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1.0 SUMMARY

In this work, we have created an on-the-fly hybrid analysis framework that is easy to deploy
and can perform large-scale automatic software analysis in real-world enterprises. This is because
our analysis process requires no additional software systems. It harnesses the power of generic
programming and high-performance graph processing to efficiently perform analysis based on
control-flow, data-flow, and point-to information.

We then explored several deploying scenarios including leveraging runtime information to guide
concolic execution by APEX, our newly developed concolic execution engine for Android. The
main motivation for this activity is to validate a hypothesis that malicious code exists in rarely
executed paths and exploiting JIT compiler information gives us the necessary information to
generate sequences to target these paths. Our evaluation results revealed that despite our best
efforts to provide substantial code coverage, about half of malware locations in the engagement
apps were not exercised by random and unit testing. We then applied our concolic execution
engines to generate inputs to these unexecuted locations. However, our concolic execution engine
still faces many challenges including path explosions when dealing with system APIs and library
calls. Our current focus is to overcome this issue through automatic modeling of these APIs.

In addition, we applied our framework to identify potential communication channels that can be
used by colluding applications to carry out attacks. To demonstrate the scalability of our frame-
work, we performed large-scale analysis of real-world apps including Facebook and Spotify. We
also applied our framework to simultaneously analyze 90 apps in a device for inter-app connec-
tions; the analysis only took 10 minutes. This feature can be particularly useful for analysts work-
ing in an BYOD environment. Our work also tackled issues raised by the use of reflection by
dynamically identifying reflection targets and capturing them for further analysis.

For future work, we hope to continue to develop JITANA and APEX. By having the ability to
analyze an entire device instead of a single app at a time, our framework can serve as a foundation
for our research groups and other researchers to develop novel techniques for analyzing collections
of applications. It also provides a direct pathway to deal with attacks due to inter-app communi-
cations. As of now, JITANA is the only program analysis framework capable of such large scale
analysis, and APEX is the only concolic execution engine that applies concolic execution to gener-
ate event sequences (i.e., most existing concolic execution engines for Android only apply concolic
execution starting at event handlers). We will release these frameworks under GPL licenses this
summer. We would also like to continue to work with DARPA to further develop our work and we
hope that the frameworks that we have created fit into the long term research plan of DARPA.

Also note that we have submitted our work on JITANA to International Symposium on Software
Testing and Analysis (ISSTA). The paper as well as the artifact are being reviewed and we should
know the decision on April 19th. We will submit our work on reflection to International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) on
March 23rd. Our work on APEX will be submitted to International Conference on Automated
Software Engineering (ASE) on April 29th.
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2.0 INTRODUCTION

Software ecosystems involve interacting sets of actors (software components) sitting on top of a
common technological platform that together provide various software solutions or services [21].
Smart-mobile application platforms such as Android are examples of such ecosystems. The An-
droid platform provides software engineers with IDEs that help them develop GUIs and skeleton
code, and a powerful application framework that they can use to quickly create Java applications
(apps) that run on Android devices. In this way, Google, as the Android provider, can collaborate
with external developers to build apps with different functionalities, which in turn increases the
value of Android. As such, Android is currently the most widely adopted smart-mobile platform
in the world.

Unfortunately, Android is also a frequent target of malware authors. As of January, 2014, there
were roughly 10 million known malicious Android apps [14] and this number continues to increase.
During just the first three months of 2015 there were nearly 5,000 new malicious apps created each
day for Android [7]. As the number of known malware increases so does their complexity and
sophistication, rendering them very difficult to detect.

To ensure the dependability and security of software ecosystems such as Android, engineers and
security analysts need to be able to isolate faults and security vulnerabilities in those ecosystems.
Ideally, faults and vulnerabilities in an app should be detected prior to its deployment. As such,
software engineers and security analysts use various software assurance processes in an attempt to
detect and remove these as part of the software development process.

There are many examples, however, of flaws in current software assurance processes. First,
many Android apps suffer from faults and vulnerabilities due to interactions between apps and
framework components. A recent study notes that 23% of Android apps behave differently after
a platform update [10]. This is because many Android apps depend on other software to operate
(e.g., they rely on social media apps for information sharing) [10]. In fact, it has been reported
that about 50% of Android updates have caused previously working apps to fail or render systems
unstable [10, 11, 30]). There have also been increasing occurrences of collusion attacks, in which
multiple apps work together to perform malicious acts [6, 19]. Program analysis techniques that
focus on single apps are not effective for detecting faults and vulnerabilities that involve interac-
tions among multiple software components or multiple apps. As such, these elude testing and are
discovered after system deployment, increasing both costs and the overall attack surface of the
software system. Clearly, approaches that allow engineers and analysts to cost-effectively ana-
lyze interactions among software components would allow more faults and vulnerabilities to be
detected during the software development process.

As a second example, there have been reports of malicious apps that escaped vetting by Google
and have been admitted to its Play store [22, 23, 26]. Google introduced Bouncer, a black-box
dynamic analysis system that tests for malicious behaviors in submitted apps [23, 26]. This par-
ticular approach requires test inputs that exercise most, if not all, entry points to a program and
its critical paths in order to be effective [23]. Unfortunately, having powerful test suites alone
is not sufficient for revealing complex vulnerabilities because many vulnerabilities can be exer-
cised only with specific inputs or input sequences. Therefore, being unable to observe program
execution and generate appropriate event sequences greatly limits the vulnerability detection ef-
fectiveness of Bouncer. As recently as January, 2016, malicious apps had been missed by Bouncer
and been distributed through the Play store [1]. Clearly, an hybrid analysis approach that can per-

2
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form on-the-fly code coverage measurement, provide real-time feedback, and generate necessary
event sequences to further enhance code coverage could increase the effectiveness of Bouncer by
targeting parts of an app that have not been adequately exercised.

Recent adoption of Bring Your Own Device (BYOD) approaches has created an even greater
need for security analysts to be able to vet devices efficiently and effectively. In effect, each app
on a device must be vetted. Existing program analysis tools are not capable of doing this cost-
effectively, primarily due to reliance on techniques that analyze single apps in isolation instead
of analyzing multiple apps in unison. Such core analysis engines cause the frameworks in which
they are included to be non-scalable, inefficient, and ineffective. In this case, an approach that can
simultaneously analyze all apps on a device efficiently can help analysts detect malicious apps on
the device more effectively.

In this project, we have made the following three contributions that advance the state-of-the-art
in both static and dynamic program analysis.

1. We introduce JIT-Analysis (JITANA), a new framework to support static and dynamic pro-
gram analysis techniques aimed to vet Android applications for the presence of software
defects, security vulnerabilities and malicious intents. As shown in Section 5.0, the pro-
posed framework is highly scalable and capable of focusing its analysis efforts on more
fruitful program execution paths. We implemented our framework as part of Dalvik, the
virtual machine used in Android, so that it can exploit runtime information (e.g., dynamic
compilation information) readily available inside the virtual machine without the need of
additional software systems.

2. We introduce Android Path Explorer (APEX), a concolic execution engine for Android that
is capable of creating event sequences and input values that can be used by a program to
reach specific paths. As has been reported by event-based testing researchers, generating
test cases with adequate coverage is a challenging problem [8]. As such, instead of relying
on test inputs to explore execution paths, our approach track branches off of commonly
executed paths that have not been explored. It then computes event sequences and input
values that can cause the execution of those paths and analyze the recorded traces. Our
proposed concolic execution engine serves two purposes. First, it allows us to remove paths
that are not feasible due to the absence of inputs. Second, it allows our approach to explore
more paths than those exercised by the test cases.

3. We illustrate how the propose frameworks can be used to tackle emerging security chal-
lenges. We have developed a set of analyses for statically and dynamically detectable be-
haviors such as Inter-Application communications and code coverage. The code coverage
information provides analysts with “suspicious paths”, which are rarely executed paths. The
results are then used to guide APEX, our concolic execution engine to further explore and
compute concrete values to possibly exercise these suspicious paths. We create a visualiza-
tion engine that provide real-time feedback of an on-going analysis. We show that JITANA

is highly scalable by using it to simultaneously analyze all applications in Android devices
and how it can cope with runtime dynamics by analyzing dynamically loaded code.

3
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Figure 1: Architecture of JITANA

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

In this section, we describe the designs and implementations of our two major components:
JITANA and APEX.

3.1 The JITANA Framework

Figure 1 provides an architectural view of the JITANA framework. We designed JITANA to
be a highly efficient hybrid program analysis framework, so it needs to be able to interface with
language virtual machines such as Dalvik or the Android Runtime System (ART). (Our current
implementation supports only Dalvik.) The interface with Dalvik is provided through the Analysis
Controller, which is connected to Dalvik via Java Debug Wire Protocol (JDWP) over Android
Debug Bridge (ADB). This connection is established primarily for use in dynamic analyses, though
it also assists with static analyses in cases in which code is dynamically generated during program
initialization (e.g., the Facebook app uses this mechanism during app initialization).

The next major component in the framework is the Class Loader VM (CLVM). This provides the
mechanism used to load classes in an APK along with system related and dynamically generated
classes. It is constructed based on the Java Language Specification [20]. Once classes are loaded,
the system generates a set of Boost Graph Library compliant VM graphs that include class loader
graphs, class graphs, method graphs, instruction graphs, and field graphs. Various Analysis En-
gines then process these to produce control-flow, data-flow and points-to information, which is
then fed back in to the VM graphs. Other information is used to construct Analysis Graphs such as
pointer assignment graphs, context-sensitive call graphs, and an IAC graph. The framework can be
integrated with visualization tools such as TRAVIS or run side-by-side with existing visualization
tools such as GRAPHVIZ.

