxi-
mum range of the scanners was also made. The comparisons be-
tween the scanners on these topics are discussed in the following
sections.

Target# Range(m) Description

1 220 Sniper blind with camou-
flage netting

2 185 Sniper blind with calibra-
tion pattern

3 249 Chicken wire near vege-
tation

4 232 Mesh screen

5 250 Chicken wire concealing
mortar stand

6 253 Sniper blind concealing
dummy with rocket
launcher

7 238 Fencing in front of tree

8 68 Dummy in trench with
covered with fencing

9 45 Tent concealing rifle on
tripod

Table 2: Target descriptions and their ranges from the scanners

3.1 Range ambiguity

Targets 1 and 2 were chosen to study the range ambiguity of the
scanners more in-depth. Target 1 was covered by a camouflage
netting and had a wooden vertical support stand in front of a white
painted background board. The front, central portion of Target 1
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Figure 2: (Top) Point clouds of Target 1 from (left) VZ-400 and (right)HRS-3D. Insets show chosen point cloud subsets for further
analysis.

was isolated for the following analysis of both point clouds as
seen in the insets of Fig 2. The histograms of Target 1’s iso-
lated range returns for the VZ-400 and HRS-3D is seen at top
and bottom of Figure 3, respectively. There is a rather stark con-
trast between the two range return histograms. As can be seen in
the top plot of the VZ-400 range return histogram, there are two
range return peaks at approximately 220.6 m and 220.75 m, and
a smaller, less distinct peak at approximately 220.95 m. The first
two peaks are due to the netting on the left and right side of the
vertical support. However, the netting directly in front of the sup-
port does not appear as a return in the data. Instead, the returns
appear ambiguous as many are registered between the netting and
support stand. The support stand itself is the ill-defined peak at
220.95 m.

Meanwhile, the HRS-3D returns rendered significantly, better-
defined surfaces for the netting and vertical support. The netting
surface is the peak at 221 m in the bottom histogram of Figure
3. The vertical support is the sharp peak at 221.5 m. There are
only a few stray points which appear between the netting and
vertical support surfaces in the HRS-3D data. These stray points
are mainly located between ranges of 221.15 m and 221.35 m.

Two sections of Target 2 were chosen to compare the range am-
biguities of the two scanners. The isolated sections are outlined
in white boxes in 4 and the insets show the point cloud subsets.
The first section included the double-layered mesh, vertical sup-
port, and backboard of Target 2. The range return histograms for
the first section are shown in Figure 5 for the VZ-400 (top) and
HRS-3D (bottom). Interestingly, the VZ-400 histogram shows 4
distinct peaks. The first peak at 184.5 m is due to the double-
layered mesh surface. However, the double-layered mesh is not
resolved by the VZ-400 into two separate surfaces. The second
and third peaks are located at 185 m and 185.15 m, respectively.
The double peaks here are due to the range ”pulling” effect in-
duced by the mesh. This effect is due (in part) to: 1) the inability
of the linear mode system to resolve objects outside of its pulse
bandwidth and 2) movement of the mesh material during the scan
event. The upper portion of the vertical support has an unabated
line-of-sight to the scanner while the lower portion has the double
layer mesh intervening the scanner’s line-of-sight to the vertical
support. The mesh interference shifted the range return of the

Figure 3: Range return histograms of Target 1 area for (Top) VZ-
400 and (Bottom) HRS-3D

lower portion of the vertical support approximately 15 cm closer.
The backboard return is located at approximately 185.7 m. There
is also a considerable ”filling-in” of returns between the mesh and
vertical support in the VZ-400 data as can be seen between 184.5
and 185 m.
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Figure 4: (Top) Point clouds of Target 2 from (left) VZ-400 and (right)HRS-3D. Insets show chosen point cloud subsets for further
analysis.

Figure 5: Range return histograms of Target 2 mesh, vertical sup-
port, and backboard for (Top) VZ-400 and (Bottom) HRS-3D

The HRS-3D data shows three distinct range return peaks around
185 m. Two of these are due to the double-layered mesh (a sepa-
ration of only a few cm) while the third peak is due to the horizon-
tal frame at the bottom of Target 2. The central vertical support at
185.55 m and the backboard at 186.2 m are both clearly defined

in the range returns. There are a few spurious returns in the HRS-
3D data located at 185.3 m range. The fill-in observed between
the vertical support and the backboard at ranges of 185.7 m to
186 m is due to low-lying vegetation.

Figure 6: Log histograms of offset from Target 2 backboard for
(Top) VZ-400 and (Bottom) HRS-3D
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Figure 7: Point clouds of Targets 3 (top) and 4 (bottom), VZ-400
and HRS-3D point clouds are on the left and right sides, respec-
tively.

The second section isolated from Target 2 is the backboard con-
taining the vertical black resolution test lines as can be seen in
Figure 4 top-left insets. For each of the sub-setted point clouds,
a vertical plane was calculated to act as the geometrical repre-
sentation of the backboard. The distance between the backboard
plane and each point was then calculated. This distance is the
offset between the 3-D data point and the vertical plane. Loga-
rithm histograms of the distance offsets are shown in Figure 6 for
the VZ-400 (top) and HRS-3D (bottom). Negative and positive
distance offset values represent points behind and in front of the
backboard from the scanners’ viewpoints, respectively. The VZ-
400 histogram shows a distinct negative offset shoulder. This is
due to range ambiguities between the top of the backboard and a
tree limb located approximately 0.5 m behind Target 2. The pos-
itive distance offset shoulder shows that the VZ-400 registered
returns out to 8 cm in front of the backboard. Meanwhile, the
HRS-3D histogram shows that there is no such range ambiguity
between the backboard and the tree behind Target 2. Additionally,
the distance offsets are confined to± 5 cm from the backboard
plane.

