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Abstract

Once a uniform electric field is turned on in graphene, carriers accelerate ballistically until they are scattered

by optic phonons and the process repeats itself. In this dissertation, I will show that the oscillatory nature

of the motion of the carrier distribution function manifests in damped oscillations of carrier drift velocity

and average energy. In appropriate fields, the frequency of such oscillations can be in the terahertz (THz)

range. The randomizing nature of optical phonon scattering on graphene’s linear band structure further

limits terahertz observation to a range of sample lengths.

I will also show that when an ac field is superimposed onto the appropriate dc field, hot carriers in

graphene undergo an anomalous parametric resonance. Such resonance occurs at about half the frequency

ωF = 2πeF/~ωOP , where 2π/ωF is the time taken for carriers to accelerate ballistically to the optic phonon

energy ~ωOP in a dc field F . For weak elastic scattering, the phase difference between the current and the

ac field has a nonzero minimum at resonance. Dephasing increases with ac frequency for stronger elastic

scattering. The overall effect could also be seen in long-range spatially periodic potentials under steady state

conditions.

This dissertation also shows that the soft parametric resonance (SPR) at ω = ηωF is temperature

independent, and the resonance factor η ∼ 0.56 is weakly dependent on the dc field Fo. This ensures

tunability of resonant frequencies in the terahertz range by varying Fo. A small signal analysis (SSA) of the

time-dependent Boltzmann transport equation (BTE) reveals a second resonance peak at η ∼ 1. This peak

is prevalent at temperatures T ≤ 77 K, and appears as a weak shoulder at T = 300 K.

Finally, this dissertation shows that in graphene, the motion of carriers under the influence of temporarily

and spatially modulated scattering is characterized by sharp resonances. Such resonances occur when the

period of the ac field applied equals the time taken by the quasi-ballistic carriers to travel a spatial distance

corresponding to the wavelength of the field. I will also show that such scattering can be realized on graphene

sheets on periodically spaced gates energized by an a-c bias. Appropriate fields and gate separation will

result in high Q-factor resonances in the THz range. The resonant frequencies are tunable with the gate

separation, and higher harmonics with large Q-factors can also be achieved.
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Chapter 1

INTRODUCTION

1.1 TERAHERTZ RADIATION

Terahertz (THz) radiation is electromagnetic radiation with frequencies in the range 0.3 - 3 THz.1 This is

a region in the electromagnetic spectrum between the microwave and infrared regions. Because THz waves

have wavelengths below 1 mm, they are also referred to as submillimeter waves. This remains the least

developed region in the spectrum because of the lack of convenient sources and detectors of THz waves.

Consequently, this region of the spectrum is also known as the “terahertz gap”.2 THz waves have attracted

a lot of interest in the last two decades because of their wide range of potential applications.3,4,5,6,7,8 THz

radiation could be useful in astrophysics and atmospheric science, biological and medical science, security

screening, non-destructive evaluation, communications technology, and ultrafast spectroscopy.9,10,11

Terahertz radiation actually occurs naturally as black-body radiation from objects with temperatures

grater than 10 K.12 Even though this thermal emission is very weak for most practical uses, it is still

useful in astrophysics.13 Terahertz waves can also be generated using transistor oscillators and amplifiers,

but the output power is too low for most applications. The power generated by such devices falls off

at frequencies higher than microwaves as a result of transit-time and resistance-capacitance effects.14,15

Designing conventional semiconductor diode lasers- that generate infrared and visible radiation-to generate

THz radiation has also proved difficult. This is because of the lack of materials with small enough band

gaps to generate electromagnetic waves with frequencies below 15 THz.9

Significant research efforts has led to the development of some solid-state THz devices.4 Other sources

of THz radiation include THz quantum cascade lasers and resonant tunneling diodes.9,16,17,18,19 Despite

significant improvements in the performance of such devices,20,1,21 there is still a need for coherent, compact,

high-power, and tunable THz sources and detectors that operate at room temperature.
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1.2 GRAPHENE

Graphene is a two-dimensional (2D) material with unique electronic properties.22 Even though the material

had been extensively studied many years before,23 it was not until 2004 that graphene was isolated.24 This

was a remarkable turn of events because it was widely known that strictly 2D materials could not exist.25,26

The isolation of graphene led to “graphene rush” as the material became the focus of extensive fundamental

and technological studies by condensed matter physicists, chemists, and engineers. What really sets graphene

apart from conventional semiconductor is that it’s electrons behave as massless charged fermions and can be

described by a formalism similar to the Dirac relativistic equation rather than the Schröendinger equation.27

This presents an opportunity to study quantum electrodynamics at the nanoscale level.28,29 Other exciting

properties of graphene include excellent electrical conductivity, optical transparency, mechanical strength,

and chemical stability.30

Figure 1.1: (Color online) Left: Graphene lattice with two atoms per unit cell. The vectors a1 and a2 are the
unit vectors and nearest-neighbor vectors are given by δi, i = 1, 2, 3. Right: the corresponding Brillouin zone. The
conduction and valence bands in graphene meet at the points K and K′ called Dirac points. From Castro Neto,
Guinea, Peres, Novoselov, and Geim, Rev. Mod. Phys. 81, 109 (2009). 27

1.2.1 Graphene Band Structure

Graphene is made up of carbon atoms arranged in a honeycomb structure (Fig. 1.1). Each unit cell of

graphene consists of two carbon atoms and is repeated along the lattice vectors ~R = m~a1 + n~a2, where

~a1 = a
√
3(

1

2
,

√
3

2
), ~a2 = a

√
3(
1

2
,−

√
3

2
) (1.1)
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and a ≈ 1.42Å is the inter-atomic distance. The corresponding Brillouin zone (BZ) has the lattice vectors

(Fig. 1.1)

~b1 =
2π

3a
(1,

√
3), ~b2 =

2π

3a
(1,−

√
3). (1.2)

The corner points K and K ′ of the BZ play an important role in the transport properties of graphene. Their

locations in momentum space given by

~K =
2π

3a
(1,

1√
3
), ~K ′ =

2π

3a
(1,− 1√

3
). (1.3)

A tight-binding model gives the Hamiltonian of the electrons in graphene as

H = −~t
∑

m,n,σ

(a†σ,m)bσ,n + h.c, (1.4)

where a†σ,m(aσ,m) creates (annihilates) an electron with spin σ(σ = (+,−)) on site ~Rm on sublattice A, and

h.c is the hermitian conjugate of the first term. The parameter t ≈ 2.8 eV is the hopping energy between

two nearest lattice sites. In the limit of low energies (more relevant for electronic transport), hoppings to

next nearest and further neighbours do not play a role and have not been included in Eq. 1.4. The energy

bands corresponding to the Hamiltonian (1.4) are given by23

E(~k) = ±~t

√

3 + f(~k),

f(~k) = 2 cos (
√
3kya) + 4 cos

(

√
3

2
kya

)

cos
(3

2
kxa

)

, (1.5)

where the plus sign is for the upper (π∗) and the minus sign is for the lower (π) band (Fig. 1.2). Note

that the two bands meet at six zero energy points called Dirac or neutrality points. By symmetry, these

points correspond to the two independent points K and K ′ in the BZ of graphene.22,31 Because the two

bands touch at the Dirac points, graphene has no band gap, and is referred to as a zero-gap semiconductor.

Expanding Eq. 1.5 around ~K or ( ~K ′) we get,23

E(~k) ≈ ±~vF |k| (1.6)

for ~k close to ~K( ~K ′), and vF = 3ta/2 ≈ 1 x 108 cm/s. As a result, carriers in graphene travel with Fermi

velocity vF that is much larger than in conventional semiconductors.32 The high value of vF and superior

conductivity make graphene an attractive material for future high speed electronic devices.33,34,35,36,37
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Figure 1.2: (Color online) Graphene band structure. Inset: Band structure close to one of the Dirac points. From
Castro Neto, Guinea, Peres, Novoselov, and Geim, Rev. Mod. Phys. 81, 109 (2009). 27

Because there are two sublattices A and B in the structure of graphene (Fig. 1.1), the Hamiltonian

approximates to the Dirac equation

H = ~vFσ · k, (1.7)

where σ represents pseudospin due to the two atoms in the unit cell. Thus, electrons in graphene behave

like charged relativistic particles that have zero rest-mass and move with speed vF . As a result, graphene

provides a platform to study the physics of massless Dirac fermions in solids.

1.3 OVERVIEW

The main goal of this dissertation is to highlight some of the properties of THz oscillations of hot electrons

in graphene. Chapter 2 contains a discussion of dynamics of electrons in the conduction band of graphene,

when a a uniform electric field is applied. The chapter also discusses the necessary conditions required to

produce room temperature THz oscillations of the electron distribution in graphene.

Chapter 3 includes a study of parametric oscillations of hot carriers in graphene under the influence of

an ac field superimposed onto a dc field. Also discussed are the conditions for occurrence of parametric

resonance in the THz range, and the tunability of such frequencies with the dc field. Chapter 4 discusses

the effects of temperature and the dc field on the THz parametric resonance condition. A discussion on a

secondary resonance peak that occurs at low temperatures is also included in the chapter.

The study of electron dynamics in graphene under the influence of spatially and temporary modulated

4



electric fields is included in chapter 5. Such electric fields and scattering can be realized by placing free

standing graphene sheets on periodically spaced gates modulated by an ac field. The chapter discusses

the nature of the high Q-factor THz resonances observed, the generation of higher harmonics, and their

tunability.

The last chapter discusses the important results of my work and the implications in THz science and

technology.
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Chapter 2

HOT-ELECTRON TRANSIENT

AND TERAHERTZ OSCILLATIONS

IN GRAPHENE*

2.1 INTRODUCTION

In graphene, the carrier mean free path for collisions with low energy acoustic phonons (AP) can reach several

micrometers, while efficient scattering with monochromatic optic phonons (OP) occurs at much larger energy

(~ωOP ∼ 0.2 eV).38,39 Therefore, in electric fields F high enough (to escape AP or low-energy scattering),

charge carriers can experience quasiballistic runaway until they scattered with efficient OP emission once

E ≥ ~ωOP .
40 The coherent aspect of this process, that is, the coherent acceleration of the carrier distribution

function followed by quasi-instantenous carrier relaxation by OP’s at high energy, is expected to produce

oscillations of the carrier velocity with a periodicity given by τgr = ~ωOP /eFvF ∼ 1 ps (Ref. 41) for F ∼ 2

kV/cm, that is, in the terahertz range.

This type of oscillation has already been predicted in GaAs,41 and indirectly observed in slightly n-

doped InSb.42 However, their manifestation in these materials is different in several respects: First, owing

to the carrier parabolic energy-momentum dispersion, the oscillation periodicity in GaAs is instead given by

τGaAs =
√

2m ∗ ~ωGaAs
OP /eF .41,43,44 Second, and more importantly, in III-V semiconductors, the oscillation

onset is restricted by two conflicting conditions: On the one hand, the low value of the OP energy (~ωOP ∼

0.04 eV) (Ref. 45) is comparable to the thermal broadening of the carrier distribution at room temperature

so that the back-and-forth motion of the distribution between the optic phonon and the zero point energy

is immediately damped.41,43,44 On the other hand, at low temperature, ionized impurity scattering becomes

dominant and produces strong damping which can only be reduced by lowering the dopant density, thereby

lowering the carrier density, and weakening the oscillation amplitude. In this respect, the high conductance

of graphene, and the high optic phonon energy provide the conditions for room-temperature observation.

