

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ADAPTIVE METHOD FOR SCHEDULING THE
SEQUENCE AND ROUTE OF BUILDER TRIALS FOR A

NEW SHIP

by

Ahmed Raza Tahir

September 2015

Thesis Advisor: Susan M. Sanchez
Second Reader: William Solitario

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
AN ADAPTIVE METHOD FOR SCHEDULING THE SEQUENCE AND
ROUTE OF BUILDER TRIALS FOR A NEW SHIP

5. FUNDING NUMBERS

6. AUTHOR(S) Tahir, Ahmed Raza
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Before a newly built ship is brought into service, it has to undergo various trials as part of its delivery. The
builder shipyard aims at completing the maximum number of trials in the minimum possible time. Many
trials have one or more prerequisites and every trial may have certain environmental requirements for its
conduct. At sea, the success of any specific trial cannot be guaranteed. A dynamic tool is needed to help
decision makers rapidly construct alternative trial sequences after the failure of any trial, and aid them in
deciding whether the trials can be continued, or the ship has to return to the harbor for repairs. This thesis
develops such an adaptive tool, which generates an optimal sequence and feasible route for conduct of a
given set of trials, minimizing the total time required in the absence of failures or adverse environmental
conditions. The tool allows the user to generate alternate sequences of trials if an early trial fails.
Simulation of the conduct of trials, under varying environmental conditions, reveals that the number of
retries is the most important factor affecting the outcomes. It also identifies bottlenecks in the network,
providing insight about onboard spare supportability for important systems.

14. SUBJECT TERMS
builder trials, optimal sequence and route, robust solution, layered network, shortest path,
design of experiments, simulation

15. NUMBER OF
PAGES

117
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ADAPTIVE METHOD FOR SCHEDULING THE SEQUENCE AND ROUTE
OF BUILDER TRIALS FOR A NEW SHIP

Ahmed Raza Tahir
Lieutenant Commander, Pakistan Navy

B.E., Pakistan Navy Engineering College, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Susan M. Sanchez
Thesis Advisor

William Solitario
Second Reader

Patricia A. Jacobs
Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Before a newly built ship is brought into service, it has to undergo various trials as

part of its delivery. The builder shipyard aims at completing the maximum number of

trials in the minimum possible time. Many trials have one or more prerequisites and

every trial may have certain environmental requirements for its conduct. At sea, the

success of any specific trial cannot be guaranteed. A dynamic tool is needed to help

decision makers rapidly construct alternative trial sequences after the failure of any trial,

and aid them in deciding whether the trials can be continued, or the ship has to return to

the harbor for repairs. This thesis develops such an adaptive tool, which generates an

optimal sequence and feasible route for conduct of a given set of trials, minimizing the

total time required in the absence of failures or adverse environmental conditions. The

tool allows the user to generate alternate sequences of trials if an early trial fails.

Simulation of the conduct of trials, under varying environmental conditions, reveals that

the number of retries is the most important factor affecting the outcomes. It also identifies

bottlenecks in the network, providing insight about onboard spare supportability for

important systems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND AND MOTIVATION ..2
B. THESIS OBJECTIVES ...3
C. THESIS ORGANIZATION ..3

II. LITERATURE REVIEW ...5

III. METHODOLOGY ..7
A. PLANNING PHASE ..8

1. Generation of Sequence ...8
2. Creation of Layered Network ...8
3. Finding the Route to Complete All Trials..................................12

B. SIMULATION ...13
C. FACTORS AND RANGES ...14
D. ASSUMPTIONS ...15
E. LIMITATIONS ..16
F. DESIGN OF EXPERIMENTS ...16

IV. RESULTS AND ANALYSIS ..17
A. GENERAL RESULTS...17

1. Input Data File ...17
2. Sequence of Trials ..19
3. Generating Multiple Feasible Trial Sequences19
4. Generating the Path ...19
5. Out of Bound Areas ...21

B. SIMULATION AND DESIGN OF EXPERIMENTS22
C. MEASURES OF EFFECTIVENESS ...25
D. SIMULATION RESULTS ..26

1. Regression Model ...30
2. Identification of Important Systems...31

E. SIMULATION RE-RUNS...32
1. Simulation Re-run Results ..33
2. Regression Model for Simulation Re-run35

F. COMPARISON OF RESULTS ..36
G. DISCUSSION ...39
H. MODEL ENHANCEMENTS ...40

 viii

V. CONCLUSIONS AND RECOMMENDATIONS ...41

APPENDIX A. CONTENTS OF INPUT DATA FILE ..43

APPENDIX B. PYTHON FUNCTION TO GENERATE THE SEQUENCE
OF TRIALS ..49

APPENDIX C. PYTHON CODE TO GENERATE MULTIPLE FEASIBLE
SEQUENCES ...51

APPENDIX D. PYTHON CODE TO GENERATE THE PATH FOR TRIAL
CONDUCT ...53

APPENDIX E. PYTHON CODE TO RUN SIMULATIONS61

APPENDIX F. PYTHON CODE TO CALCULATE BETWEEN-NESS AND
CLOSENESS CENTRALITY ALONG WITH RESULTS75

APPENDIX G. PYTHON CODE FOR SIMULATION RE-RUNS77

LIST OF REFERENCES ..91

INITIAL DISTRIBUTION LIST ...93

 ix

LIST OF FIGURES

Figure 1. General Flow of Events in the Model. ...7

Figure 2. Major Steps in Planning Phase. ...8

Figure 3. Flow Chart Showing the Creation of the Layered Network.9

Figure 4. General Trials Area. ...9

Figure 5. Trials Area Superimposed with Grid. ..10

Figure 6. Portion of depths.csv File. ..11

Figure 7. Illustration of Nodes and Edges in a Single Layer.12

Figure 8. Illustration of the Layered Network. ..12

Figure 9. Flowchart Showing the Broad Logic Scheme of Simulation Model.13

Figure 10. Route Plot for 10 Trials..21

Figure 11. Route Plot for 10 Trials with Interdiction Area. ..22

Figure 12. Scatterplot Matrix of Input Factors. ...24

Figure 13. Distribution and Summary Statistics of Input Factors.25

Figure 14. Correlation Matrix for Input Factors..25

Figure 15. Histograms and Summary Statistics of Mean and Standard Deviation
of Number of Trials Completed. ..26

Figure 16. Partition tree for Mean Number of Trials Completed as Response
Variable. ...28

Figure 17. Total Time vs. Number of Trials Completed Overlaid by Number of
Retries. ...29

Figure 18. Regression Summary for Mean Number of Trials Completed.30

Figure 19. Closeness Centrality Plot. ..31

Figure 20. Between-ness Centrality Plot. ..32

Figure 21. Histograms and Summary Statistics of Mean and Standard Deviation
of Number of Trials Completed. ..33

Figure 22. Partition Tree with Mean Number of Trials Completed as Response.34

Figure 23. Results of Regression Model. ..35

Figure 24. Regression Model Results for Simulation Re-run.37

Figure 25. Total Time vs. Number of Trials Completed, Overlaid by Number of
Retries (k) when all Systems Given Same Number of Retries.
Results of Subset Where Number of Trials Completed > 70.
Simulation Runs with Lower Value of k not Seen Very Often..................38

 x

Figure 26. Total Time vs. Number of Trials Completed, Overlaid by Number of
Retries (k), when One Extra Retry is Given to the Ten Most
Important Systems. Results of Subset Where Number of Trials
Completed > 70. Simulation Runs with Lower Value of k
Completing More Trials. ..39

 xi

LIST OF TABLES

Table 1. Factors and Ranges Used in the Simulation Experiment.15

Table 2. Portion of Data.csv File. ...18

Table 3. Sequence to Conduct all Trials. ...19

Table 4. Route to Conduct All Trials. ..20

Table 5. Design Points for the Simulation, where the Factors are: n (Total
Number of Acceptable Failures), k (Number of Retries per Trial),
Wind State, Sea State, and Speed of the Ship. ...23

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure

CSV Comma Separated Value

DOE Design of Experiments

DoN Department of the Navy

GL Germanischer Lloyd

GUI Graphical User Interface

HLA High Level Architecture

KS&EW Karachi Shipyard & Engineering Works

MOE Measure of Effectiveness

NOLH Nearly Orthogonal Latin Hypercube

NSRP National Shipbuilding Research Program

RTI Run Time Infrastructure

SHIP Ship and Installation Program

SOLAS Safety of Life at Sea

US United States

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

THESIS DISCLAIMER

The reader is cautioned that the computer programs presented in this research may

not have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logical

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Before a newly built ship is brought into service, it has to undergo various trials as

part of its delivery from the builder shipyard to the owner. Many types of equipment and

performance are tested during the delivery trials. These trials are generally conducted in

two phases, i.e., harbor trials and sea trials. This research focuses only on the sea trial

phase. These trials are conducted to verify the design parameters of the ship, the

operability of main and auxiliary machinery, and the weapons and sensors for warships.

The builder shipyard aims at minimizing the total time to conduct the sea trials, as it

involves expenses such as fuel, crew, trial equipment, trial team, and food. Many trials

have one or more prerequisites. For example, a prerequisite for conducting a speed test

might be successful completion of an engine test. Moreover, every trial may have certain

environmental requirements for its conduct, such as a minimum water depth, sea state

limitations, or maximum wind force.

This gives rise to a complex network problem, considering that there are multiple

sequences in which these trials can be conducted and each trial requires the ship to be

routed to an appropriate position at sea. While at sea, the success of any specific trial

cannot be guaranteed, and therefore a dynamic tool is needed to help decision makers

rapidly construct alternate trial sequences after the failure of any trial, and aid them in

deciding whether the trials can be continued or the ship has to return to harbor for repairs.

This thesis develops such an adaptive tool, which generates an optimal sequence

and feasible route for conduct of a given set of trials, minimizing the total time required

in the absence of failures or adverse environmental conditions. The tool allows the user to

generate alternate sequences of trials if an early trial either cannot be attempted, or is

attempted but unsuccessful. After generating the sequence of trials, important systems in

the network are identified based on their measures of closeness centrality and between-

ness centrality. These measures give the importance factor for nodes in the network based

on number of edges and number of shortest paths a node is on. Figure 1 shows the results

plotted for a small-scale model run using only ten trials.

 xviii

Figure 1. Small-scale model run using ten trials.

After successful development of this scheduling and routing tool, the sea trials

phase is simulated using designed experiments to study the effects of environmental

conditions, namely sea state and wind force, as well as the total number of acceptable

failures (n), number of retries for each trial in case of its failure (k), speed of transit, and

probability of success for each trial.

The primary measure of effectiveness (MOE) is the number of trials completed

before returning to port. Simulation of the sea trial process under varying environmental

conditions, specified by a designed experiment, provides the key insight that number of

retries for each trial (k) is the most significant input factor for our MOE of number of

trials completed. The results may be translated as: the higher the number of retries given

to each system, the higher will be the number of trials completed. However, this is not a

feasible option in actual practice, as ships will end up spending a very long time out at

sea if too many retries are allowed. Therefore, a second experiment re-runs the simulation

by giving one extra retry to the ten most important systems. This extra retry can be

translated into the spares availability onboard for important systems, and gives the

important systems an extra retry for conduct. Descriptive statistics, partition trees, and

regression models from the simulation re-run show that allowing one extra retry for

important systems leads to a substantial increase in the number of trials completed.

 xix

Following are the summarized results of this research:

• The tool may be used in the initial planning phase to find a sequence to
conduct trials, taking into consideration all the prerequisites to complete
those trials.

• The tool may be used in the initial planning phase to find a route for this
sequence, minimizing the time to complete all trials in the absence of
failed attempts or adverse environmental conditions.

• The simulation results reveal the distribution of outcomes possible if failed
attempts are possible or adverse environmental conditions are present.
This information may also be useful in the initial planning phase.

• The number of retries per trial (k) is the most important determinant of the
number of trials completed before the ship returns to port.

• The tool may be used to identify important systems for spare
supportability. This will in essence give the important systems one extra
retry (k) in case of a failed attempt.

• In case of failure of a system at sea, the tool may be used to generate an
alternate sequence for conduct of trials for remaining systems.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

ACKNOWLEDGMENTS

First of all, I would like to express my deepest appreciation to Professor Susan

Sanchez for her patience, simulation and data analysis insights, valuable suggestions, and

being a great mentor throughout my research. Without her guidance and support it would

be hard to complete this thesis. I would also like to thank my second reader, Professor

William Solitario, for his support and providing me operational insights, especially

during the initial development phase. I would also like to thank Professor Ned Dimitrov,

who provided me with valuable ideas when I first introduced the problem to him. I would

like to thank Steve Upton for his support in running large experiments on the SEED lab

cluster computer.

I would like to thank my wife, Asma, for her endless patience and encouragement

during this time. She never complained about taking care of our lovely boy, Muhammad,

alone, and I always found a smiling face from her when I came home. Without her

precious love, this time would be hard for me.

Finally, to my parents who always prayed for my success and have made me the

person I am today.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The shipbuilding industry in Pakistan has been limited to smaller ships and

tugboats in the past. The Karachi Shipyard is the major shipyard in the country, and most

of the shipbuilding work being done is for the Pakistan Navy and the Karachi Port

Authority. Vessels built by the Karachi Shipyard include smaller missile boats, ocean

tugs, corvettes, submarines, and in the recent past frigates. The Karachi Shipyard is also

involved with repair, rebuilding, and overhauling of naval and commercial vessels

(http://www.karachishipyard.com.pk/).

Before bringing a newly built ship into service, it has to undergo various trials as

part of its delivery from the builder shipyard to the owner. The conduct of builder trails is

a complex process. There are hundreds of systems on a ship and each system has its own

prerequisites that include, but are not limited to, completion of other trials before

attempting that trial, sea state and wind requirements, and specific water depth

requirements. While at sea, if a system fails during the conduct of its trial, the decision

makers are faced with the problem of deciding whether to stay out at sea and continue

with remaining trials, or proceed back to port to fix the failed system and return for

conduct of trials. This decision often becomes the source of long debates as a number of

stakeholders are involved. The builder shipyard aims at completing the maximum

possible trials at sea, while the ship crew does not want to miss any prerequisites and

therefore tends to stick with the original plan. There is no adaptive tool present with the

decision makers at sea which can provide them insight into the future possibilities and

help them make the decision whether to stay out at sea or return to port.

This thesis deals with development of an adaptive tool to generate an optimal

sequence, and possible feasible route to be taken, for conduct of a given set of trials

minimizing total time for conduct of trials. After successful development of this

scheduling and routing tool, the process of conduct of trials is simulated in a structured

way, applying a design of experiments approach that varies environmental conditions to

develop a robust optimization solution for the sequence of conduct of these trials and the

route to be taken.

 2

A. BACKGROUND AND MOTIVATION

Before bringing a newly built ship into service, it has to undergo various trials as

part of its delivery from the builder shipyard to the owner. Many types of equipment and

performance are tested during these delivery trials (Haakenstad, 2012). These trials are

generally conducted in two phases, i.e., harbor trials and sea trials. The sea trials are

conducted to ensure that the system is in compliance with the standards, and meets the

claims made by the manufacturer regarding system specifications. These trials include the

validation of ship design based on parameters such as stability and seakeeping ability,

maximum speed, and fuel consumption (Hart, 2000). Warships have more systems

installed on them compared to the merchant vessels. Additional systems may include but

are not limited to weapons, sensors, auxiliary systems, and auxiliary machinery to

support these weapons and sensors. This thesis research focuses on the sea trials phase

only.

For the conduct of sea trials, the builder shipyard aims at minimizing the total

time to conduct these trials, as it involves expenses such as fuel, crew, trial equipment,

trial team, food, etc. In certain cases, the trials have prerequisites to be completed. For

example, a prerequisite can be completion of engine test before conduct of speed test. In

many cases there are multiple prerequisites to be completed. Moreover, every trial may

have certain environmental requirements for its conduct, for example minimum water

depth requirement, sea state and wind force, etc.

