P M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ADAPTIVE METHOD FOR SCHEDULING THE
SEQUENCE AND ROUTE OF BUILDER TRIALS FOR A
NEW SHIP

by
Ahmed Raza Tahir
September 2015

Thesis Advisor: Susan M. Sanchez
Second Reader: William Solitario

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave blank) September 2015 Master’s thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN ADAPTIVE METHOD FOR SCHEDULING THE SEQUENCE AND
ROUTE OF BUILDER TRIALS FOR A NEW SHIP

6. AUTHOR(S) Tahir, Ahmed Raza

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND 10. SPONSORING /

ADDRESS(ES) MONITORING AGENCY
N/A REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number N/A .

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

Before a newly built ship is brought into service, it has to undergo various trials as part of its delivery. The
builder shipyard aims at completing the maximum number of trials in the minimum possible time. Many
trials have one or more prerequisites and every trial may have certain environmental requirements for its
conduct. At sea, the success of any specific trial cannot be guaranteed. A dynamic tool is needed to help
decision makers rapidly construct alternative trial sequences after the failure of any trial, and aid them in
deciding whether the trials can be continued, or the ship has to return to the harbor for repairs. This thesis
develops such an adaptive tool, which generates an optimal sequence and feasible route for conduct of a
given set of trials, minimizing the total time required in the absence of failures or adverse environmental
conditions. The tool allows the user to generate alternate sequences of trials if an early trial fails.
Simulation of the conduct of trials, under varying environmental conditions, reveals that the number of
retries is the most important factor affecting the outcomes. It also identifies bottlenecks in the network,
providing insight about onboard spare supportability for important systems.

14. SUBJECT TERMS 15. NUMBER OF
builder trials, optimal sequence and route, robust solution, layered network, shortest path, PAGES
design of experiments, simulation 117
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE OF ABSTRACT
Unclassified Unclassified Unclassified uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

AN ADAPTIVE METHOD FOR SCHEDULING THE SEQUENCE AND ROUTE
OF BUILDER TRIALS FOR A NEW SHIP

Ahmed Raza Tahir
Lieutenant Commander, Pakistan Navy
B.E., Pakistan Navy Engineering College, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Susan M. Sanchez
Thesis Advisor

William Solitario
Second Reader

Patricia A. Jacobs
Chair, Department of Operations Research

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Before a newly built ship is brought into service, it has to undergo various trials as
part of its delivery. The builder shipyard aims at completing the maximum number of
trials in the minimum possible time. Many trials have one or more prerequisites and
every trial may have certain environmental requirements for its conduct. At sea, the
success of any specific trial cannot be guaranteed. A dynamic tool is needed to help
decision makers rapidly construct alternative trial sequences after the failure of any trial,
and aid them in deciding whether the trials can be continued, or the ship has to return to
the harbor for repairs. This thesis develops such an adaptive tool, which generates an
optimal sequence and feasible route for conduct of a given set of trials, minimizing the
total time required in the absence of failures or adverse environmental conditions. The
tool allows the user to generate alternate sequences of trials if an early trial fails.
Simulation of the conduct of trials, under varying environmental conditions, reveals that
the number of retries is the most important factor affecting the outcomes. It also identifies
bottlenecks in the network, providing insight about onboard spare supportability for

important systems.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt sttt sttt 1
A BACKGROUND AND MOTIVATIONccooiiiicieeeece e 2
B. THESIS OBIECTIVES.......coo oot 3
C. THESIS ORGANIZATIONociiiiieeece sttt 3
LITERATURE REVIEWooiiiiiiieee e 5
METHODOLOGY ..ottt sna ettt sbestessaanennens 7
A PLANNING PHASE ..ottt 8
1. Generation of SEQUENCE........ccvvviieiiee e 8
2. Creation of Layered NetworK..........ccccoovvveiviiiviiece e 8
3. Finding the Route to Complete All Trials........cccoovviniiirnnnnnn 12
B. SIMULATION L.ttt aneas 13
C. FACTORS AND RANGES.......co i 14
D. ASSUMPTIONS ...t 15
E. LIMITATIONS ..o 16
F. DESIGN OF EXPERIMENTScoiiiiiiiiieieee e 16
RESULTS AND ANALYSIS ..ot 17
A GENERAL RESULTS....coiiiiiiieee ettt 17
1 Input Data Fileccvviie e 17
2 Sequence Of TrIalS. ... 19
3. Generating Multiple Feasible Trial Sequences..........ccccceeevennen. 19
4 Generating the Path...........cccoooiiiiii e 19
5. OUL OF BOUN AFBASc.eeeiiiiiiieeiiee et 21
B. SIMULATION AND DESIGN OF EXPERIMENTScccccooviviinnns 22
C. MEASURES OF EFFECTIVENESS.........ccoooiiiiieee e 25
D. SIMULATION RESULTS ..ottt 26
1. Regression Model ... 30
2. Identification of Important SyStems..........cccoveeiiiiiininiinens 31
E. SIMULATION RE-RUNS.......ciiiieieitce e 32
1. Simulation Re-run ReSUILS ..o 33
2. Regression Model for Simulation Re-run..........c.cccccocevvevieennen, 35
F. COMPARISON OF RESULTS ..ottt 36
G. DISCUSSION ...ttt 39
H. MODEL ENHANCEMENTSocoiiiieeece e 40

vii

V. CONCLUSIONS AND RECOMMENDATIONS.......ccoooiiiiiiiieiec
APPENDIX A. CONTENTS OF INPUT DATAFILE ...

APPENDIX B. PYTHON FUNCTION TO GENERATE THE SEQUENCE
OF TRIALS ...t b e

APPENDIX C. PYTHON CODE TO GENERATE MULTIPLE FEASIBLE
SEQUENGCESoooveeoeeeeeeseseeeeeeseseeesesesss e eesseseeess e aseseseeessesaseseseeesseseseseseeesees

APPENDIX D. PYTHON CODE TO GENERATE THE PATH FOR TRIAL
CONDUCT bbbt r e s

APPENDIX E. PYTHON CODE TO RUN SIMULATIONS........ccocoiiiiiiiec

APPENDIX F. PYTHON CODE TO CALCULATE BETWEEN-NESS AND
CLOSENESS CENTRALITY ALONG WITH RESULTS ...

APPENDIX G. PYTHON CODE FOR SIMULATION RE-RUNS...........ccccceiinnnne.
LIST OF REFERENCES ...

INITIAL DISTRIBUTION LIST oo

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.
Figure 23.
Figure 24.
Figure 25.

LIST OF FIGURES

General Flow of Events in the Model. ..., 7
Major Steps in Planning Phase. ...t 8
Flow Chart Showing the Creation of the Layered Network. 9
General TrialS ArBa.coiieiieeiie e 9
Trials Area Superimposed With Grid.cccoovevviiiiiieci e 10
Portion of depths.csV File. ... 11
Illustration of Nodes and Edges in a Single Layer.cccoceevevieiieeninns 12
Ilustration of the Layered Network. ..o 12
Flowchart Showing the Broad Logic Scheme of Simulation Model. 13
Route PIot TOr 10 THAIS.......cooveiieieriece e 21
Route Plot for 10 Trials with Interdiction Area.cccooeviiienencneene. 22
Scatterplot Matrix of INput FaCLOrS.ccocviiriiiiiiieieee e 24
Distribution and Summary Statistics of Input Factors.cccccevevveennen. 25
Correlation Matrix for INput FaCLOrS...........cccouririiieieieie e 25
Histograms and Summary Statistics of Mean and Standard Deviation

of Number of Trials Completed. ... 26
Partition tree for Mean Number of Trials Completed as Response

R L - o] -SSR 28
Total Time vs. Number of Trials Completed Overlaid by Number of

=] =SS 29
Regression Summary for Mean Number of Trials Completed. 30
Closeness Centrality PIOt.cocoiiiiiiiiiiinineeee e 31
Between-ness Centrality PIOt.cccoveiiiiiiiii e 32
Histograms and Summary Statistics of Mean and Standard Deviation

of Number of Trials Completed............cceoviiiiiiiieie e 33
Partition Tree with Mean Number of Trials Completed as Response.34
Results of Regression Model.cccooveiiiiiieiiicie e 35
Regression Model Results for Simulation Re-run.cccccoevevveivennnne. 37

Total Time vs. Number of Trials Completed, Overlaid by Number of
Retries (k) when all Systems Given Same Number of Retries.
Results of Subset Where Number of Trials Completed > 70.
Simulation Runs with Lower Value of k not Seen Very Often.................. 38

IX

Figure 26.

Total Time vs. Number of Trials Completed, Overlaid by Number of
Retries (k), when One Extra Retry is Given to the Ten Most
Important Systems. Results of Subset Where Number of Trials
Completed > 70. Simulation Runs with Lower Value of k
Completing MOre THalS.......ccooiieiiiieeeee e

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

LIST OF TABLES

Factors and Ranges Used in the Simulation Experiment...............ccco..... 15
Portion of Data.CSV File. ... 18
Sequence to Conduct all Trials.ccoveieiiiiiece e 19
Route to Conduct Al THAIS. ...cveieeiieiee e 20

Design Points for the Simulation, where the Factors are: n (Total
Number of Acceptable Failures), k (Number of Retries per Trial),
Wind State, Sea State, and Speed of the Ship...........ccccoeiviiiiiiiic i 23

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure

Csv Comma Separated Value

DOE Design of Experiments

DoN Department of the Navy

GL Germanischer Lloyd

GUI Graphical User Interface

HLA High Level Architecture

KS&EW Karachi Shipyard & Engineering Works
MOE Measure of Effectiveness

NOLH Nearly Orthogonal Latin Hypercube
NSRP National Shipbuilding Research Program
RTI Run Time Infrastructure

SHIP Ship and Installation Program

SOLAS Safety of Life at Sea

us United States

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

THESIS DISCLAIMER

The reader is cautioned that the computer programs presented in this research may
not have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logical
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

EXECUTIVE SUMMARY

Before a newly built ship is brought into service, it has to undergo various trials as
part of its delivery from the builder shipyard to the owner. Many types of equipment and
performance are tested during the delivery trials. These trials are generally conducted in
two phases, i.e., harbor trials and sea trials. This research focuses only on the sea trial
phase. These trials are conducted to verify the design parameters of the ship, the
operability of main and auxiliary machinery, and the weapons and sensors for warships.
The builder shipyard aims at minimizing the total time to conduct the sea trials, as it
involves expenses such as fuel, crew, trial equipment, trial team, and food. Many trials
have one or more prerequisites. For example, a prerequisite for conducting a speed test
might be successful completion of an engine test. Moreover, every trial may have certain
environmental requirements for its conduct, such as a minimum water depth, sea state

limitations, or maximum wind force.

This gives rise to a complex network problem, considering that there are multiple
sequences in which these trials can be conducted and each trial requires the ship to be
routed to an appropriate position at sea. While at sea, the success of any specific trial
cannot be guaranteed, and therefore a dynamic tool is needed to help decision makers
rapidly construct alternate trial sequences after the failure of any trial, and aid them in

deciding whether the trials can be continued or the ship has to return to harbor for repairs.

This thesis develops such an adaptive tool, which generates an optimal sequence
and feasible route for conduct of a given set of trials, minimizing the total time required
in the absence of failures or adverse environmental conditions. The tool allows the user to
generate alternate sequences of trials if an early trial either cannot be attempted, or is
attempted but unsuccessful. After generating the sequence of trials, important systems in
the network are identified based on their measures of closeness centrality and between-
ness centrality. These measures give the importance factor for nodes in the network based
on number of edges and number of shortest paths a node is on. Figure 1 shows the results
plotted for a small-scale model run using only ten trials.

XVii

YennoCar evaig [E8¢]

3orkon

I Ilipinar No interdiction
Foga
EMLOG TRIA enGiNETRIAL T Gerenkay Fev 10- 15 hOU rs Tel

Maltepe Cumhburiy EST | Dedgirmendere

Villakent Menemen Goktepe
Seyrek Cumhurrye
Kosedere Ulukent

Mordogan

Balklova

COURSE STABI S
Urla ZIGZAGTRIAL RADAR TRIAL
lkchir

0300} E231 |
Kadhovacik Yelki
Barbaros Gulbahge Iofasan (0-32) Camh
S Kumfrilar node
Figure 1. Small-scale model run using ten trials.

After successful development of this scheduling and routing tool, the sea trials
phase is simulated using designed experiments to study the effects of environmental
conditions, namely sea state and wind force, as well as the total number of acceptable
failures (n), number of retries for each trial in case of its failure (k), speed of transit, and

probability of success for each trial.

The primary measure of effectiveness (MOE) is the number of trials completed
before returning to port. Simulation of the sea trial process under varying environmental
conditions, specified by a designed experiment, provides the key insight that number of
retries for each trial (k) is the most significant input factor for our MOE of number of
trials completed. The results may be translated as: the higher the number of retries given
to each system, the higher will be the number of trials completed. However, this is not a
feasible option in actual practice, as ships will end up spending a very long time out at
sea if too many retries are allowed. Therefore, a second experiment re-runs the simulation
by giving one extra retry to the ten most important systems. This extra retry can be
translated into the spares availability onboard for important systems, and gives the
important systems an extra retry for conduct. Descriptive statistics, partition trees, and
regression models from the simulation re-run show that allowing one extra retry for

important systems leads to a substantial increase in the number of trials completed.
xviii

Following are the summarized results of this research:

The tool may be used in the initial planning phase to find a sequence to
conduct trials, taking into consideration all the prerequisites to complete
those trials.

The tool may be used in the initial planning phase to find a route for this
sequence, minimizing the time to complete all trials in the absence of
failed attempts or adverse environmental conditions.

The simulation results reveal the distribution of outcomes possible if failed
attempts are possible or adverse environmental conditions are present.
This information may also be useful in the initial planning phase.

The number of retries per trial (k) is the most important determinant of the
number of trials completed before the ship returns to port.

The tool may be used to identify important systems for spare
supportability. This will in essence give the important systems one extra
retry (k) in case of a failed attempt.

In case of failure of a system at sea, the tool may be used to generate an
alternate sequence for conduct of trials for remaining systems.

XiX

THIS PAGE INTENTIONALLY LEFT BLANK

XX

ACKNOWLEDGMENTS

First of all, 1 would like to express my deepest appreciation to Professor Susan
Sanchez for her patience, simulation and data analysis insights, valuable suggestions, and
being a great mentor throughout my research. Without her guidance and support it would
be hard to complete this thesis. | would also like to thank my second reader, Professor
William Solitario, for his support and providing me operational insights, especially
during the initial development phase. | would also like to thank Professor Ned Dimitrov,
who provided me with valuable ideas when 1 first introduced the problem to him. I would
like to thank Steve Upton for his support in running large experiments on the SEED lab

cluster computer.

I would like to thank my wife, Asma, for her endless patience and encouragement
during this time. She never complained about taking care of our lovely boy, Muhammad,
alone, and | always found a smiling face from her when I came home. Without her

precious love, this time would be hard for me.

Finally, to my parents who always prayed for my success and have made me the
person | am today.

XXI

THIS PAGE INTENTIONALLY LEFT BLANK

XXii

l. INTRODUCTION

The shipbuilding industry in Pakistan has been limited to smaller ships and
tugboats in the past. The Karachi Shipyard is the major shipyard in the country, and most
of the shipbuilding work being done is for the Pakistan Navy and the Karachi Port
Authority. Vessels built by the Karachi Shipyard include smaller missile boats, ocean
tugs, corvettes, submarines, and in the recent past frigates. The Karachi Shipyard is also
involved with repair, rebuilding, and overhauling of naval and commercial vessels

(http://www.karachishipyard.com.pk/).

Before bringing a newly built ship into service, it has to undergo various trials as
part of its delivery from the builder shipyard to the owner. The conduct of builder trails is
a complex process. There are hundreds of systems on a ship and each system has its own
prerequisites that include, but are not limited to, completion of other trials before
attempting that trial, sea state and wind requirements, and specific water depth
requirements. While at sea, if a system fails during the conduct of its trial, the decision
makers are faced with the problem of deciding whether to stay out at sea and continue
with remaining trials, or proceed back to port to fix the failed system and return for
conduct of trials. This decision often becomes the source of long debates as a number of
stakeholders are involved. The builder shipyard aims at completing the maximum
possible trials at sea, while the ship crew does not want to miss any prerequisites and
therefore tends to stick with the original plan. There is no adaptive tool present with the
decision makers at sea which can provide them insight into the future possibilities and

help them make the decision whether to stay out at sea or return to port.

This thesis deals with development of an adaptive tool to generate an optimal
sequence, and possible feasible route to be taken, for conduct of a given set of trials
minimizing total time for conduct of trials. After successful development of this
scheduling and routing tool, the process of conduct of trials is simulated in a structured
way, applying a design of experiments approach that varies environmental conditions to
develop a robust optimization solution for the sequence of conduct of these trials and the

route to be taken.

A BACKGROUND AND MOTIVATION

Before bringing a newly built ship into service, it has to undergo various trials as
part of its delivery from the builder shipyard to the owner. Many types of equipment and
performance are tested during these delivery trials (Haakenstad, 2012). These trials are
generally conducted in two phases, i.e., harbor trials and sea trials. The sea trials are
conducted to ensure that the system is in compliance with the standards, and meets the
claims made by the manufacturer regarding system specifications. These trials include the
validation of ship design based on parameters such as stability and seakeeping ability,
maximum speed, and fuel consumption (Hart, 2000). Warships have more systems
installed on them compared to the merchant vessels. Additional systems may include but
are not limited to weapons, sensors, auxiliary systems, and auxiliary machinery to
support these weapons and sensors. This thesis research focuses on the sea trials phase

only.

For the conduct of sea trials, the builder shipyard aims at minimizing the total
time to conduct these trials, as it involves expenses such as fuel, crew, trial equipment,
trial team, food, etc. In certain cases, the trials have prerequisites to be completed. For
example, a prerequisite can be completion of engine test before conduct of speed test. In
many cases there are multiple prerequisites to be completed. Moreover, every trial may
have certain environmental requirements for its conduct, for example minimum water

depth requirement, sea state and wind force, etc.

This gives rise to a complex network problem, considering the fact that there are
multiple sequences in which these trials can be conducted and each trial requires the ship
to be in a certain position at sea. While at sea, the success of any specific trial cannot be
guaranteed. In the case of an unsuccessful trial for any system at sea, the decision makers
are faced with the dilemma of future plans. Options are very limited while at sea; they
may include fixing and retrying the trial, leaving the failed trial and proceeding with the
remaining trials, or in extreme cases returning to port to fix the failed system. At present,
there is no tool available to decision makers while they are out at sea to reschedule the
possible sequence after removing the failed trial from the list. Decision makers also need

an updated feasible route for conduct of remaining trials. This thesis takes the motivation
2

from this problem and provides the decision makers with a dynamic tool that can
generate alternate optimal sequences and routes for conduct of trials in case of failure of a
given system. The tool also gives the decision makers visibility on remaining trials. This
information aids the decision maker with their decision to stay out at sea or return to port.

B. THESIS OBJECTIVES

This research focuses on effective and adaptive scheduling of the sequence of
builder trials for a newly built ship, along with the route to be taken. The result is aimed
at reducing the total time taken to conduct the trials, thereby reducing the overall cost of

the trials. Following are the broad research questions:

o What are possible sequences to conduct builder trials for a newly built
ship with the objective of minimizing the time at sea subject to the
prerequisites and specific trial requirement for a given set of conditions?

. What are possible alternate sequences in case some trials are deleted from
the list due to any reason such as system failure?

