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1 Summary

Author profiling is the task of determining the attributes for a set of authors. This report presents

the design, approach, and results of our approach to using data from the PAN 2015 Author Profiling

Shared Task to predict personal attributes, as per the project brief. Four corpora, each in a different

language, were provided. Each corpus consisted of collections of tweets for a number of Twitter

users whose gender, age and personality scores are know. The task was to construct some system

capable of inferring the same attributes on as yet unseen authors. Our system utilizes two sets of

text based features, n–grams and topic models, in conjunction with Support Vector Machines to

predict gender, age and personality scores. We ran our system on each dataset and received results

indicating that n-grams and topic models are effective features across a number of languages. These

results have also been submitted to PAN at CLEF 2015 [22].

2 Introduction

2.1 Author Profiling

Author profiling is the problem of determining the characteristics of a set of authors based on

the text they produce, how they behave and with whom they interact. An author profiling task

will typically centre on predicting one or more attributes of one or more authors. An attribute

can represent any element of a persons self, ranging from obvious outward characteristics such as

gender and age, to more personal qualities such as personality, political leaning or sexual orientation

[10, 2, 28, 26, 12].

Techniques have been shown to be viable across a wide range of attributes and domains. Earlier

studies focussed on traditional media such as the British National Corpus [10] and student essays,

as well as digital yet still formal media such as email [5] and transcriptions of interview speech

[16, 14]. With the advent of open online platforms, many later studies took on a digital approach,

focussing on more casual platforms such as blogs [28] and social media [20]. Despite this studies in

traditional media continue to be relevant, for example, one study attempts to identify political bias

in supposedly impartial texts [9].

Online platforms provide authors with options that do not exist in traditional media. Blogs and

other internet media, for example, often provide users with mechanisms to alter the formatting of

their text either with simple menu options or a more technical approach with HTML, CSS or some
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custom styling language. It is possible that these formatting choices could be indicitive of some

attributes [28], with one aproach [1] predicting author gender fairly accurately with only profile

background color!

As well as covering many domains, a wide variety of attributes have been tackled with varying

degrees of succes. Early studies focussed on more obvious traits such as age and gender, beggining

with [10] study of gender in the British National Corpus. Additional studies soon followed, looking

at many additional aspects such as personality [2], first language [11] and level of education [6, 7].

With the advent of social media and blogs, data became much more readily available, as such

many studies were repeated and extended to cover social media, as well as investigations into new

attributes such as ethnicity [25], political ideology [26] and sexual preference [12].

A range of potential applications exist for author profiling techniques, many of which give rise

to deep ethical considerations. A company or organisation could use an author profiling tool to

identify their core user-base. Marketers could further target advertisement to social media users

who are determined to hold particular characteristics. Law enforcement could potentially use such

a system to link on-line criminal behaviour with individuals. Studies have already investigated the

use of author profiling techniques in identifying on-line grooming [20].

The project brief specified that the affect of including LDA topics in with traditional text features

was to be examined. As such a machine learning approach was employed to predict gender, age and

personality. Topic models, implemented using Latent Dirichlet Allocation (LDA) [3], and n–gram

language models were used to extract features to train Support Vector Machine (SVM) classifiers

(for gender and age) and regressors (for personality dimensions).

2.2 Task Outline

For the Author Profiling task at PAN 2015, a set of Twitter users whose gender, age and personality

is known is provided. These users are further divided into four languages: Italian, English, Dutch

and Spanish. The task is, given a single set of these users, some judgement of age, gender and

personality must be made on as yet unseen users [24].

Four corpora of tweets of different languages are provided. The corpora are balanced by author

gender, such that there is an equal number of male and female authors present in each corpus.

There is no guarantee that each author has the same number of tweets, and as such over-fitting

to particular authors is a risk. For age there is definite imbalance, with particular age groups
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containing many more authors.

The task of determining age in this case has been converted to a classification problem, where

a range of ages is to be predicted rather than a continuous value. Gender is also a classification

problem; binary selection of male or female.

Personality prediction in this task was to estimate each user’s “Big 5” personality scores, in the

range of −0.5 to 0.5, and is treated as a regression problem. The personality dimensions considered

are all of the Big 5: openness, conscientiousness, extraversion, agreeableness, and neuroticism.

3 Methods, Assumptions and Procedures

3.1 Data and Preprocessing

The text provided proved to be quite clean and little pre-processing was required other than to-

kenisation. Despite this, other potential avenues were investigated.

In early experiments on the data, all short-links present in the text were followed and converted

to the domain name of the website found, as previous author profiling studies have identified website

use as a potential analogue for some attributes [18, 4]. This was discarded in the final approach

as no improvement could be noted with its inclusion. A similar experiment was also performed to

replace all links with a single “link present” token, but again no improvement was noted.