This gives rise to a complex network problem, considering the fact that there are

multiple sequences in which these trials can be conducted and each trial requires the ship

to be in a certain position at sea. While at sea, the success of any specific trial cannot be

guaranteed. In the case of an unsuccessful trial for any system at sea, the decision makers

are faced with the dilemma of future plans. Options are very limited while at sea; they

may include fixing and retrying the trial, leaving the failed trial and proceeding with the

remaining trials, or in extreme cases returning to port to fix the failed system. At present,

there is no tool available to decision makers while they are out at sea to reschedule the

possible sequence after removing the failed trial from the list. Decision makers also need

an updated feasible route for conduct of remaining trials. This thesis takes the motivation

 3

from this problem and provides the decision makers with a dynamic tool that can

generate alternate optimal sequences and routes for conduct of trials in case of failure of a

given system. The tool also gives the decision makers visibility on remaining trials. This

information aids the decision maker with their decision to stay out at sea or return to port.

B. THESIS OBJECTIVES

This research focuses on effective and adaptive scheduling of the sequence of

builder trials for a newly built ship, along with the route to be taken. The result is aimed

at reducing the total time taken to conduct the trials, thereby reducing the overall cost of

the trials. Following are the broad research questions:

• What are possible sequences to conduct builder trials for a newly built
ship with the objective of minimizing the time at sea subject to the
prerequisites and specific trial requirement for a given set of conditions?

• What are possible alternate sequences in case some trials are deleted from
the list due to any reason such as system failure?

• What is an optimal route to conduct the generated sequence of trials? For a
given mix of trials and sea conditions, how variable are the results if the
initial sequence is used?

• What are the results of simulating the process of conduct of trials by
applying design of experiments (DOE) to the model? Factors such as wind
force, sea state, permissible number of failures and retries, and probability
of success for each trial will be varied for DOE.

This research develops a dynamic tool which can be used for finding the sequence

and route for conduct of builder trials for a ship. The study also identifies the important

factors that have the greatest impact on the time taken to complete trials and the number

of trials completed in a single trip to sea.

C. THESIS ORGANIZATION

The study uses a simulation model and state-of-the-art design of experiments to

quantify the risk associated with conduct of builder trials. Chapter II is a literature review

that identifies past research on this topic. Chapter III discusses the methodology. It

examines the model structure, variables, constraints, limitations, and assumptions, and

provides details about the design of experiments used to make multiple runs of the model.

 4

Chapter IV deals with analysis of the results. Chapter V is conclusion. It also gives

recommendations and associated future work with the research.

 5

II. LITERATURE REVIEW

This chapter explores the past work that has been done with regards to the

conduct of trials for newly built ships. Although there is no directly related work in the

past, most of the works done are in areas of ship building, shipyard design to improve the

shipbuilding process, and procedures and requirements for conduct of trials for newly

built ships. A brief description of past works is shown in ensuing paragraphs.

Carter (2005) discusses the shipbuilding program history for the U.S. Navy, and

analyzes case studies explaining the importance of system integration during the process

of shipbuilding. She presents both cases with successful system integration, and not so

successful as well. The research discusses the ideas and concepts to simplify the process

of ship design and system integration. Successful system integration during the design

phase may reduce the need for major design changes during the building process.

Colgary and Willet (2006) use an integer linear program to study the Navy’s

Configuration Analysis, which includes the surface and subsurface vessel stationing

problem. Their Ship and Installation Program (SHIP) calculates the minimum cost ship

stationing requirements, while maintaining the operational requirements constraints.

SHIP has the ability to propose future force structure disposition as well. Their work

might be combined in the future with this research for large-scale, multi-ship trial

scheduling.

McLean and Shao (2001) discuss the objectives and requirements for a

shipbuilding simulation. The research work mainly involves a generic simulation of the

shipbuilding operation. This simulation model helps identify scheduling conflicts with

regard to job completion, as well as various resource allocation problems that can arise

during the shipbuilding operation. The results help identify the requirements of new

technologies, especially with regards to scheduling and cost.

The National Shipbuilding Research Program (NSRP) (1999) examines the rules

and regulations for commercial ships inspection, and identifies differences and

similarities within existing requirements from several standards organizations. The main

 6

results of the study are a sample trial database for a commercial ship, plans for conduct of

the trials, and comparison matrices for highlighting the differences and similarities in the

existing regulations. One of these standards organizations, Germanischer Lloyd (2012),

provides general guidelines for sea trials before commissioning a vessel. The guidelines

in these rules provide all the stakeholders with an overview of the process of sea trials

which is required to fulfill the requirements of Germanischer Lloyd (GL) and the

International Convention for the Safety of Life at Sea (SOLAS). The data organization in

this thesis is broadly based on the GL rules and NSRP procedures.

Haakenstad (2012) provides a general discussion on the process of sea trials of

ships. The research mainly deals with the conduct of speed trials of the ship and the

process of applying corrections to the speed trials. She discusses in detail how the

corrections are applied to speed trials and also discusses various methods to apply these

corrections. She also compares the results from corrections applied by shipyards with

results from corrections applied based on standards, and discusses the impact of these

differences on final results. This underscores the importance of considering

environmental and atmospheric conditions on sea trials. This thesis analyzes the general

impact of these and other factors on trial success, rather than detailed effects on

individual trials.

There has been a tremendous amount of work done in the past with regard to the

shipbuilding process; however, there is no tool available which deals with the complete

process of sea trials. The previous work either deals with individual trials (Haakenstad,

2012) or focuses on the process of shipbuilding rather than testing (Carter, 2005; McLean

and Shao, 2001). The research in this thesis is aimed at consolidating the process of

scheduling the process of sea trials and additionally providing the route for conduct of

those sea trials. The adaptive nature of the tool allows the user to regenerate the

sequences and routes in case of system failures at sea.

 7

III. METHODOLOGY

The simulation developed for this thesis models the process of planning and

conduct of builder trials for a newly built ship. The planning phase consists of generating

a sequence to conduct the trials and finding the route to conduct those trials, while

keeping track of the sea depth required for each trial and other prerequisites. The conduct

phase uses the information from the planning phase and simulates the conduct of trials

under varying operational factors, including probability of success for each trial. Both the

planning and conduct phases are developed using the Python programming language

(Python website). Figure 1 shows the sequence of events in the model.

Figure 1. General Flow of Events in the Model.

 8

A. PLANNING PHASE

The major steps in the planning phase are shown in the flowchart in Figure 2, and

then described in more detail.

Figure 2. Major Steps in Planning Phase.

1. Generation of Sequence

This portion of the program takes the Data.csv file as input. The Data.csv

file contains the trial information, which includes the trial name, time to complete,

prerequisites for the trial, average speed during conduct, minimum sea depth required,

sea state and wind force requirements, and mean and standard deviation of the

distribution of probability of success (discussed further in Section B). Complete contents

of Data.csv are shown in Appendix A.

After reading the data file, the Python program (modified Dimitrov, 2014) creates

a directed graph that takes into account all the prerequisites for all trials. A topological

sort of the graph generates the sequence to conduct the trials. See Appendix B for details

of the function to generate the sequence.

2. Creation of Layered Network

In order to find the shortest path to conduct all trials, a layered network is created.

The flow chart in Figure 3 shows the sequence of events for generation of the layered

network.

 9

Figure 3. Flow Chart Showing the Creation of the Layered Network.

The input file is named depths.csv for this phase. The depths.csv file

contains depth information for the trial area, which has been divided into 1x1 Nautical

Mile grid boxes. Depth is noted at every grid point and is recorded in the depths.csv

file. Figure 4 shows the general trials area, and Figure 5 shows trial area superimposed

with the grid.

Figure 4. General Trials Area.

From Google Earth Pro (2015, August), Izmir, Turkey [Terrain Map]. Retrieved from
Google Earth Pro Version 7.1.2.2041 on August 15, 2015.

 10

Figure 5. Trials Area Superimposed with Grid.

After Google Earth Pro (2015, August), Izmir, Turkey [Terrain Map]. Retrieved from
Google Earth Pro Version 7.1.2.2041 on August 15, 2015.

The trial area map has been chosen from Google earth. It shows the Izmir harbor

in Turkey, however, depths recorded in the depths.csv file are not actual charted

depths but approximations to nearest charted depths. The red dot represents the starting

and ending location for the trials. The grid is represented as Cartesian coordinate (x,y)

pairs, and numbering starts from top left as position (1,1). Figure 6 shows a portion of the

depths.csv file.

 11

Figure 6. Portion of depths.csv File.

Every number is noted as a Cartesian coordinate in the grid with top left of the

area as position (1,1). All depths noted as ‘0’ represent land or areas not safe for

navigation. The user needs the dimensions of the grid (number of rows and number of

columns) as input parameters while reading the depths file into python.

The program reads in the depths file and, based on the sequence created in

planning phase, generates a layered network. Edges in a single layer represent the transit

between grid locations. The edge cost between nodes of a single layer is calculated as

follows:

where ‘Speed’ represents the transit speed of the ship in knots while transiting to adjacent

node in the grid. Figure 7 illustrates nodes and edges within a single layer.

1.0_ NMEdge Cost
Speed

=

 12

Figure 7. Illustration of Nodes and Edges in a Single Layer.

Each layer in the network represents a single trial over the entire trial area. Edges

between layers in the graph represent trial completions. The edge cost between layers is

the time taken to complete the trial. Figure 8 shows an illustration of the layered network.

Figure 8. Illustration of the Layered Network.

3. Finding the Route to Complete All Trials

After successful generation of the layered network, the model finds the shortest

path for completion of all trials. The model also gives the minimum time taken to

 13

complete the trials. This is done by using the built-in shortest_path function in the

networkx module of Python. The result is a list of nodes that represents completions of

trials at specific locations at sea. The time to complete all trials provided by the model

assumes that all trials are successful on the first attempt, so it serves as a lower bound on

the time it will take to complete all trials when failed attempts are possible.

B. SIMULATION

The simulation phase includes generating the sequence of trials, creating the

layered network, finding the route to conduct the trials, and finally simulating the process

of conduct of trials under varying input conditions. The flowchart in Figure 8 shows the

sequence of events for the model.

Figure 9. Flowchart Showing the Broad Logic Scheme of Simulation Model.

The first step in the simulation reads the user inputs for values of k (number of

retries allowed per trial), n (Total number of trial failures acceptable), sea state (between

 14

1 and 5), wind force (between 1 and 6), and speed of transit. After these values have been

recorded, the data.csv and depths.csv files are read in, and the sequence of trials and route

for trials are generated. Thereafter, the conduct of each trial in sequence is simulated. The

probability of success for a specific trial is drawn from an approximately normal

distributed with a user-specified mean and standard deviation. (The approximation arises

because any generated values below zero are set to zero, and any generated values above

one are set to one.) The provision for allowing unique probability distributions for each

trial is kept because in the real world, each trial has a separate distribution for probability

of success. Sometimes these can be created from previous trial data. Therefore,

probability of success can be changed for future research where no or very slight

modifications in the program will enable the user to read in specified probabilities of

success for each trial. In this thesis, for a single run of simulation, a separate probability

of success for each trial is generated from the specified distribution. The success or

failure of a particular attempt is adjudicated based on the drawn random number

compared with the probability of success for that trial. If a trial attempt fails and the

current number of retries for that trial is less than k, the trial conduct is retried. If number

of retries has reached the value of k, then the trial is removed from the network, a new

sequence of trials is generated that keeps track of all completed trials along with the ones

that cannot be completed because of removal of previously failed trials. Once the graph is

updated and a new sequence and route has been generated, the process of conduct of

trials is repeated as described above. Also, when a trial fails and the total number of

failed trials has reached the value of n (Total number of failures acceptable), the

simulation stops and the ship returns to port.

C. FACTORS AND RANGES

The simulation has five input variables, or factors, that are explored. The

probability of success for each trial for each simulation run is different as it is a random

draw from an approximate Normal distribution with fixed mean and standard deviation.

The factors are described in Table 1. The high and low levels of the factors are specified

within reasonable acceptable ranges by subject matter experts. Values contained in the

 15

Data.csv file are based on the author’s previous experience as Navigation Officer and

involvement in builder trials of newly built ships.

Table 1. Factors and Ranges Used in the Simulation Experiment.

Input
Variable

Description Min Value Max Value

n
Total number of failures acceptable before
returning to port (1 failure = failure of an
entire trial after allowed retries)

5 15

k
Number of retries per trial before moving
to next

2 5

sea Prevailing sea state 1 5
wind Prevailing wind force (Beaufort Scale) 1 6
speed Speed of transit 10 kn 25 kn

D. ASSUMPTIONS

The main assumptions in the model are made in order to scope the problem in a

reasonable manner. The assumptions are listed below:

• Traffic does not hamper the conduct of trials.

• Trials are conducted in a limited sea area.

• Probability of success for all trials is ~Normally distributed with fixed µ
and σ, where 0< µ <1, σ / µ << 1, and the probability is truncated outside
the interval [0,1].

• Ship only makes one trip to sea to attempt conduct of all trials. Simulation
of conduct does not necessarily conduct all trials and may result in ship
returning to port after acceptable failure cap (n) has reached.

• Every trial can be retried k times before moving to the next trial.

• The decision to return to port is based on value of n, which is the fixed
maximum number of allowed failures.

• Unsuitable weather conditions reduce the probability of success for each
trial by half.

 16

• Areas to be avoided are represented as fixed boxes, and remain out of
bounds throughout the process of conduct of trials.

E. LIMITATIONS

The development of this model is a first effort at the process of generating the

sequence and route for builder trials for a newly built ship. The model is an endeavor to

closely match the real-life process of conduct of builder trials; however, not all aspects

are represented in the model. The limitations in the model are numbered and listed below:

• The simulation does not run through the completion of all trials. If the
number of failed trials reaches the allocated threshold, the ship returns to
port and the simulation stops. In reality, the ship will fix the failed systems
after returning to port and proceed to sea again, repeating this process until
all trials are complete.

• In reality, all trials have different distributions for probability of success.
This aspect has been simplified in the model by assuming identical
distribution with fixed values of mean and standard deviation.

• The model does not allow for simultaneous conduct of multiple trials. In
reality, certain systems have no prerequisites, and can be tested
simultaneously.

F. DESIGN OF EXPERIMENTS

The design of experiments uses the Nearly Orthogonal Latin Hypercube (NOLH)

design spreadsheet (Sanchez, S. M. 2011, NOLHdesigns_V6 spreadsheet) based on the

NOLH designs of Cioppa and Lucas (2007). The high and low values of for the five

factors from Table 1 are entered into the NOLHdesigns_V6.xlsx design spreadsheet, and

design points are generated by stacking and rotating the 17-design point design three

times. This yields a total of 49 distinct design points, because all three stacks have the

same center point. After copying the design points into a comma separated value (CSV)

file, simulation runs are made by replicating each design point ten times. This stacked

NOLH design limits the maximum amount of pairwise correlation, while achieving good

space filling of the regions of interest, for the set of input factors.

 17

IV. RESULTS AND ANALYSIS

The intent of this chapter is to identify and examine results obtained. First, we

generate the sequence to conduct trials followed by generating a feasible route. We also

identify multiple feasible sequences to conduct all trials. Thereafter, the process of

conduct of trials is simulated and various measures of effectiveness are measured for

each run for analysis. After analysis of the results obtained from simulations, we identify

the ten most important trials in the network and give those trials one extra retry for

simulation of conduct of trials. Finally, we re-run the simulation based on identified

important systems and evaluate the performance of the process of conduct of trials. All

graphs and models are generated using JMP Version 12.

A. GENERAL RESULTS

1. Input Data File

A portion of the contents of the input data file used is shown in Table 2. Complete

contents of input data file are attached as Appendix A. The data contained in this file do

not represent actual information, but are notional data for classification reasons. The

prerequisites for trials are defined based on the author’s previous experience with the

process of conduct of builder trials. The ‘Trial’ column gives the name of the trial, and

the ‘ID’ column shows the ID (three letter acronym) assigned to that trial. ‘Time’

represents the time required in minutes to complete that trial, and ‘Depth’ shows the

minimum depth required for conduct of that trial. ‘Prerequisites’ shows the prerequisite

trials that must be completed before conduct of that particular trial. ‘Speed’ gives the

average speed of the ship in knots during the conduct of the trial. The ‘Mean’ and ‘SD’

columns give the mean and standard deviation of the probability distribution used to

generate the probability of success for each trial, as discussed earlier. The ‘Wind’ and

‘Sea’ columns gives the maximum desirable wind force and sea state for conduct of that

trial. In a case where the prevailing wind and sea state at the time of conduct are more

than these limits, the probability of success for that trial is reduced by half.