. What is an optimal route to conduct the generated sequence of trials? For a
given mix of trials and sea conditions, how variable are the results if the
initial sequence is used?

o What are the results of simulating the process of conduct of trials by
applying design of experiments (DOE) to the model? Factors such as wind
force, sea state, permissible number of failures and retries, and probability
of success for each trial will be varied for DOE.

This research develops a dynamic tool which can be used for finding the sequence
and route for conduct of builder trials for a ship. The study also identifies the important
factors that have the greatest impact on the time taken to complete trials and the number

of trials completed in a single trip to sea.

C. THESIS ORGANIZATION

The study uses a simulation model and state-of-the-art design of experiments to
quantify the risk associated with conduct of builder trials. Chapter Il is a literature review
that identifies past research on this topic. Chapter Ill discusses the methodology. It
examines the model structure, variables, constraints, limitations, and assumptions, and

provides details about the design of experiments used to make multiple runs of the model.
3

Chapter IV deals with analysis of the results. Chapter V is conclusion. It also gives

recommendations and associated future work with the research.

Il. LITERATURE REVIEW

This chapter explores the past work that has been done with regards to the
conduct of trials for newly built ships. Although there is no directly related work in the
past, most of the works done are in areas of ship building, shipyard design to improve the
shipbuilding process, and procedures and requirements for conduct of trials for newly

built ships. A brief description of past works is shown in ensuing paragraphs.

Carter (2005) discusses the shipbuilding program history for the U.S. Navy, and
analyzes case studies explaining the importance of system integration during the process
of shipbuilding. She presents both cases with successful system integration, and not so
successful as well. The research discusses the ideas and concepts to simplify the process
of ship design and system integration. Successful system integration during the design
phase may reduce the need for major design changes during the building process.

Colgary and Willet (2006) use an integer linear program to study the Navy’s
Configuration Analysis, which includes the surface and subsurface vessel stationing
problem. Their Ship and Installation Program (SHIP) calculates the minimum cost ship
stationing requirements, while maintaining the operational requirements constraints.
SHIP has the ability to propose future force structure disposition as well. Their work
might be combined in the future with this research for large-scale, multi-ship trial

scheduling.

McLean and Shao (2001) discuss the objectives and requirements for a
shipbuilding simulation. The research work mainly involves a generic simulation of the
shipbuilding operation. This simulation model helps identify scheduling conflicts with
regard to job completion, as well as various resource allocation problems that can arise
during the shipbuilding operation. The results help identify the requirements of new

technologies, especially with regards to scheduling and cost.

The National Shipbuilding Research Program (NSRP) (1999) examines the rules
and regulations for commercial ships inspection, and identifies differences and

similarities within existing requirements from several standards organizations. The main

5

results of the study are a sample trial database for a commercial ship, plans for conduct of
the trials, and comparison matrices for highlighting the differences and similarities in the
existing regulations. One of these standards organizations, Germanischer Lloyd (2012),
provides general guidelines for sea trials before commissioning a vessel. The guidelines
in these rules provide all the stakeholders with an overview of the process of sea trials
which is required to fulfill the requirements of Germanischer Lloyd (GL) and the
International Convention for the Safety of Life at Sea (SOLAS). The data organization in
this thesis is broadly based on the GL rules and NSRP procedures.

Haakenstad (2012) provides a general discussion on the process of sea trials of
ships. The research mainly deals with the conduct of speed trials of the ship and the
process of applying corrections to the speed trials. She discusses in detail how the
corrections are applied to speed trials and also discusses various methods to apply these
corrections. She also compares the results from corrections applied by shipyards with
results from corrections applied based on standards, and discusses the impact of these
differences on final results. This underscores the importance of considering
environmental and atmospheric conditions on sea trials. This thesis analyzes the general
impact of these and other factors on trial success, rather than detailed effects on

individual trials.

There has been a tremendous amount of work done in the past with regard to the
shipbuilding process; however, there is no tool available which deals with the complete
process of sea trials. The previous work either deals with individual trials (Haakenstad,
2012) or focuses on the process of shipbuilding rather than testing (Carter, 2005; McLean
and Shao, 2001). The research in this thesis is aimed at consolidating the process of
scheduling the process of sea trials and additionally providing the route for conduct of
those sea trials. The adaptive nature of the tool allows the user to regenerate the

sequences and routes in case of system failures at sea.

1. METHODOLOGY

The simulation developed for this thesis models the process of planning and
conduct of builder trials for a newly built ship. The planning phase consists of generating
a sequence to conduct the trials and finding the route to conduct those trials, while
keeping track of the sea depth required for each trial and other prerequisites. The conduct
phase uses the information from the planning phase and simulates the conduct of trials
under varying operational factors, including probability of success for each trial. Both the
planning and conduct phases are developed using the Python programming language

(Python website). Figure 1 shows the sequence of events in the model.

Figure 1. General Flow of Events in the Model.

Create nodes with

depth info

Create edges
between layers
representing

trial
Create Stamp all completion
dictionary of nodes with
neighbors for layer
each node information
Find shortest path to
Create edges e 1
Create mini o complete all trials
between
graphs for path | —
) nodes of a
checking i
single layer

Find node doseness
and betweenness
centrality to identify

Read data file and impartant trials

create DiGraph

Sort the DiGraph
to generate
sequence of trials

Send output results
to file

A PLANNING PHASE

The major steps in the planning phase are shown in the flowchart in Figure 2, and
then described in more detail.

Figure 2. Major Steps in Planning Phase.

Generate the Sequence to conduct
trials

Create the layered network for
routing

Find the shortest route to complete
all trials

1. Generation of Sequence

This portion of the program takes the Data.csv file as input. The Data.csv
file contains the trial information, which includes the trial name, time to complete,
prerequisites for the trial, average speed during conduct, minimum sea depth required,
sea state and wind force requirements, and mean and standard deviation of the
distribution of probability of success (discussed further in Section B). Complete contents

of Data.csv are shown in Appendix A.

After reading the data file, the Python program (modified Dimitrov, 2014) creates
a directed graph that takes into account all the prerequisites for all trials. A topological
sort of the graph generates the sequence to conduct the trials. See Appendix B for details

of the function to generate the sequence.

2. Creation of Layered Network

In order to find the shortest path to conduct all trials, a layered network is created.
The flow chart in Figure 3 shows the sequence of events for generation of the layered

network.

Flow Chart Showing the Creation of the Layered Network.

Stamp all
Read the Create nodes nodes with
depths File ((x,y),depth) layer
information
4 v
Create Create edges
dictionary of between
neighbors for nodes of a
each node single layer
Create edges
Create mini between layers
graphs for path representing
checking trial
completion

The input file is named depths.csv for this phase. The depths.csv file
contains depth information for the trial area, which has been divided into 1x1 Nautical
Mile grid boxes. Depth is noted at every grid point and is recorded in the depths.csv
file. Figure 4 shows the general trials area, and Figure 5 shows trial area superimposed

with the grid.

Figure 4. General Trials Area.

Googleearth
:

From Google Earth Pro (2015, August), Izmir, Turkey [Terrain Map]. Retrieved from
Google Earth Pro Version 7.1.2.2041 on August 15, 2015.

9

Figure 5. Trials Area Superimposed with Grid.

After Google Earth Pro (2015, August), Izmir, Turkey [Terrain Map]. Retrieved from
Google Earth Pro Version 7.1.2.2041 on August 15, 2015.

The trial area map has been chosen from Google earth. It shows the Izmir harbor
in Turkey, however, depths recorded in the depths.csv file are not actual charted
depths but approximations to nearest charted depths. The red dot represents the starting
and ending location for the trials. The grid is represented as Cartesian coordinate (x,y)
pairs, and numbering starts from top left as position (1,1). Figure 6 shows a portion of the

depths.csv file.

10

Figure 6. Portion of depths.csv File.

75 o] 0 0 0 0 0 0 0 0 0
75 o 0 0 0 0 0 0 0 0 0
64 o 0 0 0 0 0 0 0 0 0
66 a 0 0 0 0 0 0 0 0 0
37 o 0 0 0 0 0 0 0 0 0
38 o 0 0 0 0 0 0 0 0 0
25 o] 0 0 0 0 0 0 0 0 0
0 o 0 0 0 0 0 0 0 0 0
0 o] 0 0 0 0 0 0 0 0 0
29 o] 0 0 0 0 0 0 0 0 0
40 o 0 0 0 0 0 0 0 0 0
0 o] 0 0 0 0 0 0 0 0 0
a7 20 0 0 0 0 0 0 0 0 0
56 a7 0 0 0 0 0 0 0 0 0
63 55 37 17 0 0 0 0 0 0 0
67 63 42 31 15 0 0 0 0 0 0
60 67 53 21 7 5 0 0 0 0 0
50 65 55 35 3 7 0 0 0 0 0
0 55 62 62 16 15 0 0 0 0 0
0 40 a7 65 30 18 4 0 0 0 0
0 27 50 73 55 25 7 4 0 0 0
0 o a7 67 62 52 25 7 4 0 0
0 o 30 50 67 57 45 18 7 4 0
0 a 0 52 60 635 52 46 16 10 0
0 o 0 35 62 67 54 51 52 11 6
0 o 0 0 a7 53 53 50 45 45 a0
0 o] 0 0 35 48 45 45 35 30 27
1] 0 1] 1] 20 an an 27 1] 1] 1]

Every number is noted as a Cartesian coordinate in the grid with top left of the
area as position (1,1). All depths noted as ‘0’ represent land or areas not safe for
navigation. The user needs the dimensions of the grid (number of rows and number of

columns) as input parameters while reading the depths file into python.

The program reads in the depths file and, based on the sequence created in
planning phase, generates a layered network. Edges in a single layer represent the transit
between grid locations. The edge cost between nodes of a single layer is calculated as
follows:

LONM
Speed

where ‘Speed’ represents the transit speed of the ship in knots while transiting to adjacent

Edge Cost =

node in the grid. Figure 7 illustrates nodes and edges within a single layer.

11

Figure 7. lllustration of Nodes and Edges in a Single Layer.

Time

(1NM/speed)

(((x,y),depth),trial)

Each layer in the network represents a single trial over the entire trial area. Edges
between layers in the graph represent trial completions. The edge cost between layers is

the time taken to complete the trial. Figure 8 shows an illustration of the layered network.

Figure 8. Illlustration of the Layered Network.
% — ENGINE LAYER

i o RADAR LAYER

Time to complete Radar trial

— B =

"F)\
\
\

GYRO LAYER

I /Tlmeto complete Gyro trial
e —
A START LAYER

3. Finding the Route to Complete All Trials

After successful generation of the layered network, the model finds the shortest

path for completion of all trials. The model also gives the minimum time taken to

12

complete the trials. This is done by using the built-in shortest path function in the
networkx module of Python. The result is a list of nodes that represents completions of
trials at specific locations at sea. The time to complete all trials provided by the model
assumes that all trials are successful on the first attempt, so it serves as a lower bound on

the time it will take to complete all trials when failed attempts are possible.

B. SIMULATION

The simulation phase includes generating the sequence of trials, creating the
layered network, finding the route to conduct the trials, and finally simulating the process
of conduct of trials under varying input conditions. The flowchart in Figure 8 shows the

sequence of events for the model.

Figure 9. Flowchart Showing the Broad Logic Scheme of Simulation Model.

|: Start
) 4

Generate the
" Sequence of trials

Read the
input files

Pick a trial for
conduct

h J

k 4

Attempt conduct of
trial

Read values
ofk, n,
speed, sea
and wind

Generate the route
for trials

Trials pending

Success
Check list of trials for

Mumber of remaining trials

retries < k

All trigls
completed

Failure

Check number of
Nun.'lber of retries for trial

retries = k | Number of
failuresz n

Mumber of
failures <n

The first step in the simulation reads the user inputs for values of k (number of

retries allowed per trial), n (Total number of trial failures acceptable), sea state (between

13

1 and 5), wind force (between 1 and 6), and speed of transit. After these values have been
recorded, the data.csv and depths.csv files are read in, and the sequence of trials and route
for trials are generated. Thereafter, the conduct of each trial in sequence is simulated. The
probability of success for a specific trial is drawn from an approximately normal
distributed with a user-specified mean and standard deviation. (The approximation arises
because any generated values below zero are set to zero, and any generated values above
one are set to one.) The provision for allowing unique probability distributions for each
trial is kept because in the real world, each trial has a separate distribution for probability
of success. Sometimes these can be created from previous trial data. Therefore,
probability of success can be changed for future research where no or very slight
modifications in the program will enable the user to read in specified probabilities of
success for each trial. In this thesis, for a single run of simulation, a separate probability
of success for each trial is generated from the specified distribution. The success or
failure of a particular attempt is adjudicated based on the drawn random number
compared with the probability of success for that trial. If a trial attempt fails and the
current number of retries for that trial is less than k, the trial conduct is retried. If number
of retries has reached the value of k, then the trial is removed from the network, a new
sequence of trials is generated that keeps track of all completed trials along with the ones
that cannot be completed because of removal of previously failed trials. Once the graph is
updated and a new sequence and route has been generated, the process of conduct of
trials is repeated as described above. Also, when a trial fails and the total number of
failed trials has reached the value of n (Total number of failures acceptable), the

simulation stops and the ship returns to port.

C. FACTORS AND RANGES

The simulation has five input variables, or factors, that are explored. The
probability of success for each trial for each simulation run is different as it is a random
draw from an approximate Normal distribution with fixed mean and standard deviation.
The factors are described in Table 1. The high and low levels of the factors are specified

within reasonable acceptable ranges by subject matter experts. Values contained in the

14

Data.csv file are based on the author’s previous experience as Navigation Officer and

involvement in builder trials of newly built ships.

Table 1. Factors and Ranges Used in the Simulation Experiment.

Input Description Min Value | Max Value
Variable

Total number of failures acceptable before | 5 15
n returning to port (1 failure = failure of an

entire trial after allowed retries)

Number of retries per trial before moving | 2 5
k to next
sea Prevailing sea state 1 5
wind Prevailing wind force (Beaufort Scale) 1 6
speed Speed of transit 10 kn 25 kn

D. ASSUMPTIONS

The main assumptions in the model are made in order to scope the problem in a

reasonable manner. The assumptions are listed below:

Traffic does not hamper the conduct of trials.
Trials are conducted in a limited sea area.

Probability of success for all trials is ~Normally distributed with fixed p
and o, where 0< p <1, o / 1 << 1, and the probability is truncated outside
the interval [0,1].

Ship only makes one trip to sea to attempt conduct of all trials. Simulation
of conduct does not necessarily conduct all trials and may result in ship
returning to port after acceptable failure cap (n) has reached.

Every trial can be retried k times before moving to the next trial.

The decision to return to port is based on value of n, which is the fixed
maximum number of allowed failures.

Unsuitable weather conditions reduce the probability of success for each
trial by half.

15

. Areas to be avoided are represented as fixed boxes, and remain out of
bounds throughout the process of conduct of trials.

E. LIMITATIONS

The development of this model is a first effort at the process of generating the
sequence and route for builder trials for a newly built ship. The model is an endeavor to
closely match the real-life process of conduct of builder trials; however, not all aspects

are represented in the model. The limitations in the model are numbered and listed below:

. The simulation does not run through the completion of all trials. If the
number of failed trials reaches the allocated threshold, the ship returns to
port and the simulation stops. In reality, the ship will fix the failed systems
after returning to port and proceed to sea again, repeating this process until
all trials are complete.

. In reality, all trials have different distributions for probability of success.
This aspect has been simplified in the model by assuming identical
distribution with fixed values of mean and standard deviation.

. The model does not allow for simultaneous conduct of multiple trials. In
reality, certain systems have no prerequisites, and can be tested
simultaneously.

F. DESIGN OF EXPERIMENTS

The design of experiments uses the Nearly Orthogonal Latin Hypercube (NOLH)
design spreadsheet (Sanchez, S. M. 2011, NOLHdesigns_V6 spreadsheet) based on the
NOLH designs of Cioppa and Lucas (2007). The high and low values of for the five
factors from Table 1 are entered into the NOLHdesigns_V6.xIsx design spreadsheet, and
design points are generated by stacking and rotating the 17-design point design three
times. This yields a total of 49 distinct design points, because all three stacks have the
same center point. After copying the design points into a comma separated value (CSV)
file, simulation runs are made by replicating each design point ten times. This stacked
NOLH design limits the maximum amount of pairwise correlation, while achieving good

space filling of the regions of interest, for the set of input factors.

16

IV. RESULTS AND ANALYSIS

The intent of this chapter is to identify and examine results obtained. First, we
generate the sequence to conduct trials followed by generating a feasible route. We also
identify multiple feasible sequences to conduct all trials. Thereafter, the process of
conduct of trials is simulated and various measures of effectiveness are measured for
each run for analysis. After analysis of the results obtained from simulations, we identify
the ten most important trials in the network and give those trials one extra retry for
simulation of conduct of trials. Finally, we re-run the simulation based on identified
important systems and evaluate the performance of the process of conduct of trials. All

graphs and models are generated using JMP Version 12.

A. GENERAL RESULTS
1. Input Data File

A portion of the contents of the input data file used is shown in Table 2. Complete
contents of input data file are attached as Appendix A. The data contained in this file do
not represent actual information, but are notional data for classification reasons. The
prerequisites for trials are defined based on the author’s previous experience with the
process of conduct of builder trials. The “Trial” column gives the name of the trial, and
the ‘ID’ column shows the ID (three letter acronym) assigned to that trial. “Time’
represents the time required in minutes to complete that trial, and ‘Depth’ shows the
minimum depth required for conduct of that trial. *Prerequisites’ shows the prerequisite
trials that must be completed before conduct of that particular trial. ‘Speed’ gives the
average speed of the ship in knots during the conduct of the trial. The ‘Mean’ and ‘SD’
columns give the mean and standard deviation of the probability distribution used to
generate the probability of success for each trial, as discussed earlier. The *‘Wind’ and
‘Sea’ columns gives the maximum desirable wind force and sea state for conduct of that
trial. In a case where the prevailing wind and sea state at the time of conduct are more

than these limits, the probability of success for that trial is reduced by half.

17

Table 2. Portion of Data.csv File.
Pdist | Pdist
Trial ID Time | Depth | Prerequisites | Speed | Mean | SD Wind | Sea
GY2;RDR;
PGS;MSB;
EGS;ESB;
Engine ENG | 105 50 TLI;,CO2; 20 0.65 0.13 2 2
FF1;SWS;
EMS;ECS;
EEX
Fin . FIN 60 50 ENG 20 0.65 0.13 3 4
Stabilizer
ENG;EEX;
Compartme ACL;VNT,;
nt CNS 120 100 SWT;CHW; 15 0.65 0.13 1 1
Noise RFG;SWS;
CAS;PGS
Domestic DAP | 60 20 GWD 5 065 |013 |5 4
Appliances
Doors
Windows DWH | 45 20 10 0.65 0.13 5 4
Hatches
Crane CRN 45 20 PGS;MSB 5 0.65 0.13 2 2
ICCP
Equipment ICP 30 20 PGS;MSB 10 0.65 0.13 4 3
Marine
Growth MGP | 30 20 PGS:MSB 10 065 |013 |4 3
Prevention
System
Liquid Tank
Level TLI 30 20 10 0.65 0.13 3 2
Indications
Alarm ALM | 60 20 PGS:MSB 10 065 |013 |4 3
System
Engine . .
Exhaust EEX 45 50 EMS_’ECS’ 20 0.65 0.13 4 2
PGS;MSB
Flaps
CO2;SPR;
FF System FF1 90 20 SWS;FWS; 10 0.65 0.13 4 3
PWS
Sprinkling | oo | 49 50 10 065 |013 |4 3
System
CO2 Fire
Extinguishin | CO2 | 45 50 10 0.65 0.13 4 3
g System

18

2. Sequence of Trials

The Python code shown in Appendix B can be used for generating the sequence in
which to conduct the trials. The output from that code, shown in Table 3, is a sequence

for conducting all trials that takes into consideration all the prerequisites.

