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ABSTRACT 

With the arrival of Optech’s Titan multispectral LiDAR sensor, it is now possible 

to simultaneously collect three different wavelengths of LiDAR data. Much of the work 

performed on multispectral LiDAR data involves gridding the point cloud to create 

Digital Elevation Models and multispectral image cubes. Gridding and raster analysis can 

have negative implications with respect to LiDAR data integrity and resolution. Presented 

here is a method of attributing the Titan LiDAR point cloud with the spectral information 

of all three lasers and the potential improvement of performing all analysis within the 

point cloud. 

Data from the Optech Titan are analyzed here for purposes of terrain 

classification, adding the spectral component to the LiDAR data point cloud analysis. The 

approach used combines the three spectral sensors into one point cloud, integrating the 

intensity information from the 3 sensors. Nearest-neighbor sorting techniques are used to 

create the merged point cloud. Standard LiDAR and spectral classification techniques are 

then applied. 

The ENVI spectral tool “n-Dimensional Visualizer” is used to extract spectral 

classes from the data, which can then be applied using supervised classification functions. 

The Maximum Likelihood classifier provided consistent results demonstrating effective 

terrain classification for as many as eleven classes.  
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I. INTRODUCTION 

A. PURPOSE OF RESEARCH 

As operational planning staffs endeavor to better their procedures for developing 

coherent courses of action, one area that can provide substantial benefit is accurate 

knowledge of the operating environment. Reliable operations plans (OPLANS) are based 

heavily on the ability to correctly determine the nature of the surroundings in which 

operations will take place. Remote sensing is the discipline of observing the Earth from 

satellite or aircraft for the purpose of characterizing the environment. Specifically 

identifying buildings, roads, trails, features, and vegetation is termed terrain 

classification. In the field of remote sensing, electro-optical (EO) imaging, radar imaging, 

and light detection and ranging (LiDAR) are examples of platforms employed for the 

purpose of terrain classification.   

While EO imagery offers advantages for the terrain classification process in terms 

of spectral fidelity, and radar imagery has capabilities unique to its sensors, neither offer 

the same vertical resolution provided by a LiDAR point cloud. LiDAR, like radar, is an 

active sensor and can be employed regardless of lighting conditions. Efforts and progress 

have been made primarily in the field of merging photogrammetric imagery with LiDAR 

data sets in order to support better terrain classification and evaluation. There are issues, 

however, stemming mainly from the complexities of merging data in differing formats 

which hamper the effectiveness of the product. Multi-spectral LiDAR may provide a way 

to maintain the analysis entirely in the LiDAR point cloud, and would only require one 

sensor.  

Separately, researchers have begun to investigate the utility of analyzing not only 

the spatial components of LiDAR data, but also the spectral data. With motivations 

primarily driven by vegetation analysis, first-time experiments are being conducted to 

attempt to classify vegetation on the species level using spectral returns. Multi-

wavelength LiDAR sensors have been implemented in many of these studies, as well as 

being historically useful in bathymetric efforts. 
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Given that multi-wavelength LiDAR systems are now being fielded, there is a 

potential to better the terrain classification techniques currently employed by taking 

advantage of the spectral portion of the data collected by the sensor. Classification using 

spectral information may be able to act as an error correction following implementation 

of current methods. Furthermore, the spectral components have the potential to further 

sub-classify individual points. The advantage provided to the operations planning process 

by accurately knowing the material makeup of the environment from roads to buildings, 

or the species of a given stand of vegetation, could be tremendous, particularly if only 

LiDAR is available. 

B. OBJECTIVE 

The objective of this thesis is to test the idea that the spectral intensity 

components of a multi-wavelength LiDAR data set can lend accuracy to the terrain 

classification process, and to evaluate the effectiveness of sub-classification techniques 

based on the spectral data. To meet this objective, data collected by the Optech Titan 

LiDAR sensor over the city of Toronto will be analyzed.   



 3 

II. BACKGROUND 

A. HISTORY OF LIDAR 

LiDAR is but one fascinating utilization of the laser, or Light Amplification by 

Stimulated Emission of Radiation. What was theorized by Townes and Schawlow
1
 and 

named by Gould,
2
 quickly became reality as Maiman and the Hughes Research 

Laboratory created the first working laser in 1960.
3 

 Fiocco and Smullen worked to 

analyze the upper atmosphere through a pulsed probing technique, arguably the first 

instance of a laser being employed as a remote sensor.
4
  Shortly thereafter, the orientation 

was reversed and LiDAR was used to measure the topographic profile of a football 

stadium in Philadelphia.5  These measurements took advantage of the inherently short 

wavelength of LiDAR. Laser pulses are directed at a target, usually the Earth, and then 

the sensor measures the time required for the pulse to return. This time is then used to 

calculate a distance, the accuracy of which is heavily dependent on the fidelity of the 

clock used to measure the time between pulse and return. When the laser pulse is returns 

to the LiDAR sensor it is collected by a detector with the purpose of gathering the desired 

data set. LiDAR detectors usually implement a photo-multiplier tube, or an avalanche 

photodiode in order to amass the photons for recognition. Detectors may be designed to 

obtain returns which contain the full waveform, individual photon, or a discrete number 

of critical ranges.   

 

                                                 
1 Arthur L. Schawlow and Charles H. Townes, “Infrared and Optical Masers,” Physical Review 112, 

no. 6, (15 December 1958): 1948–1949, doi: http://dx.doi.org/10.1103/PhysRev.112.1940. 

2 Gordon R. Gould, “The LASER, Light Amplification by Stimulated Emission of Radiation,” The 
Ann Arbor conference on optical pumping, the University of Michigan, (15 June 1959), quoted in Richard 
Olsen, Remote Sensing from Air and Space (SPIE Press, 2007), 229. 

3 Theodore H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, no. 4736, (6 August 
1960): 493–494, doi: 10.1038/187493a0. 

4 G. Fiocco and L.D. Smullen, “Detection of Scattering Layers in the Upper Atmosphere (60–140 km) 
by Optical Radar,” Nature 199, no. 4900, (28 September 1963): 1275–1276, doi: 10.1038/1991275a0. 

5 Barry Miller, “Laser Altimeter May Aid Photo Mapping,” Aviation Week & Space Technology 83, 
no. 13, (29 March 1965): 60–61. 
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As LiDAR technology has continued to develop over the past 50 years, three 

major components of the data have been analyzed. The primary resource that LiDAR 

provides is extremely accurate three dimensional point clouds, or a set of data points with 

x, y, and z coordinates. This aspect of the data alone has been the basis for massive 

advances in the accurate production of digital elevation models, or DEMs. LiDAR data 

also contains intensity values, which are a function of the reflectance of the material they 

hit. Originally, intensity or reflectance data were used for the production of rasterized 

images which provided some utility based on their precision regardless of illumination 

conditions. Finally, while the production of most topographical products make use of 

only the first and last returns for a given pulse transmission, modern LiDAR sensors can 

record a full waveform return, which provides the analyst more detail into the power 

received from each pulse transmitted.
6 

  

B. LIDAR PRINCIPLES 

LiDAR detectors have progressed rapidly since the inception of the red ruby laser. 