This chapter provides a study of carrier dynamics in graphene single layers, once the electric field has

been turned on, to determine the conditions of occurrence of current oscillations. Indeed, thermal broadening

of the initial distribution introduces a decoherence in the OP relaxation among carriers, which, aside from

*This chapter closely follows Samwel Sekwao, and Jean-Pierre Leburton, Phys. Rev. B 83, 075418 (2011).
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low-energy scattering, causes inherent damping of the oscillations, especially at high fields, where carriers

overshoot the OP energy before emission. For this purpose, the Boltzmann formalism is used to solve

for the steady state and the time-dependent carrier distribution in the presence of OP scattering.41,43,44

Since both intravalley and intervalley scattering can be treated within the deformation-potential interaction

model,46 an overall transition rate accounting for both mechanisms is used. Low-energy scattering such

as impurities and acoustic phonons by are accounted for using the relaxation time approximation,47 but

the dissipation effects due to the environment such as remote phonons,48 detrimental to the occurrence of

the oscillations are ignored, which limits their observations optimally to suspended graphene or nonpolar

substrate.49 In weak concentrations (nc ∼ 1011 cm−2), electron-electron interactions do not play a major

role in transport in graphene,27 and they are not included in this analysis. This chapter also analyses the

interplay between applied electric fields and strength of the low- energy scattering rates for the onset of

oscillations is provided. In particular it is shown that unlike in III-V semiconductors, where the OP polar

nature focuses the low-energy repopulation along the field, and provides a “streaming” profile to the carrier

distribution, in graphene, the randomizing scattering by deformation potential OP generates of a transient

crater-like shape in the low-energy distribution.

2.2 MODEL

Let us consider a system of electrons in the graphene conduction band under the influence of an electric field

along the x-direction. The momentum space can be divided into two regions: I (k < kc) and II (k > kc)

separated by a circle of critical momentum kc = ωOP /vF , which corresponds to the electron kinetic energy

equal to ~ωOP [Fig. 2.1(a)]. In region I electrons undergo quasiballistic acceleration and weak scattering by

low-energy mechanisms (e.g., impurities or AP’s) until they reach region II where they lose their energy by

OP emission, and scatter back to region I. In this model, the electric field is assumed to be low enough so

that electrons are scattered efficiently from region II to region I by OP emission with little probability to

reach E ≥ 2~ωOP .

Quite generally, the time-dependent Boltzmann equation in each region can be written as;

∂fI(~k, t)

∂t
+

eF

~

∂fI(~k, t)

∂kx
= −fI(~k, t)− fo(~k)

τ
+
∑

~k′

S(~k′, ~k)fII(~k
′, t) (2.1a)
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Figure 2.1: (Color online) a) Schematics of carrier quasiballistic acceleration and OP scattering in 2D k space. The
solid circle of radius kc is the locus of all points in k space corresponding to the carrier energy ~ωOP . b) Schematics
of electrons scattered by OP’s from two different positions of the distribution function shown by ovals in region II.
The dashed circles in region I represent the two areas of high momentum probability where electrons are more likely
to land after OP emission from the distribution in region II at two different times. The arrows represent the electron
transitions from II to I.
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∂fII(~k, t)

∂t
+

eF

~

∂fII(~k, t)

∂kx
= −fII(~k, t)

∑

~k′

S(~k,~k′) (2.1b)

where fI(~k, t) and fII(~k, t) are the time-dependent momentum distribution functions in regions I and II,

respectively, and F is the electric field applied.44 The first term on the right-hand-side (RHS) of Eq. (2.1a)

accounts for low-energy scattering mechanisms where,

fo(~k) =
1

1 + exp(~vF (k−kF )
kbT

)
(2.2)

is the Fermi-Dirac equilibrium distribution function and kF > 0 is the Fermi momentum so that only

intraband processes restricted to the conduction band are considered. Interband processes will be the object

of future work. Also, note that at room temperature, for Fermi levels at EF = kBT above the Dirac point,

the carrier concentrations is nc ≈ 1.8 x 1011 cm−2. The parameter τ is the relaxation time50 (for the sake

of simplicity, it is assumed that τ is k-independent and it’s value is varied compared to the OP scattering

rate). S(~k′, ~k) is the OP transition rate from a state with momentum ~k′ to the state with momentum ~k,

given by†51,52

S(~k,~k′) =
πDo

2(Nq + 1)δ(E′ − E + ~ωOP )

σAωOP
(2.3)

where Do is an effective optical deformation potential accounting for intra and intervalley scattering. The

parameter σ is the mass of the graphene sheet per unit area, and A is the area of the sheet.

The second term on the (RHS) of Eq. (2.1b) is the carrier depopulation by OP emission, while in

Eq. (2.1a) it is the corresponding carrier repopulation at low energy. Here OP absorption processes are

neglected since for temperature T = 300 K used throughout this analysis, ~ωOP ≫ kBT , for which the

phonon occupation number Nq is negligible, so OP’s only scatter electrons from region II to region I.

2.3 STEADY STATE REGIME

First, the solution for fI and fII under steady-state conditions is obtained by setting ∂fI (~k,t)
∂t = ∂fII (~k,t)

∂t = 0

in Eqs. (2.1a) and (2.1b). The procedure is to solve Eq. (2.1b) for fII , and substitute it’s value in Eq.

(2.1a) to solve for fI . Then one matches the two solutions at the boundary k = kc.

† The transition rate should be multiplied by (1 + cos(θ′)), where θ′ is the angle between ~k and ~k′. The summation over
cos(θ′) prohibits scattering to areas near −kx axis in region I. This, however does not introduce significant changes to the
results.
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The general solution of Eq. (2.1b) is then,

fII(kx, ky) = fI(k
0
x, ky)Υ(kx, ky) (2.4)

where fI(k
0
x, ky) = fII(k

0
x, ky) is the distribution function at the boundary and k0x =

√

kc
2 − ky

2 is the kx

value at the boundary k = kc. From here on, the transformation kx/kc → kx, ky/kc → ky, and kc → 1 will

be used. In this framework, the function Υ is given by,

Υ(kx, ky) = exp

{

−a

∫ kx

k0
x

{
√

z2 + ky
2 − 1}dz

}

where the dimensionless parameter a is given by

a =
Do

2kc
2

2σωOP eFvF
.

Substituting Eq. (2.4) into Eq. (2.1a) leads to the following equation in region I:

∂fI
∂kx

+ aγfI = aγfo(kx, ky) +
a(k + 1)

2π

∫ 1

−1

dyfb(y)
Υ(kxc, y)

kxc
, (2.5)

where

kxc =
√

(k + 1)2 − y2

with

k =

√

kx
2 + ky

2

and the damping parameter γ is defined as

γ =
τo
τ
,

where τo = τOP (k =1.5kc) and

1

τOP (~k)
=

∑

~k′

S(~k,~k′)

is the OP scattering rate. Using ~ωOP = 0.2 eV, Do = 14 eV/Å,53 and σ = 7.61 x 10−7 kg/m2, one finds

τo ≈ 0.32ps. The preceding equation is a first-order partial differential equation with solution

fI(kx, ky) = T1(kx, ky) +
a

2π

∫ 1

−1

dyfb(y)K(kx, y, ky), (2.6)

10



where

T1(kx, ky) = aγe−aγkx

∫ 1

−1

dzfo(z, ky)e
aγz

and

K(kx, y, ky) = e−aγkx

∫ kx

k0
x

dzΥ(kxc(z), y){
√

z2 + k2y + 1}eaγz

kxc(z)

with

kxc(z) =

√

(
√

z2 + k2y + 1)2 − y2.

Evaluating fI at the boundary leads to an integral equation of the form

fb(ky) = T1(k
0
x, ky) +

a

2π

∫ 1

−1

fb(y)K(k0x, y, ky)dy. (2.7)

With known functions T1(k
0
x, ky) and K(k0x, y, ky), Eq. (2.7) is solved numerically, and the solution gives

both, fI(~k) and fII(~k). Figure 2.2(a) is a contour plot of the steady-state distribution for different values
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Figure 2.2: (Color online) (a)Contour plot of the distribution functions for different damping parameters (F = 1
kV/cm) and (b)different applied fields (γ = 0.1).

of γ and F = 1 kV/cm. For negligible values of γ (top panel), the distribution is elongated toward the

kx axis, with its centroid located around kx = kc (kx = 1 on the figure). As the low-energy damping
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increases(γ → 0.5), electrons scatter in the low-energy region (I) with a few of them reaching region II.

The electron population concentrates around the distribution centroid that recedes towards kx = 0 (bottom

panel). Notice the color code is different for each panel. Figure 2.2(b) display similar contour plots for

different electric fields and constant γ = 0.1. Here as the electric field is increased, the distribution is more

and more elongated, and broader along the kx axis, but an unexpected phenomenon occurs as the centroid

of the distribution evolves into a double hump clearly seen in the bottom panel. This is a consequence of

the high repopulation rate for high-energy electron close to kx = 2kc (kx = 2 on the figure).

Figure 2.3 is a plot of the current density in the high-field regime for different values of γ. As expected,

the current decreases with damping and reaches it’s saturation value at higher fields.
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J x(A
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m
)
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γ = 0.3
γ = 0.4
γ = 0.5

Figure 2.3: (Color online) Current density in the high field regime for different damping parameters. Here the
carrier concentration in nc =1.8 x 1011/cm2.

2.4 TRANSIENT REGIME

The substitution u = t− ~kx/eF is used to solve for the distribution function in the transient regime,

eF

~

∂gII(kx, ky;u)

∂kx
= −gII(kx, ky;u)

τOP (~k)
, (2.8)
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where gII(kx, ky;u) = fII(kx, ky, u+ ~kx/eF ). The solution of Eq. (2.8) is then

gII(kx, ky;u) = gII(k
0
x, ky;u) exp

{

− ~

eF

∫ kx

k0
x

dz

τOP (z, ky)

}

. (2.9)

Going back to the time variable, the general solution in region II is then

fII(kx, ky, t) = fII(k
0
x, ky, t− νo(kx − k0x)) exp

{

− ~

eF

∫ kx

k0
x

dz

τOP (z, ky)

}

, (2.10)

where

1

νo
=

eF

~

is the “speed” with which the distribution moves towards the critical circle. Equation (2.10) describes a

distribution that starts at the critical circle and moves in the direction of the electric field F with “speed”

1/νo, while decreasing exponentially as carriers emit OP’s.

