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1. Introduction 
A major challenge in prostate cancer (PCa) research is to distinguish aggressive from indolent 
disease. Although the D’Amico risk stratification is helpful and widely used to guide PCa 
treatment, it relies on a few standard clinical parameters (prostate specific antigen (PSA), stage, 
and grade) and cannot always reliably distinguish patients who will die from PCa from those 
who do not, leading to over-treatment and unnecessary side effects in many men with “low-risk” 
disease, preventing PCa-specific mortality only in a small minority. On the other hand, some 
cancers may be destined to recur despite aggressive multi-modality therapy. There is an urgent 
need for additional biologically relevant markers to improve prognostication beyond algorithms 
based solely on PSA, stage, and grade. Ideally, such biomarkers could also provide clinical 
guidance for alternative or novel treatments. Our prospective studies of adiposity, physical 
activity, and several individual biomarkers in two large Harvard cohorts demonstrate that 
markers of energy metabolism such as insulin, adipokines, and de novel fatty acid synthesis may 
play important roles in risk of lethal PCa. Recent development of a metabolite profiling platform 
by Dr. Clish’s laboratory at the Broad Institute of MIT/Harvard further showed promising 
potential along this line of research. This technology has identified in vitro an aberrant activation 
of the PI3K downstream target as a common molecular event in cancer pathology and obesity; 
revealed significant associations of several amino acids and lipid metabolites in human plasma as 
signatures of insulin resistance and diabetes risk; and identified signatures of exercise 
performance and cardiovascular disease susceptibility, proving its validity of metabolic profiling. 
In addition, the methods have also passed our own rigorous reproducibility assessments. All 
these provide important ground work for the current proposal. The current study is using a 
targeted, LC-MS-based metabolite profiling platform to measure and compare metabolic profiles 
of prediagnostic blood samples collected from men subsequently diagnosed with PC and sample 
of men who remained cancer-free in Physicians’ Health Study (PHS). And test whether these 
relationships are independent of the known metabolic risk factors (overweight/obese, insulin 
marker C-peptide, insulin-like growth factor I (IGF-I), IGF binding protein 3, (IGFBP-3), and 
adiponectin) as well as the clinical characteristics defined as the D’Amico risk. 

 
 
2. Keywords 
Prostate cancer survivorship, metabolomic profiling, metabolic biomarkers 

 
 
3. Accomplishments 

 
What were the major goals of the project? 
The three original aims were: 
Aim 1: Explore and validate the metabolomic footprints for normal controls (n=50 x 2 cohorts) 
vs. three groups of cases (metastatic PC at diagnosis, initially localized PC and long-time 
survivors, and initially localized PC but died of PC; n=50 in each of the three groups, total n=150 
cases x 2 cohorts); 
Aim 2: Among men with initial localized PCa, explore and validate the metabolomic footprints 
for long-term survivors vs. men who subsequently died of PCa; 
Aim 3: Test and validate whether these associations are independent of the known metabolic risk 
factors (overweight/obese, insulin marker C-peptide, insulin-like growth factor I (IGF-I), IGF 
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binding protein 3 (IGFBP-3), and adiponectin), as well as the clinical characteristics defined as 
the D’Amico risk. 

 
In the original protocol, we plan to measure samples of PCa cases from both HPFS and PHS. 
However, the HPFS team has received separate grant for metabolomics measurement. Therefore, 
we amended our study population to exclude HPFS data, instead we use the fund to increase the 
sample size from 50 to 100 for each of the proposed aims so that the total sample size remain 
unchanged.  
 

 
Modified aims: 
Aim 1: 1a. Compare to 100 healthy men without cancer (at least at the time when the cases were 
diagnosed), metabolomic profiling for 100 men with "high risk" (T1-3 and Gleason 8+) or 
metastasis at diagnosis; 1b. Among men with "high risk" (T1-3 and Gleason 8+) or metastasis at 
diagnosis, metabolomic profiling between men who died of the cancer vs. those who were still 
alive by 2012; 
Aim 2: Compare the metabolomic profiles between 100 men with "low-intermediate risk" (T1-3 
and Gleason 2-7) PCa and died of the cancer with those (n=100) who survived at least 10 years 
after diagnosis. 
Aim 3: Test whether these associations are independent of the known metabolic risk factors 
(overweight/obese, insulin marker C-peptide, insulin-like growth factor I (IGF-I), IGF binding 
protein 3 (IGFBP-3), and adiponectin), as well as the clinical characteristics defined as the 
D’Amico risk. 

 
What was accomplished under these goals? 
Based on the available samples, we utilized matched case control design to select the blood 
samples to be measured. The selected blood samples are currently being analyzed in the lab and 
we expect to receive the lab data by early 2015. While we are waiting for the lab results, we have 
been working on analyzing the related metabolic biomarkers and writing up manuscripts. 

 
I. Sample selection 
Based on the available samples, we utilized matched case control design to select the blood 
samples to be measured. The following part showed the matching method for each specific aim. 

 
Aim 1: Study Population: 

1) All population in the cohort; 
2) Blood volume >100 ml; 
Cases: 
1) Incidence PCa cases 2) Localized and high grade cases or mets at diagnosis; 3) status 
in mortality file: died of PCa or alive; 
Control Matching criteria: 
1) Same age group at baseline: 40-<50 50-<60 6-<70 70+years 
2) Same fasting >=8, 0<8 hrs 
3) Controls have no cancer, or have cancer, but diagnosed after the last PCa diagnosis 
date in the age and fasting group.( we only have cancer information, no other disease 
info) 
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4) Frequency matching: get same percentile at each age group and total controls are 100. 
Program: SAS proc surveyselect 

Aim2: Study Population: 
1) Incidence PCa cases with blood collected in 1982; 
2) Localized and low grade cases; 
3) Blood volume >100 ml; 
Cases: 
1) Status in mortality file: 1)PCa death; 2) Survived less than 10years 
Control Matching criteria: 
1) Same age at diagnosis 
2) Same fasting >=8, 0<8 hrs 
3) Same Gleason category: 2-6,7 
4) Controls are alive now, and alive more than 10 years. 
5) 1:1 match", program: proc sql and hash table 

 
In summary, for aim 1, we selected 100 cases who have localized, high grade PCa (clinical 
stage T1-T3, Gleason grade 8-10) or who have metastatic PCa (clinical stage T4N1M1 
,Gleason grade 2-10). We matched 100 controls from participants in PHS who were cancer 
free or have cancer, but diagnosed after the same group of cases. For aim 2, 48 eligible cases 
were identified from PHS, those cases have localized low grade (clinical stage T1-T3, Gleason 
grade 2-7) PCa who died of PCa within 10 years after diagnosis. Among them, 43 got matched 
with controls, who have localized low grade (clinical stage T1-T3, Gleason grade 2-7) PCa, 
alive at the end of this study or who have been alive more for than 10 years (Table 1). 

 
Table 1: Final Result of sample selection 
Classification (N) Sample size Matched controls 

Aim 1 (All Population)  
Localized  T1-T3  & 
Gleason 8-10 

Died of PCa 43 

Alive 57 

Metastatic PCa 
(T4N1M1) 

Died of PCa 51 

Alive 30 
 Total 181  

Healthy controls  100 
Aim 2 (Incident PCa with 82 blood)   
Localized  T1-T3  & 
Gleason 2-6 ,7 

died of PCa 48  
Long-term survivor 10 yr+ controls 487 43 

 

Following this matching procedure, we selected a total of 372 (Aim1: 181 cases  and  100 
matched controls; Aim 2: 48 cases and 43 matched controls) blood samples for analyses. 28 QC 
samples were also included. After checking with the blood lab staff, we have only 
successfully identified 329 out of 372 eligible samples, and 40 quality control samples 
from lab. We then decided to add 31 additional samples from PCa patients who have been died 
from other cancers. We sent a final number of 400 samples to Dr. Clish’s lab at November, 2014.
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Power consideration: 
The data generated in Aims 1a, 1b, and 2 are all from matched/paired design. Hence, we use the 
same power calculation formula (Cohen, 1988) to estimate the powers given the sample size and 
type I error rate. We set the type I error rate as 0.05. The differences among the 3 aims are the 
effect size, which is unknown until we obtain the data. Hence, we tried a sequence value of effect 
size. In our original plan, we have n=50 subjects for each of the 2 groups. In the current plan, we 
have n=100 subjects per group. The power curves shown in the following Figure shows that the 
power is significantly improved when the sample size is increased from n=50 per group to n=100 
subjects per group. For n=50 per group, as long as the effect size > 0.41, the power would be > 0.8. 
For n=50 per group, as long as the effect size > 0.41, the power would be > 0.8. For n=100 per 
group, as long as the effect size > 0.29, the power would be > 0.8. 

 
Some concerns regarding the PI’s access to the HPFS data for validation: 
Because the HPFS have separate funding to measure metabolomics for their PCa cases and 
controls, we decided to focus this grant solely on the PHS to avoid redundant work but we will 
validate the model with the HPFS data even though the DOD is not paying for the analysis. To 
reassuring the DOD that the PI could do so, we have a letter of agreement from Dr. Mucci, the co-
leader of the HPFS SPORE project, to confirm that the PI Dr. Ma will be granted access to the 
HPFS data so that we can complete the validation.   

 
II. Completed/ongoing studies & results 
a. Insulin-like growth factor (IGF) pathway genetic polymorphisms, circulating IGF1 and 
IGFBP3 levels and prostate cancer survival 
We conducted kernel machine pathway analysis to evaluate whether 530 tagging single- 
nucleotide polymorphism (SNP) in 26 IGF pathway-related genes were collectively associated 
with prostate cancer mortality among 5,887 prostate cancer patients (704 prostate cancer deaths) 
from 7 cohorts in the NCI Breast and Prostate Cancer Cohort Consortium (BPCa3). 

 
IGF signaling pathway was associated with prostate cancer mortality (P=0.03), and SNP sets of 
IGF2-AS and SSTR2 were the main contributors (both P=0.04) (Table 5). In SNP-specific 
analysis, 36 SNPs were associated with prostate cancer mortality with Ptrend<0.05 but only 3 
SNPs in the IGF2-AS remained significant after gene-based corrections. Two of the three SNPs 
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were in perfect linkage disequilibrium (r2=1 for rs1004446 and rs3741211) whereas the third 
rs4366464 was independent (r2=0.03). The hazard ratios (HRs) per each additional risk allele 
were 1.19 (95% CI 1.06-1.34; Ptrend=0.003) for rs3741211 and 1.44 (1.20-1.73; Ptrend=0.0001) for 
rs4366464. Rs4366464 remained significant after correction for all the SNPs tested 
(Ptrend.corr=0.04, Meff=424). Pre-diagnostic circulating levels of IGF1 (HRhighest vs lowest quartile 0.71; 
95%CI 0.48-1.04) and IGFBP3 (HR 0.93; 95%CI 0.65-1.34) were not associated with prostate 
cancer mortality. 

 
The manuscript has been published by JNCI (June, 2014). 

 
b. Characterization of energy-related biomarkers measured before and after PCa diagnosis 
in predicting all-cause and PCa-specific mortality. 
In the PHS, we defined “high energetic risk” as BMI>25 kg/m2 and elevated C-peptide levels (in 
the highest quartile). We found that this “energetic risk” significantly predicted PCa mortality 
among men with localized disease at diagnosis independent of clinical characteristics. We 
replicated this association in an independent cohort, the Health Professionals Follow-up Study 
(HPFS). 

 
In both cohorts, we found that incorporating this “energetic risk” to the D’Amico risk score 
(defined by three clinical perimeters: PSA, clinical stage, and Gleason score) significantly 
improved the predictability of PCa-specific mortality and all-cause mortality in men with initial 
diagnosis of localized cancer; the C-statistic for PCa-specific mortality was improved from 0.72 
to 0.78 (P<0.001). Moreover, “energetic risk” identified ~20% of patients who are at high risk of 
disease specific mortality but are classified as low risk according to clinical characteristics.  The 
resulting paper is undergoing peer-review. One major concern raised was the potential 
confounding by comorbidity and treatments. We therefore carefully evaluated the impact of 
these two factors from both cohorts and found little changes of the overall results. 

 
c. Pre-diagnostic Obesity, Smoking and PCa survival 
Although obesity and smoking has not been strongly associated with prostate cancer (PCa) 
incidence, merging evidence linked them to increased PCa-specific mortality.we investigated the 
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associations of pre-diagnostic BMI and smoking status with risk of progression from time of PCa 
diagnosis to fatal outcome among 10,106 PCa patients from the NCI Breast and Prostate Cancer 
Cohort Consortium (BPC3). 
Figure 1. Age-adjusted cumulative incidences of a) PCa-specific mortality; and b) Total mortality stratified by BMI 
categories and smoking status among PCa men from BPC3 study 

 
 

Cumulative incidence curves show the probability of prostate cancer-specific mortality or total mortality after 
diagnosis according to baseline smoking and BMI categories, controlling for age at diagnosis. 

 
The cumulative PCa-specific and overall mortality was much higher in current smokers as 
compared with never or former smokers. In contrast, the difference according to BMI categories 
among non-current smokers is much smaller, but still apparent for total mortality. This study 
provides further evidence that overweight/obesity and smoking history prior to diagnosis are 
related to poor survival among patients with PCa. The manuscript has been developed and is now 
circulating among coauthors. 

 
d. Type 2 Diabetes before and after PCa diagnosis with PCa-specific and all-cause mortality. 
Utilizing the same cohorts data from BPC3, we also observed that New T2D cases after PCa 
diagnosis was linked to improved survival among PCa cases (Table 2). We plan to look into this 
together with T2D related SNPs and C-peptide information. 

 
Table 2: Diabetes status and prostate cancer/other mortality in the BPCa3 cohort 

 

Prostate cancer specific mortality Other mortality 
Variable  

  

HR 95%CI p value HR 95%CI p value 
 

 

Never Ref Ref Ref 
Diabetes 
status Before PCa diangosis 1.02 0.95 1.09 0.583 0.004 

0.021 
 

Multivariate model adjusted for age at diagnosis (continuous), smoking status (never, former, current), BMI (18- 
22.9, 23-24.9, 25-27.9, 28-29.9, 30-34.9 kg/m2), drinking status (never, <15g/day, ≥ 15&<30g/day, ≥30g/day) , 
diabetes status (never, baseline, new), cohort (ATBC, CPS2, EPIC, HPFS, MCCS, MEC, PHS, PLCO), duration 
between baseline and PCa diagnosis (continuous); 

 
 

e. GWAS-identified type 2 diabetes SNPs and risk of progression to fatal prostate cancer 

 1.25 1.08 1.46  
After PCa diagnosis 0.72 0.61 0.84 <.001 0.62 0.41 0.93 
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This study will be based on our recently published study using the BPCa3 genome-wide 
association study of 2,782 advanced PCa cases and 4,458 controls to evaluate whether 36 T2D 
susceptibility loci and PCa incident risk (M Machiela et al. Am J Epidemiol 2012). Ten T2D 
markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, 
FTO, and HNF1B) were nominally associated with PCa risk (P < 0.05); the association for 
rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for 
(adjusted P = 0.001). Genetic risk scores weighted by the T2D log odds ratio and multilocus 
kernel tests also indicated a significant relation between T2D variants and PCa risk. These T2D 
risk variants have not been fully investigated for PCa progression to fatal outcome. Also, few 
studies have T2D phenotypes or sufficient power to assess whether T2D status mediates the 
relationship between T2D risk variants and PCa risk. We will fully evaluate these genes and 
mediation through or interaction with T2D for fatal PCa. We will also explore the association 
between T2D risk variants and risk of specific type of PCa cases (advanced PCa and died, 
advanced PCa and long term survivors 10+, localized PCa cases) For our analysis, all 36 T2D 
SNPs have been pulled out for 7,240 participants including both cases and controls from the 
imputed data files for BPCa3 Adv Prostate Cancer GWAS.  The imputation was done using 
HapMap 2 Rel 22 CEU phased data as the reference panel. 

 
f. Elevation of circulating branched-chain amino acids is an early event in human 
pancreatic adenocarcinoma development. 
The pancreatic cancer group from Danna Farber Cancer Institute has also been working on the 
metabolomics of pancreatic cancer development. We are also working closely with this group 
on metabolomics data analysis. 

 
This study utilized profiled metabolites in prediagnostic plasma from individuals with pancreatic 
cancer (cases) and matched controls from four prospective cohort studies. And find that elevated 
plasma levels of branched-chain amino acids (BCAAs) are associated with a greater than twofold 
increased risk of future pancreatic cancer diagnosis. This elevated risk was independent of 
known predisposing factors, with the strongest association observed among subjects with 
samples collected 2 to 5 years before diagnosis, when occult disease is probably present. We 
show that plasma BCAAs are also elevated in mice with early-stage pancreatic cancers driven by 
mutant Kras expression but not in mice with Kras-driven tumors in other tissues, and that 
breakdown of tissue protein accounts for the increase in plasma BCAAs that accompanies early- 
stage disease. Together, these findings suggest that increased whole-body protein breakdown is 
an early event in development of pancreatic ductal adenocarcinoma (PDAC). 

 
This manuscript has been published in Nature Medicine (Sep, 2014). 

 
What opportunities for training and professional development has the project provided? 
This provided has provided funding and research opportunities for several doctoral and post- 
doctoral students from Harvard T.H. Chan School of Public Health. 

 
Yin Cao, graduated from the doctoral of science program from Epidemiology department, and a 
current post-doc student at Nutrition Department.  One of her thesis paper was based on and 
supported by the current project. 
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Changzheng Yuan, doctoral candidate at Nutrition and Epidemiology Department. She is now 
working on three research topics related to this project, mainly focusing on obesity, T2DM and 
genetic variants related to prostate cancer development. 

 
Meng Yang, postdoc fellow at Nutrition Department. She currently working on studying the 
BMI trajectory, dietary factors, metabolic biomarkers and prostate cancer survivorship. 

 
CY and MY also work closely with the project leader and statisticians to discuss the study design 
and sample selections. 

 
How were the results disseminated to communities of interest? 
Nothing yet to report. 

 
What do you plan to do during the next reporting period to accomplish the goals? 
We plan to conduct the analyses based on the proposed aims of metabolomic analysis after 
receiving the lab analyses results. 

 
 
4. Impact 
What was the impact on the development of the principal discipline(s) of the project? 
The most notable strength of our proposal is the use of unbiased metabolomic profiling to 
distinguish lethal from indolent disease, a major challenge in prostate cancer research. Prostate 
cancer accounts for 25% of all newly diagnosed cancers and 9% of all cancer deaths in men, 
making it the most commonly diagnosed and second most lethal cancer for men in the United 
States.  Wide spread use of PSA screening has changed the stage and grade distribution of 
disease at diagnosis but appears to have only modest effects on prostate cancer mortality. In the 
United States, 80 to 90% of prostate cancer cases are confined to the prostate and two-thirds of 
the cases are localized or regional disease and low- to moderate- grade at diagnosis. Current use 
of clinical features cannot always reliably distinguish patients who will die from prostate cancer 
from those who do not. Thus, it is important to identify novel markers specifically associated 
with lethal prostate cancer and lifestyle factors that influence disease progression. 

 
The short-term (1-3 years) impact of this prospective study will be to provide a deeper 
understanding of the mechanisms of lethal PC phenotype so that relevant biological pathways 
can be revealed and new biomarkers can be developed. Findings from this study will help better 
understand the mechanisms of action of energy balance in tumor growth and metastasis and 
reveal novel biomarkers and pathway effects. This line of research is especially important in the 
context of highly prevalent obesity and hyperinsulinimia among nondiabetic U.S. adults in recent 
decades. Findings of this study could then provide biological rationale that risk of lethal PC 
could be reduced before or at early stage of the disease by modifying metabolic risk through 
physical activity, healthy diets, and other innovative approaches. 

 
The long-term (3-8 years) goal of our biomarker study is to provide targeted patient 
identification and stratification to link patients with common biomarkers to the appropriate 
therapy. Our research could be extended to larger validation studies using novel biomarkers for 
better stratification methods than the current clinical parameters (e.g., D’Amico risk) to link 
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patients with common biomarkers to the appropriate personalized prevention and therapeutic 
strategies. The new risk stratifications could then help to identify candidates for randomized 
trials of novel agents targeting metabolic dysregulation and pathways. Ultimately, these novel 
biomarkers could also be candidates for response to such interventions. 
The overarching challenges and focus areas of this proposal are discovery and validation of 
biomarkers for the detection and prediction of lethal prostate cancer. This study addresses the 
overarching challenge and one of the PY11PCRP focus areas: discovery and validation of 
biomarkers for the detection and prediction of lethal prostate cancer from indolent disease, so 
that men with indolent disease could be spared from over-treatment, whereas those with high risk 
potential for lethal phenotype could receive appropriate personalized interventions at an early 
stage. 

 
What was the impact on other disciplines? 
Nothing yet to report. 

 
What was the impact on technology transfer? 
Nothing yet to report. 

 
What was the impact on society beyond science and technology? 
Nothing yet to report. 

 
 
5. Changes/Problems 
Changes in approach and reasons for change 
As mentioned above, we now only focus on the PHS cohort. 

 
Actual or anticipated problems or delays and actions or plans to resolve them 
Nothing yet to report. 

 
Changes that had a significant impact on expenditures 
Nothing yet to report. 

 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, 
and/or select agents 
Nothing yet to report. 

 
 
6. Products 
Journal Publications: 
1) Machiela MJ, Lindström S, Allen NE, et al. Association of type 2 diabetes susceptibility 
variants with advanced prostate cancer risk in the Breast and Prostate Cancer Cohort 
Consortium. Am J Epidemiol. 2012 Dec 15;176(12):1121-9. PMID: 23193118 
2) Song Y, Chavarro JE, Cao Y, et al. Whole Milk Intake Is Associated with Prostate Cancer- 
Specific Mortality among U.S. Male Physicians. J Nutr. 2013 Feb;143(2): PMID:23256145 
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3) Cao Y, Lindström S, Schumacher F. Et , et al. Insulin-like growth factor (IGF) pathway 
genetic polymorphisms, circulating IGF1 and IGFBP3 levels and prostate cancer survival. 
JNCI. 2014 Jun; 106(6): PMID: 24824313 
4) Mayers J, Wu C, Clish C, et al. Elevation of circulating branched-chain amino acids is an 
early event in human pancreatic adenocarcinoma development. Nature medicine. 2014 Sep. 
20(10): PMID: 25261994 

 
Other publications, conference papers, and presentations: 
Yuan C, Cao Y, Chavarro J, Lindström S …, Ma J. Prediagnostic body-mass index, smoking and 
prostate cancer survival in a multi-cohort consortium study. A poster was presented at the 
Frontier of Cancer Prevention Research 2013 Conference in Washington DC, Nov. 2013. 

 

7.Participants & Other Collaborating Organizations 
 
What individuals have worked on the project? 
 

 
Name Jing Ma 
Project Role: PI 
Researcher Identifier 0000-0002-9132-0741 
Nearest person month worked 2.52 
Contribution to Project As the project PI, Dr. Ma has leaded the weekly 

meetings for project team members. She direct and is 
responsible for the overall study design and 
performance, report and manuscript preparation 

Funding Support R01CA141298 (Stampfer) – 0.6 Calendar Month 
R01CA137178 (Chan) – 0.24 Calendar Month 
W81XWH-11-1-0529 (Chavarro)- 0.24 Calendar Month 
U45 CA10006 (Hu)- 7.08 Calendar Month 
U01CA155340 (Han-Sub)- 0.12 Calendar Month 

  
 

Name Jorge Chavarro 
Project Role: Other Significant Contributor 
Researcher Identifier  N/A 
Nearest person month worked No Measurable Effort 
Contribution to Project Dr. Chavarro works closely with Drs. Ma, Clish, and Qiu 

on data analysis, interpretation, and manuscript 
preparation 

Funding Support HHSN275201000020C (Hu)- 2.40 Calendar Month 
CA-10-006 (Hu)- 2.28 Calendar Month 
W81XWH-11-1-0529 (Chavarro)- 4.20 Calendar Month 
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Name HayHaiyan Zhang 
Project Role: Data Manager 
Researcher Identifier N/A 
Nearest person month worked 3 
Contribution to Project Zhang is responsible for managing the database for 

Physicians’ Health Study biobank, case-control selection 
and preparation for the biospecimen pulling list 
preparation.  

 
Has there been a change in the active other support of the PD/PI(s) or senior/key personnel 
since the last reporting period? 
Nothing to Report. 

 
What other organizations were involved as partners? 
Clary Clish, sub-contract PI, conducting metabolic analysis, the Metabolite Profiling Platform, 
Broad Institute of MIT/Harvard. Dr. Clish is an expert in metabolic profiling assay development 
and validations, and oversee the assay development, measurement, and data annotation at his 
laboratory. 
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QUAD CHARTS: If applicable, the Quad Chart (available on https://www.usamraa.army.mil) 
should be updated and submitted with attachments. 
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Prediagnostic Body-mass Index (BMI), Smoking and Prostate Cancer Survival 
Changzheng Yuan1, Yin Cao1, Jorge Chavarro1,2 , Sara Lindström2,3, Peter Kraft 2,3, Jing Ma2,3 

(on behalf of the Breast and Prostate Cancer Cohort Consortium) 

1. Department of Nutrition, Harvard School of Public Health, Boston, MA, 2. Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,  3. Department of Epidemiology, Harvard School of Public Health, Boston, MA 
 

   

 Meta-analysis linked elevated BMI with increased risk of PSA recurrence or 
prostate cancer (PC)-specific mortality. However, short follow-up and lack of control 
for smoking are major limitations in many of the clinical studies. 