Most modern LiDAR systems operate at one frequency and use one of a variety of media 

including solid state, gas, excimer, dye, and semiconductors. As in all lasers, photons are 

pumped into the lasing medium, and consequently stimulated and amplified in an optical 

cavity. The collimated resulting beam is both coherent and polarized, which add to its 

low divergence to make it operationally valuable as a remote sensing tool.   

Topographic LiDAR systems are typically mounted underneath an aircraft and 

flown over the area of interest in order to gather the desired data set. One of the critical 

advancements making LiDAR operationally valuable is the advent of Positioning, 

Navigation, and Timing (PNT) systems such as the U.S. GPS constellation. Not only 

does PNT provide the geolocation of the LiDAR sensor so that its data are geographically 

referenced, it also provides precision timing on the order of nanoseconds to the detector 

and central processing unit which measure the LiDAR pulse travel time. Additionally, 

internal motion units (IMU) are flown with the LiDAR sensor which measure and 

                                                 
6 Linda Nordin, “Analysis of Waveform Data from Airborne Laser Scanner System,” (master’s thesis, 

Lulea University of Technology, 2006): 38.   
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account for the rotational motion of the host platform on three axes. These two systems 

make up the internal navigation system (INS), and are critically important to both the 

accuracy and utility of LiDAR as a remote sensing tool. The basic output of a LiDAR 

sensor is a geographically referenced range determined by: 

𝑅 = 𝑐𝜏/2 

where: 

 R =  Range in meters 

 c  =  the speed of light, 3x10
8
 m/s 

 τ  =  laser pulse travel time in seconds 

 

1. Terrain Classification using LiDAR 

The first and most prominent method of terrain classification using LiDAR data 

makes use of the highly accurate three-dimensional spatial data set to conduct feature 

extraction or object recognition. These methods often rely on a set algorithms developed 

for use in specific endeavors. For building footprint construction, Zhang used a 

morphological filter, a region-growing algorithm, and a noise removal algorithm to 

produce footprint maps like the one shown in Figure 1.
7
 

                                                 
7 Keqi Zhang, “Automatic Construction of Building Footprints from Airborne LiDAR Data,” IEEE 

Transactions on Geoscience and Remote Sensing 44, no. 9, (September 2006): 2532, doi: 
10.1109/TGRS.2006.874137. 
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Figure 1.  Residential building footprints developed from LiDAR.8 

In 2005, Helt investigated the ability to distinguish between three different tree 

species using statistical analysis of both height information and foliage dispersion.
9
  He 

was able to accurately map the locations of California Scrub Oaks, California Live Oaks, 

and Eucalyptus trees using a LiDAR data set taken over the Elkhorn Slough Wetlands.  

2. Efforts to Utilize Spectral Intensity and Reflectance Data 

LiDAR intensity measurements have traditionally been considered secondary data 

when compared to the spatial components of the three dimensional high-resolution point 

cloud which can now be modeled and displayed with modern computing resources. Many 

of the most interested parties in utilizing intensity returns for analysis are focused on in-

depth analysis of forest canopies. With goals like species classification, tree crown 

measurement, and sub-canopy health evaluation, LiDAR sensors can provide both access 

                                                 
8 Ibid., 2531. 

9 Michael Helt, “Vegetation Analysis with LiDAR,” (master’s thesis, Naval Postgraduate School, 
September 2005): 30–40, retrieved from Calhoun: http://hdl.handle.net/10945/2030 on April 28, 2015. 

http://hdl.handle.net/10945/2030%20on%2028
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to the variable levels of forested areas, but also an intensity return which can be 

indicative of biological tendencies.  

As early as 2002, efforts were being made to use intensity data from LiDAR 

systems to perform terrain classification.
10

 Researchers used various techniques, many of 

which involved meshed classification using both intensity data, and physical return 

metrics to differentiate between specific species of trees.
11

  In 2006 and 2007, multiple 

attempts were made to assess land coverage and classification using LiDAR intensities,
12

 

with varying levels of success.  

                                                 
10 Jeong-Heon Song, Soo-Hee Han, Kiyun Yu, and Yong-Il Kim, “Assessing the Possibility of Land-

Cover Classification Using LIDAR Intensity Data,” ISPRS Commission III, “Photogrammetric Computer 
Vision” Graz, Austria 34, no. 3B, (9-13 September, 2002): 259−262, retrieved from: 
http://www.isprs.org/proceedings/XXXIV/part3/. 

11 Johan Holmgren and Åsa Persson, “Identifying Species of Individual Trees Using Airborne Laser 
Scanner,” Remote Sensing of Environment 90, no. 4, (21 May 2003): 415−423, doi: 10.1016/S0034-
4257(03)00140-8. ; Tomas Brantberg, “Classifying Individual Tree Species Under Leaf-off and Leaf-on 
Conditions Using Airborne LiDAR,” ISPRS Journal of Photogrammetry and Remote Sensing 61, no. 5, 
(January 2007): 325−340, doi: 10.1016/j.isprsjprs.2006.10.006. 

12 R. Brennan and T. L. Webster, “Object-oriented Land Cover Classification of LiDAR-derived 
Surfaces,” Canadian Journal of Remote Sensing 32, no. 2, (April 2006): 162−172, doi: 10.5589/m06-015. 
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Figure 2.  Terrain classification conducted using LiDAR intensity, a generated 

DSM, normalized height, and return number.13 

                                                 
13 Ibid., 171. 
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Donaghue was able to utilize intensity and the coefficient of variation to dissect 

the species populations in coniferous plantations.
14

  At multiple sites, he accurately 

mapped the Sitka Spruce tree fraction, providing a functional use for the intensity data. 

Figure 3 shows that the intensity data for NIR LiDAR is strongly related to the spruce 

fraction, particularly in the case of the Laurieston forest block. He also studied how the 

flight geometry affects the return intensities, and how to manage the effects of off-nadir 

scan angles and their varying path lengths.
 

 

Figure 3.  “LiDAR near infrared intensity and Sitka spruce volume.”15 

Gaulton points out that there are issues with using intensity data to measure target 

properties, reflectance specifically, which originate from the scattering effects and 

incidence angles experienced by the laser.
16

  The idea of dual or multi-wavelength 

LiDAR sensors to correct these issues has been closely studied over the last ten years. 

Specific just to vegetation applications, there have been several prototype sensors 

                                                 
14 Daniel N. Donoghue, Peter J. Watt, Nicholas J. Cox, & Jimmy Wilson, “Remote Sensing of Species 

Mixtures in Conifer Plantations using LiDAR Height and Intensity Data,” Remote Sensing of Environment 
110, no. 4, (10 October 2007): 509−522, doi: 10.1016/j.rse.2007.02.032. 