 18

Table 2. Portion of Data.csv File.

Trial ID Time Depth Prerequisites Speed
Pdist
Mean

Pdist
SD Wind Sea

Engine ENG 105 50

GY2;RDR;
PGS;MSB;
EGS;ESB;
TLI;CO2;
FF1;SWS;
EMS;ECS;
EEX

20 0.65 0.13 2 2

Fin
Stabilizer FIN 60 50 ENG 20 0.65 0.13 3 4

Compartme
nt
Noise

CNS 120 100

ENG;EEX;
AC1;VNT;
SWT;CHW;
RFG;SWS;
CAS;PGS

15 0.65 0.13 1 1

Domestic
Appliances DAP 60 20 GWD 5 0.65 0.13 5 4

Doors
Windows
Hatches

DWH 45 20 10 0.65 0.13 5 4

Crane CRN 45 20 PGS;MSB 5 0.65 0.13 2 2
ICCP
Equipment ICP 30 20 PGS;MSB 10 0.65 0.13 4 3

Marine
Growth
Prevention
System

MGP 30 20 PGS;MSB 10 0.65 0.13 4 3

Liquid Tank
Level
Indications

TLI 30 20 10 0.65 0.13 3 2

Alarm
System ALM 60 20 PGS;MSB 10 0.65 0.13 4 3

Engine
Exhaust
Flaps

EEX 45 50 EMS;ECS;
PGS;MSB 20 0.65 0.13 4 2

FF System FF1 90 20
CO2;SPR;
SWS;FWS;
PWS

10 0.65 0.13 4 3

Sprinkling
System SPR 60 50 10 0.65 0.13 4 3

CO2 Fire
Extinguishin
g System

CO2 45 50 10 0.65 0.13 4 3

19

2. Sequence of Trials

The Python code shown in Appendix B can be used for generating the sequence in

which to conduct the trials. The output from that code, shown in Table 3, is a sequence

for conducting all trials that takes into consideration all the prerequisites.

Table 3. Sequence to Conduct all Trials.
['Start', 'DWH', 'CO2', 'PGS', 'GY1', 'GY2', 'RDR', 'TLI',
'HFE', 'MSB', 'CAS', 'HYD', 'TOW', 'LOS', 'DOS', 'SWS',
'SWC', 'SMA', 'NSL', 'DGS', 'CRN', 'CDW', 'ECS', 'MGC',
'ESS', 'ESD', 'ICS', 'ICP', 'MGP', 'ANC', 'UHF', 'VHF',
'BLR', 'SBT', 'MHF', 'FTS', 'LSE', 'EMS', 'EEX', 'GPS',
'MTR', 'NTX', 'STS', 'MRE', 'CHW', 'ALM', 'CDE', 'CMS',
'SAT', 'RAS', 'VNT', 'SPR', 'BWS', 'SWT', 'FWS', 'GWD',
'DAP', 'AC1', 'RFG', 'PWS', 'FF1', 'CCT', 'EGS', 'ESB',
'PDS', 'BCD', 'SPT', 'ELL', 'ENG', 'CNS', 'SHV', 'EML',
'SPD', 'ZZ1', 'UWN', 'CS1', 'IN1', 'AIS', 'INC', 'ECD',
'CBT', 'FCS', 'CWS', 'GUN', 'OAV', 'CRA', 'TC1', 'FIN',
'AMV', 'End']

3. Generating Multiple Feasible Trial Sequences

As the sequence generated above utilizes a topological sort on a directed graph,

there may be multiple possible sorts in the same graph. Each of the possible topological

sorts in the graph represents a feasible sequence for conduct of these trials. The Python

code of Appendix C can be used to enumerate all the possible combinations of sequences

of trials in the graph. For this thesis, only the sequence shown in Table 3 is explored

further.

4. Generating the Path

After generating the sequence to conduct the trials, the Python code shown in

Appendix D was used for generating the path to conduct all the trials. Table 4 shows the

path generated by the network. Each location is represented as (((x,y), Depth), Trial). In

most cases, the ((x,y), Depth) represents the coordinates and depth where the trial

20

completes, and Trial provides the ID of the scheduled trial. The Trial ID repeated

multiple times represents the transit from port to trial area (‘Start’ in these results) and

transit back to port (‘AMV’ in these results).

Table 4. Route to Conduct All Trials.
Outbound Transit and
Trials 1-23

Trials 24-55 Trials 55-87 Trial 88 and Return
Transit

Location Trial Location Trial Location Trial Location Trial
((38, 38), 9) Start* ((30, 5), 69) ESS ((11, 11), 149) DAP ((20, 9), 101) AMV**
((38, 37), 10) Start* ((29, 1), 119) ESD ((6, 10), 141) AC1 ((21, 10), 97) AMV**
((39, 36), 17) Start* ((32, 3), 142) ICS ((1, 10), 119) RFG ((22, 11), 78) AMV**
((38, 35), 6) Start* ((35, 3), 129) ICP ((9, 12), 68) PWS ((23, 12), 72) AMV**
((39, 34), 14) Start* ((40, 3), 53) MGP ((2, 4), 108) FF1 ((24, 13), 73) AMV**
((38, 33), 3) Start* ((40, 3), 53) ANC ((2, 6), 144) CCT ((25, 14), 78) AMV**
((39, 32), 5) Start* ((42, 3), 52) UHF ((3, 1), 129) EGS ((26, 15), 67) AMV**
((39, 31), 7) Start* ((42, 1), 93) VHF ((4, 5), 149) ESB ((27, 16), 62) AMV**
((40, 30), 39) Start* ((39, 1), 75) BLR ((7, 13), 61) PDS ((28, 17), 63) AMV**
((40, 25), 50) DWH ((41, 2), 83) SBT ((12, 15), 64) BCD ((29, 18), 63) AMV**
((38, 22), 60 CO2 ((42, 1), 93) MHF ((15, 17), 79) SPT ((30, 19), 63) AMV**
((30, 19), 63) PGS ((39, 3), 92) FTS ((18, 17), 72) ELL ((31, 20), 53) AMV**
((31, 14), 63) GY1 ((42, 1), 93) LSE ((8, 1), 109) ENG ((32, 21), 35) AMV**
((28, 10), 51) GY2 ((29, 3), 100) EMS ((15, 11), 110) CNS ((33, 22), 16) AMV**
((26, 6), 77) RDR ((26, 11), 65) EEX ((29, 2), 110) SHV ((34, 23), 18) AMV**
((22, 6), 86), TLI ((20, 12), 74) GPS ((37, 2), 77) EML ((35, 24), 7) AMV**
((21, 5), 81) HFE ((22, 17), 60) MTR ((13, 16), 54) SPD ((36, 25), 7) AMV**
((11, 5), 105) MSB ((17, 17), 79) NTX ((13, 4), 150) ZZ1 ((37, 26), 7) AMV**
((7, 10), 145) CAS ((5, 13), 87) STS ((4, 2), 134) UWN ((38, 27), 10) AMV**
((13, 7), 109) HYD ((5, 9), 139) MRE ((11, 8), 132) CS1 ((39, 28), 6) AMV**
((12, 2), 122) TOW ((1, 7), 142) CHW ((11, 14), 93) IN1 ((40, 29), 34) AMV**
((13, 5), 143) LOS ((4, 11), 107) ALM ((14, 16), 53) AIS ((39, 30), 6) AMV**
((18, 5), 135) DOS ((4, 9), 110) CDE ((12, 13), 75) INC ((40, 31), 17) AMV**
((10, 4), 122) SWS ((3, 11), 123) CMS ((5, 14), 68) ECD ((39, 32), 5) AMV**
((8, 1), 109) SWC ((1, 11), 146) SAT ((26, 3), 100) CBT ((40, 33), 11) AMV**
((6, 2), 147) SMA ((18, 12), 85) RAS ((12, 2), 122) FCS ((40, 34), 14) AMV**
((5, 1), 132) NSL ((19, 14), 78) VNT ((7, 3), 118) CWS ((39, 35), 15) AMV**
((6, 11), 107) DGS ((19, 9), 108) SPR ((5, 11), 126) GUN ((38, 36), 11) AMV**
((7, 12), 62) CRN ((20, 3), 148) BWS ((12, 7), 121) OAV ((38, 37), 10) AMV**
((12, 16), 74) CDW ((22, 7), 67) SWT ((12, 12), 58) CRA ((38, 38), 9) AMV**
((26, 13), 70) ECS ((17, 9), 130) FWS ((7, 11), 127) TC1
((26, 4), 59) MGC ((13, 8), 130) GWD ((3, 1), 129) FIN

* Outbound Transit Points
** Inbound Transit Points

 21

This gives us the shortest path to complete all the trials and the time required to

complete is 5,121 minutes. The resulting time provides us a lower bound on the time to

conduct all trials provided all trials are successful in first attempt. The path generated can

be plotted on the trial area grid. Since the trial area is small and number of trials is very

large, a route plot for a smaller number of trials is shown in Figure 10.

Figure 10. Route Plot for 10 Trials.

Background from Google Maps September 9, 2015, Retrieved from
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.458
0005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

5. Out of Bound Areas

The program also has the provision to avoid certain areas at sea. If we identify

some areas such as high fishing density areas or heavy shipping lanes that we have to

avoid, they can be given as inputs and the resulting path will be generated while avoiding

those areas. Small scale model runs with interdicted areas are shown in Figure 11. The

https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

 22

red box represents the out of bound area and the resulting path generated avoids that area

while completing all ten trials.

Figure 11. Route Plot for 10 Trials with Interdiction Area.

Background from Google Maps September 9, 2015, Retrieved from
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.458
0005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

B. SIMULATION AND DESIGN OF EXPERIMENTS

After generating the sequence and route for the trials, the process of conduct of

trials was simulated in Python. The code used for running the simulations is at Appendix

E. Experiments were designed varying five input factors. 51 design points were created in

total which were reduced to 49 by removing the duplicate center points. 49 design points,

generated by stacking and rotating the 17-run design from the NOLHdesigns_V6.xlsx

spreadsheet, are shown in Table 5.

https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

 23

Table 5. Design Points for the Simulation, where the Factors are: n (Total
Number of Acceptable Failures), k (Number of Retries per Trial), Wind

State, Sea State, and Speed of the Ship.
Design Points 1-24 Design Points 25-49

n k wind sea speed n k wind sea speed
8 5 5 3 14 5 3 4 4 11
6 3 5 3 10 13 2 3 5 20
6 3 1 2 19 11 5 5 3 13
7 4 3 5 18 9 4 1 3 23
13 5 3 2 15 6 4 5 4 25
15 3 3 4 11 12 4 2 5 14
11 3 6 2 23 13 2 4 2 18
11 5 5 5 22 6 3 1 2 16
10 4 4 3 18 13 3 2 5 18
12 2 2 4 21 14 4 1 2 19
14 4 2 3 25 6 3 4 4 25
14 4 6 4 16 8 5 4 2 21
13 3 4 1 17 9 2 3 1 22
8 2 4 5 20 9 4 1 4 23
5 4 4 2 24 15 3 5 3 24
9 4 1 4 12 13 5 5 4 20
9 2 2 1 13 7 4 5 1 17
15 4 3 2 24 6 3 6 4 16
8 5 4 1 15 14 4 3 2 10
9 2 2 4 22 12 2 3 5 14
11 3 6 3 12 11 5 4 5 13
14 3 2 2 10 11 3 6 2 12
8 3 5 1 21 5 4 2 3 11
7 5 3 5 17 8 2 2 3 15
14 4 6 4 19

The space filling provided by the Nearly Orthogonal Latin Hypercube design can

be seen in Figure 12. The distribution of input factors along with summary statistics over

the ranges specified in Table 1 and correlation matrix for input factors are shown in

Figures 13 and 14 respectively. From Figure 13, we can see that although our design

points are not uniformly distributed over the design space but they still cover the design

space adequately. Also, absolute pairwise correlation between the factors is very low with

the highest value of 0.1608 between k and wind. Minimum or no correlation is a desired

property in the input factors.

 24

Figure 12. Scatterplot Matrix of Input Factors.

 25

Figure 13. Distribution and Summary Statistics of Input Factors.

Figure 14. Correlation Matrix for Input Factors

C. MEASURES OF EFFECTIVENESS

Two measures of effectiveness were chosen for the results, namely ‘total time’

and ‘number of trials completed.’ It was observed from the results that although we want

a lower total time, however, simulation may yield lower times when we have more

failures and thus very few trials completed. On the other hand, number of trials

completed may be a better MOE as it is always desirable to complete maximum number

 26

of trials. Therefore, ‘number of trials completed’ before returning to port was chosen as

the primary MOE for the model.

D. SIMULATION RESULTS

The model uses design of experiments with 49 design points and 10 replications.

The results are saved into a 490 row data set. This dataset is then condensed into a 49 row

data set by calculating the mean and standard deviation for the number of trials

completed for each design point. Figure 15 shows the histograms and summary statistics

of the mean and standard deviation of number of trials completed collapsed over the input

design factors space. We observe a mean of 66 trials completed with a standard deviation

of 15.

Figure 15. Histograms and Summary Statistics of Mean and Standard
Deviation of Number of Trials Completed.

 27

The results in Figure 15, together with a look at the raw data, show that although

we are completing all the trials in some cases, there is no single design point that

completes all trials in all ten replications.

Next, we determine whether or not specific factors (or combinations of factors)

are responsible for the differences in the MOE. One way of doing this is using a partition

tree, which is a statistical method that recursively splits a large, heterogeneous data set

into smaller, more homogeneous groups. When we fit a tree model for the mean number

of trials completed as response variable, we find that number of retries per trial (k) is the

most significant factor. The partition tree for number of trials completed is shown in

Figure 16. With just three splits, it achieves an R2 value of 0.835.

 28

Figure 16. Partition tree for Mean Number of Trials Completed as Response
Variable.

 29

Based on this information, we observed that the number of retries per trial (k) is

the most significant factor in the model. As the number of retries goes up, the number of

trials completed also increases. None of the other input factors has a very high impact on

the response. Figure 17 shows the scatter plot of total time against number of trials

completed overlaid by number of retries (k). We observe that as the number of retries

increases, we complete more trials. However, another important insight is the fact that

none of the experiments result in ideal results where we complete all trials in the

minimum possible time. This is owing to the failures experienced during the conduct of

trials. Although there is an overall linear relationship between the two MOEs, we can a

cluster of results in the bottom left corner which represents the cases where we did very

poorly in terms of number of trials completed. Close inspection of these points shows us

that in most of the cases these are either the cases where we have very low number of

retries and acceptable failures, or very high sea state and wind force.

Figure 17. Total Time vs. Number of Trials Completed Overlaid by Number
of Retries.

 30

1. Regression Model

An alternative to a partition tree is a regression model. A tree may be better at

capturing sudden jumps in the responses, but a regression model can be a simpler

representation of the relationships of different parameters with the response. The

regression model results for the mean number of trials completed as response variable are

shown in Figure 18. We see that number of retries (k) comes out as the most significant

factor.

Figure 18. Regression Summary for Mean Number of Trials Completed.

 31

This model is statistically significant with an F-statistic of 106. The t-statistics

and p-values verify that both the linear and quadratic terms are statistically significant

(p-values < 0.0002). The R2 of 0.82 is similar to that from the partition tree. It is quite

high for a simple model, keeping in mind the fact that lack of fit is not a problem in this

study as the objective is not to predict outcomes. The purpose is to identify significant

variables and then apply that information to improve the process of conduct of trials.

2. Identification of Important Systems

In order to identify the important systems in the network, we used centrality

measures. We measured closeness centrality and between-ness centrality (Borgatti, 2005)

for the nodes in the graph created for finding the sequence of trials. Closeness centrality

measures the importance of a node based on the number of edges that node has. Figure 19

shows the plot of trials based on their closeness centrality values.

Figure 19. Closeness Centrality Plot.

Between-ness centrality measures the importance of a trial based on the number

of shortest paths that trial occurs on. Figure 20 shows the plot of trials based on their

between-ness centrality measures.