At (t = 0), the distribution in region I is the Fermi-Dirac distribution,

fI(kx, ky, t = 0) = fo(kx, ky). (2.11)

Right after the electric field is turned on, during the first trip towards the critical circle(0 ≤ t < νokc), the

inside distribution drifts towards the critical circle while undergoing low-energy scattering. During this trip,

one assumes that all carriers are in region I, corresponding to fII ≈ 0. Using the coordinate transformation

described earlier and the initial condition, the distribution in region I is given by

f
(1)
I (kx, ky, t) = fo(kx − t/νo, ky)e

− t

τ +
νo
τ
e−

νokx

τ

∫ kx

kx−t/νo

dze
νoz

τ fo(z, ky). (2.12)

One then uses the boundary condition fI(k
0
x, ky, t) = fII(k

0
x, ky, t)

54 and Eq. (2.10) to obtain the distribution

in region II:

f
(1)
II (kx, ky, t) = f

(1)
I (k0x, ky, t− νo(kx − k0x)) exp

{

− ~

eF

∫ kx

k0
x

dz

τOP (z, ky)

}

. (2.13)

The preceding equation describes carriers in region II that interact with OP and scatter into region I. For

t ≥ νokc, the solution f
(1)
II (~k, t) is substituted into the integral of the right hand side of Eq. (2.1a) to start
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the same procedure, with the same variable substitution u = t− νokx, for later times to get

f
(2)
I (kx, ky, t) =

νo
τ
e−

νokx

τ

∫ kx

−k0
x

fo(z, ky)e
νoz

τ dz

+ νoe
−

νokx

τ

∫ kx

−k0
x

∑

~k′

S(~k′, z, ky)f
(1)
II (~k′, t− νo(kx − z))e

νoz

τ dz (2.14)

for the second distribution in region I. This distribution is accelerated towards the critical circle and the

process repeats itself.

As the electron population moves back and forth between regions I and II, it undergoes each time

more dephasing and broadening due to the finite duration of the OP emission process. The distribution

function in each region at any time t corresponding to the nth trip toward the critical circle, that is, for

n = integer[eF t/~kc] + 1, can be written as a superposition of distributions f
(i)
I (kx, ky , t) and f

(i)
II (kx, ky, t)

of individual ith “trip”, that is,

fI(kx, ky, t) =

n
∑

i=1

f
(i)
I (kx, ky, t) (2.15a)

and

fII(kx, ky, t) =

n
∑

i=1

f
(i)
II (kx, ky, t). (2.15b)

The whole distribution is then normalized to the total carrier concentration nc.

2.5 RESULTS

The dimensionless time parameter t̃ will be used to describe the results:

t̃ =
t

t∗
,

where

t∗ = νokc

is the approximate time taken for the distribution to complete one “trip”. The results are presented in terms

of the normalized coordinates, kx/kc → kx, ky/kc → ky, and kc → 1.

Figure 2.4(a) shows the time evolution of the distribution function (DF) for F = 1 kV/cm (t∗ ≈ 2 ps),

in the absence of low energy scattering (γ = 0). At t̃ = 0(t = 0), the initial distribution is the tail of the

Fermi distribution in the conduction band [Eq. (2.2)], which is Maxwellian-like, and drifts along the kx

direction (opposite to the F field) to reach the OP energy at t̃ = 1 (second panel). At that time, a “hump”
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Figure 2.4: (Color online) a) 3D plots of the distribution function at different times (t̃ = 0, 1, 1.5, 2, and 2.5) for
F = 1 kV/cm and vanishing low- energy scattering (γ = 0). b) Corresponding depopulation and repopulation rates
for the same times as in (a).

appears around k = 0 (not yet visible on the DF graph) as the front electrons reach region II, where they

emit OP’s and scatter back inside region I, as seen in the second panel of Fig. 2.4(b). As time progresses

t̃ = 1.5, the “hump” develops into a dimple, while the remaining high-energy electrons from the first trip

continue their drift in region II, where they experience strong OP depopulation. As seen in the third panel

of Fig. 2.4(b), the corresponding repopulation rate at low energy exhibits a craterlike shape, which is due

to the randomizing nature of the deformation potential OP scattering. Indeed, as schematically shown in

Fig. 2.1(b), after OP emission by high-energy electrons, all |~k − ~kc| values become equiprobable, which

forms a drifting circle of high repopulation rate, with increasing k radius as first trip electrons penetrate

deeper in region II. This craterlike feature of the repopulation rate is the primary cause of the dimple in

the low-energy distribution function, which are areas in k space where electrons have low probability to

scatter. As time progresses, the DF “dimple” evolves into a crater-like shape, [Fig. 2.4(a), fourth and fifth

panel], and the successive depopulation-repopulation OP processes overlapping at low energy with different

amplitudes form also smooth terraces in the low-energy tail of the distribution as it approaches steady state

[Fig. 2.4(a) , fourth panel]. These morphological effects in electron distribution are unique to graphene

as a result its linear band structure and the interplay of the quasiballistic acceleration and relaxation by
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Figure 2.5: (Color online) 3D plots of the distribution functions at t̃ = 2.5 for γ = 0, 0.05, 0.1, and 0.5. The applied
field is F = 1 kV/cm.
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high-energy monochromatic OP’s.
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Figure 2.6: (Color online) 3D plots of the distribution functions at t̃ = 2.5 for γ = 0, 0.05, 0.1, and 0.5. The applied
field is F = 1 kV/cm.

Figure 2.5 shows snapshots of the distribution function at t̃ = 2.5 for varying low energy relaxation-

time, expressed in terms of γ = τ0/τ . From the figure, one can see that the crater in the DF that occurs

for γ = 0 progressively disappears as γ increases. Indeed low- energy scattering in region I redistributes

charge-carrier momenta around ~k = 0, especially in the crater center. For these reasons, the amplitude of

the distribution in region I increases around ~k = 0. Also, the distribution amplitude decreases in region II

(k > kc) as carriers spend more time in region I (k ≤ kc). Similarly, the distribution recovers a streaming

profile along the kx direction as conventional semiconductors.41,54 Nevertheless, even for strong damping

(γ = 0.5), the distribution is characterized by a jagged profile, which contains the front and back ridges

of the crater remnant still caused by the cumulative effects of the OP scattering for backward and forward

carrier relaxation.
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Figure 2.7: (Color online) a) Current density as a function of time for different values of the low-energy scattering
parameters γ. The applied field is F = 1 kV/cm. b) Cross sections of the distribution at t̃ = 3 and kx = 0.5kc for
the corresponding values of γ. Dash lines: initial distribution function at kx = 0.
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The current density on the plane is given by,

Jx(t) = −4evF
∑

~k

f(~k, t) cos(φ), (2.16)

where φ is the angle between ~k and the kx axis. Figure 2.6(a) shows the current density as a function of

time (t̃) for F = 1 kV/cm and different low-energy scattering rates. For weak scattering, the current density

overshoots its steady-state value through damped oscillations, as a result of the back-and-forth motion of the

distribution function (Fig. 2.1). The weaker the scattering, the higher the current overshoot. For strong low-

energy scattering, the current converges monotonically toward its steady-state value without oscillations.41

Notice that the stronger the scattering, the lower the steady-state current value. Figure 2.6(b) shows the

corresponding DF cross-sections at kx = 0.5 and t̃ = 3 relative to the initial distribution at kx = 0. As

low-energy scattering increases, the DF becomes narrower, taking a “streaming” profile in the electric-field

direction. This is due to the fact that as the low-energy scattering increases, fewer electrons reach the high

energy ( E ≥ ~ωOP ) region II, reducing the number of electrons scattered back to the low-energy region I,

which narrows the distribution.

Figure 2.7 shows the current density as a function of time for three different field values, with γ = 0.05

in each case. One observes that the oscillation period τgr = ~ωOP /eFvF scales with the inverse of the

electric field F . Also quite expectedly, the overshoot value increases with electric fields, but the damping

is also enhanced with electric fields, which is due to the fact that the electron distribution penetrates the

high-energy (E ≥ ~ωOP ) region(II) farther than ~ωOP , stretching the carrier relaxation by OP emission,

which in turn broadens the DF in region I along the field, thereby reaching steady state quicker. Figure

2.7(b) shows the DF cross sections at kx = 0.5 and t̃ = 3 for the different fields, relative to the initial

distribution at kx = 0. As the field is increased, the distribution function broadens, because more electrons

reach the high-energy (E ≥ ~ωOP ) region II, and scatter back into region I broadening the distribution in

the process.

Note that, for ~ωOP = 0.2 eV and F = 1 kV/cm, the period of oscillations τgr = ~ωOP /eFvF = 2 ps

corresponds to oscillation frequencies just below the terahertz range. Also, for the low damping case γ = 0

in Fig. 2.6(a), the maximum current density corresponds to carrier velocity v ≈ 0.95vF .

The average energy density of carriers in the conduction band is given by

E(t) = 4~vF
∑

~k

kf(~k, t), (2.17)
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function at kx = 0.

20



0 1 2 3
1

2

3

4

ε

t̃

0 1 2 3
1

2

3

t̃

ε

b)

a)

Figure 2.9: (Color online) Normalized value of the carrier energy as a function of time for different values of the
low-energy scattering parameters γ. Solid (γ = 0), circles (γ = 0.05), crosses (γ = 0.1), and diamonds (γ = 0.5). The
applied field is F = 1 kV/cm. b) Same as (a) but for different applied fields and γ = 0.1: Solid (F = 1.5 kV/cm),
circles (F = 1 kV/cm), crosses (F = 0.5 kV/cm).
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where f(~k, t) is the overall normalized distribution function, and the summation is taken over all ~k in

regions I and II. At t̃ = 0, the average energy per charge carrier is found to be E(0) ≈ 2.2kBT . This value

is roughly twice larger than kBT expected for two-dimensional systems, and is the direct consequence of

the linear energy dispersion in graphene, by contrast to the parabolic dispersion in normal 2D systems.

Figure 2.8(a) displays the ratio ǫ = E(t̃)/E(0) for F = 1 kV/cm and different low-energy scattering rate

(γ). As expected, the energy converges to higher values as low-energy scattering is reduced. In addition,

the convergence toward steady state occurs through damped oscillations, even for γ = 0 as a consequence

of the back-and-forth motion of the DF between the OP energy and the carrier zero-point energy. Quite

clearly the oscillation period is given by t∗ for all γ. It is also seen that the oscillations persist even with

significant low-energy scattering. Figure 2.8(b) displays the normalized energy ǫ as a function of time for

different fields and γ = 0.1. As expected, carrier energies reach higher values as the field is increased, and

the oscillation period decreases (larger t̃-period).

2.6 DISCUSSIONS

A transient analysis of the onset of current oscillations at the electric field turn-on caused by the back-

and-forth motion of carrier distribution function between the zero-point energy and OP’s in the presence

of varying damping mechanisms has been provided. In this context, the anomalous shape of the carrier

distribution is due to an interplay between ballistic acceleration and deformation potential OP emission in the

transient regime. If OP-limited current oscillations have been predicted in GaAs,41 and indirectly observed

in slightly n-doped InSb,42 their manifestation in graphene is different in several respects: First, owing to

the linear carrier energy-momentum dispersion, the oscillation periodicity is given by τgr = ~ωgr
OP /eFvF

in graphene, while in a GaAs parabolic conduction band it is expressed as τGaAs =
√

2m∗~ωGaAs
OP /eF ,

which nevertheless yields similar values, since the small effective mass, and the OP phonon frequency in

GaAs compensate for the large vF .
41,44 Second, in III-V semiconductors, the OP polar nature focuses the

low-energy repopulation along the kx axis, which provides a “streaming” profile to the carrier distribution

instead of a crater-like shape in this case. Finally, in compound semiconductors, the oscillation onset is

restricted by two conflicting conditions: On the one hand, the low value of the OP energy (~ωOP : 0.04 eV)

is comparable to the thermal broadening of the carrier distribution at room temperature so that the back-

and-forth motion of the distribution between the optic phonon and the zero-point energy is immediately

damped.41,43,44 On the other hand, at low temperature, ionized impurity scattering becomes dominant and

produces strong damping which can only be reduced by lowering the dopant density, thereby lowering the
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carrier density, and weakening the oscillation amplitude. In this respect, the high conductance of graphene,

and the high optic phonon energy provide the conditions for room-temperature observation.