Next we describe the design rationales behind and implementation details of major components
in the JITANA library.

3.1.1 Design Rationales

To meet our performance and design goals, we implemented JITANA in C++14 instead of an object-
oriented language such as Java. We made this choice for several reasons:

4
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• JITANA is designed to work with a virtual machine on a device in various configurations.
It can run on a device or workstation as a stand-alone application communicating with a
virtual machine in real-time, using an inter-process communication mechanism or a network
protocol such as the Java Debug Wire Protocol. It can even be embedded within a virtual
machine as a library. Requiring the use of a Java virtual machine in particular would hinder
these use cases.

• JITANA analyses may require real-time communication with native applications and the op-
erating system kernel. Achieving this on a virtual machine is difficult, if not impossible,
without using the Java Native Interface; however, that would be an expensive bridging ap-
proach.

• C++ supports the use of the generic programming paradigm with templates. This paradigm
separates algorithms and data structures by defining what is called a concept, a description
of both syntactic and semantic requirements for one or more types [28]. An algorithm op-
erating on a concept needs to be implemented only once, the same implementation can then
be reused for any concrete type that is a model of the concept. The C++ template instanti-
ation mechanism coupled with compiler optimizations has been shown to generate code as
efficient as hand-tuned FORTRAN [9].

To elaborate on this last point, the use of concepts in generic programming differs from the use
of traditional object-oriented techniques in static analysis tools such as SOOT and LLVM. We illus-
trate the practical difference between generic programming (GP) and object-oriented programming
(OOP) through a simple algorithm max, which returns the larger of two values.

template <typename T> requires TotallyOrdered<T>()
inline T& max(T& x, T& y) {

reutrn (x < y) ? y : x;
}

Listing 1: Generic Algorithm max in C++ with Concepts

public static Comparable max(Comparable x, Comparable y) {
reutrn (y.compareTo(x) < 0) ? y : x;

}

Listing 2: Algorithm max in Java without Generics

In GP, the algorithm can be implemented as shown in Listing 1. This implementation can operate
on any type as long as it models the TotallyOrdered concept, which requires operators <, >,
≤, and ≥ to be defined with the following semantic constraints:

a > b⇔ b < a, a ≤ b⇔ ¬(b < a), a ≥ b⇔ ¬(a < b) .

In OOP, the same algorithm can be implemented as shown in Listing 2. It is less reusable than the
GP version because it requires the type to be inherited from a specific type named Comparable.

As shown in Figure 1, JITANA separates data structures and algorithms. It represents programs
as well-defined “Graph Data Structures”, and all “Analysis Engines” work on these. The core
analysis algorithms are reusable and flexible because they are defined on concepts rather than
concrete types. The data structures are also defined to be similar to those used in the actual virtual
machine to reduce the overhead of exchanging dynamic information.

5
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3.1.2 Graphs

Most of the data structures used in JITANA are represented as graphs. Typically, a node in such
graphs represents a virtual machine object (e.g., a class, a method, an instruction) together with
analysis information (e.g., execution counts), while an edge represents a relationship between two
nodes (e.g., inheritance, control-flow, data-flow).

Every graph used in JITANA models appropriate graph concepts defined in the Boost Graph
Library (BGL),† a de facto generic C++ graph library. This means that implementations of highly
optimized generic graph algorithms are already available for use by applications on the graphs
defined in JITANA without modifications. It also means that new algorithms can be implemented
for a concept, rather than for a specific type, so that they can be used with any types modeling
the same concept. Analyses can also be performed on any machines on which the BGL library is
installed.

Table 1. Types of Handles in JITANA

DEX Handle JVM Handle
Class Loader struct class loader hdl {

uint8 t idx;
};

DEX File struct dex_file_hdl {
class_loader_hdl loader_hdl;
uint8_t idx;

};

N/A

Type struct dex_type_hdl {
dex_file_hdl file_hdl;
uint16_t idx;

};

struct jvm_type_hdl {
class_loader_hdl loader_hdl;
std::string descriptor;

};
Method struct dex_method_hdl {

dex_file_hdl file_hdl;
uint16_t idx;

};

struct jvm_method_hdl {
jvm_type_hdl type_hdl;
std::string unique_name;

};
Field struct dex_field_hdl {

dex_file_hdl file;
uint16_t idx;

};

struct jvm_field_hdl {
jvm_type_hdl type_hdl;
std::string unique_name;

};

In contrast, most existing tools do not use explicit graph types for their data structures. For ex-
ample, SOOT and LLVM follow the traditional object-oriented approach: an object holds pointers
to other objects to imply relationships that implicitly form a graph data structure. This means that
algorithms implemented in these platforms are strongly tied to a tool’s design details, not to a graph
concept. As a consequence, even a simple algorithm such as a depth-first search algorithm must
be implemented each time it is needed, and when a new tool comes along, a library of algorithms
must be rewritten.

A handle is used to identify a virtual machine object. Table 1 lists the handle types most fre-
quently used in JITANA. A handle is small in size, but unlike pointers it does not change values
over different executions; this allows us to treat handles as statically unique identifiers. The use of
handles allows the graphs generated by JITANA to be persisted and reused. These graphs can also
be replicated for parallel analysis on computing clusters.

Table 2 lists some of the graph types used in JITANA. There are two categories of graphs: virtual
machine (VM) graphs and analysis graphs. Virtual machine graphs are graphs that closely reflect

†http://www.boost.org/doc/libs/develop/libs/graph/doc/
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Table 2. JITANA Graphs

Name Type Node Edge
Class Loader VM Graph Class Loader Parent Loader
Graph
Class Graph VM Graph Class Inheritance
Method Graph VM Graph Method Inheritance,

Invocation
Field Graph VM Graph Field
Instruction Graph VM Graph Instruction Control Flow,

Data Flow
Pointer Assignment Analysis Graph Register, Alloc Site, Assignment
Graph Field/Array RD/WR
Context-Sensitive Analysis Graph Method with Invocation
Call Graph Callsite
Inter-Application Analysis Graph Class Loader, Information
Communication Resource Flow
Graph

the structure of Java virtual machines. A node in a virtual machine graph represents a virtual
machine object (e.g., class, method) that can be created or removed only by the CLVM module
in JITANA (described in Section 3.1.3). Modification of a node property by an analysis engine
is allowed and is one of the primary ways to track dynamic information such as code coverage.
The edge type is erased with the Boost.TypeErasure library‡ so that analysis engines can
add edges of any type. Examples of these graphs rendered with GRAPHVIZ, an open-source graph
visualization tool, are shown in Figure 2.

Figure 2(a) displays a class loader graph for a case in which JITANA analyzes four applications
simultaneously. Each class loader is assigned a unique ID (integers in the upper left corners) so that
classes with a same name from different applications can be distinguished. For example, both Face-
book and Instagram ship a class named Landroid/support/v4/app/Fragment;§ with
different method signatures (i.e., different implementations) because the Facebook app is obfus-
cated with PROGUARD.¶ Class Loader 0 is the system class loader and is used to load important
system classes. Each directed edge shows the parent/child relationship between two class loaders
(e.g., the system class loader spawns off application class loaders).

Figure 2(b) displays a class graph that shows relationships between four classes; the directed
edges display subclass relationships (e.g., Lcom/instagram/.../LoadImageTask; is a sub-
class of the abstract class Landroid/os/AsyncTask;).

Figure 2(c) displays a method graph that shows relationships among several methods within a
set of analyzed applications. Nodes represent methods, and edges indicate whether method calls
are direct or virtual. The numbers in the upper left corners of the nodes indicate the applications
to which the methods belong.

Figure 2(d) illustrates an instruction graph for a method. It includes both control-flow (solid
edges) and data-flow (dotted edges) information. The data-flow information is derived via reacha-
bility analysis performed on virtual registers.

Not depicted in the figure is a field graph. JITANA stores a list of fields as nodes, but by default
it does not add edges to this graph. This data can still be used for analysis purposes.