3.2 Obscurant penetration

In this section, the obscurant penetration performance of the two
scanners is compared. Some of the differences have already been
demonstrated from Targets 1 and 2 in the previous section. Fig-
ures 7 and 8 show the remainder of the targets’ point clouds.
The VZ-400 point clouds are on the left side while the HRS-3D
point clouds are on the right side. In Target 3 (Figure 7 top), it
can be seen that the VZ-400 point cloud (left) is far sparser than
the HRS-3D point cloud (right) behind the chicken wire fencing.
Low-lying vegetation can be seen in the HRS-3D data but is un-
recognizable in the VZ-400 data. In Target 4 (Figure 7 bottom), it
can be seen that both scanners could not easily achieve consistent
penetration through the mesh screen. However, the HRS-3D was
able to register approximately 10% of the total returns had the
intervening screen not been present. The VZ-400 did not register
any returns from behind the mesh screen. In Target 5 (Figure 8a),
the VZ-400 did not register any returns from the mortar stand be-
hind the chicken wire (see inset for top-down view. The HRS-3D
was able to clearly resolve the mortar stand’s two legs and barrel.
In Target 6 (Figure 8b), the VZ-400 was unable to register the
dummy with the rocket launcher behind the sniper blind. Inter-

estingly, however, the intensity image of the dummy’s head and
shoulders can be seen overlaid on the sniper blind. The HRS-3D
was able to easily resolve the dummy’s head, torso, and limbs and
was able to resolve the barrel of the rocket launcher. Both scan-
ners were able to easily penetrate the fencing of Target 7 (Figure
8c). However, the HRS-3D was slightly more successful than the
VZ-400 at registering points on the actual fenceline. In Target 8
(Figure 8d), the VZ-400 was unable to geometrically resolve the
dummy in the ditch under the fencing. However, similar to Target
6, the dummy’s head appears as higher intensity points mapped
onto the surface of the obscuring fenceline. The HRS-3D is able
to geometrically resolve the dummy’s head, torso, and arms. Fi-
nally, in Target 9 (Figure 8e), both scanners are able to penetrate
the tent lining to resolve the propped-up rifle inside. The HRS-
3D resolves features such as the scope and the shoulder strap.
The VZ-400 does a better job at registering the intensity changes
of the tent door flap.

3.3 Maximum range

Several measurements were made in this study to assess the max-
imum range capabilities of the two scanners. The VZ-400 and
HRS-3D were both capable of registering returns from highly re-
flective surfaces at a range of 900 m. The surfaces were primar-
ily vegetation and thus possessed exceptional reflectance (0.7) at
1.55µm. The HRS-3D registered approximately twice as many
returns than the VZ-400 at these long ranges.

4. ANALYSIS

From the standpoint of tactical, military targeting and topographic
rendition, it is clear from this study that the FMCW technology
vastly improves range ambiguity and obscurant penetration of ter-
restrial laser scanners. The returns from closely spaced surfaces
(down to approximately 10 cm in separation) are capable of being
range-resolved by the HRS-3D. In contrast, the VZ-400 begins to
experience range ambiguity problems when surface separations
are at approximately 0.5 m or less. This is especially true for
closely spaced surfaces at larger ranges, as can be seen in Targets
1, 2, 5, and 6. The VZ-400 tends to do a better job at range res-
olution and obscurant penetration when the targets are closer in
range, as in Target 9. Interestingly, the VZ-400 scanner recorded
higher intensity values from the concealed objects mapped onto
the surfaces of the obscurants as in Targets 6 and 8. It may be the
case that the concealed object’s Gaussian return shoulder is hav-
ing an additive effect to the obscurant’s surface return. Yet, the
concealed object’s Gaussian peak is not strong enough to be reg-
istered as its own 3-D return by the sensor. It was also observed
that the HRS-3D displayed remarkable vegetation feature reso-
lution at larger ranges. Tactically, this is particularly important
in foliage penetration(Massaro et al., 2012) and the rendition of
camouflage. It is believed that FMCW-LADAR systems will be
more adept at highly accurate vegetation mapping(Pirotti et al.,
2013).

5. CONCLUSION

While the FMCW system certainly outperformed the conventional,
pulsed system in terms of range resolution, obscurant penetration,
and maximum range, there are some drawbacks to the FMCW
system. It currently takes about six times as long for a 3-D scene
to be acquired with the FMCW system. The FMCW scene acqui-
sition time can likely be decreased however with improved FPGA
boards and optimized scanning techniques. The size, weight, and
power requirements of the FMCW system are also significantly

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-233-2014 237



(a) Target 5 (insets are top-down views)

(b) Target 6 (insets are top-down views)

(c) Target 7

(d) Target 8 (insets show close-up of dummy location)

(e) Target 9 (insets show points from tent interior)

Figure 8: Point clouds of Targets 5 through 9 from top to bottom. VZ-400 and HRS-3D point clouds are on the left and right sides,
respectively.
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greater than the slimmer conventional system. However, this can
be remedied by eventual inclusion of the processing unit into the
scanner head.

As compared to heterodyne laser radar systems nearly 30 years
ago(Keyes, 1986), FMCW-LADAR seems to have overcome many
technological hurdles. In all, it seems clear that the future of ter-
restrial laser scanning, and possibly air- and space-borne LADAR,
lies in FMCW systems. In addition to the superiority of their
range resolution and obscurant penetration, FMCW systems can
provide Doppler velocities and theoretically achieve greater max-
imum range given the same power input.
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Approach

Feasibility study to detect moving vehicles:
 Prototype/test a mobile, easily deployable sensor system
 Main component: laser sensing technology
 GPS-based georeferencing and time base
 Optional optical sensing

 Acquire sample data
 Processing
 Develop vehicle specific feature extraction algorithm 

to extract shape form laser point cloud
 Parameterize extracted geometric parameters with 

accuracy term estimates
 Estimate velocity and attitude of vehicle 
 Model vehicle trajectory

 Report on results and recommendations 



 

3

Initial Sensor Platform and Configuration

 Install sensors in the OSU GPSVan
 High-performance georeferencing with data acquisition
 Suitable platform to install imaging sensors

Multiple GPS 
antennae

 Roof platform for 
imaging sensors

 High-performance 
IMU sensors

 Data acquisition 
system, power
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Laser Sensor Comparative Tests

 Laser technology is rapidly advancing
 Application specific sensors are introduced (UAS)
 Performance evaluation needed 
 to optimize sensor selection
 to provide reference for low-end sensors

 Profilers/scanners considered:

Bridger’s HRS-3D-1W

UTM-30LX-EW

Ibeo Alasca XT 

SICK LMS30206 Velodyne HDL-64E

Velodyne HDL-32E
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Test Site:  OSU Airport