15 Ibid. 

16 Rachel Gaulton, “The Potential of Dual-Wavelength Laser Scanning for Estimating Vegetation 
Moisture Content,” Remote Sensing of Environment 132, (15 May 2013):  35. 
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developed with between two and eight different wavelengths. Dual wavelength sensors 

tend to be two separate lasers separated by an angular offset, while multi-wavelength 

systems may employ a tunable or supercontinuum laser.   

a. Correcting LiDAR Intensity Data 

A major consideration in utilizing intensity data procured by laser scanners is that 

intensity, as recorded, is not necessarily an accurate measure of the target reflectance. 

The major discrepancies between recorded intensity and actual reflectance are due to 

spherical losses, topographic, and atmospheric effects.
17

  Hölfe researched different 

methods of correcting for these errors using a data-driven correction method and a 

model-driven correction method.
18

  Figure 4 shows the effects of his data-driven 

correction on an intensity raster image.   

                                                 
17 Berhard Hölfe, “Correction of Laser Scanning Intensity Data: Data and Model-driven Approaches,” 

ISPRS Journal of Photogrammetry and Remote Sensing 62, no. 6, (December 2007): 415, doi: 
10.1016/j.isprsjprs.2007.05.008. 

18 Ibid., 415–433. 
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Figure 4.  Intensity raster image a) before intensity correction and b) after 

intensity correction.19 

3. Multi-Wavelength LiDAR Efforts 

Multi-wavelength LiDAR has been implemented since well before it was 

considered for use in vegetation analysis. As early as 1969, the study of dual wavelength 

LiDAR systems for use in shallow water bathymetry began.
20

  Airborne LiDAR 

bathymetry (ALB) takes advantage of the fact that a green wavelength laser will 

penetrate water without attenuating significantly, while a second laser, often infrared, will 

                                                 
19 Ibid. 

20 G. Daniel Hickman and John E. Hogg, “Application of an Airborne Pulsed Laser for Near-shore 
Bathymetric Measurements,” Remote Sensing of Environment 1, no. 1, (March 1969): 47–58, doi: 
10.1016/S0034-4257(69)90088-1.   

http://dx.doi.org/10.1016/S0034-4257(69)90088-1
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hardly penetrate the surface at all. The result is a matched pair of return signatures which 

delineate the surface from the ocean bottom.
21

 

 

Figure 5.  “Schematic green LiDAR waveform showing the three principal 

signal components.”22 

The bathymetric utilization of dual wavelength LiDAR systems over the past 45 

years has been instrumental in developing the techniques for managing return data from 

two different wavelengths which arrive at the detector at differing intervals.
23 

 However, 

bathymetric exploitation of LiDAR capabilities does not make use of the intensity data, 

which makes it dissimilar from the goal of refined terrain classification based on intensity 

returns.   

In the mid-2000s, researchers were exploring new ways to utilize the wealth of 

data returned by LiDAR systems. These efforts are summarized in Table 1. Tan and 

Narayanan took the Airborne Laser Polarimetric Sensor (ALPS), a NASA Goddard 

                                                 
21 Gary C. Guenther, “Meeting the Accuracy Challenge in Airborne LiDAR Bathymetry,” 

Proceedings of European Association of Remote Sensing Laboratories Workshop LIDAR Dresden, 
Germany, (16-17 June 2000): 3–4, accessed online at: 
http://www.eproceedings.org/static/vol01_1/01_1_guenther1.pdf?SessionID=63c3bb4a5564b5f62d99e on 
May 26, 2015. 

22 Ibid. 

23 Ibid., 8–10. 

http://www.eproceedings.org/static/vol01_1/01_1_guenther1.pdf?SessionID=63c3bb4a5564b5f62d99e
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system designed for hovering helicopter flight, and rebuilt it into the Multi-wavelength 

Airborne Polarimetric LiDAR (MAPL). MAPL used an infrared and green laser system 

similar to those used for bathymetry, but focused on analyzing the polarimetric returns 

and cross-polarization ratios for the purpose of evaluating vegetation canopies.24 

  Woodhouse sought to exploit two existing phenomena in his study, one being a 

change in light use efficiency and reflectance centered at 531 nanometers, the other being 

the “red edge” change in reflectance of vegetation at approximately 700 nanometers. 

Implementing a LiDAR sensor with four wavelengths, two each straddling the critical 

wavelengths for the phenomena, he demonstrated the value of a LiDAR signature that 

could be analyzed for both photochemical reflectance index (PRI) and normalized 

difference vegetation index (NVDI).
25

  The Multispectral Canopy LiDAR (MSCL) 

developed by Woodhouse only provided a laboratory demonstrator, but it further 

stimulated research into utilization of intensity and reflectance data coupled with the 

fidelity of a three dimensional point cloud.  

This study was shortly followed by the similar multi-wavelength canopy LiDAR 

(MWCL) study by Wei, who demonstrated that in a controlled environment, a four 

wavelength LiDAR could distinguish not only between vegetation and non-vegetation, 

but also between plants of differing health based solely on reflectance indices.
26

  A 

sample of his results is shown in Figure 6. 

  

                                                 
24 Songxin Tan and Ram Narayanan, “Design and Performance of a Multiwavelength Airborne 

Polarimetric LiDAR for Vegetation Remote Sensing,” Applied Optics 43, no. 11, (10 April 2004): 2362, 
2367.   

25 Iain Woodhouse, “A Multispectral Canopy LiDAR Demonstrator Project,” IEEE Geoscience and 
Remote Sensing Letters 8, no. 5, (21 April 2011): 839. 

26 Gong Wei, “Multi-wavelength Canopy LiDAR for Remote Sensing of Vegetation: Design and 
System Performance,” ISPRS Journal of Photogrammetry and Remote Sensing 69, (April 2012): 1–9, doi: 
10.1016/j.isprsjprs.2012.02.001. 
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Researcher System No. of 

Wavelengths 

Wavelengths Focus 

Tan & 

Narayanan 

MAPL 2 532 nm 

1064 nm 

Polarimetric 

Vegetation 

Analysis 

Woodhouse MSCL 4 531 nm 

550 nm 

690 nm 

780 nm 

NDVI 

PRI 

Wei MWCL 4 555 nm 

670 nm 

700 nm 

780 nm 

NDVI 

GNDVI 

TCARI 

Table 1.   Comparison of multi-wavelength sensors developed for vegetation 

analysis. 

 

Figure 6.  (a) MWCL Targets; (b) three dimensional reconstruction of MWCL 

LiDAR detection; and (c) MWCL classification results.27 

Perhaps the most complex research with multi-wavelength LiDAR was conducted 

by Hakala, who recognized that gathering intensity data, hyperspectral specifically, while 

simultaneously recording LiDAR range data represented a significant step towards 

efficiency in terms of analysis. Such a data set would be analytically flexible compared to 

                                                 
27 Ibid. 
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monochromatic LiDAR, illumination independent compared to photogrammetric 

methods, and absolved of inherent registration errors when forced into data matching.
28

 

 

Figure 7.  Hyperspectral LiDAR waveforms at various stages of processing, 

with the thick black line representing the mean waveform of all 

channels. In plot c) trigger and target parts of the waveforms are 

normalized in different scale. The negative overshoot is visible, e.g., 

after the trigger pulse.29 

Hakala employed a supercontinuum laser which produced broadband light 

collimated into eight wavelengths between 542 and 981 nanometers, providing a spectral 

intensity response optimized for vegetation analysis. The prototype sensor was capable of 

collecting multiple waveforms for investigation with the results shown in Figure 7. 