Table 3. Sequence to Conduct all Trials.

["Start®, “DWH®, =CO2°, *"PGS", "GYl1®, °GY2", "RDR", *TLI",
"HFE", "MSB®, "CAS®, "HYD", *"TOW", “LOS", "DOS-", *SWS*,
"SWC*, "SMA®", "NSL", *DGS*, "CRN", “CDW®", “ECS", *MGC"-,
"ESS®, "ESD", "ICS*, "ICP", "MGP®", "ANC", “UHF®, "VHF",
"BLR", "SBT", "MHF®, "FTS", "LSE", "EMS", "EEX", "GPS-,
"MTR®, °"NTX*®, *STS", "MRE", "CHw®", "ALM®, "CDE", "CMS-,
"SAT", "RAS", "VNT", "SPR", "BWS®", "SWT", "FwWS®, "GWD",
"DAP", "AC1*, "RFG", "PWS", "FF1", "CCT", "EGS", "ESB",
"PDS*", "BCD", "SPT", "ELL", "ENG", "CNS", "SHV", "EML",
"SPD", "Zz1%", “UWN", "CS1", "IN1", "AIS", "INC", "ECD",
"CBT", "FCS®, "CWS", "GUN", "OAV®", "CRA", "TC1", "FIN",
"AMVT®, “End"]

3. Generating Multiple Feasible Trial Sequences

As the sequence generated above utilizes a topological sort on a directed graph,
there may be multiple possible sorts in the same graph. Each of the possible topological
sorts in the graph represents a feasible sequence for conduct of these trials. The Python
code of Appendix C can be used to enumerate all the possible combinations of sequences
of trials in the graph. For this thesis, only the sequence shown in Table 3 is explored

further.

4. Generating the Path

After generating the sequence to conduct the trials, the Python code shown in
Appendix D was used for generating the path to conduct all the trials. Table 4 shows the
path generated by the network. Each location is represented as (((x,y), Depth), Trial). In
most cases, the ((x,y), Depth) represents the coordinates and depth where the trial

19

completes, and Trial provides the ID of the scheduled trial. The Trial ID repeated
multiple times represents the transit from port to trial area (‘Start’ in these results) and
transit back to port (“AMV’ in these results).

Table 4. Route to Conduct All Trials.

Outbound Transit and | Trials 24-55 Trials 55-87 Trial 88 and Return
Trials 1-23 Transit
Location Trial Location Trial Location Trial Location Trial

((38,38),9) | Start* | ((30,5),69) | ESS | ((11,11),149) | DAP | ((20,9), 101) | AMV**
((38,37), 10) | Start* | ((29,1),119) | ESD | ((6, 10), 141) | ACL | ((21,10), 97) | AMV**
((39,36), 17) | Start* | ((32,3),142) | ICS | ((1,10),119) | REG | ((22,11), 78) | AMV**
((38,35),6) | Start* | ((35,3),129) | ICP | ((9,12),68) | PWS | ((23,12), 72) | AMV**
((39, 34), 14) | Start* | ((40,3),53) | MGP | ((2,4),108) | FFL | ((24,13), 73) | AMV**
((38,33),3) | Start* | ((40,3),53) | ANC | ((2,6),144) | CCT | ((25, 14), 78) | AMV**
((39,32),5) | Start* | ((42,3),52) | UHF | ((3,1),129) | EGS | ((26, 15),67) | AMV**
((39,31),7) | Start* | ((42,1),93) | VHF | ((4,5),149) | ESB | ((27,16), 62) | AMV**
((40,30), 39) | Start* | ((39,1),75) | BLR | ((7,13),61) | PDS | ((28,17), 63) | AMV**
((40,25),50) | DWH | ((41,2),83) | SBT | ((12,15),64) | BCD | ((29, 18), 63) | AMV**
((38,22),60 | CO2 | ((42,1),93) | MHF | ((15,17),79) | SPT | ((30,19), 63) | AMV**
((30,19), 63) | PGS | ((39,3),92) | FTS | ((18,17),72) | ELL | ((31,20),53) | AMV**
((31,14),63) | GY1 | ((42,1),93) |LSE | ((8,1),109) | ENG | ((32,21),35) | AMV**
((28,10), 51) | GY2 | ((29,3), 100) | EMS | ((15, 11), 110) | CNS | ((33,22), 16) | AMV**
((26,6),77) | RDR | ((26,11),65) | EEX | ((29,2),110) | SHV | ((34, 23),18) | AMV**
((22,6),86), | TLI | ((20,12),74) | GPS | ((37,2),77) | EML | ((35,24),7) | AMV**
((21,5),81) | HFE | ((22,17),60) | MTR | ((13,16),54) | SPD | ((36,25),7) | AMV**
((11,5),105) | MSB | ((17,17),79) | NTX | ((13,4),150) | ZZ1 | ((37,26),7) | AMV**
((7,10), 145) | CAS | ((5,13),87) | STS | ((4,2),134) | UWN | ((38,27), 10) | AMV**
((13,7),109) | HYD | ((5,9),139) | MRE | ((11,8),132) | CSL | ((39,28),6) | AMV**
((12,2),122) | TOW | ((1,7),142) | CHW | ((11,14),93) | INI | ((40, 29), 34) | AMV**
((13,5),143) | LOS | ((4,11),107) | ALM | ((14,16),53) | AIS | ((39,30),6) | AMV**
((18,5),135) | DOS | ((4,9),110) | CDE | ((12,13),75) | INC | ((40,31),17) | AMV**
((10,4),122) | SWS | ((3,11),123) | CMS | ((5,14),68) | ECD | ((39,32),5) | AMV**
((8,1),109) | SWC | ((1,11),146) | SAT | ((26,3),100) | CBT | ((40,33), 11) | AMV**
((6,2), 147) | SMA | ((18,12),85) | RAS | ((12,2),122) | FCS | ((40, 34), 14) | AMV**
((5,1),132) | NSL | ((19,14),78) | VNT | ((7,3),118) | CWS | ((39, 35), 15) | AMV**
((6,11), 107) | DGS | ((19,9), 108) | SPR | ((5,11), 126) | GUN | ((38, 36), 11) | AMV**
((7,12),62) | CRN | ((20,3), 148) | BWS | ((12,7),121) | OAV | ((38,37),10) | AMV**
((12,16), 74) | CDW | ((22,7),67) | SWT | ((12,12),58) | CRA | ((38,38),9) | AMV**
((26,13),70) | ECS | ((17,9),130) | FWS | ((7,11),127) | TC1
((26,4),59) | MGC | ((13,8),130) | GWD | ((3,1),129) | FIN

* Qutbound Transit Points
** Inbound Transit Points

20

This gives us the shortest path to complete all the trials and the time required to
complete is 5,121 minutes. The resulting time provides us a lower bound on the time to
conduct all trials provided all trials are successful in first attempt. The path generated can
be plotted on the trial area grid. Since the trial area is small and number of trials is very

large, a route plot for a smaller number of trials is shown in Figure 10.

Figure 10. Route Plot for 10 Trials.

Neniloga Feveng (R8T

Bozkoy

Mimar Sinan

lipinar Falih
Foca
EMLOG TRIA EMGINE TRIAL _ Buruncuk Tel
Gerenkoy Feval G
Karah y
Maltepe Cumburiy EBT | Degirmendere
Villakent Menemen Goklepe

Seyrek Cumhuriye

Kosedere Ulukent

Mordogan
Kakhg

Balikliova X
COURSE STAB \
Urla ZIGEAGTRIAL RADAR TRIAL
Il
e00] EBE1 | Balgg
Kadiovacik Yelki
Barbares Gulbahge lorasan 0-32 Gamb

o —— Kueet®ilnr el

Background from Google Maps September 9, 2015, Retrieved from
https://www.google.com/maps/place/lzmir,+%C4%B0zmir+Province,+ Turkey/@38.458
0005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628chbala59ce8fe

5. Out of Bound Areas

The program also has the provision to avoid certain areas at sea. If we identify
some areas such as high fishing density areas or heavy shipping lanes that we have to
avoid, they can be given as inputs and the resulting path will be generated while avoiding

those areas. Small scale model runs with interdicted areas are shown in Figure 11. The
21

https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

red box represents the out of bound area and the resulting path generated avoids that area

while completing all ten trials.

Figure 11. Route Plot for 10 Trials with Interdiction Area.

Yeniloca FevZilh

Bozkay

ZIGZAG TRIAL

INERTIAL TRIAL "
Mimar Sinan

SPEED TREAL
lhpanar Fatih
Foca
: Buruncuk Tel
Gerenkoy Fevzi
Karaburun ¥ G
COURSE STABILITY Maltepe Cumhuriy EBT | Degirmendere
Villakent Menemen Goklepe
Seyrek Cumhuriye
Kosedere Ulukent
Maordo
; G
4=
EBT | Laka
Balkhova TRAMSIT TO RADARTRIAL
lldr
I Balgg
Kadiovacik velki
Barbaros Gilbahge Iorasan EE] Camil
et Kuretlnr _madal

Background from Google Maps September 9, 2015, Retrieved from
https://www.google.com/maps/place/lzmir,+%C4%B0zmir+Province,+ Turkey/ @38.458
0005,26.968075,11z/data=!14m2!3m1!1s0x14bbd862a762cacd:0x628chbala59ce8fe

B. SIMULATION AND DESIGN OF EXPERIMENTS

After generating the sequence and route for the trials, the process of conduct of
trials was simulated in Python. The code used for running the simulations is at Appendix
E. Experiments were designed varying five input factors. 51 design points were created in
total which were reduced to 49 by removing the duplicate center points. 49 design points,
generated by stacking and rotating the 17-run design from the NOLHdesigns_V6.xIsx

spreadsheet, are shown in Table 5.

22

https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe
https://www.google.com/maps/place/Izmir,+%C4%B0zmir+Province,+Turkey/@38.4580005,26.968075,11z/data=!4m2!3m1!1s0x14bbd862a762cacd:0x628cbba1a59ce8fe

Table 5. Design Points for the Simulation, where the Factors are: n (Total
Number of Acceptable Failures), k (Number of Retries per Trial), Wind
State, Sea State, and Speed of the Ship.

Design Points 1-24 Design Points 25-49

n | k | wind | sea |speed | n k | wind | sea | speed
8|5 5 3 14 5 3 4 4 11
6 | 3 5 3 10 13 | 2 3 5 20
6 | 3 1 2 19 11 | 5 5 3 13
7] 4 3 5 18 9 4 1 3 23
13| 5 3 2 15 6 4 5 4 25
15| 3 3 4 11 12 4 2 5 14
11| 3 6 2 23 13 | 2 4 2 18
11| 5 5 5 22 6 3 1 2 16
10| 4 4 3 18 13 | 3 2 5 18
12| 2 2 4 21 14 | 4 1 2 19
14| 4 2 3 25 6 3 4 4 25
14| 4 6 4 16 8 5 4 2 21
13| 3 4 1 17 9 2 3 1 22
8 | 2 4 5 20 9 4 1 4 23
51| 4 4 2 24 15 | 3 5 3 24
9 | 4 1 4 12 13 | 5 5 4 20
9 | 2 2 1 13 7 4 5 1 17
15| 4 3 2 24 6 3 6 4 16
8 | 5 4 1 15 14 | 4 3 2 10
9 | 2 2 4 22 12 | 2 3 5 14
11| 3 6 3 12 11 | 5 4 5 13
14| 3 2 2 10 11 | 3 6 2 12
8 | 3 5 1 21 5 4 2 3 11
715 3 5 17 8 2 2 3 15
14| 4 6 4 19

The space filling provided by the Nearly Orthogonal Latin Hypercube design can
be seen in Figure 12. The distribution of input factors along with summary statistics over
the ranges specified in Table 1 and correlation matrix for input factors are shown in
Figures 13 and 14 respectively. From Figure 13, we can see that although our design
points are not uniformly distributed over the design space but they still cover the design
space adequately. Also, absolute pairwise correlation between the factors is very low with
the highest value of 0.1608 between k and wind. Minimum or no correlation is a desired

property in the input factors.

23

Figure 12. Scatterplot Matrix of Input Factors.

4~ Scatterplot Matrix

5 L - -
= 4.5
Ol un .o
38 .;
g E 3.5
z | 3
2.5
2 . ..
o]
o
.E 4
_3 3 . . LI NI]
2
1
.e L]
4.5
4 L - L) - - - - - L - - - -
- 3.5
@ 3| e e LI
2.5
2| = . . LI]
1.5
1 L) L]
24 * : - -) * E - - ’ * : : - : E :
22 o’ * . . . : * . . : . .
= o 20 L] * * L] * - - * - * * * L] - :
2 gj 18 - . . .
m o L L] - - L] - - - -
= & 16
1
14 - .
12 . * * . . . * . . . * . .
10 L] . .
4 6 8 10 12 14 2253354455 1 2 3 4 5 6 115225335445
‘Max_allowe ‘Number_of
d_Failures’ _Retries’ "wind’ ‘sea’

24

Figure 13.

Distribution and Summary Statistics of Input Factors.

Distributions
n k
18
17 P -
16
s |
Ay ;
13 o
b —
11 j—‘ 4
10y |1 0
9 ik
8 3
4 - |
& . |
< 2 -
4
Quantiles Quantiles
100.0% madimum 15 100.0% maximum
99.5% 15 99.5%
97.5% 15 97.5%
90.0% 14 90.0%
75.00 quartile 13 75.00 quartile
50.09% median 10 50.0% median
25.0% quartile 7.5 25.0% quartile
10.0% 6 10.0%
2.5% 3 2.5%
0.5% 5 0.5%
0.0% minimum 5 0.0% minimum
S Y y Statistics
Mean 10.061224 Mean 3.5102041
Std Dev 3.1318802 Std Dev 1.0025478
Std Err Mean 04474115 Std Err Mean 0.1432211
Upper 95% Mean 10.960806 Upper 95% Mean 37981694
Lower 95% Mean 9.1616435 Lower 95% Mean 3.2222387
N 4% N 49
Correlations
n
n 1.0000
k -0.0035
wind 0.0188
sea 0.0385

speed

C.

-0.0022

o

PR R R W G 5w

-0.0035

-0.0214

Quantiles
100.0% maximum
99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

Summary Statistics

Mean 3.5102041
Std Dev 15827514
Std Err Mean 0.2261073
Upper 95% Mean 3.9648234
Lower 95% Mean 3.0555848
N 49

quartile
median
quartile

minimum

k wind
0.0188
0.1608
1.0000

-0.0206

-0.0079

1.0000
0.1608
0.0464

MEASURES OF EFFECTIVENESS

wo oo

P

sea
7
|
.
, .
: I
0
Quantiles
100.0% maximum
99.5%
97.5%
90.0%
75.0% quartile
50.0% median
25.0% quartile
10.0%
2.5%
0.5%
0.0% minimum
Summary Statistics
Mean 3.122449
Std Dev 13170778
Std Err Mean 0.188154

Upper 95% Mean 3.5007579
Lower 95% Mean 2.7441401
N 49

Figure 14. Correlation Matrix for Input Factors

sea
0.0385
0.0464
-0.0206
1.0000
0.0238

W s wmwmw

Y

PLE —
20
A

10

Quantiles
100.09% maximum
£9.5%
97.5%
90.0%
75.00
50.05%
25.0%
10.0%
2.5%
0.5%
0.0%

Summary Statistics

Mean 17.510204
Std Dev 4.6103256
Std Err Mean 0.6586179
Upper 95% Mean 18.634444
Lower 95% Mean 16.185964
N 49

quartile
median
quartile

minimum

speed
-0.0022
-0.0214
-0.0079
0.0238
1.0000

25
25

24
215

18
13.5

10

Two measures of effectiveness were chosen for the results, namely ‘total time’

and ‘number of trials completed.” It was observed from the results that although we want

a lower total time, however, simulation may yield lower times when we have more

failures and thus very few trials completed. On the other hand, number of trials

completed may be a better MOE as it is always desirable to complete maximum number

25

of trials. Therefore, ‘number of trials completed’ before returning to port was chosen as

the primary MOE for the model.

D. SIMULATION RESULTS

The model uses design of experiments with 49 design points and 10 replications.
The results are saved into a 490 row data set. This dataset is then condensed into a 49 row
data set by calculating the mean and standard deviation for the number of trials
completed for each design point. Figure 15 shows the histograms and summary statistics
of the mean and standard deviation of number of trials completed collapsed over the input
design factors space. We observe a mean of 66 trials completed with a standard deviation
of 15.

Figure 15. Histograms and Summary Statistics of Mean and Standard
Deviation of Number of Trials Completed.

Distributions

Mean('num_trials_completed’)

— Quantiles Summary Statistics
@ 100.0% maximum 847 Mean 66.395011
99.5% 847 StdDev 14.880251
97.5% 84.5 Std Err Mean 21257502
90.0% 83.3 Upper 95% Mean 70.669119
75.0% quartile 78.05 Lower 95% Mean 62.120904
50.0% median 69.533333333 N 49
25.0% quartile 57.05
30 40 50 60 70 80 10.0% 42
2.5% 32.325
0.5% 316
0.0% minimum 31.6
Std Dev('num_trials_completed)
— Quantiles Summary Statistics
[=+ | 100.0% maximum 35.004126741 Mean 16.926006
99.5% 35.004126741 Std Dev 9.0858473
97.5% 34.728959482 Std Err Mean 1.2979782
90.0% 29.601989423 Upper 95% Mean 19.535766
75.0% quartile 23.589532707 Lower 95% Mean 14.316246
50.0% median 19.212553766 N 49
25.0% quartile 8.9167071377
0 5 10 15 20 25 30 35 40 10.0% 4.8636977245
2.5% 3.8814042418
0.5% 3.8600518131

0.0% minimum 3.8600518131

26

The results in Figure 15, together with a look at the raw data, show that although
we are completing all the trials in some cases, there is no single design point that

completes all trials in all ten replications.

Next, we determine whether or not specific factors (or combinations of factors)
are responsible for the differences in the MOE. One way of doing this is using a partition
tree, which is a statistical method that recursively splits a large, heterogeneous data set
into smaller, more homogeneous groups. When we fit a tree model for the mean number
of trials completed as response variable, we find that number of retries per trial (k) is the
most significant factor. The partition tree for number of trials completed is shown in

Figure 16. With just three splits, it achieves an R? value of 0.835.

27

Figure 16.

Partition tree for Mean Number of Trials Completed as Response

Variable.