Site Location:  OSU Airport
 RWY 9R-27L
 5002’ X 150’
 Precision Instrument Marking
 Utilized by aircraft up to RDC C-III
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Some Characteristics of Laser Scanning

 Side effect: motion artifact; objects change shape based 
on relative motion between sensor and object

Sensor motion

 Benefit: from motion artifact, shape deformation, relative 
velocity can be estimated (object shape must be known)
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Some Aspects of Processing

 Investigation of data acquisition and sensing properties
 Point cloud generation
 Range and surface dependency
 Sample time dependency
 Observability analysis

 Shape parameterization based on point cloud
 Estimation accuracy
 Shape matching

 Sensor network formation
 Sensor synchronization
 GPS-based georeferencing, calibration 

 High-level processing
 Combining multiple sensor data
 Vehicle trajectory and velocity estimation
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Team

 Field tests at Don Scott airport (OSU), August 6 and 8, 2014
 Crew: OSU and Asymmetric Inc., first user of Bridger’s HRS-3D-1W
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Sensor Configuration

Velodyne’s 
HDL-32E

Bridger’s
HRS-3D-1W Sick’s

LMS-221

Camera 
(video)

GPS Ant



 

10

Sensors’ Specification

Name LMS-221-30206 HDL-32E HRS-3D-1W

Manufacture SICK AG Velodyne Bridger Photonics Inc.

Data interface RS232 or RS422 Ethernet cable (UDP/IP)

Measuring TOF TOF FM CW
Angular range 100o / 180o 360o

Multi-layer No
Yes, 32 scan planes (+10 o -

+30o)
Multi-target No No

Rotation frequency N/A 10 Hz

Angular resolution >0.25-1o
1.33o vertical, 0.6 o

horizontal

Max. range 30 m with 10% reflectivity 70 m 
>2 km (10% 
reflectivity)

Accuracy 10 mm ± 35 mm
+-2 cm at 10Hz (one sigma 

at 25 m)
Hardware elements

sensor(s) + LMI (optional)
sensor + interface box + 

GPS + IMU

Power supply
24 V DC 20W 1.8A+ 

(heating: 24 V DC 140W 6A) 
9-32 V DC (1A, 12 W)

Weight 9 kg < 2 kg
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Test Area

 Scanning static aircraft  (August 6, 2014)
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Data Acquisition Trajectory

 GPSVan trajectory; surveyed Cessna aircraft marked
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 Scanning static aircraft  (August 8, 2014)

Scanning Aircraft on the Tarmac 
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Scanning Aircraft on the Runway

 Scanning moving aircraft 
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Distance from the runways

210 m
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Profiles in a Global Frame
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Accuracy Test

Distance 
from wall 

[m]

Differences from the wall
AVG 
[cm]

STD 
[cm]

MED 
[cm]

MAD 
[cm]

Line 1 19.7 1.5 1.2 1.2 0.9
Line 2 26.1 1.8 1.5 1.4 1.2
Line 3 33.1 1.9 1.3 1.7 1.1
Line 4 40.5 3.6 2.6 3.1 2.1
Line 5 47.0 2.1 1.6 1.8 1.3
Line 6 54.0 10.8 3.9 10.4 2.7

Line 7 67.6 10.7 5.6 11.6 4.6

Manufacturer’s specification: < 1 cm  3.5 cm
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Scanner vs Profiler Data
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Profiles at Different Distances

9.3 m 15.6 m 22.3 m

29.4 m 35.6 m 43.5 m

58.4 m
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Aircraft Scan
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Accuracy Analysis: Velodyne HDL-32E

Distance 
from wall 

[m]

Differences from the wall

AVG 
[cm]

STD 
[cm]

MED 
[cm]

MAD 
[cm]

Line 1 21.9 0.8 0.5 0.8 0.5

Line 2 26.6 0.6 0.5 0.3 0.4

Line 3 33.5 0.8 0.4 0.8 0.3

Line 4 40.6 1.0 0.8 0.8 0.6

Line 5 47.1 1.0 0.6 1.0 0.5

Line 6 53.9 0.6 0.4 0.6 0.3

Line 7 70.6 8.2 6.7 5.8 5.0

Manufacturer’s specification:
< 2 cm (<25 m)
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Summary: In contrast to LiDAR data provided by
discrete return systems, full waveform LiDAR data
(FWD) improve the quality of products and extend
the possibilities of their application. Beside evident
benefits, FWD imposes strong requirements on the
sensor acquisition and storage hardware. At the
moment, there is little effort reported on sensor
level waveform data compression. Vendor specified
waveform data formats are generally not published
for the users and do not mention compression op-
tions. Since the recorded waveform is intrinsically
noisy, there is less practical need to use lossless
compression methods. As long as the properties of
FWD are preserved, in other words, as long as it is
possible to extract the same FWD features, and the
compression noise is below or comparable to the
noise of the signal, lossy compression methods are
suitable. Such compression of FWD was studied in
previous work where waveforms were compressed
individually or in groups forming images, which is
considered as 1D and 2D compression, respective-
ly. This work presents a strategy for FWD compres-
sion that is based on multi-component transforms,
which is included in JPEG-2000 Standard Part 2.
This extension to JPEG-2000 Standard exploits the
3D correlation between waveform samples and al-
lows compressing waveform cubes without organ-
izing samples. The results of this study indicate
that the removal of data redundancies in all three
dimensions results in slightly better compression
performance than using 1D or 2D approaches.
More importantly, the user has the flexibility to de-
cide on how much the data should be compressed or
what level of the reconstruction error is allowed.
Besides JPEG-2000 compression, this investigation
includes experiments with additional data decorre-
lators, such as Karhunen-Loève transform and
wavelet transform. The conclusion of this study is
that the JPEG-2000 Standard is an effective method
for FWD compression of waveform cubes, result-
ing in high compression ratios and low data degra-
dation.