 
 Few prospective studies have sufficient power to investigate the relationship 
between obesity and lethal PC by time of BMI measurement before PC diagnosis and 
by smoking status. 

 
 This study aimed to investigate the associations of pre-diagnostic BMI with risk of 
progression from time of PC diagnosis to fatal outcome, to study whether the 
relationship differs by time of BMI measurement before PC diagnosis and to assess 
effect modification by smoking status on BMI and PC survival. 

The study included 10,106 PC cases from the NCI Breast and Prostate Cancer Cohort 
Consortium (BPC3). 

 
 BMI and smoking status were estimated at baseline before PC diagnosis.  Deaths among PC 
patients were categorized into deaths from PC and other causes. 

 
We conducted the analysis in 3 parts according to exposures: BMI (18-22.9 kg/m2, 23-24.9 
kg/m2. 25-27.9 kg/m2, 28-29.9 kg/m2, 30-34.9 kg/m2, 35 kg/m2+), smoking (Never, former, 
current) and their joint effect, respectively. 

 
Competing-risks regression model was used to take into account of other causes of death. Each 
analysis was performed on prostate cancer specific mortality and other mortality separately. 

Higher prediagonostic BMI was related to higher risk of dying 
from PC after diagnosis, the positive trend was mainly observed 
among men whose BMI measured >5 years before PC diagnosis. 

 
Smokers (both former and current) had significant higher risk of 
either PC specific mortality or other mortality, regardless of the 
time of measuring smoking status before PC diagnosis. 

 
The effect of BMI on PC survival is modified by smoking status. 
The positive trend of BMI with PC mortality was observed 
mainly among never and former smokers, but not among current 
smokers. 

 

 
Table 1. Characteristics of subjects according to death status Figure 1. Effect of BMI (smoking) on PC mortality and other mortality (overall and by measurement time before PC diagnosis) Figure 2. BMI and Smoking Joint Effects on a) Prostate Cancer Specific Mortality and b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

before 
diagnosis 

 
Measured 
>5 years 
before 
diagnosis 

Former 
Current 

 
Never 
Former 
Current 

p value=0.011 
 
 
 

p value=0.015 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Model controlled smoking status (never, former, current) or BMI (18-22.9, 23-24.9, 25-27.9, 28-29.9, 30-34.9, 35+ kg/m2), age at diagnosis (continuous), drinking status (never, <15g/day, ≥ 
15&<30g/day, ≥30g/day) , diabetes status (never, baseline, new), cohort (ATBC, CPS2, EPIC, HPFS, MCCS, MEC, PHS, PLCO), duration between baseline and Pca diagnosis (continuous); 

RESULTS 

CONCLUSIONS METHODS BACKGROUND 

 
 
 
 
 
 
 
 
 
 
 
sHR sHR 
 
 
 
 
 
 
 
 
 
 
 

Model 1: P for interaction=0.090 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 2: P for interaction=0.085 Model 2: P for interaction=0.089 
a) b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Model 1 adjusted  for age at diagnosis (continuous), drinking status (never, <15g/day, ≥ 15&<30g/day, ≥30g/day) , 
diabetes status (never, baseline, new), cohort (ATBC, CPS2, EPIC, HPFS, MCCS, MEC, PHS, PLCO), duration between 
baseline and PC diagnosis (continuous); 
2 .Model 2 adjusted for age at diagnosis (continuous), drinking status (never, <15g/day, ≥ 15&<30g/day, ≥30g/day) , 
diabetes status (never, baseline, new), cohort (ATBC, CPS2, EPIC, HPFS, MCCS, MEC, PHS, PLCO), duration between 
baseline and PC diagnosis (continuous) , stage (AB, C, D) and Gleason (2-6,7,8-10); 
3. *: p value<0.05; **: p<0.001. 

p value<0.0001 

p value<0.0001 

A/B (T1/T2) 
C(T3) 
D(T4) 

Variables Total prostate 
cancer case 
(n=10,106) 

Prostate 
cancer death 
(n=1,007) 

Other death 
(n=1,886) 

Survivors Prostate cancer specific mortality Other mortality Other Mortality 
(n=7,213) BMI 

18-22.9 
Age at diagnosis (mean±SD, yr) 68.7±6.7 69.5±7.2 71.7±6.3 67.8±6.5 Overall 23-24.9 p for trend=0.023 p for trend=0.330 
BMI(mean±SD, kg/m2) 26.2±3.3 26.3±3.5 26.1±3.5 26.2±3.3 25-27.9 
Duration between BMI and PCa 
diagnosis (mean±SD, yr) 7.3±4.7 6.9±4.3 7.4±4.6 7.3±4.7 28-29.9 

30-34.9 
Follow up time (mean±SD, yr) 8.2±3.9 
Cohort (%) 

5.1±3.6 6.5±3.9 9.1±3.6 35+ 

ATBC 10.2 28.6 24.2 4.0 Measured 18-22.9 
CPS2 22.2 12.3 18.2 24.6 <=5 years 23-24.9 
EPIC 15.3 20.8 9.3 16.1 before 25-27 9 p for trend=0 378 p for trend=0.065 
HPFS 10.9 6.7 11.5 11.3 diagnosis 28-29.9 
MCCS 9.5 5.7 7.0 10.6 30-34.9 
MEC 6.5 2.8 6.6 7.0 35+ 
PHS 13.5 17.2 14.7 12.6  
PLCO 12.0 

BMI category (%) 
6.1 8.5 13.8 

Measured 18-22.9 
Model 1: P for interaction=0.013 

18≤BMI<25 38.6 37.8 41.4 37.9 >5 years 23-24.9 25-27.9 p for trend=0.018 p for trend=0.861  
25≤BMI<30 49.0 49.3 45.8 49.8 before 28 29 9   
30≤BMI 12.5 

Smoking status (%) 
12.9 12.9 12.3 diagnosis 30-34.9   

Never 36.3 23.3 24.7 41.2 35+   
Former 44.8 37.1 41.2 46.8 Smoking status   
Current 18.9 39.5 34.2 12.1   

Drinking status (%)      
Never 15.0 11.6 15.4 15.4 

Never p value<0.0001 p value<0.0001  sHR 
Overall F  

<15 g/day 52.2 54.0 51.6 52.0  
≥15& <30 g/day 14.4 14.2 13.7 14.6 Current 
≥ 30 g/day 

Diabetes status (%) 
15.5 16.9 15.4 15.4 Measured 

<=5 years Never 
Never 85.5 84.5 83.9 86.0 

 Baseline 4.1 4.7 6.5 3.3 
New 

Gleason score (%) 
7.2 3.1 5.8 8.1 

G1(2-6) 40.4 11.7 33.7 46.2 
G2(7) 26.4 19.2 20.8 28.9 
G3(8-10) 

Tumor stage (%) 
11.4 22.5 12.5 9.6 

 81.5 61.7 79.1 84.9 
10.3 13.5 8.6 10.3 
3.8 18.4 3.0 2.0 
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Elevation of circulating branched-chain amino acids is an early 
event in human pancreatic adenocarcinoma development 
Jared R Mayers1,2,23, Chen Wu3–5,23, Clary B Clish6,23, Peter Kraft5,7, Margaret E Torrence1,2, 
Brian P Fiske1,2, Chen Yuan4, Ying Bao8, Mary K Townsend8, Shelley S Tworoger5,8, Shawn M Davidson1,2, 
Thales Papagiannakopoulos1,2, Annan Yang9, Talya L Dayton1,2, Shuji Ogino4,5,10, Meir J Stampfer5,8,11, 
Edward L Giovannucci5,8,11, Zhi Rong Qian4, Douglas A Rubinson4, Jing Ma5,8, Howard D Sesso5,12, 
John M Gaziano12,13, Barbara B Cochrane14, Simin Liu15,16, Jean Wactawski-Wende17, JoAnn E Manson5,8,12, 
Michael N Pollak18,19, Alec C Kimmelman9, Amanda Souza6, Kerry Pierce6, Thomas J Wang20, 
Robert E Gerszten6,21, Charles S Fuchs4,8, Matthew G Vander Heiden1,2,4,6 & Brian M Wolpin4,22 

 

Most patients with pancreatic ductal adenocarcinoma (PDAC) 
are diagnosed with advanced disease and survive less than 
12 months1. PDAC has been linked with obesity and glucose 
intolerance2–4, but whether changes in circulating metabolites 
are associated with early cancer progression is unknown. 
To better understand metabolic derangements associated with 
early disease, we profiled metabolites in prediagnostic plasma 
from individuals with pancreatic cancer (cases) and matched 
controls from four prospective cohort studies. We find that 
elevated plasma levels of branched-chain amino acids (BCAAs) 
are associated with a greater than twofold increased risk of 
future pancreatic cancer diagnosis. This elevated risk was 
independent of known predisposing factors, with the strongest 
association observed among subjects with samples collected 
2 to 5 years before diagnosis, when occult disease is probably 
present. We show that plasma BCAAs are also elevated in mice 
with early-stage pancreatic cancers driven by mutant Kras 
expression but not in mice with Kras-driven tumors in other 
tissues, and that breakdown of tissue protein accounts for 
the increase in plasma BCAAs that accompanies early-stage 
disease. Together, these findings suggest that increased 
whole-body protein breakdown is an early event in development 
of PDAC. 

PDAC is a leading cause of cancer-related death worldwide, and most 
patients have incurable disease at diagnosis1. The best-characterized 
predisposing factors, current tobacco use and a first-degree relative 
with PDAC, both impart an approximate 1.8-fold increased risk for 
the disease5,6. These risk factors, however, have thus far provided 
limited insight into the biology of early disease progression of spo- 
radic tumors. Development and progression of PDAC is also associ- 
ated with altered systemic metabolism including obesity2, glucose 
intolerance3,4 and cancer-induced cachexia7. Nevertheless, no sys- 
tematic examination of circulating metabolites has been performed 
to determine whether altered metabolism may indicate subclinical 
pancreatic cancer or inform understanding of early disease progres- 
sion when interventions might improve patient outcomes. 

Prior efforts to identify changes in circulating metabolites related 
to cancer have employed a cross-sectional design, comparing cancer- 
free subjects to affected individuals with blood samples collected at 
diagnosis8–10. This approach is problematic for discovery of changes 
related to early cancer progression, as consequences of advanced dis- 
ease are likely to have an impact on circulating metabolite profiles. 
This is particularly true for patients with pancreatic cancer, who 
commonly have significant anorexia, weight loss and pancreatic 
insufficiency at the time of diagnosis1. To investigate how altered 
metabolism might contribute to pancreatic malignancy, we profiled 
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plasma metabolites in cases with PDAC and matched controls drawn 
from four prospective cohort studies with blood collected at least 2 
years before cancer diagnosis (Supplementary Table 1). The median 
time between blood collection and PDAC diagnosis was 8.7 years. 

In conditional logistic regression models, levels of 15 metabolites 
were associated with future diagnosis of PDAC to P < 0.05; three 
metabolites, the BCAAs isoleucine, leucine and valine were significant 
to P ″ 0.0006, the predefined significance threshold after correction 
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Figure 1 Plasma metabolites and risk of future pancreatic cancer diagnosis. P values of the log-transformed, continuous metabolite levels from human 
plasma comparing pancreatic cancer cases and controls in conditional logistical regression models conditioned on matching factors and adjusted for age 
at blood draw (years, continuous), fasting time (<4 h, 4–8 h, 8–12 h, ≥12 h, missing) and race or ethnicity (white, black, other, missing). The dashed 
green line indicates the statistically significant P value threshold after Bonferroni correction for multiple-hypothesis testing, P ″ 0.0006 (0.05/83). 
The dashed blue line indicates P of 0.05. The number of cases and controls analyzed for each metabolite is provided in Supplementary Table 2. 
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Table 1 Odds ratios for pancreatic cancer by prediagnostic plasma levels of BCAAs 
Isoleucine Leucine Valine  Total BCAAsc 

Extreme 
Modela quintilesb Per s.d. 

Base model 2.13 1.30 
(1.43–3.15)  (1.14–1.48) 

+ BMI and physical activity 2.06 1.28 
(1.37–3.09)  (1.12–1.47) 

+ BMI, physical activity and reported diabetes at 2.01 1.27 
blood collection (1.34–3.03)  (1.11–1.46) 

+ BMI, physical activity, reported diabetes, HbA1c, 1.89 1.22 
plasma insulin, proinsulin and C-peptide (1.17–3.06)  (1.04–1.44) 

Exclude subjects with reported diabetes or HbA1c 2.19 1.31 
≥6.5% at blood collection (1.44–3.34)  (1.14–1.51) 

Exclude subjects with reported diabetes or HbA1c 2.25 1.31 
≥6.5% at blood collection and those with 
reported diabetes after blood collection 

(1.45–3.49)  (1.13–1.52) 

 

aOdds ratio (95% CI) from conditional logistic regression models conditioned on matching factors and adjusted for age at blood draw (years, continuous), fasting time (<4 h, 
4–8 h, 8–12 h, ≥12 h, missing) and race or ethnicity (white, black, other, missing). Subsequent models also adjusted for the indicated measure of energy balance, hyperglycemia 
or insulin resistance: body-mass index (kg/m2, continuous), physical activity (metabolic equivalent task-hours per week (MET-h/week), continuous), reported diabetes at blood 
collection (yes or no), hemoglobin A1c (HbA1c) (%, continuous), plasma insulin (∝IU/ml, continuous), plasma proinsulin (pM, continuous) and plasma C-peptide (ng/ml, 
continuous). bOdds ratios (95% CI) for the comparison of the fifth quintile to the first quintile (referent) for the circulating BCAAs. cSum of the concentrations of the three 
circulating BCAAs, isoleucine, leucine and valine. 

 

for multiple-hypothesis testing (Fig. 1 and Supplementary Table 2). 
To evaluate the magnitude of risk for PDAC diagnosis, we divided 
participants into quintiles of increasing BCAA levels. Compared to 

the bottom quintile, subjects in the top quintile had at least a two-fold 
increased risk of developing PDAC (Table 1, Supplementary Table 3 
and Supplementary Fig. 1). As noted previously11, circulating levels 
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Figure 2 Plasma BCAA levels are elevated during subclinical disease. (a) Graph of odds ratio (error bars indicate 95% confidence interval (CI)) for future 
pancreatic cancer diagnosis among cohort cases and matched controls comparing highest versus lowest quintiles of circulating BCAA levels stratified 
by time from blood collection to the case’s cancer diagnosis. Odds ratio was determined from conditional logistic regression models conditioned on 
matching factors and adjusted for age at blood draw (years, continuous), fasting time (<4 h, 4–8 h, 8–12 h, ≥12 h, missing) and race or ethnicity (white, 
black, other, missing). Red horizontal line marks an odds ratio of 1.0. The number of cases and controls in each time period and association results for 
the individual BCAAs are provided in Supplementary Table 6. (b) Graph of mean (±s.e.m.) total plasma BCAA concentration in LSL-KrasG12D/+; 
LSL-Trp53R172H/+; Pdx1-cre (KPC) mice over time and in littermate controls lacking either LSL-KrasG12D or Pdx1-cre or both. Each control data point is 
an average for one mouse over the course of the study (Supplementary Fig. 4b), and values for KPC mice living longer than 19 weeks are averaged for the 
>19-weeks time point. For weeks 15–17, n = 6 KPC and n = 9 control, Student’s t-test, P = 0.001. For >19 weeks, n = 4; 11–13 weeks, n = 6; 
7–9 weeks, n = 7; 3–5 weeks, n = 9. (c) H&E staining of pancreatic tissue obtained from KP−/−C mice and littermate controls at 3–4 weeks of age. Tissues 
are from a control mouse with histologically normal pancreas (left) a KP−/−C mouse with areas of PDAC adjacent to areas of normal pancreas (middle) and   
a KP−/−C mouse with areas of PDAC and pancreatic intraepithelial neoplasia (arrowheads; right). Scale bars, 50 ∝m. (d) Mean (±s.e.m.) body weights at 
3–4 weeks of age for KP−/−C mice and littermate controls (n = 7 KP−/−C, n = 11 control). (e) Mean (±s.e.m.) total plasma BCAA levels from KP−/−C mice 
and littermate controls at 3–4 weeks of age (n = 10 KP−/−C, n = 14 control, Student’s t-test, P = 0.002). (f) P values for comparison of circulating amino 
acid levels in KP−/−C mice and littermate controls at 3–4 weeks of age (n = 10 KP−/−C, n = 14 control). Red points indicate BCAAs. The dashed red line 
indicates P value of 0.05. (g) Top, glucose tolerance test in KP−/−C mice and littermate controls at the time of weaning (n = 7 KP−/−C, n = 11 control). 
Bottom, insulin tolerance test in KP−/−C mice and littermate controls at 4 weeks of age (n = 7 KP−/−C, n = 15 control). Error bars indicate s.e.m. 
(h) Mean (±s.e.m.) fasting plasma insulin levels from KP−/−C mice and littermate controls at 4 weeks of age (n = 7 KP−/−C, n = 11 control). 
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2.11 1.30 2.08 1.31 2.00 1.23 
(1.40–3.18) (1.15–1.48) (1.38–3.13) (1.14–1.50) (1.37–2.92) (1.09–1.39) 

2.05 1.29 2.01 1.29 1.94 1.21 
(1.34–3.12) (1.14–1.48) (1.32–3.06) (1.12–1.49) (1.31–2.86) (1.07–1.38) 

2.00 1.28 1.97 1.28 1.90 1.20 
(1.31–3.05) (1.13–1.46) (1.29–2.99) (1.11–1.48) (1.28–2.81) (1.06–1.37) 

1.86 1.24 1.81 1.24 1.67 1.14 
(1.13–3.03) (1.06–1.45) (1.11–2.96) (1.04–1.47) (1.06–2.63) (0.99–1.33) 

2.12 1.33 2.16 1.32 1.91 1.23 
(1.37–3.27) (1.16–1.52) (1.39–3.35) (1.14–1.54) (1.28–2.85) (1.08–1.41) 

2.18 1.32 2.21 1.33 1.94 1.22 
(1.39–3.43) (1.15–1.53) (1.40–3.49) (1.13–1.55) (1.27–2.96) (1.07–1.40) 
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of the three BCAAs were highly correlated (Supplementary 
Table 4), reflecting their common pathways of metabolism12 and 
leading to similar results for the sum total of BCAAs (Table 1 and 
Supplementary Table 3). 

Circulating BCAAs are elevated in obese individuals and those 
with insulin resistance13. In study participants, plasma BCAA levels 
modestly correlated with markers of energy balance, obesity and glu- 
cose intolerance (Supplementary Table 4). To evaluate the independ- 
ent effect of BCAAs on PDAC risk, we assessed models that included 
these markers and found that the odds ratios for PDAC remained 
largely unchanged (Table 1). Elevated circulating levels of BCAAs are 
also associated with future risk of diabetes11,14. As type 2 diabetes is 
a predisposing factor for PDAC15, we questioned whether the inter- 
mediate development of diabetes underlied the association of BCAAs 
with future PDAC diagnosis. Exclusion of subjects with diabetes at 
blood collection did not change our results (Table 1), indicating that 
we had not identified a signature of prevalent diabetes associated 
with later PDAC diagnosis. To determine whether increased circulat- 
ing BCAAs identify a population at risk for diabetes, who are then 
at elevated risk of PDAC, we excluded subjects who developed dia- 
betes between the time of blood collection and cancer diagnosis and 
found the results unchanged (Table 1). These data suggest that the 
association of circulating BCAAs with future PDAC diagnosis is not 
dependent on intermediate development of diabetes. 

To examine the contribution of circulating BCAAs to risk strati- 
fication models for PDAC, we evaluated the area under the curve 
(AUC) of receiver-operating-characteristic (ROC) curves16 and net 
reclassification improvement (NRI)17 with low-risk and high-risk cat- 
egories. Compared to the base model, including circulating BCAAs 
led to a significant increase in AUC (Supplementary Table 5a and 
Supplementary Fig. 2) and a net 8.2% of cases moving to the high- 
risk category with an NRI of 5% (Supplementary Table 5b). Thus, in 
our population, inclusion of circulating BCAAs in risk stratification 
models improved the ability to identify future PDAC cases. 

In stratified analyses, we noted no significant differences in the 
association of BCAAs with PDAC by cohort, sex, smoking status, 

body-mass index (BMI) or fasting status at blood collection 
(Supplementary Fig. 3, all interaction P ≥ 0.14). To examine when 
circulating BCAAs were most associated with PDAC, we stratified 
cases and matched controls by time interval between blood collection 
and PDAC diagnosis (<2 years, 2 to <5 years, 5 to <10 years and ≥10 
years). These analyses demonstrated particularly strong associations 
between elevated BCAAs at 2–5 years before diagnosis and future 
PDAC diagnosis (Fig. 2a and Supplementary Table 6). 

Experimental studies indicate years elapse between formation of 
the initial malignant clone and cancer diagnosis18, suggesting that 
occult PDAC might have been present at the time points showing 
the strongest associations with elevated BCAAs. We therefore hypo- 
thesized that elevated circulating BCAAs are a marker of early PDAC. 
To test this possibility, we conducted a prospective serial blood sam- 
pling study using lox-stop-lox (LSL)-KrasG12D/+; LSL-Trp53R172H/+; 
Pdx1-cre (KPC) mice, which develop PDAC with variable latency19. 
KPC mice progress through all histological stages of disease, from 
normal pancreata to invasive adenocarcinoma, with a median sur- 
vival of approximately 21 weeks19 (Supplementary Fig. 4a). KPC 
mice initially displayed similar BCAA levels to littermate controls, but 
they developed significant elevations from 15–17 weeks before death 
(Fig. 2b and Supplementary Fig. 4b). These data suggest circulating 
BCAA elevations accompany early PDAC. 

LSL-KrasG12D/+; Trp53flox/flox; Pdx1-cre (KP−/−C) mice develop 
PDAC with more consistent kinetics, displaying precursor lesions with 
limited invasive cancer by 3–4 weeks of age (Fig. 2c) and a median 
lifespan of 10–12 weeks20. In mice at 3–4 weeks of age, we observed 
no difference in body weight or food consumption between KP−/−C 
mice and littermate controls lacking either Pdx1-Cre or LSL-KrasG12D 

or both, suggesting animals with early PDAC had not yet developed 
overt constitutional symptoms (Fig. 2d and Supplementary Fig. 4c). 
Consistent with findings in patients and KPC mice, circulating BCAA 
levels were higher in KP−/−C animals with subclinical PDAC when 
compared with those in littermate control mice (Fig. 2e), a pattern 
not observed for most other amino acids (Fig. 2f and Supplementary 
Fig. 4d,e) We observed no significant differences in fasting blood 
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glucose, response to glucose load, response to insulin challenge or 
fasting insulin levels during intraperitoneal glucose and insulin tol- 
erance tests in 4-week-old KP−/−C and control mice (Fig. 2g,h and 
Supplementary 4f–i). These findings argue that BCAA elevations 
are not reflective of hyperglycemia or insulin resistance and instead 
represent an early consequence of subclinical PDAC. 

We examined whether malignancies in other tissues induced by 
the same genetic lesions could cause elevated plasma BCAA lev- 
els. Cre recombinase introduction into lung or muscle of mice with 
the LSL-KrasG12D and Trp53flox/flox alleles from the KP−/−C model 
leads to non–small-cell lung cancer and sarcoma, respectively21–23. 
Neither model displayed the BCAA alterations seen with early PDAC 
(Supplementary Fig. 5). Subcutaneous and orthotopic implantation 
of cancer cell lines derived from the KP−/−C model into immunocom- 
petent syngenic hosts both also failed to cause elevated BCAA levels 
(Supplementary Fig. 6). These data argue that elevations in BCAAs 
are associated with early-stage autochthonous tumors arising in the 
pancreas and are not a general feature of Kras-driven cancer. They 
also suggest that implantation of cells from end-stage disease does not 
model the early disease state that results in BCAA elevations. 

Chronic pancreatitis is a risk factor for human PDAC24, and pancre- 
atic inflammation can promote PDAC development and progression 
in mice25,26. Therefore, we examined whether BCAA elevations might 
be a cause or consequence of pancreatic inflammation in early disease 
in mice. Mild, chronic pancreatitis induced by caerulein in the absence 
of tumorigenesis failed to cause elevations in BCAAs (Supplementary 
Fig. 7a–h), and prolonged increases in plasma BCAA levels caused 
by dietary interventions did not cause pancreatic inflammation or 
pancreatitis (Supplementary Fig. 7i–o). Nevertheless, further studies 
are needed to understand the relationship between BCAAs and more 
severe pancreatitis. 