Partition for Mean('num_trials_completed’)

90
:‘g ‘ka=5H ’.-
£ 80 et e . .
A P k<> ® o *
E 70 . ° . .
) k=4 aa ® -
] »
.8 60 L) .
= .* L4
| -
E 50
= s *
= <3 .
g 40 .
= .
30--*
k<5 'k'==5
k<4 k=4
k<3 k'==3
All Rows
Number
RSquare RMSE N of Splits AlCc
0.835 5.7768971 48 3 316.018
|
All Rows
Count 48 LogWorth Difference
Mean 67.021991 21.866342 30.7164
Std Dev 14.368754

k'<3
Count 8
Mean 41.425

Std Dev 6.1140938

k'==3
Count 40 LogWorth Difference
Mean 72.141389 8.4095554 12.4799
Std Dev 8.9900511
|
I |
'k'<4 'k'>=4
Count 15 || Count 25 LogWorth Difference
Mean 64.341481 || Mean 76.821333 3.6247504 7.81589
Std Dev 7.2288181 || Std Dev 6.3255865
|
I |
k'<5 'k'>=5
Count 16 || Count 9
Mean 74.008333 || Mean 81.822222
Std Dev 6.0433434 ||Std Dev 2.756709

28

Based on this information, we observed that the number of retries per trial (k) is
the most significant factor in the model. As the number of retries goes up, the number of
trials completed also increases. None of the other input factors has a very high impact on
the response. Figure 17 shows the scatter plot of total time against number of trials
completed overlaid by number of retries (k). We observe that as the number of retries
increases, we complete more trials. However, another important insight is the fact that
none of the experiments result in ideal results where we complete all trials in the
minimum possible time. This is owing to the failures experienced during the conduct of
trials. Although there is an overall linear relationship between the two MOEs, we can a
cluster of results in the bottom left corner which represents the cases where we did very
poorly in terms of number of trials completed. Close inspection of these points shows us
that in most of the cases these are either the cases where we have very low number of

retries and acceptable failures, or very high sea state and wind force.

Figure 17. Total Time vs. Number of Trials Completed Overlaid by Number

of Retries.
"total_time' vs. 'num_trials_completed’
10000
. 5.0
tae 4.5
o |
8000 ol 4.0
.ap'i'-i-: 3.5'Number_of_Retries’
o l.-n' L]
X > 3.0
w 6000 . ; 2.5
£ 5,121 Mins i 2.0
|
5 TR -
S ;
= 4000 6
v Minimum
Possible Time
2000 ot Ideal
* * Results
", |
0
0 20 40 60 80 100
‘num_trials_completed’

29

1. Regression Model

An alternative to a partition tree is a regression model. A tree may be better at
capturing sudden jumps in the responses, but a regression model can be a simpler
representation of the relationships of different parameters with the response. The
regression model results for the mean number of trials completed as response variable are

shown in Figure 18. We see that number of retries (k) comes out as the most significant
factor.

Figure 18. Regression Summary for Mean Number of Trials Completed.

Actual by Predicted Plot
90
30
00 e

60
© 50

a0 |-’

Mean('num_trials_completed
) Actual

L.
30 <
30 40 50 60 70 80 90
Mean('num_trials_completed’)
Predicted P<.0001 RSq=0.83
RMSE=6.1369

Summary of Fit

RSquare 0.82535
RSquare Adj 0.817588
Root Mean Square Error 6.136862
Mean of Response 67.02199
Observations (or Sum Wgts) 48

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 2 8008.9234 400446 106.3289
Error 45 1694.7483 37.66 Prob >F
C. Total 47 9703.6717 <.0001"

Sorted Parameter Estimates

Term Estimate StdError tRatio Prob>[t|
'k 12.514261 0.906782 13.80(| ! <.0001"
(k-3.54167)*(k-3.54167) -3.72189 0.92662 -4.02| | |

Prediction Profiler

90
80
70.58276 70
~[68.0588, 60
73.1067] 30
T 2
30

LA LA M LA S LAWY
— N Mmoo

3.5417

K

pleted'

Mean(' num_tri

als_com

30

This model is statistically significant with an F-statistic of 106. The t-statistics
and p-values verify that both the linear and quadratic terms are statistically significant
(p-values < 0.0002). The R? of 0.82 is similar to that from the partition tree. It is quite
high for a simple model, keeping in mind the fact that lack of fit is not a problem in this
study as the objective is not to predict outcomes. The purpose is to identify significant

variables and then apply that information to improve the process of conduct of trials.

2. Identification of Important Systems

In order to identify the important systems in the network, we used centrality
measures. We measured closeness centrality and between-ness centrality (Borgatti, 2005)
for the nodes in the graph created for finding the sequence of trials. Closeness centrality
measures the importance of a node based on the number of edges that node has. Figure 19

shows the plot of trials based on their closeness centrality values.

Figure 19. Closeness Centrality Plot.

CLOSENESS CENTRALITY - MEASURE OF IMPORTANCE BASED ON NUMBER OF EDGES

=
=

=
n

Closeness Centrality Value
=] o

o

=

=]

Trial Name

Between-ness centrality measures the importance of a trial based on the number
of shortest paths that trial occurs on. Figure 20 shows the plot of trials based on their

between-ness centrality measures.

31

Figure 20. Between-ness Centrality Plot.

BETWEENNESS CENTRALITY - MEASURE OF IMPORTANCE BASED ON NUMBER OF SHORTEST PATHS

0.04

0.035

0.03

=
2
&

0nms

Betweenness centrality Value
o
8

0.m

0.005 ‘ ‘
0

Trial Name

Based on the information from above two plots, we can identify the important
systems in the network. Code used to calculate the closeness and between-ness centrality
measures, along with the tables of closeness and between-ness centrality values for all

systems, appear in Appendix F.

E. SIMULATION RE-RUNS

Based on the information about important systems and identifying the number of
retries as the most significant factor, the simulation was re-run. It was decided that it may
not be feasible to give all the systems extra retries in real life, as that may increase the
total time for a single trip at sea to an unacceptably high level. Therefore, only the first
ten important systems were given one extra retry. This extra retry to ten important
systems represents availability of spares for those systems. There is limited room onboard
ship for storage, therefore a limited amount of spares can be stored for sea trips. This is
important for planners because ships undergoing builder trials do not have all the storage
spaces operational. Therefore all the stores are brought on and off the ship before every

sea trip.

32

The simulation was then re-run using same 49 design points as in initial

simulation. Code used to re-run the simulation is in Appendix G.

1. Simulation Re-run Results

The model re-run uses design of experiments with 49 design points and ten
replications. The results are saved into a 490 row data set. This dataset is then condensed
into a 49 row data set by calculating the mean and standard deviation for the number of
trials completed for each design point. Figure 23 shows the histogram and summary
statistics of mean number of trials completed collapsed over the input design factors
space. We observe a mean of 72 and standard deviation of 11 for mean number of trials

completed.

Figure 21. Histograms and Summary Statistics of Mean and Standard
Deviation of Number of Trials Completed.

Mean(num_trials_completed)

Quantiles Summary Statistics

* IEI:I 100.0% maximum 859 Mean 72.122449
99.5% 859 Std Dev 11.408445
97.5% 85.75 Std Err Mean 1.6297778
90.0% 83.2 Upper 95% Mean 75.399337
75.0% quartile 80.6 Lower 95% Mean 68.845561
50.0% median 757 N 49
= 25.0% quartile 67.85
40 50 60 70 80 90 10.0% 53
2.5% 417
0.5% 39.5
0.0% minimum 395
Std Dev(num_trials_completed)
Quantiles Summary Statistics
= 100.0% maximum 25.336841862 Mean 12.886641
99.5% 25.336841862 Std Dev 7.5071743
97.5% 25.285378938 Std Err Mean 1.0724535
90.0% 23.314516222 Upper 95% Mean 15.042953
75.0% quartile 21.205259533 Lower 95% Mean 10.730328
50.0% median 10.135197197 N 49
25.0% quartile 6.3160487138
0 5 10 15 20 25 10.0% 45472824607
2.5% 2.8419876639
0.5% 2.4244128728

0.0% minimum 2.4244128728

33

Exploring the simulated data, we see that none of the design points completed all
trials in all replications. However, our mean number of completed trials has increased and
standard deviation of completed trials has decreased. The 25% quartile for the initial run
had 58 completed trials, while in the simulation re-run the 25% quartile value increased
to 67. The partition tree for the mean number of completed trials once again shows the
number of retries (k) as the most significant factor. With three splits, this achieves an R?

of 0.84. The partition tree is shown in Figure 24.

Figure 22. Partition Tree with Mean Number of Trials Completed as

Response.
Partition for Mean(num_trials_completed)
90
ES) . ® |-<>; *
2 s0 R o1 ST I L e —
E' k<4 *. * i *
g 70 RIS .
= .
= 60-°
é ke3® * |
S50 . .,
o
@
= 40 .
k<5 k>=5
| k<4 k==4
k=3 | k==3
All Rows
Number
RSquare RMSE N of Splits AlCc
0.840 4.5103433 49 3 298.076
|
|All Rows
Count 49 LogWorth Difference
Mean 72.122449 34329398 24.0759
Std Dev 11.408445
|
| |
k<3 k>=3
Count 10 Count 39 LogWorth Difference
Mean 52.96 Mean 77.035897 86772881 7.96743
Std Dev 7.0051092 Std Dev 5.6011036
|
[|
k<4 k>=4
Count 14 || Count 25 LogWorth Difference
Mean 71.928571 || Mean 79.896 1.5102378 3.51691
Std Dev 4.1647659 || Std Dev 4.0669891

k<5 k>=5
Count 17 || Count g
Mean 78.770588 | Mean 82.2875

Std Dev 3.9352199 (|Std Dev 3.420709

34

2. Regression Model for Simulation Re-run

The regression model results for the mean number of trial completed as response
variable are shown in Figure 23. We see that number of retries (k) again comes out as the

most significant factor.

Figure 23. Results of Regression Model.

Actual by Predicted Plot

Mean(num_trials_completed

40 50 60 70 80 90
Mean(num_trials_completed)
Predicted P<.0001 RSq=0.83

RMSE=4.7828

Summary of Fit
RSquare
RSquare Adj

0.831567
0.824244

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

4.782798
7212245
49

Analysis of Variance
Sum of
Squares Mean Square

5195.0680

Source DF
Model 2
Error 46 1052.2573

C. Total 48 6247.3253 <.00071°

Sorted Parameter Estimates

F Ratio
2597.53 113.5526

Term Estimate StdError tRatio
k 9.5386749 0.689475 13.83) | | | |
(k-3.46939)*(k-3.46939) -3.842734 0.712555 -5.39] | |

Prediction Profiler

-l 5 90 H
= 20 -
£ 7590288 59
2 £173.9325 ¢
§ 8 77.8733] 50
s 2 40 :
LN O M LN ST L LA
— ™~ M = W
3.4694
k

35

This model is statistically significant with an F-statistic of 113. The t-statistics
and p-values verify that both the linear and quadratic terms are statistically significant (p-
values < 0.0001). The R? of 0.83 is similar to that from the partition tree and is again
quite high for a simple model, keeping in mind the fact that lack of fit is not a problem in

this study as the objective is not to predict outcomes.

F. COMPARISON OF RESULTS

In order to compare the results from both the simulations, we concatenate the
result tables into one table and add an indicator variable (1) such that I = 0 if results are
from initial simulation and | = 1 otherwise. The initial simulation has k retries for each
trial and the re-run has k+1 retries for 10 important trials and k retries for the others. After
concatenating the tables, we fit a regression model to the complete data. Summary results

from the regression model are shown in Figure 24.

36

Figure 24. Regression Model Results for Simulation Re-run.

Regression Plot

=]
o

\

‘num_trials_co

50

mpleted’)
[=a]
[}

Mean(
o
[

30

Zve mmm ane e

3

735
4

45
5

25

Actual by Predicted Plot
90

80

Mean('num_trials_completed
) Actual
(=1}
o

30 40 50 60 70 80 g0
Mean({’num_trials_completed’)
Predicted P<.0001 RSgq=0.83

RMSE=5.4314

Summary of Fit

RSquare 0.825229
RSquare Adj 0.818756
Root Mean Square Error 5431389
Mean of Response 70.23766
Observations (or Sum Wgts) 113

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 4 15043.561 3760.89 127.4879
Error 108 3185.998 29.50 Prob=F
C. Total 112 18229.559 <.0001*

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t
Intercept 35127756 2.001408 17.55 =.0001°
Source Table[0] -2.830233 0.515738 -5.49
'k 10.858744 0.524516 20.70

Source Table[0]*('k'-3.52212) 1.6279149 0.524488 3.10
('k'-3.52212)*('k’-3.52212) -3.613321 0.531783 -6.79

Prediction Profiler

- - 90
£ i 70.54307 o0
[1F] F0.54307
£ £ ~[68.7118 60
£ S 723744 50
L oy 40
= 30
0
Source 3.5221
Table 'k

37

From the regression plot in Figure 24, we can also see that mean number of
completed trials is greater for simulation re-runs. Also the regression model is
statistically significant with R? of 0.82 and an F-statistic of 127. Presence of the Indicator
variable (named Source Table) shows that there is a statistically significant difference
between the two data sets, and the interaction of the Source Table indicator value with k

shows its impact interacts with the number of retries.

We also looked at both the data sets and analyzed the cases where all trials were
completed. We observed that in initial runs, 8.3% of runs completed all trials; in
simulation re-runs, 12% of the time all trials were completed. Relaxing the requirement
for completion of all trials, we subset the data for cases where number of trials completed
were greater than 70 (about 80% trial completion). Plots for number of trials completed
vs. total time overlaid by number of retries for initial simulation and simulation re-run are

shown in Figures 25 and 26.

Figure 25. Total Time vs. Number of Trials Completed, Overlaid by Number
of Retries (k) when all Systems Given Same Number of Retries. Results of
Subset Where Number of Trials Completed > 70. Simulation Runs with
Lower Value of k not Seen Very Often.

Graph Builder

10000 total_time' vs. 'num_trials completed 5.0
- 4.5
. 4.0
9000 . . 3.5k
Lo 8 3.0
]
) 'l l2.5
- 8000 . e 2t 2.0
E . ® " . -
‘-:I - ® H . gt
= " 8 8 8 [] [| L]
3 | ¢ !
7000 . i ! i’ .
6000 .
5000

70 75 80 85 90
‘num_trials_completed’

38

Figure 26. Total Time vs. Number of Trials Completed, Overlaid by Number
of Retries (k), when One Extra Retry is Given to the Ten Most Important
Systems. Results of Subset Where Number of Trials Completed > 70.
Simulation Runs with Lower Value of k Completing More Trials.

‘total_time' vs. 'num_trials_completed’ 5.0
10000
. - 4.5
4.0
9000 « " e ® 3.5k
. Tt e, 3.0
- . '
.3 i il l2.5
g 8000 . . HESPEPEHE N | ; 2.0
= 2l cie
E - s « 8 5 H
S 3 z
¥ 7000 . LA
-
srp ity
[. .
6000 . e .
5000
70 75 80 85 90

‘num_trials_completed’

G. DISCUSSION

This analysis demonstrates that identification of important systems improves the
overall performance. Comparison of the graphs in Figures 25 and 26 shows that when we
give one extra retry to important systems, we complete at least 70 trials more often even
with lower numbers of overall retries (blue dots). Percentage-wise comparison of the data
shows that there is an increase in number of cases where we complete at least 70 trials for
one extra retry to important systems. The initial simulation has 61% of runs meet this

threshold, while one extra retry for important systems increases it to 72%.

It is also observed that although the total number of acceptable failures is an
important factor, it is not the primary factor affecting the number of trials completed. The
number of retries given to each trial is the most significant factor during simulation runs.
Identification of important systems can be translated into the spare supportability for

those systems. During the conduct of builder trials when all the stores onboard ship are

39

not fully operational, spares need to brought on and off-board for each sea trip. If there is
a failure at sea but we have spares for that system onboard, an attempt can be made to
repair the system at sea. This, in essence, gives one extra retry for the conduct of the
particular trial. It is evident from the simulation results that an extra retry improves the
overall performance by leading to a greater likelihood of completing more trials. This is

evident from the result comparison using the regression model shown in Figure 24.

Availability of this tool at sea for decision makers also provides them with useful
information. In case of a failure of a system, the decision makers can re-run the sequence
generator program, taking out all previously completed and previously failed trials. The
new sequence generated will give them visibility about how many more trials can be
completed by staying out at sea. This information will help the decision makers decide
whether to continue with more trials or return to port. Moreover, the adaptive nature of
the route generator will still provide the decision maker with an optimal route, provided

he decides to stay out at sea and complete as many of the remaining trials as possible.

H. MODEL ENHANCEMENTS

This study shows that systematic planning improves the performance during
conduct of builder trials for newly built ships. We have also gained useful insight on
factors to be considered during planning and execution phase of the process. Although
this study gives a concept of improvements in the planning process, it does not provide a
user friendly tool at the moment. This problem can be solved by building a graphical user
interface (GUI) for the model. By developing the GUI, the process will become very user
friendly and may be easily used at sea when the situation arises. The GUI can be
designed to take the input data from file provided by the user, read the area of trials from
electronic chart system, and find the sequences and routes for the conduct. Future
development may include plotting the geographical points representing the trial start
location on the electronic chart system automatically. Also, the GUI may provide the user
with the information about important systems in the network created by the user for the
trial. This information will help the user better plan the spare availability onboard for

important systems.

40

V. CONCLUSIONS AND RECOMMENDATIONS

Builder trials for newly built ships require a lot of money to be spent on the process.
While initial planning can be done while in the port, uncertainties in outcomes make it
difficult for the planners to capture all the possible outcomes during the initial planning
phase. This necessitates the availability of an adaptive tool at sea that can help the
decision makers in making the decision with regard to the conduct of further trials in case
of any failure. Non-availability of such tool leaves the decision makers in a state of
uncertainty, and as a result they often end up spending more time than required out at sea.

This thesis uses Python to develop a tool for the planning process of the builder
trials for a newly built ship. The tool is used for generating the sequence for conduct of
trials for all systems onboard along with the route for conduct of those trails. After
generation of the sequence and route, the process of conduct of trials is simulated using a
Python-based simulation model and design of experiments. The results from simulation
are summarized and analyzed using linear regression and partition tree models. After
identification of influential factors and important systems in the network, the simulation
IS re-run to evaluate the effectiveness of the process based on the finding from the first
simulation runs. The primary MOE, total number of trials completed, improved
significantly after model re-runs: from 66.2 to 72.1 of the potential 88 trials. This
research is evidence that an efficient design can improve the overall performance during
the conduct of builder trials. Moreover, the simulation process provides useful insight
into the process, especially via identifying important systems and their impact on the

overall results.

This study provides evidence that performance of a ship during builder trials can
be improved by efficient planning of the process. Among the factors considered for the
design of experiments in this study, we find number of retries given to a system (k) as the
most influential factor for our MOE, number of trials completed. Based on these results

following recommendations are made:

. The tool may be used in the initial planning phase for finding the sequence
and route to conduct trials.

41

In case of failure of a system at sea, the tool may be used to generate the
alternate sequence for conduct of trials for remaining systems.

The tool may be used for identification of important systems for spare
supportability. This will in essence give the important systems one extra
retry (k) in case failure.

The developed tool and the simulation model incorporate many assumptions. It may be

beneficial to explore more scenarios while trying to remove the assumptions made.

Following are possible future works related to this research:

Update the simulation program and analyze the results while catering for
return to port and forcing the program to complete all trials. Presently, the
simulation stops when a fixed number of acceptable failures are reached
and the ship returns to port.

Expand the scope by changing the distributions of the probability success
to reflect appropriate historically collected data or values from
requirements documents

Improve ease-of-use for the navigator by changing position inputs from
Cartesian coordinates to Latitude and Longitude for plotting.

Analysis of multiple paths generated by simulation for insights regarding
robustness of various path.

42

APPENDIX A. CONTENTS OF INPUT DATA FILE

Trial 1D Time | Depth | Prerequisites Speed Mean SD Wind Sea
. GY2; RDR; PGS; MSB: EGS; ESB; TLI; CO2;

engine ENG | 105 |50 FFL. SWS: EMS: ECS: EEX 20 0.65 0.13 2 2

Fin Stabilizer FIN 60 50 ENG 20 0.65 0.13 3 4

Compartment ENG; EEX; AC1; VNT; SWT; CHW; RFG; SWS;

Noise CNS | 120 | 100 CAS. PGS 15 0.65 0.13 1 1

Domestic DAP | 60 20 GWD 5 0.65 0.13 5 4

Appliances

Doors Windows | v | 45 | 20 10 0.65 0.13 5 4

Hatches

Crane CRN | 45 20 PGS; MSB 5 0.65 0.13 2 2

ICCP .