Zusammenfassung: Untersuchung zur Kompres-
sion von Full Waveform LiDAR-Daten auf Sensor-
ebene unter Verwendung der JPEG-2000 Multi-
komponenten-Transformation. Im Gegensatz zu
den üblichen Discrete Return Systemen können
Full Waveform LiDAR-Daten (FWD) die Qualität
der Produkte verbessern und erweitern somit ihre
Anwendungsmöglichkeiten. Neben diesen offen-
sichtlichen Vorteilen stellen FWD sehr hohe Anfor-
derungen an den Sensoraufbau und die verfügbare
Speicherkapazität. Bisher gibt es noch wenige Ar-
beiten zur Datenkompression der FWD-Daten auf
Sensorebene. Herstellerspezifische Full Waveform
Datenformate werden in aller Regel nicht dem An-
wender zur Verfügung gestellt und erwähnen keine
Möglichkeit der Datenkompression. Da die aufge-
zeichneten FWD ohnehin verrauscht sind, ist es
nicht nötig, eine verlustfreie Kompression zu ver-
wenden. Solange die Eigenschaften der FWD er-
halten bleiben, das heißt, dieselben FWD-Merkma-
le extrahiert werden können und das Kompres-
sionsrauschen unter oder vergleichbar dem Signal-
rauschen ist, können auch verlustbehaftete Kom-
pressionsmethoden genutzt werden. Diese Art der
FWD-Kompression ist aus vorherigen Studien als
1D- oder 2D-Kompression bekannt, bei denen ein-
zelne oder Gruppen von Wellenformen als Bilder
interpretiert und komprimiert werden. In dieser
Arbeit wird eine Strategie zur FWD-Kompression
präsentiert, welche auf einer Multikomponenten-
Transformation basiert und im JPEG-2000 Stan-
dard Teil 2 beschrieben ist. Diese ist eine Erweite-
rung zum JPEG-2000-Standard, die die 3D-Korre-
lation zwischen Waveform-Proben auswertet und
damit die Kompression eines kompletten Wave-
form-Kubus ohne Proben als Startwerte erlaubt.
Die Ergebnisse dieser Studie zeigen, dass das Ent-
fernen von Redundanzen in allen drei Dimensionen
zu einer geringfügig besseren Kompression als die
ausschließliche Nutzung von 1D- oder 2D-Infor-
mationen führt. Zusätzlich eröffnet sich dem Nut-
zer jedoch die Möglichkeit zu entscheiden, wie
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Transformation. Das Ergebnis dieser Studie zeigt,
dass der JPEG-2000-Standard eine effektive Me-
thode für FWD-Kompression in Form eines Wave-
form-Kubus bietet. Daraus resultiert eine hohe
Kompressionsrate bei nur geringem Qualitätsver-
lust der Daten.

stark die Daten komprimiert werden sollen oder
welcher maximale Fehler bei der Rekonstruktion
zugelassen wird. Neben der JPEG-2000-Kompres-
sion beinhaltet unsere Untersuchung Experimente
mit zusätzlicher Datendekorrelation wie der Kar-
hunen-Loève-Transformation und der Wavelet-

1 Introduction

The hardware developments of laser scanning
technology continuously provide new applica-
tion possibilities, though, limitations and diffi-
culties are frequently encountered in the intro-
duction phase. Starting from 2004, when the
full-waveform digitization became available
for the commercial airborne scanning systems
(Hug et al. 2004, Mallet & Bretar 2009),
improvements of quality of LiDAR data and
products have been observed. The main ad-
vantages of the full waveform data (FWD)
are: (1) denser and more accurate point cloud
generation (Mallet & Bretar 2009, Par-
risH & Nowak 2009), (2) improved results in
vegetation mapping, e.g. for forestry applica-
tions (Pirotti 2011), and (3) better point cloud
classification (reitBerger et al. 2008, totH

et al. 2010, HeiNzel & kocH 2011, Mallet et
al. 2011). Despite of the advantages of FWD,
technology limitations are still present. For
example, waveform data may not be record-
ed at maximum pulse rate designated for the
discrete return systems; there is also a lack of
vendor independent tools for waveform data
processing; finally, the most common problem
is the amount of FWD. Typically, FWD binary
files, e.g. Riegl SDF, are 3–4 times larger than
the binary files (LAS) containing correspond-
ing point clouds. Although storage technolo-
gies continue to develop, allowing for faster
read/write operation and accommodation of
larger data volumes, the drawback of the in-
creasing size of FWD continues to be an issue.

Most of the activities of LiDAR data com-
pression are concerned with the reduction of
the point cloud size to better support the dis-
semination of primary LiDAR products. The
most widely used solutions in practice are the
lossless LASzip (iseNBurg 2011), LASCom-
pression (geMMa laB 2009,Mongus&Žalik
2011) and the lossy/lossless LiDAR Compres-

sor (lizardtecH 2014). Other approaches are
hardware accelerated compression (Biasizzo

& Novak 2013) or considering the point cloud
thinning as lossy compression in topographic
applications (PradHaN et al. 2005). Although
the need for FWD compression is indisput-
able, there is rather limited research related
to sensor level waveform compression. Work
on compressing each waveform separately
(totH et al. 2010) and exploiting 2D correla-
tion between waveform samples for more ef-
ficient compression is reported in Jóźków et
al. (2015). BuNtiNg et al. (2013) proposed the
Sorted Pulse Data (SPD) format for storing
LiDAR data, implemented in the open source
software library SPDLib (sPdliB 2013). SPD
follows the Hierarchical Data Format version
5.0 (HDF5) (koraNNe 2011, tHe HdF grouP

2014) which supports lossless compression
using the zlib deflate algorithm (tHe iNterNet

eNgiNeeriNg task Force (ietF) 1996). Since
this compression does not exploit LiDAR data
properties, e.g. spatial or temporal correlation,
the compression ratio is likely to be limited.
Due to the complexity of data stored in SPD,
it is difficult to compare the compression ra-
tios with those obtained using other methods.
Though there are results reported on SPD file
compression, they are based on limited ex-
periments (BuNtiNg et al. 2013). Another pro-
posed waveform exchange standard, Pulse-
Waves (iseNBurg 2014) provides an option for
file compression, but it is still in the develop-
ment phase, so details are unknown at the mo-
ment. Additionally, waveform decomposition
for a sum of components or echoes (cHauve

et al. 2007, Mallet & Bretar 2009) also re-
presents lossy FWD compression allowing for
reconstruction/decompression. Obviously, the
compression rate and data distortion strongly
depend on the number of detected echoes. Ac-
cording to the authors’ knowledge, there is no
work published assessing the performance in
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for waveforms compression is based on a 3D
waveform data structure, called a waveform
cube (Jóźków et al. 2015), due to its similarity
to the image cube of hyper-spectral images. A
very similar idea of representing waveforms
in a volumetric data structure, but for static
terrestrial scanning, was presented earlier by
stilla & Jutzi (2008). The waveform cube is
not a standard or a file format, but the struc-
ture of FWD arrangement that maintains the
topology of waveform samples according to
the data acquisition process (Fig. 1). The three
dimensions of the waveform cube are: flight
direction of the aircraft, scan line (cross flight
direction), and the direction of the laser pulse
propagation (waveform). It must be empha-
sized that the waveform cube is not a geore-
ferenced structure, such as an orthophoto or a
digital terrain model (DTM) grid, i.e. the dis-
tance in the 3D space between any two ele-
ments of the cube cannot be calculated based
in the cube indices; however, the topology of
waveform samples is always related to the spa-
tial order of the laser pulses, i.e. the sequence,
as they are acquired in time.