Analysis graphs are used by analysis engines to represent relationships that cannot be expressed

‡http://www.boost.org/doc/libs/develop/doc/html/boost typeerasure.html
§A class name in a JVM starts with ‘L’ and end with a semicolon ‘;’.
¶https://www.facebook.com/notes/facebook-engineering/under-the-hood-dalvik-patch-for-facebook-

for-android/10151345597798920
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0 System
core.dex
framework.dex
framework2.dex
ext.dex
conscrypt.dex
okhttp.dex
core-junit.dex
android.test.runner.dex
android.policy.dex

1 SuperDepth
super_depth_classes.dex

parent_loader
2 Facebook

data@app@com.facebook.katana-1.apk@classes.dex
program-eb5202dbb54c0efff1c01c5f...baa6.dex.dex
program-e2ca9fdbaa4e32f97b90b376...baa6.dex.dex
program-7feaf7c75a5305b1083a160f...baa6.dex.dex

parent_loader

3 Instagram
instagram_classes.dex

parent_loader

4 JohnNESLite
johnneslite_classes.dex

parent_loader

(a) Class Loader Graph

0_0_t294 public
Ljava/lang/Object;

0_1_t2782 public abstract
Landroid/os/AsyncTask;

3_0_t4001
Lcom/instagram/android/support/camera/LoadImageTask;

1_0_t87 public
Ljp/bio100/android/superdepth/GameBase$HttpTask;

(b) Class Graph (Subgraph)

0 static synthetic
Landroid/os/AsyncTask;

access$600(Landroid/os/AsyncTask;Ljava/lang/Object;)V

0 private
Landroid/os/AsyncTask;

finish(Ljava/lang/Object;)V

direct
1

0 public final
Landroid/os/AsyncTask;

isCancelled()Z

virtual
1

0 protected
Landroid/os/AsyncTask;

onCancelled(Ljava/lang/Object;)V

virtual

4

0 protected
Landroid/os/AsyncTask;

onPostExecute(Ljava/lang/Object;)V

virtual
8

0 protected
Landroid/os/AsyncTask;

onCancelled()V

virtual
1

3 protected volatile bridge synthetic
Lcom/instagram/android/support/camera/LoadImageTask;

onPostExecute(Ljava/lang/Object;)V

super

1 protected volatile bridge synthetic
Ljp/bio100/android/superdepth/GameBase$HttpTask;

onPostExecute(Ljava/lang/Object;)V

super

3 protected
Lcom/instagram/android/support/camera/LoadImageTask;

onPostExecute(Ljava/lang/Void;)V

virtual
2

1 protected
Ljp/bio100/android/superdepth/GameBase$HttpTask;

onPostExecute(Ljp/bio100/android/superdepth/GameBase$TaskRes;)V

virtual
2

0 protected final transient varargs
Landroid/os/AsyncTask;

publishProgress([Ljava/lang/Object;)V

virtual
1

direct

1

(c) Method Graph (Subgraph)

1_0_m244
Ljp/bio100/android/superdepth/GameBase;

sgn(I)I

0: ENTRY v1-v2

26
1 0 (line=115) if-lez v2 []

v2

20
4 4 (line=116) if-gez v2 []

v2

6
2 2 const/4 v0 [1]

true

3 3 (line=117) return v0 []

v0

9: EXIT vR

vR

20
5 6 const/4 v0 [-1]

0
7 8 (line=117) const/4 v0 [0]

true

v0 6 7 goto [-4] v0 8 9 goto [-6]

(d) Instruction Graph for
GameBase.sgn(int) in SuperDepth

Figure 2: Illustrations of Various VM Graphs

8
Approved for Public Release; Distribution Unlimited.



by virtual machine graphs. For example, the points-to analysis engine (described later on) defines a
pointer assignment graph with multiple special node types to represent the flow of pointer values.
The CLVM module does not read or write to these graphs. As such, JITANA does not enforce
any requirements on analysis graphs, but all analysis graphs defined within JITANA model a set
of appropriate graph concepts defined by the Boost Graph Library so that existing generic graph
algorithm implementations can be used on these graphs.

3.1.3 Class Loader Virtual Machine (CLVM)

Based on the Java Virtual Machine Specifications [20], a class must be loaded by a class loader.
A class loader is a Java class inherited from an abstract class Ljava/lang/ClassLoader;;
it uses a delegation model to search for classes. Each instance of ClassLoader has a reference
to a parent class loader. When a class loader cannot find a class it needs to load, it delegates the
task to its parent class loader. Both the virtual machine and the Java code running on it participate
in this process. In the Dalvik virtual machine, this process occurs as shown in Algorithm 1. Note
that a class must be loaded from a DEX file on the file system in the Dalvik virtual machine.

Data: N : name of the class to be loaded, Linit: initiating class loader, and DL: an ordered set
of DEX files for a class loader L.

Result: 〈Ldef, C〉: a pair of defining class loader and pointer to a class or interface loaded.
begin

L←− Linit;
C ←− null;
do

foreach D ∈ DL do
if N ∈ class definitions list of D then

C ←− address of loaded class;
return 〈L,C〉;

end
end
L←− parent loader of L;

while L 6= null;
return 〈L,C〉;

end
Algorithm 1: Class Loading Algorithm

In JITANA, all pointers to classes are replaced by edges, rendering relationships explicit. As a
result, the implementation of Algorithm 1 is merely an instantiation of the depth-first visit algo-
rithm provided by the BGL, requiring the implementation only of the actual loading of a class from
a DEX file.

3.1.4 Analysis Engines

A primary difference between JITANA and SOOT is that JITANA is built to be efficient at both static
and dynamic analysis. As such, common analysis building blocks such as control-flow, data-flow,
and points-to graphs can be annotated on the fly based on incoming runtime events. Next, we
describe the approaches used to construct JITANA’s analysis engines.
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Control-Flow Analysis. The intraprocedural control-flow edges in instruction graphs (see Fig-
ure 2(d)) are created by the DEX file parser as it creates instruction nodes. Branch and jump targets
are simply encoded as offsets from the DEX instruction. The absence of indirect addressing mode
for jumps in the DEX instruction set renders intraprocedural control-flow analysis trivial.

Our interprocedural control-flow analysis includes both direct call edges and virtual call edges
in a method graph as shown in Figure 2(c). However, the actual target of a virtual call edge cannot
be accurately computed without consulting the virtual dispatch tables (vtables) that are used to
support late-binding features such as inheritance. As such, our analysis is not sound because it
ignores the vtables. Furthermore, our analysis is incomplete because it ignores reflection. These
two issues are common among static program analysis tools for Java.

To improve the soundness and the completeness of its analysis, JITANA applies additional static
analyses such as points-to analysis to determine the actual type of a method’s receiver. It can
also incorporate dynamic execution information from the virtual machine on the device to identify
reflection targets and annotate graphs on the fly.
Data-Flow Analysis. JITANA provides a few data-flow analysis engines. One common analysis
supported is reaching definitions analysis, used to generate def-use pairs of registers in the instruc-
tion graph as shown in Figure 2(d) (dotted edges). The monotone data-flow algorithm used in the
reaching definitions algorithm is implemented as a generic function, and therefore, can be used to
generate different types of data-flow analyses such as available expressions or live variable analysis
simply by defining appropriate functors. It also works on any graph types that model the concepts
required for the control-flow graphs.

In addition to static data-flow analyses, JITANA can incorporate information from the virtual
machine. For example, a dynamic taint analysis can be performed on the virtual machine to track
data flows from sources to sinks. The results of this analysis can be rendered as edges on a static
data-flow graph to provide a more meaningful view of the flow of data.
Points-to Analysis. In Java, most function calls are made using a dynamic dispatch mechanism.
Therefore, knowing the actual type of an object in a pointer variable is essential for any interpro-
cedural analysis. JITANA provides a points-to analysis engine. The algorithm is similar to the one
used by SPARK [16], a points-to analysis framework in SOOT, with the following differences:

• It uses register def-use information from the data-flow analysis engine to add flow sensitivity.
This improves the precision of the analysis, especially because the same register may be
reused within a method in the Dalvik architecture.

• It operates on a pair of graphs: a pointer assignment graph (PAG) and a context-sensitive
call graph (CSCG). The PAG is conceptually the same as the one used in SPARK, except it
is defined as a BGL graph in order to use existing generic algorithm implementations. The
CSCG is a call graph specific to a given set of entry points. These graphs are provided as
input to the analysis along with entry point information. It is common to have multiple entry
points executed in sequence in event-based Android applications; in these cases, the points-
to analysis may be called multiple times for each entry point on the same pair of graphs.

3.1.5 Virtual Machine Modifications

JITANA and the Dalvik VM are connected using the Java Debug Wire Protocol (JDWP) over the
Android Debug Bridge (ADB). The JDWP is a standard protocol for attaching a debugger to a
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virtual machine. With its pre-defined commands, we can observe and control program execution.
These pre-defined commands, however, are not sufficient for all analyses. For example, we need

to add a new command to retrieve code coverage information. With our modified virtual machine,
the number of executions for all basic blocks of the non-system DEX instructions are counted
automatically in interpreter mode; the new command dumps the delta of the execution counters.

This particular modification to the virtual machine is minimal: 127 lines of C++ and 66 lines
of ARM assembly code were added. The C++ code handles the additional JDWP communication.
It also allocates the same amount of virtual memory pages for the counters when a DEX file is
mapped to the memory and records the offsets between them. The ARM assembly code added
to the interpreter increments the counter whenever a jump or branch instruction is executed. The
address of the counter is given by adding the address of the DEX instruction and the offset to the
counter pages.

The code generated by the just-in-time compiler for hot traces remains unmodified; this renders
the overhead of the modifications unnoticeable to the user. The Dalvik VM executes hot traces
in interpreter mode in the entry even if their compiled code is on the code cache, so we can still
obtain correct code coverage data and note the relative hotness of a trace.

3.2 The APEx Framework

The APEx framework combines gray-box GUI testing with concolic execution to find valid event
sequences for specific target locations in the code. The overview of APEx can be seen in Figure 3.
The first step of the input generation process is a depth first GUI traversal that dynamically builds a
GUI model and event-handler map. We then analyze previously uncovered program paths, identify
important paths, then use concolic execution to generate event sequences to those paths.