Unlike levels of other amino acids, plasma BCAA levels are not 
regulated by the liver27,28; instead, levels are determined by dietary 
uptake, tissue utilization and breakdown of muscle and other body 
protein stores27,29. Therefore, plasma BCAAs may originate from 
short-term pools related to dietary uptake and disposal or long- 
term pools related to breakdown of tissue proteins. To determine the 
involvement of the short-term pool, we fed 4-week-old KP−/−C mice 
and littermate control mice lacking either Pdx1-Cre or LSL-KrasG12D 

or both a defined amino acid diet, in which 20% of leucine and valine 
were 13C labeled. KP−/−C and control mice consumed similar amounts 
of food when exposed to labeled diet for 2 h (Supplementary Fig. 8a), 
and we observed no difference in appearance and disappearance of 
plasma 13C label (Fig. 3a and Supplementary Fig. 8b), arguing that 
gut uptake and peripheral disposal of BCAAs are similar in mice with 
or without PDAC. 

To determine the contribution of long-term BCAA pools to plasma 
levels, we exposed mice to labeled diet during a period of rapid growth 
in early life and then switched them to unlabeled diet for 3 d to chase 
label from the short-term pool (Fig. 3b). Despite similar peripheral 
tissue protein labeling (Fig. 3c and Supplementary Fig. 8c), the frac- 
tion of labeled BCAAs in plasma was elevated in 4-week-old KP−/−C 
mice relative to that in littermate controls (Fig. 3d). Furthermore, 
by comparing the amount of label in plasma under fed conditions, 
encompassing both labeled long-term and unlabeled short-term 
pools, to that under fasted conditions, in which only labeled long-term 
pools contribute, we calculated that increased liberation of BCAAs 
from long-term body stores was solely responsible for the elevations 
in BCAAs in KP−/−C mice (Fig. 3d,e and Supplementary Fig. 8d). 
These data suggest that an early consequence of PDAC is enhanced 

breakdown of tissue proteins leading to elevated plasma BCAA lev- 
els. Consistent with this hypothesis, KP−/−C mice with early PDAC 
had smaller fast-twitch muscles with no changes in slow-twitch and 
cardiac muscle weight (Fig. 3f and Supplementary Fig. 9). Notably, 
muscle atrophy associated with prolonged fasting and late-stage 
malignancy exhibits a similar pattern30–32. 

Increased muscle catabolism represents one aspect of cancer- 
associated cachexia, a wasting syndrome frequently affecting patients 
with advanced PDAC and contributing to worse outcomes33–36. Our 
findings, however, suggest that protein breakdown begins much earlier 
than previously appreciated and predates onset of clinical cachexia. 
Inflammatory cytokines produced by immune and/or tumor cells have 
been implicated in cachexia31,37, and the low disease burden at the 
time of BCAA elevation suggests hormonal factors may be involved 
in early PDAC to cause these elevations as well. Liberation of tissue 
amino acids could support the elevated amino acid requirements of 
pancreatic cancer cells38,39, with BCAAs and/or other amino acids 
derived from tissue breakdown contributing to disease progression. 
Because hepatic metabolism maintains relatively constant plasma 
levels of all amino acids except BCAAs27,29,40, increased liberation 
of tissue amino acids would be expected raise BCAA concentrations 
in blood. The association between elevated BCAA levels and other 
metabolic disease states11,13,14,41 suggests that high plasma BCAA 
concentrations could be a general marker of increased protein turno- 
ver, and elevated BCAA levels could contribute to the peridiagnostic 
hyperglycemia commonly found in patients with PDAC42. 

In participants from four large prospective cohorts, circulating 
BCAAs were associated with future diagnosis of PDAC. We observed 
similar BCAA elevations in two mouse models of PDAC and demon- 
strated that these elevations result from breakdown of peripheral protein 
stores. These findings provide new insight into how early disease affects 
whole-body metabolism and suggest that muscle protein loss occurs 
much earlier in disease progression than previously appreciated. 
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Methods and any associated references are available in the online 
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ONLINE METhODS 
Study population. Our study population included pancreatic cancer cases 
and controls from four prospective cohort studies: the Health Professionals 
Follow-Up Study (HPFS), the Nurses’ Health Study (NHS), the Physicians’ 
Health Study I (PHS) and the Women’s Health Initiative-Observational Study 
(WHI-OS). HPFS was initiated in 1986 when 51,529 US men 40–75 years of 
age working in health professions completed a mailed biennial questionnaire. 
NHS was established in 1976 when 121,700 female nurses aged 30–55 years 
completed a mailed biennial questionnaire. PHS is a completed trial initi- 
ated in 1982 of aspirin and -carotene among 22,071 male physicians, aged 
40–84 years. After trial completion, study participants were followed as an 
observational cohort. WHI-OS consists of 93,676 postmenopausal women, 
aged 50–79 years, enrolled from 1994–1998 at 40 US clinical centers. 
Participants completed a baseline clinic visit and annual mailed question- 
naires. The study was approved by the Human Research Committee at Brigham 
and Women’s Hospital (Boston, MA), and participants provided written 
informed consent. 

We included incident pancreatic adenocarcinoma cases diagnosed after blood 
collection through 2010 with available plasma and no prior history of cancer. 
Cases were identified by self-report or follow-up of deaths. Deaths were ascer- 
tained from next-of-kin, postal service or National Death Index; this method 
captures >98% of deaths43. Medical records were reviewed by physicians blinded 
to exposure data to confirm pancreatic cancer diagnoses. Similar to prior studies 
in these cohorts4,44–46 and based on a predefined analysis plan, we included only 
cases diagnosed ≥2 years after blood collection, as the weight loss and insulin 
resistance that develop due to pancreatic cancer manifest in the 2 years before 
diagnosis42,47. For each case, we randomly selected two controls, matching on 
cohort (also matches on sex), year of birth (±5 years), smoking status (never, 
past, current, missing), fasting status (<8 h, ≥8 h), and month/year of blood col- 
lection (±3 months in HPFS, ±3 months in NHS, ±6 months in PHS, and exact 
matching in WHI). Controls were alive without cancer at the case’s diagnosis 
date and provided a blood sample. Covariate data were obtained from baseline 
questionnaires in PHS and WHI and questionnaires before blood collection in 
HPFS and NHS, as described previously4,45. In HPFS, NHS, and PHS, cancer 
stage among cases was directly classified based on medical record review as 
local disease amenable to surgical resection, locally advanced disease that is 
unresectable but without distant metastases, or distant metastatic disease. In 
WHI, medical records were coded using Surveillance Epidemiology End Results 
summary staging, which classifies tumors as localized, regional, or distant. These 
stages were then classified in the same manner as in HPFS, NHS and PHS, as 
local, locally advanced, and metastatic disease, respectively. 

The initial data set included 454 cases and 908 controls. Seven controls had 
insufficient plasma for metabolite profiling. One case and one control were 
excluded due to missing data for >10% of metabolites. 

 
Plasma samples. Blood samples in EDTA tubes were collected from 18,225 
men in HPFS from 1993–1995, 14,916 men in PHS from 1982–1984, and 
93,676 women in WHI-OS from 1994–1998, and in heparin tubes for 32,826 
women in NHS from 1989–1990. Comparisons of participant characteristics in 
the blood collection cohort and the full cohort are provided for each study in 
Supplementary Note, Table S1. Blood samples in HPFS and NHS were collected 
by participants, mailed overnight on cold packs, and then spun to collect and 
store plasma (delayed processing), whereas PHS and WHI participants’ whole 
blood was separately immediately into plasma and stored. An overview of pro- 
cedures for collection and storage of samples from each cohort is provided below 
and summarized in Supplementary Note, Table S2. 

Health Professionals Follow-up Study. Upon arrival at the blood lab, vials were 
centrifuged in order to separate the various component parts. Cryo storage tubes 
were labeled with the appropriate study member’s ID number, and the separated 
blood components were pipetted into them. This process produced 5 tubes of 
plasma, 2 tubes of white blood cells, and 1 tube of red blood cells for each cohort 
member. The tubes were then stored in liquid nitrogen freezers. A bulk tank, 
holding up to 3,000 gallons of liquid nitrogen, automatically feeds each indi- 
vidual freezer whenever the freezer’s sensors indicate that coolant is required. 

Nurses’ Health Study. Blood samples were separated into components (plasma, 
white blood cells and red blood cells) and pipetted into 8 cryotubes with 5 tubes 

of plasma, 2 tubes of white blood cells and 1 tube of red blood cells. Samples were 
immediately frozen in vapor-phase liquid nitrogen freezers. The NHS Blood 
Lab stores all biologic samples associated with the Blood Study in-house in a 
large liquid nitrogen freezer farm. The cryotubes are stored in the vapor phase 
of liquid-nitrogen freezers; the highest freezer temperature is −130 °C near the 
top of the freezer, and the lowest temperature is −196 °C at the bottom near the 
liquid nitrogen. All freezers are alarmed and monitored continuously either by 
NHS laboratory staff or a central security desk (nights and weekends). 

Physicians’ Health Study. Blood collection kits were sent to all participants 
with instructions to have blood drawn into the EDTA tubes that were provided. 
Two tubes were centrifuged for plasma, and a third tube was for whole blood. 
The specimens were received in the laboratory on chill packs within 24 h of being 
drawn. Upon receipt, the samples were refrigerated and re-aliquotted into nine 
1.2-mL tubes (three whole blood and six plasma), all frozen at −82 °C. 

Women’s Health Initiative: Blood samples were collected on all WHI-OS 
participants at a baseline clinic visit in the fasting state. Blood samples were 
maintained at 4 °C for up to one hour until plasma or serum was separated from 
cells. Centrifuged aliquots were put into −70 °C freezers within two hours of 
collection. Samples were shipped frozen by overnight delivery to a central facility 
and kept within −70 °C freezers. 

Plasma samples were grouped based on cohort, so that all cases and controls 
from a single cohort study underwent metabolite profiling as a batch. Sample 
triplets (pancreatic cancer case, matched control #1, and matched control #2) 
were distributed randomly within the batch, and the order of the case and two 
matched controls within each triplet was also randomly designated. Therefore, 
the case and its two controls were always run in the same batch and were always 
directly adjacent to each other in the analytic run, thereby limiting variability 
in platform performance across matched case-control triplets. 

For participants from all four cohorts, plasma samples were thawed once 
to aliquot them from large-volume vials into the smaller volumes needed for 
shipment to the Broad Institute of the Massachusetts Institute of Technology 
and Harvard University (Cambridge, MA). The samples were refrozen at the 
Broad Institute and then thawed a second time to perform metabolite profiling. 
Therefore, for all cases and controls, plasma samples had been thawed twice at 
the time of metabolite profiling. 

We previously measured hemoglobin A1c (HbA1c) in 389 cases and 757 
controls in the laboratory of N. Rifai (Children’s Hospital, Boston, MA) using 
reagents from Roche Diagnostics (Indianapolis, IN). We measured plasma 
insulin in 386 cases and 743 controls, plasma proinsulin in 388 cases and 746 
controls, and plasma C-peptide in 408 cases and 785 controls using reagents 
from Diagnostic Systems Laboratory (Webster, TX) and Millipore Corporation 
(Billerica, MA). Randomly inserted samples from quality control (QC) plasma 
pools had mean intra-assay coefficients of variance (CVs) of 2.0% for HbA1c, 
5.4% for insulin, 3.1% for proinsulin, and 4.9% for C-peptide4. 

 
Metabolite profiling. Profiles of endogenous polar metabolites were obtained 
using liquid chromatography-tandem mass spectrometry (LC-MS) at the Broad 
Institute of the Massachusetts Institute of Technology and Harvard University 
(Cambridge, MA). The LC-MS methods were designed to enable broad meas- 
urement of metabolic markers and intermediates, including metabolites from 
central metabolism and amino acid metabolism, using low plasma sample vol- 
umes48. LC-MS parameters for targeted analyses, including chromatographic 
retention times and mass spectrometry multiple reaction monitoring settings 
(declustering potentials, collision energies, and lens voltages), were deter- 
mined using over 300 commercially available reference compounds. A subset 
of 133 polar metabolites were measurable in plasma using a combination of 
two distinct hydrophilic interaction liquid chromatography (HILIC) methods, 
one operated under acid mobile phase conditions with positive-ion-mode MS 
detection and the other under basic elution conditions with negative-ion-mode 
MS detection. 

The acidic HILIC method using positive-ionization-mode MS analyses was 
similar to the method described by Wang et al.11. Briefly, the LC-MS system 
consisted of a 4000 QTRAP triple quadrupole mass spectrometer (AB SCIEX) 
coupled to an 1100 Series pump (Agilent) and an HTS PAL autosampler (Leap 
Technologies). Plasma samples (10 ∝L) were extracted using nine volumes 
of 74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing stable 
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isotope-labeled internal standards (valine-d8, Isotec; and phenylalanine-d8, 
Cambridge Isotope Laboratories). The samples were centrifuged (10 min, 
9,000g, 4 °C), and the supernatants (10 ∝L) were injected onto an Atlantis 
HILIC column (150 × 2.1 mm, 3 ∝m particle size; Waters Inc.). The column was 
eluted isocratically at a flow rate of 250 ∝L/min with 5% mobile phase A (10 mM 
ammonium formate and 0.1% formic acid in water) for 1 min followed by a linear 
gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10 min. 
The ion spray voltage was 4.5 kV and the source temperature was 450 °C. 

A second method using basic HILIC separation and negative ionization mode 
MS detection was established on an LC-MS system consisting of an ACQUITY 
UPLC (Waters Inc.) coupled to a 5500 QTRAP triple quadrupole mass spectrom- 
eter (AB SCIEX). Plasma samples (30 ∝L) were extracted using 120 ∝L of 80% 
methanol (VWR) containing the internal standards inosine-15N4, thymine-d4, 
and glycocholate-d4 (Cambridge Isotope Laboratories). The samples were cen- 
trifuged (10 min, 9,000g, 4 °C), and the supernatants were injected directly onto 
a Luna NH2 column (150 × 2.0 mm, 5 ∝m particle size; Phenomenex) that was 
eluted at a flow rate of 400 ∝L/min with initial conditions of 10% mobile phase A 
(20 mM ammonium acetate and 20 mM ammonium hydroxide (Sigma-Aldrich) 
in water (VWR)) and 90% mobile phase B (10 mM ammonium hydroxide in 
75:25 v/v acetonitrile/methanol (VWR)) followed by a 10-min linear gradient 
to 100% mobile phase A. The ion spray voltage was −4.5 kV and the source 
temperature was 500 °C. 

Raw data were processed using MultiQuant 1.2 software (AB SCIEX) for 
automated LC-MS peak integration. All chromatographic peaks were manually 
reviewed for quality of integration and compared against a known standard for 
each metabolite to confirm compound identities. Internal standard peak areas 
were monitored for quality control, to assess system performance over time, and 
to identify any outlier samples requiring re-analysis. A pooled plasma reference 
sample was also analyzed after sets of 20 study samples as an additional quality 
control measure of analytical performance and to serve as reference for scaling 
raw LC-MS peak areas across sample batches. Metabolites with a signal-to-noise 
ratio <10 were considered unquantifiable. Metabolite signals were analyzed in 
relation to pancreatic cancer risk as LC-MS peak areas, which are proportional 
to metabolite concentration and appropriate for metabolite clustering and 
correlative analyses. 

Of the 133 metabolites measured (Supplementary Note, Fig. S1), 83 were 
included in the analyses of our nested pancreatic cancer case-control popula- 
tion (Supplementary Note, Table S3). In pilot work49, we determined that 32 
metabolites had poor reproducibility in samples with delayed processing, so 
these metabolites were excluded as they could not be reliably measured in two 
of the participating cohorts. In the current study, three heparin plasma pools 
(57 total QC samples) and three EDTA plasma pools (128 total QC samples) 
were randomly interspersed among participant samples as blinded QC samples. 
We calculated mean CVs for each metabolite across QC plasma pools and set 
an a priori threshold of ″25% for satisfactory reproducibility. Based on this 
criterion, 13 metabolites with mean CV>25% were excluded from our analy- 
ses. Five metabolites had undetectable levels for >10% of participants and were 
also excluded. We evaluated plasma from ten volunteers with plasma collected 
simultaneously in heparin and EDTA tubes. For the branched chain amino acids, 
Spearman correlation coefficients between Heparin and EDTA samples were 
0.85 for isoleucine, 0.88 for leucine, and 0.95 for valine. 

For metabolites meeting the threshold for statistical significance after 
multiple-hypothesis correction (isoleucine, leucine and valine), LC-MS peak 
areas were converted to absolute concentrations using stable isotope–labeled 
standards. Briefly, external calibration curves of MS response were determined 
using solutions of isotope-labeled 13C6, 15N-leucine, 13C6, 15N-isoleucine 
(Cambridge Isotope Laboratories), and d8-valine (Isotec). A 1 ∝g/∝L solution 
of each standard was prepared in water. 20 ∝L of each stock solution were added 
to 180 ∝L of reference pooled plasma, and the resulting solution was then serially 
diluted using pooled plasma to generate a calibration curve. For multiple reac- 
tion monitoring MS analyses, the bond cleavage products and collision energy 
(CE) and declustering potential (DP) settings were the same as those used for 
the endogenous metabolites: natural leucine 132/86, CE = 18 and DP = 50; 13C6, 
15N-leucine 134/87, CE = 18 and DP = 50; natural isoleucine 132/86, CE = 18 
and DP = 50; 13C6, 15N-isoleucine 139/92, CE = 18 and DP = 50; natural 
valine 118/72, CE = 18 and DP = 25, and d8-valine 126/80, CE = 18 and DP = 25. 

Three separate plasma samples were prepared at each concentration and were 
analyzed using the acidic HILIC LC-MS method described above. The median 
concentrations of endogenous isoleucine, leucine and valine in the reference 
pooled plasma were calculated, and the concentration of each metabolite in 
each study sample was determined from the response ratio relative to the nearest 
reference pooled plasma sample in the analysis queue. 

 
Statistical analyses for human studies. To compare baseline characteristics, we 
used conditional logistic regression conditioned on the matching factors and 
including the covariate of interest. Partial Spearman correlation coefficients were 
calculated for metabolites and covariates. Metabolites were log-transformed to 
improve normality and included as continuous variables in conditional logis- 
tic regression models conditioned on matching factors and adjusted for age 
at blood draw (years, continuous), fasting time (< 4 h, 4–8 h, 8–12 h, ≥12 h, 
missing) and race or ethnicity (white, black, other, missing). Using a conserva- 
tive Bonferroni correction for multiple-hypothesis testing50, metabolites with 
P ″ 0.0006 (0.05/83) were considered statistically significant. 

To provide estimates of effect magnitude, significant metabolites were exam- 
ined in conditional logistic regression models after categorization into quin- 
tiles based on log-transformed metabolite levels in controls. Separate quintiles 
were generated for fasting (≥8 h since last meal) and nonfasting (<8 h since last 
meal) participants, given the possible effect of fasting time on metabolite levels. 
Quintiles were generated from the population of selected controls, which may 
not exactly reflect the characteristics of the full cohort population. Odds ratios 
(ORs) and 95% confidence intervals (CIs) were also calculated per s.d. change 
in log-transformed metabolite levels. To control for possible confounding, we 
evaluated regression models adjusted for body-mass index (BMI), physical activ- 
ity, history of diabetes mellitus, HbA1c, plasma insulin, plasma proinsulin, and 
plasma C-peptide. We also evaluated regression models after excluding sub- 
jects with diabetes by self-report or HbA1c ≥6.5% at blood collection (prevalent 
diabetes). We further evaluated models that excluded subjects who developed 
diabetes after blood collection but >2 years before cancer diagnosis (incident 
diabetes not thought to be recent onset from pancreatic cancer)42,47. 

Metabolite values were considered missing when an LC-MS peak was below 
the limit of detection. In the primary analysis, any case or control with missing 
data for a metabolite was excluded from the analysis of that metabolite. However, 
we also conducted sensitivity analyses, in which participants with missing values 
were assigned the lower limit of detection or half of the lower limit of detection, 
and our results were unchanged. 

We assessed heterogeneity of metabolite associations with pancreatic cancer 
risk across cohorts using Cochran’s Q-statistic51. We examined associations in 
predefined subgroups by sex, smoking status, BMI, and fasting status. Statistical 
interactions were assessed by entering into models the main effect terms and 
cross-product terms of metabolites and stratification variables, evaluating 
likelihood ratio tests. We also examined associations by time between blood 
collection and the case’s cancer diagnosis. In these time-based analyses, one 
stratum included 40 pancreatic cancer cases with blood collected within 2 years 
of diagnosis and their matched controls. These cases and controls were not part 
of the primary analysis population, but were included in the stratified analyses 
by time to more fully delineate the association of metabolites with pancreatic 
development by time before diagnosis. Associations were also examined for 
circulating BCAAs with previously explored risk factors for pancreatic cancer in 
our cohorts (Supplementary Note, Table S4) and with cancer stage at diagnosis 
(Supplementary Note, Table S5). 

Since association of a marker with disease does not indicate the suitability 
of the marker to serve as a screening test for the disease, we examined two 
approaches to quantify the value of metabolites in a multifactor risk discrimi- 
nation tool for pancreatic cancer. Discrimination quantifies the ability of one 
or more disease markers to separate cases (individuals with the disease) from 
controls (individuals without the disease). We investigated the discrimination 
of risk models for predicting pancreatic cancer diagnosis in the 10 years after 
measurement of circulating BCAAs, i.e., the 10-year risk of pancreatic cancer. 

In the first approach, we investigated receiver-operating-characteristic (ROC) 
curve analysis and calculated of the area under the ROC curve (AUC), also 
known as the concordance (C) statistic16,52. The base model included age at 
blood collection (continuous), cohort (HPFS, NHS, PHS, WHI; which also 

np
g 

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

. 



doi:10.1038/nm.3686 nature medicine  

accounts for sex), race/ethnicity (white, black, other/missing), smoking status 
(never, past, current, missing) and fasting time (<4 h, 4–8 h, 8–12 h, ≥12 h, 
missing). Three subsequent models mirrored the base model but additionally 
included (1) body-mass index, physical activity, and history of diabetes, (2) 
circulating BCAAs, or (3) body-mass index, physical activity, history of dia- 
betes, and circulating BCAAs. Each point on the ROC curve shows the effect 
of a rule for turning a risk estimate into a prediction of the development of 
an event. The y axis of the ROC curve is the true positive rate or sensitivity 
(i.e., the proportion of individuals with pancreatic cancer who were correctly 
predicted to have the disease). The x axis shows the false positive rate, which is 
the complement of specificity (i.e., the proportion of individuals without pan- 
creatic cancer who were incorrectly predicted to have pancreatic cancer). The 
area under the ROC curve, the AUC, measures how well the model discriminates 
between case subjects and control subjects. An ROC curve that corresponds to a 
random classification of case subjects and control subjects is a straight line with 
an AUC of 50%. An ROC curve that corresponds to perfect classification has an 
AUC of 100%. The improvement in AUC for a model containing a new marker 
is defined as the difference in AUCs calculated using a model with and without 
the new marker of interest53. 

For context, the Breast Cancer Risk Assessment Tool, commonly referred to 
as the Gail model54,55, estimates a woman’s risk for breast cancer using clinically 
available information including current age, age at menarche, age of first live 
birth, number of first-degree relatives with breast cancer, number of previous 
breast biopsies, breast biopsies that show atypical hyperplasia, and race/ethnicity. 
The Gail model is used to counsel women on appropriate screening tests for 
breast cancer56, for determining whether tamoxifen will be useful as a che- 
mopreventative agent57, and for determining sample size calculations in rand- 
omized clinical trials of prevention strategies58. Several studies have evaluated 
the discrimination of the Gail model using ROC curve analysis and calculated 
the AUC to be 0.58 to 0.63 (refs. 52,59–61). Follow-up studies have described 
an AUC of 0.62 to 0.66 when breast density is added as an additional predictor 
in the original Gail model59,60,62. 

Although ROC curves are commonly used, they have a number of limita- 
tions and may underestimate the ability of a new marker to contribute to risk 
prediction when added to previously defined predictors63–66. Another approach 
to evaluating model discrimination is to evaluate the ability of a new marker to 
shift an individual’s risk up or down between predefined risk categories. This 
is known as the prediction increment of a marker and has been codified in an 
approach known as net reclassification improvement (NRI)17. The NRI (some- 
times referred to as the net reclassification index) constructs reclassification 
tables separately for participants with and without events and quantifies the 
correct movement between categories of risk, namely, to higher risk categories 
for participants with events and to lower risk categories for those without events. 
Furthermore, incorrect movement in categories of risk (downwards for events 
and upwards for non-events) reduces the net correct reclassification of individu- 
als within the study population. 

The NRI calculation is represented by the following formula: 
 

NRI  = [P(up|D = 1) � P(down|D = 1)]�[P(up|D = 0) � P(down|D = 0)] 
 

Upward movement (up) is defined as a change into a higher risk category based 
on the new model and downward movement (down) as a change into a lower risk 
category based on the new model, where P indicates probability and D denotes 
the event indicator (1, event; 0, non-event). 

Using the NRI, we evaluated the ability of the prediction model including 
circulating BCAAs to appropriately reclassify individuals into risk groups com- 
pared to the base model. The base model was calculated using conditional logis- 
tic regression conditioned on matching factors and adjusted for race/ethnicity, 
body-mass index, physical activity and history of diabetes. The subsequent 
model included the covariates in the base model with the addition of circu- 
lating metabolites. As in prior studies67–69, we defined the high-risk group as 
those individuals with risk for pancreatic cancer at least twofold greater than an 
individual with average risk. 