Equipment ICP 30 20 PGS; MSB 10 0.65 0.13 4 3

Marine Growth

Prevention MGP |30 20 PGS; MSB 10 0.65 0.13 4 3

System

Liquid Tank

Level TLI 30 20 10 0.65 0.13 3 2

Indications

Alarm System ALM 60 20 PGS; MSB 10 0.65 0.13 4 3

Eg%'sne Exhaust | coy | 45 50 EMS; ECS: PGS; MSB 20 0.65 0.13 4 2

FF System FF1 90 20 CO2; SPR; SWS; FWS: PWS 10 0.65 0.13 4 3

Sprinkling SPR | 60 50 10 0.65 0.13 4 3

System

CcO2 Fire

Extinguishing | CO2 | 45 50 10 0.65 0.13 4 3

System

AC System ACl1 |45 50 PGS; CHW; CDW; SWS; FWS; SWC 10 0.65 0.13 5 4

Ventilation VNT |30 |50 PGS 10 0.65 0.13 2 4

System

Sewage SWT 45 50 BWS; SWS; DOS 10 0.65 0.13 4 4

43

Treatment Plant

Chilled - Water | cpwy |45 |50 | PGS; SWS; CDW; MSB 10 0.65 0.3
System

Refrigeration | prG |60 |50 | PGS; CHW; SWS; FWS 10 0.65 0.3
System

condensate | opw |60 |50 | PGS; MSB; SWS 10 0.65 0.13
Water System

Lube Qil .

Systen LOS |45 50 PGS; MSB 10 0.65 0.13
Fuel Transfer | erg 130 | 20 PGS; MSB 10 0.65 0.13
System

Seawater .

System SWS |60 |30 PGS; MSB 10 0.65 0.13
Fresh — Water | pyys 145 |50 | PGS; MSB 10 0.65 0.13
System

Dirty oil .

Systern DOS | 30 100 PGS; MSB 10 0.65 0.13
Bilge — Water | g\ws |45 |100 | PGS; MSB; DOS; SWS 10 0.65 0.13
System

Pre-wetting PWS | 120 |50 PGS; MSB; SWS; FWS 10 0.65 0.13
System NBC

compressed Al | cas |90 |30 | PGS; MSB 10 0.65 0.13
System

Power

Generation PGS |120 |20 10 0.65 0.13
System

Main

Switchboard MSB 60 20 10 o6 o
Emergency

Generator EGS 60 50 FTS; PGS; MSB 10 0.65 0.13
System

Emergency ESB |45 |50 EGS; MSB; PGS 10 0.65 0.13
Switchboard

Power

Distribution PDS |90 |50 PGS; MSB; EGS; ESB 10 0.65 0.13
System

44

Battery

Charging BCD |45 50 PGS: MSB; EGS; ESB; PDS 10 0.65 0.13 4 3
Discharging

System

Electrical

Lighting System | ELL | 30 20 PGS; MSB; EGS; ESB; PDS 10 0.65 0.13 4 3
Sea - Water | g0 | g9 50 PGS; MSB; SWS 10 0.65 0.13 4 3
Cooling System

Grey Water

Collecting And | 5\ | 39 100 PGS; MSB; SWS: FWS 10 0.65 0.13 4 3
Drainage

System

Engine

Monitoring EMS |60 50 PGS; MSB 20 0.65 0.13 4 3
System

Engine - Control | pos | g9 50 PGS; MSB 20 0.65 0.13 4 3
System

Hydraulic HYD | 60 20 PGS; MSB 10 0.65 0.13 3 3
System

Degaussing DGS | 45 100 PGS; MSB; SWS 15 0.65 0.13 2 3
System

Shaft Vibration | o\, | gg 100 PGS: ENG 20 0.65 0.13 1 1
Measurement

Aux Machinery

Vibration AMV 120 100 PGS; ENG; SWS 20 0.65 0.13 1 1
Measurement

Underwater

Noise UWN | 45 100 PGS: ENG; SPD 20 0.65 0.13 1 1
Measurement

Overall

Vibration OAV |60 100 PGS: SPD; SWS; ENG; GUN 20 0.65 0.13 1 1
Measurement

Gyrol GYL |45 20 PGS 10 0.65 0.13 2 2
Gyro2 GY2 |45 20 PGS; GY1 10 0.65 0.13 2 2
radar RDR | 45 20 PGS; GY2 10 0.65 0.13 2 2
EM Log EML | 45 30 GY2; ENG; RDR 15 0.65 0.13 1 1

45

zigzag 771 | 45 50 GY2; ENG; RDR; SPD 20 0.65 0.13 2 2

Turning Circle TC1 30 50 RDR; GY2; ENG; SPD 20 0.65 0.13 2 2

Course Stability | CS1 45 50 ENG; GY2; SPD 20 0.65 0.13 2 2

Inertial INL | 30 50 ENG: GY2: RDR; EML; SPD 15 0.65 0.13 2 2

Speed SPD | 120 | 50 ENG: GY2; RDR; EML: STS 20 0.65 0.13 2 2

Anchor ANC | 30 30 PGS; HYD 0 0.65 0.13 3 3

Mooring MRE |30 |30 PGS: HYD 10 0.65 0.13 2 2

Equipment

Towing TOW | 90 50 PGS; HYD 5 0.65 0.13 3 3

Replenishment | o s | 120 | 50 PGS; HYD 15 0.65 0.13 3 3

At Sea

Boat Launch

And Recovery | BLR 45 30 PGS; HYD 5 0.65 0.13 3 3

System

Sea Boat SBT | 60 30 BLR 5 0.65 0.13 3 3

Steering System | STS | 90 50 GY2; RDR; SMA; GPS; MGC; ESD 15 0.65 0.13 2 2

Navigation & | \) | 39 50 PGS:MSB 5 0.65 0.13 2 2

Signal Lights

Ship

Manipulation | SMA | 45 50 PGS:MSB 5 0.65 0.13 4 3

Apparatus

Intercom

System ICS | 60 30 PGS:MSB 5 0.65 0.13 4 3

Sound Powered | oo | g, 50 PGS:MSB;BCD 5 0.65 0.13 4 3

Telephone

CCTV CCT |30 30 PGS:MSB 5 0.65 0.13 4 3

Echo Sounder | pog | 45 20 PGS:MSB 10 0.65 0.13 2 2

Shallow

E‘;Z‘; Sounder | oy |45 | 50 PGS;MSB 10 0.65 0.13 2 2

Integrated))))))) .

Navigation INC |60 |50 PGS; MSB; GY2; GY1; RDR; GPS; AlS; MGC; | ¢ 0.65 0.13 4 4
MTR; ESD

Console

DGPS GPS | 45 20 PGS; MSB; GY2 10 0.65 0.13 4 4

AlS AIS | 30 30 PGS; MSB; GPS; GY2; ESD; EML 10 0.65 0.13 4 4

NAVTEXRx | NTX |30 30 PGS; MSB; GPS; GY2; MTR 10 0.65 0.13 4 4

46

Metgraph MTR | 60 50 PGS: MSB:GPS 10 0.65 013 4 4
Magnetic MGC | 120 |50 PGS;MSB 5 0.65 0.13 3 2
Compass

VHF Comm VHFE | 30 50 PGS: MSB; GY2; UHF 5 0.65 013 4 4
SATCOM SAT |30 50 PGS:MSB:CMS 5 0.65 0.13 4 4
HF Emergency | e | 39 50 5 0.65 0.13 4 4
Radio

UHF Comm UHF | 30 30 PGS:MSB 5 0.65 013 4 4
MFHF Comm | MHF | 30 50 PGS:MSB:VHF 5 0.65 013 4 4
Control And

Distribution CDE 30 50 PGS;MSB;MHF 5 0.65 0.13 4 4
Eqpt

g;sTeTn””'ca“O” CMS | 60 50 PGS: MSB; CDE; MHF 5 0.65 0.13 4 4
WECDIS ECD | 60 20 GY1; GY2; EML; GPS: AIS; INC; ESD; ESS 10 0.65 0.13 4 4
Life Saving

Equipment LSE | 60 50 5 0.65 0.13 3 2
Main Gun GUN |120 |50 FCS 10 0.65 013 3 4
CIWS CWS |60 50 FCS 10 0.65 013 3 4
CRAA Guns CRA |30 50 GY2.CBT 10 0.65 013 2 2
Combat System | CBT | 180 | 50 INC 20 0.65 013 4 4
Fire Control | o | g9 50 INC;CBT 15 0.65 0.13 4 4

System

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

APPENDIX B. PYTHON FUNCTION TO GENERATE THE
SEQUENCE OF TRIALS

import csv
import networkx as nx
import random

BRI
####H##Creating graph of trials###
HHHHHHHHHHE

def create_graph(data file):
“””This Function takes as input the data.csv file and creates a
graph for finding the sequence to conduct trials”””
csvr = csv.DictReader(open(data_file))
g = nx.DiGraph(Q)
add all the nodes
for line in csvr:
nid = line["id"]
nname = line["trial"]
requirements = line["reqs”]
time = int(line["time"])
speed line[“speed™]
depth line["depth™]
sea = line["sea”]
wind = line["wind"]
mean=Float(line["mean"])
sd=Float(line["sd"])
prob_success=float(round(random.normalvariate(mean,sd),3))
g-add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

add all the edges
for node,node_data in g.nodes(data=True):
requirements = node_data["requirements”]
if requirements == "":
continue
for pred in requirements._.split(";"):
g-add_edge(pred,node,time=g.node[pred]["time"])
add the "start®™ and "end® nodes
g-add_node("Start")
g-add_node("End*)
for n in g.nodes():
if n == "Start” or n == "End":
continue
if not g.predecessors(n):
g-add_edge("Start”,n,time=0)
if not g.successors(n):
g-add_edge(n, "End” ,time=-g.node[n]["time"])
return g
HHH A
HHHHEH

49

#i## Calling the function #####H
HHHHHHH

g=create_graph(*'Data.csv'") #creating the trials graph

sort=nx.dag.topological_sort(g) #generating a sequence for trials
#print sort

50

APPENDIX C. PYTHON CODE TO GENERATE MULTIPLE
FEASIBLE SEQUENCES

from itertools import permutations, product, chain
import operator

HHHH T
Generating the multiple sequences####
HHHHHHHHHHHH R AR R

successors=nx.dfs_successors(g, "Start")
one_sequence=[x for x in sort 1f X In successors.keys()]
ofile = open(“sequences_all.csv™,"w")
p= {k:list(permutations(Vv)) for Kk, \%
successors.iteritems()}
for seq in product(*map(p.get, one_sequence)):
#seq="Start"+seq
#print seq
print >> ofile, list(chain.from_iterable(seq))
ofile.close() #writing the output to file

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

APPENDIX D. PYTHON CODE TO GENERATE THE PATH FOR
TRIAL CONDUCT

import csv

import networkx as nx

import math

import random

from itertools import permutations, product, chain
from collections import deque

import operator

import numpy as np

import sys

HitH AT Defining temporary variables ###H#HHH#HHHEH]
total _time=0.0
distance=1.0 #distance in the grid (1 x 1 NM box)

HHHHHHH
#H#H##HE Grid Creator Function ##H#HHHHHHHHH#T
HHHHHHHHH R R R

def grid_creator(depth_file,area,area2,n_rows,n_cols):

"""Function to read the depths.csv file and create a grid.

It also takes input for interdiction areas. It needs two lists of
tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
represent two interdiction areas. IT no interdiction is intended,
give it coordinates outside ranges of depth file max rows and
columns™**

dt=depth_fFile
target=open(dt, "r*)

Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
Area2=area2#[(29,32),(29,32)]

N_rows=n_rows
n_cols=n_cols

posn=[]
d=[]
for i in range(1,n_rows+1l):
line=target.readline()
line=line.rstrip('\n")
line=line_split(",")
for j in range(1,n_cols+1):
f=int(line[j-1])
it £>0:
if i>=Area[0][0] and i<=Area[l1][0] and j>=Area[O0][1]
and j<=Area[l][1]:
continue
elif i>=Area2[0][O] and i<=Area?[1]][O0] and
J>=Area2[0][1] and j<=Area2[1][1]:

53

continue
else:

position=(i,j)
posn.append(position)
x=((i,J),fF)
d.append(x)

return d,posn

target.close()

HHHHHH R A R
HHAHHHHMASTER NEIGHBORS DICT CREATION FUNCTION ###HH#HHHHIHH
HHHHHH AR A AR

def neighbours_creator(nodelist,output_dict _name):
output_dict_name={}
for nodes in nodelist:
start=nodes
#print start
tl=(start[0]+1,start[1]) #North
t2=(start[0]+1,start[1]+1) #North East
t3=(start[0],start[1]+1) #East
#t4=(start[0],start[1]) #self
t5=(start[0]-1,start[1]+1) #South East
t6=(start[0]-1,start[1]) #South
t7=(start[0]-1,start[1]-1) #South West
t8=(start[0],start[1]-1) #West
t9=(start[0]+1,start[1]-1) #North West
output_dict_name[start]=[]
if tl in nodelist:
output_dict_name[start].append(tl)
if t2 in nodelist:
output _dict name[start].append(t2)
if t3 in nodelist:
output _dict name[start].append(t3)
#if t4 1n nodelist:
output dict name[start].append(t4)
if t5 in nodelist:
output dict name[start].append(t5)
if t6 in nodelist:
output _dict_name[start].append(t6)
if t7 in nodelist:
output_dict_name[start].append(t7)
if t8 in nodelist:
output_dict_name[start].append(t8)
if t9 in nodelist:
output_dict_name[start].append(t9)
return output _dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors'™)

HHAHHHHA AR AR

HHH#HHHH#HH#Hicreating the graph Tor path checking ##HH#HHH#HHH#FHIH I
THEHHHH

54

def path_checker_creator(depth_list,neighbors):
path_checker = nx.DiGraph(Q)
path_checker _nodes=depth_list
queue=[]
index=0
for key i1n neighbors._keys():
#print "this is the key : %s"%(key,)
#queue . append(key)
#if key not in queue:
queue.append(neighbors[key])
#print "These are the neighbors for %s:
%s""%(key, neighbors50[key])
for i1 in range(0, len(queuefindex])):
dest=queue[index][i]
#print dest
#type(dest)
path_checker .add_edge(key,dest)
#queue .pop()
#queue=[]
index+=1
return path_checker

BRI
HitH#H s tamping all nodes with layer 1nformation#H##H#HHHEH#HIHH#H
HHHHHHH

def node_stamper(d, layers):
allnodes=[]
for node in d:
#print node
#temp=[]
#temp.append(d)
for stamp in layers:
if stamp is "End":
continue
#print i
else:
tmp=[node, stamp]
allnodes.append(tmp)
return allnodes

HHHHH A R R
HHHH A Layering on trial name #H###HHIHHHIHHHHHHHIHHHH
HHHHH A R R

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
layer_record={}
for layer in layers:
layer_record[layer]=[]
for node in allnodes:
if node[l]==layer:
layer_record[layer].append(node)
return layer_record

55

HHHHHHH
#HH#H#H List of distance covered to complete a trial###H##HH#HIH
THHHHHH

def trial_times_list(sort,Qg):
cons=[]
for i1 in sort:
if i!="Start” and i!="End":
m=int(g-node[i]["time"])*int(g-node[i]["“speed"])/60.0
cons.append(m)
return cons

BRI
HitpH##H#H List of depth required by each trial###H##HHH#HIHHH#HIHHH#HE
BRI

def depth_required_list(sort,g):
depth_reqg=[]
for 1 in sort:
for node,node_data in g.-nodes(data=True):
if i==node and i!="Start® and 1!="End~":

t=node_data["depth"]
depth_req.append(t)

return depth_req

HHHHHHH
HHH#HH#H#H Function to create the main routing graph ###HH#HIH#FHIH
THHHHHH I

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker 50,

path_checker_20):
graph_1=nx.DiGraph()
#print layer
for layer in layers:
##print "This is the layer i am on: %s"%layer
present_layer_nodes=layer_record[layer]
#print present_layer nodes
for node in present_layer_nodes:
source=tuple(node)
#print node
neighbors_complete=[node for neighbor
master_neighbors[node[0][0]] for node in present_layer_nodes
node[0][0]==neighbor]
#print neighbors_complete
for dest in neighbors_complete:
dest=tuple(dest)
#print "dest”;print dest
#print "writing edge from %s to %s"%(source,dest,)
graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
neighbors_complete=[]
for i1 in range(O, len(layers)):
#print "This is trial number: %d"%i
#print "This is trial: %s"%sort[i+1]

56

if i<len(depth_req):

depth_required=int(depth_req[i])

#print "depth required updated to %d"%depth_required
#if layers[i]!="End":

present_layer=[node for node in allnodes if node[l]==sort[i] if
node[0][1]>=depth_required]

#print "This is the present layer"”

#print present_layer

next_layer=[node for node in allnodes if node[l]==sort[i+1l] if
node[0][1]>=depth_required]

#print "This is the next layer"

#print next_layer

for nodel in present_layer:

templ=nodel[0][O]

#print templ

x1=templ[O]

yl=templ[1]

source=tuple(nodel)

##print ""Source: %s''%source

for node2 in next_layer:
temp2=node2[0][0]
x2=temp2[0]
y2=temp2[1]
dest=tuple(node2)
##print "Dest: %s''%dest
if (abs(x1-x2)+abs(yl-y2))<=cons[i] and (abs(x1-

x2)+abs(yl-y2))>=(cons[i]/2.0):
#print ""distance is ok"

if layers[i]==layers[-1]:
#print "1 m inside Start loop”
if nx._has_path(path_checker_all,templ,temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]][" time"]))

if layers[i]=="Start":
#print "1 m inside Start loop"
if nx_has_path(path_checker_all,templ,temp2):
#print "There 1is a path between %s and
%s""%(templ,temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]["time"]))
elif depth_required>=50:
#print "1 am in depth 50 loop"
if nx._has_path(path_checker_ 50, templ,temp2):
#print "There 1is a path between %s and
%s""%(templ,temp2,)

57

#print "writing inter layer edge between %s
and %s'"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]["time"]))
elif depth_required>=20:
#print "1 am in depth 20 loop™
ifT nx_has_path(path_checker_20,templ,temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]["time"]))
return graph_1

HAHHH
HitH##HHAR Function to calculate resul tstH###iHHHHHHHHHHHHHHHHTHHHH
HHHHHRHHRHH R AR

def result_calculator(graph_1,g,s,t):
"""This function takes the main graph, sequence graph, starting and
ending locations as inputs and calculates shortest path and returns
time to complete trials, path to be taken, betweenness and
closeness centrality values™™

#s=(((38, 38), 9), "Start")
#t=(((38, 38), 9), "TC")
result=nx.shortest_path(graph_1,s,t)
total _time=0.0
for i in range (0,len(result)):
if result[i]!=result[-1]:
if result[i][1]==result[i+1][1]:
#print (result[i],result[i+1])
total_time+=(1.0*60/speedtr)
else:
#print (result[i],result[i+1])
total_time+=g.node[result[i+1][1]1]1["time"]
print ""CLOSENESS CENTRALITY"
print sorted (nx.closeness_centrality(g).-items(), key=
operator.itemgetter(l), reverse= True)
print "BETWEENNESS CENTRALITY"
print sorted (nx.betweenness_centrality(Q)- items(),
key=operator.itemgetter(l), reverse=True)
print "ROUTE FOR TRIALS"
print result
print "TIME TO COMPLETE TRIALS"
print total_time