Low-energy scattering should however still be minimized. Usually, for experimental studies and device

applications, graphene layers rest on a dielectric substrate, or are confined between two dielectric slabs.55,56

In this case the presence of high K dielectrics sandwiching the strictly 2D graphene layer may be used to

screen charged impurity that may reduce low-energy elastic scattering.57 However, dielectrics also contain

interface and remote static charges that may offset dielectric screening.58 Moreover, the interaction between

the 2D carriers in graphene and low-energy Remote Interface Phonon (RIP) arising from the proximity of

the substrate59,60 introduces new scattering sources.48,61 Therefore in general, suspended graphene-layers

avoiding the RIP influence may be preferable.49,62

In this context to be observable at room temperature, the velocity oscillations should also take place

within a parameter window. On the one hand the process requires eV > ~ωOP where V is the external bias,

to reach the OP energy, and on the other hand, the field should be large enough for carriers to escape low-

energy scattering, but ~ωOP /eFvF τOP ≫ 1 where 1/τOP is the OP scattering rate, so that charge carriers

do not penetrate the high-energy region E ≥ ~ωOP , scatter immediately after they reach the OP energy,

which maintains the coherence of the distribution function. These requirements impose a lower and upper

bound on the electric field, i.e. 0.5 kV/cm < F ≪5 kV/cm (in graphene), and a lower bound on the sample

length L > vF τOP (> 1µm for τOP < 1 ps), but L should be smaller than a few values of λ = ~ωOP /eF , so

as to prevent oscillation damping.

One important issue for the validity of this analysis is the effect of leakage current due to electrons in

the valence band crossing to the conduction of carriers through the Dirac point. Indeed it has been shown

that there is still a minimum conductance (G ∼ 4e2/h) between the two bands despite the singular nature of

the Dirac point.63 This value was later measured to be G ∼ e2/h.24 However, this effect becomes important

only when the graphene layer width w ≥ 23µm, for which the band gap Eg ≤ 0.18 meV are vanishing.

Moreover, thermal effects such as acoustic phonon absorption by carriers in the valence band, are forbidden

by conservation of both, energy and momentum. As for OP absorption it has been shown earlier (see Sec.

II) their occupation number is also negligible over the time scale considered in this analysis.
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Chapter 3

SOFT PARAMETRIC RESONANCE

FOR HOT CARRIERS IN

GRAPHENE*

3.1 INTRODUCTION

In high electric fields F , it is well known that carriers in graphene can accelerate ballistically before being

scattered by high-energy optical phonons (OP’s) (~ωOP ∼ 0.2 eV) causing carrier velocity saturation.40,39

This produces a back-and-forth motion of carriers in k space between monochromatic OP energy and the

Dirac point with a time period τF = ~ωOP /eFvF ,
41,64 which results in a carrier velocity overshoot65 and even

damped oscillations during the transient to steady state, when the field is suddenly turned on.41,64 While

these oscillations were predicted to occur in GaAs at low temperature so that ~ωOP ≫ kBT [~ωOP (GaAs) =

36 meV] they were limited to low fields (F ∼ 50-100 V/cm, τF ∼ 30 ps)41 to prevent intervalley scattering,

whereas strong Coulomb scattering arising from the charged dopants would offset the effect. In graphene,

the absence of an energy gap guarantees carriers without requiring dopants, while the large OP energy and

weak acoustical-phonon (AP) scattering66 allows its manifestation at room temperature with ramifications

in THz technology, since the oscillation frequency ωF = 2π/τF ∝ F ∼ 1 THz (F = 2 kV/cm) is tunable with

the electric field. If a periodic (ac) field is superposed onto the dc field, the frequency of the back-and-forth

carrier motion is modulated by the ac frequency, as a parametric oscillator. As a result, the amplitude

of the carrier velocity or current oscillations is expected to be resonantly enhanced when the ac frequency

ω matches a particular value η of the natural frequency ωF , i.e., ω = ηωF .
67 However, there are distinct

differences between the usual parametric resonance (PR) and this type of hot-carrier resonance: First, the

natural oscillations are strongly damped as a result of the probabilistic nature of the carrier-OP interaction

that relaxes carrier energy at different times and momenta once they reach, and even overshoot the OP

energy. Second, the system is strongly dissipative as the OP relaxation is responsible for bringing back the

carriers to the low-energy Dirac point. Consequently, the resonance is anticipated to be “soft” i.e. with a

broad peak in the oscillation amplitude vs ω, and to manifest for different η values than normal PR.

Because of these distinctive features, it is shown in this chapter that the anomalous nature of this type

*This chapter closely follows Samwel Sekwao, and Jean-Pierre Leburton, Phys. Rev. B 87, 155424 (2013).
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Figure 3.1: (Color online) Quasiballistic carrier acceleration followed by OP scattering in the 2D k space of graphene.
The circle corresponds to the electronic energy ~ωOP .

of resonance that manifests for η ∼ 1/2 instead of η ∼ 2 in normal PR.67 We also find that the dephasing

between the current and ac field exhibits a minimum as a function of the ac field frequency for weak

damping by AP or other low-energy scattering, and softens to become monotonic at high damping for all ac

field strengths.

3.2 OPTIC-PHONON SCATTERING AND HOT

CARRIER-MODEL

Consider a system of electrons in the conduction band of graphene under the influence of a spatially ho-

mogeneous and time-dependent electric field F (t). The electric field takes the form F (t) = Fo + F1 cos(ωt)

and is applied along the positive kx direction, where Fo is a permanent constant field, F1 is a constant such

that 0 < F1/Fo < 1, and ω is the frequency of the applied field. The momentum space is divided into

the low (I) and high (II) energy regions bounded by the critical momentum kc that corresponds to electron

energy ~vFkc = ~ωOP (Fig. 3.1). In the low-energy region I, charge carriers are ballistically accelerated

towards the critical circle kc while interacting with low-energy scattering agents (e.g., AP’s or impurities).

In the high-energy region II, the carriers lose all their energy by OP emission and are scattered back into the

low-energy region. For this process to occur, the electric-field maximum is low enough such that electrons
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move back and forth between regions I and II only, with negligible probability to reach E ≥ 2~ωOP .

Because of the probabilistic nature of carrier transport, a large-signal Boltzmann transport equation

(BTE) that accounts for low-energy scattering (damping), e.g., by impurities and AP will be solved.47,64

The BTE in the two regions can be written as64

∂fI(~k, t)

∂t
+

eF (t)

~

∂fI(~k, t)

∂kx
= −fI(~k, t)− fo(~k)

τLE
+
∑

~k′

SOP (~k
′, ~k)fII(~k

′, t), (3.1a)

∂fII(~k, t)

∂t
+

eF (t)

~

∂fII(~k, t)

∂kx
= −fII(~k, t)

∑

~k′

SOP (~k,~k
′), (3.1b)

where fI(~k, t) and fII(~k, t) are the time-dependent momentum distribution functions (DF) in the low- and

high-energy regions, respectively, and e is the electronic charge. Equation (3.1a) describes electron transport

at low energy, where the left-hand side (LHS) accounts for the transient drift, while the first term on the

right-hand side (RHS) accounts for low energy scattering, i.e, AP and impurities scattering. The second

term on the RHS of Eq. (3.1a) accounts for low energy carrier repopulation caused OP emission. Equation

(3.1b) describes electron transport at high energy (E ≥ ~ωOP ), where the LHS and the RHS account for

transient drift, and electron depopulation due to OP emission, respectively.64 In Eq. (3.1a), the function

fo(~k) is the Fermi-Dirac DF (kF > 0), SOP (~k,~k
′) is the OP transition rate between the states ~k and ~k′,

and τLE is the relaxation time.64 In this analysis, the temperature of the graphene sample is assumed to

be T = 300 K, so nq ≪ 1 and phonon absorption can be neglected. However, it is observed that the model

is also valid at lower T , as the DF profile larger than the thermal broadening is essentially determined by

high-field carrier dynamics, as long as the Coulomb scattering (dopant concentration) can be kept weak, as

shown in Ref. 68 and later on in this analysis. Note that at this temperature, and if we choose EF = kBT

above the Dirac point in fo(~k), the carrier concentration is nc ≈ 1.8 x 1011 cm−2, which is low enough to

neglect intercarrier scattering on the DF. Moreover, the hole concentration is even smaller to significantly

affect the carrier dynamics in the conduction band so that interband transition can be neglected.69

3.2.1 Self-Consistent Solution of Boltzmann Transport Equation

The procedure is to solve Eq. (3.1b) for fII(~k, t) and substitute the solution in Eq. (3.1a) to solve for

fI(~k, t).
44,64 The DFs in the two regions are then matched on the boundary k = kc.
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By using the substitution κ = kx + β(t), where,

β(t) = − e

~

∫ t

0

F (s)ds, (3.2)

the LHS of Eq. (3.1) transforms into eF (β−1(κ−kx))∂gI,II/~∂kx, where gI,II(kx, ky;κ) = fI,II(kx, ky, β
−1(κ−

kx)), and β−1 is the inverse function of β so that β−1β(t) = t. Consequently, the general solution of Eq.

(3.1b) takes the form

fII(kx, ky, t) = fb(ky, β
−1(β(t) + kx − k0x))M(kx, ky, t), (3.3)

where fb(ky, t) = fII(k
0
x, ky, t) is the time dependent DF evaluated at the boundary k = kc, and k0x =

√

(kc)2 − (ky)2. The M(kx, ky, t) factor given by

M(kx, ky, t) = exp
{

− ~

e

∫ kx

k0
x

dp τOP
−1(p, ky)

F [β−1(β(t) + kx − p)]

}

is the decay function caused by OP emission of hot carriers, and 1/τOP (~k) =
∑

~k′
SOP (~k,~k

′). Equation (3.3)

is then substituted into Eq. (3.1a) to solve for fI(~k, t). The matching conditions fb(ky, t) = fI(k
0
x, ky, t) =

fII(k
0
x, ky, t) of the two solutions fI and fII at the boundary leads to an integral equation of the form

fb(ky , t) = f1
b (ky, t) +

~

(2π)2e

∫ k0

x

−k0
x

dp

∫

d~k′ SOP (~k
′, ~k)

∣

∣

∣

kx=p
fII(~k

′, t′) exp{ t
′ − t

τLE
}/F (t′), (3.4)

where the function f1
b (ky , t) is the solution fI(k

0
x, ky, t) in the absence of OP scattering, and t′ is a retarded

time such that β(t′) = β(t) + k0x − p (see Supplementary Material in Ref. 70). The second term on the

RHS of Equation (3.4) accounts for the contribution of OP emission to the DF at the boundary, and the

summation is taken over states ~k′ in the high-energy region. Eq. (3.4) is solved by iteration, and the solution

for fb(ky, t) is expressed as a series,

fb(ky , t) = f1
b (ky , t) + f2

b (ky , t) + f3
b (ky , t) + ... (3.5)

which converges since the function M(kx, ky, t) is a decreasing exponential and fn
b ∝ (1/2π)n−1. The solution

for fb(ky , t) used throughout this analysis is obtained by neglecting terms of O((1/2π)3) and higher in the

series (3.5). Once fb(ky , t) is known, the DFs in both regions are readily obtained.
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The two-dimensional (2D) current density on the plane is given by

Jx(t) = −4evF
∑

~k

f(~k, t) cos(φ), (3.6)

where φ is the angle between ~k and the kx axis, and f(~k, t) is the DF in the two regions.