3.2.1 GUI Exploration

Our GUI exploration uses a depth first strategy to traverse GUI layouts and exercise relevant events
in each layout until all the layouts and events are explored. The work flow of GUI traversal is shown
in Figure 4. Events are generated in a gray-box approach. AndroidManifest.xml can provide infor-
mation such as package name, activity class names, MainActivity name, and intent filter that can be
used to perform automatic GUI traversal. The GUI traversal process is built on the UIAutomator
program in Android SDK. The UIAutomator can take screen shots and dump current layout hierar-
chy of an Android device at any given time. By checking layout hierarchy and applying events in
a lock-step manner, the GUI traversal process keeps exploring new layouts and record the layout
transitions until all layouts and all events are explored. The GUI traversal process generates two
important data: the GUI model, and the Event-Handler map.
GUI model contains all the layouts and events explored during the traversal. Each layout infor-
mation is stored as a node, and each event is stored as a directed edge that starts from the layout
node before applying the event and ends at the layout node after applying the event. The layout
hierarchy information retrieved from UIAutomator contains various attributes of all the View ob-
jects that are showing on the device screen. Such information is used to: (i) create layout nodes,
(ii) find applicable events for each View object, and (iii) compare layouts before and after apply-
ing an event. The GUI model is generated in a depth-first manner. The traversal keeps exploring
layouts and events until arriving an layout where all the events keep the same layout. Then the

11
Approved for Public Release; Distribution Unlimited.



Symbolic Execution

App Model

GUI 
Model

Event 
Handler 
Map

e1 e2 e3

Event Sequence 
Generation

e3 ← e2 ← e1
e3 ← e4 ← e1
e3 ← e4 ← e5 ← e1
...

Validation

❌  e3 ← e2 ← e1
❌  e3 ← e4 ← e1
✔   e3 ← e4 ← e5 ← e1
...

read

read/write

read

Input Targets

Event Sequences

Automatic GUI 
Explorer

APK File

Figure 3: Overview of APEX Framework

app restarts and revisit the most recent layout that still has unexplored events, and continues the
traversal process. The GUI traversal finishes when there is no unexplored events in any layout in
the GUI model. It is worth noting that the GUI model generated from this traversal stage might
be incomplete due to the dynamic nature of our approach. It is possible that certain GUI layouts
can only be triggered by certain complex event sequences. Such GUI layout will be missing in
our GUI model. We compensate this possible drawback in the later stage by identifying uncovered
GUI transition statements and generating event sequences to trigger the GUI transition.
Event-Handler map pairs an event to an event handler method (e.g., Button1 to onClick1()).
Instrumentation is used to monitor and capture the mapping during GUI traversal. Any method
in the app that has the signature of an event handler is instrumented to print out a message when
it starts executing and when it returns. When an event is applied during the GUI traversal, the
corresponding event handler method information is printed out to system console. Usually this
event handler registration information can be obtained statically from the layout XML files or the
Java code. However there exist certain cases where this information cannot be easily obtained
statically. For example, View objects can be defined and created during runtime rather than being
predefined in the XML or Java code, it is possible that rather complicated static analysis is needed
to determine their life cycles and which layouts these View objects belong to. Therefore in our
GUI traversal process, the events and their registered event handler methods are all discovered
dynamically.

3.2.2 Symbolic Execution on Dalvik Bytecode

Based on the Event-Handler map provided by GUI traversal, symbolic execution is performed on
each event handler method. Symbolic execution tries to traverse all the execution paths caused by
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Figure 4: GUI Traversal Workflow

branch statements such as if and switch. The GUI traversal process has already concretely executed
one path for each event handler method. For event handler methods that have multiple execution
paths, the rest of the execution paths are executed symbolically. As a result, a Path Summary is
generated for each execution path.
Path Summary contains 3 components: execution log, symbolic states, and path constraints. The
execution log is the instruction sequence that were executed from the starting of an event handler
to the returning of an event handler. The execution log includes not only the instructions in the
event handler method, but also the instructions that were executed in nested method invocations.
The symbolic states are the states of all the global variables at the end of the execution path. Since
event handler methods in Android generally have one single parameter which is the View object
correlating to the event, global variables (usually field members of global objects) are considered
as symbols. The path constraints are a set of constraints that must be all satisfied in order to re-
visit a specific execution log. At the beginning of execution, the path constraints contain a single
constraint true. When an if statement is executed during the execution, there are two different
outcomes depending on whether the condition in the if statement is satisfied or not. When the
direction of the if statement is decided, the corresponding constraint is added into the path con-
straints.

In our implementation, the symbolic states and path constraints are represented in the form of
Abstract Syntax Trees (AST), using keywords to indicate symbols. The Dalvik bytecode instruc-
tion set contains 219 different instructions. Among them are many instructions that perform the
same function but reflects different operand sizes or data types. For example, there are 7 instruc-
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//Java source code
ClassA.field1 = “sample string”;

//Dalvik bytecode
const-string v0, “sample string”
sput v0, Lcom/example/ClassA;->field1:Ljava/lang/String;

=

$static-field

com.example.ClassA field1

$const-string

“sample 
string”

Figure 5: An Example of Symbolic State Expression Format

tions for loading an element from an array: aget, aget-wide, aget-object, aget-boolean, aget-byte,
aget-char, aget-short. Our symbolic execution will parse these instructions using the same keyword
$aget. Overall, we have created 17 different keywords for the whole Dalvik bytecode instruction
set. Figure 5 shows an example of the symbolic state expression format of bytecode instruction
sput, which writes the value of a static field. In this example, the root node of the AST has the name
“=”, indicating this expression is a symbolic state. The left child of the root node has a keyword
$static-field, representing a symbolic value with a unique signature com.example.ClassA.field1.

The symbolic execution procedure takes a method signature as input, and outputs a list of path
summaries for all the different execution paths. We have implemented the symbolic execution in
a VM like structure. The symbolic VM contains heap and method stack. In the method stack,
each method will be assigned a group of registers that stores local variables. The value stored in
a register can be either a literal value or a reference value. Reference values usually represent the
address of an object from the heap. We implemented the heap as a list of objects with a symbolic
value and field members. At the end of each symbolic execution, the state of global variables are
collected from the heap. Figure 6 shows an example of the symbolic VM state during runtime. In
this example, method1 is being executed and sits on top of the method stack. The instruction in line
0 writes literal value 0x5 into register v0. The instruction in line 1 creates an object in the heap,
and puts the object’s address obj1 into register v1. The instructions in line 2 and 3 then copies the
value of register v1 and write to two instance fields: field1 and field2 of the this instance of class
MainActivity.

Unlike concolic execution in single entry point programs, concolic execution in Android pro-
grams is unable to “flip” a path constraint at the end of one execution and directly provide a con-
crete input for the next execution. The first reason is that Android programs have multiple entry
points. The second reason is that the entry method parameters are not the only symbolic values
that decide the path constraints. In order to find the symbolic values that can satisfy the “flipped”
constraint, we often need to look into the path summaries of other event handlers and find the ones
whose symbolic states at the end of execution can satisfy that constraint.

3.2.3 Event Sequence Generation

The event sequence generation takes specific code targets as input, and outputs a list of event se-
quences that can potentially reach the targets. First, a code target is matched with the execution logs
of all the path summaries. If an execution log is found to contain the target, then the corresponding
path summary can trigger this specific target. If the path summary is generated concretely, then
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the event sequence of this path summary is the input to execute the reflection call. But if the path
summary is generated symbolically, a constraint solving process is required.
Constraint Solving starts from a desired path summary by adding preceding path summaries to
the sequence, then keeps solving constraints of newly added path summaries until the main entry
of the application is reached. Although a symbolically generated path summary does not have a
concrete event sequence, the “final” event in its event sequence is already known. In order to find
the preceding events, the path constraints of this path summary must all be satisfied.

Generally, the constraint solving process first searches for relevant symbolic states from other
path summaries that can potentially satisfy each constraints, then the CVC4 SMT solver is used to
determine whether the relevant symbolic states satisfy the path constraints. When path summaries
whose symbolic states satisfy all the path constraints are found, the event sequences of these path
summaries is inserted in the front of the existing event sequence. These newly found path sum-
maries then become the new subject of constraint solving. This process repeats until there are no
new path constraints to solve. As a result, a list of event sequences are generated.

In practice, there are many types of path constraints that SMT solvers cannot directly solve.
For instance, when system API GregorianCalendar.get(Calendar.HoursOfDay) is used in a branch
statement, there are no GUI events that can satisfy this constraint. More generally, the two most
common type of Android system APIs that we would encounter in path constraints are: (1) APIs
for accessing OS settings and environment variables, (2) APIs for accessing GUI widget properties.
For these types of APIs, we have developed a signature based solver that can generate a system
event for recognizable API signatures in the constraint. This approach is implemented by manually
building the signature pool and corresponding system events case by case.
Target Prioritization is used to deal with path explosion, a major challenge of symbolic execution.
The number of execution paths in a method grows exponentially by the number of branching
statements. In order to avoid path explosion, we implemented a target prioritization mechanism in
the sequence generation process.

Each symbolic path summary is assigned with a priority factor. A path summary has higher
priority if it meets any of the below conditions:

• its execution log contains the target

• its execution log contains GUI transition statements
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• its symbolic states has more symbol variables

We implemented the priority with a linear calculation with a weight ratio of 1. This feature
guarantees that more relevant path summaries are always solved first.
Sequence Validation is used to cull out infeasible paths. It is needed because during the sequence
generation process, there is no validation on the event sequences. Some of the generated event
sequences might be infeasible or incorrect, for reasons such as: errors in GUI model, unsolved
constraint involving system APIs, etc. Therefore it is necessary to have a validation process.

Every generated event sequence is applied to the app while running on an Android device. We
determine the correctness of a event sequence by comparing the concrete execution log to the cor-
responding symbolic path summary’s execution log. This is implemented with instrumenting the
beginning and ending of each basic block of every method. We can retrieve the concrete execu-
tion log via logcat during validation. If the concrete execution logs matches the corresponding
symbolic path summary’s execution log, then the event sequence is a correct sequence.