 32

Figure 20. Between-ness Centrality Plot.

Based on the information from above two plots, we can identify the important

systems in the network. Code used to calculate the closeness and between-ness centrality

measures, along with the tables of closeness and between-ness centrality values for all

systems, appear in Appendix F.

E. SIMULATION RE-RUNS

Based on the information about important systems and identifying the number of

retries as the most significant factor, the simulation was re-run. It was decided that it may

not be feasible to give all the systems extra retries in real life, as that may increase the

total time for a single trip at sea to an unacceptably high level. Therefore, only the first

ten important systems were given one extra retry. This extra retry to ten important

systems represents availability of spares for those systems. There is limited room onboard

ship for storage, therefore a limited amount of spares can be stored for sea trips. This is

important for planners because ships undergoing builder trials do not have all the storage

spaces operational. Therefore all the stores are brought on and off the ship before every

sea trip.

 33

The simulation was then re-run using same 49 design points as in initial

simulation. Code used to re-run the simulation is in Appendix G.

1. Simulation Re-run Results

The model re-run uses design of experiments with 49 design points and ten

replications. The results are saved into a 490 row data set. This dataset is then condensed

into a 49 row data set by calculating the mean and standard deviation for the number of

trials completed for each design point. Figure 23 shows the histogram and summary

statistics of mean number of trials completed collapsed over the input design factors

space. We observe a mean of 72 and standard deviation of 11 for mean number of trials

completed.

Figure 21. Histograms and Summary Statistics of Mean and Standard
Deviation of Number of Trials Completed.

 34

Exploring the simulated data, we see that none of the design points completed all

trials in all replications. However, our mean number of completed trials has increased and

standard deviation of completed trials has decreased. The 25% quartile for the initial run

had 58 completed trials, while in the simulation re-run the 25% quartile value increased

to 67. The partition tree for the mean number of completed trials once again shows the

number of retries (k) as the most significant factor. With three splits, this achieves an R2

of 0.84. The partition tree is shown in Figure 24.

Figure 22. Partition Tree with Mean Number of Trials Completed as
Response.

 35

2. Regression Model for Simulation Re-run

The regression model results for the mean number of trial completed as response

variable are shown in Figure 23. We see that number of retries (k) again comes out as the

most significant factor.

Figure 23. Results of Regression Model.

 36

This model is statistically significant with an F-statistic of 113. The t-statistics

and p-values verify that both the linear and quadratic terms are statistically significant (p-

values < 0.0001). The R2 of 0.83 is similar to that from the partition tree and is again

quite high for a simple model, keeping in mind the fact that lack of fit is not a problem in

this study as the objective is not to predict outcomes.

F. COMPARISON OF RESULTS

In order to compare the results from both the simulations, we concatenate the

result tables into one table and add an indicator variable (I) such that I = 0 if results are

from initial simulation and I = 1 otherwise. The initial simulation has k retries for each

trial and the re-run has k+1 retries for 10 important trials and k retries for the others. After

concatenating the tables, we fit a regression model to the complete data. Summary results

from the regression model are shown in Figure 24.

 37

Figure 24. Regression Model Results for Simulation Re-run.

 38

From the regression plot in Figure 24, we can also see that mean number of

completed trials is greater for simulation re-runs. Also the regression model is

statistically significant with R2 of 0.82 and an F-statistic of 127. Presence of the Indicator

variable (named Source Table) shows that there is a statistically significant difference

between the two data sets, and the interaction of the Source Table indicator value with k

shows its impact interacts with the number of retries.

We also looked at both the data sets and analyzed the cases where all trials were

completed. We observed that in initial runs, 8.3% of runs completed all trials; in

simulation re-runs, 12% of the time all trials were completed. Relaxing the requirement

for completion of all trials, we subset the data for cases where number of trials completed

were greater than 70 (about 80% trial completion). Plots for number of trials completed

vs. total time overlaid by number of retries for initial simulation and simulation re-run are

shown in Figures 25 and 26.

Figure 25. Total Time vs. Number of Trials Completed, Overlaid by Number
of Retries (k) when all Systems Given Same Number of Retries. Results of

Subset Where Number of Trials Completed > 70. Simulation Runs with
Lower Value of k not Seen Very Often.

 39

Figure 26. Total Time vs. Number of Trials Completed, Overlaid by Number
of Retries (k), when One Extra Retry is Given to the Ten Most Important

Systems. Results of Subset Where Number of Trials Completed > 70.
Simulation Runs with Lower Value of k Completing More Trials.

G. DISCUSSION

This analysis demonstrates that identification of important systems improves the

overall performance. Comparison of the graphs in Figures 25 and 26 shows that when we

give one extra retry to important systems, we complete at least 70 trials more often even

with lower numbers of overall retries (blue dots). Percentage-wise comparison of the data

shows that there is an increase in number of cases where we complete at least 70 trials for

one extra retry to important systems. The initial simulation has 61% of runs meet this

threshold, while one extra retry for important systems increases it to 72%.

It is also observed that although the total number of acceptable failures is an

important factor, it is not the primary factor affecting the number of trials completed. The

number of retries given to each trial is the most significant factor during simulation runs.

Identification of important systems can be translated into the spare supportability for

those systems. During the conduct of builder trials when all the stores onboard ship are

 40

not fully operational, spares need to brought on and off-board for each sea trip. If there is

a failure at sea but we have spares for that system onboard, an attempt can be made to

repair the system at sea. This, in essence, gives one extra retry for the conduct of the

particular trial. It is evident from the simulation results that an extra retry improves the

overall performance by leading to a greater likelihood of completing more trials. This is

evident from the result comparison using the regression model shown in Figure 24.

Availability of this tool at sea for decision makers also provides them with useful

information. In case of a failure of a system, the decision makers can re-run the sequence

generator program, taking out all previously completed and previously failed trials. The

new sequence generated will give them visibility about how many more trials can be

completed by staying out at sea. This information will help the decision makers decide

whether to continue with more trials or return to port. Moreover, the adaptive nature of

the route generator will still provide the decision maker with an optimal route, provided

he decides to stay out at sea and complete as many of the remaining trials as possible.

H. MODEL ENHANCEMENTS

This study shows that systematic planning improves the performance during

conduct of builder trials for newly built ships. We have also gained useful insight on

factors to be considered during planning and execution phase of the process. Although

this study gives a concept of improvements in the planning process, it does not provide a

user friendly tool at the moment. This problem can be solved by building a graphical user

interface (GUI) for the model. By developing the GUI, the process will become very user

friendly and may be easily used at sea when the situation arises. The GUI can be

designed to take the input data from file provided by the user, read the area of trials from

electronic chart system, and find the sequences and routes for the conduct. Future

development may include plotting the geographical points representing the trial start

location on the electronic chart system automatically. Also, the GUI may provide the user

with the information about important systems in the network created by the user for the

trial. This information will help the user better plan the spare availability onboard for

important systems.

 41

V. CONCLUSIONS AND RECOMMENDATIONS

Builder trials for newly built ships require a lot of money to be spent on the process.

While initial planning can be done while in the port, uncertainties in outcomes make it

difficult for the planners to capture all the possible outcomes during the initial planning

phase. This necessitates the availability of an adaptive tool at sea that can help the

decision makers in making the decision with regard to the conduct of further trials in case

of any failure. Non-availability of such tool leaves the decision makers in a state of

uncertainty, and as a result they often end up spending more time than required out at sea.

This thesis uses Python to develop a tool for the planning process of the builder

trials for a newly built ship. The tool is used for generating the sequence for conduct of

trials for all systems onboard along with the route for conduct of those trails. After

generation of the sequence and route, the process of conduct of trials is simulated using a

Python-based simulation model and design of experiments. The results from simulation

are summarized and analyzed using linear regression and partition tree models. After

identification of influential factors and important systems in the network, the simulation

is re-run to evaluate the effectiveness of the process based on the finding from the first

simulation runs. The primary MOE, total number of trials completed, improved

significantly after model re-runs: from 66.2 to 72.1 of the potential 88 trials. This

research is evidence that an efficient design can improve the overall performance during

the conduct of builder trials. Moreover, the simulation process provides useful insight

into the process, especially via identifying important systems and their impact on the

overall results.

This study provides evidence that performance of a ship during builder trials can

be improved by efficient planning of the process. Among the factors considered for the

design of experiments in this study, we find number of retries given to a system (k) as the

most influential factor for our MOE, number of trials completed. Based on these results

following recommendations are made:

• The tool may be used in the initial planning phase for finding the sequence
and route to conduct trials.

 42

• In case of failure of a system at sea, the tool may be used to generate the
alternate sequence for conduct of trials for remaining systems.

• The tool may be used for identification of important systems for spare
supportability. This will in essence give the important systems one extra
retry (k) in case failure.

The developed tool and the simulation model incorporate many assumptions. It may be

beneficial to explore more scenarios while trying to remove the assumptions made.

Following are possible future works related to this research:

• Update the simulation program and analyze the results while catering for
return to port and forcing the program to complete all trials. Presently, the
simulation stops when a fixed number of acceptable failures are reached
and the ship returns to port.

• Expand the scope by changing the distributions of the probability success
to reflect appropriate historically collected data or values from
requirements documents

• Improve ease-of-use for the navigator by changing position inputs from
Cartesian coordinates to Latitude and Longitude for plotting.

• Analysis of multiple paths generated by simulation for insights regarding
robustness of various path.

 43

APPENDIX A. CONTENTS OF INPUT DATA FILE

Trial ID Time Depth Prerequisites Speed Mean SD Wind Sea

engine ENG 105 50 GY2; RDR; PGS; MSB; EGS; ESB; TLI; CO2;
FF1; SWS; EMS; ECS; EEX 20 0.65 0.13 2 2

Fin Stabilizer FIN 60 50 ENG 20 0.65 0.13 3 4
Compartment
Noise CNS 120 100 ENG; EEX; AC1; VNT; SWT; CHW; RFG; SWS;

CAS; PGS 15 0.65 0.13 1 1

Domestic
Appliances DAP 60 20 GWD 5 0.65 0.13 5 4

Doors Windows
Hatches DWH 45 20 10 0.65 0.13 5 4

Crane CRN 45 20 PGS; MSB 5 0.65 0.13 2 2
ICCP
Equipment ICP 30 20 PGS; MSB 10 0.65 0.13 4 3

Marine Growth
Prevention
System

MGP 30 20 PGS; MSB 10 0.65 0.13 4 3

Liquid Tank
Level
Indications

TLI 30 20 10 0.65 0.13 3 2

Alarm System ALM 60 20 PGS; MSB 10 0.65 0.13 4 3
Engine Exhaust
Flaps EEX 45 50 EMS; ECS; PGS; MSB 20 0.65 0.13 4 2

FF System FF1 90 20 CO2; SPR; SWS; FWS; PWS 10 0.65 0.13 4 3
Sprinkling
System SPR 60 50 10 0.65 0.13 4 3

CO2 Fire
Extinguishing
System

CO2 45 50 10 0.65 0.13 4 3

AC System AC1 45 50 PGS; CHW; CDW; SWS; FWS; SWC 10 0.65 0.13 5 4
Ventilation
System VNT 30 50 PGS 10 0.65 0.13 2 4

Sewage SWT 45 50 BWS; SWS; DOS 10 0.65 0.13 4 4

 44

Treatment Plant
Chilled Water
System CHW 45 50 PGS; SWS; CDW; MSB 10 0.65 0.13 4 4

Refrigeration
System RFG 60 50 PGS; CHW; SWS; FWS 10 0.65 0.13 4 4

Condensate
Water System CDW 60 50 PGS; MSB; SWS 10 0.65 0.13 4 4

Lube Oil
System LOS 45 50 PGS; MSB 10 0.65 0.13 4 2

Fuel Transfer
System FTS 30 20 PGS; MSB 10 0.65 0.13 4 2

Seawater
System SWS 60 30 PGS; MSB 10 0.65 0.13 4 2

Fresh Water
System FWS 45 50 PGS; MSB 10 0.65 0.13 4 2

Dirty Oil
System DOS 30 100 PGS; MSB 10 0.65 0.13 4 3

Bilge Water
System BWS 45 100 PGS; MSB; DOS; SWS 10 0.65 0.13 4 3

Pre-wetting
System NBC PWS 120 50 PGS; MSB; SWS; FWS 10 0.65 0.13 2 2

Compressed Air
System CAS 90 30 PGS; MSB 10 0.65 0.13 4 3

Power
Generation
System

PGS 120 20 10 0.65 0.13 4 3

Main
Switchboard MSB 60 20 10 0.65 0.13 4 3

Emergency
Generator
System

EGS 60 50 FTS; PGS; MSB 10 0.65 0.13 4 3

Emergency
Switchboard ESB 45 50 EGS; MSB; PGS 10 0.65 0.13 4 3

Power
Distribution
System

PDS 90 50 PGS; MSB; EGS; ESB 10 0.65 0.13 4 3

 45

Battery
Charging
Discharging
System

BCD 45 50 PGS; MSB; EGS; ESB; PDS 10 0.65 0.13 4 3

Electrical
Lighting System ELL 30 20 PGS; MSB; EGS; ESB; PDS 10 0.65 0.13 4 3

Sea Water
Cooling System SWC 30 50 PGS; MSB; SWS 10 0.65 0.13 4 3

Grey Water
Collecting And
Drainage
System

GWD 30 100 PGS; MSB; SWS; FWS 10 0.65 0.13 4 3

Engine
Monitoring
System

EMS 60 50 PGS; MSB 20 0.65 0.13 4 3

Engine Control
System ECS 60 50 PGS; MSB 20 0.65 0.13 4 3

Hydraulic
System HYD 60 20 PGS; MSB 10 0.65 0.13 3 3

Degaussing
System DGS 45 100 PGS; MSB; SWS 15 0.65 0.13 2 3

Shaft Vibration
Measurement SHV 90 100 PGS; ENG 20 0.65 0.13 1 1

Aux Machinery
Vibration
Measurement

AMV 120 100 PGS; ENG; SWS 20 0.65 0.13 1 1

Underwater
Noise
Measurement

UWN 45 100 PGS; ENG; SPD 20 0.65 0.13 1 1

Overall
Vibration
Measurement

OAV 60 100 PGS; SPD; SWS; ENG; GUN 20 0.65 0.13 1 1

Gyro1 GY1 45 20 PGS 10 0.65 0.13 2 2
Gyro2 GY2 45 20 PGS; GY1 10 0.65 0.13 2 2
radar RDR 45 20 PGS; GY2 10 0.65 0.13 2 2
EM Log EML 45 30 GY2; ENG; RDR 15 0.65 0.13 1 1

 46

zigzag ZZ1 45 50 GY2; ENG; RDR; SPD 20 0.65 0.13 2 2
Turning Circle TC1 30 50 RDR; GY2; ENG; SPD 20 0.65 0.13 2 2
Course Stability CS1 45 50 ENG; GY2; SPD 20 0.65 0.13 2 2
Inertial IN1 30 50 ENG; GY2; RDR; EML; SPD 15 0.65 0.13 2 2
Speed SPD 120 50 ENG; GY2; RDR; EML; STS 20 0.65 0.13 2 2
Anchor ANC 30 30 PGS; HYD 0 0.65 0.13 3 3
Mooring
Equipment MRE 30 30 PGS; HYD 10 0.65 0.13 2 2

Towing TOW 90 50 PGS; HYD 5 0.65 0.13 3 3
Replenishment
At Sea RAS 120 50 PGS; HYD 15 0.65 0.13 3 3

Boat Launch
And Recovery
System

BLR 45 30 PGS; HYD 5 0.65 0.13 3 3

Sea Boat SBT 60 30 BLR 5 0.65 0.13 3 3
Steering System STS 90 50 GY2; RDR; SMA; GPS; MGC; ESD 15 0.65 0.13 2 2
Navigation &
Signal Lights NSL 30 50 PGS;MSB 5 0.65 0.13 2 2

Ship
Manipulation
Apparatus

SMA 45 50 PGS;MSB 5 0.65 0.13 4 3

Intercom
System ICS 60 30 PGS;MSB 5 0.65 0.13 4 3

Sound Powered
Telephone SPT 60 50 PGS;MSB;BCD 5 0.65 0.13 4 3

CCTV CCT 30 30 PGS;MSB 5 0.65 0.13 4 3
Echo Sounder
Shallow ESS 45 20 PGS;MSB 10 0.65 0.13 2 2