3.3 RESULTS

In this analysis, the value Fo = 1 kV/cm is used and the applied frequency is expressed in units of ω/ωF .

A dimensionless damping parameter γ to gauge the strength of low-energy scattering is defined as γ =

τOP (k = 1.5kc)/τLE .
64 Also, τOP for k = 1.5kc is chosen as the intermediate value between kc and 2kc as

1/τOP (kc) = 0.
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Figure 3.2: (Color online) Current density for three different values of the damping γ at resonance(ω ≈ 0.56ωF ).
(a) F1/Fo = 0.1; (b) F1/Fo = 0.8.

Figure 3.2 shows the current density versus time for different values of γ and two field strengths at

resonance, i.e., when ω ≈ 0.56ωF (see Fig. 3.3). It is seen that the amplitudes of current density oscillations

increase as the applied field F1 increases compared to Fo as a larger population of electrons escapes low-

energy scattering to reach the OP energy. At the same time, electrons also reach lower velocities during

the negative cycles of F1. For this reason, the current density swing increases with F1/Fo. One also notices

distortions in the current density oscillations at large fields [Fig. 3.2(b)] as the electron population competes

between the natural oscillations at ωF and the oscillations imposed by the F1 field. As expected, it is

also seen that the current density amplitude decreases with increasing γ as a result of increased electron

scattering in the low-energy region, thereby lowering the carrier velocity.

Figure 3.3 shows plots of current density amplitude versus frequency for different values of γ and F1/Fo.

In the figure, the amplitude is defined as the difference between the maximum and minimum values of

the current density. As seen from the plots, parametric resonance is achieved when ω/ωF ≈ 0.56. This
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Figure 3.3: (Color online) Current density amplitude vs frequency for three different values of the damping param-
eter γ. (a) F1/Fo = 0.1; (b) F1/Fo = 0.5; (c) F1/Fo = 0.8.

unexpected result is due to the fact that electrons take about τF ∼ ~kc/eF to reach the OP energy, and an

additional τF to lose their energy once they reach the OP energy, as they can still accelerate before losing

their energy. Consequently, the oscillation period is about 2τF and ωresonance ∼ ωF /2, which is the same

as the current oscillations arising during the transient in the presence of the dc field Fo alone.64,71 This

anomalous value is due to the fact that the modulation of the ac field acts only upon the first half of the

natural period, i.e., when carriers are field driven toward the OP energy, while the second half of the period

when OP’s are emitted is stochastic with a more complicated dependence on the field [see Eq. (3.3)], which

is why the PR frequency is not exactly half of the natural frequency ωF . From the figure, the oscillation

amplitudes increase with γ, which as explained in Fig. 3.2 is due to increased scattering at low energy,

sending back electrons close to the k = 0 region, thereby further reducing the minimum values of the current

density. The maximum values of the current density are not as affected because a substantial population of

electrons is still able to reach high energies, even at high γ. Also, it is seen from the plots that the amplitude

increases with F1/Fo, as expected, since the difference between current density maxima and minima increases

with F1/Fo. Even though PR is achieved, it is rather “soft” because of the strongly dissipative nature of

the back-and-forth motion of charge carriers in the constant field followed by OP emission. Obviously, this

effect is more pronounced for the higher values of γ (low-energy scattering) and F1/Fo (OP scattering) seen

in the figure.

Figure 3.4 shows normalized current densities and electric fields versus time for different values of the

parameters ω/ωF and γ at low electric fields (F1/Fo = 0.1, left column), and high fields (F1/Fo = 0.8,

right column). At low fields, the current is sinusoidal as expected from the linear response to the field. It

is also observed that at very low frequencies (ω/ωF = 0.001) and in the quasiballistic regime (γ = 0.01,
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Figure 3.4: (Color online) Normalized values of the oscillating part of the current density vs time. Left column,
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Figure 3.5: (Color online) 2D color plot of the electron distribution function difference ∆f (as defined in the text,
and normalized to the carriers density) in k space (normalized units of k/kc) at four different times for field ratio
F1/Fo = 0.1 and damping γ = 0.01. Dashed circles correspond to the boundary k = kc between the low- and
high-energy regions. Top row: ω/ωF = 0.001. Bottom row: ω/ωF = 0.56.
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top left column), the current density is 180◦ out of phase with the field. In this case, as the field slowly

decreases from t = 0 to t = π/ω, the electronic system evolves adiabatically from a regime in high fields to

that in low fields, which depletes the charge carriers in the high-energy region (k > kc) and increases their

concentration in the low-energy region (k < kc). The current increases as the number of electrons with high

kx values (kc/2 < kx < kc) in the low-energy region increases as a result of quasiballistic transport that

results in a streamed DF. This situation is clearly seen in Fig. 3.5 (top row, first two panels), which shows

the change in the DF with time ∆f = f [ωt = (n + 1)π/2] − f [ωt = nπ/2]. From t = π/ω to t = 2π/ω,

the current decreases as the field increases because the electrons that penetrate deep into the high-energy

region (k > kc) with kx ≫ ky are scattered by OP emission equally to all k′ = k− ω/vF values. Indeed, the

absence of q (phonon wave-vector) dependence in the deformation potential OP matrix element contributes

to randomizing the DF,50 specifically populating low-energy k states away from the field direction. This

effect results in lowering the current (Fig. 3.5, top row, last two panels). In Fig. 3.4 (left column, top),

it is seen that the phase between the current and the field reaches a minimum for frequencies approaching

resonance (ω/ωF = 0.56). This effect is better understood as the field increases from t = π/ω to t = 3π/2ω,

then to t = 2π/ω, when the ac and the dc fields combine to enhance the back-and-forth motion of carriers

between the low-energy k states (Fig. 3.5, bottom row, third panel) and the high-energy k states (fourth

panel and first panel). For frequencies higher than resonance (ω/ωF ≫ 0.56), the dephasing between current

and electric field starts to increase again (Fig. 3.6).

One also observes that as low-energy damping increases (γ = 0.1 and γ = 0.3; Fig. 3.4, left column),

the dephasing between the current and the field at frequencies below resonance decreases (Fig. 3.6), as

low-energy collisions result in diffusive transport that scatter electrons with high kx states, thereby changing

the streamed DF into a wider (ky states) DF with lower current density. At intermediate damping (γ = 0.1),

there is even a slight maximum before resonance, but above resonance the dephasing increases monotonically

for all damping.

In higher ac fields (Fig. 3.4, right column), aside from the fact that the current curves are distorted by

transport nonlinearity caused by competition between the dc and ac fields, the results concerning the phase

difference between the oscillating F1 field and the current densities are qualitatively the same. One notices,

however, that the distortions do not affect the current at resonance, which remains quasisinusoidal. The

effect of γ on the current density phase is also seen in Fig. 3.6. As expected, current density lags behind

the electric field before resonance, but the dephasing also drops around resonance for low damping.
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3.4 CONCLUSIONS

Although this analysis is performed for time-dependent ac fields in the condition of spatial uniformity, it is

also valid in the inverse condition of long-range periodically (oscillatory) modulated potential V (x) = V (x+d)

in the steady state. This can be seen from Eqs. (3.1), where the time-dependent differential ∂/∂t operator

of the BTE LHS is replaced by the spatially varying vF cosφ∂/∂x operator, for which φ ∼ 0 in streamed

DFs. Therefore, by making the substitution t → x/vF in the formalism, the resonance condition between

the periodic potential and the hot-carrier dynamics will arise for Fo = (~ωOP )/0.56ed in the presence of an

external field Fo, which could be used as field detector.

Let us notice that for carrier oscillations to occur in graphene, the electric field has to be high enough to

escape low-energy scattering agents, but not too high as to overshoot the OP energy.64 Also, at high damping,

more scattering occurs in the low-energy region and the resulting oscillations are promptly damped. This

problem persists even with the addition of a high amplitude ac field, and hence the wider resonance peak

at high γ in Fig. 3.3. As a result, clean graphene samples should be used with low values of F1/Fo for this

effect to be observed, and be the basis for novel device applications either as a THz source or detector.
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Chapter 4

ELECTRICAL TUNABILITY OF

SOFT PARAMETRIC RESONANCE

BY HOT ELECTRONS IN

GRAPHENE*

Recently, it has been suggested that the electron current may exhibit damped transient oscillations due to

the sudden quasi-ballistic acceleration of electrons up to the optic phonon (OP) energy ~ωOP , and their

subsequent relaxation by OP, when a DC electric field Fo is turned-on.64 This effect would arise provided

that low-energy scattering is weak and the field is not too high i.e. Fo ∼ 0.5-2 kV/cm, yielding oscillation

frequencies of the order of ωF = eFovF /~ωOP in the terahertz range.64 It was also found that when an ac

field is superimposed to the dc field a resonance in the oscillations occurs when the frequency of the ac field

ω = ηωF with η = 0.56 for a field Fo = 1 kV/cm. This anomalous effect was called soft parametric resonance

(SPR) because the frequency of the natural oscillations is modulated by the ac field in a strongly dissipative

electronic system.68 Asides from its fundamental peculiarity where the SPR coefficient η is anomalously

smaller than one, unlike in normal PR where it is exactly 2,67 SPR offers some technological advantage, as

ωF is tunable with the DC field Fo. In this chapter an investigation the sensitivity the SPR coefficient η to

the DC electric field and the temperature for possible applications in THz technology is provided. For this

purpose, the linear response theory that is shown to be less tedious than the large signal analysis previous

used to predict SPR, but is also in good agreement with it is used. This model not only shows a weak

sensitivity of η to Fo and temperature, but also reveals a new, but smaller intensity resonance ω = ωF , i.e.,

η = 1 at lower T .

Consider a system of electrons in the conduction band of graphene, under the influence of a spatially

homogeneous and time dependent electric field F (t).64 The electric field is applied in the positive kx direction

and is of the form F (t) = Fo+F1e
iωt, where F1 is the ac amplitude with F1 ≪ Fo. As in previous work,64,68

define two regions i.e. a low (I), and the high (II) energy regions in the momentum space, separated by

the critical momentum kc = ωOP /vF (Refs. 64 and 44) corresponding to the electron energy ~ωOP = ~vF kc

above which electrons emit OP’s, and scatter back to region I, where they undergo quasi-ballistic acceleration

*This chapter closely follows Samwel Sekwao, and Jean-Pierre Leburton, Appl. Phys. Lett. 103, 143108 (2013).

33



and low energy scattering with acoustic phonon and impurities.