4.0 RESULTS AND DISCUSSIONS

In this section, we report the performance evaluation of JITANA and APEX.

4.1 Performance Evaluation of JITANA

To evaluate the performance of JITANA we applied it to five real-world apps. Table 3 lists these
apps, together with data on their size and complexity.

On each of these apps, we measured the execution times required to perform (i) APK loading,
(ii) call-graph generation, and (iii) reaching definitions analysis and addition of def-use edges to
instruction graphs. We collected measurements for these tasks five times for each app; our results
present averages across these five. We recorded execution times in seconds, and these included the
times needed to process all system classes necessary to load the app classes.

Note that Facebook, unlike the other four apps, dynamically generates and loads secondary DEX
files. JITANA is able to capture and analyze these files automatically using information from the
virtual machine. Thus, the times reported for Facebook include the times required to analyze these
secondary files.

Table 3 reports the three classes of execution times in the columns headed “Loading”, “Call
Graph”, and “R. Defs”, respectively, along with the total time taken to perform all three (Total).
These numbers were all gathered on a workstation with 3.2GHz Core i5 and 32GB DDR3 RAM
running Apple OS X 10.11.3 (El Capitan).

As Table 3 shows, JITANA generated the basic analysis building blocks for the five apps in
overall times ranging from 0.33 seconds for SuperDepth to 11.4 seconds for Facebook.

We also attempted to perform the same tasks using SOOT, but found that developing a methodol-
ogy to perform a direct comparison was challenging. As such, we do not report numbers for SOOT

in Table 3; instead, we report our observations and highlight the key differences that make a direct
comparison difficult. First, JITANA was able to analyze more classes in four out of five apps. DEX-
PLER translates only classes that are part of the APK, and does not consider any system classes
needed to initialize the apps. As such, we found that JITANA analyzed 4,942 classes for Instagram
but DEXPLER passed only 4,641 classes on to SOOT to analyze. There were also differences in the
numbers of analyzed classes in SuperDepth, Google Earth, and Twitter. These differences render
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fair comparisons difficult. Second, DEXPLER does not consider dynamically generated classes,
and Facebook generates three additional large DEX files as it initializes. In this case DEXPLER

considers only the main DEX file which has 6,350 classes, whereas JITANA included all four DEX
files, analyzing 23,621 classes. Again, this renders fair comparisons difficult.

Despite these difficulties, we do note the following. SOOT requires a translation process from
DEX to Jimple, and this process alone requires more time than the entire analysis time required by
JITANA. For example, it took DEXPLER 23 seconds just to translate the Facebook app and SOOT

21 more seconds to analyze the app with three missing dynamically generated DEX files. On the
other hand, JITANA needed only 11.4 seconds to analyze all four DEX files in the app (and with
almost four times as many classes to analyze).

Table 3. Analysis Times Measured When Applying JITANA to Five Real-World Apps

# of Time (seconds)
Name Classes Methods Fields LoDC Loading Call Graph R. Defs Total
SuperDepth 68 2,035 1,355 50,779 0.16 0.05 0.12 0.33
Google Earth 1,213 10,698 4,137 136,679 0.58 0.15 0.28 1.01
Twitter 3,675 34,390 15,715 442,243 2.03 0.49 0.88 3.40
Instagram 4,942 37,747 16,514 477,700 2.11 0.53 0.94 3.58
Facebook (katana) 23,621 130,428 76,443 1,548,801 6.81 1.75 2.84 11.40

In summary, our investigation reveals differences between the two frameworks that can be sum-
marized as follows. First, translation overhead can be high when SOOT is used to analyze Android
apps. Second, the hybrid design of JITANA allows it to analyze more classes that include classes
in the APK, system classes, and dynamically generated classes.

4.2 Performance Evaluation of APEX

We tested APEX on a total of 14 apps to examine the performance of APEX. The test apps
include 12 apps from APAC engagements and 2 benchmark apps: TippyTipper and Dragon. These
apps are mostly malware samples that utilize a variety of anti-analysis techniques to evade security
analysis. We evaluated the effectiveness of APEX in terms of code coverage and target coverage
using these subjects.

4.2.1 Code Coverage

Our code coverage is based on bytecode statement coverage. Comparing to method coverage, this
fine grained metrics can better represent the percentage of different program paths being explored
by our concolic execution engine. The total number of bytecode statements is measured statically
using apktool. We instrumented these 11 apps and monitored logcat output during runtime to
measure the number of covered bytecode instructions. Since most of the test apps contain third
party libraries in their binaries, we have manually identified and excluded these library code from
the results.

Table 4 shows APEX’s code coverage results on the selected apps. The columns showed the
total number of bytecode lines and the covered bytecode lines during the input generation. The last
column showed the number of restarts during the GUI exploration stage. After manual examination
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on the low coverage apps, the main reason for the low coverage is due to our constraint solver being
unable to solve certain constraints involved with system APIs, for example, Math.floor(double) is
not supported by the SMT solver. Effectively dealing with the system APIs and libraries is still a
great challenge and continues to be the focus of APEX development.

Table 4. Code Coverage of APEX On 11 Apps

App Name LoDC Line Coverage Restart Times
Dragon 335 307 (92%) 28
MunchLife 631 396 (53%) 8
TippyTipper 4520 2640 (58%) 20
CalcA 789 611 (77%) 2
CalcC 796 602 (76%) 2
CalcF 1210 663 (55%) 2
FullControl 3044 1229 (40%) 2
KitteyKittey 723 397 (55%) 3
PasswordSaver 842 478 (61%) 2
SMSBackup 778 478 (61%) 2
SourceViewer 382 245 (64%) 2

Generating Input for Specific Targets. To test APEX’s effectiveness in generating input for
specific targets, we picked 8 test apps and specified various code call sites within those apps as
targets for APEX. The targets are determined using JITANA’s coverage report from random
testing and unit testing on the test apps. First we identified basic blocks that have not been executed;
these methods represent hard to reach targets. We then selected the first instruction from each of
those blocks and use those bytecode instructions as targets for APEX to generate input sequences.

Table 5. Target Coverage of APEX on 8 Apps

App Name Targets Reached Max Sequence Length
Dragon 5/5 (100%) 6
Munchlife 20/29 (69%) 8
TippyTipper 16/57 (28%) 5
BattleStat 10/88 (11%) 7
rLurker 12/141 (9%) 5
AudioSidekick 12/79 (15%) 4
AWeather 4/170 (2%) 3
Engologist 6/129 (4%) 3

If APEX is able to generate input sequences for a target and at lease one of the sequences are
validated, then this target is considered to be reached. The results are shown in Table 5. The
columns first showed the percentage of reached targets, then showed the number of events in the
longest event sequences generated for each app.

The reason for the poor performance of APEX on some of the test apps is still mainly the
unsolved API constraints. With our current signature based API constraint solver, we can only
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deal with a limited set of APIs. Therefore, we could not complete the sequence generation process
for the path summaries that contain APIs that we do not recognize.

Table 6. Comparison in Target Coverage Between Collider and APEX.

App Name
Target coverage

by Collider
Target coverage

by APEx
Tippytipper 7/16 (44%) 16/57 (28%)
Munchlife 6/10 (60%) 20/29 (69%)

Next we compare the target sequence generation result of APEX with that of Collider, a state-of-
the-art concolic execution engine [12]. In the evaluation of Collider, the target lines were selected
from unreached bytecode lines after running both Monkey and crawler. The targets used by Col-
lider were not exactly the same as those used by APEX; however all targets were deemed hard to
reach. In TippyTipper, Collider was able to reach 7 targets out of 16, while APEX has reached 16
out of 57. In Munchlife, Collider was able to reach 6 out of 10 targets, while APEX reached 20 out
of 29. The comparison in target coverage is shown in Table 6. We can see that APEX has overall
lower coverage rate while reaching more targets than Collider. Without a thorough comparisons,
it is difficult to determine which tool performs better. However, Collider’s sequence generation
requires a manually built GUI model, while APEX does not make any assumptions nor require
manual effort with building the GUI model. Overall, despite the problems and limitations, APEX

is easier to deploy than a state of the art concolic execution engine Collider, while able to reach
more targets in the same apps.

5.0 APPLICATIONS OF PROPOSED FRAMEWORKS

In this section, we report the results of applying the proposed framework to address emerging
security challenges. We investigated five scenarios in this study. In the first scenario, we explore
an approach that uses runtime information to guide input generation through concolic execution.
In the second scenario, we compare the performance of JITANA on an analysis task to that of a
benchmark approach. We then present an example in which JITANA supports the creation of a
real-time visualization engine to provide real-time feedback about the results of an analysis. In the
fourth scenario, we investigate the scalability of JITANA and its potential applicability to bring-
your-own-device (BYOD) environments. Finally, we illustrate how JITANA can perform analysis
of dynamically loaded code.

5.1 Runtime Guided Input Generation through Concolic Execution

One of the main purposes of developing input generation techniques is to help dynamic malware
analysis by generating input sequences to expose suspicious activities. In this application, we
first try to validate a hypothesis that malicious code exists in rarely executed paths. We used
JITANA to collect VM internal runtime information and identify rarely executed paths, then use
these rarely executed paths in applications that APEX can support as the targets for the input
generation process.