While the formation of the waveform cube
is simple, there are a few additional aspects
that should be mentioned. First, the outgoing
pulse is also digitized as part of the wave-
form record, since this information is essen-
tial for waveform decomposition. There are
two ways to compress the outgoing waveform:
either jointly with the return waveform or in-
dependently, by forming another waveform

terms of ratio and reconstruction noise of the
lossy compression represented by waveform
decomposition parameters.

Since there is little need for lossless com-
pression of FWD (Jóźków et al. 2015), this pa-
per investigates a lossy compression approach
which employs the extensions of JPEG-2000
Standard Part 2 of multi-component trans-
form. This transform allows exploiting the
correlation of waveform samples along three
directions: waveform, scan line, flight line,
and then compresses the entire waveform
cube without the need of separating and com-
pressing single waveforms or arranging them
into groups, etc. In relation to 1D (totH et al.
2010), and 2D (Jóźków et al. 2015) compres-
sion of FWD, the expected gain of the ap-
proach proposed here is a higher compression
ratio, as the data redundancy may be better
removed by considering full spatial (3D) cor-
relation of the waveforms. Additionally, two
other transforms for FWD decorrelation were
tested to investigate whether the reported high
performance of compression based on JPEG-
2000 Standard could be further improved.

2 Waveform Data Arrangement

2.1 Waveform Cube

Full waveform data is not necessarily restrict-
ed to the digitized waveform, but is usually
identified with waveform signal samples, the
essential data for further processing. Addi-
tional data, such as time and pointers to flight
navigation parameters are necessary to com-
pute geolocation and, finally, to create the
point cloud. The size of the mandatory meta-
data, however, is much smaller than the size
of waveform samples, which implies that the
compression is mainly considered for wave-
form samples. Besides the vendor specified
formats for waveform data storage, which are
usually unknown, there are independent stan-
dards allowing the waveform data exchange,
such as the LAS format (asPrs 2013); note
that only point data record formats starting
from LAS v1.3 are able to store FWD, and the
PulseWaves tool (iseNBurg 2014) or SPDLib
(sPdliB 2013) have this capacity, too. The
strategy used in the approach proposed here Fig. 1: Waveform cube structure.
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shape can change abruptly, resulting in a less
efficient compression.

The third aspect is the waveform cube size
which is defined in two directions by the wave-
form record length and the number of pulses
per scan line. Both may fluctuate on some sys-
tems, in which case, empty waveform samples
or records can be inserted, respectively. The
third dimension, however, can be set arbi-
trarily, ranging from a few scan lines to all the
scan lines in a strip. Given the spatial extent
and the computational aspects, a nearly equal
size in the horizontal dimensions is preferred,

cube. Since the size of the outgoing waveform
is fixed, the second option is preferred. Sim-
ilarly, for multi-wavelength LiDAR systems,
waveform cubes can be formed for each sen-
sor; note the correlation among the different
wavelength waveform could be potentially
exploited for compression in the future. The
second aspect is the object space complexity,
which has a paramount effect on the spatial
correlation of the waveforms. Neighbouring
waveforms are generally similar to each other
over open and slowly changing areas, whereas
in built-up areas, such as urban canyons, their

Fig. 2: Test waveform cube location: (a) Area covered by both the C1 and C2 cubes, Corbin, Vir-
ginia, USA, (b) C3 cube, Duck, North Carolina, USA.
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a vertical range of 36 m, clearly sufficient to
include all the natural and man-made objects
in these areas.

3 Compression Strategy

Similarly to our previous work, only lossy
compression methods were considered be-
cause a perfect reconstruction of recorded
FWD is practically not necessary, as dis-
cussed in details by Jóźków et al. (2015).
Based on those results, it was concluded that
JPEG-2000 Standard was the most efficient
among the tested 2D strategies of waveform
data compression. Here the objective is to ex-
tend the compression from 2D to 3D, so the
goal of this study is to benefit waveform data
compression by exploiting the correlation of
waveform samples in each of three dimen-
sions: along flight line, scan line, and wave-
form direction. Extensions of the JPEG-2000
Part 2 (tauBMaN & MarcelliN 2002) intro-
duce a multi-component transform result-
ing in the ability to compress multi-band im-
ages. In short, the simplest multi-component
transform first applies a decorrelating trans-
form, e.g. 1D wavelet transform, to each pixel
of the image in the third dimension, and then
each image component, e.g. band, follows
the JPEG-2000 Part 1 compression schema.
Due to the Part 2 extension, previous JPEG-
2000 restrictions of compression only single
band or three band images, as RGB, were re-
moved and the possibility of applying JPEG-
2000 compression to hyper-spectral images
consisting of multiple bands became avail-
able (kulkarNi et al. 2006). Since the struc-
ture of hyper-spectral images and waveform
cubes are identical, both data types can be
compressed using the same strategies. The ex-
tension of the JPEG-2000 Part 2 containing
multi-component transform is implemented
only in a few specialized software packages,
such as the PICTools Medical SDK for com-
pressing volumetric medical scans (accusoFt

2014), LEADTOOLS JPEG 2000 Image Com-
pression SDK (leadtools 2014), Open-
JPEG library (oPeNJPeg 2014), and Kakadu
Software (kakadu soFtware 2013) which, in
version 7.2, was used in this study. In order
to investigate the variability of the waveform

which is similar to the standard practice of til-
ing large geospatial data. Note that some sen-
sors use multiple waveform digitizers, requir-
ing the use of multiple cubes.