Echo Sounder
Deep ESD 45 50 PGS;MSB 10 0.65 0.13 2 2

Integrated
Navigation
Console

INC 60 50 PGS; MSB; GY2; GY1; RDR; GPS; AIS; MGC;
MTR; ESD 5 0.65 0.13 4 4

DGPS GPS 45 20 PGS; MSB; GY2 10 0.65 0.13 4 4
AIS AIS 30 30 PGS; MSB; GPS; GY2; ESD; EML 10 0.65 0.13 4 4
NAVTEX Rx NTX 30 30 PGS; MSB; GPS; GY2; MTR 10 0.65 0.13 4 4

 47

Metgraph MTR 60 50 PGS; MSB;GPS 10 0.65 0.13 4 4
Magnetic
Compass MGC 120 50 PGS;MSB 5 0.65 0.13 3 2

VHF Comm VHF 30 50 PGS; MSB; GY2; UHF 5 0.65 0.13 4 4
SATCOM SAT 30 50 PGS;MSB;CMS 5 0.65 0.13 4 4
HF Emergency
Radio HFE 30 50 5 0.65 0.13 4 4

UHF Comm UHF 30 30 PGS;MSB 5 0.65 0.13 4 4
MFHF Comm MHF 30 50 PGS;MSB;VHF 5 0.65 0.13 4 4
Control And
Distribution
Eqpt

CDE 30 50 PGS;MSB;MHF 5 0.65 0.13 4 4

Communication
System CMS 60 50 PGS; MSB; CDE; MHF 5 0.65 0.13 4 4

WECDIS ECD 60 20 GY1; GY2; EML; GPS; AIS; INC; ESD; ESS 10 0.65 0.13 4 4
Life Saving
Equipment LSE 60 50 5 0.65 0.13 3 2

Main Gun GUN 120 50 FCS 10 0.65 0.13 3 4
CIWS CWS 60 50 FCS 10 0.65 0.13 3 4
CRAA Guns CRA 30 50 GY2;CBT 10 0.65 0.13 2 2
Combat System CBT 180 50 INC 20 0.65 0.13 4 4
Fire Control
System FCS 60 50 INC;CBT 15 0.65 0.13 4 4

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

APPENDIX B. PYTHON FUNCTION TO GENERATE THE
SEQUENCE OF TRIALS

import csv
import networkx as nx
import random

################################
#####Creating graph of trials###
################################

def create_graph(data_file):
 “””This Function takes as input the data.csv file and creates a
 graph for finding the sequence to conduct trials”””
 csvr = csv.DictReader(open(data_file))
 g = nx.DiGraph()
 # add all the nodes
 for line in csvr:
 nid = line['id']
 nname = line['trial']
 requirements = line['reqs']
 time = int(line['time'])
 speed = line['speed']
 depth = line['depth']
 sea = line['sea']
 wind = line['wind']
 mean=float(line['mean'])
 sd=float(line['sd'])
 prob_success=float(round(random.normalvariate(mean,sd),3))
 g.add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

 # add all the edges
 for node,node_data in g.nodes(data=True):
 requirements = node_data['requirements']
 if requirements == '':
 continue
 for pred in requirements.split(';'):
 g.add_edge(pred,node,time=g.node[pred]['time'])
 # add the 'start' and 'end' nodes
 g.add_node('Start')
 g.add_node('End')
 for n in g.nodes():
 if n == 'Start' or n == 'End':
 continue
 if not g.predecessors(n):
 g.add_edge('Start',n,time=0)
 if not g.successors(n):
 g.add_edge(n,'End',time=-g.node[n]['time'])
 return g

#################################

 50

Calling the function #####
#################################

g=create_graph("Data.csv") #creating the trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
#print sort

 51

APPENDIX C. PYTHON CODE TO GENERATE MULTIPLE
FEASIBLE SEQUENCES

from itertools import permutations, product, chain
import operator

Generating the multiple sequences####

successors=nx.dfs_successors(g,'Start')
one_sequence=[x for x in sort if x in successors.keys()]
ofile = open('sequences_all.csv','w')
p= {k:list(permutations(v)) for k, v in
successors.iteritems()}
for seq in product(*map(p.get, one_sequence)):
 #seq='Start'+seq
 #print seq
 print >> ofile,list(chain.from_iterable(seq))
ofile.close() #writing the output to file

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX D. PYTHON CODE TO GENERATE THE PATH FOR
TRIAL CONDUCT

import csv
import networkx as nx
import math
import random
from itertools import permutations, product, chain
from collections import deque
import operator
import numpy as np
import sys

############ Defining temporary variables ##################
total_time=0.0
distance=1.0 #distance in the grid (1 x 1 NM box)

######## Grid Creator Function ##############

def grid_creator(depth_file,area,area2,n_rows,n_cols):

 """Function to read the depths.csv file and create a grid.
 It also takes input for interdiction areas. It needs two lists of
 tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
 represent two interdiction areas. If no interdiction is intended,
 give it coordinates outside ranges of depth file max rows and
 columns"""

 dt=depth_file
 target=open(dt,'r')

 Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
 Area2=area2#[(29,32),(29,32)]

 n_rows=n_rows
 n_cols=n_cols

 posn=[]
 d=[]
 for i in range(1,n_rows+1):
 line=target.readline()
 line=line.rstrip("\n")
 line=line.split(',')
 for j in range(1,n_cols+1):
 f=int(line[j-1])
 if f>0:
 if i>=Area[0][0] and i<=Area[1][0] and j>=Area[0][1]
and j<=Area[1][1]:
 continue
 elif i>=Area2[0][0] and i<=Area2[1][0] and
j>=Area2[0][1] and j<=Area2[1][1]:

 54

 continue
 else:
 position=(i,j)
 posn.append(position)
 x=((i,j),f)
 d.append(x)
 return d,posn
 target.close()

#######MASTER NEIGHBORS DICT CREATION FUNCTION #################

def neighbours_creator(nodelist,output_dict_name):
 output_dict_name={}
 for nodes in nodelist:
 start=nodes
 #print start
 t1=(start[0]+1,start[1]) #North
 t2=(start[0]+1,start[1]+1) #North East
 t3=(start[0],start[1]+1) #East
 #t4=(start[0],start[1]) #self
 t5=(start[0]-1,start[1]+1) #South East
 t6=(start[0]-1,start[1]) #South
 t7=(start[0]-1,start[1]-1) #South West
 t8=(start[0],start[1]-1) #West
 t9=(start[0]+1,start[1]-1) #North West
 output_dict_name[start]=[]
 if t1 in nodelist:
 output_dict_name[start].append(t1)
 if t2 in nodelist:
 output_dict_name[start].append(t2)
 if t3 in nodelist:
 output_dict_name[start].append(t3)
 #if t4 in nodelist:
 # output_dict_name[start].append(t4)
 if t5 in nodelist:
 output_dict_name[start].append(t5)
 if t6 in nodelist:
 output_dict_name[start].append(t6)
 if t7 in nodelist:
 output_dict_name[start].append(t7)
 if t8 in nodelist:
 output_dict_name[start].append(t8)
 if t9 in nodelist:
 output_dict_name[start].append(t9)
 return output_dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors")

#############creating the graph for path checking ####################

 55

def path_checker_creator(depth_list,neighbors):
 path_checker = nx.DiGraph()
 path_checker.nodes=depth_list
 queue=[]
 index=0
 for key in neighbors.keys():
 #print "this is the key : %s"%(key,)
 #queue.append(key)
 #if key not in queue:
 queue.append(neighbors[key])
 #print "These are the neighbors for %s:
%s"%(key,neighbors50[key])
 for i in range(0,len(queue[index])):
 dest=queue[index][i]
 #print dest
 #type(dest)
 path_checker.add_edge(key,dest)
 #queue.pop()
 #queue=[]
 index+=1
 return path_checker

#############stamping all nodes with layer information#################

def node_stamper(d,layers):
 allnodes=[]
 for node in d:
 #print node
 #temp=[]
 #temp.append(d)
 for stamp in layers:
 if stamp is 'End':
 continue
 #print i
 else:
 tmp=[node,stamp]
 allnodes.append(tmp)
 return allnodes

############ Layering on trial name #############################

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
 layer_record={}
 for layer in layers:
 layer_record[layer]=[]
 for node in allnodes:
 if node[1]==layer:
 layer_record[layer].append(node)
 return layer_record

 56

########## List of distance covered to complete a trial###########

def trial_times_list(sort,g):
 cons=[]
 for i in sort:
 if i!='Start' and i!='End':
 m=int(g.node[i]['time'])*int(g.node[i]['speed'])/60.0
 cons.append(m)
 return cons

########## List of depth required by each trial###################

def depth_required_list(sort,g):
 depth_req=[]
 for i in sort:
 for node,node_data in g.nodes(data=True):
 if i==node and i!='Start' and i!='End':
 t=node_data['depth']
 depth_req.append(t)
 return depth_req

########## Function to create the main routing graph #############

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker_50,
path_checker_20):
 graph_1=nx.DiGraph()
 #print layer
 for layer in layers:
 ##print "This is the layer i am on: %s"%layer
 present_layer_nodes=layer_record[layer]
 #print present_layer_nodes
 for node in present_layer_nodes:
 source=tuple(node)
 #print node
 neighbors_complete=[node for neighbor in
master_neighbors[node[0][0]] for node in present_layer_nodes if
node[0][0]==neighbor]
 #print neighbors_complete
 for dest in neighbors_complete:
 dest=tuple(dest)
 #print "dest";print dest
 #print "writing edge from %s to %s"%(source,dest,)
 graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
 neighbors_complete=[]
 for i in range(0,len(layers)):
 #print "This is trial number: %d"%i
 #print "This is trial: %s"%sort[i+1]

 57

 if i<len(depth_req):
 depth_required=int(depth_req[i])
 #print "depth required updated to %d"%depth_required
 #if layers[i]!='End':

 present_layer=[node for node in allnodes if node[1]==sort[i] if
node[0][1]>=depth_required]
 #print "This is the present layer"
 #print present_layer
 next_layer=[node for node in allnodes if node[1]==sort[i+1] if
node[0][1]>=depth_required]
 #print "This is the next layer"
 #print next_layer

 for node1 in present_layer:
 temp1=node1[0][0]
 #print temp1
 x1=temp1[0]
 y1=temp1[1]
 source=tuple(node1)
 ##print "Source: %s"%source
 for node2 in next_layer:
 temp2=node2[0][0]
 x2=temp2[0]
 y2=temp2[1]
 dest=tuple(node2)
 ##print "Dest: %s"%dest
 if (abs(x1-x2)+abs(y1-y2))<=cons[i] and (abs(x1-
x2)+abs(y1-y2))>=(cons[i]/2.0):
 #print "distance is ok"

 if layers[i]==layers[-1]:
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))

 if layers[i]=='Start':
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=50:
 #print "I am in depth 50 loop"
 if nx.has_path(path_checker_50,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)

 58

 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=20:
 #print "I am in depth 20 loop"
 if nx.has_path(path_checker_20,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 return graph_1

########## Function to calculate results##########################

def result_calculator(graph_1,g,s,t):
 """This function takes the main graph, sequence graph, starting and
 ending locations as inputs and calculates shortest path and returns
 time to complete trials, path to be taken, betweenness and
 closeness centrality values"""

 #s=(((38, 38), 9), 'Start')
 #t=(((38, 38), 9), 'TC')
 result=nx.shortest_path(graph_1,s,t)
 total_time=0.0
 for i in range (0,len(result)):
 if result[i]!=result[-1]:
 if result[i][1]==result[i+1][1]:
 #print (result[i],result[i+1])
 total_time+=(1.0*60/speedtr)
 else:
 #print (result[i],result[i+1])
 total_time+=g.node[result[i+1][1]]['time']
 print "CLOSENESS CENTRALITY"
 print sorted (nx.closeness_centrality(g).items(), key=
operator.itemgetter(1), reverse= True)
 print "BETWEENNESS CENTRALITY"
 print sorted (nx.betweenness_centrality(g). items(),
key=operator.itemgetter(1), reverse=True)
 print "ROUTE FOR TRIALS"
 print result
 print "TIME TO COMPLETE TRIALS"
 print total_time

########### Execution of function calls #######################

###########################
##Command Line Arguments ##
###########################

 59

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3
sea=int(sys.argv[4])#2
speedtr=int(sys.argv[5])#20
edge_time=1.0*60/speedtr

######Reading depth file and creating grid##########

#change the input file name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator("Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
,38)

######MASTER NEIGHBORS DICT CREATION ################

master_neighbors=neighbours_creator(posn,"master_neighbors")

################### Depth wise node lists ######################

depth_all=[node[0] for node in d]
depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all,"neighbors_all")
neighbors50=neighbours_creator(depth50,"neighbors50")
neighbors20=neighbours_creator(depth20,"neighbors20")

#####creating the graph for path checking later ########

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)
path_checker_50=path_checker_creator(depth50,neighbors50)

####################Creating graph of trials##################
g=create_graph("Data.csv") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0:len(sort)-1]
sequence=deque(sort[1:len(sort)-1])

########stamping all nodes with layer information##############

allnodes=node_stamper(d,layers)

 60

Layering on trial name###############

layer_record=layer_record_creator(layers,allnodes)

cons=trial_times_list(sort,g)

depth_req=depth_required_list(sort,g)

creating main graph ######

graph_1=
main_graph_builder(layer_record,master_neighbors,layers,depth_req,sort,
allnodes,cons,g,path_checker_all,path_checker_50,path_checker_20)

##############################RESULTS##################################

s=(((38, 38), 9), layers[0]) #start Location
t=(((38, 38), 9), layers[-1]) #End Location
path,time=result_calculator_simulation(graph_1,g,s,t)

 61

APPENDIX E. PYTHON CODE TO RUN SIMULATIONS

import csv
import networkx as nx
import math
import random
from itertools import permutations, product, chain
from collections import deque
import operator
import numpy as np
import sys

############ Defining temporary variables ##################

k_temp=0
n_temp=0
completed=[] #list of completed trials (keeps emptying)
failed=[] #list of failed trials (keeps emptying)
pending_trials=[] #list of pending trials
final_completed={} #dict with trials completed and number of attempts
final_failed=[] #list with failed trials
final_poor=[] #List with trials removed because of other trials failure
num_of_time_rescheduled=0
total_time=0.0
distance=1.0 #distance in the grid (1 x 1 NM box)

######## Grid Creator Function ##############

def grid_creator(depth_file,area,area2,n_rows,n_cols):

 """Function to read the depths.csv file and create a grid.
 It also takes input for interdiction areas. It needs two lists of
 tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
 represent two interdiction areas. If no interdiction is intended,
 give it coordinates outside ranges of depth file max rows and
 columns"""

 dt=depth_file
 target=open(dt,'r')

 Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
 Area2=area2#[(29,32),(29,32)]

 n_rows=n_rows
 n_cols=n_cols

 posn=[]
 d=[]
 for i in range(1,n_rows+1):
 line=target.readline()
 line=line.rstrip("\n")

 62

 line=line.split(',')
 for j in range(1,n_cols+1):
 f=int(line[j-1])
 if f>0:
 if i>=Area[0][0] and i<=Area[1][0] and j>=Area[0][1]
and j<=Area[1][1]:
 continue
 elif i>=Area2[0][0] and i<=Area2[1][0] and
j>=Area2[0][1] and j<=Area2[1][1]:
 continue
 else:
 position=(i,j)
 posn.append(position)
 x=((i,j),f)
 d.append(x)
 return d,posn
 target.close()