In order to identify rarely executed paths, we ran test apps on a Nexus 7 device with a modified
Dalvik VM that are connected to workstations running JITANA. We used both monkey and unit
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Table 7. Executed Malware Locations Across Engagements

Engagement # of apps # of known malware # of executed malware %
1A - 1C 18 16 9 56.0
3A - 3B 3 15 6 40.0
4A - 6A 3 6 3 50.0
Total 24 37 18 49.0

test cases to drive the execution of test apps. We configured the monkey to generate 20,000 random
events from the main activity of each test app we then supplemented these random test cases with
unit test cases to reach code coverage of 60% or more.

During the test, JITANA continuously receives the VM internal runtime information from the
modified Dalvik VM, including the bytecode execution log and the bytecode traffic into the JIT
compiler. JITANA overlays those dynamic information on top of static information, and generated
a bytecode coverage report for the test app after each run. The coverage report is consisted of
bytecode traces. Each trace contains a bytecode instruction’s location (class signature, method
signature, bytecode index) and an execution counter showing how many times this instruction has
been executed.

With the JITANA coverage report, we first extract the bytecode traces with execution counter
being 5 or fewer. These bytecodes are considered to belong in rarely executed paths. Furthermore,
with the help from manual analysis and red reports of engagement apps, we highlight the known
malicious code locations from the rarely executed bytecodes.

We first performed analysis across engagements. We report the result in Table 7. Even with
our best efforts to provide good code coverage through random and unit testing, we are only able
to executed 49% of malware locations in total. We also find that it is easier to generate input to
get good code coverage for apps in Engagements 1A - 1C. The average code coverage for the 18
apps from the first engagement is 70%. On the other hand, it is much more challenging to generate
inputs that can yield high code coverage for the remaining apps. In this case, in spite of our best
efforts, we can only reach an average of 43%. This may indicate that these later apps are more
complex.

Next, we selected applications that APEX can run without encountering any runtime errors.
These apps are listed in 8 and are the same apps used to evaluate the effectiveness of APEX in
Section 4.2. We report the number of malicious locations we retrieved from the red reports, then
the total number of the malicious bytecodes that were executed. We can see that the malicious call
sites in FullControl, MorseCode, and smsBackup are executed many times during both test runs.
In these cases, monkey has executed the malicious call sites much more than unit test, due to the
fact that monkey applied a much greater amount of events. On the other hand, unit test was able
to trigger malicious activities while monkey could not for CalcC, KitteyKittey, PasswordSaver, and
SourceViewer. The hardest to reach malicious call sites belong in CalcA and CalcF where neither
monkey and unit test can trigger the malicious activities.

The rarely executed malicious call sites are then used as input for APEX to use concolic ex-
ecution to generate input sequences. As explained in Section 3.2, during the input generation
process, symbolic path summaries whose execution logs contain those bytecode instructions are
high priority in the sequence generation process.
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Table 8. Execution Counter of Malicious Call Sites

App name
# of malicious

call sites

# of malicious call
site execution

(monkey)

# of malicious call
site execution

(unit test)
CalcA 1 0 0
CalcC 1 0 15
CalcF 1 0 0
FullControl 1 45 5
KitteyKittey 1 0 5
MorseCode 1 18 1
PasswordSaver 1 0 2
smsBackup 1 168 2
SourceViewer 1 0 4

We show the results of three apps: CalcA, CalcF, SourceViewer from the set in Table 8 as test
apps. The malicious bytecode location are feed into APEX to see whether APEx can generate
correct event sequences. The results are shown in Table 9. As we can see, APEX was able to
reached the malicious call site in with an event sequence of length 6. Unfortunately, APEX did not
reach the targets in the other two apps. The failure was due to the fact that In CalcA and CalcF, the
malicious activities both contain API GeorgianCalendar.get(hourOfDay) which prevented APEX

from generating correct event sequences. APEX was not able to generate sequences for targets in
other apps as constraints to generate such sequences cannot be resolved.

Table 9. APEX Result in Malware Target Prioritized Input Generation

App name
Target reached

by APEX
Max sequence

length
CalcA No N/A
CalcF No N/A
SourceViewer Yes 6

5.2 Inter-App Communication Analysis

Reusable components are an integral part of Android app development. There are four types of
components in Android. (1) Activities are the user interface component of an app. (2) Services are
used to run tasks that do not require any UI or tasks that are too long to run on the UI thread in the
background. (3) Broadcast receivers are the components that can receive a message from any app.
(4) Content providers work like databases and are used for sharing data between apps.

All but content provider components use intents to achieve inter-component communication.
There are two types of intents: explicit and implicit. Explicit intents are designed specifically
to cause a particular component to begin executing using its fully-qualified class name. Implicit
intents specify actions but do not provide information on which component needs to run. An An-
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Figure 7: Workflow of ICCTA Analyzing Two Apps

droidManifest.xml file defines intent-filters that help connect actions with components.‖ Through
these two types of intents, Inter-Component Communication (ICC) and Inter-App Communication
(IAC) can occur. With IAC, data can flow from one app to another app. Being able to identify these
communication channels can help engineers and analysts identify API incompatibilities after sys-
tem or software updates, and vulnerable communication channels that cyber-criminals can exploit
to compromise systems [17].

To detect information flow through IAC and ICC channels, Li et al. [17, 19] introduce ICCTA,
a SOOT [15] based framework used to perform cross-app and cross-component taint analysis. Fig-
ure 7 highlights the workflow ICCTA uses to perform IAC analysis, a workflow that includes sev-
eral tools: EPICC [24], APKCOMBINER [18], DEXPLER [4] and FLOWDROID [3]. First, EPICC

stores information on edges that can potentially represent IAC connections in a database. Second,
APKCOMBINER combines multiple Android Packages (APKs) into a single DEX file. Next, to
facilitate analysis by SOOT, DEXPLER converts DEX instructions to Jimple instructions. The com-
bined apps are now analyzed by SOOT to extract IAC edges and other data. Finally, FLOWDROID

builds complete control-flow graphs for the combined components using results from SOOT and
information stored in the DBMS by EPICC. It then performs taint analysis [19].

The foregoing process requires five tools to perform a workflow involving six steps (combin-
ing components, storing information, conversion, analysis, building control-flow graphs, and taint
analysis), that require temporary data to be created by each step.

Next, we compared the performance of ICCTA with that of JITANA for IAC analysis. Currently,
however, JITANA does not yet support taint analysis itself so at best we can compare only the
steps of the overall analysis that support the taint analysis step. However, because the processes of
identifying edges and performing taint analysis are both done, in ICCTA, using FLOWDROID, we
cannot remove just the taint analysis step. Therefore, we chose to remove the overhead of FLOW-
DROID altogether. Since JITANA does perform control-flow analysis to detect IAC connections,
our comparison errs in favor of ICCTA.

Both JITANA and FLOWDROID detect IACs due to implicit and explicit intents so we study apps

‖ http://developer.android.com/guide/components/intents-
filters.html

22
Approved for Public Release; Distribution Unlimited.

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html


Table 10. Comparing Analysis Times and the Number of Discovered IAC Connections Be-
tween ICCTA and JITANA (Note That (–) Indicates That the Analysis Process Failed to Com-
plete)

ICCTA JITANA
Applications Source Time Implicit Explicit Time Implicit Explicit

(seconds) IACs IACs (seconds) IACs IACs
Echoer.apk
StartActivityForResult1.apk DroidBench 88.2 2 0 8.6 2 0
SendSMS.apk
(Total size = 760 KB)
Dragon.apk
Morsecode.apk JitanaBench 53.0 0 1 7.6 0 1
(Total size = 444 KB)
App1 Source.apk
App2 Sink.apk JitanaBench (–) (–) (–) 9.0 1 0
(Total size = 524 KB)
com.facebook.katana-2.apk
com.facebook.orca-1.apk Play Store (–) (–) (–) 35.4 8 0
com.spotify.music.apk
(Total size = 80 MB)

6 soc. network apps Play Store (–) (–) (–) 82.4 39 0
(Total size = 150 MB)

13 games Play Store (–) (–) (–) 191.4 0 0
(Total size = 585 MB)

7 random apps Play Store (–) (–) (–) 120.2 4 0
(Total size = 127 MB)

Combine all 26 apps Play Store (–) (–) (–) (–) (–) (–)
(Total size = 860 MB)

that produce both types of IAC connections. We also added 26 apps randomly selected from the
list of Google Play store’s top-100 apps. These additional apps include social-networking, game,
and other apps. Table 10 provides details on the apps, organizing them into eight groups (each
represented by a row in the table). We apply each of the approaches to each group of apps to
collect performance data when all apps within a group are analyzed simultaneously. This means
that for ICCTA we attempted to use APKCOMBINER to combine all apps within a group, and for
JITANA we attempted to use the CLVM to load the apps within a group.

Columns 3–5 of Table 10 show the results obtained using ICCTA, and Columns 6–8 show results
obtained using JITANA. We present results using three metrics: the time required in seconds to per-
form the analysis and the numbers of implicit and explicit IAC connections detected. Entries of the
form “(-)” indicate cases in which the approach was unable to perform the given analysis. As the
table shows, ICCTA was able to analyze only the first two groups consisting of microbenchmarks.
It also failed to detect IAC connections in Group 3 (Row 3), which consists of JITANA microbench-
marks. On the microbenchmark apps on which it functioned fully, it took 88.2 seconds and 53.0
seconds to analyze the programs. We also find that existing problems in ICCTA’s components be-
come limitations. For example, APKCOMBINER has been evaluated only on components smaller
than 1.4 MB in size [18], and required 200 to 400 seconds. When applied to larger apps such as
Facebook and Spotify, it failed. As also noted by Li et al [18], APKCOMBINER does not guarantee
correctness of the combined file. This also becomes a limitation for determining the number of
components that can be combined and analyzed by ICCTA. It also failed to analyze groups that use
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real-world apps from Play store due to their large sizes [18]. For cases in which both approaches
work, JITANA was between 7 and 10 times faster than ICCTA, even though JITANA was computing
complete control-flow graphs and using them to construct IAC graphs.