In summary, the idea of the waveform cube
is not ideal in terms of implementation, as it
may not be directly applicable to all scanners;
for example, waveform sample rearrangement
may be needed. Yet in a statistical sense, the
waveform cube provides an effective way to
achieve high compression performance due to
its ability to exploit 3D correlation.

2.2 Test Data

The data variability greatly affects compres-
sion performance manifested by the value of
the compression ratio; usually data with a low
variation can be compressed with higher ra-
tio than more varying data. Consequently, test
data for the assessment of compression perfor-
mance should be chosen carefully, avoiding
the extreme conditions of high and low data
complexity. The test site, shown in Fig. 2a,
contains a mixture of topographic elements,
such as buildings, road infrastructure, dense
forest, single trees, and open terrain. To sup-
port this study, two waveform cubes were ex-
tracted and used in extensive tests, covering
nearly the same area and acquired by using
two different LiDAR systems (Riegl Q680i
and Riegl Q780) on the same flight. This ex-
plains a slightly different size of both test
waveform cubes of 504 × 1200 × 120 and 488
× 1170 × 120 scan lines, waveforms per scan
line, and samples in the waveform (l, s, w di-
mensions in Fig. 1), for the first (C1) and the
second (C2) cube, respectively. Additionally, a
3 km single strip, C3 (Fig. 2b), acquired using
a Riegl Q780 scanner, was processed, allow-
ing to test the algorithm in diverse conditions,
in terms of topographical objects. Tests for C3
data included both emitted and returned wave-
form cubes; the numbers of waveform samples
were 28 and 120, respectively. The strip was
divided into 12 cubes, each containing 496
scan lines, and the number of pulses was 1170
per scan line.

For all datasets, the signal intensity was
sampled at 1 ns with 8 bit resolution. Thus, the
waveform consisting of 120 samples represent
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• Karhunen-Loève transform (KLT) (kar-
HuNeN 1947, Quirk 2003),

• wavelet transform (WLT) using Cohen-
Daubechies-Feauveau 5/3 wavelet (CDF
5/3) (coHeN et al. 1992),

• no transform (NOT) for comparison pur-
poses.
KLT was applied to the cube regarded as

a discrete vector stochastic process (Quirk

2003). This means that the whole waveform
cube should be considered as a single large
image which is the result of ‘gluing’ together
slices of the cube along the waveform-scan
line plane. Considering dimensions of the
cube as l, s, and w according to Fig. 1, the sin-
gle large image B will have the size of w, and
l·s (shown on the right side in Fig. 4) and then
KL-transform is calculated as:

TC K B= ⋅ (1)

where:
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is the KLT matrix whose columns are the ei-
genvectors of the covariance matrix of image
B. Note that covariance of the image can be
calculated two ways, depending on whether
columns or rows of the image are treated as
random variables. In this work, the first meth-
od was applied. C is the KL-transformed sin-
gle large image which is reshaped backward
into the cube, and then subjected to the subse-
quent operations. The key of such use of KLT
is the data decorrelation, resulting in packing
the energy of the signal mostly in the first few
bands (Quirk 2003, vaidyaNatHaN 1998). This
could benefit the JPEG-2000 multi-band com-
pression, where many compressed bands may
contain almost no energy. KLT is reversible,
which means the original image B can be re-
constructed based on the transformed data C
and the transformation matrix K:

B K C= ⋅ (2)

The inverse KLT was applied for the recon-
struction (decompression) process, which in-

cube affecting compression, additional oper-
ations were also performed prior to Kakadu
compression. The flowchart of all performed
operations is presented in Fig. 3 and discussed
below in details.

Since the actual range of waveform sample
intensities (values) varies for each band of the
waveform cube and, thus, may adversely af-
fect the decorrelating transforms, waveform
cube bands were normalized before applying
these transforms. In this study, three variants
of the band-wise normalization were tested:
• zero-mean (ZM), where the mean value of

the band was subtracted from the waveform
samples for each band,

• unit-variance (UV), where beside the mean
removal, sample normalization was applied
so that each band had unit variance,

• no normalization, i.e. using the original
cube data (OC) for comparison purposes.

• JPEG-2000 contains the full lossy com-
pression scheme, including (1) the trans-
form engine for data decorrelation, (2) the
quantization engine for data loss/reduction,
and (3) the bit encoding engine for lossless
compression. Nevertheless, the influence
of using data decorrelations prior to JPEG-
2000 is of interest since better decorrela-
tion usually results in a better compression
rate. Therefore, as a preprocessing step,
three different decorrelation methods were
tested:

Fig. 3: Flowchart of operations executed dur-
ing experiments.
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nal content will be included only in one quar-
ter of the cube. This sequential WLT known
as multi-resolution analysis (MRA) (Mallat

1989) will finally result in packing the energy
of the signal in the first few bands, similar to
KLT (see the length of Lo component in Fig. 4).
The number, n, of possible levels of MRA de-
pends on the length of the original signal. n is
less than log2 (m), where m is the length of the
signal; for example, for a waveform length of
120, used in this study, the maximum MRA is
7 levels; however, only three levels were used
here to avoid edge effects and length extension
of the WLT components. Similarly to KLT,
WLT is totally reversible.

From the perspective of compression of an
8 bit waveform cube, data normalization and
transforms contradict to the idea of data re-

cludes data reshaping between waveform cube
and single large image, but in the reverse order
as in the compression process.

In the second test, 1D WLT was applied to
each waveform separately (Fig. 4). The results
of WLT are low- and high-frequency compo-
nents, denoted here as Lo and Hi. Considering
1D WLT as applied in this work, both Lo and
Hi components have the same length, equal to
half of the length of the original signal (wave-
form). Note that the low-frequency compo-
nent contains most of the original signal en-
ergy, thus considering such transform for all
waveforms, the energy would be packed into
one half of the cube bands. Similarly, the Lo
component can be subjected to another WLT
resulting in two new components having half
of the length of the parent, so the original sig-

Fig. 4: Wavelet transform applied on the large image of the whole waveform cube.
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rameter is the bits per pixel ratio, i.e. the aver-
age number of bits for a single pixel in the
compressed file. Obviously, this value must be
smaller than the bit depth in the original image
in order to gain a reduction in the file size, but
a smaller ratio means a larger data distortion
due to compression. The resulting ratio might
be slightly different from the value given by
the user because the compression strength de-
pends also on the inherent parameters of the
data. Since the original waveform data is 8
bits, experiments were executed for 20 para-
meters, ranging from 0.4 to 8 bits with a step
size of 0.4 bits. Note that Kakadu compressed
JPEG-2000 file might include several recon-
struction qualities, in other words, one file
may contain data compressed with different
ratios at the same time, but this option was not
tested during this investigation.