HHHHHH
HH#HHHHHHHE EXecution of function calls ##H#iHHHHHHHHHHHHHHTHT
HHHHHHH

HEHHHH AR R R

##Command Line Arguments ##
HHHH AR R R

58

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3

sea=int(sys.argv[4])#2

speedtr=int(sys.argv[5])#20

edge_time=1.0*60/speedtr

HHHHHHH
#H#H##Reading depth file and creating grid###H#HH#H#HI#
THEHHHHHHH

#change the input Ffile name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator(*'Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
,38)

#HHHHHMASTER NEIGHBORS DICT CREATION #### I
master_neighbors=neighbours_creator(posn,'master_neighbors')

HHHHH R A
HHH#HHHH AT Depth wise node 1iSts ##H#HHAHHHAHHHAHHH A
HHAHHHHA AR

depth_all=[node[0] for node in d]
depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all, ' neighbors_all')
neighbors50=neighbours_creator(depth50, ' neighbors50™)
neighbors20=neighbours_creator(depth20, " neighbors20')

T HHH
#i#H#Htcreating the graph for path checking later ###H##H#H#
HHHHHHH

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)
path_checker_50=path_checker_creator(depth50,neighbors50)

HHHHHHH R Creating graph of trial st##HHH I
g=create_graph(*'Data.csv'") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0O:len(sort)-1]

sequence=deque(sort[1l:len(sort)-1])

HHHHHHH
#i#H#stamping all nodes with layer information##it#H#H#H#E
HHHHHHH

allnodes=node_stamper(d, layers)

59

HHHA

#i# Layering on trial name##H#HHH#HH#H#

HHHH R R R R R R R
layer_record=layer_record_creator(layers,allnodes)
cons=trial_times_list(sort,Q)

depth_req=depth_required_list(sort,q)

creating main graph ####H#

graph_1=

main_graph_builder(layer_record,master_neighbors, layers,depth_req,sort,
allnodes,cons,g,path_checker_all,path_checker_50,path_checker_20)
HHHAHHH R E SUL T SHHAHHHIHHHH I H
s=(((38, 38), 9), layers[0]) #start Location

t=(((38, 38), 9), layers[-1]) #End Location
path,time=result_calculator_simulation(graph_1,9,s,t)

60

APPENDIX E. PYTHON CODE TO RUN SIMULATIONS

import csv

import networkx as nx

import math

import random

from itertools import permutations, product, chain
from collections import deque

import operator

import numpy as np

import sys

HHH#HHH#HH#H#E Defining temporary variables ###H#HEFHH]

k_temp=0

n_temp=0

completed=[] #list of completed trials (keeps emptying)

failed=[] #list of failed trials (keeps emptying)

pending_trials=[] #list of pending trials

final_completed={} #dict with trials completed and number of attempts
final_failed=[] #list with failed trials

final_poor=[] #List with trials removed because of other trials failure
num_of_time_rescheduled=0

total _time=0.0

distance=1.0 #distance in the grid (1 x 1 NM box)

HHHHHHHH
#Ha#H##HE Grid Creator Function ##H#HHHHHHHH#T
HHHHHHHHH R R R

def grid_creator(depth_file,area,area2,n_rows,n_cols):

"""Function to read the depths.csv file and create a grid.

It also takes input for interdiction areas. It needs two lists of
tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
represent two interdiction areas. ITf no interdiction is intended,
give it coordinates outside ranges of depth file max rows and
columns™**

dt=depth_File
target=open(dt, "r*)

Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
Area2=area2#[(29,32),(29,32)]

N_rows=n_rows
n_cols=n_cols

posn=[]

d=[]

for i in range(1,n_rows+1l):
line=target.readline()
line=line.rstrip('\n")

61

line=line_.split(",")
for j in range(1,n_cols+1):
f=int(line[j-1])
it £>0:
if i>=Area[0][0] and i<=Area[1l]][0] and j>=Area[O0][1]
and j<=Area[l][1]:
continue
elif i>=Area2[0][O] and i<=Area?[1]][O0] and
J>=Area2[0][1] and j<=Area2[1][1]:
continue
else:
position=(i,j)
posn.append(position)
x=((i,3),F)
d.append(x)
return d,posn
target.close()

HHHHHH A A R R
#HHAHHHHMASTER NEIGHBORS DICT CREATION FUNCTION ###H#HHHHIHHH
HHHHHH A A AR

def neighbours_creator(nodelist,output_dict _name):
output_dict_name={}
for nodes in nodelist:
start=nodes
#print start
tl=(start[0]+1,start[1]) #North
t2=(start[0]+1,start[1]+1) #North East
t3=(start[0],start[1]+1) #East
#t4d=(start[0],start[1]) #self
t5=(start[0]-1,start[1]+1) #South East
t6=(start[0]-1,start[1]) #South
t7=(start[0]-1,start[1]-1) #South West
t8=(start[0],start[1]-1) #West
t9=(start[0]+1,start[1]-1) #North West
output_dict_name[start]=[]
if tl in nodelist:
output _dict name[start].append(tl)
if t2 in nodelist:
output _dict name[start].append(t2)
if t3 in nodelist:
output _dict name[start].append(t3)
#if t4 1n nodelist:
output dict name[start].append(t4)
if t5 in nodelist:
output_dict_name[start].append(t5)
if t6 in nodelist:
output_dict_name[start].append(t6)
if t7 in nodelist:
output_dict_name[start].append(t7)
if t8 in nodelist:
output_dict_name[start].append(t8)
if t9 in nodelist:
output_dict_name[start].append(t9)

62

return output_dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors™)

BRI R R R R R R I R R
HHH i #HHEcreating the graph For path checking ##HH#HIH#HIH I
BRI R R A R A R A A R

def path_checker_creator(depth_list,neighbors):
path_checker = nx.DiGraph(Q)
path_checker _nodes=depth_list
queue=[]
index=0
for key i1n neighbors.keys():
#print "this is the key : %s"%(key,)
#queue . append(key)
#if key not in queue:
queue.append(neighbors[key])
#print "These are the neighbors for %s:
%s""%(key,neighbors50[key])
for 1 in range(O, len(queuelindex])):
dest=queuelindex][i]
#print dest
#type(dest)
path_checker .add_edge(key,dest)
#queue .pop()
#queue=[]
index+=1
return path_checker

BRI
#####Creating graph of trials###
HHHHHH

def create_graph(data file):
“””This Function takes as input the data.csv file and creates a
graph for finding the sequence to conduct trials™””
csvr = csv.DictReader(open(data_file))
g = nx.DiGraph(Q)
add all the nodes
for line in csvr:
nid = line["id"]
nname = line["trial"]
requirements = line["reqs”]
time = int(line["time"])
speed line[“speed™]
depth line[“depth™]
sea = line["sea”]
wind = line["wind"]
mean=Float(line["mean"])
sd=Float(line["sd"])
prob_success=float(round(random.normalvariate(mean,sd),3))

63

g-add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

add all the edges
for node,node_data in g.nodes(data=True):
requirements = node_data["requirements”]
if requirements == "":
continue
for pred in requirements._split(";"):
g-add_edge(pred,node,time=g.node[pred]["time"])
add the "start™ and "end® nodes
g-add_node("Start")
g.add_node("End*)
for n in g.nodes():
if n == "Start” or n == "End":
continue
if not g.predecessors(n):
g-add_edge("Start®,n,time=0)
if not g.successors(n):
g-add_edge(n, "End" ,time=-g.node[n]["time"])
return g

B
HiHHHHAH s tamping all nodes with layer information#H#HHHHHHIHHH
B

def node_stamper(d, layers):
allnodes=[]
for node in d:
#print node
#temp=[]
#temp.append(d)
for stamp in layers:
if stamp is "End":
continue
#print i
else:
tmp=[node, stamp]
allnodes.append(tmp)
return allnodes

HHHHH A R R
HHHHHH A Layering on trial name #HH##HHHIHHHIHHHHHHHIHHHH
HHHHHH A A AR

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
layer_record={}
for layer in layers:
layer_record[layer]=[]
for node in allnodes:
if node[l]==layer:

64

layer_record[layer] .append(node)
return layer_record

THHHHHH
#HH#H#H List of distance covered to complete a trial###H##HH##HIH
BRI R R R R R R R R

def trial_times_list(sort,Qg):
cons=[]
for i1 in sort:
if i!="Start” and i1!="End":
m=int(g-node[i]["time"])*int(g-node[i]["“speed"])/60.0
cons.append(m)
return cons

BRI
Hi#HH#H List of depth required by each trial###H#HHHH I
HHHHHHH

def depth_required_list(sort,g):
depth_reqg=[]
for 1 in sort:
for node,node _data in g.nodes(data=True):
if i==node and i!="Start® and 1!="End":

t=node_data["depth"]
depth_req.append(t)

return depth_req

THHHHHH I
HHH#HH#H#H#H Function to create the main routing graph ###HH#HIH I
BRI R R R R R R R I R

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker 50,
path_checker_20):
graph_1=nx.DiGraph()
#print layer
for layer in layers:
##print "This is the layer i am on: %s"%layer
present_layer_nodes=layer_record[layer]
#print present_layer nodes
for node in present_layer_nodes:
source=tuple(node)
#print node
neighbors_complete=[node for neighbor
master_neighbors[node[0][0]] for node in present_layer_nodes if
node[0][0]==neighbor]
#print neighbors_complete
for dest in neighbors_complete:
dest=tuple(dest)
#print "dest”;print dest
#print "writing edge from %s to %s"%(source,dest,)
graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
neighbors_complete=[]
for i1 in range(O, len(layers)):

65

#print "This is trial number: %d"%i
#print "This is trial: %s"%sort[i+1]
if i<len(depth_req):
depth_required=int(depth_req[i])
#print "depth required updated to %d"%depth_required
#i1Tf layers[i]1="End~:

present_layer=[node for node in allnodes if node[l]==sort[i] if
node[0][1]>=depth_required]

#print "This is the present layer”

#print present_layer

next_layer=[node for node in allnodes if node[l1]==sort[i+1] if
node[0][1]>=depth_required]

#print "This is the next layer"

#print next_layer

for nodel in present_layer:
templ=nodel[0][O0]
#print templ
x1=templ[O]
yl=templ[1]
source=tuple(nodel)
##print ""Source: %s''%source
for node2 in next_layer:
temp2=node2[0][0]
x2=temp2[0]
y2=temp2[1]
dest=tuple(node2)
##print "Dest: %s''%dest
if (abs(x1-x2)+abs(yl-y2))<=cons[i] and (abs(x1-
x2)+abs(yl-y2))>=(cons[i]/2.0):
#print "distance is ok"

if layers[i]==layers[-1]:
#print "1 m inside Start loop”
if nx.has_path(path_checker_all,templ, temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))

if layers[i]=="Start":
#print "1 m inside Start loop"”
iT nx_has_path(path_checker_all,templ,temp2):
#print "There 1is a path between %s and
%s""%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]["time"]))
elif depth_required>=50:
#print "1 am in depth 50 loop"
if nx._has_path(path_checker_ 50, templ,temp2):

66

#print "There 1is a path between %s and
%s"%(templ, temp2,)

#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))
elif depth_required>=20:
#print "1 am in depth 20 loop"
if nx.has_path(path_checker_ 20, templ,temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))
return graph_1

HHHHHRHHRHH R AR
Hit###HHAR Function to calculate resul tsH###iHHHHHHHHHHHHHHIHHHTHHHH
HAHHHHHHHHHH AR

def result_calculator(graph_1,g,s,t):
"""This function takes the main graph, sequence graph, starting and
ending locations as inputs and calculates shortest path and returns
time to complete trials, path to be taken, betweenness and
closeness centrality values™ ™

#s=(((38, 38), 9), "Start")
#t=(((38, 38), 9), "TC")
result=nx.shortest_path(graph_1,s,t)
total_time=0.0
for i in range (0, len(result)):
if result[i]!=result[-1]:
if result[i][1]==result[i+1][1]:
#print (result[i],result[i+1])
total_time+=(1.0*60/speedtr)
else:
#print (result[i],result[i+1])
total_time+=g.node[result[i+1][1]]["time"]
print ""CLOSENESS CENTRALITY"
print sorted (nx.closeness_centrality(g).-items(), key=
operator.itemgetter(l), reverse= True)
print "BETWEENNESS CENTRALITY"
print sorted (nx.betweenness_centrality(Q)- items(),
key=operator.itemgetter(1l), reverse=True)
print "ROUTE FOR TRIALS"
print result
print "TIME TO COMPLETE TRIALS"
print total_time

HHHHH AR R R R R

Function to calculate results for simulation ###H#HHHHTHHHTHTHE
HHHHHHHHH R R R R R

def result_calculator_simulation(graph_1,g,s,t):

67

"""This function takes the main graph, sequence graph, starting and
ending locations
as inputs and calculates shortest path and returns time to complete
trials, path to
be taken, betweenness and closeness centrality values
result=nx.shortest_path(graph_1,s,t)
total _time=0.0
for i1 in range (0,len(result)):
if result[i]!=result[-1]:
if result[i][1]==result[i+1][1]:
total_time+=(1.0*60/speedtr)
else:
total_time+=g.node[result[i+1][1]]["time"]
return result,total_time

HAHHH
HitHH R Function to simulate conduct of trial ###HHHH#HTHHHH#
HHHHHRHHRHH R AR

def
conduct_trial(g,wind,sea,k,n,k_temp,n_temp,completed, failed,total_time,
trial,close_small,between_small,k main):
global final_completed, final_failed
prob_success=g.node[trial]["“prob_success"]
sea_reqg=g.node[trial]["sea"]
wind_req=g-node[trial][“wind"]
time=g.node[trial]["time"]
if wind<=wind_req and sea<=sea_req: #good wind and sea conditions
#print "wind and sea ok"
while k_temp<k:
prob=random.random()
if prob<=prob_success:
#print "completed %s"%trial
completed.append(trial)
final_completed[trial]=k_temp

k_temp=0
total_time+=time
break

elif prob>=prob_success:
#print "a try failed for %s"%trial
k_temp+=1
total_time+=time
#break
if k_temp>=k:
n_temp+=1
#print "failed %s %d times"%(trial,k _temp)
failed.append(trial)
final_failed.append(trial)
k_temp=0
else: #Not favorable wind and sea conditions
#print "wind sea not ok"
prob_success=0.5*prob_success
while k_temp<k:
prob=random.random()
if prob<=prob_success:

68

#print "completed %s"%trial
completed.append(trial)
Ffinal_completed[trial]=k_temp

k_temp=0
total_time+=time
break

elif prob>=prob_success:
#print "a try failed for %s"%trial
k_temp+=1
total_time+=time
#break
it k_temp>=k:
n_temp+=1

#print "failed %s %d times"%(trial,k _temp)

failed.append(trial)
final_failed.append(trial)
k_temp=0

return k_temp,n_temp,completed,failed,total_time

THHHHHH
#HH##H#H# Function to update the graph after a failure ###H##HIH#FHIH
BRI R R R R R R R I R A

def graph_updater(g,flag=1):
#flag=1
global failed,completed,final_poor
while flag==1 and len(g.nodes())>2:
for node,node_data in g.nodes(data=True):
#print ""'node: %s'%node
ifT node=="Start" or node=="End":
continue

else:
flag=0
if node in failed:
#print "removing: %s'%node

g-remove_node(node) #remove the nodes which

not been completed
flag=1
elif node in completed:
#print "removing: %s"'%node

g-remove_node(node) #remove the nodes which

not been completed
flag=1
#for node_data iIn g.nodes(data=True):

requirements=node_data[“"requirements”].split(";")

have

have

for item In requirements: #iterate over the requirements of

all nodes
#print "item: %s%item

if item in failed and node in g.nodes():

g-remove_node(node)

#print "inside removing: %s'"%node
Final_poor._append(node)
failed.append(node)

flag=1

69

for n in g.nodes():
if n == "Start” or n == "End":
continue
if not g.predecessors(n):
g-add_edge("Start”,n,time=0)
if not g.successors(n):
g-add_edge(n, "End" ,time=-g.node[n]["time"])
failed=[]
completed=[]
return g

HEHHHH R R R R R R R R R R
AR EXECUTION OF FUNCT IONS #H#HHHHHHHHIH IR
HAHH R R R R

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3

sea=int(sys.argv[4])#2

speedtr=int(sys.argv[5])#20

edge_time=1.0*60/speedtr

k_main=k

B

#i#H###Reading depth file and creating grid####HH#H#H
B

#change the input Ffile name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator(*'Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
,38)

HHHHHHHHHHHMASTER NEIGHBORS DICT CREATION #H#H#H##HHHIHHHHHHHHH
master_neighbors=neighbours_creator(posn,'master_neighbors')

HEHHHH R R R R R R R R AR
Rt A Depth wise node | ISts #HHHHHHHHHHIHHHHHH
HAHH A R R R

depth_all=[node[0] for node in d]
depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all, " neighbors_all')
neighbors50=neighbours_creator(depth50, ' neighbors50™)
neighbors20=neighbours_creator(depth20, ' neighbors20')

HHHHHH
Hit#H#E# creating the graph for path checking later##HH#H]
HHHHHHHHHH

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)

70

path_checker_50=path_checker_creator(depth50,neighbors50)
HHH R Creating graph ofF trial s#H##HHHAHHHHH I HHE

g=create_graph(*'Data.csv'") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0:len(sort)-1]

sequence=deque(sort[1l:len(sort)-1])

B
HitHH s tamping all nodes with layer information) #####HH#HHH#H
HHHH R R R R R R R R R A R R R AR

allnodes=node_stamper(d, layers)

HHHHH
HHHHHHHHE Layering on trial name#####H#
HHHHHHH

layer_record=layer_record_creator(layers,allnodes)
cons=trial_times_list(sort,Qg)
depth_req=depth_required_list(sort,Qg)

graph_1l1=main_graph_builder(layer_record,master_neighbors, layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2

0)

HHHHH A AR RE SUL T SHHH AR HHHHHHH A A A A
Tt

s=(((38, 38), 9), layers[0])

t=(((38, 38), 9), layers[-1])
path,time=result_calculator_simulation(graph_1,g,s,t)