Hakala also demonstrated the validity of the backscattered reflectance data by comparing 

it to a passive spectrometer in identical laboratory conditions (Figure 8). Finally, the data 

was analyzed for common vegetative indices, which plainly identified the regions of the 

test subject spruce tree which were dead or dying.   

                                                 
28 Teemu Hakala, “Full Waveform Hyperspectral LiDAR for Terrestrial Laser Scanning,” Optics 

Express, 20, no. 7, (26 March 2012): 7120. 

29 Ibid., 7123. 
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Figure 8.  “Comparison of spectra collected from the Norway spruce using the 

hyperspectral LiDAR and a passive spectrometer.”30 

Making use of multi-wavelength LiDAR where the spectral points are not 

coincident requires a gridding and rasterization process according to a Fleming and 

Woodhouse article published in February 2015.31  Specifically referencing the Optech 

Titan sensor used for this thesis, they illustrate a false color rasterized image. Their own 

analysis describes the first real operational test of a multi-wavelength LiDAR system 

with the intent of fully exploiting the reflectance data for analytical purposes. Instruments 

flown by Riegl in June of 2013 took data in three wavelengths of 532 nm, 1064 nm, and 

1550 nm. The collection involved flying three single wavelength sensors, on one 

airframe, over the same area with two flights. The three resultant data sets were analyzed 

for forestry evaluation, primarily by using a pseudo-NDVI, and stratifying the index by 

elevation as shown in Figure 9.
32

  The pseudo-NDVI is similar to the GNDVI employed 

by Wei. While most NDVI make use of a red channel as the visible (VIS) variable, both 

                                                 
30 Ibid., 7126.   

31 Sam Fleming, Iain Woodhouse, and Antoine Cotton, “Bringing Colour to Point Clouds,” GIM 
International 29, no. 2, (February 2015): 2, accessed online: http://www.gim-
international.com/content/article/bringing-colour-to-point-clouds?output=pdf. 

32 Sam Fleming, Antoine Cotton, and Iain Woodhouse, “The First Spectral Map of a Forest 
Understory from Multi-spectral LiDAR,” LiDAR News Magazine 5, no. 1, (2015): 3, accessed online: 
https://carbomap.wordpress.com/2015/02/23/lidar-news-first-multispectral-lidar-map-of-a-forest-
understory/. 
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Fleming’s pseudo-NDVI and Wei’s GNDVI employ a green laser, 532 nm and 556 nm, 

respectively, as the visible variable.  

 

Figure 9.  Pseudo-NDVI of three layers within the vertical structure of the 

forest. (Top) First return from the LiDAR instrument, including the 

ground layer; (Middle) The mid-section of the forest canopy; (Bottom) 

Low section of the forest canopy and the ground layer. This 

demonstrates the differences in NDVI throughout the vertical canopy.33 

                                                 
33 Ibid. 
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III. DATA SET 

A. INSTRUMENT 

1. Optech Titan LiDAR 

The data to be analyzed in this thesis were collected by the Titan LiDAR System 

developed by the commercial enterprise Teledyne Optech. The Titan is a single sensor 

with three active lasers at 532 nm, 1064 nm, and 1550 nm. Each beam samples at 300 

kHz, for an incredibly dense point cloud sampled at 900 kHz combined sample rate. The 

1064 nm beam is assigned as channel two, and has zero degrees of offset from vertical, or 

nadir facing. Channel one is assigned to the 1550 nm beam and has a 3.5º forward offset, 

while channel three is assigned to the 532 nm beam with a 7º forward offset for 

bathymetric applications. The Titan additionally carries a range of electro-optical 

cameras for coincident imagery. Designed to exploit the unique capability of multi-

wavelength LiDAR, its advertised uses include 3D land cover classification, vegetation 

mapping, shallow-water bathymetry, and dense topography mapping.
34

   

 

Figure 10.  Optech Titan operating wavelengths and typical spectral responses.35 

                                                 
34 Optech Titan Multispectral LiDAR System: High Precision Environmental Mapping, (Brochure), 

n.d., 3, retrieved June 4, 2015 from http://www.teledyneoptech.com/wp-content/uploads/Titan-Specsheet-
150515-WEB.pdf. 

35 Ibid., 2. 
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Figure 11.  Optech Titan multi-wavelength LiDAR system.36 

2. Data Collection 

In October of 2014 Optech flew the Titan sensor for an operational take in a local 

area which would demonstrate its unique capabilities. Port Union is a suburb of Toronto, 

and the collection consists largely of housing neighborhoods, butted against the western 

shore of Lake Ontario. Consisting of nine data files corresponding to three passes and 

three wavelengths, there are ample opportunities to challenge current classification 

methods, including various vegetation, buildings, water, sand beaches and power lines. 

Once the data are collected it is post-processed by Optech, which consists of running the 

data through their LiDAR Mapping Suite (LMS). LMS takes the raw data and assigns 

geographic coordinates to the LiDAR range samples through PNT and IMU correction. 

Post-processing in LMS does not include any form of radiometric correction to the data.   

 

                                                 
36 Ibid., 1. 
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B. DATA PREPARATION  

1. Wavelength Merging and Noise Clipping 

In order to make the data set more analytically pliable, the data set was then run 

through a locally developed program which “merged” the different wavelengths. Starting 

with the nadir facing near infrared (NIR) laser at 1064 nm, the program then identifies the 

nearest infrared (IR) return at 1550 nm and green return at 532 nm. This search for the 

closest points takes place in three dimensions. The nearest neighbor algorithm then 

assigns the three intensities at the original 1064 nm location. This has the effect of 

reducing the point cloud density by two thirds, as only the points with all three intensities 

populated are retained. While decreasing the density of the point cloud has deleterious 

effect on the performance of basic geometry driven classification tools, it has no effect on 

the potential spectral classification techniques as all the spectral information is 

catalogued in the remaining points. The result is a false color point cloud in which each 

point contains a spectral return from each of the three laser beams. Acknowledging that 

this introduces a minute discrepancy between where the green and IR points originally 

were recorded, and where they exist in the analyzed point cloud, it is considered worth 

the analytical flexibility.   

Approximately a third of the data set consisted of water, which is analytically 

insignificant and the majority of which was discarded. Additionally, a significant number 

of noise points were manually edited out. Noise was identified both above and below the 

realistic point cloud data. The resultant data set can be viewed in Quick Terrain Modeler 

(QTM), a program designed to handle three-dimensional visualization of LiDAR point 

clouds as shown below.  
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Figure 12.  False color image of the Optech Titan data set in Quick Terrain 

Modeler.  