4 Performance of Waveform Data
Compression

Compression performance might be evalu-
ated from different perspectives, such as the
achieved compression ratio and reconstruc-
tion error. The compression ratio is defined
by the percentage of the compressed file size
with respect to the original one. In the case
of image compression, the bits per pixel ra-
tio (BPP) or the bits per pixel per band ratio
(BPPPB) are frequently used to describe the
compression ratio, depending whether a sin-
gle- or a multi-band image is compressed. The
BPP value is the number of bits used to store
a single pixel in the compressed image. Due
to the similarity of multi-band images and
waveform cubes, the BPPPB was used in this
study. Note that a pixel of the image cube is
equivalent to a waveform sample in the wave-
form cube. Knowing the BPPPB ratio for the
original and compressed cubes, the compres-
sion ratio or percentage ratio can be easily
calculated. The compression ratio is also af-
fected by the file header, or metadata, essen-
tial for decompression. This data is kept in
the compressed file, increasing its size. The
final BPPPB ratio was calculated on the basis
of the file size produced by the Kakadu Soft-
ware and the number of waveform samples in
the waveform cube. Note that the size of oth-

duction since these operations result in a lar-
ger data size due to a conversion from inte-
gers into real numbers, usually in 32 bit or 64
bit representation. Additionally, some of the
compressing tools do not allow floating point
numbers as input pixel (sample) values. For
example, the Kakadu Software accepts only
32 bit input. Therefore, the quantization en-
coding is needed to allow mapping floating
point numbers into integers. Note that this
process is invertible, known as quantization
decoding, but provides no perfect reconstruc-
tion. The experiments on the test data showed
that an 8 bit range would be too short to avoid
large quantization errors, and, thus, more bits
for the quantization base are needed. In this
experiment, a linear quantizer with a 28 bit
base length was used providing much larger
dynamic range than that of the original data
(8 bits). The amount of the introduced quan-
tization noise and other data distortion, such
as numerical errors of data normalization and
transforms not caused by JPEG-2000 com-
pression, was empirically evaluated. First, the
test waveform cubes were subjected to for-
ward processing, including data normaliza-
tion, transform, and quantization encoding;
and then, the inverse operation, i.e. quantiza-
tion decoding, inverse transform, and reverse
data normalization, was carried out. The ob-
served maximal absolute difference between
the value of the original and reconstructed
waveform sample was on the level of 1e-4 that
equals to 0 in integer terms.

The results of the investigation of image
based waveform cube compression (Jóźków
et al. 2015) showed that the best compres-
sion performance was obtained for the set of
images where the single image was formed by
all waveforms of a single scan line (according
to s and w dimensions in Fig. 1). Therefore,
the waveform cube was rotated prior to multi-
band compression in the Kakadu Software,
thus the dimension l of the cube was treated as
the band during JPEG-2000 multi-component
transform.

In the case of lossy compression, the user
can decide partially about the amount of data
degradation and compression ratio. Depend-
ing on the implementation, a quality factor is
used to control the desired compression ratio.
In the Kakadu Software, this user input pa-
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consequently, resulting in a much slower ex-
ecution than the 2D compression. Obviously,
any computation on larger datasets like wave-
form cubes requires much more memory re-
sources than computation performed on a
small part of this data like the single image
slice. These issues were not considered in this
work in evaluating the computational expens-
es of the compression performance.

Finally, the impact of compression noise
can be evaluated looking at the results of sub-
sequent waveform data post processing tasks,
but executed on the decompressed data. For
example, the Gaussian waveform decomposi-
tion should result in the same number of de-
tected echoes with insignificantly different
parameters from those obtained in processing
the original uncompressed FWD. Note that
even well-established waveform decomposi-
tion methods produce varying results, just as
the number of parameters used to describe the
components can be different, for example, 3
and 4 (cHauve et al. 2007), or even 5 (laky

et al. 2010). Based on the earlier investiga-
tion (Jóźków et al. 2015), it was concluded that
the SNR of above 30 dB – 35 dB in typical
airborne LiDAR data assures an acceptable
waveform reconstruction error which will not
cause significant changes in waveform shape
and, consequently, does not affect the results
of subsequent FWD processing, in particular
waveform decomposition.

5 Results and Discussion

Numerical experiments were performed
with all combinations of the three decorre-
lation techniques (OC, ZM, UV) and three
transforms (NOT, KLT, WLT) at 20 differ-
ent user specified compression ratios for two
test waveform cubes C1 and C2. To discuss
and analyze the effects, experimental results
are visualized by showing the SNR as a func-
tion of the obtained BPPPB in Fig. 5. For com-
parison purposes, results obtained for the
same data but using the earlier proposed ap-
proach, based on JPEG-2000 compression of
waveforms arranged in the set of 2D images
(Jóźków et al. 2015) was added to the figures.
It should be also explained why 2D compres-
sion did not result in large SNR or BPPPB ra-

er data, mandatory for reconstruction, such as
mean values of bands in the case of ZM data
or K matrix in the case of KLT transform and
quantization parameters, were not included in
this calculation. The omission of these param-
eters in the size calculations does not change
the BPPPB ratio significantly, because the size
of these parameters is much smaller than the
size of the compressed cube.

The performance of lossy compression
methods is related to the data degradation, the
distortion (noise) introduced due to quantiza-
tion included in the compression process. Re-
construction noise (error) can be measured by
different parameters, such as signal to noise
ratio (SNR), peak signal to noise ratio (PSNR)
(vaidyaNatHaN 1993), or just by giving sim-
ple statistics of the differences between recon-
structed and original data. In this work data
distortion was measured by the SNR, which
is based on the variance of waveform samples
and their differences:

2

10 210 log o

o r

SNR σ

σ −

= ⋅ (3)

where
σ2

o – variance of all the original waveform
samples,

σ2
o−r – variance of waveform sample differ-

ences between original and compressed
data.