#transit_out _time= time to reach first point of trial

#transit_in_time= Time to reach back from last trial

final_route=[]

time_keeper=[]

list_of _trial_spots=deque([x for x 1in path if x[1]!=layers[0] and

x[1]'=layers[-1]1)

sea_bound_transit_route=[x for x in path if x[1]==layers[0]]

start_time=len(sea_bound_transit_route)*edge_ time

time_keeper _append(start_time)

home_bound_transit_route=[x for x in path if x[1]==layers[-1]]

end_time=len(home_bound_transit_route)*edge_time

time_keeper .append(end_time)

transit_time=start_time+end_time

list_of _trial_spots.append(home_bound_transit_route[0])

for point in sea bound _transit_route:
final_route_append(point)

sequence=deque(sort[1:len(sort)-1])
k_temp=0
n_temp=0

71

completed=[] #list of completed trials (keeps emptying)

failed=[] #list of failed trials (keeps emptying)

pending_trials=[] #list of pending trials

final_completed={} #dictionary with trials completed and # of attempts
final_failed=[] #list with failed trials

final_poor=[]

num_of_times_rescheduled=0

s=path[0]

t=path[-1]

while n_temp<n and len(sequence)>0:

it len(sequence)>0:
trial=sequence.popleft()
#print "trial: %s"%trial
s=list_of_trial_spots.popleft()

k_temp,n_temp,completed,failed, total_time=conduct_trial(g,wind,sea,k,n,
k_temp,n_temp,completed,failed,total_time,trial,close_small,between_sma
11,k main)
#print "k _temp: %s"%k temp
#print ""n_temp: %s'"%n_temp
#print "completed: %s"%completed
#print "failed: %s"%failed
#print "total_time: %d"%total_time
if len(failed)<=0:
final_route._append(s)
if len(failed)>0:
#print "Trial failed. Updating Graph"
num_of _times_rescheduled+=1
g=graph_updater(g,flag=1)
sort=nx.dag.topological_sort(g) #generating a sequence for
trials
#print "This Is new sequence:%s"%sort
layers=sort[0:len(sort)-1]
sequence=deque(sort[1l:len(sort)-1])
#print ''sequence: %s''%sequence
#H#H##H creating new network all over again
allnodes=node_stamper(d, layers)
layer_record=layer_record_creator(layers,allnodes)
cons=trial_times_list(sort,Qg)
depth_req=depth_required_list(sort,q)
if len(depth_req)>0:

graph_2l1=main_graph_builder(layer_record,master_neighbors, layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_ 50, path_checker_2

0)

s=(s[0], layers[1])

#print "This is s:%s"%(s,)

t=(t[0]. layers[-1])

#print "This is t:%s"%(t,)

path,time=result_calculator_simulation(graph_1,9g,s,t)

list of trial_spots=deque([x for X in path if
x[1]!'=layers[0] and x[1]!=layers[-1]1)

list of trial_spots.append(path[-len([x for x in path if
x[1]==layers[-1]1D D

72

#sequence=deque(sort[1l:len(sort)-1])
else:
print "All trials have been removed. Go back to port"”

it n_temp<n:
s=final_route[-1]
t=(Ffinal_route[0][0],final_route[-1]1[1D)
home_bound_transit_route=nx.shortest_path(graph_1,s,t)
for point in home_bound_transit_route:
if point not in final_route:
final_route.append(point)
end_time=len(home_bound_transit_route)*edge_time
elif n_temp>=n and len(sequence)>0:
s=(final _route[-1][0],sequence[0])
t=(final_route[0][0],sequence[0])
sequence.popleft()
for trial iIn sequence:
final_poor.append(trial)
home_bound_transit_route=nx.shortest_path(graph_1,s,t)
for point in home_bound_transit _route:
if point not in final_route:
final_route_append(point)
end_time=len(home_bound_transit_route)*edge time
transit_time=start_time+end_time
total_time+=transit_time
num_trials_failed=len(final_failed)
num_trials_completed=len(Ffinal_completed)
num_poor_trials=len(final_poor)#(len(g.nodes())-2)-
(len(final_completed.keys())+len(failed)) #trials that got removed
because of others

HH AR R R R R R R R R R R R R
HitHHHHHH# Writing the output of simulation run ####H#HH#H#E
HHHH
header=""n","k","wind", "sea”, "speedtr”, "total_time","num_trials_failed"
,nhum_trials_completed”, "num_poor_trials®, "final_failed_trials™"

print header

print

""%d, %d, %d,%d ,%d,%d,%d,%d,%d,%s""%(n,k,wind,sea,speedtr,total_time,num_tr
ials_failed,num_trials _completed,num poor_trials,final_ failed)

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX F. PYTHON CODE TO CALCULATE BETWEEN-NESS
AND CLOSENESS CENTRALITY ALONG WITH RESULTS

close=sorted(nx.closeness_centrality(g).items(),
key=operator.itemgetter(1l),reverse=True)

between=sorted(nx.betweenness_centrality(g).items(),
key=operator.itemgetter(l),reverse=True)

BETWEEN-NESS CENTRALITY RESULTS

System | Centrality Value | System | Centrality Value | System | Centrality Value
‘ENG' 0.037643 'CHW' | 0.000349 'LSE' 4.26E-05
'INC' 0.016855 'OAV' 0.000329 'HFE' 4.26E-05
'EML' | 0.014492 "IN’ 0.000288 'DWH' | 4.26E-05
‘AlS' 0.011556 '‘CO2 0.00026 ‘RAS' 3.77E-05
'FF1' 0.008172 'NTX' | 0.000225 'MRE' | 3.77E-05
'FCS' 0.007661 TCL' 0.000224 'ANC' | 3.77E-05
'PGS' 0.006139 'Z71' 0.000224 TOW' | 3.77E-05
'SPD' 0.005171 TLI' 0.000196 'GY1' 2.89E-05
'GY?2 0.003919 'CS! 0.000182 'CDW' | 2.55E-05
'STS' 0.003703 'EEX 0.000176 'CAS' 2.55E-05
'MSB' 0.003556 'DAP' 0.00017 'SWC' | 2.55E-05
'EGS' 0.003447 'UWN' | 0.000169 'CCT' 1.56E-05
'CBT' 0.002937 'FWS' 0.000153 'ALM" | 1.56E-05
'MHF' 0.001788 'CRA' 0.000146 'MGP' | 1.56E-05
'VHF' 0.00166 'ESD' 0.000144 'LOS' 1.56E-05
'CNS' 0.00165 'SPT' 0.000143 'NSL' 1.56E-05
'CMS' 0.001277 'AMV' 0.000138 'CRN' | 1.56E-05
'ECD' 0.000912 'BWS' 0.000128 'ICS' 1.56E-05
'HYD' 0.000766 'DOS' 0.000128 'ICP' 1.56E-05
'‘GWD' | 0.000681 'SBT' 0.000128 VNT'" |0

'SAT' 0.000654 'CWS' 0.000128 '‘CDE' 0

'‘GUN' 0.000638 'RFG' 0.000106 'End' 0

‘ELL' 0.000526 '‘SHV' 0.000106 ‘EMS" |0

'‘BLR' | 0.000511 'FIN' 9.98E-05 'FTS' |0

'‘BCD' 0.000511 'PWS' 8.51E-05 'ESB' 0

'SWT' 0.000511 '‘MGC' 7.87E-05 ‘Start' 0

'‘AC1' 0.000489 'SMA' 7.87E-05 'ECS' 0

'SWS' 0.000434 'ESS' 6.51E-05 ‘UHF' |0

'‘GPS' 0.000399 'SPR' 6.38E-05 'PDS' 0

'‘RDR' 0.000353 'DGS' 4.75E-05 '‘MTR' |0

75

CLOSENESS CENTRALITY RESULTS

System | Centrality Value | System | Centrality Value | System | Centrality Value
PGS' 0.722736 'CBT' 0.036772 'MRE' | 0.011236
'MSB' 0.594803 'SMA' 0.036404 'FIN' 0.011236
‘Start' 0.470899 'CHW' | 0.035955 INT' 0.011236
'GY?2 0.213067 'CDW' | 0.031211 '‘CRA' | 0.011236
'SWS' 0.173184 'FCS' 0.029963 'LSE' 0.011236
'GY1' 0.152949 'PDS' 0.029963 'CS1' 0.011236
'RDR' 0.144971 'MHF' 0.025682 'AMV' | 0.011236
'EGS' 0.115366 'DOS' 0.025682 'SHV' 0.011236
'ENG' 0.112615 'VHF' 0.023408 'ECD' 0.011236
'ESB' 0.108507 'UHF' 0.022472 TCL' 0.011236
'‘GPS' 0.098931 'BWS' 0.016854 'ANC' | 0.011236
'FWS' 0.09472 'CDE' 0.016854 'MGP' | 0.011236
FTS' 0.08898 'SWC' 0.016854 'UWN' | 0.011236
'EMS' 0.088714 VNT' 0.014981 'HFE' 0.011236
'ECS' 0.088714 'CMS' 0.014981 'DGS' 0.011236
'CO2' 0.088714 '‘BLR' 0.014981 ‘ELL' 0.011236
'EEX 0.084972 'RFG' 0.014981 'Z71' 0.011236
'ESD' 0.083261 '‘GWD' | 0.014981 'NTX' | 0.011236
'FF1' 0.082397 '‘BCD' 0.014981 'SBT 0.011236
TLI' 0.082397 '‘GUN' 0.014981 TOW' | 0.011236
'EML' 0.0799 '‘AC1' 0.014981 'LOS' 0.011236
'‘MGC' 0.07191 '‘CAS' 0.014981 '‘NSL' 0.011236
'SPD' 0.06882 'SWT' 0.014981 'CRN' | 0.011236
'SPR' 0.066784 'ESS' 0.014981 'DAP' 0.011236
PWS' 0.066784 'CCT' 0.011236 'CNS' 0.011236
'HYD' 0.061174 'OAV' 0.011236 'CWS' | 0.011236
'INC' 0.051364 'SPT' 0.011236 'ICS' 0.011236
'‘MTR' 0.048852 ‘RAS' 0.011236 'DWH' | 0.011236
'STS' 0.044944 'SAT' 0.011236 'ICP' 0.011236
'AlS' 0.043339 'ALM' 0.011236 'End' 0

76

APPENDIX G. PYTHON CODE FOR SIMULATION RE-RUNS

import csv

import networkx as nx

import math

import random

from itertools import permutations, product, chain
from collections import deque

import operator

import numpy as np

import sys

HHH#HHH#HH#H#E Defining temporary variables ###H#HEFHH]

k_temp=0

n_temp=0

completed=[] #list of completed trials (keeps emptying)

failed=[] #list of failed trials (keeps emptying)

pending_trials=[] #list of pending trials

final_completed={} #dict with trials completed and number of attempts
final_failed=[] #list with failed trials

final_poor=[] #List with trials removed because of other trials failure
num_of_time_rescheduled=0

total _time=0.0

distance=1.0 #distance in the grid (1 x 1 NM box)

HHHHHHHH
#Ha#H##HE Grid Creator Function ##H#HHHHHHHH#T
HHHHHHHHH R R R

def grid_creator(depth_file,area,area2,n_rows,n_cols):

"""Function to read the depths.csv file and create a grid.

It also takes input for interdiction areas. It needs two lists of
tuples for interdiction areas. e.g. [(29,32),(29,32)],[(1,3),(6,8)]
represent two interdiction areas. ITf no interdiction is intended,
give it coordinates outside ranges of depth file max rows and
columns™**

dt=depth_File
target=open(dt, "r*)

Area=area#[(29,32),(29,32)] # These areas for un-interdicted run
Area2=area2#[(29,32),(29,32)]

N_rows=n_rows
n_cols=n_cols

posn=[]

d=[]

for i in range(1,n_rows+1l):
line=target.readline()
line=line.rstrip('\n")

77

line=line_.split(",")
for j in range(1,n_cols+1):
f=int(line[j-1])
it £>0:
if i>=Area[0][0] and i<=Area[1l]][0] and j>=Area[O0][1]
and j<=Area[l][1]:
continue
elif i>=Area2[0][O] and i<=Area?[1]][O0] and
J>=Area2[0][1] and j<=Area2[1][1]:
continue
else:
position=(i,j)
posn.append(position)
x=((i,3),F)
d.append(x)
return d,posn
target.close()

HHHHHH A A R R
#HHAHHHHMASTER NEIGHBORS DICT CREATION FUNCTION ###H#HHHHIHHH
HHHHHH A A AR

def neighbours_creator(nodelist,output_dict _name):
output_dict_name={}
for nodes in nodelist:
start=nodes
#print start
tl=(start[0]+1,start[1]) #North
t2=(start[0]+1,start[1]+1) #North East
t3=(start[0],start[1]+1) #East
#t4d=(start[0],start[1]) #self
t5=(start[0]-1,start[1]+1) #South East
t6=(start[0]-1,start[1]) #South
t7=(start[0]-1,start[1]-1) #South West
t8=(start[0],start[1]-1) #West
t9=(start[0]+1,start[1]-1) #North West
output_dict_name[start]=[]
if tl in nodelist:
output _dict name[start].append(tl)
if t2 in nodelist:
output _dict name[start].append(t2)
if t3 in nodelist:
output _dict name[start].append(t3)
#if t4 1n nodelist:
output dict name[start].append(t4)
if t5 in nodelist:
output_dict_name[start].append(t5)
if t6 in nodelist:
output_dict_name[start].append(t6)
if t7 in nodelist:
output_dict_name[start].append(t7)
if t8 in nodelist:
output_dict_name[start].append(t8)
if t9 in nodelist:
output_dict_name[start].append(t9)

78

return output_dict_name

#Example function call
#master_neighbors=neighbours_creator(posn,"master_neighbors™)

BRI R R R R R R I R R
HHH i #HHEcreating the graph For path checking ##HH#HIH#HIH I
BRI R R A R A R A A R

def path_checker_creator(depth_list,neighbors):
path_checker = nx.DiGraph(Q)
path_checker _nodes=depth_list
queue=[]
index=0
for key i1n neighbors.keys():
#print "this is the key : %s"%(key,)
#queue . append(key)
#if key not in queue:
queue.append(neighbors[key])
#print "These are the neighbors for %s:
%s""%(key,neighbors50[key])
for 1 in range(O, len(queuelindex])):
dest=queuelindex][i]
#print dest
#type(dest)
path_checker .add_edge(key,dest)
#queue .pop()
#queue=[]
index+=1
return path_checker

BRI
#####Creating graph of trials###
HHHHHH

def create_graph(data file):
“””This Function takes as input the data.csv file and creates a
graph for finding the sequence to conduct trials™””
csvr = csv.DictReader(open(data_file))
g = nx.DiGraph(Q)
add all the nodes
for line in csvr:
nid = line["id"]
nname = line["trial"]
requirements = line["reqs”]
time = int(line["time"])
speed line[“speed™]
depth line[“depth™]
sea = line["sea”]
wind = line["wind"]
mean=Float(line["mean"])
sd=Float(line["sd"])
prob_success=float(round(random.normalvariate(mean,sd),3))

79

g-add_node(nid, name= nname, requirements= requirements, time=
time, speed= speed, depth= depth, wind= wind, sea= sea, prob_success=
prob_success)

add all the edges
for node,node_data in g.nodes(data=True):
requirements = node_data["requirements”]
if requirements == "":
continue
for pred in requirements._split(";"):
g-add_edge(pred,node,time=g.node[pred]["time"])
add the "start™ and "end® nodes
g-add_node("Start")
g.add_node("End*)
for n in g.nodes():
if n == "Start” or n == "End":
continue
if not g.predecessors(n):
g-add_edge("Start®,n,time=0)
if not g.successors(n):
g-add_edge(n, "End" ,time=-g.node[n]["time"])
return g

B
HiHHHHAH s tamping all nodes with layer information#H#HHHHHHIHHH
B

def node_stamper(d, layers):
allnodes=[]
for node in d:
#print node
#temp=[]
#temp.append(d)
for stamp in layers:
if stamp is "End":
continue
#print i
else:
tmp=[node, stamp]
allnodes.append(tmp)
return allnodes

HHHHH A R R
HHHHHH A Layering on trial name #HH##HHHIHHHIHHHHHHHIHHHH
HHHHHH A A AR

#Creates a record of layers and adds that to a dictionary for
referencing in main graph
def layer_record_creator(layers,allnodes):
layer_record={}
for layer in layers:
layer_record[layer]=[]
for node in allnodes:
if node[l]==layer:

80

layer_record[layer] .append(node)
return layer_record

THHHHHH
#HH#H#H List of distance covered to complete a trial###H##HH##HIH
BRI R R R R R R R R

def trial_times_list(sort,Qg):
cons=[]
for i1 in sort:
if i!="Start” and i1!="End":
m=int(g-node[i]["time"])*int(g-node[i]["“speed"])/60.0
cons.append(m)
return cons

BRI
Hi#HH#H List of depth required by each trial###H#HHHH I
HHHHHHH

def depth_required_list(sort,g):
depth_reqg=[]
for 1 in sort:
for node,node _data in g.nodes(data=True):
if i==node and i!="Start® and 1!="End":

t=node_data["depth"]
depth_req.append(t)

return depth_req

THHHHHH I
HHH#HH#H#H#H Function to create the main routing graph ###HH#HIH I
BRI R R R R R R R I R

def main_graph_builder (layer_record, master_neighbors, layers,
depth_req, sort, allnodes, cons, g, path_checker_all, path_checker 50,
path_checker_20):
graph_1=nx.DiGraph()
#print layer
for layer in layers:
##print "This is the layer i am on: %s"%layer
present_layer_nodes=layer_record[layer]
#print present_layer nodes
for node in present_layer_nodes:
source=tuple(node)
#print node
neighbors_complete=[node for neighbor
master_neighbors[node[0][0]] for node in present_layer_nodes if
node[0][0]==neighbor]
#print neighbors_complete
for dest in neighbors_complete:
dest=tuple(dest)
#print "dest”;print dest
#print "writing edge from %s to %s"%(source,dest,)
graph_1.add_edge(source,dest,time=(1.0*60/speedtr))
neighbors_complete=[]
for i1 in range(O, len(layers)):

81

#print "This is trial number: %d"%i
#print "This is trial: %s"%sort[i+1]
if i<len(depth_req):
depth_required=int(depth_req[i])
#print "depth required updated to %d"%depth_required
#i1Tf layers[i]1="End~:

present_layer=[node for node in allnodes if node[l]==sort[i] if
node[0][1]>=depth_required]

#print "This is the present layer”

#print present_layer

next_layer=[node for node in allnodes if node[l1]==sort[i+1] if
node[0][1]>=depth_required]

#print "This is the next layer"

#print next_layer

for nodel in present_layer:
templ=nodel[0][O0]
#print templ
x1=templ[O]
yl=templ[1]
source=tuple(nodel)
##print ""Source: %s''%source
for node2 in next_layer:
temp2=node2[0][0]
x2=temp2[0]
y2=temp2[1]
dest=tuple(node2)
##print "Dest: %s''%dest
if (abs(x1-x2)+abs(yl-y2))<=cons[i] and (abs(x1-
x2)+abs(yl-y2))>=(cons[i]/2.0):
#print "distance is ok"

if layers[i]==layers[-1]:
#print "1 m inside Start loop”
if nx.has_path(path_checker_all,templ, temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))

if layers[i]=="Start":
#print "1 m inside Start loop"”
iT nx_has_path(path_checker_all,templ,temp2):
#print "There 1is a path between %s and
%s""%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g.node[sort[i+1]]["time"]))
elif depth_required>=50:
#print "1 am in depth 50 loop"
if nx._has_path(path_checker_ 50, templ,temp2):

82

#print "There 1is a path between %s and
%s"%(templ, temp2,)

#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))
elif depth_required>=20:
#print "1 am in depth 20 loop"
if nx.has_path(path_checker_ 20, templ,temp2):
#print "There 1is a path between %s and
%s"%(templ, temp2,)
#print "writing inter layer edge between %s
and %s"'%(source,dest,)

graph_1.add_edge(source,dest,time=int(g-node[sort[i+1]]["time"]))
return graph_1

HHHHHRHHRHH R AR
Hit###HHAR Function to calculate resul tsH###iHHHHHHHHHHHHHHIHHHTHHHH
HAHHHHHHHHHH AR

def result_calculator(graph_1,g,s,t):
"""This function takes the main graph, sequence graph, starting and
ending locations as inputs and calculates shortest path and returns
time to complete trials, path to be taken, betweenness and
closeness centrality values™ ™