The Twitter specific step of eliminating “retweets” was also considered, although the provided

data contains so few retweets this step was deemed unnecessary. In most other Twitter profiling

tasks this would be included. Another consideration is that some Tweets are in the form “shared

via some app”, and do not register as retweets. These are not considered in the scope of this shared

task, but may be a useful addition in future experiments.

3.2 Feature Extraction

In the final approach word n–grams and topics from topic models were used as features. Other

features were experimented with in early development, but discarded due to poor performance. In

this section the features experimented with are presented and discussed. In order to assess the

affect of various features a 10-fold cross validation was performed on the training data.

3



n–gram language model Throughout early experiments it became apparent that unigrams and

bigrams together produced the most reliable results and as such would form the basis of any system

developed. n–grams were weighted using the tf-idf term weighting scheme, where a term’s rating

is based not only on its frequency in a document, but also against how common the term is in the

whole set of documents, rating very common terms lowly and uncommon terms highly.

A stop-list was not used in building the n–gram feature vectors due to the multi-lingual nature

of the problem, instead all tokens that appeared in more than 70% of the documents, as this is a

roughly analogous, language independent technique.

Topic model Topic models are a group of algorithms that identify hidden themes (topics) in

collections of documents. The topic model used in this approach is Latent Dirichlet Allocation [3],

a generative model in which documents are modelled as a finite mixture of topics, such that each

word in a document must be generated by one of its topics. Topic models were implemented using

the library gensim [27]. Topic models have been shown to produce reliable results when used alone

and in conjunction with other features [21, 29].

As part of the training process an LDA topic model is trained on the input data, with a target of

10 topics. Ideally the model would be trained on a large additional corpus to produce more robust

topics, sadly due to time and computational constraints this was not possible in the scope of this

shared task.

The trained model is then used to infer topics, labelled as present or not, on unseen documents.

There is also the option to weight a topic feature by the likelihood that it belongs to the input text,

although early experiments showed that this added no benefit.

Parts–of–speech In early experiments all tweets were POS tagged as part of the pre–processing

step using a Twitter specific part–of–speech tagger [8]. Various studies have identified POS tags

as a useful feature [26, 29], and despite some improvement being noted, they were not included as

a feature in the final submission, as the part–of–speech tagger used was English specific, and as

such would not be compatible with the other three languages. In future it would be interesting to

examine their affect on non-English results.
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3.3 Assessing Features

10-fold cross validations was used throughout development, to assess the affect of different features

on classifier accuracy. Results from this cross-validation, which motivated feature choice in the final

submission, are presented in Table 2. The feature(s) with the best score for each attribute for each

language is highlighted in bold.

Results are presented in each language for n–gram features, LDA features, and the two in

conjunction. In the English case, results for POS tagged n–grams are also included. These results

show POS tagged n–grams as being the best feature for English gender and age prediction; despite

this they were not used in the final submission, as a comparable POS tagger could not be found for

Spanish, Dutch and Italian tweets.

In most cases n–gram features provided the best results, but not by a significant margin, with

n–grams in conjunction with LDA topics performing similarly. LDA topics on their own proved to

be a very poor quality for the English and Spanish datasets, and gave the worst results in all cases.

The final submission included n–grams in conjunction with LDA topics, as these judgements

proved to be more stable across folds than n–grams on their own.

3.4 System Architecture

The architecture of the submitted system is presented in Figure 1. The system comprises two

main components: a model generation module, and one which uses a pre-trained model to infer the

attributes it contains on unseen documents.

For model generation the training data is fed through several feature extraction modules. Firstly,

an LDA model is trained which is then used in the “Topic Extraction” module. The same data is

also passed through an “n–gram Extraction” module. The resulting feature vectors are then used

to train a machine learning model.

The machine learning algorithm used in the final submission is Support Vector Machines (SVM)

as they have been repeatedly shown to produce better results than other algorithms. Experiments

were performed with ensemble methods and other algorithms, but none beat the results achieved

by the SVM implementation.