2. Developing a Standard Classification Model 

Before analyzing how the spectral components of the LiDAR point cloud improved 

existing classification techniques, the existing techniques were explored to determine their 

strengths and weaknesses. A software suite called LAStools, developed by Martin Isenburg, 

was used to classify the data set to represent the best available automatic solution. The 

process consists of two steps. First, the LASground program is used to classify points as 

either ground or unclassified. LASground uses the geometry of the points in a given area to 

determine where the ground level exists, and calculates the height above ground for each 

point. Height above ground will also be referred to as above ground level, or AGL. The AGL 

calculation is optional, and is generally useful in the creation of DTMs. In this case AGL was 

calculated and stored for use in later analysis. If there are multiple returns from a given laser 

pulse, the LASground algorithm will only consider the lowest or “last return” for possible 

classification as ground. Once the data set has been classified as either ground or other, and 
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the height of each point assigned, the data set is fed into the LASclassify program. 

LASclassify looks at points above a tunable threshold height, and evaluates them against 

their neighboring points as either planar, or rugged. Planar points are classified as buildings, 

and rugged points are classified as vegetation. The result of this process is a data set 

consisting of four values shown in the table.   

 

Classification Number Classification Definition Default Classification 

Color 

1 Unclassified Red 

2 Ground Green 

5 Vegetation Dark Blue 

6 Building Light Blue 

Table 2.   List of classes produced by LASground and LASclassify software. 

 

Figure 13.  Results of LASground program separating points into “ground” and 

“non-ground” shown in QTM. 
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Figure 14.  Results of LASclassify program separating points into unclassified, 

ground, vegetation, and buildings shown in QTM. 

While the LASground and LASclassify programs provide a reasonable amount of 

classification fidelity for automated functions, they still leave much to be desired in terms 

of creating an operationally valuable environmental picture. The primary shortfall lies in 

the limited number of discernable classes when using point geometry only. LASground 

cannot tell the difference between ground and water, for instance, if they both appear 

relatively flat. Similarly, a field that is grass on one end, and sand on the other appears 

the same to most automated classification tools. Secondly, automated tools which rely on 

geometry only struggle to classify a significant number of points. In the case of 

LASclassify, if the points do not meet metrics to be considered vegetation or buildings 

they go unclassified.  
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Classification No. Classification Type No. of Points % of Total 

1 Unclassified 1,838,670 16.2 

2 Ground 3,224,968 28.5 

5 Vegetation 5,353,407 47.2 

6 Buildings 914,934 8.1 

  11,331,979 100 

Table 3.   Distribution of point classification from LASclassify program. 

3. Manual Classification 

In order to provide increased fidelity to the follow on spectral classification 

techniques, the results of the automatic classification tool, LASclassify, required manual 

correction. Manual classification of a LiDAR point cloud is time intensive, and requires 

imagery in order to prove the ground truth. For this reason, three subset regions were 

selected in order to be developed into training sets for later analysis. The regions were 

chosen to represent some of the unique features of the Optech Titan data collection and 

are shown below.  

     

Figure 15.  Training Region #1 – Middle School shown in the false color 

LiDAR point cloud and the corresponding Google Earth imagery.  
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Figure 16.  Training Region #2 – Wooded Power Station/Antenna shown in the 

false color LiDAR point cloud and the corresponding Google Earth 

imagery. 

      

Figure 17.   Training Region #3 – Beachfront shown in the false color LiDAR 

point cloud and the corresponding Google Earth imagery.  

During the process of manual classification, the goal was to eliminate unclassified 

and misclassified points by placing them into the most appropriate classification. To help 

achieve this end, three additional classifications were implemented: water, power lines, 

and a miscellaneous man-made classification. One clear example of how geometrically 

driven classifiers can fail is illustrated in Figure 18. The roof of the school building 

(bottom right of Figure 18) pictured is so large and flat it is mistakenly classified as 

ground (Class 2). Figure 19 shows the manually classified result. 
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Figure 18.  Training Region #1 - Raw result from LASclassify showing both 

classification errors and unclassified areas. 

 

Figure 19.  Training Region #1 - Manually classified data set. 
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4. Flightline Merging and Flagging 

Several steps were taken at the end of the data preparation phase to ease the 

analysis phase. Up until this point in the workflow, preparation was being performed on 

three files representing the three flightlines of data supplied by Optech. While less 

cumbersome than the nine original files (three flightlines by three wavelengths), one file 

is more ideal. A LAStools program named LASmerge combined the three flightlines into 

one file totaling over 11 million points.   

Points in the training regions developed during the manual classification phase 

needed to be easily identified and segregated during follow on analysis. For this purpose 

the training regions were turned into shape files and used to flag the points inside the 

regions. This was completed in a software called ArcGIS, which also allowed the flagged 

points to be populated in the “Keypoint” attribute field of a standard LAS file. The 

Keypoint attribute is sometimes used in the development of DTMs when file sizes are too 

large. Since DTMs were not created as part of this process, the Keypoint attribute was not 

needed for spectral analysis and could be overwritten. 

As an alternative to the training region method, a random subset was implemented 

as a means to manage the number of points being included in the spectral analysis. The 

data set was reduced by a factor of twenty through a random sampling code. 

Subsequently the randomly sampled points were flagged in the Keypoint attribute field 

for later identification. 

 

 

 

 

 

 

 



 29 

IV. DATA ANALYSIS 

A. ANALYSIS WORKFLOW 

The utilization of multi-wavelength LiDAR intensity data for terrain classification 

has not been rigorously explored. This means that tools to conduct such an analysis have 

to either be derived or adapted from pre-existing tools. A workflow was developed in 

order to manipulate existing software for the purpose of conducting spectral analysis on a 

multi-wavelength LiDAR point cloud. Three programs were primarily utilized in this 

workflow, LAStools, Quick Terrain Modeler (QTM), and ENVI.  
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Figure 20.  Analysis workflow for spectral classification of multi-wavelength 

LiDAR. 
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B. VEGETATION INDICES 

One of the proven analytical indices employed in spectral analysis is the 

Normalized Difference Vegetation Index (NDVI). As discussed in Chapter II, without a 

red channel contributing to the spectral return, a true NDVI is not attainable. Instead, a 

green NDVI or GNDVI was employed in the case of the Optech Titan data. Along with 

GNDVI, two additional indices were calculated for inclusion in the spectral analysis. 

These indices excel at segregating data based on the absence or presence of vegetation, 

but they do experience limitations performing deeper in vegetation canopies where 

intensity values may vary.  

 

Index Formula 

Green Normalized Difference Vegetation 

Index (GNDVI) 

GNDVI =  (NIR – Green)/(NIR + Green) 

Green Difference Vegetation Index 

(GDVI) 

GDVI = NIR – Green 

Green Ratio Vegetation Index (GRVI) GRVI =  NIR/Green 

 

C. UTILIZING MULTI-SPECTRAL LIDAR INTENSITIES TO DERIVE 

SUB-CLASSIFICATIONS 

1. Generating Spectral Training Sets 

Having manually classified three training regions, the data set next required 

spectral analysis to discern potential sub-classifications. The primary tool used for 

extracting sub-classifications from the spectral intensity data was the “n-Dimensional 

Visualizer” (N-D VIS) analysis tool in the ENVI software suite. Although ENVI does 

publish a separate LiDAR analysis, ENVI LiDAR, the N-D VIS tool in the suite designed 

for imagery processing provided the analysis tool best suited for spectral evaluation. For 

this reason the LiDAR point cloud was manipulated in the ENVI programming interface, 

IDL, to resemble a structured array rather than a point cloud. LiDAR point clouds are 

typically formatted as an LAS or .las file, which consists of twenty attributes like 
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Keypoint mentioned previously. In this case the LAS files were merged and converted 

into an ASCII format, which is convertible in IDL to be properly accepted by N-D VIS. 