#######MASTER NEIGHBORS DICT CREATION FUNCTION #################

def neighbours_creator(nodelist,output_dict_name):
 output_dict_name={}
 for nodes in nodelist:
 start=nodes
 #print start
 t1=(start[0]+1,start[1]) #North
 t2=(start[0]+1,start[1]+1) #North East
 t3=(start[0],start[1]+1) #East
 #t4=(start[0],start[1]) #self
 t5=(start[0]-1,start[1]+1) #South East
 t6=(start[0]-1,start[1]) #South
 t7=(start[0]-1,start[1]-1) #South West
 t8=(start[0],start[1]-1) #West
 t9=(start[0]+1,start[1]-1) #North West
 output_dict_name[start]=[]
 if t1 in nodelist:
 output_dict_name[start].append(t1)
 if t2 in nodelist:
 output_dict_name[start].append(t2)
 if t3 in nodelist:
 output_dict_name[start].append(t3)
 #if t4 in nodelist:
 # output_dict_name[start].append(t4)
 if t5 in nodelist:
 output_dict_name[start].append(t5)
 if t6 in nodelist:
 output_dict_name[start].append(t6)
 if t7 in nodelist:
 output_dict_name[start].append(t7)
 if t8 in nodelist:
 output_dict_name[start].append(t8)
 if t9 in nodelist:
 output_dict_name[start].append(t9)

 63

 return output_dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors")

#############creating the graph for path checking ####################

def path_checker_creator(depth_list,neighbors):
 path_checker = nx.DiGraph()
 path_checker.nodes=depth_list
 queue=[]
 index=0
 for key in neighbors.keys():
 #print "this is the key : %s"%(key,)
 #queue.append(key)
 #if key not in queue:
 queue.append(neighbors[key])
 #print "These are the neighbors for %s:
%s"%(key,neighbors50[key])
 for i in range(0,len(queue[index])):
 dest=queue[index][i]
 #print dest
 #type(dest)
 path_checker.add_edge(key,dest)
 #queue.pop()
 #queue=[]
 index+=1
 return path_checker

################################
#####Creating graph of trials###
################################

def create_graph(data_file):
 “””This Function takes as input the data.csv file and creates a
 graph for finding the sequence to conduct trials”””
 csvr = csv.DictReader(open(data_file))
 g = nx.DiGraph()
 # add all the nodes
 for line in csvr:
 nid = line['id']
 nname = line['trial']
 requirements = line['reqs']
 time = int(line['time'])
 speed = line['speed']
 depth = line['depth']
 sea = line['sea']
 wind = line['wind']
 mean=float(line['mean'])
 sd=float(line['sd'])
 prob_success=float(round(random.normalvariate(mean,sd),3))

 64

 g.add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

 # add all the edges
 for node,node_data in g.nodes(data=True):
 requirements = node_data['requirements']
 if requirements == '':
 continue
 for pred in requirements.split(';'):
 g.add_edge(pred,node,time=g.node[pred]['time'])
 # add the 'start' and 'end' nodes
 g.add_node('Start')
 g.add_node('End')
 for n in g.nodes():
 if n == 'Start' or n == 'End':
 continue
 if not g.predecessors(n):
 g.add_edge('Start',n,time=0)
 if not g.successors(n):
 g.add_edge(n,'End',time=-g.node[n]['time'])
 return g

#############stamping all nodes with layer information#################

def node_stamper(d,layers):
 allnodes=[]
 for node in d:
 #print node
 #temp=[]
 #temp.append(d)
 for stamp in layers:
 if stamp is 'End':
 continue
 #print i
 else:
 tmp=[node,stamp]
 allnodes.append(tmp)
 return allnodes

############ Layering on trial name #############################

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
 layer_record={}
 for layer in layers:
 layer_record[layer]=[]
 for node in allnodes:
 if node[1]==layer:

 65

 layer_record[layer].append(node)
 return layer_record

########## List of distance covered to complete a trial###########

def trial_times_list(sort,g):
 cons=[]
 for i in sort:
 if i!='Start' and i!='End':
 m=int(g.node[i]['time'])*int(g.node[i]['speed'])/60.0
 cons.append(m)
 return cons

########## List of depth required by each trial###################

def depth_required_list(sort,g):
 depth_req=[]
 for i in sort:
 for node,node_data in g.nodes(data=True):
 if i==node and i!='Start' and i!='End':
 t=node_data['depth']
 depth_req.append(t)
 return depth_req

########## Function to create the main routing graph #############

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker_50,
path_checker_20):
 graph_1=nx.DiGraph()
 #print layer
 for layer in layers:
 ##print "This is the layer i am on: %s"%layer
 present_layer_nodes=layer_record[layer]
 #print present_layer_nodes
 for node in present_layer_nodes:
 source=tuple(node)
 #print node
 neighbors_complete=[node for neighbor in
master_neighbors[node[0][0]] for node in present_layer_nodes if
node[0][0]==neighbor]
 #print neighbors_complete
 for dest in neighbors_complete:
 dest=tuple(dest)
 #print "dest";print dest
 #print "writing edge from %s to %s"%(source,dest,)
 graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
 neighbors_complete=[]
 for i in range(0,len(layers)):

 66

 #print "This is trial number: %d"%i
 #print "This is trial: %s"%sort[i+1]
 if i<len(depth_req):
 depth_required=int(depth_req[i])
 #print "depth required updated to %d"%depth_required
 #if layers[i]!='End':

 present_layer=[node for node in allnodes if node[1]==sort[i] if
node[0][1]>=depth_required]
 #print "This is the present layer"
 #print present_layer
 next_layer=[node for node in allnodes if node[1]==sort[i+1] if
node[0][1]>=depth_required]
 #print "This is the next layer"
 #print next_layer

 for node1 in present_layer:
 temp1=node1[0][0]
 #print temp1
 x1=temp1[0]
 y1=temp1[1]
 source=tuple(node1)
 ##print "Source: %s"%source
 for node2 in next_layer:
 temp2=node2[0][0]
 x2=temp2[0]
 y2=temp2[1]
 dest=tuple(node2)
 ##print "Dest: %s"%dest
 if (abs(x1-x2)+abs(y1-y2))<=cons[i] and (abs(x1-
x2)+abs(y1-y2))>=(cons[i]/2.0):
 #print "distance is ok"

 if layers[i]==layers[-1]:
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))

 if layers[i]=='Start':
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=50:
 #print "I am in depth 50 loop"
 if nx.has_path(path_checker_50,temp1,temp2):

 67

 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=20:
 #print "I am in depth 20 loop"
 if nx.has_path(path_checker_20,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 return graph_1

########## Function to calculate results##########################

def result_calculator(graph_1,g,s,t):
 """This function takes the main graph, sequence graph, starting and
 ending locations as inputs and calculates shortest path and returns
 time to complete trials, path to be taken, betweenness and
 closeness centrality values"""

 #s=(((38, 38), 9), 'Start')
 #t=(((38, 38), 9), 'TC')
 result=nx.shortest_path(graph_1,s,t)
 total_time=0.0
 for i in range (0,len(result)):
 if result[i]!=result[-1]:
 if result[i][1]==result[i+1][1]:
 #print (result[i],result[i+1])
 total_time+=(1.0*60/speedtr)
 else:
 #print (result[i],result[i+1])
 total_time+=g.node[result[i+1][1]]['time']
 print "CLOSENESS CENTRALITY"
 print sorted (nx.closeness_centrality(g).items(), key=
operator.itemgetter(1), reverse= True)
 print "BETWEENNESS CENTRALITY"
 print sorted (nx.betweenness_centrality(g). items(),
key=operator.itemgetter(1), reverse=True)
 print "ROUTE FOR TRIALS"
 print result
 print "TIME TO COMPLETE TRIALS"
 print total_time

Function to calculate results for simulation ################

def result_calculator_simulation(graph_1,g,s,t):

 68

 """This function takes the main graph, sequence graph, starting and
ending locations
 as inputs and calculates shortest path and returns time to complete
trials, path to
 be taken, betweenness and closeness centrality values"""
 result=nx.shortest_path(graph_1,s,t)
 total_time=0.0
 for i in range (0,len(result)):
 if result[i]!=result[-1]:
 if result[i][1]==result[i+1][1]:
 total_time+=(1.0*60/speedtr)
 else:
 total_time+=g.node[result[i+1][1]]['time']
 return result,total_time

############## Function to simulate conduct of trial #############

def
conduct_trial(g,wind,sea,k,n,k_temp,n_temp,completed,failed,total_time,
trial,close_small,between_small,k_main):
 global final_completed, final_failed
 prob_success=g.node[trial]['prob_success']
 sea_req=g.node[trial]['sea']
 wind_req=g.node[trial]['wind']
 time=g.node[trial]['time']
 if wind<=wind_req and sea<=sea_req: #good wind and sea conditions
 #print "wind and sea ok"
 while k_temp<k:
 prob=random.random()
 if prob<=prob_success:
 #print "completed %s"%trial
 completed.append(trial)
 final_completed[trial]=k_temp
 k_temp=0
 total_time+=time
 break
 elif prob>=prob_success:
 #print "a try failed for %s"%trial
 k_temp+=1
 total_time+=time
 #break
 if k_temp>=k:
 n_temp+=1
 #print "failed %s %d times"%(trial,k_temp)
 failed.append(trial)
 final_failed.append(trial)
 k_temp=0
 else: #Not favorable wind and sea conditions
 #print "wind sea not ok"
 prob_success=0.5*prob_success
 while k_temp<k:
 prob=random.random()
 if prob<=prob_success:

 69

 #print "completed %s"%trial
 completed.append(trial)
 final_completed[trial]=k_temp
 k_temp=0
 total_time+=time
 break
 elif prob>=prob_success:
 #print "a try failed for %s"%trial
 k_temp+=1
 total_time+=time
 #break
 if k_temp>=k:
 n_temp+=1
 #print "failed %s %d times"%(trial,k_temp)
 failed.append(trial)
 final_failed.append(trial)
 k_temp=0
 return k_temp,n_temp,completed,failed,total_time

######## Function to update the graph after a failure ############

def graph_updater(g,flag=1):
#flag=1
 global failed,completed,final_poor
 while flag==1 and len(g.nodes())>2:
 for node,node_data in g.nodes(data=True):
 #print "node: %s"%node
 if node=='Start' or node=='End':
 continue

 else:
 flag=0
 if node in failed:
 #print "removing: %s"%node
 g.remove_node(node) #remove the nodes which have
not been completed
 flag=1
 elif node in completed:
 #print "removing: %s"%node
 g.remove_node(node) #remove the nodes which have
not been completed
 flag=1
 #for node_data in g.nodes(data=True):
 requirements=node_data['requirements'].split(';')
 for item in requirements: #iterate over the requirements of
all nodes
 #print "item: %s"%item
 if item in failed and node in g.nodes():
 g.remove_node(node)
 #print "inside removing: %s"%node
 final_poor.append(node)
 failed.append(node)
 flag=1

 70

 for n in g.nodes():
 if n == 'Start' or n == 'End':
 continue
 if not g.predecessors(n):
 g.add_edge('Start',n,time=0)
 if not g.successors(n):
 g.add_edge(n,'End',time=-g.node[n]['time'])
 failed=[]
 completed=[]
 return g

################## EXECUTION OF FUNCTIONS #########################

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3
sea=int(sys.argv[4])#2
speedtr=int(sys.argv[5])#20
edge_time=1.0*60/speedtr
k_main=k

######Reading depth file and creating grid#########

#change the input file name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator("Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
,38)

############MASTER NEIGHBORS DICT CREATION ##################

master_neighbors=neighbours_creator(posn,"master_neighbors")

################### Depth wise node lists ############################

depth_all=[node[0] for node in d]
depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all,"neighbors_all")
neighbors50=neighbours_creator(depth50,"neighbors50")
neighbors20=neighbours_creator(depth20,"neighbors20")

######## creating the graph for path checking later###################

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)

 71

path_checker_50=path_checker_creator(depth50,neighbors50)

####################Creating graph of trials#####################

g=create_graph("Data.csv") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0:len(sort)-1]
sequence=deque(sort[1:len(sort)-1])

##################stamping all nodes with layer information) ##########

allnodes=node_stamper(d,layers)

############ Layering on trial name#######

layer_record=layer_record_creator(layers,allnodes)

cons=trial_times_list(sort,g)

depth_req=depth_required_list(sort,g)

graph_1=main_graph_builder(layer_record,master_neighbors,layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2
0)

##############################RESULTS##################################

s=(((38, 38), 9), layers[0])
t=(((38, 38), 9), layers[-1])
path,time=result_calculator_simulation(graph_1,g,s,t)

#transit_out_time= time to reach first point of trial
#transit_in_time= Time to reach back from last trial
final_route=[]
time_keeper=[]
list_of_trial_spots=deque([x for x in path if x[1]!=layers[0] and
x[1]!=layers[-1]])
sea_bound_transit_route=[x for x in path if x[1]==layers[0]]
start_time=len(sea_bound_transit_route)*edge_time
time_keeper.append(start_time)
home_bound_transit_route=[x for x in path if x[1]==layers[-1]]
end_time=len(home_bound_transit_route)*edge_time
time_keeper.append(end_time)
transit_time=start_time+end_time
list_of_trial_spots.append(home_bound_transit_route[0])
for point in sea_bound_transit_route:
 final_route.append(point)

sequence=deque(sort[1:len(sort)-1])
k_temp=0
n_temp=0

 72

completed=[] #list of completed trials (keeps emptying)
failed=[] #list of failed trials (keeps emptying)
pending_trials=[] #list of pending trials
final_completed={} #dictionary with trials completed and # of attempts
final_failed=[] #list with failed trials
final_poor=[]
num_of_times_rescheduled=0

s=path[0]
t=path[-1]
while n_temp<n and len(sequence)>0:
if len(sequence)>0:
 trial=sequence.popleft()
 #print "trial: %s"%trial
 s=list_of_trial_spots.popleft()

k_temp,n_temp,completed,failed,total_time=conduct_trial(g,wind,sea,k,n,
k_temp,n_temp,completed,failed,total_time,trial,close_small,between_sma
ll,k_main)
 #print "k_temp: %s"%k_temp
 #print "n_temp: %s"%n_temp
 #print "completed: %s"%completed
 #print "failed: %s"%failed
 #print "total_time: %d"%total_time
 if len(failed)<=0:
 final_route.append(s)
 if len(failed)>0:
 #print "Trial failed. Updating Graph"
 num_of_times_rescheduled+=1
 g=graph_updater(g,flag=1)
 sort=nx.dag.topological_sort(g) #generating a sequence for
trials
 #print "This is new sequence:%s"%sort
 layers=sort[0:len(sort)-1]
 sequence=deque(sort[1:len(sort)-1])
 #print "sequence: %s"%sequence
 ###### creating new network all over again
 allnodes=node_stamper(d,layers)
 layer_record=layer_record_creator(layers,allnodes)
 cons=trial_times_list(sort,g)
 depth_req=depth_required_list(sort,g)
 if len(depth_req)>0:

graph_1=main_graph_builder(layer_record,master_neighbors,layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2
0)
 s=(s[0],layers[1])
 #print "This is s:%s"%(s,)
 t=(t[0],layers[-1])
 #print "This is t:%s"%(t,)
 path,time=result_calculator_simulation(graph_1,g,s,t)
 list_of_trial_spots=deque([x for x in path if
x[1]!=layers[0] and x[1]!=layers[-1]])
 list_of_trial_spots.append(path[-len([x for x in path if
x[1]==layers[-1]])])

 73

 #sequence=deque(sort[1:len(sort)-1])
 else:
 print "All trials have been removed. Go back to port"

if n_temp<n:
 s=final_route[-1]
 t=(final_route[0][0],final_route[-1][1])
 home_bound_transit_route=nx.shortest_path(graph_1,s,t)
 for point in home_bound_transit_route:
 if point not in final_route:
 final_route.append(point)
 end_time=len(home_bound_transit_route)*edge_time
elif n_temp>=n and len(sequence)>0:
 s=(final_route[-1][0],sequence[0])
 t=(final_route[0][0],sequence[0])
 sequence.popleft()
 for trial in sequence:
 final_poor.append(trial)
 home_bound_transit_route=nx.shortest_path(graph_1,s,t)
 for point in home_bound_transit_route:
 if point not in final_route:
 final_route.append(point)
 end_time=len(home_bound_transit_route)*edge_time
transit_time=start_time+end_time
total_time+=transit_time
num_trials_failed=len(final_failed)
num_trials_completed=len(final_completed)
num_poor_trials=len(final_poor)#(len(g.nodes())-2)-
(len(final_completed.keys())+len(failed)) #trials that got removed
because of others