For context, the Emerging Risk Factors Collaboration70 has examined the 
integration of novel risk factors into risk prediction models for cardiovascular 
disease. In these studies, additional potential risk predictors were added to a 

model of known risk predictors for cardiovascular disease, including age, sex, 
smoking status, blood pressure, history of diabetes, and cholesterol. The net 
reclassification improvement was then calculated for three 10-year risk catego- 
ries for cardiovascular disease. C-reactive protein (CRP) is a marker of systemic 
inflammation, and elevated CRP has been associated with an increased risk for 
cardiovascular events in numerous studies71–73. Circulating CRP is currently 
used to inform decisions in the clinic regarding screening and risk reduction 
strategies74,75 and to design clinical trials testing novel treatments to reduce 
cardiovascular events76,77. In an analysis of nearly 250,000 individuals78, the 
addition of CRP to know cardiovascular disease risk factors was associated with 
a statistically significant improvement in the area under the ROC curve and a 
NRI of 1.52% for 10-year risk of cardiovascular disease. In contrast, additional 
analyses demonstrated a <1% improvement in the NRI for body-mass index, 
waist circumference, waist-to-hip ratio, plasma fibrinogen, and circulating 
apolipoproteins78–80, such that the clinical utility of these additional predictors 
remains unclear75. 

All analyses were performed with SAS 9.2 statistical package. All P values 
were two-sided. 

 
Experimental mice. All studies were approved by the MIT Committee on 
Animal Care (IACUC). All experimental groups were assigned based on geno- 
type. All animals were numbered and experiments conducted blinded. After data 
collection, genotypes were revealed and animals assigned to groups for analysis. 
The experiments were not randomized. 

KPC. Experimental KPC mice were male mice on a mixed background, 
heterozygous for the conditional lox-stop-lox KrasG12D allele, heterozygous for 
the conditional lox-stop-lox Trp53R172H allele and expressing Cre recombinase 
under control of the Pdx1 promoter (Tg(Ipf1-cre)1Tuv)19. Littermate controls 
lacked either the LSL-KrasG12D allele, the Cre allele or both. Control mice were 
killed at the same time as their tumor-bearing littermates. 

KP−/−C. Experimental KP−/−C mice were male mice on a mixed background, 
heterozygous for the conditional lox-stop-lox KrasG12D allele, homozygous 
for loxP sites flanking exons 2–10 of Trp53 and expressing Cre recombinase 
under control of the Pdx1 promoter (Tg(Ipf1-cre)1Tuv)20. Littermate control 
mice lacked either the Cre-recombinase allele, LSL-KrasG12D allele or both 
(controls were non–tumor-bearing mice of all genotypes). Inbred C57BL/6J 
male mice containing the same alleles were also examined where indicated, 
and cancer cell lines derived from these mice (established in culture from 
tumors prior to the described implantation studies) were used for syngenic 
implantation studies. 

Non–small-cell lung cancer. Six-month-old male mice on a pure 129 back- 
ground, heterozygous for the conditional lox-stop-lox KrasG12D allele and 
homozygous for loxP sites flanking exons 2–10 of Trp53, were administered 
2.5 × 107 PFU of Cre-expressing adenovirus intratracheally as previously 
described21,22. High-titer adenovirus was obtained from the Gene Transfer 
Vector Core (University of Iowa). 

Hindlimb sarcoma. Four-week-old male mice on a mixed background, 
heterozygous for the conditional lox-stop-lox KrasG12D allele and homozygous 
for loxP sites flanking exons 2–10 of Trp53 were administered 2.5×108 PFU 
of Cre-expressing adenovirus intramuscularly as previously described23. 
High-titer adenovirus was obtained from the Gene Transfer Vector Core 
(University of Iowa). 

Implantation, pancreatitis and BCAA diet studies. Male C57BL/6J mice 
aged 4–6 weeks at the start of the study were used for these experiments. 

 
Diets. Standard chow diet was RMH 3000 (Prolab). For amino acid–defined 
diets, 1× BCAA (TD.110839) and 2× BCAA (TD.110843) were designed 
in consultation with and subsequently obtained  from  Harlan  Teklad. 
20% 13C-leucine– and 20% 13C-valine–labeled diets were based on diet 
TD.110839 and produced by Cambridge Isotopes and Harlan Teklad. 

 
Plasma for metabolomics. Plasma was collected for each experiment at the time 
points indicated. Mice were anesthetized under 2% isoflurane-oxygen mixture 
and retro-orbitally bled approximately 4.5 h after the onset of the light cycle. 
Blood was immediately placed in EDTA-pretreated tubes and centrifuged to 
separate plasma. Plasma was aliquoted and frozen at −80 °C for further analysis. 
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Fasting blood samples were harvested in the same manner first thing in the 
morning after a 16-hour overnight fast. 

 
Food consumption. Mice were housed individually for 48 h, and remaining food 
pellets weighed at 0, 24 and 48 h. A two-day average was then calculated for each 
mouse. Body weight was determined on the second day. To assess consumption 
of BCAA defined diets, mice were housed individually and fed diets for 5 d. Food 
was weighed after 2 d of feeding and again on day 5, and the average consump- 
tion per 24 h over the 72-h period was calculated. 

 
Blood glucose, plasma insulin, glucose tolerance test and insulin tolerance 
test. Four-week-old KP−/−C mice were fasted overnight and blood glucose meas- 
ured using a One Touch Ultra handheld glucometer. 25 ∝L of plasma from the 
same mice was harvested in heparinized tubes, aliquoted, and frozen at −80 °C 
for further analysis. Plasma insulin levels were determined using an ultrasensi- 

Long-term pool contribution of BCAA to plasma. Mice were exposed to 20% 
13C-leucine– and 13C-valine–labeled diets from 7 d of age to 24 d of age followed 
by 3 d of unlabeled diet (according to the protocol depicted in Fig. 3b). Two 
cohorts of mice were used in this study. One cohort of mice was killed on day 
27 in the fed state, and a second cohort of mice was killed on day 28 after a 16-h 
overnight fast (the points indicated by the red arrowheads in Fig. 3b). At time 
of killing, anesthetized mice were terminally bled and tissues harvested within 
5 min, snap frozen in liquid nitrogen using Biosqueezer (BioSpec Products), 
and stored at −80 °C for subsequent GC-MS analysis. Plasma was aliquoted and 
frozen at −80 °C for subsequent GC-MS analysis. 

Total contributions from short and long-term pools were calculated according 
to the following equations: 

 
  Fed % Labeled   

Long Term Pool =  Fasted % Labeled  ⋅ Relative Fed Pool Size 
tive mouse insulin ELISA kit (Crystal Chem, #90080). After measuring fasting   
parameters, a glucose tolerance test was performed in accordance with published 
protocols81. Briefly, conscious mice received an intraperitoneal injection of 
2 g/kg glucose at time 0. Blood glucose was subsequently measured at 15, 30, 
60, 90 and 120 min post-injection as described above. For insulin tolerance test, 
4-week-old KP−/−C mice were fasted for 6 h during daytime hours. Following 
initial blood glucose measurement, conscious mice received an intraperitoneal 
injection of 0.75 IU/kg recombinant human insulin (Novolin, Novo Nordisk). 
Blood glucose was subsequently measured at 15, 30, 60 and 90 min post- 
injection as described above. 

 
KP−/−C cell lines and implantation studies. End-stage tumors were dissected 
from C57BL/6J KP−/−C mice and mechanically chopped before trypsin disag- 
gregation, with tumor cells then propagated for three to five passages in DMEM 
with 10% FBS, 4 mM glutamine and penicillin/streptomycin to obtain enough 
cells for implantation. Cell lines were negative for mycoplasma. For subcutane- 
ous implantation studies, recipient mice were anesthetized with inhaled 2% 
isoflurane-oxygen mixture, low passage cell lines (passage 5 for each line) were 
resuspended at 2.5 × 105 cells per 100 ∝L in sterile PBS, and 100 ∝L of either 
PBS (control) or cell suspension was injected in the flank of syngeneic mice. For 
orthotopic implantation studies, recipient mice were anesthetized with inhaled 
2% isoflurane-oxygen mixture, a vertical incision made in the abdomen at the 
left mid-calvicular line, the spleen mobilized, and 25 ∝L of either PBS or PBS 
containing 1.0 × 105 cells (passage 3 for each line) was injected into the tail of 
the pancreas. 

 
Caerulein-induced chronic pancreatitis. Mice were treated with either USP- 
grade saline or 5 ∝g caerulein (Sigma) via intraperitoneal injection daily, 5 d 
per week for 10 weeks as previously described25. Blood was obtained and the 
mice killed on the final day. Tissues were fixed in 10% formalin for subsequent 
histological analysis. 

 
Plasma markers of pancreatitis. Plasma amylase and lipase measurements were 
performed by IDEXX BioResearch Laboratory (North Grafton, MA). 

 
BCAA diet studies. Mice were fed either 1× or 2× BCAA diets for 10 weeks. 
Blood was obtained and mice killed on the final day of the experiment. Tissues 
were fixed in 10% formalin for subsequent histological analysis. 

 
Studies to determine source of BCAA elevations. Acute uptake and disposal. 
Following a 16-h overnight fast, mice were fed 20% 13C-leucine and valine con- 
taining diet for 2 h before removal of food, and food consumption during this 
period quantified as described above. At the time points indicated by the red 
arrowheads in Figure 3a, 10–25 ∝L of plasma was harvested from the tail vein 
of conscious mice in a heparinized tube and centrifuged to separate plasma. 
Plasma was aliquoted and frozen at −80 °C for subsequent GC-MS analysis. Total 
ion counts from GC-MS analysis of leucine and valine were then normalized to 
norvaline internal standard and multiplied by fractional labeling to determine 
the amount of label present. This number for each animal was then normalized 
to that animal’s food intake to control for interanimal variation in labeled food 
consumption. 

Short Term Pool = Relative Fed Pool Size � Long Term Pool 
 

Raw data are summarized in Supplementary Note, Table S6. 
 

Tissue and body weights. For measurement of tissue weights, mice were 
weighed before killing, then gastrocnemius, tibialis anterior, soleus and heart 
were subsequently dissected and weighed. Muscle weights for each individual 
mouse were normalized to the body weight of that mouse. 

 
LC-MS plasma amino acid measurements. Plasma amino acids were measured 
by LC-MS at the Koch Institute of the Massachusetts Institute of Technology 
(Cambridge, MA) using similar methods used for assessment of metabolites in 
human plasma. Raw data were analyzed as peak area tops using the open-access 
MAVEN software tool82. 

 
GC-MS assessment of 13C-leucine and 13C-valine labeling. Plasma polar 
metabolites were extracted in ice-cold 4:1 methanol/water with norvaline inter- 
nal standard (5 ∝L plasma in 200 ∝L extraction solution). Extracts were clarified 
by centrifugation and the supernatant evaporated under nitrogen and frozen at 
−80 °C for subsequent derivitization. Dried polar metabolites were dissolved in 
20 ∝L of 2% methoxyamine hydrochloride in pyridine (Thermo) and held at 
37 °C for 1.5 h. After dissolution and reaction, tert-butyldimethylsilyl deriva- 
tization was initiated by adding 25 ∝L N-methyl-N-(tert-butyldimethylsilyl)tri 
fluoroacetamide + 1% tert-butyldimethylchlorosilane (Sigma) and incubating 
at 37 °C for 1 h. The acid hydrolysis protocol was adapted from Antoniewicz 
et al.83. Briefly, acid hydrolysis of tissue proteins was performed on snap-frozen 
tissues by boiling 1–5 mg tissue in 1 mL 18% hydrochloric acid overnight at 
100 °C. 50 ∝L supernatant was evaporated under nitrogen and frozen at −80 °C 
for subsequent derivitization. Dried hydrolysates were re-dissolved in pyridine 
(10 ∝L/1 mg tissue) before tert-butyldimethylsilyl derivatization, which was 
initiated by adding N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide + 
1% tert-butyldimethylchlorosilane (12.5 ∝L/1 mg tissue, Sigma) and incubating 
at 37 °C for 1 h. 

GC-MS analysis was performed using an Agilent 7890 GC equipped with a 
30-m DB-35MS capillary column connected to an Agilent 5975B MS operating 
under electron impact ionization at 70 eV. One microliter of sample was injected 
in splitless mode at 270 °C, using helium as the carrier gas at a flow rate of 1 ml 
min−1. For measurement of amino acids, the GC oven temperature was held at 
100 °C for 3 min and increased to 300 °C at 3.5 °C min−1. The MS source and 
quadrupole were held at 230 °C and 150 °C, respectively, and the detector was 
run in scanning mode, recording ion abundance in the range of 100–605 m/z. 
MIDs were determined by integrating the appropriate ion fragments83 listed in 
Supplementary Note, Table S7 and corrected for natural isotope abundance 
using an algorithm adapted from Ferandez et al.84. 

 
Statistical analyses for mouse studies. Appropriate statistical tests were per- 
formed where required. Two-sided unpaired Student’s t-tests were performed 
for all statistical analyses unless otherwise specified using Mircosoft Excel for 
Mac:2011 (Microsoft) or GraphPad Prism 6 (GraphPad Software). Two-sided 
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repeated-measures analysis of variance was performed to compare mean plasma 
glucose levels in the glucose tolerance test and insulin tolerance tests85, using 
SAS 9.2 statistical package. No statistical method was used to predetermine 
sample size. 
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Background The insulin-like growth factor (IGF) signaling pathway has been implicated in prostate cancer (PCa) initiation, but 
its role in progression remains unknown. 

Methods Among 5887 PCa patients (704 PCa deaths) of European ancestry from seven cohorts in the National Cancer 
Institute Breast and Prostate Cancer Cohort Consortium, we conducted Cox kernel machine pathway analysis to 
evaluate whether 530 tagging single nucleotide polymorphisms (SNPs) in 26 IGF pathway-related genes were 
collectively associated with PCa mortality. We also conducted SNP-specific analysis using stratified Cox models 
adjusting for multiple testing. In 2424 patients (313 PCa deaths), we evaluated the association of prediagnostic 
circulating IGF1 and IGFBP3 levels and PCa mortality. All statistical tests were two-sided. 

Results The IGF signaling pathway was associated with PCa mortality (P = .03), and IGF2-AS and SSTR2 were the main 
contributors (both P = .04). In SNP-specific analysis, 36 SNPs were associated with PCa mortality with Ptrend less 
than .05, but only three SNPs in the IGF2-AS remained statistically significant after gene-based corrections. Two 
were in linkage disequilibrium (r2 = 1 for rs1004446 and rs3741211), whereas the third, rs4366464, was independ- 
ent (r2 = 0.03). The hazard ratios (HRs) per each additional risk allele were 1.19 (95% confidence interval [CI] = 1.06 
to 1.34; Ptrend  = .003) for rs3741211 and 1.44 (95% CI = 1.20 to 1.73; Ptrend  < .001) for rs4366464. rs4366464 remained 
statistically significant after correction for all SNPs (Ptrend.corr = .04). Prediagnostic IGF1 (HRhighest vs lowest quartile = 0.71; 
95% CI = 0.48 to 1.04) and IGFBP3 (HR = 0.93; 95% CI = 0.65 to 1.34) levels were not associated with PCa mortality. 

Conclusions       The IGF signaling pathway, primarily IGF2-AS and SSTR2 genes, may be important in PCa survival. 
 

JNCI J Natl Cancer Inst (2014) 106(5): dju085 
 
 

Abundant experimental  evidence  indicates  that  the  insulin-like 
growth factor (IGF) signaling pathway is important for cell survival 
and tumorigenesis (1,2). Epidemiological research, focused primar- 
ily on IGF1 and IGF binding protein 3 (IGFBP3) and risk of inci- 
dent prostate cancer, suggests that higher circulating IGF1 were 
associated with increased risk of prostate cancer (3), with mixed 
findings for IGFBP3 levels (4). However, little is known about the 
role of prediagnostic circulating levels of IGF1 and/or IGFBP3 in 
prostate cancer survival. 

Data on genetic variations in IGF-related genes and prostate 
cancer survival are sparse, limited by relatively small number of 
fatal outcomes and assessment of only a handful of single nucleo- 
tide polymorphisms (SNPs) related to risk of prostate cancer, as 
identified by tagging SNPs or from genome-wide association stud- 
ies (5,6). To the best of our knowledge, a systematic evaluation of 

genetic variants of IGF pathway–related genes and progression to 
fatal prostate cancer is lacking. 

The National Cancer Institute Breast and Prostate Cancer 
Cohort Consortium (BPC3), pooled data from multiple large 
cohort studies, was designed to examine associations of variations 
in genes that mediate the steroid hormone and the IGF signal- 
ing pathway with breast and prostate cancer risk (7). With an aver- 
age 8.9 years of follow-up among 5887 prostate cancer patients 
of European ancestry in BPC3, we aimed to 1) use a novel kernel 
machine pathway analysis and SNP-specific analysis to evaluate 
whether common variations among 26 genes involved in the syn- 
thesis, metabolism, and regulation of IGFs were associated with 
prostate cancer mortality; and 2) investigate the associations of 
prediagnostic circulating IGF1 and IGFBP3 levels with prostate 
cancer mortality in a subset of 2424 patients. 
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Methods 
Study Population 
The BPC3 consists of seven nested case–control studies of pros- 
tate cancer from prospective cohort studies in the United States 
and Europe: Alpha-Tocopherol, Beta-Carotene Cancer Prevention 
Study (ATBC), American Cancer Society Cancer Prevention Study 
II (CPS-II), European Prospective Investigation into Cancer and 
Nutrition (EPIC), Health Professionals Follow-up Study (HPFS), 
Multiethnic Cohort Study (MEC), Physicians’ Health Study 
(PHS), and Prostate, Lung, Colorectal, and Ovarian (PLCO) 
Cancer Screening Trial (7). Prostate cancer case patients were 
ascertained through population-based registries, self-report, or 
death certificates and verified by medical records. Height, body 
weight, and family history of prostate cancer were obtained by self- 
report. Data on disease stage (Jewett–Whitmore classification) and 
grade (Gleason score) were collected from each cohort. Written 
informed consent was obtained from all subjects, and each study 
was approved by the institutional review boards at their respective 
institutions. Details of vital status follow-up and determination of 
cause of death are described in the Supplementary Methods (avail- 
able online). 

SNP Selection and Genotyping 
A total of 590 SNPs in 26 genes involved in the synthesis, metabo- 
lism, and regulation of insulin-like growth factors were genotyped 
(Figure 1). After restricting to self-reported European ancestry, a 
total of 5887 prostate cancer patients were included in this analysis. 
Two approaches were taken to evaluate linkage disequilibrium (LD) 
patterns and select the SNPs for this analysis as described elsewhere 
(7,8). Genotyping was performed in six laboratories: National 
Cancer Institute Core Genotyping Facility (Gaithersburg, MD), 
University of Southern California (Los Angeles, CA), University of 
Hawaii (Honolulu, HI), Harvard School of Public Health (Boston, 
MA), Imperial College (London, UK), and Cambridge University 
(Cambridge, UK). A total of 40 SNPs from GNRH1, GNRHR, 
IGF1, IGFBP1, and IGFBP3 were genotyped using TaqMan 
(Applied Biosystems, Foster City, CA). The remaining SNPs were 
genotyped by Illumina Golden Gate platform (San Diego, CA). 
Interlaboratory concordance was evaluated by genotyping 94 sam- 
ples from the SNP 500 cancer panel (9) for the TaqMan SNPs and 
30 HapMap CEU (Utah residents with ancestry from northern and 
western Europe) trios for the Illumina panel, with concordance 
rates greater than 99% between laboratories. 

 
 
 

 
 

Figure 1. IGF signaling pathway. Genes included in this analysis were SST, SSTR1-5, GHRH, GHRHR, GHR, IGF1, IGF1R, IGFBP1-6, IGF2-AS, IGF2R, 
IGFALS, INSR, IRS1, IRS2 (shown in Figure 1) and POU1F1, GNRH1, and GNRHR (not shown); the insulin receptor is encoded by a single gene, INSR, 
from which alternate splicing during transcription results in either IRA or IRB isoforms; the insulin gene (INS) was not genotyped, and genes in PI3k/ 
Akt/mTOR and Ras-MAPK pathway were not included in this analysis. 
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Genotype data from the Taqman and Illumina platforms were fil- 
tered separately. Any sample in which more than 25% of the SNPs 
attempted on a given platform failed was removed from the data- 
set. Within each study, any SNP that failed in 25% or more of the 
samples, exhibited a statistically significant (P < 10−5) deviation from 
Hardy–Weinberg proportions  among  European-ancestry  controls, 
or had a minor allele frequency less than 1% was removed from the 
dataset. SNPs that were missing in more than 25% of the prostate 
cancer patients or showed large differences in allele frequency among 
subjects with European ancestry across studies (fixation index Fst  > 
0.02) were also excluded from analysis. For each gene region, SNPs 
that were polymorphic in any of the HapMap reference panels were 
imputed using MACH (10). Genotypes were imputed by cohort using 
the CEPH (Utah residents with ancestry from northern and western 
Europe) European (CEU) reference panel for subjects of European 
ancestry (release No. 21). Imputed data was filtered by study, and 
poorly imputed SNPs (r2 <0.3) were removed from analysis. 

 
Circulating IGF1 and IGFBP3 levels 
Prediagnostic measurements of IGF1 and IGFBP3 were available for 
five of the seven cohorts (ATBC, EPIC, HPFS, PHS, and PLCO; 
n = 2445) (11–15). Details of sample collection and storage were 
described previously. Samples from ATBC, HPFS, and PHS were 
measured in the Pollak laboratory (McGill University, Montreal, QC, 
Canada), and the remaining studies were measured in the laboratory of 
the Hormones and Cancer Team at International Agency for Research 
on Cancer (IARC) with enzyme-linked immunosorbent assays 
(Diagnostic System Laboratories, Webster, TX). We excluded cohort 
and assay batch-specific statistical outliers (n = 21) based on the gen- 
eralized extreme studentized deviate many-outlier detection approach, 
setting alpha to 0.05 for both IGF1 and IGFBP3 blood levels (16). 

 
Statistical Analysis 
IGF Gene Pathway. The kernel machine Cox regression frame- 
work (17,18), a novel and comprehensive approach for pathway 
analysis of censored survival outcomes, was used to assess associa- 
tions with deaths from prostate cancer and other causes for SNP 
sets defined by all 26 genes in the IGF pathway and each gene 
individually after adjusting for continuous age and study cohort. 
Because genotyped SNPs may be imperfect surrogates for the true 
casual SNP, their individual relative risks are likely to be modest, 
and a multimarker global test will more effectively capture the true 
effect. The kernel machine accounts for LD in an SNP set, leading 
to a powerful test with reduced degrees of freedom. More attrac- 
tively, it can also capture potential nonlinear SNP effects, SNP– 
SNP interactions (epistasis), and the joint effects of multiple causal 
variants without requiring a priori knowledge of directionality. The 
kernel machine tests whether an SNP set is associated with event 
time of interest after adjusting for covariables, and the test statistic 
under the null follows a mixture of χ2  distributions, which can be 
approximated by resampling methods. Logistic kernel machines 
have been applied in a variety of traits and diseases (19,20). 

SNP-specific analyses were conducted by stratified Cox pro- 
portional hazards models under a log-additive hazards assumption 
and stratified by study cohort, allowing different baseline hazards 
for each study. Follow-up was defined from the date of prostate 
cancer diagnosis to the date of any death or last follow-up. The 

assumption of proportionality was verified by testing each SNP 
and time since diagnosis, and no violation was identified. All analy- 
ses were adjusted for age at diagnosis and further adjusted for stage 
and Gleason score at diagnosis. To correct for multiple testing with 
possible presence of LD, the number of effective SNPs, Meff, was 
calculated for each gene using a spectral decomposition approach 
(21). For gene-based P value correction, nominal P values for each 
SNP were multiplied by the Meff for the gene. For the pathway- 
based correction, the Meff values for all 26 genes were summed to 
correct the P values. 

Cumulative incidence of prostate cancer death by years since 
diagnosis were plotted for statistically significant SNPs after gene- 
level–based correction using competing-risks regression by the 
method of Fine and Gray (22). 

Stratified analysis of statistically significant SNPs and prostate 
cancer mortality association by age at diagnosis (<65 or ≥65 years) 
and BMI (<25, 25–30, or ≥30 kg/m2), Gleason score (2–6, 7, or 8–10) 
and stage (A/B or C/D) were conducted under a dominant model 
as a result of limited sample size. To assess effect modification, we 
added a product term of statistically significant SNPs with the vari- 
ables above and computed P values from log likelihood ratio test. 

 
Circulating IGF1 and IGFBP3 Levels. We created batch-specific 
(n = 10) quartiles for IGF1 and IGFBP3 and assessed their asso- 
ciations with prostate cancer mortality simultaneously by stratified 
Cox proportional hazards models adjusting for age at diagnosis. 
Models were also additionally adjusted for BMI assessed at the 
baseline of each study to assess possible confounding or stage and 
Gleason score at diagnosis to evaluate possible mediation. Tests 
for trend were done by treating the median concentration for each 
quartile as a continuous variable. Stratified analysis by stage and 
Gleason score at diagnosis were also performed. To account for 
the possibility of reverse causation in which an undiagnosed tumor 
could affect biomarker levels, sensitivity analyses were conducted 
by excluding cases diagnosed within 2 years of blood draw. 