The relaxation time approximation is used to account for low energy scattering (e.g., impurities and

A.P),47,64 so the Boltzmann Transport Equation (BTE) in the two regions read,64

∂fI(~k, t)

∂t
+

eF (t)

~

∂fI(~k, t)

∂kx
= −fI(~k, t)− fFD(~k)

τLE
+
∑

~k′

SOP (~k
′, ~k)fII(~k

′, t), (4.1a)

∂fII(~k, t)

∂t
+

eF (t)

~

∂fII(~k, t)

∂kx
= −fII(~k, t)

∑

~k′

SOP (~k,~k
′), (4.1b)

where fI(~k, t) and fII(~k, t) are the distribution functions in the low and high energy regions, respectively.

The function fFD(~k) is the Fermi-Dirac distribution function (kF > 0), SOP (~k,~k
′) is the OP transition

rate between the states ~k and ~k′, and τLE is the relaxation time.64 As in previous work, OP absorption is

neglected as Nq ≪ 1(kBT ≪ ~ωOP ). Since Fo ≪ F1, we look for solutions f(~k, t) = fo(~k)+ f1(~k)eiωt, where

fo(~k) is the steady state solution of Eq. (4.1) with the applied field Fo,
64 and f1(~k) ≪ fo(~k). Substituting

this expression into Eq. (4.1), and linearize the BTE we get the following equations for f1(~k),

eFo

~

∂f1
I (
~k)

∂kx
+
( 1

τLE
+ iω

)

f1
I (
~k) = −eF1

~

∂fo
I (
~k)

∂kx
+
∑

~k′

SOP (~k
′, ~k)f1

II(
~k′), (4.2a)

eFo

~

∂f1
II(

~k)

∂kx
+
(

∑

~k′

SOP (~k,~k
′) + iω

)

f1
II(

~k) = −eF1

~

∂fo
II(

~k)

∂kx
, (4.2b)

where f1
I (
~k) and f1

II(
~k) are the solutions f1(~k) in the low and high energy regions, respectively. The functions

fo
I (
~k) and fo

II(
~k) are the steady state distribution functions in the low and high energy regions, respectively.

Equation (4.2b) is readily solved, and the solution f1
II(

~k) is then substituted into Eq. (4.2a) to solve for

f1
I (
~k). The two solutions are then matched at the boundary k = kc to obtain a solution everywhere on the

plane.44,64,68 Then we compute the 2D current density on the plane given by

Jx(t) = −4evF
∑

~k

ℜf(~k, t) cos(φ), (4.3)

where φ is the angle between ~k and the kx axis, and f(~k, t) is the distribution functions in the two regions.

In this analysis, the results are expressed in the normalized ac frequency, ω/ωF , where ωF = 2π/τF , and

τF =
~ωOP

eFvF
(4.4)
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is the time taken by ballistic carriers to reach the OP energy ~ωOP from the Dirac point. Also, a dimensionless

damping parameter γ given by

γ =
1

τLE

∑

~k′
SOP (~k,~k′)|k=1.5kc

(4.5)

is used to gauge the strength of scattering in the low energy region.64,68 Fig. 4.1(a) shows plots of the steady

0

1
fo

 

 

−1

0

1

ℜ
f1

 

 

−1 0 1 2
−1

0

1

k
x

ℑ
f1

(x20)

(x20)

a)

c)

F
o

b)

Figure 4.1: (Color online) (a) Cross-sections of the steady state distribution function fo for different values of
Fo. γ = 0.01. Solid lines (Fo = 0.5 kV/cm), dashed lines (Fo = 1 kV/cm), dotted lines (Fo = 1.5kV/cm), and
dashed-dotted lines (Fo = 2.0 kV/cm). (b) Real part of the solution f1 for different values of ω/ωF . Solid lines
(ω/ωF = 0.2), dashed lines (ω/ωF = 0.54), dotted lines (ω/ωF = 1.08), and dashed-dotted lines (ω/ωF = 1.5).
γ = 0.01. (b) Imaginary part of the solution f1 for different values of ω/ωF . Solid lines (ω/ωF = 0.2), dashed lines
(ω/ωF = 0.54), dotted lines (ω/ωF = 1.08), and dashed-dotted lines (ω/ωF = 1.5). γ = 0.01.

state distribution fo along the kx axis, for different values of the applied field Fo, and γ = 0.01. As seen from

the figure, the concentration of carriers in region II increases as Fo increases. This is because carriers are

more likely to penetrate deeper into the high energy region before they are scattered by OP’s. Figures 4.1(b)

and 4.1(c) show plots of the real and imaginary parts of the solution f1 respectively, for different values of

the applied frequency ω/ωF , and γ = 0.01. One notices the real and imaginary parts of f1 oscillates as a

function of kx with decreasing amplitudes as the applied frequency ω/ωF increases.68 We believe the origin

of these oscillations resides in the coupling between time and kx-momentum during the drift-motion of the
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distribution in k-space, reflected in the “pseudo”-time invariance transformation k′x ⇒ kx+
∫ t

0
F (s)ds of the

differential terms of the BTE in Ref. 68
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Figure 4.2: (Color online) Current density amplitude versus applied frequency for different values of γ. Comparing
results from the Large Signal Analysis and the Small Signal Analysis at T = 300 K. Also shown SSA results at
T = 77 K. Fo = 1 kV/cm, and F1/Fo = 0.1. (a) γ = 0.01; (b) γ = 0.1; (c) γ = 0.3.

Fig. 4.2 shows a comparison of current density amplitude versus applied frequency results obtained by

full solution of the BTE, and referred here as Large Signal Analysis (LSA),68 and the linear solution obtained

from Eq. (4.2), referred as the Small Signal Analysis (SSA), at T = 300 K. The figure also shows SSA results

at T = 77 K. For both temperatures, the applied field is Fo = 1 kV/cm, and F1/Fo = 0.1. From the figure,

one can see that the two methods (LSA &SSA) give virtually the same results for the γ-values considered,

as the two curves are on top of one another, thereby confirming the validity of the linear approximation for

F1/Fo = 0.1. One notices the SPR at T = 77 K persists at ω/ωF ≈ 0.56,68 but is a little narrower than at

T = 300 K, while a secondary peak is developing at ω/ωF ≈ 1. This second peak is due to the resonance

of carriers oscillating between the Dirac point and the OP energy ~ωOP for which the frequency is given

by ωF . At low temperatures, the carrier distribution function is narrower, which makes carrier acceleration

toward OP more coherent. One notices however, that this second resonance does not involve the time spent

by electrons to emit OP’s at high energy, but only the acceleration toward OP energy. In fact, it is also

present as a weak shoulder at T = 300 K, but is revealed at T = 77 K as the SPR sharpens due to the

narrower distribution. Note that the LSA and SSA results at T = 300 K are obtained for frequencies in the

range 0.1 ≤ ω/ωF ≤ 2, while SSA results at T = 77 K are for the frequencies 0 ≤ ω/ωF ≤ 2.

Fig. 4.3 shows the SSA current density amplitude versus applied frequency for different Fo values at
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Figure 4.3: (Color online) Current density amplitude vs applied frequency for different values of Fo. (a) T = 77 K.
(b) T = 300 K. F1/Fo = 0.1, and γ = 0.01. Solid line (Fo = 0.5 kV/cm), dashed lines (Fo = 1 kV/cm), dotted lines
(Fo = 1.5 kV/cm), and dashed-dotted lines (Fo = 2 kV/cm).

T = 77 K and T = 300 K, and for F1/Fo = 0.1, and γ = 0.01. For both temperatures the SPR peak shift

slightly to lower frequency, passing by a small maximum at Fo = 1 kV/cm as Fo increases, thereby indicating

that the η parameter is a weak function of the DC field, as discussed in Fig. 4.4. Also for both temperatures,

the second resonance peak, while following the same trend than the SPR peak is more prominent at low

field.

In Figure 4.4, left axis, it is shown the variation of both resonance frequencies versus applied DC fields

for both temperatures for which both resonance peaks remain practically unchanged. It can be seen that

the SPR frequency (η parameter) decreases with the applied Fo field for both temperatures . As shown in a

previous work,68 SPR is achieved when the applied frequency ω is close to the actual frequency of damped

oscillations of the carrier distribution during the transient turn-on of the DC field.68 The actual period

t∗ of these oscillations consists of the quasi-ballistic carrier acceleration in the low energy region, τF , and

the time spent in the high-energy region before emitting OP’s. As seen from Fig. 4.1(a), as Fo increases,

electrons are likely to spend more time in the high energy region, before OP emission occurs, and the period

t∗/τF also increases.64 As a result, one expects the resulting SPR frequency to decrease with Fo. However

this variation of the parameter is relatively weak as seen in Figures 4.3 and 4.4, which is important for the

SPR applications in terahertz technology, since it indicates that the SPR frequencies are tunable with Fo at

both, low and room temperatures. The right axis of Fig. 4.4 shows the second resonant frequency ω2 versus

applied fields, which is practically constant at ω2/ωF = 1, except at very low fields, where it exceeds ωF .
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Figure 4.5 displays current density versus applied frequency for different values of γ, at Fo = 0.5 kV/cm

for both temperatures. In both figures peaks are sharper at T = 77 K than at T = 300 K, and as γ

increases, the first resonance peak shifts to lower values of ωSPR/ωF , as stronger low energy scattering

delays the carrier distribution in reaching the high energy region to emit OP’s, thereby decreasing the

resonant frequency ωSPR/ωF , as already explained in Ref. 68. As in Figs. 4.2 and 4.3, the second resonance

peak is also more pronounced at T = 77 K than at T = 300 K. However, unlike the SPR peak, the second

resonance peak shifts to higher values of ω/ωF as γ increases from 0.01 to 0.1.( Fig. 4.5(a),). Here too, strong

scattering at low energy slows down carriers to reach the OP energy at a higher rate, thereby increasing

ω/ωF for resonance. The same effect is seen in Fig. 4.5(b) where the shoulder that identifies the second

resonance shifts towards higher values of ω/ωF as γ increases. At very high values of γ(γ = 0.3), and both

temperatures the oscillating current amplitudes increase, mainly due to the fact that during the low cycle of

the amplitude the negative ac field reduces the overall field, which enhance the effect of low energy scattering

as already observed in Ref. 68. In addition, carrier acceleration in the DC field Fo struggles to overcome

low energy scattering, so the second resonance is less pronounced.

It has been shown that parametric resonance is achieved at different frequencies for different values of

the applied dc field Fo, and ac fields with amplitude F1/Fo = 0.1. The resonance is thus tunable with Fo at

low and room temperatures. These results could have potential applications in terahertz technology. The

emergence of a second resonance peak at low temperatures is also observed. This resonance peak is due to
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Figure 4.5: (Color online) Current density amplitude vs frequency for different values of γ. (a) T = 77 K and (b)
T = 300 K. F1/Fo = 0.1, and Fo = 0.5 kV/cm. Solid lines (γ = 0.01), dashed lines (γ = 0.1), and dotted lines
(γ = 0.3).

the acceleration of carriers followed by OP relaxation at energy ~ωOP . If Fo is too high, the system may

not reach resonance because of thermal broadening and or carriers escaping the high energy region without

OP scattering. For best results, cleaner graphene samples should be used with the appropriate dc field.
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Chapter 5

TERAHERTZ HARMONIC

GENERATION IN GRAPHENE*

An interesting effect could arise if carriers in graphene are placed in periodic long range and time varying

scattering to achieve transport resonance as well as possible frequency mixing. This kind of situation could

be realized in free standing graphene sheets lying over periodically spaced narrow electric gates that would be

regulated by an a-c field of appropriate frequency to modulate coulomb scattering of remote oxide impurities

when carriers pass in front of the gates (Fig. 5.1). In the device, a DC field Fo is set up between the source S

and the drain D, and the a-c field F1 is applied between successive gates, so that charge carriers experience

periodic electric fields and scattering times varying in time and distance along the channel.