For age and gender a Support Vector Classifier with a linear kernel was used. For the per-

sonality recognition element Support Vector Regressors were used, again with a linear kernel. All

implementations were provided in Scikit-learn [19].
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Accuracy Root Mean Squared Error

Language Features Gender Age E N A C O

English n-gram 0.7754 0.7245 0.1510 0.1876 0.1568 0.1410 0.1281

LDA 0.5062 0.4683 0.1949 0.2424 0.1776 0.1686 0.1625

n-gram + LDA 0.7500 0.7438 0.1559 0.2010 0.1522 0.1422 0.1327

POS 0.7758 0.7829 0.1561 0.2026 0.1700 0.1443 0.1348

Spanish n-gram 0.8800 0.7300 0.1501 0.1691 0.1426 0.1468 0.1520

LDA 0.5400 0.4100 0.1715 0.2469 0.1795 0.2199 0.1967

n-gram + LDA 0.8000 0.7200 0.1537 0.1831 0.1502 0.1617 0.1550

Dutch n-gram 0.8250 N/A 0.1112 0.1754 0.1374 0.1039 0.1123

LDA 0.7083 N/A 0.1618 0.2366 0.1873 0.1355 0.1470

n-gram + LDA 0.7083 N/A 0.1307 0.1845 0.1476 0.1162 0.1165

Italian n-gram 0.8500 N/A 0.1208 0.1600 0.1283 0.1110 0.1377

LDA 0.6000 N/A 0.1963 0.2602 0.2150 0.1565 0.2441

n-gram + LDA 0.7083 N/A 0.1461 0.1670 0.1492 0.1190 0.1442

Table 1: Classifier accuracy and mean squared error results from cross validation on training data

The resulting model can then be presented with previous unseen documents, and perform judge-

ments on the author attributes it was trained with.

4 Results and Discussion

The results of the final system run submitted to PAN 2015 are presented in Table 2. The system

performed best on the Italian dataset, achieving a global score above 0.8, where scores for submitted

systems ranged from 0.8658 to 0.6024. For the English and Spanish corpora scores were in the ranges

0.7906 to 0.5217 and 0.8215 to 0.5049 respectively, with the results obtained by our system falling

roughly in the middle of these ranges. The worst performance was obtained for the Dutch dataset,

scoring on the bottom end of the range 0.9406 to 0.6703.

In most cases the final results are worse than those observed by applying cross-validation to the

training data. However similar or better results were observed for some personality elements across

languages. English age prediction and Spanish gender prediction also achieved reasonable scores

compared to the cross-validation.
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Figure 1: Architecture of presented system.

The results show that n–grams and topic models are a useful element in developing author

profiling systems across a number of languages and provide reasonable results without any additional

features. In order to improve the system without adding any other features the LDA topic model

could be trained on a large external corpus of text, in theory leading to a more robust model.

Additional stylometric features such as readability and text structure could also be applied to

assess their affect on performance.

The way an author behaves in the context of interacting with their medium (be it social media,

conversation or essay writing) has, in other studies, be telling of their characteristics. For example,

according to the big five model of personality an extroverted person is likely to be more outgoing,

assertive and have a positive demeanour [17]. Conversational elements have also been shown to be

useful [16, 14, 15].

It is also possible to code for behaviour in online media. Studies have identified varying patterns

of social media activity times in areas of high and low unemployment, with those low employment

areas seeing a sharp rise in posts around the start of the working day [13]. Other studies have

attempted to detect conversational behaviours on social media, as earlier research showed them to

be of use for author profiling.
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An analysis of an authors social network can also give rise to interesting judgements about

them. It has been shown for example, that the presence of certain “Likes” made by an author on

the platform Facebook, can be indicative of wide number of characteristics. Other social network

properties may also be useful, in [23] four distinct groups of users, where each group has similar

personality scores, were identified, based on a user’s tendency to follow, be followed and favourite

tweets on Twitter.

For the purpose of this project hovever, these techniques were not further investigated, due to

the format of the provided data, although in future it would be very interesting to assess their effect

on system performance.

Accuracy Root Mean Squared Error

Language Global RMSE Gender Age Joint E N A C O

English 0.6743 0.1725 0.6901 0.7394 0.5211 0.1381 0.2223 0.1918 0.1749 0.1352

Spanish 0.6918 0.1619 0.8409 0.5909 0.5455 0.1669 0.2285 0.1398 0.1412 0.1329

Italian 0.8061 0.1378 0.7500 N/A N/A 0.1279 0.1923 0.1257 0.1187 0.1243

Dutch 0.6796 0.1409 0.5000 N/A N/A 0.1752 0.1511 0.1444 0.1344 0.0993

Table 2: Results of final software submission including global rankings and individual attribute

performance

5 Conclusions

In this document we have presented our findings regarding the affect of the inclusion LDA topics

in conjunction with traditional text features. We used Support Vector Machine classifiers and

regressors in conjunction with n–gram and topic features, in order to provide judgements on age,

gender and personality. Our findings indicate that the addition of LDA topics does improve system

performance in most cases.

In future work we would like to investigate the effect of additional text and non-text features

on classifier performance, as well as an investigation into system performance on larger datasets.
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