Analyses were conducted using SAS 9.2 (SAS Institute, Cary, 
NC), R (The R Foundation for Statistical Computing; http:// 
www.r-project.org/foundation/), and Stata 12 (StataCorp, College 
Station, TX). All statistical tests were two-sided. A P value of less 
than .05 was considered statistically significant. 

 
 

results 
During an average follow-up of 8.9 years among the 5887 case 
patients, 1,999 patients died, 704 of whom had prostate cancer as 
the underlying cause of death. Among the 2424 men in the sub- 
group of biomarker analysis, 313 of the 810 deaths were due to 
prostate cancer. Compared with those who were either alive at last 
follow-up or had died from other causes, patients who died from 
prostate cancer had higher Gleason score and clinical stage at diag- 
nosis but similar BMI (Table 1; Supplementary Table 1, available 
online). 

 
IGF Gene Pathway and Prostate Cancer Mortality 
Pathway Analysis. A total of 530 SNPs were included in the 
genetic analysis. Kernel machine pathway analysis suggests that 
this set of SNPs covering all 26 genes in the IGF signaling pathway 

http://www.r-project.org/foundation/�
http://www.r-project.org/foundation/�
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Table 1. Characteristics of prostate cancer patients in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium* 
 

 

Characteristic PCa death (n = 704) Censored (n = 5183) Total (n = 5887) 
 

 

Age at diagnosis, y, mean (SD) 69.1 (7.1) 68.3 (6.4) 68.4 (6.5) 
Diagnosis to prostate cancer death/ 

censoring, y, mean (SD) 
Body mass index, kg/m2 

5.3 (3.8) 9.4 (3.9) 8.9 (4.1) 

 

18–24.9 265 (38) 2030 (39) 2295 (39) 
25–29.9 342 (49) 2393 (46) 2735 (46) 
≥30 78 (11) 572 (11) 650 (11) 
Missing 

Family history 
Yes 

19 (2) 
 

39 (6) 

188 (4) 
 

576 (11) 

207 (4) 
 

615 (10) 
No 358 (51) 3038 (59) 3396 (58) 
Missing 

Gleason score 
2–6 

307 (44) 
 

115 (16) 

1569 (30) 
 

2567 (50) 

1876 (32) 
 

2682 (46) 
7 225 (32) 1465 (28) 1690 (29) 
8–10 217 (31) 485 (9) 702 (12) 
Missing 147 (21) 666 (13) 813 (14) 

Stage 
A or B 

 
259 (37) 

 
3801 (73) 

 
4060 (69) 

C or D 343 (49) 702 (14) 1045 (18) 
Missing  

Biomarker subcohort 
No. of patients 

102 (14) 
 

313 

680 (13) 
 

2111 

782 (13) 
 

2424 
Age at blood draw, y, mean (SD) 
Circulating IGF1, ng/mL, median (IQR) 
Circulating IGFBP3, ng/mL, median (IQR) 

64.0 (7.8) 
161 (124–212) 

3110 (2544–3753) 

63.0 (6.9) 
182 (142–228) 

3613 (2597–4333) 

63.1 (7.1) 
179 (139–227) 

3544 (2899–4290) 
 

*  Data are No. (%) unless otherwise specified. 
 

was associated with prostate cancer mortality (P = .03) (Table 2). 
When testing the SNP set of each gene, IGF2-AS (9 SNPs; P = .04) 
and SSTR2 (14 SNPs; P = .04) showed statistically significant asso- 
ciations with prostate cancer mortality. The overall pathway P val- 
ues were .05 without either IGF2-AS or SSTR2 and .08 without 
both IGF2-AS and SSTR2, suggesting both IGF2-AS and SSTR2 
may contribute to the progression to fatal prostate cancer. Neither 
the overall pathway nor IGF2-AS or SSTR2 were associated with 
risk of dying from causes other than prostate cancer. 

 
SNP-Specific Analysis. A total of  36  SNPs  were  associated 
with prostate cancer mortality with Ptrend < .05 (Supplementary 
Table 2, available online). After correcting for multiple testing 
at gene level, three SNPs, all in IGF2 antisense gene (IGF2-AS, 
11p15.5), were statistically significantly associated with prostate 
cancer–specific mortality. Two of these SNPs, rs1004446 (intron) 
and rs3741211(3’-UTR), were in LD with each other (r2 = 1 in 
1000 Genome CEU population) but independent with the third 
SNP rs4366464 (intron) (r2 = 0.03). For rs3741211, each additional 
A allele was associated with a 19% (hazard ratio [HR] = 1.19; 95% 
confidence interval [CI] = 1.06  to  1.34;  Ptrend  =  .003)  increased 
risk of prostate cancer–specific mortality. For rs4366464, each 
additional minor allele G was associated with a 44% (HR = 1.44; 
95% CI = 1.20 to 1.73) increased risk of prostate cancer mortal- 
ity (Ptrend = <.001) (Table 3; Supplementary Figure 1, available 
online). The association for rs4366464 remained statistically sig- 
nificant after further correcting for multiple testing of all SNPs 
(Ptrend.corr = .04; Meff = 424). When mutually adjusted for each other, 
the hazard ratios remained similar for rs3741211 (HR = 1.15; 95% 
CI = 1.03 to 1.30) and rs4366464 (HR = 1.37; 95% CI = 1.13 to 

1.67 ), suggesting independent additive effects of the two SNPs 
on prostate cancer progression. Cohort-specific associations 
(Figure 2) also indicated the robustness of these associations, and 
minimal heterogeneities were observed (rs3741211: I2 < 0.05%, 
Pheterogenity = .44; rs4366464: I2 < 0.05%, Pheterogenity = .55). 

SNP rs4366464 or rs3741211 was not statistically significantly 
associated with either Gleason score or stage (data not shown). After 
additionally adjusting for these clinical parameters, the association 
between rs3741211 and prostate cancer death remained unchanged, 
whereas the hazard ratio for rs4366464 was slightly attenuated. Neither 
rs3741211 nor rs4366464 was associated with risk of dying from other 
causes (Table 3). These data suggest that the association between the 
two SNPs in IGF2-AS and prostate cancer mortality were independ- 
ent of tumor characteristics and specific to death from prostate cancer. 

Joint effect analysis suggests that for rs3741211, the associa- 
tion with prostate cancer mortality tended to be stronger among 
men with cancer diagnosed at younger age or patients with BMI 
less than 25 kg/m2 (Supplementary Figure 2, available online). For 
rs4366464, the association was stronger among men diagnosed 
at younger age. For both SNPs, the associations were somewhat 
stronger among patients with higher stage (C or D) or higher 
Gleason score (≥7). However, only interaction between rs3741211 
and stage was statistically significant (P = .02). 

 
Circulating IGF1 and IGFBP3 and Prostate Cancer 
Mortality 
IGF1 levels were statistically significantly correlated with IGFBP3 
(r = 0.52; P < .001). Prediagnositic circulating levels of IGF1 (HRhighest 

vs lowest quartile = 0.71; 95% CI = 0.48 to 1.04) and IGFBP3 (HR = 0.93; 
95% CI = 0.65 to 1.34) were not associated with prostate cancer 
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Table 2. IGF pathway analyses for prostate cancer–specific mortality and mortality of other causes by kernel machine* 
 

 
Gene abbreviation 

 
Gene name 

Chromosomal 
region 

No. of SNPs 
included 

P for PCa 
death† 

P for 
other death† 

Pathway 
Total pathway 

 
— 

 
— 

 
530 

 
.03 

 
.14 

Pathway w/o IGF2-AS — — 521 .05 .14 
Pathway w/o SSTR2 — — 516 .05 .13 
Pathway w/o IGF2-AS 
and SSTR2 

— — 507 .08 .13 

Gene 
GHR 

 
Growth hormone receptor 

 
5p13-p12 

 
34 

 
.16 

 
.61 

GHRH Growth hormone releasing hormone 20q11.2 9 .14 .75 
GHRHR Growth hormone releasing hormone receptor 7p14 26 .38 .85 
GNRH1 Gonadotropin-releasing hormone 1 8p21-p11.2 3 .86 .55 
GNRHR Gonadotropin-releasing hormone receptor 4q21.2 6 .15 .07 
IGF1 Insulin-like growth factor 1 12q23.2 14 .35 .12 
IGF1R Insulin-like growth factor 1 receptor 15q26.3 112 .36 .20 
IGF2-AS IGF2 antisense RNA 11p15.5 9 .04 .40 
IGF2R Insulin-like growth factor 2 receptor 6q26 68 .09 .16 
IGFALS Insulin-like growth factor binding protein, acid 16p13.3 7 .34 .54 

 labile subunit     
IGFBP1 Insulin-like growth factor binding protein 1 7p13-p12 7 .29 .22 
IGFBP2,5 Insulin-like growth factor binding protein 2 and 5 2q33-q36 36 .06 .34 
IGFBP3 Insulin-like growth factor binding protein 3 7p13-p12 8 .77 .22 
IGFBP4 Insulin-like growth factor binding protein 4 17q12-q21.1 7 .69 .67 
IGFBP6 Insulin-like growth factor binding protein 6 12q13 7 .76 .54 
INSR Insulin receptor 19p13.3-p13.2 53 .07 .19 
IRS1 Insulin receptor substrate 1 2q36 8 .53 .85 
IRS2 Insulin receptor substrate 2 13q34 13 .38 .82 
POU1F1 POU class 1 homeobox 1 3p11 6 .55 .42 
SST Somatostatin 3q28 16 .66 .03 
SSTR1 Somatostatin receptor 1 14q13 19 .31 .06 
SSTR2 Somatostatin receptor 2 17q24 14 .04 .50 
SSTR3 Somatostatin receptor 3 22q13.1 18 .96 .96 
SSTR4 Somatostatin receptor 4 20p11.2 26 .24 .41 
SSTR5 Somatostatin receptor 5 16p13.3 4 .78 .91 

 

*  PCa = prostate cancer; SNP = single nucleotide polymorphism. 

†  P values were calculated using kernel machine Cox regression framework and were two-sided. 

 
mortality in the model mutually adjusted for each other and age at 
diagnosis (Table 4). The hazard ratios were similar after addition- 
ally adjusting for stage and Gleason score at diagnosis in the model, 
or BMI at baseline, or excluding IGF1 and IGFBP3 measurements 
within 2 years of prostate cancer diagnosis (data not shown). In sub- 
group analysis, higher IGF1 levels were statistically significantly 
associated with lower prostate cancer mortality (Ptrend = .02) among 
men diagnosed with more advanced tumors (stage C or D). 

 
 

Discussion 
To the best of our knowledge, this analysis of IGF pathway genes 
in relation to prostate cancer mortality among prostate cancer 
patients is the largest study to date. Using the kernel machine 
pathway analysis, a powerful test allowing assessment of the joint 
associations of variants in a predefined pathway, we demonstrated 
that the IGF pathway was statistically significantly associated with 
prostate cancer mortality and two genes, IGF2-AS and SSTR2, 
may play important roles in prostate cancer progression. Using 
SNP-specific association analysis, we further identified two SNPs, 
rs3741211 and rs4366464 in IGF2-AS, that were statistically sig- 
nificantly associated with prostate cancer mortality. 

Additionally, among a subset of 2424 patients, we found no 
overall associations between prediagnostic circulating levels of 
IGF1 and IGFBP3 and prostate cancer mortality. The null associa- 
tions between IGF1 and IGFBP3 genes and prostate cancer mor- 
tality suggest that their roles in the progression of prostate cancer 
were limited. In previous analyses of BPC3 patients, genetic vari- 
ations in IGF1 and SSTR5 were associated with circulating levels 
of IGF1, and IGFBP3 and IGFALS genes were associated with 
IGFBP3 levels (8,23). However, none of the SNPs in these genes 
were associated with prostate cancer mortality in our analysis, 
which is in line with the null findings between circulating levels of 
IGF1 and IGFBP3 and prostate cancer mortality. Although these 
findings should be interpreted with caution given the heterogenei- 
ties in blood collection, sample storage, and assay variation across 
the cohorts, the findings are not surprising because recent prospec- 
tive studies did not support stronger associations of IGF1 levels 
with risk of advanced prostate cancer, favoring the hypothesis that 
common germline variations or circulating levels of IGF1 may 
contribute to early growth of prostate carcinogenesis (4), but not 
during progression. 

The role of IGF2-AS and IGF2 in prostate cancer initiation 
and progression is largely underexplored. A previous genome-wide 



 

 
 
 
 
 
 
 
 
 

Table 3.  Single nucleotpide polymorphisms in IGF2-AS associated with prostate cancer–specific mortality after gene-based P value correction* 
 

 
 
SNP 

 
Risk 
allele 

 
 

RAF 

 
Chromosomal 

region 

 
 

Position 

 
 

Genotype 

 
Person- 
years 

 
 

No. 

PCa deat 

HR (95% CI)† 

h 

HR (95% CI)‡ 

Other death 
 

 

No. HR (95% CI)† HR (95% CI)‡ 

rs3741211 A 0.626 11p15.5 2169110 GG 6945 64 1.00 (referent) 1.00 (referent) 182 1.00 (referent) 1.00 (referent) 
     GA 23 425 312 1.40 (1.07 to 1.83) 1.43 (1.09 to 1.87) 558 0.89 (0.75 to 1.05) 0.89 (0.75 to 1.05) 
     AA 19 562 295 1.55 (1.18 to 2.03) 1.50 (1.15 to 1.97) 500 0.93 (0.79 to 1.11) 0.93 (0.78 to 1.10) 
     AA/GA 42 987 607 1.47 (1.13 to 1.90) 1.46 (1.13 to 1.90) 1058 0.91 (0.78 to 1.07) 0.90 (0.77 to 1.06) 
     per allele — — 1.19 (1.06 to 1.34) 1.16 (1.04 to 1.30) — 0.99 (0.91 to 1.07) 0.98 (0.90 to 1.07) 
     Ptrend§ — — .003 .01 — .75 .66 

     Ptrend.corr§ — — .02 .08 — 1.00 1.00 
rs4366464 G 0.066 11p15.5 2164799 CC 44 133 566 1.00 (referent) 1.00 (referent) 1099 1.00 (referent) 1.00 (referent) 

 GC 6596 117 1.39 (1.14 to 1.70) 1.32 (1.08 to 1.62) 157 0.96 (0.82 to 1.14) 0.96 (0.81 to 1.14) 
GG 169 6 2.87 (1.28 to 6.44) 2.34 (1.04 to 5.25) 7 1.93 (0.92 to 4.08) 1.88 (0.89 to 3.97) 

GG/GC 6764 123 1.43 (1.18 to 1.74) 1.35 (1.11 to 1.65) 164 0.99 (0.84 to 1.16) 0.98 (0.83 to 1.16) 
per allele — — 1.44 (1.20 to 1.73) 1.36 (1.13 to 1.63) — 1.01 (0.86 to 1.18) 1.00 (0.86 to 1.18) 

Ptrend§ — — .0001 .001 — .92 .96 
Ptrend.corr§ — — .0008 .01 — 1.00 1.00 

 

*  CI = confidence interval; HR = hazard ratio; PCa = prostate cancer; SNP = single nucleotide polymorphism; RAF = risk allele frequency in patients who did not die from prostate cancer. 

†  The Cox model was stratified by study cohort and adjusted for age at diagnosis. 

‡  The model was additionally adjusted for Gleason score and stage at diagnosis. Because adding body mass index to the multivariable model did not alter the hazard ratios, we decided not to present results adjusted 
for body mass index. 

§  Ptrend were calculated using stratified Cox proportional hazards models under a log-additive hazards assumption and were two-sided. Ptrend.corr were Ptrend after gene-based correction for multiple testing (Meff = 8). 
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A 
Study 

 
RAF 

 
Fatal 

 
Censored 

 
HR (95% CI) 

 
 

 
CPSII 

 
0.617 49 

 
1162 

0.89 (0.60 to 1.32) 

ATBC 0.641 273 705 1.15 (0.95 to 1.37) 
 
EPIC 

 
0.628 114 

 
545 

 
1.18 (0.90 to 1.55) 

HPFS 0.688 44 468 0.95 (0.59 to 1.53) 

MEC 0.593 22 398 1.62 (0.87 to 3.03) 

PHS 0.602 149 835 1.42 (1.11 to 1.81) 

PLCO 0.629 20 845 1.35 (0.68 to 2.67) 

Pooled 0.626 671 4758 1.19 (1.06 to 1.34) 

 
 
 

.5 1 1.5 3 
Hazard ratio 

 
B 

Study 

 

RAF 

 

Fatal 

 

Censored 

 

HR (95% CI) 
 
 

 
CPSII 

 
0.06   50 

 
1169 

 
2.67 (1.44 to 4.94) 

ATBC 0.054 273 708 1.55 (1.15 to 2.09) 

EPIC 0.069 115 547 1.31 (0.84 to 2.04) 

HPFS 0.078 55 555 0.99 (0.48 to 2.03) 

MEC 0.084 22 400 0.81 (0.24 to 2.74) 

PHS 0.072 154 817 1.44 (0.99 to 2.10) 

PLCO 0.06   20 849 0.81 (0.20 to 3.29) 

Pooled 0.066 689 5045 1.44 (1.20 to 1.73) 

 
 
 

.5 1 1.5 3 

Hazard ratio 
 

Figure 2. Association of IGF2-AS single nucleotide polymorphism 
rs3741211 and rs4366464 with prostate cancer–specific mortality by study 
cohort. Hazard ratios (HRs; diamonds) and 95% confidence intervals (CIs; 
error bars) calculated for the association for the individual studies and the 
pooled analysis for rs3741211 (A) and rs4366464 (B) are shown. Size of 
gray square represents percentage weight of each study. RAF = risk allele 

frequency. ATBC = Alpha-Tocopherol, Beta-Carotene Cancer Prevention 
Study; CI = confidence interval; CPS-II = American Cancer Society Cancer 
Prevention Study II; EPIC = European Prospective Investigation into Cancer 
and Nutrition; HPFS = Health Professionals Follow-up Study; HR = hazard 
ratio; MEC = Multiethnic Cohort Study; PHS = Physicians’ Health Study; 
PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer ScreeningTrial. 

 
association study identified SNP rs7127900 in IGF2-AS as associ- 
ated with risk of incident prostate cancer (24) but not with prostate 
cancer mortality (5). This SNP was not in LD with the two SNPs 
we identified (r2 = 0.01 for rs3741211 and r2 = 0.003 for rs4366464 
in 1000 Genome CEU population). 

IGF2 is a peptide growth factor that is homologous to both 
IGF1 and insulin; interaction of IGF2 with insulin receptor sub- 
type A (IRA) may play a role both in fetal growth and cancer 
biology (25). IGF2-AS expresses a paternally imprinted antisense 
transcript of the IGF2 gene. It is transcribed in the opposite 

 
jnci.oxfordjournals.org JNCI   |   Article   Page 7 of 10 

   
   
 



 

Table 4. Circulating levels of IGF1 and IGFBP3 and prostate cancer–specific mortality in the National Cancer Institute Breast and Prostate 
Cancer Cohort Consortium 

 
 

Quartile* 
 

 

Q1 Q2 Q3 Q4 

Outcome/ 
biomarker 

Fatal/ 
censored HR (95% CI) 

Fatal/ 
censored HR (95% CI) 

Fatal/ 
censored HR (95% CI) 

Fatal/ 
censored HR (95% CI) 

 

Ptrend§ 
 

All cases  
Model 1† 
IGF1 101/501 1.00 (referent) 80/529 0.86 (0.63 to 1.17) 68/541 0.74 (0.53 to 1.05) 64/540 0.71 (0.48 to 1.04) .08 
IGFBP3 102/499 1.00 (referent) 77/534 0.83 (0.61 to 1.13) 59/549 0.67 (0.47 to 0.95) 75/529 0.93 (0.65 to 1.34) .35 
Model 2‡          
IGF1 101/501 1.00 (referent) 80/529 0.84 (0.62 to 1.14) 68/541 0.77 (0.55 to 1.09) 64/540 0.77 (0.52 to 1.14) .18 
IGFBP3 102/499 1.00 (referent) 77/534 0.77 (0.57 to 1.06) 59/549 0.59 (0.41 to 0.84) 75/529 0.93 (0.65 to 1.35) .28 
Stage A or B†          
IGF1 35/357 1.00 (referent) 23/375 0.81 (0.46 to 1.41) 27/363 1.05 (0.59 to 1.89) 19/374 0.75 (0.37 to 1.53) .53 
IGFBP3 39/347 1.00 (referent) 25/376 0.65 (0.37 to 1.12) 13/381 0.37 (0.19 to 0.74) 27/365 0.77 (0.41 to 1.46) .23 
Stage C or D†          
IGF1 48/56 1.00 (referent) 38/80 0.73 (0.46 to 1.16) 32/91 0.58 (0.35 to 0.94) 30/89 0.52 (0.30 to 0.90) .02 
IGFBP3 40/64 1.00 (referent) 40/82 0.99 (0.63 to 1.55) 34/83 0.91 (0.55 to 1.52) 34/87 1.26 (0.73 to 2.19) .38 
Gleason<7†          
IGF1 19/246 1.00 (referent) 13/267 0.72 (0.34 to 1.53) 14/272 0.78 (0.36 to 1.70) 12/297 0.68 (0.28 to 1.68) .49 
IGFBP3 19/247 1.00 (referent) 15/274 0.86 (0.42 to 1.79) 11/283 0.68 (0.30 to 1.55) 13/278 0.85 (0.36 to 2.02) .64 
Gleason ≥7†          
IGF1 56/174 1.00 (referent) 48/180 0.93 (0.62 to 1.41) 30/188 0.64 (0.39 to 1.06) 35/172 0.81 (0.47 to 1.40) .33 
IGFBP3 57/169 1.00 (referent) 34/182 0.72 (0.46 to 1.12) 40/179 0.85 (0.54 to 1.34) 38/184 0.83 (0.49 to 1.41) .63 

 

*  Batch-specific (n = 10) quartiles were used. All models were stratified by study cohort and simultaneously adjusted for IGF1 and IGFBP3. CI = confidence interval; 
HR = hazard ratio. 

†  Adjusted for age at diagnosis 

‡  Adjusted for age, Gleason score, and stage at diagnosis 

§  Ptrend values were calculated by treating the median concentration for each quartile as a continuous variable and were two-sided. 

 

 
 

Figure 3. Gene map of IGF2-AS/IGF2/INS region and single nucleotide polymorphisms (SNPs) genotyped in IGF2-AS (n = 9). Only SNPs rs1004446 
and rs3741211 have an r2 greater than 0.8, indicated by an asterisk (*). 

 
direction to the IGF2 transcripts, with some genomic regions 
shared with IGF2 (Figure 3) (26). IGF2-AS and IGF2 were over- 
expressed in Wilms’ tumor through loss of imprinting (26,27). 
Loss of imprinting of IGF2 is generally manifested by the activa- 
tion of the normally silenced maternal allele with the subsequent 
expression of both gene copies. Evidence from Wilms’ tumor, 
colorectal cancer, and ovarian cancer suggests that the biallelic 
IGF2 expression also correlates with aberrant IGF2/H19 meth- 
ylation (28,29). IGF2 levels were increased in prostate tumor– 
associated tissues, and a widespread IGF2 loss of imprinting 
throughout the peripheral prostate in men with prostate cancer 
was observed but not in samples of benign prostatic hyperplasia 
or other adult tissues, suggesting that epigenetic modification 
may play an important role in prostate cancer carcinogenesis 

(30). Overexpression of IGF2 and/or IRA has been proposed as a 
potential mechanism of resistance to IGF1R-directed therapies 
(31). 

SSTR2 has been documented in experimental and clinical pros- 
tate cancer research but not in population studies. Somatostatin 
exerts inhibitory effects on cancer cells, including prostate, through 
five specific G-protein-coupled membrane receptors, SSTR1–5, 
with SSTR2 being predominant in human cancers (32,33). Its 
analogs, octreotide and lanreotide, which have high affinity for 
SSTR2, have been used to treat hormone-refractory prostate can- 
cers (34,35) but are still under development. 

The major strength of this study is the use of a large cohort 
consortium to study genetic predispositions, which are less likely 
to be affected by screening and treatment. Another strength is our 
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comprehensive evaluations of genetic variants in the IGF pathway 
using  pathway, SNP-specific, and  study  cohort–specific  analysis. 
However, additional genotyping to narrow down the region harbor- 
ing the causal allele, followed by functional work on the identified 
variants and validations in other independent studies and/or races/ 
ethnicities are necessary. Lack of patient treatment information was 
another limitation. However, associations of IGF genetic polymor- 
phisms or biomarkers with prostate cancer mortality were unlikely 
to be affected by treatment because the two SNPs we identified, 
rs3741211 and rs4366464, were not associated with tumor character- 
istics (stage and Gleason score), the major determinants of treatment. 