Using regions of interest (ROI) to ease the burden of display time, the ASCII file was 

converted into an array which subsequently can be imported in N-D VIS. 

N-D VIS provides a tool exactly as its name suggests. In the case of the 

reformatted LiDAR point cloud, this means “n” dimensions can be visualized at a time 

and viewed in a staggering number of combinations. By increasing dimensions input to 

the visualizer, its utility becomes apparent. First, training region points were visualized 

and separated using the Keypoint flag as a dimension. By working within the manually 

classified training regions, the classifications were treated as reliable. Secondly, the 

points were separated by geometrically derived class, predominantly the ground and 

building classes. Working within the ground class, inside the training regions, spectral 

classification could be conducted. 

The spectral analysis took place by observing the three spectral components in three 

dimensional space, or “spectral space” displayed in Figure 21. Similar to a 3D scatter plot, 

the visualizer animates the plot through various orientations. By carefully identifying where 

the three spectral components grouped or “clumped” spectral classes which were not 

directly tied to geometry could be derived. The process consists of first recognizing the 

groupings, selecting them and assigning them a new class, and then trimming the new class 

to eliminate outliers. The result of this process is shown in Figure 22. 
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Figure 21.    Ground points within the training regions viewed in spectral space 

in N-D VIS, prior to spectral classes being identified. 



 34 

 

Figure 22.  Ground points in training regions viewed in spectral space in N-D 

VIS, with six spectral classes having been identified and reassigned as 

other classes. 

Throughout the process of spectral classification, the classes were validated by 

viewing them in the X, Y space, or a two-dimensional view. Comparing this two-

dimensional view to the original false color point cloud, and Google Earth imagery, 

spectral classes were kept or discarded.  
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Figure 23.  Ground points in Training Region #1 viewed in “X,Y” space in N-D 

VIS. 
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Figure 24.  Google Earth imagery of Training Region #1. 

As shown in Figure 23, the spectral classes have an increased level of fidelity and 

detail over the classifications derived by geometry alone. In this case all the points in 

Figure 23 would have been geometrically classified as “ground” at best. Applying the 

spectral classification technique pulls out areas that are covered in grass, asphalt, 

concrete, etc. Furthermore close comparison between Figure 23 and Figure 24 reveals 

that different types of asphalt have been separated and classified differently (highlighted 

in yellow, maroon and light blue in Figure 23).   

The useful output of the spectral classification process in N-D VIS, is a set of 

classes grouped in Regions of Interest (ROI). ROIs can be saved and applied to 

supervised classification tools in the ENVI software suite. In the case of this analysis, 

eleven spectral classes were extracted. The classes represent grass, three types of asphalt, 

trees, railroad, four building materials, and paint used on streets.   
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Spectral Class 

Number 

Previous Class Sub-Class Unique Features Spectral 

Plot Color 

1 Ground (2) Grass  White 

2 Ground (2) Pavement 1 School Parking 

Lot and 

Substation 

Access Road 

Red 

3 Ground (2) Pavement 2 Side streets and 

Lake Footpath 

Light Green 

4 Ground (2) Pavement 3 Main 

thoroughfares 

Blue 

5 Ground (2) Railroad Tracks  Yellow 

6 Vegetation (5) Vegetation  Light Blue 

7 Building (6) Roof 1 Trapezoidal 

Segment of 

School Roof 

Magenta 

8 Building (6) Roof 2  Maroon 

9 Building (6) Roof 3  Dark Green 

10 Building (6) Roof 4 School Roof Purple 

11 Ground (2) Road Paint Cross walks Coral 

Table 4.   Listing of Spectral Classes generated in N-D VIS using training 

regions. 
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Figure 25.  Spectral Library Plot of classes developed in N-D VIS. 

The classes developed in N-D VIS are shown in Figure 25 to show the spectral 

similarities and differences between the 11 classes. The x-axis is numbered by band, and 

in this case bands 4, 5, and 6 correspond to 1550 nm, 1064 nm, and 532 nm respectively. 

The y-axis is scaled from 0 to 255 to encompass the eight bit values of the respective 

intensities. It is worth noting than some of the spectra are very similar, for example the 

Pavement 3 (blue) and Roof 2 (maroon) classes plot similarly. This is an example of why 

filtering the points by geometric classification prior to spectral grouping was valuable. 

Had the points not been filtered, it would have been difficult to tell the two classes apart 

in spectral space.  

2. Alternate Method for Training Set Derivation 

As an alternative to conducting spectral classification in the training regions, the 

full data set was reduced through random sampling and evaluated in N-D VIS for spectral 

classes. Using a reduction factor of twenty adequately downsized the LiDAR point cloud 

so as to allow spectral groupings to be recognized in N-D VIS. On the other hand it was 

not so great a reduction as to prevent clear spatial feature recognition when examining the 

spectral groupings. This provides a noteworthy advantage to the analyst. Using a random 

subset ensures that all largely populated spectral classes are represented in the N-D VIS 
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process. This ensures any robust spectral groupings which are spatially outside of the 

training regions are not missed. An example of a class which is missed by the training 

region method is the roof classification which is noticeably lacking as shown in Figure 

39. This class was strongly represented in the randomly sampled data set. There are two 

disadvantages to working in a random subset of the entire study area. First, since the 

manual classification to correct the geometric classification only took place in the 

training regions, the spectral classification is reliant on the imperfect results of the 

LASclassify program for filtering. Secondly, because the data is reduced by a factor of 

twenty, and the remaining points are spread across the entire study area, some smaller 

spectral classes which are adequately represented in the training regions are not 

discernable. Examples of classes which are missed in the due to under-sampling are the 

footpath pavement along the lake, and the paint used to mark roads.   
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Spectral Class 

Number 

Previous Class Sub-Class Unique Features 

1 Ground (2) Grass  

2 Ground (2) Pavement 1 School Parking Lot 

and Substation 

Access Road 

3 Ground (2) Pavement 2 Main thoroughfares 

4 Ground (2) Railroad Tracks  

5 Vegetation (5) Vegetation  

6 Building (6) Roof 1 Neighborhood 

unaccounted for by 

training regions 

7 Building (6) Roof 2 Trapezoidal 

Segment of School 

Roof 

8 Building (6) Roof 3  

9 Building (6) Roof 4  

Table 5.   Listing of Spectral Classes generated in N-D VIS using random 

sampling. 
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V. RESULTS 

A. MAXIMUM LIKELIHOOD  

Applying the output of the spectral classification process to the entire study area 

was conducted using supervised classification tools in ENVI. The first of these tools was 

the Maximum Likelihood (ML) classifier. The ML classification tool starts by calculating 

statistics for each region of interest applied in the tool. Once calculated, the program 

evaluates the likelihood that a given pixel or point is part of a given class, which are 

assumed to be normally distributed. If he or she chooses, the analyst may select a 

probability threshold, which will result in points remaining unclassified if they do not 

exceed the threshold of likeliness in any class. If no threshold is specified, all points will 

be assigned a class based on their highest probability.37 The primary thresholds used in 

this analysis were high, medium, and none, corresponding to settings of 0.85, 0.5, and 

none. Probability is calculated based on the following discriminant function38: 