In this chapter, it is shown that electronic current in graphene under the influence of time and space

dependent periodic scattering and electric fields exhibits sharp resonances in the terahertz range, associated

with the generation of higher harmonics characterized by large Q-factors tunable with scattering periodic-

ity. The electron dynamics is investigated with a semi-classical Boltzmann formalism, where the effects of

electron-electron interactions are ignored for low carrier concentrations (n ≪ 1012/cm2).27 Also, the electric

fields considered in this study are not strong enough so that interband effects due to impact ionization72

and tunneling73 can be ignored.

As in the previous chapters, consider electrons in the conduction band of graphene in a field of the

form F (x, t) = Fo + F1e
i(qx−ωt) with 0 < F1/Fo < 1, where Fo, and F1 are the DC and a-c components

respectively. The parameter q is the electric field wave number, and ω is the a-c frequency. In such fields,

electrons accelerate until they gain enough energy to interact with OP’s once E ≥ ~ωOP , and suddenly lose

their energy and momentum to re-accelerate quasi-ballistically in the fields, as this process repeats itself. In

this dynamical picture, the momentum space can be divided into two regions I, and II that corresponds to

electron energies E < ~ωOP , and E ≥ ~ωOP respectively. In region I, electrons accelerate while interacting

with low energy scattering agents (AP’s and impurities). In region II, the electrons interact with OP’s and

scatter back to region I. In low electron concentration (n < 1012/cm2), most of the electron population is

stretched along the fields (streaming case), so that the majority of carriers have their velocity pointing in

*This chapter closely follows Samwel Sekwao, and Jean-Pierre Leburton, Appl. Phys. Lett. 106, 063109 (2015).
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λF  
/

Figure 5.1: Color online) Schematics of a graphene based FET with periodic gating. The DC field Fo is applied
between the source and the drain, and the AC field F1 is applied between successive gates. The wavelength of the
AC field is twice the distance between successive gates.

that direction.64,73,74,75 If the fields are applied along the x- direction, the time and space dependent BTE

in both regions reads

∂fI
∂t

+ vF
∂fI
∂x

+
eF (x, t)

~

∂fI
∂kx

= −fI − fFD

τ(x, t)
+
∑

~k′

SOP (~k
′, ~k)fII(~k

′, x, t) (5.1a)

∂fII
∂t

+ vF
∂fII
∂x

+
eF (x, t)

~

∂fII
∂kx

= −fII
∑

~k′

SOP (~k,~k
′) (5.1b)

where fI , and fII are the distribution functions in regions I and II respectively, and fFD is the Fermi-

Dirac equilibrium distribution function (kF > 0). Also, in the streaming case, one can assume vx ∼ vF .

Low energy elastic collisions in region I with impurities and AP’s are accounted for within a local and time

dependent relaxation time approximation64τ(x, t) with the same periodicity as the gate spacing and applied

a-c field i.e.

1

τ(x, t)
=

1

τo
+

1

τ1
ei(qx−ωt) (5.2)

where τo is a constant relaxation time used to modulate the strength of low energy scattering (with impurities
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and AP’s), and τ1 modulates scattering due to the periodic gates (see Fig 5.1). The expression SOP (~k,~k
′)

is the OP transition rate between the states ~k and ~k′ given by52

SOP (~k,~k
′) =

πDo
2(Nq + 1)(1 + cos(θ′))

σAωOP
δ(E′ − E + ~ωOP ) (5.3)

whereDo is the optical deformation potential, Nq is the phonon occupation number, θ′ is the angle between ~k

and ~k′, σ is the area density of the graphene sheet, and A is the area of the sheet. The effects of optic phonon

absorption are neglected since their population is negligible, with ~ωOP ≫ kBT even at room temperature.

The second term on the Right Hand Side (RHS) of Eq. 5.1a is due to carriers repopulating region I after

scattering with OP’s, and the RHS of Eq. 5.1b is the corresponding depopulation term.

Due to the nature of the problem, a solution of the form

f(~k, x, t) = fh(~k) +

∞
∑

m=−∞

∞
∑

n=−∞

fmn(~k)ei(mqx−nωt) (5.4)

is assumed, where fh(~k) = f00 is the solution to the homogeneous, steady state problem,64 fmn(~k) are

the harmonic amplitudes, and the summation excludes all terms with m = 0 and n = 0, since they would

result either in homogenous (m = 0) or state-state (n = 0) terms that are already taken into account

in fh(~k) = f00(~k). Substituting Eq. 5.4 into Eq. 5.1, leads to the following recurrent equations for the

individual harmonics;

eFo

~

∂fmn
I

∂kx
+
[ 1

τo
+ i(mqvF − nω)

]

fmn
I = −eF1

~

∂f
(m−1)(n−1)
I

∂kx
− f

(m−1)(n−1)
I

τ1

+
∑

~k′

SOP (~k
′, ~k)fmn

II (~k′) (5.5a)

eFo

~

∂fmn
II

∂kx
+
[

∑

~k′

SOP (~k,~k
′) + i(mqvF − nω)

]

fmn
II = −eF1

~

∂f
(m−1)(n−1)
II

∂kx
(5.5b)

where fmn
I , and fmn

II are the harmonic amplitudes in regions I and II respectively. On setting m = n = 0

into Eq. 5.5, the terms in f00 satisfy the steady state, homogenous Boltzmann equation in the two regions,

so that we get the following equations for f−1,−1:

eF1

~

∂f−1,−1
I

∂kx
= −f−1,−1

I

τ1
(5.6a)

42



eF1

~

∂f−1,−1
II

∂kx
= 0. (5.6b)

Eq. 5.6b has the general solution f−1,−1
II (kx, ky) = g(ky) which is unphysical, and should be set to

zero, which by continuity in region I also yields f−1,−1
I = 0. Because of the recurrence between fmn and

f (m−1)(n−1) in Eq. (5.5), we also have fmm = 0 for all m < −1.

Let us now consider the harmonics f1n with n > 1. Since the R.H.S of Eq 5.5b is zero, the solution for

f1n
II is readily obtained and reads

f1n
II = f1n

b exp

{

− ~

eFo

∫ kx

ko
x

[

∑

~k′

SOP (~k,~k
′)|kx=z + i(qvF − nω)

]

dz

}

(5.7)

where the function f1n
b is the solution f1n

II evaluated at the boundary kx = kox =
√

(kc)2 − (ky)2. On

substituting Eq. 5.7 into Eq. 5.5a, and evaluating the resulting equation at the boundary leads to a

homogeneous integral equation of the form,

f1n
b (ky) =

∫ ko

x

−ko
x

dyf1n
b (y)K(ky, y, n), (5.8)

where K is a complex kernel. Eq. 5.8 can be solved numerically by discretizing the integral,76 which leads to

a unitary matrix equation of the form K̃f̃ = f̃ . It is found that these eigenvectors exist only for qvF = nω,

which reduces Eq. 5.5 to the steady state-homogenous equation for fh = fh
0 .

64 A similar analysis on the

harmonics fm1,m > 1 shows that solutions exist only, for mqvF = ω, so fm1 also reduces to fh
0 . Since fmn

are related to f (m−1)(n−1) by Eq. 5.5, it can be deduced from Eq. 5.5 that solutions for all the harmonics

fmn such that m 6= n > 0 that exist only when ω = mqvF /n, yield fmn = fh
0 , and should therefore be

discarded. As a result, only the harmonics fmn such that m,n > 0 and m = n > 0 are the only remaining

terms of the series (5.4) for f(~k, x, t).

The current density on the plane is given by,

Jx(x, t) = −4evF
∑

~k′

ℜf(~k′, x, t) cos(φ′) (5.9)

where φ′ is the angle between ~k′ and the k′x axis, and ℜf(~k′, x, t) is the real part of the distribution func-

tion. In this analysis, the a-c frequency is written in units of ω/ωF , where ωF = 2πeFovF /~ωOP , and the
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Figure 5.2: (Color online) (a) Cross-sections of real parts of the harmonics f11,f22,f33, and homogeneous steady
state distribution function fh. (b)Imaginary parts and fh. Dash (40Xf11), dot (100Xf22), dash-dot (100Xf33),
and solid (fh). Fo = 1 kV/cm, F1/Fo = 0.1, ω/ωF = 0.5, τo/τ1 = 0.5, and γ = 0.01.

wavelength is modulated by a dimensionless parameter α such that

q =
2πα

λF
, (5.10)

where λF = ~ωOP /eFo, and 0 < α ≤ 1. As in a previous work,77 the dimensionless damping parameter γ

given by

γ =
1

τo
∑

~k′
SOP (~k,~k′)|k=1.5kc

(5.11)

is used to modulate the strength of low energy collisions compared to OP scattering.

Figure 5.2 shows cross sections of the real parts (5.2a), and imaginary parts (5.2b) of the first three

harmonics f11,f22,f33, with the steady state homogeneous distribution fh along ky = 0. The applied field

in this case is Fo = 1kV/cm, such that F1/Fo = 0.1, ω/ωF = 0.5, and α = 1. The low energy damping

parameter is set at γ = 0.01, and τo/τ1 = 0.5. From the figure, it can be seen that the harmonics oscillate as

a function of kx with amplitude fmm decreasing as m increases, justifying the choice of the solution (5.4).

44



Also, note that f is always positive as fh ≫ fmn.
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Figure 5.3: (Color online) Current density amplitude versus frequency for different values of γ and Fo. (a) First
harmonic. (b) Second harmonic. (c) Third harmonic. Top row (γ = 0.01), middle row (γ = 0.1), and bottom row
(γ = 0.3). Solid (Fo = 0.5 kV/cm), dash (Fo = 1 kV/cm), and dot (Fo = 1.5 kV/cm). F1/Fo = 0.1, τo/τ1 = 0.5, and
α = 1.

Figure 5.3 displays the current density amplitude relative to the first three harmonics as a function of

frequency for different values of Fo and γ. As in Fig. 5.2, the applied field is such that F1/Fo = 0.1,

τo/τ1 = 0.5, and α = 1. For all three harmonics, there are resonances that occur at ω = ωF , for which the

amplitudes fmm(kx, ky) are real, and the currents are in phase with the applied field. By considering the

first row of Fig. 5.3 (γ = 0.01), one observes that there is no resonance for Fo = 0.5kV/cm (first column).