In summary, in this large consortium analysis of prostate can- 
cer, both pathway and SNP-specific analyses showed that germline 
variations in IGF2-AS gene were associated with prostate cancer 
mortality, independent of stage and Gleason score and specific to 
prostate cancer. In contrast, neither genetic polymorphisms nor 
prediagnostic circulating levels of IGF1 and IGFBP3 were asso- 
ciated with prostate cancer mortality. Pathway analysis suggests 
that SSTR2 may also play a role in prostate cancer progression, 
but SNP-specific analysis failed to show any statistically significant 
SNP in this gene after gene-level correction. Further research on 
the role of IGF2/IGF2-AS and SSTR2 is needed. 
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Abstract 

Previous studies have associated higher milk intake with greater prostate cancer (PCa) incidence, but little data are 
available concerning milk types and the relation between milk intake and risk of fatal PCa. We investigated the association 
between intake of dairy products and the incidence and survival of PCa during a 28-y follow-up. We conducted a cohort 
study in the Physicians' Health Study (n = 21,660) and a survival analysis among the incident PCa cases (n = 2806). 
Information on dairy product consumption was collected at baseline. PCa cases and deaths (n = 305) were confirmed 
during follow-up. The intake of total dairy products was associated with increased PCa incidence [HR = 1.12 (95% CI: 0.93, 
1.35); >2.5 servings/d vs. #0.5 servings/d]. Skim/low-fat milk intake was positively associated with risk of low-grade, early 
stage, and screen-detected cancers, whereas whole milk intake was associated only with fatal PCa [HR = 1.49 (95% CI: 
0.97, 2.28); $237 mL/d (1 serving/d) vs. rarely consumed]. In the survival analysis, whole milk intake remained associated 
with risk of progression to fatal disease after diagnosis [HR = 2.17 (95% CI: 1.34, 3.51)]. In this prospective cohort, higher 
intake of skim/low-fat milk was associated with a greater risk of nonaggressive PCa. Most importantly, only whole milk 
was consistently associated with higher incidence of fatal PCa in the entire cohort and higher PCa-specific mortality among 
cases. These findings add further evidence to suggest the potential role of dairy products in the development and 
prognosis of PCa.   J. Nutr. 143: 189–196, 2013. 

 
 

 
 

Introduction 
Prostate cancer (PCa)13 is one of the most common cancers 
among elderly men (1,2). Dairy product intake has been 
associated with higher risk of PCa in many (3–9) but not all 
(10–12) studies. In the Physicians' Health Study (PHS), we 
previously reported that higher intake of dairy products and 
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dairy-derived calcium were associated with a greater risk of 
developing incident PCa, based on 11 y of follow-up (9). 
Compared with men consuming #0.5 servings/d of dairy 
products, those consuming >2.5 servings/d had  a  34% 
increase in risk of developing PCa (95% CI: 4%, 71%). In 2 
meta-analyses of the relation  between dairy product intake 
and PCa incidence, one showed a signifi  positive associ- 
ation (13), whereas the other reported an overall null associ- 
ation (14). Part of the reason for this inconsistency could be 
that most cohort studies (including our previous report in the 
PHS) and the 2 meta-analyses did not separately evaluate 
whole milk and skim/low-fat milk. In addition, most studies 
did not consider advanced disease or PCa-specifi death as a 
major outcome, partly due to the variable duration of follow- 
up. 

In the present study, we assessed the relation between intakes 
of types of dairy products and PCa risk, with a special emphasis 
on cases that were high grade and in advanced stages at 
diagnosis as well as the occurrence of fatal PCa during a 28-y 
follow-up. 

 
ã 2013 American Society for Nutrition. 
Manuscript received September 5, 2012. Initial review completed October 3, 2012. Revision accepted November 15, 2012. 189 
First published online December 19, 2012; doi:10.3945/jn.112.168484. 

D
ow

nloaded from
 jn.nutrition.org at H

A
R

V
A

R
D

 U
N

IVE
R

SITY on February 8, 2015 

http://www.clinicaltrials.gov/�


 

 
 

Participants and Methods 
Study population. The PHS was a randomized, blinded, and placebo- 
controlled trial of aspirin and b-carotene  in the prevention of heart 
disease and cancer among 22,071 U.S. male physicians aged 40–84 y in 
1982 (15,16). At enrollment, participants provided information in the 
enrollment questionnaires on medical history and several lifestyle 
factors. All the physicians who were eligible and willing to participate 
were enrolled in a run-in phase. After 18 wk, participants were sent a 
questionnaire asking about their health status, side effects of treatment, 
compliance, and willingness to continue in the trial. Follow-up question- 
naires were mailed at 6 and 12 mo after randomization and annually 
thereafter. Participants were asked to report newly diagnosed diseases, 
including PCa. For this study, we limited the study population to men 
who returned the run-in questionnaires with relevant abbreviated dietary 
information. To reduce the potential for undiagnosed PCa to influence 
diet and to utilize the dietary data collected on the 12-mo questionnaire, 
we excluded PCa cases diagnosed during the first year in the study, men 
with BMI  <18.5 kg/m2 at baseline,  and men without  baseline  BMI 
information. These exclusions resulted in a study population of 21,660 
men for analysis. The study design and methods used in this investigation 
were reviewed and approved by the Institutional Review Board of Partners 
Healthcare. 

 
Dietary assessment. The run-in and 12-mo questionnaires in the PHS 
included abbreviated FFQs. The run-in questionnaire asked about the 
consumption of whole milk, skim/low-fat milk, and cold breakfast cereal 
(categories: $2 servings/d, daily, 5–6 servings/wk, 2–4 servings/wk, 
1 serving/wk, 1–3 servings/mo, rarely/never) in the past year. The 12-mo 
questionnaire asked about the intake during the previous year of hard 
cheese (e.g., American, Cheddar) and ice cream. We considered these 5 
foods to be the main contributors to dairy product intake and combined 
those responses by servings to estimate total daily dairy product intake 
(9). Because the potential effects of dairy calcium on PCa risk were of 
interest, we also calculated total dairy calcium intake from each dairy 
product. Calcium content was obtained from the nutrient composition 
database of the USDA (17). The calcium content per serving (as weights 
in the total calcium consumption) is as follows: whole milk (1 serving = 
237 mL), 276 mg; skim/low-fat milk (1 serving = 237 mL), 299 mg; ice 
cream (1 serving = 214 g, as in vanilla savor), 169 mg; and hard cheese (1 
serving = 28 g, as an average of American cheese and Cheddar cheese), 
173 mg. Two questions about red meat intake were also included in the 
12-mo questionnaire, which asked about the intake of beef, pork or lamb 
as a sandwich or mixed dish (hamburger, stew, casserole, lasagna, etc.) 
and those as a main dish (steak, roast, ham, etc.). Daily intake of red 
meat was calculated as the sum of the servings (1 serving = 227 g) for 
each of these 2 items. 

 
Ascertainment of PCa outcomes. For the PCa incidence analyses, men 
were followed from the date when the 12-mo questionnaire was returned 
until the date of PCa diagnosis, date of death, or the end of follow-up 
(March 9, 2010), whichever came first. For the PCa-specific analyses, 
men were followed from the date of PCa diagnosis until the date of death 
from PCa, date of death from other causes, or March 9, 2010, whichever 
came first. We learned of deaths in the cohort through notification by 
family members and postal authorities and through periodic systematic 
searches of the National Death Index. Cause of death was determined by 
an endpoint committee of 3 physicians based on all available informa- 
tion, including medical records and death certificates. Follow-up for 
mortality was at least 97.7% complete and for morbidity, 95.3% (18). 

Whenever a participant reported a new diagnosis of PCa, we requested 
hospital records and pathology reports to confi the diagnosis and 
determine tumor stage, grade, and other clinical characteristics at diagno- 
sis. Histological grade was recorded following the Gleason scoring system 
from the pathology reports. Low-grade tumors were defined as Gleason 

#7 and high-grade was defined as Gleason >7. Clinical stage was de- 
termined using the TNM staging system. Tumors of stage T3 or higher 
(T3/T4/N1/M1) were categorized as advanced-stage tumors and tumors 
of stage T1 or T2 were defined as early-stage tumors. Cases without 
pathologic staging were classified as undetermined stage unless there 
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was clinical evidence of distant metastases. Because prostate-specifi 
antigen (PSA) screening has dramatically changed the clinical presen- 
tation of the cancer, we also categorized the cases into 3 groups: pre- 
PSA era cases (diagnosed before 1990), post-PSA era cases (diagnosed 
1990 or thereafter) who presented with prostatic or metastatic symp- 
toms, and post-PSA era cases detected by PSA or digital rectal examination 
screening. 

 
Statistical analyses. To examine the association of dairy products and 
calcium consumption with PCa risk, we used Cox proportional hazards 
regression models to calculate the HR and 95% CI, with the lowest 
intake category as the reference group. We categorized the intake of each 
dairy food into 4 groups (rarely, #1 serving/wk, 2–6 servings/wk, and 
$1 serving/d). Calcium intake from dairy products was categorized into 
5 groups by quintiles. Tests for linear trend were performed using the 
median intake values in each category as a continuous variable. Beyond 
age-adjusted models, multivariable models additionally included terms 
for baseline (time when 12-mo questionnaire was returned) cigarette 
smoking (never, past, or current smoker), vigorous exercise (exercise 
vigorously to sweat more than twice per week or not), alcohol intake 
(drink alcoholic beverages every day or not), race (Caucasian or non- 
Caucasian), BMI (<25.0, 25.0–29.9, or $30.0 kg/m2), diabetes status 
(yes or no), red meat consumption (servings/week), and assignment in 
the original trial (active treatment or placebo for aspirin and b-carotene). 
In addition, the models for whole milk and skim/low-fat milk were 
mutually adjusted for each other. 

The abbreviated FFQs in the PHS were not comprehensive; thus, we 
were unable to calculate and adjust for total energy intake directly. To 
minimize the potential confounding due to total energy intake, we 
calculated total energy intake using only the food items that were 
recorded in the run-in and 12-mo questionnaires. These food items 
included 13 types of fruits and vegetables, 5 types of dairy foods 
investigated in this study, eggs, chicken, beef, 4 types of fish and seafood, 
cookies, chips, nuts, and fried foods. Under similar situations, previous 
studies used food scores by summing up servings of all recorded food 
items (9,19). In this study, we weighted the servings of recorded food 
items with total calorie per serving of each individual item to better 
emulate total energy intake calculated from comprehensive FFQs. 

Separate multivariable models for PCa incidence were fit for 
subgroups of cancer according to Gleason grade, clinical stage, and 
disease presentation at diagnosis, and disease fatality during follow-up. 
We then modeled the relation between dairy product and PCa-specific 
mortality among cases using the Cox proportional hazard regression 
model. Besides the age- and multivariable-adjusted model [including the 
same set of covariates as in the incidence model and stage of tumor (T3/ 
T4/N1/M1 or T1/T2) and Gleason score (>7 or #7)], we further 
stratified the analyses by disease presentation at diagnosis (pre-PSA era 
presented, post-PSA era presented by symptom, and post-PSA era 
presented by screening). To account for potential false positives due to 
multiple comparisons, we calculated the false-discovery rate (FDR) by 
incorporating all P values from multiple tests performed for the linear 
trends. The FDR statistics were obtained for each P value, and FDR 
statistics with q < 0.05 were considered significant (20). All analyses 
were performed in SAS version 9.3 (SAS Institute). All P values are 2- 
sided. 

 
 

Results 
We confirmed 2806 incident cases of PCa diagnosed among 
21,660 men in 470,612 person-years through  2010.  The 
baseline characteristics of the study population by categories 
of dairy product intake are presented in Table 1. Men who 
consumed more dairy products tended to be older, smoked less, 
drank less alcohol, exercised more, and were more likely to be 
Caucasian and diabetic. When stratified by type of milk, the data 
showed that men who consumed more skim/low-fat milk tended 
to smoke less, drink less alcohol, and exercise more and were 
more likely to be Caucasian, whereas men who consumed more 
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TABLE 1   Baseline characteristics by category of baseline dairy product intake in the PHS (n = 21,660)1 
 

 

Dairy product intake,2 servings Whole milk, servings Skim/low-fat milk, servings 

#0.5/d .0.5–1.0/d  .1.0–1.5/d  .1.5–2.5/d .2.5/d #1/wk $2/wk #1/wk $2/wk 
(n =3446) (n = 3878) (n = 4527) (n = 6390) (n = 3302) P (n = 16,618) (n = 4207) P (n = 11,834) (n = 9186) P 

 

Age, y 52.3 6 8.8 52.7 6 9.0 53.4 6 9.4 54.3 6 9.7 55.1 6 10.0 ,0.001 53.0 6 9.1 55.5 6 10.2 ,0.001 53.4 6 9.4 53.6 6 9.4 0.12 
BMI, %      ,0.001   0.08   0.004 

Normal weight 56 55 56 60 61  58 56  57 59  
Overweight 40 41 40 36 35  38 39  39 37  
Obese 4 4 4 4 4  4 4  4 4  

Caucasian, % 85 91 93 95 96 ,0.001 93 89 ,0.001 90 95 ,0.001 
Diabetes, % 1.6 1.4 1.5 2.4 2.6 ,0.001 1.7 2.6 ,0.001 1.6 2.3 ,0.001 
Smoking, %      ,0.001   ,0.001   ,0.001 

Never 46 47 49 53 56  51 48  48 54  
Former 41 41 40 39 35  40 37  41 37  
Current 13 12 11 8 9  9 15  12 8  

Frequent drinker,3 % 29 25 24 24 20 ,0.001 24 24 0.97 26 21 ,0.001 
Vigorous exercise,4 % 48 52 54 56 59 ,0.001 55 50 ,0.001 51 58 ,0.001 
Red meat intake,5 servings/wk 0.6 6 0.4 0.7 6 0.4 0.7 6 0.4 0.7 6 0.4 0.8 6 0.5 ,0.001 0.7 6 0.4 0.8 6 0.5 ,0.001 0.7 6 0.5 0.7 6 0.4 ,0.001 

1 Values are percentage or mean 6 SE. PHS, Physicians' Health Study. 
2 Based on the consumption of 5 major dairy foods (whole milk, skim/low-fat milk, hard cheese, ice cream, and cold breakfast cereal) assessed from 1982 to 1984. One serving of 
whole milk, skim/low-fat milk, or cold breakfast cereal = 237 mL; 1 serving of ice cream = 214 g; 1 serving of hard cheese = 28 g. 
3 Frequent drinker was defined as someone who drinks alcoholic beverages every day. 
4 Vigorous exercise was defined as to exercise vigorously to a sweat more than twice per week. 
5 1 serving of red meat = 227 g. 

 
whole milk tended to be current smokers, exercise less, and less 
likely to be Caucasian. 

Total dairy food intake was marginally associated with 
overall PCa risk. In multivariable-adjusted analyses, men in the 
highest category of total dairy foods had a 12% (95% CI: 27%, 
35%) higher risk to develop PCa than men in the lowest intake 
category (P-trend = 0.06) (Table 2). For individual dairy foods, 
skim/low-fat milk had the strongest association with PCa 
incidence: the multivariable-adjusted HR was 1.19 (95% CI: 
1.06, 1.33; P-trend = 0.001), comparing the highest [$237 mL/d 
(1 serving/d)] with the lowest (rarely consumed) intake category. 
In contrast, whole milk, hard cheese, ice cream, and cold 
breakfast cereal intakes were not significantly associated with 
overall risk of PCa incidence. Calcium from dairy foods was 
marginally associated with PCa incidence (P-trend = 0.07). 

We next examined the association of total dairy products, 
whole milk, and skim/low-fat milk with special attention to 
cancer subtypes and the timing of diagnosis (i.e., 1982–1989, 
pre-PSA era vs. 1990–2010, post-PSA era) (Table 3). We found 
that higher intake of skim/low-fat milk was mainly associated 
with a higher risk of low-grade, early-stage, and screen-detected 
disease; comparing the highest with the lowest intake category, 
the HR were 1.20 for low-grade cases (95% CI: 1.06, 1.37), 1.19 
for early-stage cases (95% CI: 1.04, 1.35), and 1.21 for post-PSA 
era cases detected by screening (95% CI: 1.02, 1.43) (P-trend # 
0.01 for all the subgroup analyses). In contrast, for risk of fatal 
PCa, whole milk was the only dairy food that had a positive 
association [HR = 1.49 (95% CI: 0.97, 2.28); P-trend = 0.01]. 
This association was independent of age, cigarette smoking 
status, BMI, alcohol intake, vigorous physical activity, diabetes 
status, red meat consumption, and total energy intake from 
recorded food items. 

Finally, among all the PCa cases, we conducted a survival 
analysis to evaluate the associations of prediagnostic dairy food 
intake with risk of progression to fatal PCa after initial diagnosis 
and found that whole milk was the only dairy food that was 
significantly associated with an increased risk of PCa-specific 

mortality (Table 4). Compared with nondrinkers of  whole 
milk, the multivariable-adjusted HR was 2.17 (95% CI: 1.34, 
3.51; P-trend < 0.001) for those who consumed $237 mL/d 
(1 serving/d). A stratifi analysis on age at diagnosis showed 
that high intake of whole milk was signifi associated 
with risk of progression to fatal PCa in both old and young age 
groups, except that there tended to be a J-shaped relation in 
the older group (data not shown). In a stratifi  analysis on 
the presentation of disease, we found that, among post-PSA 
era cases presented by screening, whole milk intake was 
associated with PCa deaths, although the q value was not 
signifi         [HR = 1.82 (95% CI: 0.69, 4.84); P-trend = 0.07]. 
The associations with skim/low-fat milk, however, were not 
signifi        in any of the substrata by PSA era and screening. 

 
 

Discussion 
In this study, we confirmed and extended our previous findings 
that total dairy product intake and calcium from dairy foods 
were positively associated with overall risk of PCa. Admittedly, 
the dairy variables in our study did not capture all dairy product 
intake (did not include information on intakes of yogurt, cream, 
butter, etc.). However, according to data from the NHANES, 
milk and cheese intakes can account for ;98% of total dairy 
product intake (21). Thus, our data on available  dairy  food 
items sufficiently represented the total dairy product intake in 
our population. The magnitude of the overall association 
between total dairy product intake and  the  risk  of  incident 
PCa [HR = 1.12 (95% CI: 0.93, 1.35)] in this study, however, 
was weaker than in our previous report [RR = 1.34 (95% CI: 
1.04, 1.71)]. Because the current analysis had a much larger 
sample size (2806 cases vs. 1012 cases) and an additional 15 y of 
follow-up, these allowed us to specifically evaluate subtypes of 
dairy products and by subtypes of PCa, cancer diagnosed before 
vs. in the PSA era, mode of diagnosis, and cancer-specific 
mortality  (9).  We  found  that  skim/low-fat  milk  intake  were 
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TABLE 2   HR estimates for PCa by intake of dairy product and dairy calcium in the PHS (n = 21,660)1 
 

 Category 1 Category 2 Category 3 Category 4 Category 5 P-trend2
 

All dairy food3
       

Cases/person-years 388/76,216 446/86,740 586/98,871 910/137,667 458/69,738  
Age-adjusted 1.00 1.00 (0.88, 1.15) 1.11 (0.98, 1.26) 1.19 (1.06, 1.34) 1.15 (1.00, 1.31) 0.0034

 

Multivariable-adjusted5
 1.00 0.96 (0.83, 1.11) 1.07 (0.93, 1.23) 1.15 (0.99, 1.32) 1.12 (0.93, 1.35) 0.06 

Whole milk6
       

Cases/person-years 1674/279,675 504/86,554 273/47,723 244/39,924   
Age-adjusted 1.00 0.97 (0.88, 1.08) 0.89 (0.78, 1.01) 0.89 (0.78, 1.02)  0.04 
Multivariable-adjusted5

 1.00 1.02 (0.92, 1.13) 0.93 (0.81, 1.07) 0.95 (0.81, 1.10)  0.32 
Skim/low-fat  milk6

       
Cases/person-years 895/160,367 531/98,250 579/94,591 724/104,959   
Age-adjusted 1.00 1.05 (0.94, 1.17) 1.17 (1.05, 1.29) 1.21 (1.10, 1.34)  ,0.0014

 

Multivariable-adjusted5
 1.00 1.02 (0.91, 1.14) 1.12 (1.00, 1.25) 1.19 (1.06, 1.33)  0.0014

 

Hard cheese6
       

Cases/person-years 197/35,560 1207/208,462 1175/190,531 178/28,270   
Age-adjusted 1.00 1.05 (0.90, 1.22) 1.12 (0.96, 1.30) 1.10 (0.90, 1.35)  0.14 
Multivariable-adjusted5

 1.00 1.01 (0.87, 1.18) 1.07 (0.91, 1.25) 1.05 (0.85, 1.30)  0.32 
Ice cream6

       
Cases/person-years 455/75,120 1415/251,406 805/124,783 84/12,177   
Age-adjusted 1.00 0.96 (0.86, 1.06) 1.06 (0.95, 1.19) 1.05 (0.83, 1.32)  0.06 
Multivariable-adjusted5 

Cold breakfast cereal6 

1.00 0.95 (0.85, 1.06) 1.02 (0.90, 1.15) 1.03 (0.80, 1.32)  0.26 

Cases/person-years 743/131,310 654/120,759 678/112,540 679/98,469   
Age-adjusted 1.00 0.96 (0.86, 1.06) 1.02 (0.92, 1.13) 1.11 (1.00, 1.23)  0.014

 

Multivariable-adjusted5 

Calcium from dairy food7
 

1.00 0.95 (0.85, 1.06) 1.00 (0.88, 1.12) 1.06 (0.93, 1.22)  0.17 

Cases/person-years 487/95,147 516/95,489 578/93,334 598/92,688 609/91,575  
Age-adjusted 1.00 1.04 (0.92, 1.18) 1.15 (1.02, 1.30) 1.16 (1.03, 1.31) 1.17 (1.03, 1.31) 0.0044

 

Multivariable-adjusted5
 1.00 1.01 (0.89, 1.15) 1.12 (0.98, 1.28) 1.12 (0.97, 1.30) 1.14 (0.97, 1.34) 0.07 

1 Values are HR (95% CI). FDR, false-discovery rate; PCa, prostate cancer; PHS, Physicians' Health Study. 
2 Calculated in a separate regression model with the median intake levels in each category as a continuous variable. 
3 Based on the consumption of 5 major dairy foods (whole milk, skim/low-fat milk, hard cheese, ice cream, and cold breakfast cereal) 
assessed from 1982 to 1984. The 5 intake level groups are: #0.5 servings/d, .0.5–1.0 serving/d, .1.0–1.5 servings/d, .1.5–2.5 servings/d, 
and .2.5 servings/d. One serving of whole milk, skim/low-fat milk, or cold breakfast cereal = 237 mL; 1 serving of ice cream = 214 g; 
1 serving of hard cheese = 28 g. 
4 FDR , 0.05. 
5 Adjusted for baseline measures of age (y), cigarette smoking (never, past, current), vigorous exercise (exercise vigorously to a sweat more 
than twice per week or not), alcohol intake (drink alcoholic beverages every day or not), race (Caucasian, non-Caucasian), BMI (normal 
weight, overweight, obese), baseline diabetes status (yes, no), red meat consumption (servings/wk), total energy intake from recorded food 
items (kcal), assignment in the original aspirin trial (treatment, placebo), and assignment in the original b-carotene trial (treatment, placebo). 
In addition, the models for whole milk and skim/low-fat milk were mutually adjusted for each other (rarely, #1 serving/wk, 2–6 servings/wk, 
and $1 serving/d). 
6 The 4 intake level groups were: rarely, #1 serving/wk, 2–6 servings/wk, and $1 serving/d. 
7 The 5 intake level groups were categorized according to quintiles. 

 
related to a higher risk of nonaggressive disease (low-grade, 
early-stage, and screen-detected cases), whereas whole milk intake 
was associated with a higher risk of fatal PCa and, among all the 
cases, with a higher risk of progression to fatal PCa. 

The positive association between dairy product intake and 
PCa has been reported in several studies, including the European 
Prospective Investigation into Cancer and Nutrition (22) and 
studies from Canada (23) and Japan (4). These data raised 
concerns regarding whether dairy should be recommended as 
part of a healthy diet for aging men (24,25). However, the results 
of 2 meta-analyses of the relation between dairy product intake 
and PCa provided conflicting conclusions: one showed a 
significant positive association (13) and the other (supported 
by the National Dairy Council) showed an overall null associ- 
ation (14). Part of the reason for this inconsistency could be a 
lack of detailed data for the effect of whole compared with skim/ 
low-fat milk and their impact on high-risk disease or PCa- 
specific death. 
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Our finding that the strongest association with total dairy 
products was in the pre-PSA era was consistent with findings of 
Rodriguez et al. (26). We observed a significant positive associ- 
ation of skim/low-fat milk with overall PCa risk. These results are 
consistent with previous studies (6,27). Few studies specifically 
evaluated high-risk PCa. Park et al. (28) observed that skim milk, 
but not other dairy foods, was associated with a nonsignificantly 
increased risk of advanced PCa. The null effect of whole milk on 
overall PCa risk is likely due to the fact that the whole milk 
drinkers accounted for only a small portion of all milk drinkers. 
Thus, the associations of whole milk with the nonfatal cases, if 
any, were not large enough to be detected with a limited number 
of cases, which may have driven the overall effect. 