############### Writing the output of simulation run ########

header="'n','k','wind','sea','speedtr','total_time','num_trials_failed'
,'num_trials_completed','num_poor_trials','final_failed_trials'"
print header
print
"%d,%d,%d,%d,%d,%d,%d,%d,%d,%s"%(n,k,wind,sea,speedtr,total_time,num_tr
ials_failed,num_trials_completed,num_poor_trials,final_failed)

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX F. PYTHON CODE TO CALCULATE BETWEEN-NESS
AND CLOSENESS CENTRALITY ALONG WITH RESULTS

close=sorted(nx.closeness_centrality(g).items(),
key=operator.itemgetter(1),reverse=True)

between=sorted(nx.betweenness_centrality(g).items(),
key=operator.itemgetter(1),reverse=True)

BETWEEN-NESS CENTRALITY RESULTS
System Centrality Value System Centrality Value System Centrality Value
‘ENG' 0.037643 'CHW' 0.000349 'LSE' 4.26E-05
 'INC' 0.016855 'OAV' 0.000329 'HFE' 4.26E-05
 'EML' 0.014492 'IN1' 0.000288 'DWH' 4.26E-05
 'AIS' 0.011556 'CO2' 0.00026 'RAS' 3.77E-05
 'FF1' 0.008172 'NTX' 0.000225 'MRE' 3.77E-05
 'FCS' 0.007661 'TC1' 0.000224 'ANC' 3.77E-05
 'PGS' 0.006139 'ZZ1' 0.000224 'TOW' 3.77E-05
 'SPD' 0.005171 'TLI' 0.000196 'GY1' 2.89E-05
 'GY2' 0.003919 'CS1' 0.000182 'CDW' 2.55E-05
 'STS' 0.003703 'EEX' 0.000176 'CAS' 2.55E-05
 'MSB' 0.003556 'DAP' 0.00017 'SWC' 2.55E-05
 'EGS' 0.003447 'UWN' 0.000169 'CCT' 1.56E-05
 'CBT' 0.002937 'FWS' 0.000153 'ALM' 1.56E-05
 'MHF' 0.001788 'CRA' 0.000146 'MGP' 1.56E-05
 'VHF' 0.00166 'ESD' 0.000144 'LOS' 1.56E-05
 'CNS' 0.00165 'SPT' 0.000143 'NSL' 1.56E-05
 'CMS' 0.001277 'AMV' 0.000138 'CRN' 1.56E-05
 'ECD' 0.000912 'BWS' 0.000128 'ICS' 1.56E-05
 'HYD' 0.000766 'DOS' 0.000128 'ICP' 1.56E-05
 'GWD' 0.000681 'SBT' 0.000128 'VNT' 0
 'SAT' 0.000654 'CWS' 0.000128 'CDE' 0
 'GUN' 0.000638 'RFG' 0.000106 'End' 0
 'ELL' 0.000526 'SHV' 0.000106 'EMS' 0
 'BLR' 0.000511 'FIN' 9.98E-05 'FTS' 0
 'BCD' 0.000511 'PWS' 8.51E-05 'ESB' 0
 'SWT' 0.000511 'MGC' 7.87E-05 'Start' 0
 'AC1' 0.000489 'SMA' 7.87E-05 'ECS' 0
 'SWS' 0.000434 'ESS' 6.51E-05 'UHF' 0
 'GPS' 0.000399 'SPR' 6.38E-05 'PDS' 0
 'RDR' 0.000353 'DGS' 4.75E-05 'MTR' 0

 76

CLOSENESS CENTRALITY RESULTS
System Centrality Value System Centrality Value System Centrality Value
PGS' 0.722736 'CBT' 0.036772 'MRE' 0.011236
 'MSB' 0.594803 'SMA' 0.036404 'FIN' 0.011236
 'Start' 0.470899 'CHW' 0.035955 'IN1' 0.011236
 'GY2' 0.213067 'CDW' 0.031211 'CRA' 0.011236
 'SWS' 0.173184 'FCS' 0.029963 'LSE' 0.011236
 'GY1' 0.152949 'PDS' 0.029963 'CS1' 0.011236
 'RDR' 0.144971 'MHF' 0.025682 'AMV' 0.011236
 'EGS' 0.115366 'DOS' 0.025682 'SHV' 0.011236
 'ENG' 0.112615 'VHF' 0.023408 'ECD' 0.011236
 'ESB' 0.108507 'UHF' 0.022472 'TC1' 0.011236
 'GPS' 0.098931 'BWS' 0.016854 'ANC' 0.011236
 'FWS' 0.09472 'CDE' 0.016854 'MGP' 0.011236
 'FTS' 0.08898 'SWC' 0.016854 'UWN' 0.011236
 'EMS' 0.088714 'VNT' 0.014981 'HFE' 0.011236
 'ECS' 0.088714 'CMS' 0.014981 'DGS' 0.011236
 'CO2' 0.088714 'BLR' 0.014981 'ELL' 0.011236
 'EEX' 0.084972 'RFG' 0.014981 'ZZ1' 0.011236
 'ESD' 0.083261 'GWD' 0.014981 'NTX' 0.011236
 'FF1' 0.082397 'BCD' 0.014981 'SBT' 0.011236
 'TLI' 0.082397 'GUN' 0.014981 'TOW' 0.011236
 'EML' 0.0799 'AC1' 0.014981 'LOS' 0.011236
 'MGC' 0.07191 'CAS' 0.014981 'NSL' 0.011236
 'SPD' 0.06882 'SWT' 0.014981 'CRN' 0.011236
 'SPR' 0.066784 'ESS' 0.014981 'DAP' 0.011236
 'PWS' 0.066784 'CCT' 0.011236 'CNS' 0.011236
 'HYD' 0.061174 'OAV' 0.011236 'CWS' 0.011236
 'INC' 0.051364 'SPT' 0.011236 'ICS' 0.011236
 'MTR' 0.048852 'RAS' 0.011236 'DWH' 0.011236
 'STS' 0.044944 'SAT' 0.011236 'ICP' 0.011236
 'AIS' 0.043339 'ALM' 0.011236 'End' 0

 77

APPENDIX G. PYTHON CODE FOR SIMULATION RE-RUNS

import csv
import networkx as nx
import math
import random
from itertools import permutations, product, chain
from collections import deque
import operator
import numpy as np
import sys

############ Defining temporary variables ##################

k_temp=0
n_temp=0
completed=[] #list of completed trials (keeps emptying)
failed=[] #list of failed trials (keeps emptying)
pending_trials=[] #list of pending trials
final_completed={} #dict with trials completed and number of attempts
final_failed=[] #list with failed trials
final_poor=[] #List with trials removed because of other trials failure
num_of_time_rescheduled=0
total_time=0.0
distance=1.0 #distance in the grid (1 x 1 NM box)

######## Grid Creator Function ##############

def grid_creator(depth_file,area,area2,n_rows,n_cols):

 """Function to read the depths.csv file and create a grid.
 It also takes input for interdiction areas. It needs two lists of
 tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
 represent two interdiction areas. If no interdiction is intended,
 give it coordinates outside ranges of depth file max rows and
 columns"""

 dt=depth_file
 target=open(dt,'r')

 Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
 Area2=area2#[(29,32),(29,32)]

 n_rows=n_rows
 n_cols=n_cols

 posn=[]
 d=[]
 for i in range(1,n_rows+1):
 line=target.readline()
 line=line.rstrip("\n")

 78

 line=line.split(',')
 for j in range(1,n_cols+1):
 f=int(line[j-1])
 if f>0:
 if i>=Area[0][0] and i<=Area[1][0] and j>=Area[0][1]
and j<=Area[1][1]:
 continue
 elif i>=Area2[0][0] and i<=Area2[1][0] and
j>=Area2[0][1] and j<=Area2[1][1]:
 continue
 else:
 position=(i,j)
 posn.append(position)
 x=((i,j),f)
 d.append(x)
 return d,posn
 target.close()

#######MASTER NEIGHBORS DICT CREATION FUNCTION #################

def neighbours_creator(nodelist,output_dict_name):
 output_dict_name={}
 for nodes in nodelist:
 start=nodes
 #print start
 t1=(start[0]+1,start[1]) #North
 t2=(start[0]+1,start[1]+1) #North East
 t3=(start[0],start[1]+1) #East
 #t4=(start[0],start[1]) #self
 t5=(start[0]-1,start[1]+1) #South East
 t6=(start[0]-1,start[1]) #South
 t7=(start[0]-1,start[1]-1) #South West
 t8=(start[0],start[1]-1) #West
 t9=(start[0]+1,start[1]-1) #North West
 output_dict_name[start]=[]
 if t1 in nodelist:
 output_dict_name[start].append(t1)
 if t2 in nodelist:
 output_dict_name[start].append(t2)
 if t3 in nodelist:
 output_dict_name[start].append(t3)
 #if t4 in nodelist:
 # output_dict_name[start].append(t4)
 if t5 in nodelist:
 output_dict_name[start].append(t5)
 if t6 in nodelist:
 output_dict_name[start].append(t6)
 if t7 in nodelist:
 output_dict_name[start].append(t7)
 if t8 in nodelist:
 output_dict_name[start].append(t8)
 if t9 in nodelist:
 output_dict_name[start].append(t9)

 79

 return output_dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors")

#############creating the graph for path checking ####################

def path_checker_creator(depth_list,neighbors):
 path_checker = nx.DiGraph()
 path_checker.nodes=depth_list
 queue=[]
 index=0
 for key in neighbors.keys():
 #print "this is the key : %s"%(key,)
 #queue.append(key)
 #if key not in queue:
 queue.append(neighbors[key])
 #print "These are the neighbors for %s:
%s"%(key,neighbors50[key])
 for i in range(0,len(queue[index])):
 dest=queue[index][i]
 #print dest
 #type(dest)
 path_checker.add_edge(key,dest)
 #queue.pop()
 #queue=[]
 index+=1
 return path_checker

################################
#####Creating graph of trials###
################################

def create_graph(data_file):
 “””This Function takes as input the data.csv file and creates a
 graph for finding the sequence to conduct trials”””
 csvr = csv.DictReader(open(data_file))
 g = nx.DiGraph()
 # add all the nodes
 for line in csvr:
 nid = line['id']
 nname = line['trial']
 requirements = line['reqs']
 time = int(line['time'])
 speed = line['speed']
 depth = line['depth']
 sea = line['sea']
 wind = line['wind']
 mean=float(line['mean'])
 sd=float(line['sd'])
 prob_success=float(round(random.normalvariate(mean,sd),3))

 80

 g.add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

 # add all the edges
 for node,node_data in g.nodes(data=True):
 requirements = node_data['requirements']
 if requirements == '':
 continue
 for pred in requirements.split(';'):
 g.add_edge(pred,node,time=g.node[pred]['time'])
 # add the 'start' and 'end' nodes
 g.add_node('Start')
 g.add_node('End')
 for n in g.nodes():
 if n == 'Start' or n == 'End':
 continue
 if not g.predecessors(n):
 g.add_edge('Start',n,time=0)
 if not g.successors(n):
 g.add_edge(n,'End',time=-g.node[n]['time'])
 return g

#############stamping all nodes with layer information#################

def node_stamper(d,layers):
 allnodes=[]
 for node in d:
 #print node
 #temp=[]
 #temp.append(d)
 for stamp in layers:
 if stamp is 'End':
 continue
 #print i
 else:
 tmp=[node,stamp]
 allnodes.append(tmp)
 return allnodes

############ Layering on trial name #############################

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
 layer_record={}
 for layer in layers:
 layer_record[layer]=[]
 for node in allnodes:
 if node[1]==layer:

 81

 layer_record[layer].append(node)
 return layer_record

########## List of distance covered to complete a trial###########

def trial_times_list(sort,g):
 cons=[]
 for i in sort:
 if i!='Start' and i!='End':
 m=int(g.node[i]['time'])*int(g.node[i]['speed'])/60.0
 cons.append(m)
 return cons

########## List of depth required by each trial###################

def depth_required_list(sort,g):
 depth_req=[]
 for i in sort:
 for node,node_data in g.nodes(data=True):
 if i==node and i!='Start' and i!='End':
 t=node_data['depth']
 depth_req.append(t)
 return depth_req

########## Function to create the main routing graph #############

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker_50,
path_checker_20):
 graph_1=nx.DiGraph()
 #print layer
 for layer in layers:
 ##print "This is the layer i am on: %s"%layer
 present_layer_nodes=layer_record[layer]
 #print present_layer_nodes
 for node in present_layer_nodes:
 source=tuple(node)
 #print node
 neighbors_complete=[node for neighbor in
master_neighbors[node[0][0]] for node in present_layer_nodes if
node[0][0]==neighbor]
 #print neighbors_complete
 for dest in neighbors_complete:
 dest=tuple(dest)
 #print "dest";print dest
 #print "writing edge from %s to %s"%(source,dest,)
 graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
 neighbors_complete=[]
 for i in range(0,len(layers)):

 82

 #print "This is trial number: %d"%i
 #print "This is trial: %s"%sort[i+1]
 if i<len(depth_req):
 depth_required=int(depth_req[i])
 #print "depth required updated to %d"%depth_required
 #if layers[i]!='End':

 present_layer=[node for node in allnodes if node[1]==sort[i] if
node[0][1]>=depth_required]
 #print "This is the present layer"
 #print present_layer
 next_layer=[node for node in allnodes if node[1]==sort[i+1] if
node[0][1]>=depth_required]
 #print "This is the next layer"
 #print next_layer

 for node1 in present_layer:
 temp1=node1[0][0]
 #print temp1
 x1=temp1[0]
 y1=temp1[1]
 source=tuple(node1)
 ##print "Source: %s"%source
 for node2 in next_layer:
 temp2=node2[0][0]
 x2=temp2[0]
 y2=temp2[1]
 dest=tuple(node2)
 ##print "Dest: %s"%dest
 if (abs(x1-x2)+abs(y1-y2))<=cons[i] and (abs(x1-
x2)+abs(y1-y2))>=(cons[i]/2.0):
 #print "distance is ok"

 if layers[i]==layers[-1]:
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))

 if layers[i]=='Start':
 #print "I m inside Start loop"
 if nx.has_path(path_checker_all,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=50:
 #print "I am in depth 50 loop"
 if nx.has_path(path_checker_50,temp1,temp2):

 83

 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 elif depth_required>=20:
 #print "I am in depth 20 loop"
 if nx.has_path(path_checker_20,temp1,temp2):
 #print "There is a path between %s and
%s"%(temp1,temp2,)
 #print "writing inter layer edge between %s
and %s"%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]['time']))
 return graph_1

########## Function to calculate results##########################

def result_calculator(graph_1,g,s,t):
 """This function takes the main graph, sequence graph, starting and
 ending locations as inputs and calculates shortest path and returns
 time to complete trials, path to be taken, betweenness and
 closeness centrality values"""

 #s=(((38, 38), 9), 'Start')
 #t=(((38, 38), 9), 'TC')
 result=nx.shortest_path(graph_1,s,t)
 total_time=0.0
 for i in range (0,len(result)):
 if result[i]!=result[-1]:
 if result[i][1]==result[i+1][1]:
 #print (result[i],result[i+1])
 total_time+=(1.0*60/speedtr)
 else:
 #print (result[i],result[i+1])
 total_time+=g.node[result[i+1][1]]['time']
 print "CLOSENESS CENTRALITY"
 print sorted (nx.closeness_centrality(g).items(), key=
operator.itemgetter(1), reverse= True)
 print "BETWEENNESS CENTRALITY"
 print sorted (nx.betweenness_centrality(g). items(),
key=operator.itemgetter(1), reverse=True)
 print "ROUTE FOR TRIALS"
 print result
 print "TIME TO COMPLETE TRIALS"
 print total_time

Function to calculate results for simulation ################

def result_calculator_simulation(graph_1,g,s,t):

 84

 """This function takes the main graph, sequence graph, starting and
 ending locations as inputs and calculates shortest path and returns
 time to complete trials, path to be taken, betweenness and
 closeness centrality values"""

 result=nx.shortest_path(graph_1,s,t)
 total_time=0.0
 for i in range (0,len(result)):
 if result[i]!=result[-1]:
 if result[i][1]==result[i+1][1]:
 total_time+=(1.0*60/speedtr)
 else:
 total_time+=g.node[result[i+1][1]]['time']
 return result,total_time