5.3 In Situ Visualization of Code Coverage

Figure 8: In-Situ Visualization with TRAVIS

Our third use case involves using JITANA to provide real-time feedback of code coverage mea-
surement. Code coverage is an important metric for assessing the quality of test suites. Because
code coverage is measured as a program is exercised, measuring it is a form of dynamic analysis.
To measure code coverage in Android, EMMA∗∗ is still commonly used. EMMA was initially
created as a code coverage tool for Java, but it now works for Android too. It supports both tar-
geted unit testing and random testing using MONKEY, an Android UI exerciser.†† When used, it
adds between 5% and 20% overhead to code execution time for Java programs. For event-based
Android apps, our preliminary investigation using 10 apps reveals the overhead to be between 1%
to 10% due to the necessary delays that must be added between two events. With this level of
overhead, we do not expect JITANA to achieve significant performance benefits over EMMA on
event-based apps. Instead, the main benefit of JITANA is in providing the ability for engineers and
analysts to observe progress of the on-going analysis and monitor the intermediate results of code
coverage measurement.

With JITANA, runtime information (basic block coverage in the case considered) is generated
and processed immediately. Thus, there is an opportunity for attempting to visualize coverage
information in situ. This section describes the process we followed to create a visualization tool,

∗∗http://emma.sourceforge.net/.
††http://developer.android.com/tools/help/monkey.html.
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TRAVIS, inside JITANA. We then illustrate the capabilities of TRAVIS and show how it can process
the execution information sent by Dalvik to provide code coverage feedback.

Via a JDWP connection, TRAVIS periodically receives the dynamic execution information nec-
essary to visualize traces from the Dalvik VM which was modified as described in Section 3.1.5.
As soon as a DEX file on the device is loaded on the virtual machine, TRAVIS is notified with
the file name. Upon notification, TRAVIS does the following: (i) copy the loaded DEX file from
the device to the workstation using an adb pull command; (ii) create a buffer to store counter
values for the DEX file; and (iii) let JITANA load the DEX file to update the VM graphs.

TRAVIS also polls for counter values every 50 milliseconds. The values are sent as an array of
pairs of an instruction offset and the number of times that instruction has been executed since the
last poll. The counter values are accumulated in the buffer created when the DEX file is loaded.
The instruction graphs are updated with the new counter values from this buffer. This data is
presented as traces on a screen with OpenGL renderings, and as instruction graphs rendered in a
GRAPHVIZ viewer.

Figure 8 illustrates how TRAVIS can be used. A device (Nexus 7 in this case) is first connected to
a workstation. Runtime information is sent from the device to a workstation running JITANA. In the
figure, a person is playing SuperDepth, a classic video game (shown in the lower right quadrant).
While the user plays, Dalvik sends execution information on-the-fly to JITANA, which processes
the information to calculate code coverage, which is then fed to TRAVIS. The app requires no
instrumentation.

In Figure 8, the upper left quadrant displays the method graph for SuperDepth and the upper
right quadrant displays two instruction graphs. Shaded boxes indicate entry instructions in basic
blocks. In each such box, there is also a counter to indicate the number of times that the basic
block has been executed. For example, the block highlighted by an ellipse has been executed 20
times. The block above that corresponds to a conditional statement and so far, all decisions have
taken the left branch. Note that these counters are continuously updated.

The bottom left quadrant shows the output of TRAVIS. Each small rectangle on what looks like a
“keyboard” in the figure represents a basic block. On a color display (of this paper or of the output
of TRAVIS), yellow rectangles indicate basic blocks that have not yet been executed, blue rectan-
gles indicate “hot” basic blocks (i.e., basic blocks that have been executed more than five times),
magenta rectangles indicate basic blocks that are currently being executed, and black rectangles in-
dicate basic blocks that have been executed fewer than five times. (On a black-and-white printout,
the colors range from dark gray to light gray with two intermediate shades.) The video clip that
the images have been captured from is available at https://www.youtube.com/watch?v=
sPdrLdIKDx4.

5.4 Device Analysis in BYOD Environments

To evaluate the scalability of JITANA, we also attempted to analyze all apps within devices
simultaneously when analyzing apps for IAC connections. To do this, we selected three devices
from our Android tablet stock pile. The first device contains 83 apps, the second contains 90 apps,
and the third contains 106 apps. We pulled all the APKs from a given device into JITANA, using
CLVM to load all the apps simultaneously and construct the graphs needed to build IAC graphs to
detect connections. We anticipate that this particular task is an example of an analysis that could be
useful for vetting devices in organizations that promote bring-your-own-device (BYOD) policies.
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In such situations, instead of considering an app as the unit of analysis, we consider a device as the
unit of analysis.

Table 11. IAC Analysis Results for Three Devices

Device ID # of Apps Total Size Edges Edges time
(MB) (Implicit) (Explicit) (seconds)

1 83 129 476 21 136
2 90 438 1216 50 601
3 106 1298 (–) (–) (–)

Table 11 reports the results of this investigation. As shown, JITANA was able to analyze two of
the devices (devices with 83 and 90 apps) successfully. The time required to perform these two
analyses was 136 seconds and 601 seconds, respectively. Note that each reported time includes
the time needed to load the apps from the device to the workstation running JITANA. Our system
ran out of memory for the device with 106 apps. Nevertheless, the results on the first two devices
suggest that JITANA can support larger-scale analyses by using larger computer clusters. Further,
by using BGL, JITANA should be able to perform analyses using any machines that provide BGL
support.

5.5 Analysis of Reflection Usage in Android Apps

In Java programming language, which is the main programming language for Android applica-
tion development, reflection provides a computer program with the ability to load certain classes
during execution [27]. The main goal is to allow a program to examine and modify its structure
and behavior dynamically. As such, reflection is one important mechanism that developers use to
achieve backward compatibility [2]. In addition, reflection is also a powerful tool that can help
with debugging as well as developing pluggable code.

However, the dynamic property of reflection has also been exploited by malware authors to ob-
scure intentions or hide malicious payloads from malware analysis tools. Typical malware analysis
tools that analyze source code or bytecode to detect vulnerabilities tend to have trouble analyzing
reflection target classes due to multiple reasons. First, while static analysis can be commonly used
to identify where reflection calls are being made, the dynamic nature of reflection requires that
analysts have the input sequences that can exercise these reflection call sites. However, creating
precise sequences that can reach specific targets in event-based and GUI rich applications is still
quite challenging.

To better understand how reflection is used as part of Android app development, we investigate
its usage in real-world Android applications. To do so, we collected nearly 1800 Android app
samples. We divide the apps into 3 groups, as shown in Table 12 below:

The Android application samples consist of: 1258 malware samples from Android Malware
Genome Project (AMGP) [31], 378 newer (after 2012) malware samples collected from various
sources, and 126 popular Android apps in 2014 that have been downloaded from Google Play
Store. To determine reflection usage, we first implemented a static analysis in Soot based on the
idea introduced by Bodden et al. [5]. We also utilized Apktool [29], a reverse engineering tool
for Android apps, to help accomplish this task. A Reflection Information Table is generated by
reflection logger to record each identified reflection call site.
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Table 12. Android Application Sample Groups

app sample group total # time
Android Malware Genome Project 1258 2010-2012
Newer Malware 378 after 2012
Google Play Store Top Chart 126 2014

We then classified reflection into four types as shown in Table 13 based on different Java seman-
tics. Typically, method invocation via reflection involves the following APIs:

• Class.forName,

• Class.getDeclaredMethod (or Class.getMethod)

• Method.invoke.

The name parameter used in forName() or getDeclaredMethod() can either be a constant string
or a string variable. The class object in a Class.forName() call is found by either the default class
loader or a custom class loader.

Table 13. Reflection Classification

Category Reflection Target Class Loader
1(a) Constant string Default
1(b) Constant string Custom
2(a) String variable Default
2(b) String variable Custom

Each type of reflection call indicates different techniques required to identify targets. An ex-
ample of Type 1(a) is shown in Figure 9. Method member “MyMethod” of class “MyClass” is
invoked via reflection APIs. The reflection target, i.e., the string names, are constant strings. The
default system ClassLoader is designated at runtime to look for Class “MyClass”. Determining
targets for this type of reflection call only requires simple static analysis. The string names are
already known, and the binaries of class “MyClass” can only come from the classes.dex within
the APK file or system libraries.

Class cl = Class.forName("MyClass");
Object obj = cl.newInstance();
Method m = cl.getDeclaredMethod("MyMethod");
m.invoke(obj);

Figure 9: Reflection Type 1(a)

An example of Type 1(b) is shown in Figure 10. In this example, the reflection target is still con-
stant strings, same as Type 1(a). However, additional parameters are used in the Class.forName()
call. The third parameter loader is a custom class loader object. A custom class loader can specify
an arbitrary path to load classes at runtime. As such, it is possible that the class binaries are placed
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DexClassLoader loader = new DexClassLoader(
libpath,dir,null,getloader() );
Class cl =Class.forName("MyClass",true,loader);
Object obj = cl.newInstance();
Method m = cl.getDeclaredMethod("MyMethod");
m.invoke(obj);

Figure 10: Reflection Type 1(b)

outside of the system library and classes.dex from the APK file. This type of reflection call would
require dynamic analysis approaches to precisely determine targets.