For a low data degradation, the SNR is
large, and it approaches infinity for a perfect
reconstruction. Note that the calculated SNR
describes only quantization noise of the origi-
nal waveform signal.

Another aspect of compression perfor-
mance is the computational cost, the compres-
sion and decompression speed and use of com-
puter resources. In our previous work (Jóźków
et al. 2015), it was concluded that 2D JPEG-
2000 based compression is fast enough to sup-
port waveform compression during the acqui-
sition process in the sensor system, as wave-
forms forming single scan lines might be com-
pressed progressively. Similarly, waveform
cubes might be compressed progressively by
the approach presented in this work. However,
the additional transforms for data decorrela-
tion introduced in this experiment, e.g. KLT,
make the algorithm much more complex and,
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Fig. 5: SNR as a function of BPPPB ratio, BPPPB = bits per pixel per band ratio.
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malization (OC) and transforms (NOT, KLT),
resulting in similar performance for compress-
ing received waveforms. SNR obtained for
C3, however, was about 10 dB larger than for
the C1 and C2 cubes. This may be explained
by the simpler object complexity of the C3
area. Similarly, a difference of performance
between compressing cubes of emitted and
received waveforms was observed, as a large
number of zero samples in the received cube
resulted in higher SNR for large compres-
sion ratios. In contrast, the strong similarity
of the emitted waveforms allowed for higher
SNR for small compression ratios. This close
similarity of the outgoing waveforms was also
exploited by applying an additional decorre-
lating transform. For example, KLT applied to
the emitted cube resulted in higher SNR, es-
pecially for large compression ratios, than in
the case where the preprocessing transform
was not applied (NOT). Since the outgoing
waveforms change very little, instead of us-
ing adaptive KLT, a fixed KLT may be applied
to reduce the computational expenses. Finally,
comparing results of 2D with 3D compression
approaches, the same observations can be not-
ed as for the smaller cubes C1 and C2. Com-
pression performance differences for emitted
and received cubes in the 2D approach follow
the same pattern as for 3D approach.

Comparing waveform compression results
of the earlier 2D and here proposed 3D meth-
ods, both based on the JPEG-2000 Standard,
the difference is not significant; for example,
for unnormalized and untransformed data, the
3D approach for small BPPPB ratio gives a
slightly larger SNR than the 2D approach, the
difference being about 5 dB – 10 dB. Clearly,
the flexibility of the 3D approach to adjust the
data degradation and compression ratio is an
obvious advantage.

6 Conclusions

This work investigated the feasibility of com-
pressing waveform cube using multi-com-
ponent JPEG-2000 extension. The tested ap-
proaches included additional computations,
such as data normalization and transforms
prior to JPEG-2000 compression.

tio. For the user input ratios 2.4 bits and larger,
the obtained SNR was always similar, about
35 dB and 41 dB for C1 and C2, respectively,
as well as similar was the BPPPB ratio, about
1.7 and 2 bits for C1 and C2, respectively. This
explains the higher dynamic of JPEG-2000
based 3D compression than 2D compression
of the waveform cube.

Comparing results obtained for C1 and C2
test cubes, it is clearly seen that the impact of
using different sensors for collecting FWD
for the same area is insignificant; a slightly
larger (maximally 5 dB) SNR was obtained
for the test cube C2. The most likely reason is
the lower internal complexity of cube C2, as
the compression of images containing less de-
tails results in lower reconstruction noise for
the same compression rate. Among the used
transforms, the worst SNR was obtained for
WLT. This could be explained with the fact
that Lo and Hi components are usually in very
different ranges and, thus, a non-linear quan-
tizer might be more appropriate for preserv-
ing better dynamic range of the quantized
component values prior to JPEG-2000 com-
pression. Differences between the other two
transforms, KLT and NOT, are maximally of
about 5 dB for the same BPPPB ratio, where
higher SNR was obtained for KLT in the case
of small ratios and NOT in the case of large
ratios. Considering that the used KLT is adap-
tive (needs to be calculated for every dataset),
and therefore highly computational expensive,
and the improvement of the SNR by a few dB
only for small BPPPB ratios compared to the
case of using no transform (NOT), it is clearly
not beneficial in practice. Obviously, a fixed
KLT matrix for similar datasets might be used
to reduce the number of computations, but it
is extremely difficult to find representative
datasets of FWD to create a fixed KLT base
(Jóźków et al. 2015). The last aspect of the in-
vestigated approach is the data normalization
method. The worst SNR was obtained for UV.
Differences between OC and ZM are insignif-
icant, which implies that data do not require
any normalization and the intensities of the
original waveform samples are suitable for the
compression.

Based on the C1 and C2 results, compres-
sion experiments with the C3 dataset were ex-
ecuted only for the best performing data nor-
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Based on the numerical experiments per-
formed on three waveform cubes, it was con-
cluded that in relation to 2D JPEG-2000 based
compression, the multi-component extension
is more flexible, because the user can chose
between a larger range of compression ra-
tios and select larger file sizes to obtain very
low data loss, which was not possible for the
2D approach. For larger compression ratios
(small BPPPB ratio), however, both 2D and
3D approaches result in similar performance
in terms of data degradation and reduction of
the file size. Note that for both approaches,
this similar performance was obtained for the
same cube orientation where bands (images)
were formed from waveforms representing
single scan lines, offering more flexibility for
the practical use where the same compression
tool might be used with two different vari-
ants depending on the available computational
power. More importantly, both single imag-
es and waveform cubes can be then progres-
sively compressed according to the waveform
data acquisition order. The advantage of 2D
approach is speed, but the disadvantage is the
low dynamic range and the inability to achieve
a large SNR. Multi-component compression is
slower, but gives the user more choices on de-
ciding about the amount of data degradation.

The used implementation of the JPEG-2000
Standard with wavelet-based multi-compo-
nent transform performed well in decorrelat-
ing the original waveform cube data. Addi-
tional data normalization or transform of the
original waveform cube did not show signifi-
cant improvements in 3D compression perfor-
mance, and only caused extra computational
costs.

Finally, one more advantage of using JPEG-
2000 Standard for compressing waveforms
in both approaches is the possibility of keep-
ing different reconstruction levels in one, but
larger file. It can be useful for data distribu-
tion with different distortion and compression
levels depending on the application require-
ments.
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