############## Function to simulate conduct of trial #############

def
conduct_trial(g,wind,sea,k,n,k_temp,n_temp,completed,failed,total_time,
trial,close_small,between_small,k_main):
 global final_completed, final_failed
 #print "n_temp: %d"%n_temp
 #if len(sequence)>0:
 if trial in close_small:
 k+=1
 #print "updating k to value %d"%k
 elif trial in between_small:
 k+=1
 #print "updating k to value %d"%k
 else:
 k=k_main
 prob_success=g.node[trial]['prob_success']
 sea_req=g.node[trial]['sea']
 wind_req=g.node[trial]['wind']
 time=g.node[trial]['time']
 if wind<=wind_req and sea<=sea_req: #good wind and sea conditions
 #print "wind and sea ok"
 while k_temp<k:
 prob=random.random()
 if prob<=prob_success:
 #print "completed %s"%trial
 completed.append(trial)
 final_completed[trial]=k_temp
 k_temp=0
 total_time+=time
 break
 elif prob>=prob_success:
 #print "a try failed for %s"%trial
 k_temp+=1
 total_time+=time
 #break
 if k_temp>=k:
 n_temp+=1

 85

 #print "failed %s %d times"%(trial,k_temp)
 failed.append(trial)
 final_failed.append(trial)
 k_temp=0
 else: #Not favorable wind and sea conditions
 #print "wind sea not ok"
 prob_success=0.5*prob_success
 while k_temp<k:
 prob=random.random()
 if prob<=prob_success:
 #print "completed %s"%trial
 completed.append(trial)
 final_completed[trial]=k_temp
 k_temp=0
 total_time+=time
 break
 elif prob>=prob_success:
 #print "a try failed for %s"%trial
 k_temp+=1
 total_time+=time
 #break
 if k_temp>=k:
 n_temp+=1
 #print "failed %s %d times"%(trial,k_temp)
 failed.append(trial)
 final_failed.append(trial)
 k_temp=0
 k=k_main
 #print k
 return k_temp,n_temp,completed,failed,total_time

######## Function to update the graph after a failure ############

def graph_updater(g,flag=1):
#flag=1
 global failed,completed,final_poor
 while flag==1 and len(g.nodes())>2:
 for node,node_data in g.nodes(data=True):
 #print "node: %s"%node
 if node=='Start' or node=='End':
 continue

 else:
 flag=0
 if node in failed:
 #print "removing: %s"%node
 g.remove_node(node) #remove the nodes which have
not been completed
 flag=1
 elif node in completed:
 #print "removing: %s"%node
 g.remove_node(node) #remove the nodes which have
not been completed

 86

 flag=1
 #for node_data in g.nodes(data=True):
 requirements=node_data['requirements'].split(';')
 for item in requirements: #iterate over the requirements of
all nodes
 #print "item: %s"%item
 if item in failed and node in g.nodes():
 g.remove_node(node)
 #print "inside removing: %s"%node
 final_poor.append(node)
 failed.append(node)
 flag=1
 for n in g.nodes():
 if n == 'Start' or n == 'End':
 continue
 if not g.predecessors(n):
 g.add_edge('Start',n,time=0)
 if not g.successors(n):
 g.add_edge(n,'End',time=-g.node[n]['time'])
 failed=[]
 completed=[]
 return g

################## EXECUTION OF FUNCTIONS #########################

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3
sea=int(sys.argv[4])#2
speedtr=int(sys.argv[5])#20
edge_time=1.0*60/speedtr
k_main=k

######Reading depth file and creating grid#########

#change the input file name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator("Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
,38)

############MASTER NEIGHBORS DICT CREATION ##################

master_neighbors=neighbours_creator(posn,"master_neighbors")

################### Depth wise node lists ############################

depth_all=[node[0] for node in d]
depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

 87

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all,"neighbors_all")
neighbors50=neighbours_creator(depth50,"neighbors50")
neighbors20=neighbours_creator(depth20,"neighbors20")

######## creating the graph for path checking later###################

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)
path_checker_50=path_checker_creator(depth50,neighbors50)

####################Creating graph of trials#####################

g=create_graph("Data.csv") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0:len(sort)-1]
sequence=deque(sort[1:len(sort)-1])

##################stamping all nodes with layer information) ##########

allnodes=node_stamper(d,layers)

############ Layering on trial name#######

layer_record=layer_record_creator(layers,allnodes)

cons=trial_times_list(sort,g)

depth_req=depth_required_list(sort,g)

graph_1=main_graph_builder(layer_record,master_neighbors,layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2
0)

##############################RESULTS##################################

s=(((38, 38), 9), layers[0])
t=(((38, 38), 9), layers[-1])
path,time=result_calculator_simulation(graph_1,g,s,t)

close=sorted(nx.closeness_centrality(g).items(),
key=operator.itemgetter(1),reverse=True)
close_small=[]
for item in close:
 if item[1]>=0.1:
 close_small.append(item[0])

 88

between=sorted(nx.betweenness_centrality(g).items(),
key=operator.itemgetter(1),reverse=True)
between_small=[]
for item in between:
 if item[1]>=0.003:
 between_small.append(item[0])

#transit_out_time= time to reach first point of trial
#transit_in_time= Time to reach back from last trial
final_route=[]
time_keeper=[]
list_of_trial_spots=deque([x for x in path if x[1]!=layers[0] and
x[1]!=layers[-1]])
sea_bound_transit_route=[x for x in path if x[1]==layers[0]]
start_time=len(sea_bound_transit_route)*edge_time
time_keeper.append(start_time)
home_bound_transit_route=[x for x in path if x[1]==layers[-1]]
end_time=len(home_bound_transit_route)*edge_time
time_keeper.append(end_time)
transit_time=start_time+end_time
list_of_trial_spots.append(home_bound_transit_route[0])
for point in sea_bound_transit_route:
 final_route.append(point)

sequence=deque(sort[1:len(sort)-1])
k_temp=0
n_temp=0
completed=[] #list of completed trials (keeps emptying)
failed=[] #list of failed trials (keeps emptying)
pending_trials=[] #list of pending trials
final_completed={} #dictionary with trials completed and # of attempts
final_failed=[] #list with failed trials
final_poor=[]
num_of_times_rescheduled=0

s=path[0]
t=path[-1]
while n_temp<n and len(sequence)>0:
if len(sequence)>0:
 trial=sequence.popleft()
 #print "trial: %s"%trial
 s=list_of_trial_spots.popleft()

k_temp,n_temp,completed,failed,total_time=conduct_trial(g,wind,sea,k,n,
k_temp,n_temp,completed,failed,total_time,trial,close_small,between_sma
ll,k_main)
 #print "k_temp: %s"%k_temp
 #print "n_temp: %s"%n_temp
 #print "completed: %s"%completed
 #print "failed: %s"%failed
 #print "total_time: %d"%total_time
 if len(failed)<=0:
 final_route.append(s)
 if len(failed)>0:
 #print "Trial failed. Updating Graph"

 89

 num_of_times_rescheduled+=1
 g=graph_updater(g,flag=1)
 sort=nx.dag.topological_sort(g) #generating a sequence for
trials
 #print "This is new sequence:%s"%sort
 layers=sort[0:len(sort)-1]
 sequence=deque(sort[1:len(sort)-1])
 #print "sequence: %s"%sequence
 ###### creating new network all over again
 allnodes=node_stamper(d,layers)
 layer_record=layer_record_creator(layers,allnodes)
 cons=trial_times_list(sort,g)
 depth_req=depth_required_list(sort,g)
 if len(depth_req)>0:

graph_1=main_graph_builder(layer_record,master_neighbors,layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2
0)
 s=(s[0],layers[1])
 #print "This is s:%s"%(s,)
 t=(t[0],layers[-1])
 #print "This is t:%s"%(t,)
 path,time=result_calculator_simulation(graph_1,g,s,t)
 list_of_trial_spots=deque([x for x in path if
x[1]!=layers[0] and x[1]!=layers[-1]])
 list_of_trial_spots.append(path[-len([x for x in path if
x[1]==layers[-1]])])
 #sequence=deque(sort[1:len(sort)-1])
 else:
 print "All trials have been removed. Go back to port"

if n_temp<n:
 s=final_route[-1]
 t=(final_route[0][0],final_route[-1][1])
 home_bound_transit_route=nx.shortest_path(graph_1,s,t)
 for point in home_bound_transit_route:
 if point not in final_route:
 final_route.append(point)
 end_time=len(home_bound_transit_route)*edge_time
elif n_temp>=n and len(sequence)>0:
 s=(final_route[-1][0],sequence[0])
 t=(final_route[0][0],sequence[0])
 sequence.popleft()
 for trial in sequence:
 final_poor.append(trial)
 home_bound_transit_route=nx.shortest_path(graph_1,s,t)
 for point in home_bound_transit_route:
 if point not in final_route:
 final_route.append(point)
 end_time=len(home_bound_transit_route)*edge_time
transit_time=start_time+end_time
total_time+=transit_time
num_trials_failed=len(final_failed)
num_trials_completed=len(final_completed)

 90

num_poor_trials=len(final_poor)#(len(g.nodes())-2)-
(len(final_completed.keys())+len(failed)) #trials that got removed
because of others

############### Writing the output of simulation run ########

header="'n','k','wind','sea','speedtr','total_time','num_trials_failed'
,'num_trials_completed','num_poor_trials','final_failed_trials'"
print header
print
"%d,%d,%d,%d,%d,%d,%d,%d,%d,%s"%(n,k,wind,sea,speedtr,total_time,num_tr
ials_failed,num_trials_completed,num_poor_trials,final_failed)

 91

LIST OF REFERENCES

Borgatti, S. P. (2005). Centrality and network flow. Social networks, 27(1), 55–71.
Retrieved from http://www.sciencedirect.com/science/article
/pii/S0378873304000693.

Carter, J. M. (2005). Shipbuilding integration (Master’s Thesis). Naval Postgraduate
School, Monterey, CA. Retrieved from https://calhoun.nps.edu/bitstream/handle
/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y

Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin
hypercubes. Technometrics, 49(1), 45–55.

Colgary, K. A., & Willett, D. K. (2006). Ship and Installation Program: Optimal
Stationing of Naval Ships (Master’s Thesis). Naval Postgraduate School,
Monterey, CA. Retrieved from

https://calhoun.nps.edu/bitstream
/handle/10945/2768/06Jun_Colgary.pdf?sequence=1&isAllowed=y

Dimitrov, N. (2014, May). Network Flows and Graphs (instructional material). Presented
at Naval Postgraduate School, Monterey, CA. Retrieved from
http://neddimitrov.org/teaching/201402NFG.html

Germanischer Lloyd SE. (2012). Rules for classification and construction (VI-11-3).
Hamburg, Germany: Germanischer Lloyd. Retrieved from http://www.gl-
group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf

Haakenstad, K. (2012). Analysis and correction of sea trials (Master’s Thesis).
Norweigan University of Science and Technology, Trondheim, Norway.
Retrieved from http://brage.bibsys.no/xmlui/handle/11250/238219

Hart, C. (2000). Measurements during SWATH ship sea trials. Instrumentation &
Measurement Magazine, IEEE, 3(3), 38–43. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=863910&tag=1

JMP, Version 12 (1989-2007). SAS Institute Inc., Cary, NC. Retrieved from
https://www.nps.edu/Technology/SoftwareLib/Auth/index.htm

McLean, C., & Shao, G. (2001). Simulation in shipyards: simulation of shipbuilding
operations. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer (Eds.),
Proceedings of the 2001 Winter Simulation Conference (pp. 870–876).
Piscataway, NJ: Institute of Electrical and Electronic Engineers. Retrieved from
http://informs-sim.org/wsc01papers/114.pdf

http://www.sciencedirect.com/science/article%0b/pii/S0378873304000693
http://www.sciencedirect.com/science/article%0b/pii/S0378873304000693
https://calhoun.nps.edu/bitstream/handle%0b/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream/handle%0b/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream%0b/handle/10945/2768/06Jun_Colgary.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream%0b/handle/10945/2768/06Jun_Colgary.pdf?sequence=1&isAllowed=y
http://neddimitrov.org/teaching/201402NFG.html
http://www.gl-group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf
http://www.gl-group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf
http://brage.bibsys.no/xmlui/handle/11250/238219
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=863910&tag=1
https://www.nps.edu/Technology/SoftwareLib/Auth/index.htm
http://informs-sim.org/wsc01papers/114.pdf

 92

The National Shipbuilding Research Program (NSRP) (1999, July), Standard Ship Test
and Inspection Plan, Procedures and Databases (NSRP 0534 N6-95-1). U.S.
Department of the Navy Carderock Division, Naval Surface Warfare Center.
Retrieved from http://www.google.com/url?sa=t&rct=j&q=&esrc=
s&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVl
NCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=
AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-
h067zhw&bvm=bv.102829193,d.cGU

Sanchez, S. M., & Wan, H. (2012). Work smarter, not harder: A tutorial on designing and
conducting simulation. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, &
A. M. Urmacher (Eds.), Proceedings of the 2012 Winter Simulation Conference
(pp. 1929–1943). Piscataway, NJ: Institute of Electrical and Electronic Engineers.
Retrieved from http://informs-sim.org/wsc12papers/includes/files/inv260.pdf

Sanchez, S. M. (2011). NOLHDesigns_V6.xls [Spreadsheet file]. Retrieved from
http://harvest.nps.edu

Vieira, H., Jr. (2012). NOB_Mixed_512DP_template_v1.xls [Spreadsheet file]. Retrieved
from http://harvest.nps.edu

Vieira, H., Jr., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2011). Improved
efficient, nearly orthogonal, nearly balanced mixed designs. In S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, & M. Fu (Eds.), Proceedings of the 2011
Winter Simulation Conference (pp. 3605–3616). Piscataway, NJ: Institute of
Electrical and Electronics Engineers. Retrieved from http://www.informs-
sim.org/wsc11papers/320.pdf

Vieira, H., Jr., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2013). Efficient
nearly-orthogonal-and-balanced, mixed designs: An effective way to conduct
trade-off analyses via simulation. Journal of Simulation, 7 (Special Issue on
Input/Output Analysis), 264–275.

http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://informs-sim.org/wsc12papers/includes/files/inv260.pdf
http://harvest.nps.edu/
http://harvest.nps.edu/
http://www.informs-sim.org/wsc11papers/320.pdf
http://www.informs-sim.org/wsc11papers/320.pdf

 93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Background and Motivation
	B. Thesis Objectives
	C. Thesis Organization

	II. LITERATURE REVIEW
	III. METHODOLOGY
	A. PLANNING PHASE
	1. Generation of Sequence
	2. Creation of Layered Network
	3. Finding the Route to Complete All Trials

	B. SIMULATION
	C. FACTORS AND RANGES
	D. ASSUMPTIONS
	E. LIMITATIONS
	F. DESIGN OF EXPERIMENTS

	IV. RESULTS AND ANALYSIS
	A. GENERAL RESULTS
	1. Input Data File
	2. Sequence of Trials
	3. Generating Multiple Feasible Trial Sequences
	4. Generating the Path
	5. Out of Bound Areas

	B. SIMULATION AND DESIGN OF EXPERIMENTS
	C. Measures of Effectiveness
	D. Simulation Results
	1. Regression Model
	2. Identification of Important Systems

	E. SIMULATION RE-RUNS
	1. Simulation Re-run Results
	2. Regression Model for Simulation Re-run

	F. Comparison of Results
	G. DISCUSSION
	H. MODEL ENHANCEMENTS

	V. Conclusions and recommendations
	Appendix A. CONTENTS OF INPUT DATA FILE
	appendix B. python Function to generate the sequence of trials
	Appendix C. Python Code to generate multiple feasible sequences
	Appendix D. Python code to generate the path for trial conduct
	appendix E. python code to run simulations
	Appendix F. Python code to calculate between-ness and closeness centrality along with results
	Appendix G. Python code for simulation re-runs
	List of References
	initial distribution list