An example of Type 2(a) is shown in Figure 11. The target names in Class.forName() and
Class.getDeclaredMethod() are provided as string variables, and default class loader is used in
Class.forName() call. It is guaranteed that the class is loaded from the system library path by the
system class loader. However, in order to retrieve the class name or the method name, dynamic
analysis approaches are needed to precisely determine targets.

Class cl = Class.forName(className);
Object obj = cl.newInstance();
Method m = cl.getDeclaredMethod(methodName);
m.invoke(obj);

Figure 11: Reflection Type 2(a)

An example of Type 2(b) is shown in Figure 12. In this example, the reflection target name is
provided as a string variable. A custom class loader is also used in Class.forName() to search and
load the target class. As such, static analysis alone is not enough to find the class name or library
path of the class loader, especially when runtime data such as user input is involved. This type of
reflection calls require dynamic analysis approaches to determine target information.

DexClassLoader loader = new
DexClassLoader(libpath,Dir,null,getloader());
Class cl =Class.forName(className,true,loader);
Object obj = cl.newInstance();
Method m = cl.getDeclaredMethod(methodName);
m.invoke(obj);

Figure 12: Reflection Type 2(b)

We ran our reflection analysis on every application in those three groups, calculate the number of
each reflection type. The results for the AMGP malware and newer malware are shown in Table 14.
As we can see, 78.7% of reflection calls in AMGP malware belongs to type 1(a); static analysis
should be able to effectively determine reflection targets. We also find that 20% of reflection calls
belong to 2(a), which means that these reflection calls use string variables to specify invocation
targets. This type of reflection calls require dynamic analysis approach to solve them.

On the other hand, in the newer malware group, there are 20% reflection calls belong to 1(a),
and 76% belongs to 2(a). In both malware groups, there are not many cases of 1(b) and 2(b) where
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Table 14. Reflection Usage in Malware Samples

Malware sample
group AMGP Newer Malware

Total number of
APKs 1258 378

Year 2010-2011 2012-2014
Reflection
Classification

Number of
reflection calls Percentage

Number of
reflection calls Percentage

1(a) 6357 78.7% 946 20%
1(b) 2 0.02% 7 0.1%
2(a) 1664 20.6% 3613 76.2%
2(b) 56 0.7% 176 3.7%

custom class loader is involved. However, we can observe the trend of increasingly percentage of
type 2(a) reflection calls.

The results of Play Store Apps are shown In Table 15:

Table 15. Reflection Usage in Play Store Apps

Total number of APKs 126
Year 2014
Reflection
Classification

Number of
reflection calls Percentage

1(a) 1774 53.9%
1(b) 31 0.9%
2(a) 1315 40%
2(b) 170 5.2%

In these 126 top downloaded Play Store Apps, we can see a similarity to the malware sample
groups: Reflection types 1(a) and 2(a) have the highest percentages out of the four categories.
However, we do notice that in Play Store Apps, more type 2(b) reflection calls are used than the
malware sample groups.

Considering the fact that the number of reflection calls is also related to the number of samples
within each group, we decide to calculate the reflection density of each sample group, in order to
observe the trend of reflection usage in these samples. First, we calculate the reflection density per
class, as shown in Table 16 below:

As shown, Play Store Apps have the highest number of classes and highest number of classes
that contain reflection calls. However, the newer malware group has the highest reflection density
per class.

The reflection density per method is shown in Table 17. Similar to the reflection density per
class, the Play Store Apps have the highest number of methods and methods containing reflection
calls. However the newer malware group again has the highest reflection density per method.

In summary, while the percentages of of reflection usage remain relatively flat among the three
groups of applications (1.01% to 1.67%), we see that modern Android applications (newer malware
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Table 16. Reflection Density per Class

Sample Collection # of classes
# of classes

with reflection
calls

Density
(per class)

AMGP 299,126 3,015 1.01%
newer malware 118,267 1,975 1.67%
Play Store Apps 372,985 4,317 1.16%

Table 17. Reflection Density per Method

Sample Collection # of methods
# of methods

with reflection
calls

Density
(per method)

AMGP 1,718,380 4,494 0.26%
newer malware 839,109 3,248 0.39%
Play Store Apps 2,364,347 7,423 0.31%

and Play Store apps) are increasingly using more of Type 2(a) reflection calls, in which targets
cannot be determined through static analysis alone. By being able to capture runtime information,
JITANA can be used to identify these reflection targets. APEX can also be used to generate event
sequences that can reach these reflection calls.

Recently, we have also seen more usage of Type 2(b) in modern apps. Furthermore, a recent
technique for removing reflection code after each run (e.g., a commonly used mechanism to serve
advertisements [13]) can also be used to deliver malicious code and then delete it after it has been
executed. To prevent later retrieval by analysts, attackers can also move the code from an original
downloading site after it has been downloaded. By working closely with Dalvik, we are able to
extend the mechanism used in TRAVIS to cache dynamically loaded classes for analysis. This
feature is critical for security analysts who need to detect malicious payload that may be hiding as
reflective code and software updates.

6.0 FUTURE WORK

We have been developing JITANA and APEX over the past two years. We plan to officially
release the source code and binaries of both frameworks under a BSD license in July, 2016. At
that time, we will also include additional tools that we are currently developing. Next, we discuss
on-going efforts to produce additional tools.

As shown in our BYOD use-case, when a large number of apps are used, JITANA can experience
out-of-memory errors when run on a desktop or laptop. Because our approach is based on BGL,
we are developing approaches for partitioning the processes used to generate graphs and perform
analysis so that they can be performed in parallel on high-performance computing clusters. On the
other hand, because JITANA incurs low overhead when used to analyze small numbers of apps, we
plan to create a version that can run directly on an Android device to perform real-time analysis as
an app is downloaded and then perform light-weight analysis and monitoring as apps run.

Currently, techniques such as TAMIFLEX and HARVESTER [5, 25] can detect reflective code by
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instrumenting apps to report reflection targets and then capturing them off-line. However, a recent
technique for removing reflection code after each run (e.g., a commonly used mechanism to serve
advertisements [13]) can also be used to deliver malicious code and then delete it after it has been
executed. To prevent later retrieval by analysts, attackers can also move the code from an original
downloading site after it has been downloaded. By working closely with Dalvik, we are able to
extend the mechanism used in TRAVIS to cache dynamically loaded classes for analysis. This
feature is critical for security analysts who need to detect malicious payload that may be hiding as
reflective code and software updates.

We have began an effort to integrate APEX with JITANA. We currently have a basic implemen-
tation of a symbolic execution engine in JITANA that can work on clusters and we are refining
the implementation to take advantage of existing constraint optimization frameworks to reduce
runtime overhead. We are also developing a taint analysis engine for JITANA. Finally, as Google
has already shifted from Dalvik VM to Android Run Time (ART), one of our priorities is to make
JITANA work with ART. We have already analyzed the structure of ART and have determined how
to capture runtime information that can be used by JITANA to perform dynamic analysis. We are
also working to extend JITANA to support analysis of binary components that can interface with
Android applications through Java Native Interfaces (JNIs).

7.0 CONCLUSION

We have made three contributions that advance the state-of-the-art in program analysis. First, by
harnessing the power of generic programming and exploiting runtime events and information, we
have built a highly efficient hybrid program analysis framework that is capable of expanding the
analysis scope to cover most apps installed on an Android device. We provide common analysis
building blocks that include control-flow, data-flow, and points-to analysis engines. Our evaluation
results and use cases show that JITANA can analyze more classes (e.g., system related and dynami-
cally generated classes) in much less time than SOOT. We also discussed on-going work to further
extend the capabilities of JITANA that includes supporting parallel analysis on clusters, migration
to ART, and caching and analyzing dynamically loaded code.

Second, we developed APEX, a concolic execution based event sequence generator that pro-
duces complete GUI models and identifies paths and connections to the GUI models that can be
used to generate event sequences to reach specific targets in a program. We applied JITANA to
validate a hypothesis that malicious code exists in rarely executed paths. We found that in many
engagement apps, half of the malicious locations are hard to reach using random and unit testing.
We then used APEX to generate event sequences to reach those targets. Unfortunately, these hard
to reach targets often involve calls to libraries and system APIs that are not fully supported by our
concolic execution engines. As such, we were not able to generate sequences to reach targets in
many apps.

Third, we showed through five examples how the proposed frameworks can be used to ad-
dress emerging security challenges. We have shown that by using the proposed frameworks, event
sequences can be generated to exercise hard-to-reach targets. Complex analyses such as IAC de-
tection can be quickly developed and effectively and efficiently performed to address emerging
security needs such as vetting devices in BYOD environments and detecting malicious apps that
collude. It can also analyze a large number of apps concurrently (it has successfully analyzed as
many as 90 apps concurrently) and can provide real-time feedback to engineers and analysts so
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that they can evaluate the progress and effectiveness of an on-going analysis. We have also shown
that it can efficiently handle dynamism of modern programming language including identify and
analyze reflective methods.
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8.0 ACRONYMS AND GLOSSARY

ART Android Run-Time
APEx Android Path Explorer
BYOD Bring Your Own Device
CLVM Class Loader Virtual Machine
IccTA Inter-component communication Taint Analysis
Jitana Just-In-Time Analysis
JNI Java Native Interface
JVM Java Virtual Machine
VM Virtual Machine
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