The commonly accepted risk factors for incident PCa are 
older age, a family history of PCa, and being African American 
(29). However, there is no consensus about risk factors for fatal 
PCa beyond clinical characteristics such as PSA at diagnosis, 
Gleason grade, and clinical stage. Identifying modifiable risk 
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TABLE 3 Multivariable-adjusted HR estimates for categories of PCa cases by intake of dairy product in 
the PHS (n = 21,660)1,2 

 

Selected case3
 Category 1 Category 2 Category 3 Category 4 Category 5 P-trend4

 

Dairy product5       
High grade 1.00 1.04 (0.69, 1.58) 0.77 (0.50, 1.20) 1.09 (0.71, 1.68) 1.04 (0.60, 1.80) 0.64 
Low grade 1.00 0.95 (0.81, 1.12) 1.11 (0.95, 1.30) 1.13 (0.95, 1.33) 1.13 (0.91, 1.39) 0.12 
Advanced 1.00 0.92 (0.59, 1.46) 0.79 (0.50, 1.27) 0.92 (0.57, 1.48) 0.68 (0.36, 1.27) 0.35 
Localized 1.00 0.94 (0.80, 1.11) 1.09 (0.93, 1.29) 1.11 (0.94, 1.32) 1.13 (0.91, 1.39) 0.13 
Fatal 1.00 1.19 (0.68, 2.06) 1.81 (1.08, 3.02) 2.14 (1.26, 3.64) 1.73 (0.90, 3.35) 0.05 
Pre-PSA 1.00 1.70 (0.95, 3.05) 1.77 (1.00, 3.13) 1.82 (1.01, 3.27) 2.12 (1.07, 4.19) 0.10 
Post-PSA (symptom) 1.00 1.44 (0.78, 2.68) 1.25 (0.66, 2.34) 1.83 (0.99, 3.40) 1.61 (0.76, 3.40) 0.19 
Post-PSA (screening) 

Whole milk6
 

1.00 0.83 (0.67, 1.03) 1.10 (0.90, 1.34) 1.04 (0.84, 1.28) 0.99 (0.75, 1.30) 0.64 

High grade 1.00 0.69 (0.48, 1.00) 1.29 (0.91, 1.84) 0.78 (0.49, 1.25)  0.81 
Low grade 1.00 1.09 (0.97, 1.23) 0.86 (0.73, 1.01) 0.91 (0.76, 1.10)  0.10 
Advanced 1.00 0.89 (0.61, 1.29) 1.04 (0.68, 1.61) 0.83 (0.49, 1.41)  0.63 
Localized 1.00 1.06 (0.94, 1.19) 0.87 (0.74, 1.03) 0.89 (0.74, 1.07)  0.08 
Fatal 1.00 0.89 (0.60, 1.31) 1.77 (1.23, 2.54) 1.49 (0.97, 2.28)  0.017

 

Pre-PSA 1.00 1.29 (0.89, 1.86) 1.51 (1.00, 2.27) 1.35 (0.85, 2.15)  0.15 
Post-PSA (symptom) 1.00 1.22 (0.80, 1.86) 1.19 (0.71, 1.99) 1.29 (0.76, 2.21)  0.38 
Post-PSA (screening) 

Skim/low-fat milk6
 

1.00 1.00 (0.86, 1.17) 0.74 (0.59, 0.93) 0.73 (0.57, 0.94)  0.0027
 

High grade 1.00 1.11 (0.79, 1.56) 1.07 (0.76, 1.51) 1.19 (0.85, 1.67)  0.39 
Low grade 1.00 0.99 (0.87, 1.13) 1.18 (1.04, 1.35) 1.20 (1.06, 1.37)  0.0017

 

Advanced 1.00 0.94 (0.64, 1.38) 1.02 (0.69, 1.49) 0.99 (0.67, 1.45)  0.96 
Localized 1.00 0.99 (0.86, 1.13) 1.18 (1.04, 1.35) 1.19 (1.04, 1.35)  0.0047

 

Fatal 1.00 1.04 (0.72, 1.51) 1.01 (0.69, 1.47) 1.04 (0.71, 1.51)  0.91 
Pre-PSA 1.00 1.38 (0.92, 2.07) 1.69 (1.15, 2.48) 1.43 (0.97, 2.12)  0.11 
Post-PSA (symptom) 1.00 0.84 (0.52, 1.35) 1.02 (0.64, 1.62) 1.22 (0.79, 1.88)  0.23 
Post-PSA (screening) 1.00 0.98 (0.83, 1.17) 1.20 (1.01, 1.42) 1.21 (1.02, 1.43)  0.017

 

1 Values are HR (95% CI). FDR, false-discovery rate; PCa, prostate cancer; PHS, Physicians' Health Study; PSA, prostate-specific antigen. 
2 Adjusted for baseline measures of age (y), cigarette smoking (never, past, current), vigorous exercise (exercise vigorously to a sweat more 
than twice per week or not), alcohol intake (drink alcoholic beverages every day or not), race (Caucasian, non-Caucasian), BMI (normal 
weight, overweight, obese), baseline diabetes status (yes, no), and red meat consumption (servings/wk), total energy intake from recorded 
food items (kcal), assignment in the original aspirin trial (treatment, placebo), and assignment in the original b-carotene trial (treatment, 
placebo). In addition, the models for whole milk and skim/low-fat milk were mutually adjusted for each other (rarely, #1 serving/wk, 2–6 
servings/wk, and $1 serving/d). 
3 High grade (n = 317): Gleason .7; low grade (n = 2105): Gleason #7; advanced (n = 272): T3/T4/N1/M1; localized (n = 2016): T1/T2; fatal 
(n = 305): died of PCa; pre-PSA era (n = 274): diagnosed before 1990; post-PSA era: diagnosed after 1990; presented by symptom (n = 192): 
presented by prostate-related symptoms or metastases; presented by screening (n = 1233): presented by PSA test screening or digital 
rectal examination; 
4 Calculated in a separate regression model with the median intake in each category as a continuous variable. 
5 Based on baseline consumption of 5 major dairy foods (whole milk, skim/low-fat milk, hard cheese, ice cream, and cold breakfast cereal). 
The 5 intake level groups are: #0.5 servings/d, .0.5–1.0 serving/d, .1.0–1.5 servings/d, .1.5–2.5 servings/d, and .2.5 servings/d. One 
serving of whole milk, skim/low-fat milk, or cold breakfast cereal = 237 mL; 1 serving of ice cream = 214 g; 1 serving of hard cheese = 28 g. 
6 The 4 intake level groups were: rarely, #1 serving/wk, 2–6 servings/wk, and $1 serving/d. 
7 FDR , 0.05. 

 
 

factors for fatal PCa is critical, because widespread PSA testing 
in the US is likely to detect and overtreat a large number of men 
with indolent cancer (30). A major challenge in PCa research is 
distinguishing risk factors for aggressive PCa from indolent 
disease to reduce overtreatment. Our results showed that higher 
intakes of whole-fat milk predispose men to a higher risk of 
developing fatal PCa and, once they had the cancer, a higher risk 
of progression to fatal disease. This association was unlikely 
confounded by skim/low-fat milk according to our analysis. 

Given that dairy product intakes were assessed years before 
cancer diagnosis, our findings need to be further confirmed by 
cohorts with more detailed dietary information, especially 
dietary intakes at or around the time of the cancer diagnosis. 
In the  Health  Professionals  Follow-up  Study  cohort,  Chan 
et al. (31) found that men in the highest compared with the 
lowest  quartile  of  milk  consumption  after  diagnosis  had  a 

nonsignifi elevated risk of fatal PCa [HR = 1.30 (95% 
CI: 0.93, 1.83)], but this study did not examine specifi types 
of dairy food. Another explanation of the  association  bet- 
ween whole milk intake and fatal PCa risk is also possible: it is 
likely that men who drink more whole milk are less likely to 
be screened and therefore are diagnosed at a later stage and are 
at a higher risk for fatal disease. In the survival analysis, we 
adjusted for Gleason score and stage of tumor at diagnoses. 
The association remained significant after the adjustment, which 
supports that the association was not due to confounding by 
screening. However, further data on PSA screening intensity are 
needed to justify or refute this explanation. 

In our study, the average interval between dairy product 
intake assessment and PCa diagnosis was 14 y, yielding possible 
exposure misclassification. This is of particular concern for the 
analysis of PCa survival, because patients may have changed 
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TABLE 4 HR estimates of PCa death by prediagnostic intake of dairy product and dairy calcium in PCa 
cases in the PHS (n = 2806)1 

 

 Category 1 Category 2 Category 3 Category 4 Category 5 P-trend2
 

All dairy food3
       

Deaths/person-years 27/3601 45/4012 74/5222 115/8503 43/4416  
Age-adjusted 1.00 1.50 (0.93, 2.41) 1.83 (1.18, 2.85) 1.73 (1.14, 2.63) 1.22 (0.75, 1.97) 0.75 
Multivariable-adjusted4,5

 1.00 0.97 (0.53, 1.78) 2.23 (1.26, 3.92) 1.87 (1.04, 3.37) 1.71 (0.82, 3.58) 0.16 
Pre-PSA 1.00 1.16 (0.33, 4.05) 2.20 (0.66, 7.29) 1.02 (0.29, 3.51) 2.15 (0.53, 8.79) 0.76 
Post-PSA (screening) 1.00 0.74 (0.27, 2.03) 1.09 (0.45, 2.64) 1.24 (0.50, 3.06) 0.93 (0.26, 3.36) 0.80 

Whole milk6
       

Deaths/person-years 161/15,350 43/4860 49/2504 43/2092   
Age-adjusted 1.00 0.85 (0.60, 1.18) 1.81 (1.32, 2.49) 1.85 (1.32, 2.59)  ,0.0017

 

Multivariable-adjusted4,5
 1.00 0.73 (0.47, 1.13) 1.79 (1.15, 2.79) 2.17 (1.34, 3.51)  ,0.0017

 

Pre-PSA 1.00 0.77 (0.36, 1.63) 0.68 (0.23, 1.98) 1.21 (0.45, 3.24)  0.67 
Post-PSA (screening) 1.00 0.84 (0.40, 1.79) 2.26 (1.07, 4.78) 1.82 (0.69, 4.84)  0.07 

Skim/low-fat  milk6
       

Deaths/person-years 115/8106 58/4856 53/5493 68/6789   
Age-adjusted 1.00 0.89 (0.65, 1.22) 0.71 (0.51, 0.98) 0.70 (0.52, 0.94)  0.027

 

Multivariable-adjusted4,5
 1.00 1.01 (0.67, 1.52) 0.87 (0.56, 1.36) 1.02 (0.67, 1.56)  0.98 

Pre-PSA 1.00 1.18 (0.53, 2.59) 0.61 (0.24, 1.56) 0.77 (0.34, 1.76)  0.38 
Post-PSA (screening) 

Calcium from dairy food8
 

1.00 1.48 (0.71, 3.11) 1.34 (0.66, 2.73) 1.22 (0.54, 2.73)  0.79 

Deaths/person-years 41/4412 52/4755 73/5174 74/5535 64/5879  
Age-adjusted 1.00 1.18 (0.79, 1.78) 1.45 (0.99, 2.13) 1.36 (0.93, 1.99) 1.11 (0.75, 1.64) 0.75 
Multivariable-adjusted4,5

 1.00 1.06 (0.63, 1.79) 1.70 (1.00, 2.89) 1.64 (0.94, 2.89) 1.71 (0.91, 3.21) 0.09 
Pre-PSA 1.00 0.83 (0.33, 2.08) 1.30 (0.49, 3.48) 0.63 (0.23, 1.77) 1.30 (0.41, 4.19) 0.99 
Post-PSA (screening) 1.00 1.09 (0.44, 2.69) 1.08 (0.45, 2.62) 1.63 (0.65, 4.10) 1.22 (0.41, 3.65) 0.59 

1 Values are HR (95% CI). FDR, false-discovery rate; PCa, prostate cancer; PHS, Physicians' Health Study; PSA, prostate-specific antigen. 
2 Calculated in a separate regression model with the median intake levels in each category as a continuous variable. 
3 Based on the consumption of 5 major dairy foods (whole milk, skim/low-fat milk, hard cheese, ice cream, and cold breakfast cereal) 
assessed from 1982 to 1984. The 5 intake level groups are: #0.5 servings/d, .0.5–1.0 serving/d, .1.0–1.5 servings/d, .1.5–2.5 servings/d, 
and .2.5 servings/d. One serving of whole milk, skim/low-fat milk, or cold breakfast cereal = 237 mL; 1 serving of ice cream = 214 g; 
1 serving of hard cheese = 28 g. 
4 Adjusted for baseline measures of age at diagnosis (y), cigarette smoking (never, past, current), vigorous exercise (exercise vigorously to a 
sweat more than twice per week or not), alcohol intake (drink alcoholic beverages every day or not), race (Caucasian, non-Caucasian), BMI 
(normal weight, overweight, obese), baseline diabetes status (yes, no), red meat consumption (servings/wk), Gleason score (.7, $7), stage 
of tumor (T3/T4/N1/M1, T1/T2), total energy intake from recorded food items (kcal), assignment in the original aspirin trial (treatment, 
placebo), and assignment in the original b-carotene trial (treatment, placebo). In addition, the models for whole milk and skim/low-fat milk 
were mutually adjusted for each other (rarely, #1 serving/wk, 2–6 servings/wk, and $1 serving/d). 
5 Pre-PSA era (n = 274): diagnosed before 1990; post-PSA era: diagnosed after 1990; presented by symptom (n = 192): presented by 
prostate-related symptoms or metastases (results not presented because of very low statistical power); presented by screening (n = 1233): 
presented by PSA test screening or digital rectal examination. 
6 The 4 intake level groups were: rarely, #1 serving/wk, 2–6 servings/wk, and $1 serving/d. 
7 FDR , 0.05. 
8 The 5 intake level groups were categorized according to quintiles. 

 
 

their diet after diagnosis. We evaluated correlations among 
nutrients between the 2000 and 2004 FFQs, comparing men 
diagnosed with PCa in that interval with those who remained 
free of PCa. We found that the correlations ranged between 0.5 
and 0.7 for all nutrients assessed, including dairy products. 
There were no obvious trends in the absolute levels of intake 
between cases and non-cases. These observations suggest that 
men tended to keep their dietary habits after PCa diagnosis. One 
advantage of using prediagnostic dietary information is to avoid 
confounding by recall bias, change of diet due to disease severity 
or treatments, or other reasons. Recently, Pettersson et al. (32) 
found that in the Health Professionals Follow-up Study, post- 
diagnostic milk and dairy product intake was not significantly 
associated with increased risk of fatal PCa, whereas Torfadottir 
et al. (33) found that milk intake during adolescence, rather than 
in midlife or currently, was associated with advanced PCa. One 
possibility is that dairy product intake in earlier life may be more 
relevant to the progression and mortality of PCa in later life. 
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Several potential mechanisms could explain the observed 
associations of dairy food (primarily skim/low-fat milk) with 
overall PCa risk. First, skim/low-fat milk is the major source of 
dairy calcium and higher intake might lower intra-cellular 1,25- 
dihydroxycholecalciferol concentrations and induce prostate 
carcinogenesis (8,34–36). Second, the association could be 
mediated via phytanic acid, which may upregulate expression 
of a-methylacyl-CoA racemase (37,38). The involvement of a-
methylacyl-CoA racemase in PCa is implicated by a recent 
observation (39). Third, the relation could be through the effect 
of phosphate. Newmark et al. (40) suggested that the high dietary 
phosphate content of dairy products might explain the risk of 
PCa induced by dairy products, because the plasma phosphate 
concentration  can  appreciably  infl 1,25-dihydroxycho- 
lecalciferol concentrations. Fourth, the ability of dairy pro- 
ducts to raise concentrations of insulin-like growth factor 1 have 
also been suggested as a possible explanation for the association 
(41–43). The association of whole milk with fatal PCa and 
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PCa-specific mortality may be via the effects of dairy fat (primarily 
saturated fat) or other factors (including obesity and hyperin- 
sulinemia). Whole milk has an ;40 times higher content of 
saturated fat compared with skim milk and the difference of the 
saturated fat content between 237 mL of whole milk and skim 
milk is ;20% of its average daily intake (17). High-fat dairy has 
been positively correlated with higher C-peptide concentrations, 
which were positively related to risk of aggressive PCa (44). 

In summary, the results from the present study confi a 
potential role of dairy products in PCa risk and survival. Skim/ 
low-fat milk dairy products have been suggested as being 
benefi for several disease outcomes, including colorectal 
cancer; so future research is warranted to investigate the 
optimal intake of skim/low-fat dairy products. However, our 
results add further evidence to suggest that the intake of whole- 
fat dairy products is associated with the risk of developing 
advanced or fatal PCa in elderly men and worse survival in PCa 
cases. Thus, minimal intake of whole-fat dairy products may be 
benefi  for elderly men, particularly PCa survivors. How- 
ever, these results still need to be confi in other male 
populations. 
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Observational studies have found an inverse association between type 2 diabetes (T2D) and prostate cancer 

(PCa), and genome-wide association studies have found common variants near 3 loci associated with both dis- 
eases. The authors examined whether a genetic background that favors T2D is associated with risk of advanced 
PCa. Data from the National Cancer Institute’s Breast and Prostate Cancer Cohort Consortium, a genome-wide 
association study of 2,782 advanced PCa cases and 4,458 controls, were used to evaluate whether individual 
single nucleotide polymorphisms or aggregations of these 36 T2D susceptibility loci are associated with PCa. 
Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and 
HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism 
rs757210 at  the  HNF1B  locus  was  significant  when  multiple  comparisons  were  accounted  for  (adjusted 
P = 0.001). Genetic risk scores weighted by the T2D log odds ratio and multilocus kernel tests also indicated a 
significant relation between T2D variants and PCa risk. A mediation analysis of 9,065 PCa cases and 9,526 
controls failed to produce evidence that diabetes mediates the association of the HNF1B locus with PCa risk. 
These data suggest a shared genetic component between T2D and PCa and add to the evidence for an interre- 
lation between these diseases. 

carcinoma; diabetes mellitus, type 2; genetic predisposition to disease; genetics; genome-wide association 
study; humans; polymorphism, single nucleotide; prostatic neoplasms 

 
 

 
Abbreviations: BPC3, Breast and Prostate Cancer Cohort Consortium; CI, confidence interval; GRS, genetic risk score; OR, 
odds ratio; PCa, prostate cancer; SNP, single nucleotide polymorphism; T2D, type 2 diabetes. 

 
 

 
 

Prostate cancer (PCa) and type 2 diabetes (T2D) are two 
of the most common  chronic diseases afflicting  the US 
aging male population (1, 2). Observational studies have 
consistently shown an apparent inverse association between 
T2D and risk of PCa, with meta-analysis risk ratios ranging 
from 0.84 to 0.91 (3, 4). The reduction in PCa risk has 
been reported to increase with years since T2D diagnosis, 
with men who have had T2D for more than 15 years being 
at a 22% reduced hazard of PCa (5). The association is 

 
poorly understood, with one hypothesis suggesting that the 
metabolic status of men with T2D could move gradually 
from hyperinsulinemia to endogenous insulin deficiency, 
which could mitigate the oncogenic action of insulin in the 
prostate (6, 7). 

Recently, 3 shared genomic regions for T2D and PCa 
have been highlighted. The first region, located on chromo- 
some 17, is in intron 2 of HNF1B, formerly  known as 
TCF2.  The  major  allele  A  of  rs4430796  is  positively 
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associated with PCa risk (odds ratio (OR) = 1.22) and in- 
versely associated with risk of T2D (OR = 0.91) (8–10). 
The second region is located on chromosome 7 near the 
JAZF1 locus, where the major allele G of rs10486567 is 
inversely associated with risk of  PCa  (aggressive  PCa: 
OR = 0.89; nonaggressive PCa: OR = 0.74) (11), whereas 
the minor allele G of rs864745 is positively associated with 
T2D (OR = 1.10) (12). THADA is the third region, located 
on chromosome 2, with the minor allele A of rs1465618 
being associated with PCa (OR = 1.08) (13) and the major 
allele T of rs7578597 associated with T2D (OR = 1.15) 
(12). However, the single nucleotide polymorphisms 
(SNPs) for T2D and PCa in the JAZF1 and THADA 
regions are weakly linked, with R2 values of 0.03 and 0.02, 
respectively. It is not clear that these associations are driven 
by the same haplotype (14, 15). 

Stevens et al. (16) investigated the T2D-PCa relation 
further and concluded that diabetic status did not mediate 
the observed relation between the HNF1B and JAZF1 gene 
variants and PCa risk. In the Atherosclerosis Risk in Com- 
munities cohort, Meyer et al. (17) examined the relation of 
T2D-associated variants with risk of PCa and found that 4 
of 13 T2D SNPs were nominally associated with PCa, 
which provides additional evidence that some of the T2D- 
PCa association could be driven by shared genetic factors. 
Another study by Pierce et al. (18) evaluated the ability of 
risk scores, consisting of 18 replicated T2D risk variants, to 
predict PCa risk and concluded that persons with increased 
genetic susceptibility to T2D have a reduced risk of PCa. 
However, in a recent study of 5 racial/ethnic groups in the 
Multiethnic Cohort and PAGE (Population Architecture 
using Genomics and Epidemiology), Waters et al. (19) 
found no association between T2D risk variants, either in- 
dividually or in risk scores, and PCa risk. 

With a large sample size and an expanded set of recently 
published T2D susceptibility loci, we aimed to investigate 
whether and to what extent individual T2D risk variants and 
aggregations of T2D replicated risk variants are associated 
with PCa risk. We used novel approaches to test both 
whether these risk variants are inversely associated with 
PCa risk in accordance with the inverse relation observed 
between T2D and PCa in observational studies and, more 
generally, whether these T2D loci are associated with PCa 
risk without regard to directionality of association. Addition- 
ally, using causal inference methods, our study attempted to 
more definitively investigate the potential for mediation of 
the effect of HNF1B on PCa risk through T2D phenotype. 

 
MATERIALS AND METHODS 

 
Genotyping data for PCa cases and controls came from 

the National Cancer Institute’s Breast and Prostate Cancer 
Cohort Consortium (BPC3). The BPC3 is a consortium of 
prospective cohort studies, with contributors including the 
Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study 
(20), the American Cancer Society Cancer Prevention 
Study II Nutrition Cohort (21), the European Prospective 
Investigation into Cancer and Nutrition (22), the Health 
Professionals Follow-up Study, the Melbourne Collabora- 
tive Cohort Study (23), the Multiethnic Cohort Study (24), 

the Physicians’ Health Study, and the Prostate, Lung, Colo- 
rectal, and Ovarian Cancer Screening Trial (25). In total, 
9,065 PCa cases and 9,526 controls comprised the PCa 
nested case-control study. Diabetes phenotype was self- 
reported at study baseline, with data available for 96.7% of 
BPC3 participants. A genome-wide association scan was 
conducted on a subset of 2,782 European cases with ad- 
vanced disease and 4,458 controls with European ancestry. 
Advanced PCa was defined as PCa cases that had either a 
high histologic grade (Gleason score ≥8) or extraprostatic 
extension (stage C/D). All controls were free of PCa at the 
time of selection and were sampled from the same cohort 
as the cases. Controls were age-matched to cases, and study 
indicator variables were used to adjust for sampling differ- 
ences between studies. Informed consent was received from 
all study participants, and all study protocols were reviewed 
by the institutional review boards of the National Cancer 
Institute and each participating study center. 

A literature search was conducted to find robustly repli- 
cated disease susceptibility loci that are associated with 
T2D at genome-wide significance levels (P <5 × 10−8). In 
total, 36 independent autosomal loci associated with T2D 
were identified, and published T2D risk alleles and odds 
ratios were extracted (9, 10, 12, 26–36). 

Individual association tests were carried out for each 
T2D SNP with PCa risk in the BPC3 genome-wide associ- 
ation study (37). Quality control filters were used to remove 
samples with heterozygosity, underperforming samples or 
markers, markers with genotype frequencies that signifi- 
cantly departed from Hardy-Weinberg equilibrium, and 
subjects with significant evidence of non-European ances- 
try or sample structure. Of the 36 T2D SNPs, 19 were not 
directly genotyped on the Illumina HumanHap610 Quad 
Arrays (Illumina, San Diego, California) and were therefore 
imputed with MACH (http://www.sph.umich.edu/csg/abecasis/ 
MaCH/) (38). MACH references the HapMap (http://hapmap. 
ncbi.nlm.nih.gov/) CEU population (Utah residents with 
Northern and Western European ancestry from the Centre 
d’Etude du Polymorphisme Humain (CEPH) collection) to 
infer expected genotype counts for each marker locus. MACH 
quality scores and R2 values were more  than  0.85  and 
0.75, respectively, for all imputed SNPs. Logistic regression 
models were used to test for T2D SNP associations with PCa 
risk. The number of T2D risk alleles was used as the expo- 
sure, and adjustment was made for cohort (indicator vari- 
ables). A nominal association P value of 0.05 was used to 
assess whether T2D markers exhibited more significant 
associations with PCa than would be expected by chance. Ad- 
ditional binomial and permutation tests (39) (10,000 permuta- 
tions) were carried out to test for a relation in risk allele 
directionality and significant departures of the PCa association 
statistics from the null distribution, respectively. 