This is because the contribution of the negative values of f11(kx, ky) in the total current (Eq. 5.9) offset

that of the positive values at ω = ωF . As the field increases from 0.5kV/cm to 1kV/cm, more electrons

are able to escape low energy scattering in region I and reach the boundary k = kc and beyond, so the

amplitude f11(kx, ky) increases in region II, inducing a net positive current, so as to achieve resonance. For

all three harmonics, the resonance Quality factor, Q = ωF /∆ωFWHM , where ∆ωFWHM is the full width

of the current density profile at half maximum value, first increases (Q ≈ 24.9 to Q ≈ 25.2 for the second,

and Q ≈ 23 to Q ≈ 28 for the third) as the field increases from 0.5kV/cm to 1kV/cm. A further increase

in the field to 1.5kV/cm causes more electrons to reach region II and scatter with OP’s, broadening the

distribution in the process. As a result, Q decreases (from Q ≈ 20 to Q ≈ 13 for the first harmonic, from

Q ≈ 25.2 to Q ≈ 24 for the second, and from Q ≈ 28 to Q ≈ 27 for the third) as the field increase from

1kV/cm to 1.5kV/cm.
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As low energy scattering (γ) increases, the system achieves resonance even at low fields (Fig. 5.3 first

column). For the first harmonic, an increase in γ makes the amplitude more positive in region I, and the

overall current becomes positive, achieving resonance. One can also see that the current density amplitude

increases, while the overall resonance Q- factor decreases as low energy scattering increases. For the first

harmonic with γ = 0.1 (second row, first column), one get Q ≈ 0.7 (Fo = 0.5kV/cm), Q ≈ 0.7 (Fo =

1kV/cm), and Q ≈ 6 (Fo = 1.5kV/cm), only. This is due to the fact that low energy scattering redistribute

carriers towards the ~k = 0 region. As seen in a previous work,68 carrier interactions with OP’s are essential

for resonance to occur. Higher γ-damping causes fewer carriers to interact with OP’s and the resonance

Q-factor decreases. The current density amplitude increases because the distribution increases around ~k = 0.

Note that when ω = ωF , the system is a mixture of modes of oscillations with resonant frequencies mωF .
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Figure 5.4: (Color online) Second harmonic current density amplitude vs frequency for different values of α. Solid
(α = 0.8), dash (α = 1.0) and dot (α = 1.5). F1/Fo = 0.1, τo/τ1 = 0.5, and γ = 0.01.
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Figure 5.4 shows plots of the second harmonic current density versus frequency for different values of α

(gate spacing). The damping in this case is again set at γ = 0.01, F1/Fo = 0.1, and τo/τ1 = 0.5. From

the figure, the observed resonances are achieved at the frequencies ωF , 0.8ωF , and 1.5ωF corresponding to

α = 1, α = 0.8, and α = 1.5 respectively, which shows that for a particular Fo, the resonance frequency

is tunable with the wavelength of the applied field. This important result indicates the potential use of

graphene in terahertz sources and detectors.68,77

In conclusion, an analysis of carrier dynamics in graphene subjected to periodic, time, and space depen-

dent electric fields and scattering times has been carried out in this chapter. The model shows that, high Q

resonances can be achieved when ω = ωF . As expected, the Q-factors decrease with damping γ. Another

observation is that at resonance, the system consists of carrier excitations with frequencies mωF , for m ≥ 1.

As a result the system is essentially a mixer since an input frequency ωF , creates the harmonics mωF ,

and appropriate filters should be used to pick out the required frequencies. Also, the resonant frequency is

tunable with the wavelength of the applied field. Note that the wavelength λ of the a-c field is twice the

distance between successive gates in Fig. 5.1. Consequently, graphene can potentially be used to make high

power, tunable terahertz devices that operate at room temperature.
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Chapter 6

CONCLUSIONS

This dissertation presents a study of the dynamics of carriers in graphene under the influence of external

electric fields. In particular, this dissertation analyses the interplay between the electric fields and OP

scattering to generate current oscillations with frequencies in the THz range. Such oscillations had been

predicted and observed in conventional semiconductors.41,42 Room temperature observation of current os-

cillations in these materials is however not possible. This is because at room temperature, the OP energy

(~ωOP ∼ 0.04 eV)45 is comparable to thermal broadening of the charge distribution and the oscillations are

immediately damped.41,43,44 At low temperatures, impurity scattering becomes dominant and the oscilla-

tions are strongly damped. Impurity scattering can be reduced by lowering the dopant density which in turn

lowers the carrier density reducing the oscillation amplitude in the process. The high values of conductivity

and OP energy (~ωOP ∼ 0.2 eV)38,39 of graphene make it possible for observing room temperature THz

oscillations.

The onset of current oscillations in graphene is however restricted by low energy scattering. In device

applications, charge impurity scattering can reduced by via screening. This cab be achieved by placing a

graphene layer between two high K dielectrics.57 Screening might however be offset by interface and remote

static charges contained in the dielectrics.58 Also, the presence of the substrate causes carriers in graphene to

interact with remote interface phonons (RIP), increasing low energy scattering.48,59,60,61 Freely suspended

graphene layers should therefore be used for best results.

For carrier oscillations to occur in graphene, the applied field must be high enough that carriers escape

low energy scattering and gain enough energy to interact with OP’s. As a result, the process requires external

biases V such that V > ~ωOP /e. The field should not be too high so that carriers are almost immediately

scattered by OP’s once they reach energies E ≥ ~ωOP , so as to maintain coherence of the carrier distribution

function. This condition is satisfied for τgr ≫ τOP , which imposes an upper limit on the applied field, F ≪ 5

kV/cm for τOP ≈ 0.4 ps. These conditions also require that sample lengths L such that L > vF τOP . Because

the oscillations are damped after a few cycles, the sample length should not be higher than a few values of

λ = vF τgr.
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This dissertation also examines the effects of an additional spatially uniform ac field on the current

oscillations in graphene. As discussed earlier, the frequency of the current oscillations depends on the

applied dc field. The frequency of the ac component modulates the frequency of carrier oscillations, and

the carriers behave as a parametric oscillator. Because of strongly dissipative nature of OP scattering,

the system considered in this dissertation behaves differently to the usual parametric oscillators. Normal

parametric resonance is achieved when the input frequency is twice the frequency of natural oscillations.67

For the system of electrons in graphene, resonance is achieved for input frequencies ω such that ω = 0.56ωF ,

where ωF = 2π/τgr. When only the dc field is applied, the period of current oscillations is t∗ ≈ 1.8τgr. This

is because, some electrons reach energies E ≥ ~ωOP and are not immediately scattered by OP’s. These

electrons penetrate deeper into the high energy region, stretching the period of the oscillations. As a result,

the frequency of such oscillations is 0.56ωF , thus resonance occurs when the input frequency matches the

frequency of oscillations with just the dc field applied. The softness and anomaly of this type of parametric

resonance can be attributed to the effectiveness of OP scattering of carriers in graphene. The same analysis

can be applied to a system of electrons under the influence of a spatially dependent field that is periodically

modulated, F (x) = F (x+ d), under steady state conditions,in the streaming case. The resonance condition

in that case, Fo = ~ωOP /0.56ed, can be the basis of a field detector.

Based on the results of this dissertation, graphene may be used in THz devices that operate at room

temperature. The imposed lower and upper limit on sample lengths ensure that such devices will be compact.

The insensitivity of the resonance condition ω = ηωF , η ≈ 0.56, to the applied dc field Fo ensures that tunable

resonant frequencies covering most of the THz range may be obtained. Sharper resonances at ω = ωF may

be obtained in a graphene based FET with periodic gating. Harmonics with frequencies mωF , m > 1

are also generated in this case. The fundamental frequency ωF is also tunable with the gate separation.

Consequently, high powered devices that create and detect electromagnetic radiation spanning the THz gap

may be realized.
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Appendix

Derivation of Equation 3.4

Boltzmann Transport Equation(BTE) in the two regions reads:

∂fL(~k, t)

∂t
+

eF (t)

~

∂fL(~k, t)

∂kx
= −fL(~k, t)− fo(~k)

τLE
+
∑

~k′

SOP (~k
′, ~k)fH(~k′, t) (A.1a)

∂fH(~k, t)

∂t
+

eF (t)

~

∂fH(~k, t)

∂kx
= −fH(~k, t)

∑

~k′

SOP (~k,~k
′) (A.1b)

By using the substitution κ = kx + β(t), and choosing

β(t) = − e

~

∫ t

0

F (s)ds, (.2)

Eq. 1b reduces to

e

~
F (β−1(κ− kx))

∂gH
∂kx

= −gH
∑

~k′

SOP (~k,~k
′) (.3)

where gH(kx, ky ;κ) = fH(kx, ky, β
−1(κ−kx)), and β−1 is the inverse function of β so that β−1β(t) = t. The

general solution of Eq. 3 above is of the form:

gH(kx, ky;κ) = gH(k0x, ky;κ) exp
{

− ~

e

∫ kx

k0
x

dp τOP
−1(p, ky)

F [β−1(κ− p)]

}

, (.4)

where k0x =
√

kc
2 − ky

2 is the kx value at the boundary k = kc, and

τOP
−1(kx, ky) =

∑

~k′

SOP (~k,~k
′).

Using the substitution (2) above, the time dependent general solution of Eq. 1b is then

fH(kx, ky, t) = fb(ky , β
−1(β(t) + kx − k0x))M(kx, ky, t), (.5)
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where fb(ky, t) = fH(k0x, ky, t) is the distribution function evaluated at the boundary, and

M(kx, ky, t) = exp
{

− ~

e

∫ kx

k0
x

dp τOP
−1(p, ky)

F [β−1(β(t) + kx − p)]

}

.

The substitution (2) reduces Eq. 1a to;

∂gL
∂kx

=
~

eF (β−1(κ− kx))

{

− gL − fo
τLE

+
∑

~k′

SOP (~k
′, ~k)fH(~k′, β−1(κ− kx))

}

. (.6)

Eq. 6 is a first order partial differential equation with a solution of the form:

gL(kx, ky;κ) =
~

e
exp

{

− β−1(κ− kx)

τLE

}

∫ kx

−k0
x

dp

{

fo(p, ky) +
∑

~k′
SOP (~k

′, ~k)
∣

∣

∣

kx=p
fH(~k′, t1)

}

exp
{

t1
τLE

}

F (t1)
,

(.7)

where t1 = β−1(κ− p). Using Eq. 2, the time dependent solution of Eq. 1a is given by

fL(kx, ky, t) =
~

e
exp

{

− t

τLE

}

∫ kx

−k0
x

dp
{

fo(p, ky) +
∑

~k′

SOP (~k
′, ~k)

∣

∣

∣

kx=p
fH(~k′, t2)

}

exp
{ t2
τLE

}

/F (t2), (.8)

where t2 = β−1(β(t)+ kx − p). On evaluating Eq. 8 at the boundary kx = k0x, using the boundary condition

fb(ky, t) = fL(k
0
x, ky, t) = fH(k0x, ky, t), and Eq. 5 leads to an integral equation of the form:

fb(ky , t) = f1
b (ky, t) +

~

2π2e

∫ k0

x

−k0
x

dp

∫

d~k′SOP (~k
′, ~k)

∣

∣

∣

kx=p
fb(ky

′, t′′)M(~k′, t′) exp{ t
′ − t

τLE
}/F (t′), (.9)

where β(t′) = β(t) + k0x − p, β(t′′) = β(t′) + kx
′ −

√

1− (ky
′)
2
, kx

′ = k′ cos(φ′), ky
′ = k′ sin(φ′), and

f1
b (ky, t) =

~

e

∫ k0

x

−k0
x

dp fo(p, ky) exp{
t′ − t

τLE
}/F (t′). (.10)
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