#s=(((38, 38), 9), "Start")
#t=(((38, 38), 9), "TC")
result=nx.shortest_path(graph_1,s,t)
total_time=0.0
for i in range (0, len(result)):
if result[i]!=result[-1]:
if result[i][1]==result[i+1][1]:
#print (result[i],result[i+1])
total_time+=(1.0*60/speedtr)
else:
#print (result[i],result[i+1])
total_time+=g.node[result[i+1][1]]["time"]
print ""CLOSENESS CENTRALITY"
print sorted (nx.closeness_centrality(g).-items(), key=
operator.itemgetter(l), reverse= True)
print "BETWEENNESS CENTRALITY"
print sorted (nx.betweenness_centrality(Q)- items(),
key=operator.itemgetter(1l), reverse=True)
print "ROUTE FOR TRIALS"
print result
print "TIME TO COMPLETE TRIALS"
print total_time

HHHHH AR R R R R

Function to calculate results for simulation ###H#HHHHTHHHTHTHE
HHHHHHHHH R R R R R

def result_calculator_simulation(graph_1,g,s,t):

83

""This function takes the main graph, sequence graph, starting and
ending locations as inputs and calculates shortest path and returns
time to complete trials, path to be taken, betweenness and
closeness centrality values™ ™

result=nx.shortest_path(graph_1,s,t)
total _time=0.0
for i1 in range (0,len(result)):
if result[i]!=result[-1]:
if result[i][1]==result[i+1][1]:
total_time+=(1.0*60/speedtr)
else:
total_time+=g.node[result[i+1][1]]["time"]
return result,total_time

HAHHH
HitHH R Function to simulate conduct of trial ###HHHH#HTHHHH#
HHHHHRHHRHH R AR

def
conduct_trial(g,wind,sea,k,n,k_temp,n_temp,completed, failed,total_time,
trial,close_small,between_small,k main):
global final_completed, final_failed
#print n_temp: %d"%n_temp
#iFf len(sequence)>0:
if trial in close _small:
k+=1
#print "updating k to value %d"%k
elif trial in between_small:
k+=1
#print "updating k to value %d"%k
else:
k=k_main
prob_success=g.node[trial]["prob_success"]
sea_reqg=g-node[trial]["sea"]
wind_reqg=g.node[trial]["wind"]
time=g.node[trial]["time"]
if wind<=wind_req and sea<=sea req: #good wind and sea conditions
#print "wind and sea ok"
while k_temp<k:
prob=random.random()
if prob<=prob_success:
#print "completed %s"%trial
completed.append(trial)
final_completed[trial]=k_temp

k_temp=0
total_time+=time
break

elif prob>=prob_success:
#print "a try failed for %s"%trial
k_temp+=1
total_time+=time
#break
if kK temp>=k:
n_temp+=1

84

#print "failed %s %d times"%(trial,k_temp)
failed.append(trial)
final_failed.append(trial)
k_temp=0
else: #Not favorable wind and sea conditions
#print "wind sea not ok"
prob_success=0.5*prob_success
while k_temp<k:
prob=random.random()
if prob<=prob_success:
#print "completed %s"%trial
completed.append(trial)
final_completed[trial]=k_temp

k_temp=0
total_time+=time
break

elif prob>=prob_success:
#print "a try failed for %s"%trial
k_temp+=1
total _time+=time
#break
if k_temp>=k:
n_temp+=1
#print "failed %s %d times"%(trial,k_temp)
failed.append(trial)
final_failed.append(trial)
k_temp=0
k=k_main
#print k
return k_temp,n_temp,completed,failed,total_time

BRI
Hi#HH##H# Function to update the graph after a failure ###H#H#HHHIHHE
HHHHHHH

def graph_updater(g,flag=1):
#flag=1
global fTailed,completed,final _poor
while flag==1 and len(g.nodes())>2:
for node,node_data in g.nodes(data=True):
#print '"'node: %s''%node
if node=="Start" or node=="End~":
continue

else:
flag=0
if node in failed:
#print "removing: %s"%node
g-remove_node(node) #remove the nodes which
not been completed
flag=1
elif node in completed:
#print "removing: %s"'%node
g.-remove_node(node) #remove the nodes which
not been completed

85

have

have

flag=1
#for node_data in g.nodes(data=True):
requirements=node_data["requirements”].split(";")
for item In requirements: #iterate over the requirements of
all nodes
#print "item: %s%item
if item in failed and node in g.nodes():
g-remove_node(node)
#print "inside removing: %s'"%node
final_poor._append(node)
failed.append(node)
flag=1
for n in g.nodes():
if n == "Start” or n == "End":
continue
if not g.predecessors(n):
g-add_edge("Start®,n,time=0)
if not g.successors(n):
g-add_edge(n, "End” ,time=-g.node[n]["time"])
failed=[]
completed=[]
return g

R R R R R R R R T
HHHHHHR R EXECUTION OF FUNCT IONS ###HHHAHHHHAHHHAHHHA A
HHHHH AR R R R R

n=int(sys.argv[1])#10 #total number of failures allowed
k=int(sys.argv[2])#3 #number of retries per trial
wind=int(sys.argv[3])#3

sea=int(sys.argv[4])#2

speedtr=int(sys.argv[5])#20

edge_time=1.0*60/speedtr

k_main=k

THEHHHHHHH A

#H#H##H#Reading depth File and creating grid###H#H##HIH

THEHHHH

#change the input file name, areas 1 and 2 for interdicted runs and
n_rows and n_cols

d,posn=grid_creator(*'Depths.csv",[(29,32),(29,32)],[(29,32),(29,32)],42
»38)

HHHHHHHAHHHHHMASTER NEIGHBORS DICT CREATION #H#H#H##HAHHIHHHH I
master_neighbors=neighbours_creator(posn,*master_neighbors'™)

BRI R R R R R R I R R
HtHHHH A Depth wise node | ISts #HHHHHHHHHHIHHHHHH
BRI R R R A R R R A R
depth_all=[node[0] for node in d]

depth50=[node[0] for node in d if node[1]>=50] #d is the list of nodes
depth20=[node[0] for node in d if node[1]>=20]

86

##creating the dictionaries of neighbors depthwise
neighbors_all=neighbours_creator(depth_all, " neighbors_all')
neighbors50=neighbours_creator(depth50, " neighbors50'")
neighbors20=neighbours_creator(depth20, ' neighbors20')

BRI
H#H#H# creating the graph for path checking later##H#H#HH]
HHHHHHH

path_checker_all=path_checker_creator(depth_all,neighbors_all)
path_checker_20=path_checker_creator(depth20,neighbors20)
path_checker_ 50=path_checker_creator(depth50,neighbors50)

HHH#HHH R H#Creating graph of trial st#H#HAHHHAHHHHAHHHH A

g=create_graph(*'Data.csv'") #trials graph
sort=nx.dag.topological_sort(g) #generating a sequence for trials
layers=sort[0O:len(sort)-1]

sequence=deque(sort[1l:len(sort)-1])

BRI R R R R R R R R R R
HHH A s tamping all nodes with layer information) ####HH#H##HIH
BRI R R R R R R R R R R T

allnodes=node_stamper(d, layers)

HHHH AR R R R R R R
HitHHHH A Layering on trial name######
HHHH R R R R R R AR

layer_record=layer_record_creator(layers,allnodes)
cons=trial_times_list(sort,q)
depth_req=depth_required_list(sort,q)

graph_1=main_graph_builder(layer_record,master_neighbors, layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_ 50,path_checker_2

0)

HHHAHHH A RE SUL T SHHAHHHH I H I
HHHHH

s=(((38, 38), 9), layers[0])

t=(((38, 38), 9), layers[-1])
path,time=result_calculator_simulation(graph_1,9g,s,t)

close=sorted(nx.closeness_centrality(g).items(),
key=operator.itemgetter(1l),reverse=True)
close_small=[]
for item in close:
if item[1]>=0.1:
close_small .append(item[0])

87

between=sorted(nx.betweenness_centrality(g).items(),
key=operator.itemgetter(l),reverse=True)
between_small=[]
for item in between:
if item[1]>=0.003:
between_small .append(item[0])

#transit_out_time= time to reach first point of trial

#transit_in_time= Time to reach back from last trial

final_route=[]

time_keeper=[]

list_of _trial_spots=deque([x for x 1in path if x[1]!'=layers[0] and

x[1]!'=layers[-1]])

sea bound_transit_route=[x for x in path if x[1]==layers[0]]

start_time=len(sea_bound_transit_route)*edge_time

time_keeper.append(start_time)

home_bound_transit_route=[x for x in path if x[1]==layers[-1]]

end_time=len(home_bound_transit_route)*edge_ time

time_keeper _append(end_time)

transit_time=start_time+end_time

list_of _trial_spots.append(home_bound_transit_route[0])

for point in sea bound_transit_route:
final_route.append(point)

sequence=deque(sort[1l:len(sort)-1])

k_temp=0

n_temp=0

completed=[] #list of completed trials (keeps emptying)

failed=[] #list of failed trials (keeps emptying)

pending_trials=[] #list of pending trials

final_completed={} #dictionary with trials completed and # of attempts
final_failed=[] #list with failed trials

final_poor=[]

num_of _times_rescheduled=0

s=path[0]

t=path[-1]

while n_temp<n and len(sequence)>0:

if len(sequence)>0:
trial=sequence.popleft()
#print "trial: %s"%trial
s=list_of _trial_spots.popleft()

k_temp,n_temp,completed,failed, total_time=conduct_trial(g,wind,sea,k,n,
k_temp,n_temp,completed,failed,total_time,trial,close_small,between_sma
11,k_main)
#print "k _temp: %s"%k_temp
#print "n_temp: %s'"%n_temp
#print "completed: %s'%completed
#print "failed: %s"%failed
#print "total_time: %d"%total_time
if len(failed)<=0:
final_route_append(s)
if len(failed)>0:
#print "Trial failed. Updating Graph"

88

num_of _times_rescheduled+=1

g=graph_updater(g,flag=1)

sort=nx.dag.topological_sort(g) #generating a sequence for
trials

#print "This is new sequence:%s'%sort

layers=sort[0O:len(sort)-1]

sequence=deque(sort[1l:len(sort)-1])

#print ''sequence: %s''%sequence

#it##H creating new network all over again

allnodes=node_stamper(d, layers)

layer_record=layer_record_creator(layers,allnodes)

cons=trial_times_list(sort,Qg)

depth_req=depth_required_list(sort,q)

if len(depth_req)>0:

graph_2l1=main_graph_builder(layer_record,master_neighbors, layers,depth_r
eq,sort,allnodes,cons,g,path_checker_all,path_checker_50,path_checker_2

0)

s=(s[0], layers[1])

#print "This is s:%s"%(s,)

t=(t[0], layers[-1])

#print "This is t:%s"%(t,)

path,time=result_calculator_simulation(graph_1,g,s,t)

list_of _trial_spots=deque([x for X in path if
x[1]!'=layers[0] and x[1]!'=layers[-1]11)

list_of trial_spots.append(path[-len([x for x in path if
x[1]==layers[-1]1DD

#sequence=deque(sort[1l:len(sort)-1])

else:
print "All trials have been removed. Go back to port”

if n_temp<n:
s=final_route[-1]
t=(Ffinal_route[0][0],final_route[-1]1[1D)
home_bound_transit_route=nx.shortest_path(graph_1,s,t)
for point in home_bound_transit _route:
if point not in final_route:
final_route.append(point)
end_time=len(home_bound_transit_route)*edge time
elif n_temp>=n and len(sequence)>0:
s=(final _route[-1][0],sequence[0])
t=(final_route[0][0],sequence[0])
sequence.popleft()
for trial iIn sequence:
final_poor.append(trial)
home_bound_transit_route=nx.shortest_path(graph_1,s,t)
for point in home_bound_transit_route:
if point not in final_route:
final_route_append(point)
end_time=len(home_bound_transit_route)*edge_ time
transit_time=start_time+end_time
total_time+=transit_time
num_trials_failed=len(final_failed)
num_trials_completed=len(final_completed)

89

num_poor_trials=len(final_poor)#(len(g-nodes())-2)-
(len(final_completed.keys())+len(failed)) #trials that got removed
because of others

HHHH R R R R R R R R R R R R
HtHH#HH R Writing the output of simulation run ####H#HH#HE
HHH R R R R R R R R R R R R R
header="""
,num_trials_completed”, "num_poor_trials®, "final_failed_trials
print header

print
""%d,%d,%d,%d,%d,%d,%d,%d,%d,%s""%(n,k,wind,sea,speedtr,total_time,num_tr
ials_failed,num_trials _completed,num poor_trials,final_ failed)

n®,"k","wind", "sea”, "speedtr”, "total_time", "num_trials_failed"

90

LIST OF REFERENCES

Borgatti, S. P. (2005). Centrality and network flow. Social networks, 27(1), 55-71.
Retrieved from http://www.sciencedirect.com/science/article
/pii/S0378873304000693.

Carter, J. M. (2005). Shipbuilding integration (Master’s Thesis). Naval Postgraduate
School, Monterey, CA. Retrieved from https://calhoun.nps.edu/bitstream/handle
/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y

Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin
hypercubes. Technometrics, 49(1), 45-55.

Colgary, K. A., & Willett, D. K. (2006). Ship and Installation Program: Optimal
Stationing of Naval Ships (Master’s Thesis). Naval Postgraduate School,
Monterey, CA. Retrieved from

https://calhoun.nps.edu/bitstream
/handle/10945/2768/06Jun Colgary.pdf?sequence=1&isAllowed=y

Dimitrov, N. (2014, May). Network Flows and Graphs (instructional material). Presented
at Naval Postgraduate School, Monterey, CA. Retrieved from
http://neddimitrov.org/teaching/201402NFG.html

Germanischer Lloyd SE. (2012). Rules for classification and construction (VI1-11-3).
Hamburg, Germany: Germanischer Lloyd. Retrieved from http://www.qgl-
group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf

Haakenstad, K. (2012). Analysis and correction of sea trials (Master’s Thesis).
Norweigan University of Science and Technology, Trondheim, Norway.
Retrieved from http://brage.bibsys.no/xmlui/handle/11250/238219

Hart, C. (2000). Measurements during SWATH ship sea trials. Instrumentation &
Measurement Magazine, IEEE, 3(3), 38-43. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=863910&tag=1

JMP, Version 12 (1989-2007). SAS Institute Inc., Cary, NC. Retrieved from
https://www.nps.edu/Technology/SoftwareLib/Auth/index.htm

McLean, C., & Shao, G. (2001). Simulation in shipyards: simulation of shipbuilding
operations. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer (Eds.),
Proceedings of the 2001 Winter Simulation Conference (pp. 870-876).
Piscataway, NJ: Institute of Electrical and Electronic Engineers. Retrieved from
http://informs-sim.org/wsc01papers/114.pdf

91

http://www.sciencedirect.com/science/article%0b/pii/S0378873304000693
http://www.sciencedirect.com/science/article%0b/pii/S0378873304000693
https://calhoun.nps.edu/bitstream/handle%0b/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream/handle%0b/10945/1841/05Dec_Carter.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream%0b/handle/10945/2768/06Jun_Colgary.pdf?sequence=1&isAllowed=y
https://calhoun.nps.edu/bitstream%0b/handle/10945/2768/06Jun_Colgary.pdf?sequence=1&isAllowed=y
http://neddimitrov.org/teaching/201402NFG.html
http://www.gl-group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf
http://www.gl-group.com/infoServices/rules/pdfs/gl_vi-11-3_e.pdf
http://brage.bibsys.no/xmlui/handle/11250/238219
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=863910&tag=1
https://www.nps.edu/Technology/SoftwareLib/Auth/index.htm
http://informs-sim.org/wsc01papers/114.pdf

The National Shipbuilding Research Program (NSRP) (1999, July), Standard Ship Test
and Inspection Plan, Procedures and Databases (NSRP 0534 N6-95-1). U.S.
Department of the Navy Carderock Division, Naval Surface Warfare Center.
Retrieved from http://www.google.com/url?sa=t&rct=j&g=&esrc=
s&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lghmv3HAhUVNogKHVI
NCwO0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usqg=
AFQ]CNERUQqGdytt1YN5e LxU8zrmw9l6w&sig2=6PD9g6Y6UEX gY-
h067zhw&bvm=bv.102829193,d.cGU

Sanchez, S. M., & Wan, H. (2012). Work smarter, not harder: A tutorial on designing and
conducting simulation. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, &
A. M. Urmacher (Eds.), Proceedings of the 2012 Winter Simulation Conference
(pp. 1929-1943). Piscataway, NJ: Institute of Electrical and Electronic Engineers.
Retrieved from http://informs-sim.org/wsc12papers/includes/files/inv260.pdf

Sanchez, S. M. (2011). NOLHDesigns_V6.xls [Spreadsheet file]. Retrieved from
http://harvest.nps.edu

Vieira, H., Jr. (2012). NOB_Mixed_512DP_template_v1.xls [Spreadsheet file]. Retrieved
from http://harvest.nps.edu

Vieira, H., Jr., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2011). Improved
efficient, nearly orthogonal, nearly balanced mixed designs. In S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, & M. Fu (Eds.), Proceedings of the 2011
Winter Simulation Conference (pp. 3605-3616). Piscataway, NJ: Institute of
Electrical and Electronics Engineers. Retrieved from http://www.informs-
sim.org/wsc11papers/320.pdf

Vieira, H., Jr., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2013). Efficient
nearly-orthogonal-and-balanced, mixed designs: An effective way to conduct
trade-off analyses via simulation. Journal of Simulation, 7 (Special Issue on
Input/Output Analysis), 264-275.

92

http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=%0bs&source=web&cd=1&ved=0CB0QFjAAahUKEwj06Lqhmv3HAhUVNogKHVlNCw0&url=http%3A%2F%2Fhandle.dtic.mil%2F100.2%2FADA445496&usg=AFQjCNERUqqGdytt1YN5e_LxU8zrmw9I6w&sig2=6PD9q6Y6UEx_gY-h067zhw&bvm=bv.102829193,d.cGU
http://informs-sim.org/wsc12papers/includes/files/inv260.pdf
http://harvest.nps.edu/
http://harvest.nps.edu/
http://www.informs-sim.org/wsc11papers/320.pdf
http://www.informs-sim.org/wsc11papers/320.pdf

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library

Naval Postgraduate School
Monterey, California

93

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Background and Motivation
	B. Thesis Objectives
	C. Thesis Organization

	II. LITERATURE REVIEW
	III. METHODOLOGY
	A. PLANNING PHASE
	1. Generation of Sequence
	2. Creation of Layered Network
	3. Finding the Route to Complete All Trials

	B. SIMULATION
	C. FACTORS AND RANGES
	D. ASSUMPTIONS
	E. LIMITATIONS
	F. DESIGN OF EXPERIMENTS

	IV. RESULTS AND ANALYSIS
	A. GENERAL RESULTS
	1. Input Data File
	2. Sequence of Trials
	3. Generating Multiple Feasible Trial Sequences
	4. Generating the Path
	5. Out of Bound Areas

	B. SIMULATION AND DESIGN OF EXPERIMENTS
	C. Measures of Effectiveness
	D. Simulation Results
	1. Regression Model
	2. Identification of Important Systems

	E. SIMULATION RE-RUNS
	1. Simulation Re-run Results
	2. Regression Model for Simulation Re-run

	F. Comparison of Results
	G. DISCUSSION
	H. MODEL ENHANCEMENTS

	V. Conclusions and recommendations
	Appendix A. CONTENTS OF INPUT DATA FILE
	appendix B. python Function to generate the sequence of trials
	Appendix C. Python Code to generate multiple feasible sequences
	Appendix D. Python code to generate the path for trial conduct
	appendix E. python code to run simulations
	Appendix F. Python code to calculate between-ness and closeness centrality along with results
	Appendix G. Python code for simulation re-runs
	List of References
	initial distribution list