The T2D SNPs were combined to form a genetic risk 
score (GRS) using the --score command in PLINK (40). The 
GRS was calculated in two ways. The first method, referred 
to here as the count method, involved summing the number 
of T2D risk alleles at each locus (0, 1, or 2) and then 
summing across all T2D loci. This count method is an ad- 
ditive model that weights each locus equally and assumes 
no gene-gene interactions. The second method, referred to 

 

Am J Epidemiol. 2012;176(12):1121–1129 

D
ow

nloaded from
 http://aje.oxfordjournals.org/ at Ernst M

ayr Library of the M
useum

 Com
p Zoology, H

arvard U
niversity on February 8, 2015 

http://www.sph.umich.edu/csg/abecasis/MaCH/�
http://www.sph.umich.edu/csg/abecasis/MaCH/�
http://hapmap.ncbi.nlm.nih.gov/�
http://hapmap.ncbi.nlm.nih.gov/�
http://aje.oxfordjournals.org/�


 

T2D Variants and Prostate Cancer Risk   1123 
 

 

 

here as the weighted method, uses the log odds ratio of the 
published T2D loci to weight the sum of T2D risk alleles at 
each locus and then sums across all T2D loci. The weighted 
method is an additive model that weights each locus in ac- 
cordance with the T2D literature and assumes no gene-gene 
interactions. The rationale for weighting is to create a score 
that is the best GRS for T2D and therefore can be used as 
an instrument for testing an association with PCa. For each 
GRS method, we included the GRS as a predictor in a lo- 
gistic regression model with PCa case-control status as the 
outcome, and we adjusted for cohort with an indicator vari- 
able. Cohort-specific associations were also calculated. 

Additionally, multilocus linear kernel tests were used to 
assess the joint relation between the 36 T2D variants and 
PCa risk. These linear models allow associations of multi- 
ple genetic loci to be tested simultaneously with one test 
statistic (41) and have been generalized for dichotomous 
outcomes (42). Unlike the GRS methods, these tests 
require no prespecification of risk allele directionality (i.e., 
that the risk allele is associated with increased risk of T2D 
and decreased risk of PCa). 

The HNF1B locus was the only T2D locus significantly 
associated with PCa risk after adjustment for multiple com- 
parisons, so it was carried forward for mediation analysis to 
evaluate whether T2D phenotype is a potential mediator of 
the relation between HNF1B and PCa. We used an expand- 
ed set of data on 9,065 PCa cases (including nonaggressive 
cases) and 9,526 controls from the BPC3 (43) with self- 
reported information on diabetes phenotype. Data on 
rs7501939 at HNF1B were generated as part of a previous 
project characterizing known PCa loci; this SNP is in high 
linkage disequilibrium with rs757210 (R2 = 0.81). This was 
the only T2D risk marker typed in the larger BPC3 data 
set. To assess mediation, we used the mediation framework 
proposed by Baron and Kenny (44), extended into the coun- 
terfactual  framework  by  VanderWeele  and  Vansteelandt 
(45) as direct and indirect effects, and further generalized 
for use with dichotomous intermediate and outcome. This 
framework for mediation analysis is flexible to an interac- 
tion between exposure and an intermediate factor, has a 
causal interpretation, and can assess mediation on both the 
multiplicative and additive scales. Assessing mediation in 
this manner involved fitting both an outcome model and a 
mediator model. The outcome model was a logistic regres- 
sion model that modeled PCa as the outcome, included pa- 
rameters for the T2D variant of interest and diabetes 
phenotype, and adjusted for potential confounders of the 
exposure-outcome and intermediate-outcome relations, in- 
cluding cohort indicator, age at baseline, and body mass 
index (weight (kg)/height (m)2). The mediator model was a 
logistic regression model that modeled diabetes phenotype 
as the outcome, included a parameter for the T2D variant 
of interest, and controlled for potential confounders, includ- 
ing cohort indicator, age at baseline, and body mass index. 
In the mediator model, the case-control nature of the BPC3 
needed to be accounted for to obtain consistent effect esti- 
mates. This was accomplished by fitting the model only in 
the PCa controls, who represent the study’s base popula- 
tion, and assuming a rare outcome. Once both the outcome 
and mediator models were fitted, parameter estimates were 

used to calculate direct and indirect (mediated) effects by 
which to assess mediation (45). 

The PCa study was conducted between May and August 
of 2011. All statistical analyses were carried out in SAS 9.1 
(SAS Institute Inc., Cary, North Carolina) and R 2.11.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 

 
RESULTS 

 
Results from the individual association tests showed that 

10 of the 36 T2D markers had a P value less than 0.05 for 
association with PCa, significantly more than the 1.8 
markers that would be expected by chance (P = 7.5 × 10−6) 
(Table 1). These markers include the HNF1B and JAZF1 
loci, as well as NOTCH2, ADCY5, CDKN2A/B, TCF7L2, 
MTNR1B, FTO, and  2  independent  loci  at  KCNQ1 
(Table 1). After permutation adjustment for multiple com- 
parisons,  only  HNF1B  remained   significant   (adjusted 
P = 0.001). Small fluctuations in effect estimates of ≤3% 
were observed when adjustment for diabetes status was 
made in the models, with overall conclusions remaining the 
same (results not shown). We observed an inflation in the 
observed P values for these 36 SNPs (λGC = 2.0; Figure 1). 
When the observed λGC was compared with the distribution 
of permutation λGC values, the observed λGC was signifi- 
cantly elevated (P = 0.03), which indicated that the distribu- 
tion of association P values was significantly lower than 
expected. 

We used exact binomial tests to assess whether signifi- 
cantly more T2D risk alleles were inversely associated with 
PCa risk than would be expected by chance. By chance 
alone, 1.8 of the 36 markers would be expected to be sig- 
nificant, of which, under the null, 0.9 would be expected to 
be significantly associated with increased risk of PCa and 
0.9 would be expected to be significantly associated with 
decreased risk of PCa. In our data, we observed 2 T2D loci 
that were significantly associated with increased PCa risk, 
which did not differ statistically from the 0.9 loci expected 
by chance (P = 0.23). However,  the 8 T2D loci we ob- 
served to be significantly associated with reduced risk of 
PCa were significantly more than the 0.9 that would be ex- 
pected by chance (P = 2.45 × 10−6), which indicates that 
more T2D risk alleles than expected are associated with 
reduced risk of PCa. 

Associations for GRS using both the unweighted count 
and the weighted log odds method are shown in Table 2. 
The risk score for the unweighted count did not show evi- 
dence for an association of these genetic variants with PCa 
risk. However, a significant association was observed for 
the weighted log odds method when HNF1B was both in- 
cluded in (P = 0.002) and excluded from (P = 0.015) the 
GRS. No changes in results were observed when we adjust- 
ed for diabetes status in the models (results not shown). 
Study-specific analyses showed that the log odds-weighted 
GRS was statistically significant only in the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trial, although 
the test for heterogeneity indicated no significant departures 
from homogeneity (P = 0.60). 

The multilocus kernel test that jointly tested for a PCa 
association with all 36 T2D loci without specifying weight 
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Table 1.   Individual Associations of 36 Independent Type 2 Diabetes Susceptibility Variants With Prostate Cancer Risk in the Breast and 
Prostate Cancer Cohort Consortiuma

 

 
Nucleotide Genotyped?b

 Diabetes of P Value 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Abbreviations: CI, confidence interval; OR, odds ratio; T2D, type 2 diabetes; RA, risk allele; SNP, single nucleotide polymorphism. 
* P < 0.05. 
a Association tests were carried out in the Breast and Prostate Cancer Cohort Consortium using a log-additive genetic model with adjustment 

made for cohort indicators. 
b Indicates whether or not variants were genotyped. Variants that were not directly genotyped were imputed. 
c Odds ratio for the increase in prostate cancer risk associated with a 1-unit increase in the number of type 2 diabetes risk alleles carried at 

each locus. 
d Association for prostate cancer was in the inverse direction. 
e Significant after permutation correction for multiple testing. 
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Chromosome Reported Single  Type 2 Frequency Odds 95% Confidence  Adjusted 
Gene(s) Ratioc Interval P Value 

Polymorphism Risk Allele Risk Allele 

1 NOTCH2 rs10923931 No T 0.11 0.86d
 0.76, 0.96 0.008* 0.255 

1 PROX1 rs340874 Yes C 0.52 1.01 1.08, 0.94 0.845 1.000 
2 GCKR rs780094 Yes C 0.61 0.98d

 1.05, 0.91 0.498 1.000 
2 THADA rs7578597 Yes T 0.91 1.03 1.16, 0.91 0.644 1.000 
2 BCL11A rs243021 Yes A 0.47 1.02 0.95, 1.10 0.511 1.000 
2 IRS1 rs2943641 Yes C 0.64 0.95d

 1.02, 0.88 0.140 0.995 
3 PPARG rs1801282 No C 0.86 0.96d

 1.07, 0.87 0.465 1.000 
3 ADAMTS9 rs4607103 No C 0.76 0.99d

 1.08, 0.91 0.853 1.000 
3 ADCY5 rs11708067 No A 0.78 0.91d

 0.99, 0.84 0.028* 0.630 
3 IGF2BP2 rs4402960 Yes T 0.32 1.03 0.95, 1.11 0.456 1.000 
4 WFS1 rs10010131 No G 0.60 1.00 1.07, 0.93 0.924 1.000 
5 ZBED3 rs4457053 No G 0.29 1.02 0.94, 1.10 0.672 1.000 
6 CDKAL1 rs7754840 Yes C 0.32 1.04 0.97, 1.13 0.270 1.000 
7 DGKB rs2191349 No T 0.52 1.00 1.07, 0.93 0.945 1.000 
7 JAZF1 rs864745 No T 0.50 1.08 1.16, 1.01 0.033* 0.694 
7 GCK rs4607517 Yes A 0.15 1.06 0.96, 1.16 0.256 1.000 
7 KLF14 rs972283 No G 0.53 1.02 1.09, 0.95 0.627 1.000 
8 TP53INP1 rs896854 Yes T 0.51 1.02 1.09, 0.95 0.668 1.000 
8 SLC30A8 rs13266634 Yes C 0.68 1.00 1.08, 0.93 0.963 1.000 
9 CDKN2A/B rs10811661 No T 0.82 0.91d

 1.00, 0.83 0.045* 0.809 
9 TLE4 rs13292136 No C 0.93 0.93d

 1.07, 0.81 0.312 1.000 
10 CDC123/ 

CAMK1D 
rs12779790 No G 0.18 1.06 0.97, 1.16 0.206 1.000 

10 HHEX/IDE rs1111875 Yes C 0.58 1.01 1.09, 0.94 0.713 1.000 
10 TCF7L2 rs7903146 Yes T 0.28 0.90d

 0.83, 0.97 0.009* 0.276 
11 KCNQ1 rs231362 No G 0.50 0.92d

 0.86, 0.98 0.014* 0.393 
11 KCNQ1 rs2237892 Yes C 0.94 0.85d

 0.98, 0.74 0.030* 0.659 
11 KCNJ11 rs5215 Yes T 0.61 0.99d

 1.06, 0.92 0.719 1.000 
11 CENTD2 rs1552224 Yes A 0.83 1.00 1.10, 0.91 0.963 1.000 
11 MTNR1B rs10830963 No G 0.28 1.10 1.01, 1.19 0.023* 0.561 
12 HMGA2 rs1531343 No C 0.10 0.98d

 0.88, 1.10 0.764 1.000 
12 TSPAN8/ 

LGR5 
rs7961581 No C 0.26 1.05 0.97, 1.13 0.259 1.000 

12 HNF1A/TCF1 rs7957197 No T 0.80 0.96d
 1.05, 0.88 0.346 1.000 

15 ZFAND6 rs11634397 No G 0.66 1.04 1.12, 0.96 0.346 1.000 
15 PRC1 rs8042680 Yes A 0.32 1.04 0.97, 1.12 0.286 1.000 
16 FTO rs9939609 No A 0.40 0.93d

 0.86, 1.00 0.041* 0.775 
17 HNF1B/TCF2 rs757210 Yes T 0.35 0.85d

 0.79, 0.92 3e−05* 0.001e
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Figure 1. Quantile-quantile plot comparing the  uniformly 
distributed −log10 P values for the 36 type 2 diabetes (T2D) 
susceptibility markers with −log10 P values observed in the Breast 
and Prostate Cancer Cohort Consortium data set when the authors 
tested for an association with prostate cancer (PCa) risk by means 
of a Wald test. The dotted line shows the expected −log10 P value 
distribution. The black points represent observed P values for the 
association of each T2D locus with PCa risk. The gray region is the 
95% confidence interval for 10,000 permutations. The inflation index 
(λGC) of 1.95 is significantly elevated (P = 0.02), which indicates an 
overall inflation in association P values but gives  no  information 
about the directionality of association between the T2D variants and 
PCa risk. 

 
 

 
 
 
 

or directionality of risk alleles was statistically significant 
(P = 0.0001). When HNF1B was removed from the list of 
included markers and the remaining 35 markers were fitted, 
the P value  was  attenuated  but  remained  significant 
(P = 0.01), which indicated that a substantial portion of the 
association was a result of the HNF1B locus but that other 
T2D loci were associated with PCa as well. 

We conducted mediation analyses for the HNF1B locus to 
investigate whether the locus had effects that act directly on 
PCa risk or whether the effects of the locus were mediated 
through diabetes phenotype (Table 3). The outcome model 
produced significant evidence for an association between 
HNF1B and PCa risk (OR = 0.83, 95% confidence interval 
(CI): 0.79, 0.86; P = 6.37 × 10−19) and an  association 
between diabetes phenotype and PCa risk (OR = 0.76, 95% 
CI: 0.66, 0.87; P = 8.13 × 10−5). The mediator model indicat- 
ed that the minor T allele of rs7501939 was not statistically 
significantly associated  with an increased  risk of  diabetes 
among the 9,526 PCa controls (OR = 1.10, 95% CI: 0.97, 
1.25; P = 0.14), although the per-allele odds ratio for associa- 
tion with T2D was consistent with previous reports (8–10). 
When these results were combined together, the estimated direct 
effect of HNF1B on PCa risk was statistically significant 
(OR = 0.83, 95% CI: 0.79, 0.86; P = 1.02 × 10−18), but the 
mediated (indirect) effect through diabetes phenotype was 

 
nonsignificant  (OR = 1.00, 95% CI: 1.00, 1.00; P = 0.71). 
These results are in agreement with the standard mediation 
analysis, which produced an insignificant 0.5% change in the 
parameter estimate for the effect of HNF1B when diabetes 
status was included as a covariate. 

 
DISCUSSION 

 
Our study suggests that genetic variants associated with 

T2D are also associated with PCa risk. Ten of 36 T2D sus- 
ceptibility markers were nominally associated with PCa 
risk at NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, 
KCNQ1, MTNR1B, FTO, and HNF1B, although only the 
HNF1B locus remained significantly associated with PCa 
risk after adjustment for multiple testing. However,  log 
odds ratio-weighted GRS and kernel machine models also 
were associated with PCa risk both with and without inclu- 
sion of the HNF1B locus, which suggests that other genetic 
variants associated with T2D risk also contribute to PCa 
risk. Finally, mediation analysis provided insufficient evi- 
dence that the association of the HNF1B locus with PCa 
risk is mediated through diabetes phenotype. 

Our study adds to the evidence that a genetic background 
favorable to the development of T2D is associated with 
PCa risk. The HNF1B locus was most strongly associated 
with PCa risk in this analysis and accounted for some but 
not all of the association between the T2D variants and 
PCa risk in the GRS and the kernel regression. The noted 
inflation in our association P values for other T2D SNPs is 
consistent with what others have observed (17, 18) and in- 
dicates that more germline variants are held in common 
between T2D and PCa than would be expected by chance. 

Our study’s large  sample size and recently published 
T2D susceptibility loci permitted us to detect potentially 
novel genetic relations between T2D and PCa that have not 
been reported previously. Seven loci (NOTCH2, ADCY5, 
CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, and FTO) not 
previously associated with PCa at genome-wide signifi- 
cance levels were seen as nominally associated in our 
study, one of which (FTO) was also reported by Pierce 
et al. (18). Four of these loci (CDKN2A/B, TCF7L2, 
KCNQ1, and MTNR1B) are associated with altered beta 
cell dysfunction or impaired insulin release and could result 
in less insulin production, thus blunting insulin effects in 
increasing PCa risk (46). Additionally, our second most 
highly associated locus, the NOTCH2 locus (P = 0.008; per- 
mutation P = 0.26), is of interest. NOTCH2 is a member of 
the NOTCH family of receptors, which modulate cellular 
differentiation, proliferation, and apoptosis (47). The locus 
has been reported to be associated with both T2D  and 
breast cancer (48, 49). Evidence from gene expression data 
indicates that NOTCH2 is expressed in developing prostate 
stroma and that NOTCH signaling affects stromal survival 
only in the presence of testosterone (50). Therefore, the reg- 
ulatory ability of NOTCH2 and its sensitivity to the pres- 
ence of testosterone might be important in prostate 
carcinogenesis, although additional studies are needed to 
investigate this further. 

Our use of GRS and kernel machine models allowed us 
to investigate the cumulative effect of T2D susceptibility 
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Table 2.    Individual Cohort and Combined Results for Unweighted and Log Odds Ratio-Weighted Type 2 Diabetes Genetic Risk Score in the 
Breast and Prostate Cancer Cohort Consortiuma

 

 
Cohort No. in 

 
No. of 

 
  Mean c b   GR S      GRS (- HNF1B ) d 

 
 

Unweighted count 

Cohort Cases Total Cases Controls OR 95% CI P Value OR 95% CI P Value 

 

ATBC 1,490 245 72 36.48 36.44 1.00 0.97, 1.04 0.894 1.00 0.97, 1.04 0.841 
CPSII 1,258 636 72 37.48 37.55 1.00 0.97, 1.03 0.740 1.00 0.97, 1.03 0.839 
EPIC 857 431 72 37.47 37.66 0.99 0.95, 1.02 0.460 1.00 0.96, 1.04 0.984 
HPFS 418 214 72 37.70 37.47 1.02 0.97, 1.07 0.539 1.02 0.97, 1.08 0.419 
MEC 503 244 72 37.80 37.89 0.99 0.95, 1.04 0.779 1.00 0.96, 1.05 0.936 
PHS 553 298 72 37.59 37.81 0.99 0.95, 1.03 0.521 1.00 0.95, 1.04 0.800 
PLCO 2,161 714 72 37.36 37.64 0.98 0.96, 1.00 0.111 0.98 0.96, 1.01 0.191 

Combinede
 7,240 2,782 72 37.42 37.31 0.99 0.98, 1.00 0.168 1.00 0.98, 1.01 0.534 

Weighted log OR            
ATBC 1,490 245 8.16 4.33 4.34 0.93 0.68, 1.29 0.675 0.94 0.68, 1.30 0.718 
CPSII 1,258 636 8.16 4.45 4.47 0.89 0.69, 1.14 0.358 0.90 0.70, 1.16 0.416 
EPIC 857 431 8.16 4.45 4.47 0.90 0.67, 1.20 0.460 1.01 0.75, 1.36 0.961 
HPFS 418 214 8.16 4.49 4.46 1.11 0.73, 1.68 0.635 1.17 0.76, 1.80 0.481 
MEC 503 244 8.16 4.49 4.54 0.78 0.53, 1.15 0.215 0.83 0.56, 1.23 0.352 
PHS 553 298 8.16 4.45 4.52 0.76 0.53, 1.07 0.118 0.80 0.56, 1.15 0.232 
PLCO 2,161 714 8.16 4.43 4.49 0.74 0.61, 0.91 0.004 0.76 0.62, 0.93 0.008 

Combinede
 7,240 2,782 8.16 4.44 4.45 0.84 0.75, 0.94 0.002 0.87 0.78, 0.97 0.015 

Abbreviations: ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; CI, confidence interval; CPSII, American Cancer Society 
Cancer Prevention Study II Nutrition Cohort; EPIC, European Prospective Investigation into Cancer and Nutrition; GRS, genetic risk score; 
HPFS, Health Professionals Follow-up Study; MEC, Multiethnic Cohort Study; OR, odds ratio; PCa, prostate cancer; PHS, Physicians’ Health 
Study; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; T2D, type 2 diabetes. 

a Logistic regression models were used to regress GRS on risk of PCa. 
b Total indicates the maximum bound for the respective GRS, with a value close to this total indicating high genetic predisposition for T2D. 
c Mean GRS was calculated for PCa cases and PCa controls. 
d HNF1B was excluded from the GRS and included as a separate covariate. 
e For combined estimates, cohort indicators were added to adjust for cohort effects. 

 
 
 

variants on PCa risk. Although another study was success- 
ful in showing an association between unweighted T2D 

 

Table 3.  Mediation Analysis for the Association Between HNF1B 
(rs7501939) and Prostate Cancer With Diabetes Phenotype as a 
Potential Intermediate in the Breast and Prostate Cancer Cohort 
Consortiuma

 

 
GRS and PCa (18), our study did not find a relation 
between unweighted T2D risk scores and PCa. A potential 
explanation for our lack of association is that with the most 
recent T2D loci added to our risk score, including T2D var- 
iants found through meta-analyses with lower-than-average 
effect sizes, the number of SNPs doubled, and the range of 
effect estimates for each variant might have widened. Our 
study did find a significant association between the log 

Odds 
Ratio 

95% 
Confidence 

Interval 

 
P Value 

odds-weighted T2D risk scores and PCa. This association 
was significant when the HNF1B locus was both included 
in and excluded from the GRS. Although one of the larger 

HNF1B-T2D 
association 

T2D-prostate cancer 
association 

1.10 0.97, 1.25 0.14 
 

0.76 0.66, 0.87 8.13 × 10 

 
 
 

−05 

cohorts, the Prostate, Lung, Colorectal, and Ovarian Cancer 
Screening Trial, seems to have been responsible for most of 
this association, a test of heterogeneity indicated that there 
was no significant evidence for heterogeneity. The fact that 

Natural indirect effect 1.00 1.00, 1.00 0.71 
Natural direct effect 0.83 0.79, 0.86 1.02 × 10−18

 

Total effect 0.83 0.79, 0.86 6.37 × 10−19
 

 
 

Abbreviation: T2D, type 2 diabetes. 
a All analyses were conducted in the Breast and Prostate Cancer 

Cohort Consortium and were adjusted for cohort indicator, age at 
baseline (years), and body mass index (weight (kg)/height (m)2). 

the log odds ratio-weighted GRS was significant and the 
unweighted risk score was insignificant indicates that some 
T2D variants could have a stronger influence on PCa risk 
than others. The GRS approach makes the assumption that 
all T2D loci included in the GRS have T2D risk alleles that 
function in the same direction when PCa risk is considered. 
This might not be the case, with some T2D-associated loci 
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possibly having the same rather than the (expected) oppo- 
site direction of effect on PCa. Multilocus kernel tests 
allowed us to assess the cumulative effect of these 36 T2D 
variants on PCa risk without requiring an assumption about 
risk allele directionality. Results from the multilocus kernel 
tests indicated that the 36 T2D variants were significantly 
associated with PCa risk when HNF1B was both inclu- 
ded in and excluded from the  models,  which  suggests 
that common pathways could be involved in both T2D and 
PCa. 

A potential limitation of this study is that information on 
diabetes phenotype was self-reported (43). However, previ- 
ous studies have shown that self-reporting of diabetes has 
up to 97% agreement with medical records (51, 52). 
Another limitation is that we could not differentiate 
between cases of type 1 diabetes and T2D, although the 
median age (62 years; interquartile range, 55–70) and eth- 
nicity of our study population were such that the majority 
of diabetes cases were likely to be T2D (53). Furthermore, 
BPC3 data on T2D status were available only at baseline, 
and although this could have resulted in underestimation of 
the true prevalence of diabetes in our study population, it 
did guard against potential reverse causality. 

Our study showed a highly significant inverse relation 
between T2D and PCa. The estimate was adjusted for body 
mass index, age at baseline, and cohort indicator and is un- 
likely to be due to chance or uncontrolled bias. To our 
knowledge, this is the largest case-control study in which 
this inverse association has been examined, and our 
estimate (OR = 0.76) is comparable to, albeit slightly stron- 
ger than, the point estimates  reported  in  meta-analyses 
and other studies, including prior reports from 2 cohorts 
in the BPC3 (i.e., relative risks ranged from 0.84 to 0.91) 
(3–5, 54). 

We further assessed the potential for T2D phenotype to 
mediate the effect of HNF1B with PCa risk. Results indi- 
cated a highly significant direct association between 
HNF1B and PCa risk, but there was no significant evidence 
for an indirect association. Although other investigators 
have observed a significant relation between HNF1B and 
T2D risk (8, 9), we did not, which indicates that our 
sample set might have lacked sufficient statistical power to 
detect this effect. The lack of a mediation role for diabetes 
phenotype in the HNF1B-PCa association has been report- 
ed elsewhere in a smaller subset of the BPC3 data (16), 
although larger studies are needed to more definitively rule 
out the potential for mediation. 

The majority of our analysis, excluding the mediation 
analysis, was conducted on data from a genome-wide asso- 
ciation study of advanced PCa. Although there is concern 
that results from our study might not be generalizable to 
other subtypes of PCa, the overwhelming number of simi- 
larities between our analysis and others indicates that T2D 
risk variants have a similar effect on advanced PCa risk 
and on total PCa risk. This is in agreement with association 
studies comparing PCa germline variants that show very 
few examples of different effects by disease aggressiveness. 

In conclusion, our data provide additional evidence for a 
relation between T2D and PCa. Current investigations of a 
shared genetic background that could underlie this observed 

association are still in their infancy but suggest that a 
genetic predisposition to T2D might also be  associated 
with PCa risk. Future studies should further investigate the 
potential genetic factors that link these two common 
chronic diseases. 
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