𝑔𝑖(𝑥) = ln 𝑝(𝜔𝑖) − 1
2⁄ ln|𝛴𝑖| − 1

2⁄ (𝑥 −  𝑚𝑖)
𝑇 𝛴𝑖−1(𝑥 − 𝑚𝑖) 

Where: 

 𝑔𝑖(𝑥) = the probability a data point, x, falls in a given class i 

 i = class 

 x = n-dimensional data (n is number of bands) 

 p(ωi) = probability that class ωi occurs in the image and is assumed the same for  

  all classes 

 |Σi| = determinant of the covariance matrix of the data in class ωi 

 Σi
-1

 = its inverse matrix 

 mi = mean vector 

                                                 
37 “Maximum Likelihood,” Excelis Visual Information Systems, n.d., accessed online at 

http://www.exelisvis.com/docs/MaximumLikelihood.html on 17 Aug. 2015. 

38 John A. Richards, Remote Sensing Digital Image Analysis: An Introduction, (Berlin, Germany: 
Springer, 2006), 197. 

http://www.exelisvis.com/docs/MaximumLikelihood.html
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 Optimizing the effectiveness of the ML tool requires the analyst to appropriately 

select the bands, or attributes in the LiDAR point cloud’s case, for inclusion in the 

process. For all runs of the ML tool in this analysis the following bands were selected: 

1550 nm intensity, 1064 nm intensity, 532 nm intensity, above ground level (AGL), and 

GNDVI. It is important to note that while the purpose of this study is to investigate what 

the spectral aspects of multi-wavelength LiDAR add to the terrain classification process, 

it is not intended to do so absent of the other data collected by the sensor. With that in 

mind, AGL was included in the ML classifier to as an aid to the spectral classifier. 

Including AGL means the classification results were not derived by spectral means 

entirely, but are primarily spectrally divided. The probability threshold was varied to 

populate several results from which the best could be selected.   

 The two methods of deriving spectral classes described in Chapter IV resulted in 

two different training sets. Both sets were analyzed by the ML classifier separately and 

their results were compared and contrasted. While many classes derived from training 

regions and the random subset method appeared similar, their performance as training 

sets had some marked differences. 

 

Figure 26.  Study area with training regions boxed in red. 
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1. Spectral Classes Derived From Training Areas 

In general, when the probability threshold was omitted or a low value, the 

classifier was less discriminant, leaving no or few points unclassified respectively. This 

resulted in classes which were discernable, but heavily interspersed with errors of 

commission. Conversely, as the probability threshold approached one, the classifier is 

more discriminant, and in the case of the threshold being set at 0.85, left 10.2 million out 

of 11.3 million points unclassified. The resultant classes, however, are distinct and are 

characterized by errors of omission when the threshold is high.  

 

Figure 27.  Demonstration of ML Results with no probability threshold 

showing all 11 classes. 
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Figure 28.  Demonstration of ML Results with no probability threshold showing 

classes 2–4 and 11, highlighting roads and road paint. 

 

Figure 29.  Demonstration of ML Results with no probability threshold showing 

spectral classes 7–9, highlighting buildings. 
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Figure 30.  Demonstration of ML Classifier results with no probability threshold 

showing spectral classes 1 and 6, highlighting vegetation separated by 

grass and trees. 
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Figure 31.  Demonstration of ML Classifier results with a high probability 

threshold (0.85) showing all 11 spectral classes. 

 

Figure 32.  Demonstration of ML Classifier results with a high probability 

threshold (0.85) showing spectral classes 2–4 and 11, highlighting roads 

and road paint. 
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Figure 33.  Demonstration of ML Classifier results with a high probability 

threshold (0.85) showing classes 7–9, highlighting buildings. 

Figure 34.  Demonstration of ML Classifier results with a high probability 

threshold (0.85) showing spectral classes 1 and 6, 

highlighting vegetation separated by grass and trees.  

These two cases show that applying the appropriate threshold to the ML classifier 

is critical to obtaining the desired result from the analysis. Both ends of the spectrum 

perform well in identifying the paved surfaces. In the case of no threshold, there is 

discernable noise, or misclassified points, however the boundaries and forms of the roads 

are still easily identifiable to the casual observer. Absent the noise, the high probability 

threshold case (Figures 31–34) does not significantly improve the mapping of the paved 

surfaces. Looking at the building classes, the errors of commission do begin to mask the 
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nature of the neighborhood structures in the case of no probability threshold. On the other 

hand the high probability threshold case clearly leaves a significant number of structures 

unclassified, providing a poor portrayal of the structure density. Unsurprisingly, the 

optimal performance of the ML tool may be achieved by finding a middle ground. Setting 

the probability threshold at 0.5 results in 7.4 million unclassified points of the 11.3 

million point cloud. The almost 4 million remaining points provide a reasonable portrayal 

of the study area.   Streets and roads are still easily discernable, and building performance 

leaves fewer structures out without becoming too cluttered to see. One of the main 

failures of the ML classifier using the spectral classes is the misclassification of the lake 

and one unique neighborhood as vegetation. Highlighted in Figure 39, neither feature 

performs well regardless of the probability threshold setting.  

 

Figure 35.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing all 11 spectral classes. 
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Figure 36.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 2–5 and 11, highlighting 

roads, railroads and road paint. 

 

Figure 37.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 7–9, highlighting buildings. 
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Figure 38.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 1 and 6, highlighting 

vegetation separated by grass and trees. 
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Figure 39.  Detail view of spectral classes 1 and 6 which represent vegetation, 

and errors in the spectral classification process from one neighborhood 

(yellow) and the lake water (orange). 

The poor performance of the spectral classifier in one of these two cases may be 

directly linked to how the data was reduced in order to support the identification of 

spectral classes. In the training area method, points outside of the training regions were 

not evaluated for spectral grouping. This allowed for a less dense cloud in N-D VIS, as 

well as deliberate work within the geometrically derived classes. Despite best effort being 

made to carefully select the training areas so as to obtain a representative subset, the 

neighborhood in Figure 39 was not captured. Satellite imagery shows that the roofing 

material in this particular neighborhood as being significantly different from the rest of 
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the study area. Given that only one of these roofs made it into the training regions, it is 

not surprising that it was unable to be separated as its own class.  

As only the first step in the process to make multi-wavelength LiDAR data 

operationally valuable as a terrain classification resource, this process demonstrates the 

validity of using multi-wavelength intensities to derive spectral classes. In order to 

quantitatively evaluate the spectral classification method, ground truth data must be taken 

locally and compared to the classification results. Absent proper ground truth, this 

method can only be evaluated by a subjective or qualitative test. More simply, does 

utilizing multi-spectral intensity provide a “good” product in terms of terrain 

classification?  Given that the process is capable of revealing grassy ground regions, 

clearly identifying multiple types of pavement and building materials, all while remaining 

in the LiDAR point cloud makes it a successful investigation. The spectral components of 

the multi-wavelength LiDAR data provide better terrain classification than relying on 

geometry alone.  

2. Spectral Classes Derived From Random Subset Method 

Although the classes were derived in a different manner, the characteristics of the 

ML classifier remained the same. In this case, setting a probability threshold of 0.5 

resulted in 8.8 million points remaining unclassified. The strengths of the random subset 

method over the training region method described in Chapter IV are highlighted here. In 

addition to inclusion of all the major spectral classes, the subset method also results in 

ROIs that are more spectrally broad, with variation in the environment across the whole 

study area. This appears to aid the ML classifier in accurately classifying points. 

Specifically in terms of buildings, the result is drastically better due to the inclusion of a 

new building class, and better performance on commission errors. The weakness of the 

random subset method is more easily distinguished by comparing the lists of spectral 

classes in Tables 4 and 5. Less classes were extracted via random subset, with smaller 

classes like road paint not being sufficiently represented in N-D VIS. 
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Figure 40.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing all 9 spectral classes derived by the random 

subset method.  

 

Figure 41.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 2–4, highlighting roads, 

driveways and railroad. 
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Figure 42.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 6–9,  highlighting buildings, 

 

 

Figure 43.  Demonstration of ML Classifier results with a medium probability 

threshold (0.50) showing spectral classes 1 and 5, highlighting 

vegetation separated by grass and trees. 
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Figure 44.  Detailed view of performance advantage for random subset 

classification in the instance of one neighborhood. 

B. OTHER CLASSIFICATION TOOLS 

Besides Maximum Likelihood, a handful of other classification tools were tested 

for their ability to spectrally classify the LiDAR point cloud. The K-Means classifier was 

run as a baseline to evaluate the ability of an unsupervised classification method. In 

addition to Maximum Likelihood, the Spectral Angle Mapper (SAM) classifier was run 

using the same ROIs as ML, as a supervised classification alternative. Neither the K-

Means nor the SAM classifiers performed well. In the case of the SAM, errors were 

driven largely by the absence of the AGL metric to better the classification results.    
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VI. CONCLUSION 

A. STEPS TOWARD OPERATIONAL UTILITY 

The Optech Titan sensor is a unique product that offers more spectral fidelity to 

the LiDAR point cloud than any previous commercial sensor. With that in mind this 

analysis was aimed at evaluating the potential advantages of a multi-wavelength sensor 

over a mono-chromatic LiDAR, specifically in terms of terrain classification. The 

analysis indicates that having multiple wavelengths makes the sensor much more useful 

for classification over simple geometry driven LiDAR classification. It is impossible to 

tell without conducting a ground truth campaign whether multi-spectral can out-perform 

efforts to conduct terrain classification using single wavelength LiDAR. It is likely that 

processes like the one employed by Brennan, using intensity, return number, AGL, and a 

DSM could be improved by implementing more conservative spectral groups bounded by 

three wavelengths.   

The biggest challenge to future utilization of a multi-wavelength LiDAR sensor 

for terrain classification is the global development of anti-access/area-denial (A2/AD) 

architectures. LiDAR is almost universally hosted on aerial platforms which are 

vulnerable in an A2/AD environment. Only slightly less of a challenge is creating the 

processing network which could make terrain classified products available to the 

warfighter in a timely manner. Since LiDAR is a relatively new technology compared to 

electro-optical imagery and synthetic aperture radar, no such network currently exists for 

LiDAR data. Additionally, the critical analysis of this thesis was conducted in a software 

designed for image processing, not LiDAR point clouds. In order to perform much of the 

analysis, data files were manipulated to make use of tools like N-D VIS in ways that they 

were not intended. As the benefits of multi-wavelength LiDAR become apparent, the 

software to more efficiently exploit various intensities must also be developed. 

B. SPACE APPLICATION 

Currently LiDAR instruments are not widely used in space based remote sensing. 

One of the few on orbit assets is the Geoscience Laser Altimeter System (GLAS). GLAS 
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was developed by NASA Goddard to measure topography and temporal changes in ice-

sheets, as well as take atmospheric measurements.39  The issue with using LiDAR from 

space lies in diffusion and atmospheric effects. GLAS produces a spot 70 m in diameter 

on the Earth’s surface, and the distance between spots is over 150 meters.40  This is 

clearly inadequate for meeting the need of terrain mapping and classification for 

operational purposes. As the technology of lasers continues to evolve, higher power, 

more finely collimated sensors may be able to be employed from Low Earth Orbit (LEO) 

for the purpose of observing the Earth’s surface features. There are significant benefits to 

having a space based LiDAR sensor which could accomplish terrain classification in 

addition to accurately detailed three dimensional modeling. It could provide a level of 

intelligence capable of limiting the domestic advantage of the adversary, but more 

importantly as an active sensor it can operate in any lighting condition. This broadens the 

operational window of the sensor, and does not limit the host satellite to a sun-

synchronous orbit. For the near future however, LiDAR will continue to be dependent on 

space in terms of GPS, but flown in the atmosphere.   

C. FUTURE WORK 

Multi-wavelength LiDAR represents a new dimension in the field of LiDAR 

technology. Companies like Optech will need to generate products which justify the 

complexity of a multi-wavelength sensors over traditional LiDAR assets. One such 

product could be a process for conducting terrain classification with high fidelity and 

timely results. Validation of the results of the spectral classification techniques could be 

achieved in a number of ways. First, spectral data could be taken to obtain ground truth in 

the area of the data which is already on hand. Alternatively, obtaining data where ground 

truth is already known or readily attainable may be more feasible. In either case a 

quantitative analysis could be conducted to provide a hard metric describing the accuracy 

of multi-spectral classification. Another step toward progressing the spectral 

classification would be to investigate different means of radiometric correction of the 

                                                 
39 “ICESat Cryospheric Sciences Lab, Code 615,” NASA Goddard Space Flight Center, n.d., accessed 

online at: http://icesat.gsfc.nasa.gov/icesat/glas.php on 27 August, 2015.  

40 Ibid. 
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LiDAR intensities. One of the issues with this analysis is that while a major motivation 

for a multi-wavelength LiDAR sensor is vegetation analysis, separate vegetation classes 

were indistinguishable. Radiometric correction may have allowed different vegetation 

classes to coalesce in an otherwise spectrally defuse 3D scatter plot. With no correction 

applied to this data, the negative intensity effects common not only in vegetation could be 

a source of inaccuracy throughout the analysis process. The classification process should 

be expanded to be more robust, taking advantage of the full range of data provided by the 

LiDAR collection. A multi-tiered analysis leveraging geometry, return number, AGL, 

spectral intensities, and derived indices provides the best opportunity to accurately 

classify terrain. 
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